Sample records for specific behavioral phenotypes

  1. Neurobehavioral phenotype in Prader-Willi syndrome.

    PubMed

    Whittington, Joyce; Holland, Anthony

    2010-11-15

    The focus of this article is on the lifetime development of people with Prader-Willi syndrome (PWS) and specifically on the neurobehavioral phenotype. We consider studies of this aspect of the phenotype (the "behavioral phenotype" of the syndrome) that have confirmed that there are specific behaviors and psychiatric disorders, the propensities to which are increased in those with PWS, and cannot be accounted for by other variables such as IQ or adaptive behavior. Beginning with a description of what is observed in people with PWS, we review the evolving PWS phenotype and consider how some aspects of the phenotype might be best explained, and how this complex phenotype may relate to the equally complex genotype. We then consider in more detail some of the neurobehavioral aspects of the phenotype listed above that raise the greatest management problems for parents and carers. © 2010 Wiley-Liss, Inc.

  2. Identifying the role of pre-and postsynaptic GABAB receptors in behavior

    PubMed Central

    Kasten, Chelsea R.; Boehm, Stephen L.

    2015-01-01

    Although many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes. PMID:26283074

  3. Behavior and neuropsychiatric manifestations in Angelman syndrome

    PubMed Central

    Pelc, Karine; Cheron, Guy; Dan, Bernard

    2008-01-01

    Angelman syndrome has been suggested as a disease model of neurogenetic developmental condition with a specific behavioral phenotype. It is due to lack of expression of the UBE3A gene, an imprinted gene located on chromosome 15q. Here we review the main features of this phenotype, characterized by happy demeanor with prominent smiling, poorly specific laughing and general exuberance, associated with hypermotor behavior, stereotypies, and reduced behavioral adaptive skills despite proactive social contact. All these phenotypic characteristics are currently difficult to quantify and have been subject to some differences in interpretation. For example, prevalence of autistic disorder is still debated. Many of these features may occur in other syndromic or nonsyndromic forms of severe intellectual disability, but their combination, with particularly prominent laughter and smiling may be specific of Angelman syndrome. Management of problematic behaviors is primarily based on behavioral approaches, though psychoactive medication (eg, neuroleptics or antidepressants) may be required. PMID:18830393

  4. Advances in understanding behavioral phenotypes in neurogenetic syndromes.

    PubMed

    Harris, James C

    2010-11-15

    Syndrome-specific behavior was proposed by Langdon Down in his first clinical descriptions. Research interest followed but waned during the eugenics era when antisocial behavior was attributed to people with intellectual disability (ID) and the US Supreme Court legalized involuntary sterilization. When these claims were refuted and behavioral treatments introduced, their focus on environmental determination minimized the importance of biological research. The modern era began with the recognition that patterned behavior, for example, self-injury in Lesch-Nyhan syndrome and hyperphagia in PWS, was syndrome-specific, and when parent support groups pointed out syndrome-specific behavioral similarities in their children. Syndrome-specific rating scales and methodologies followed to allow behavioral comparisons between syndromes. The focus initially was on specific behaviors but with refinements in neuropsychological tests has expanded to include neurocognitive profiles. Greater clarification in genetic diagnoses has led to mutant mouse behavioral models and neurophysiologic and neuroimaging strategies have made possible the study of brain circuits. There is growing interest in investigating the developmental trajectory of behaviors from infancy to adulthood and old age. Because anxiety, mood disturbance, repetitive behaviors, and social deficits commonly occur in people with severe ID, those affected are often given multiple psychiatric diagnoses. This has led to considerable confusion in the literature. It is critical to focus on specific behaviors and cognitive patterns in research and not confuse psychiatric symptoms that lack precise definitions and involve multiple genes, the so-called psychiatric phenotype, with the more specific behavioral phenotype. New treatments based on knowledge of underlying neurobiology call for more fine-grained definition of behavior. © 2010 Wiley-Liss, Inc.

  5. Olfactory behavior and physiology are disrupted in prion protein knockout mice.

    PubMed

    Le Pichon, Claire E; Valley, Matthew T; Polymenidou, Magdalini; Chesler, Alexander T; Sagdullaev, Botir T; Aguzzi, Adriano; Firestein, Stuart

    2009-01-01

    The prion protein PrP(C) is infamous for its role in disease, but its normal physiological function remains unknown. Here we found a previously unknown behavioral phenotype of Prnp(-/-) mice in an odor-guided task. This phenotype was manifest in three Prnp knockout lines on different genetic backgrounds, which provides strong evidence that the phenotype is caused by a lack of PrP(C) rather than by other genetic factors. Prnp(-/-) mice also showed altered behavior in a second olfactory task, suggesting that the phenotype is olfactory specific. Furthermore, PrP(C) deficiency affected oscillatory activity in the deep layers of the main olfactory bulb, as well as dendrodendritic synaptic transmission between olfactory bulb granule and mitral cells. Notably, both the behavioral and electrophysiological alterations found in Prnp(-/-) mice were rescued by transgenic neuronal-specific expression of PrP(C). These data suggest that PrP(C) is important in the normal processing of sensory information by the olfactory system.

  6. Redefining Aging in HIV Infection Using Phenotypes.

    PubMed

    Stoff, David M; Goodkin, Karl; Jeste, Dilip; Marquine, Maria

    2017-10-01

    This article critically reviews the utility of "phenotypes" as behavioral descriptors in aging/HIV research that inform biological underpinnings and treatment development. We adopt a phenotypic redefinition of aging conceptualized within a broader context of HIV infection and of aging. Phenotypes are defined as dimensions of behavior, closely related to fundamental mechanisms, and, thus, may be more informative than chronological age. Primary emphasis in this review is given to comorbid aging and cognitive aging, though other phenotypes (i.e., disability, frailty, accelerated aging, successful aging) are also discussed in relation to comorbid aging and cognitive aging. The main findings that emerged from this review are as follows: (1) the phenotypes, comorbid aging and cognitive aging, are distinct from each other, yet overlapping; (2) associative relationships are the rule in HIV for comorbid and cognitive aging phenotypes; and (3) HIV behavioral interventions for both comorbid aging and cognitive aging have been limited. Three paths for research progress are identified for phenotype-defined aging/HIV research (i.e., clinical and behavioral specification, biological mechanisms, intervention targets), and some important research questions are suggested within each of these research paths.

  7. The after-hours circadian mutant has reduced phenotypic plasticity in behaviors at multiple timescales and in sleep homeostasis.

    PubMed

    Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter

    2017-12-19

    Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.

  8. Estimating the actual subject-specific genetic correlations in behavior genetics.

    PubMed

    Molenaar, Peter C M

    2012-10-01

    Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.

  9. A cell culture technique for human epiretinal membranes to describe cell behavior and membrane contraction in vitro.

    PubMed

    Wertheimer, Christian; Eibl-Lindner, Kirsten H; Compera, Denise; Kueres, Alexander; Wolf, Armin; Docheva, Denitsa; Priglinger, Siegfried G; Priglinger, Claudia; Schumann, Ricarda G

    2017-11-01

    To introduce a human cell culture technique for investigating in-vitro behavior of primary epiretinal cells and membrane contraction of fibrocellular tissue surgically removed from eyes with idiopathic macular pucker. Human epiretinal membranes were harvested from ten eyes with idiopathic macular pucker during standard vitrectomy. Specimens were fixed on cell culture plastic using small entomological pins to apply horizontal stress to the tissue, and then transferred to standard cell culture conditions. Cell behavior of 400 epiretinal cells from 10 epiretinal membranes was observed in time-lapse microscopy and analyzed in terms of cell migration, cell velocity, and membrane contraction. Immunocytochemistry was performed for cell type-specific antigens. Cell specific differences in migration behavior were observed comprising two phenotypes: (PT1) epiretinal cells moving fast, less directly, with small round phenotype and (PT2) epiretinal cells moving slowly, directly, with elongated large phenotype. No mitosis, no outgrowth and no migration onto the plastic were seen. Horizontal contraction measurements showed variation between specimens. Masses of epiretinal cells with a myofibroblast-like phenotype expressed cytoplasmatic α-SMA stress fibers and correlated with cell behavior characteristics (PT2). Fast moving epiretinal cells (PT1) were identified as microglia by immunostaining. This in-vitro technique using traction application allows for culturing surgically removed epiretinal membranes from eyes with idiopathic macular pucker, demonstrating cell behavior and membrane contraction of primary human epiretinal cells. Our findings emphasize the abundance of myofibroblasts, the presence of microglia and specific differences of cell behavior in these membranes. This technique has the potential to improve the understanding of pathologies at the vitreomacular interface and might be helpful in establishing anti-fibrotic treatment strategies.

  10. The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study.

    PubMed

    Norman, V C; Pamminger, T; Hughes, W O H

    2017-01-01

    The flexibility of organisms to respond plastically to their environment is fundamental to their fitness and evolutionary success. Social insects provide some of the most impressive examples of plasticity, with individuals exhibiting behavioral and sometimes morphological adaptations for their specific roles in the colony, such as large soldiers for nest defense. However, with the exception of the honey bee model organism, there has been little investigation of the nature and effects of environmental stimuli thought to instigate alternative phenotypes in social insects. Here, we investigate the effect of repeated threat disturbance over a prolonged (17 month) period on both behavioral and morphological phenotypes, using phenotypically plastic leaf-cutting ants ( Atta colombica ) as a model system. We found a rapid impact of threat disturbance on the behavioral phenotype of individuals within threat-disturbed colonies becoming more aggressive, threat responsive, and phototactic within as little as 2 weeks. We found no effect of threat disturbance on morphological phenotypes, potentially, because constraints such as resource limitation outweighed the benefit for colonies of producing larger individuals. The results suggest that plasticity in behavioral phenotypes can enable insect societies to respond to threats even when constraints prevent alteration of morphological phenotypes.

  11. Deletion of Fmr1 results in sex-specific changes in behavior.

    PubMed

    Nolan, Suzanne O; Reynolds, Conner D; Smith, Gregory D; Holley, Andrew J; Escobar, Brianna; Chandler, Matthew A; Volquardsen, Megan; Jefferson, Taylor; Pandian, Ashvini; Smith, Tileena; Huebschman, Jessica; Lugo, Joaquin N

    2017-10-01

    In this study, we used a systemic Fmr1 knockout in order to investigate both genotype- and sex-specific differences across multiple measures of sociability, repetitive behaviors, activity levels, anxiety, and fear-related learning and memory. Fragile X syndrome is the most common monogenic cause of intellectual disability and autism. Few studies to date have examined sex differences in a mouse model of Fragile X syndrome, though clinical data support the idea of differences in both overall prevalence and phenotype between the sexes. Using wild-type and systemic homozygous Fmr1 knockout mice, we assessed a variety of behavioral paradigms in adult animals, including the open field test, elevated plus maze, nose-poke assay, accelerating rotarod, social partition task, three-chambered social task, and two different fear conditioning paradigms. Tests were ordered such that the most invasive tests were performed last in the sequence, and testing paradigms for similar behaviors were performed in separate cohorts to minimize testing effects. Our results indicate several sex-specific changes in Fmr1 knockout mice, including male-specific increases in activity levels, and female-specific increases in repetitive behaviors on both the nose-poke assay and motor coordination on the accelerating rotarod task. The results also indicated that Fmr1 deletion results in deficits in fear learning and memory across both sexes, and no changes in social behavior across two tasks. These findings highlight the importance of including female subjects in preclinical studies, as simply studying the impact of genetic mutations in males does not yield a complete picture of the phenotype. Further research should explore these marked phenotypic differences among the sexes. Moreover, given that treatment strategies are typically equivalent between the sexes, the results highlight a potential need for sex-specific therapeutics.

  12. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states

    PubMed Central

    Chandrasekaran, Sriram; Ament, Seth A.; Eddy, James A.; Rodriguez-Zas, Sandra L.; Schatz, Bruce R.; Price, Nathan D.; Robinson, Gene E.

    2011-01-01

    Using brain transcriptomic profiles from 853 individual honey bees exhibiting 48 distinct behavioral phenotypes in naturalistic contexts, we report that behavior-specific neurogenomic states can be inferred from the coordinated action of transcription factors (TFs) and their predicted target genes. Unsupervised hierarchical clustering of these transcriptomic profiles showed three clusters that correspond to three ecologically important behavioral categories: aggression, maturation, and foraging. To explore the genetic influences potentially regulating these behavior-specific neurogenomic states, we reconstructed a brain transcriptional regulatory network (TRN) model. This brain TRN quantitatively predicts with high accuracy gene expression changes of more than 2,000 genes involved in behavior, even for behavioral phenotypes on which it was not trained, suggesting that there is a core set of TFs that regulates behavior-specific gene expression in the bee brain, and other TFs more specific to particular categories. TFs playing key roles in the TRN include well-known regulators of neural and behavioral plasticity, e.g., Creb, as well as TFs better known in other biological contexts, e.g., NF-κB (immunity). Our results reveal three insights concerning the relationship between genes and behavior. First, distinct behaviors are subserved by distinct neurogenomic states in the brain. Second, the neurogenomic states underlying different behaviors rely upon both shared and distinct transcriptional modules. Third, despite the complexity of the brain, simple linear relationships between TFs and their putative target genes are a surprisingly prominent feature of the networks underlying behavior. PMID:21960440

  13. Genetic Mapping of Fixed Phenotypes: Disease Frequency as a Breed Characteristic

    PubMed Central

    Jones, Paul; Martin, Alan; Ostrander, Elaine A.; Lark, Karl G.

    2009-01-01

    Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pacreatitis. PMID:19321632

  14. Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic.

    PubMed

    Chase, Kevin; Jones, Paul; Martin, Alan; Ostrander, Elaine A; Lark, Karl G

    2009-01-01

    Traits that have been stringently selected to conform to specific criteria in a closed population are phenotypic stereotypes. In dogs, Canis familiaris, such stereotypes have been produced by breeding for conformation, performance (behaviors), etc. We measured phenotypes on a representative sample to establish breed stereotypes. DNA samples from 147 dog breeds were used to characterize single nucleotide polymorphism allele frequencies for association mapping of breed stereotypes. We identified significant size loci (quantitative trait loci [QTLs]), implicating candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Behavioral loci for herding, pointing, and boldness implicated candidate genes appropriate to behavior (e.g., MC2R, DRD1, and PCDH9). Significant loci for longevity, a breed characteristic inversely correlated with breed size, were identified. The power of this approach to identify loci regulating the incidence of specific polygenic diseases is demonstrated by the association of a specific IGF1 haplotype with hip dysplasia, patella luxation, and pancreatitis.

  15. Behavior change is not one size fits all: psychosocial phenotypes of childhood obesity prevention intervention participants.

    PubMed

    Burgermaster, Marissa; Contento, Isobel; Koch, Pamela; Mamykina, Lena

    2018-01-17

    Variability in individuals' responses to interventions may contribute to small average treatment effects of childhood obesity prevention interventions. But, neither the causes of this individual variability nor the mechanism by which it influences behavior are clear. We used qualitative methods to characterize variability in students' responses to participating in a childhood obesity prevention intervention and psychosocial characteristics related to the behavior change process. We interviewed 18 students participating in a school-based curriculum and policy behavior change intervention. Descriptive coding, summary, and case-ordered descriptive meta-matrices were used to group participants by their psychosocial responses to the intervention and associated behavior changes. Four psychosocial phenotypes of responses emerged: (a) Activated-successful behavior-changers with strong internal supports; (b) Inspired-motivated, but not fully successful behavior-changers with some internal supports, whose taste preferences and food environment overwhelmed their motivation; (c) Reinforced-already practiced target behaviors, were motivated, and had strong family support; and (d) Indifferent-uninterested in behavior change and only did target behaviors if family insisted. Our findings contribute to the field of behavioral medicine by suggesting the presence of specific subgroups of participants who respond differently to behavior change interventions and salient psychosocial characteristics that differentiate among these phenotypes. Future research should examine the utility of prospectively identifying psychosocial phenotypes for improving the tailoring of nutrition behavior change interventions. © Society of Behavioral Medicine 2018.

  16. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion.

    PubMed

    Kong, Ru; Li, Jingwei; Orban, Csaba; Sabuncu, Mert R; Liu, Hesheng; Schaefer, Alexander; Sun, Nanbo; Zuo, Xi-Nian; Holmes, Avram J; Eickhoff, Simon B; Yeo, B T Thomas

    2018-06-06

    Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.

  17. A latent modeling approach to genotype-phenotype relationships: maternal problem behavior clusters, prenatal smoking, and MAOA genotype.

    PubMed

    McGrath, L M; Mustanski, B; Metzger, A; Pine, D S; Kistner-Griffin, E; Cook, E; Wakschlag, L S

    2012-08-01

    This study illustrates the application of a latent modeling approach to genotype-phenotype relationships and gene × environment interactions, using a novel, multidimensional model of adult female problem behavior, including maternal prenatal smoking. The gene of interest is the monoamine oxidase A (MAOA) gene which has been well studied in relation to antisocial behavior. Participants were adult women (N = 192) who were sampled from a prospective pregnancy cohort of non-Hispanic, white individuals recruited from a neighborhood health clinic. Structural equation modeling was used to model a female problem behavior phenotype, which included conduct problems, substance use, impulsive-sensation seeking, interpersonal aggression, and prenatal smoking. All of the female problem behavior dimensions clustered together strongly, with the exception of prenatal smoking. A main effect of MAOA genotype and a MAOA × physical maltreatment interaction were detected with the Conduct Problems factor. Our phenotypic model showed that prenatal smoking is not simply a marker of other maternal problem behaviors. The risk variant in the MAOA main effect and interaction analyses was the high activity MAOA genotype, which is discrepant from consensus findings in male samples. This result contributes to an emerging literature on sex-specific interaction effects for MAOA.

  18. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors.

    PubMed

    Rothwell, Patrick E; Fuccillo, Marc V; Maxeiner, Stephan; Hayton, Scott J; Gokce, Ozgun; Lim, Byung Kook; Fowler, Stephen C; Malenka, Robert C; Südhof, Thomas C

    2014-07-03

    In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Complex Genetics of Behavior: BXDs in the Automated Home-Cage.

    PubMed

    Loos, Maarten; Verhage, Matthijs; Spijker, Sabine; Smit, August B

    2017-01-01

    This chapter describes a use case for the genetic dissection and automated analysis of complex behavioral traits using the genetically diverse panel of BXD mouse recombinant inbred strains. Strains of the BXD resource differ widely in terms of gene and protein expression in the brain, as well as in their behavioral repertoire. A large mouse resource opens the possibility for gene finding studies underlying distinct behavioral phenotypes, however, such a resource poses a challenge in behavioral phenotyping. To address the specifics of large-scale screening we describe how to investigate: (1) how to assess mouse behavior systematically in addressing a large genetic cohort, (2) how to dissect automation-derived longitudinal mouse behavior into quantitative parameters, and (3) how to map these quantitative traits to the genome, deriving loci underlying aspects of behavior.

  20. Applying Quantitative Genetic Methods to Primate Social Behavior

    PubMed Central

    Brent, Lauren J. N.

    2013-01-01

    Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839

  1. Calmodulin point mutations affect Drosophila development and behavior.

    PubMed

    Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K

    1997-12-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.

  2. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  3. Pursuing Precision Speech-Language Therapy Services for Children with Down Syndrome.

    PubMed

    McDaniel, Jena; Yoder, Paul J

    2016-11-01

    The behavioral phenotype of individuals with Down syndrome (DS) offers one avenue for developing speech-language therapy services that are tailored to the individual's characteristics that affect treatment response. Behavioral phenotypes are patterns of behavioral strengths and weaknesses for specific genetic disorders that can help guide the development and implementation of effective interventions. Nonetheless, individual differences within children with DS must be acknowledged and addressed because behavioral phenotypes are probabilistic, not deterministic. Developing precision speech-language therapy services to maximize learning opportunities and outcomes for children with DS calls for increased collaboration among clinicians and researchers to address the needs, challenges, and opportunities on three interconnected themes: (1) moving effective interventions from research to practice, (2) making evidence-based, child-specific treatment intensity decisions, and (3) considering child motivation and temperament characteristics. Increased availability of intervention materials and resources as well as more specific recommendations that acknowledge individual differences could help narrow the research-practice gap. Clear descriptions of disciplined manipulations of treatment intensity components could lead to more effective intervention services. Last, addressing motivation and temperament characteristics, such as the personality-motivation orientation, in children with DS may help maximize learning opportunities. Focused attention and collaboration on these key themes could produce substantial, positive changes for children with DS and their families in the coming decade. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Behavior and emotional disturbance in Prader-Willi syndrome.

    PubMed

    Einfeld, S L; Smith, A; Durvasula, S; Florio, T; Tonge, B J

    1999-01-15

    To determine if persons with the Prader-Willi syndrome (PWS) have increased psychopathology when compared with matched controls, and whether there is a specific behavior phenotype in PWS, the behavior of 46 persons with PWS was compared with that of control individuals derived from a community sample (N = 454) of persons with mental retardation (MR). Behaviors were studied using the Developmental Behaviour Checklist, an instrument of established validity in the evaluation of behavioral disturbance in individuals with MR. PWS subjects were found to be more behaviorally disturbed than controls overall, and especially in antisocial behavior. In addition, some individual behaviors were more common in PWS subjects than controls. When these behaviors are considered together with findings from other studies using acceptably rigorous methods, a consensus behavior phenotype for PWS can be formulated. This will provide a valid foundation for studies of the mechanism of genetic pathogenesis of behavior in PWS.

  5. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  6. A latent modeling approach to genotype–phenotype relationships: maternal problem behavior clusters, prenatal smoking, and MAOA genotype

    PubMed Central

    Mustanski, B.; Metzger, A.; Pine, D. S.; Kistner-Griffin, E.; Cook, E.; Wakschlag, L. S.

    2013-01-01

    This study illustrates the application of a latent modeling approach to genotype–phenotype relationships and gene×environment interactions, using a novel, multidimensional model of adult female problem behavior, including maternal prenatal smoking. The gene of interest is the mono-amine oxidase A (MAOA) gene which has been well studied in relation to antisocial behavior. Participants were adult women (N=192) who were sampled from a prospective pregnancy cohort of non-Hispanic, white individuals recruited from a neighborhood health clinic. Structural equation modeling was used to model a female problem behavior phenotype, which included conduct problems, substance use, impulsive-sensation seeking, interpersonal aggression, and prenatal smoking. All of the female problem behavior dimensions clustered together strongly, with the exception of prenatal smoking. A main effect of MAOA genotype and a MAOA× physical maltreatment interaction were detected with the Conduct Problems factor. Our phenotypic model showed that prenatal smoking is not simply a marker of other maternal problem behaviors. The risk variant in the MAOA main effect and interaction analyses was the high activity MAOA genotype, which is discrepant from consensus findings in male samples. This result contributes to an emerging literature on sex-specific interaction effects for MAOA. PMID:22610759

  7. Behavioral and neuroanatomical abnormalities in pleiotrophin knockout mice.

    PubMed

    Krellman, Jason W; Ruiz, Henry H; Marciano, Veronica A; Mondrow, Bracha; Croll, Susan D

    2014-01-01

    Pleiotrophin (PTN) is an extracellular matrix-associated protein with neurotrophic and neuroprotective effects that is involved in a variety of neurodevelopmental processes. Data regarding the cognitive-behavioral and neuroanatomical phenotype of pleiotrophin knockout (KO) mice is limited. The purpose of this study was to more fully characterize this phenotype, with emphasis on the domains of learning and memory, cognitive-behavioral flexibility, exploratory behavior and anxiety, social behavior, and the neuronal and vascular microstructure of the lateral entorhinal cortex (EC). PTN KOs exhibited cognitive rigidity, heightened anxiety, behavioral reticence in novel contexts and novel social interactions suggestive of neophobia, and lamina-specific decreases in neuronal area and increases in neuronal density in the lateral EC. Initial learning of spatial and other associative tasks, as well as vascular density in the lateral EC, was normal in the KOs. These data suggest that the absence of PTN in vivo is associated with disruption of specific cognitive and affective processes, raising the possibility that further study of PTN KOs might have implications for the study of human disorders with similar features.

  8. Model-Independent Phenotyping of C. elegans Locomotion Using Scale-Invariant Feature Transform

    PubMed Central

    Koren, Yelena; Sznitman, Raphael; Arratia, Paulo E.; Carls, Christopher; Krajacic, Predrag; Brown, André E. X.; Sznitman, Josué

    2015-01-01

    To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior. PMID:25816290

  9. Autism Spectrum and Obsessive–Compulsive Disorders: OC Behaviors, Phenotypes and Genetics

    PubMed Central

    Jacob, Suma; Landeros-Weisenberger, Angeli; Leckman, James F.

    2014-01-01

    Autism spectrum disorders (ASDs) are a phenotypically and etiologically heterogeneous set of disorders that include obsessive–compulsive behaviors (OCB) that partially overlap with symptoms associated with obsessive–compulsive disorder (OCD). The OCB seen in ASD vary depending on the individual’s mental and chronological age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB associated with ASD, more work is needed including the potential identification of heritable endophenotypes. Likewise, important progress toward the understanding of genetic influences in ASD has been made by greater refinement of relevant phenotypes using a broad range of study designs, including twin and family-genetic studies, parametric and nonparametric linkage analyses, as well as candidate gene studies and the study of rare genetic variants. These genetic analyses could lead to the refinement of the OCB phenotypes as larger samples are studied and specific associations are replicated. Like ASD, OCB are likely to prove to be multidimensional and polygenic. Some of the vulnerability genes may prove to be generalist genes influencing the phenotypic expression of both ASD and OCD while others will be specific to subcomponents of the ASD phenotype. In order to discover molecular and genetic mechanisms, collaborative approaches need to generate shared samples, resources, novel genomic technologies, as well as more refined phenotypes and innovative statistical approaches. There is a growing need to identify the range of molecular pathways involved in OCB related to ASD in order to develop novel treatment interventions. PMID:20029829

  10. Specific Medical Conditions Are Associated with Unique Behavioral Profiles in Autism Spectrum Disorders.

    PubMed

    Zachor, Ditza A; Ben-Itzchak, Esther

    2016-01-01

    Autism spectrum disorder (ASD) is a heterogeneous group of disorders which occurs with numerous medical conditions. In previous research, subtyping in ASD has been based mostly on cognitive ability and ASD symptom severity. The aim of the current study was to investigate whether specific medical conditions in ASD are associated with unique behavioral profiles. The medical conditions included in the study were macrocephaly, microcephaly, developmental regression, food selectivity, and sleep problems. The behavioral profile was composed of cognitive ability, adaptive skills, and autism severity, and was examined in each of the aforementioned medical conditions. The study population included 1224 participants, 1043 males and 181 females (M:F ratio = 5.8:1) with a mean age of 49.9 m (SD = 29.4) diagnosed with ASD using standardized tests. Groups with and without the specific medical conditions were compared on the behavioral measures. Developmental regression was present in 19% of the population and showed a more severe clinical presentation, with lower cognitive abilities, more severe ASD symptoms, and more impaired adaptive functioning. Microcephaly was observed in 6.3% of the population and was characterized by a lower cognitive ability and more impaired adaptive functioning in comparison to the normative head circumference (HC) group. Severe food selectivity was found in 9.8% and severe sleep problems in 5.1% of the ASD population. The food selectivity and sleep problem subgroups, both showed more severe autism symptoms only as described by the parents, but not per the professional assessment, and more impaired adaptive skills. Macrocephaly was observed in 7.9% of the ASD population and did not differ from the normative HC group in any of the examined behavioral measures. Based on these findings, two unique medical-behavioral subtypes in ASD that affect inherited traits of cognition and/or autism severity were suggested. The microcephaly phenotype occurred with more impaired cognition and the developmental regression phenotype with widespread, more severe impairments in cognition and autism severity. In contrast, severe food selectivity and sleep problems represent only comorbidities to ASD that affect functioning. Defining specific subgroups in ASD with a unique biological signature and specific behavioral phenotypes may help future genetic and neuroscience research.

  11. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    PubMed

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  12. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Social Behavior and Autism Traits in a Sex Chromosomal Disorder: Klinefelter (47XXY) Syndrome

    ERIC Educational Resources Information Center

    van Rijn, Sophie; Swaab, Hanna; Aleman, Andre; Kahn, Rene S.

    2008-01-01

    Although Klinefelter syndrome (47,XXY) has been associated with psychosocial difficulties, knowledge of the social behavioral phenotype is limited. We examined specific social abilities and autism traits in Klinefelter syndrome. Scores of 31 XXY men on the Scale for Interpersonal Behavior and the Autism Spectrum Questionnaire were compared to 24…

  14. Neuropathology and Animal Models of Autism: Genetic and Environmental Factors

    PubMed Central

    Gadad, Bharathi S.; Young, Keith A.; German, Dwight C.

    2013-01-01

    Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology. PMID:24151553

  15. Repint of "Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity".

    PubMed

    Tordjman, S; Cohen, D; Anderson, G M; Botbol, M; Canitano, R; Coulon, N; Roubertoux, P L

    2018-06-01

    Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2018. Published by Elsevier Ltd.

  16. Genetic Testing for Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Bauer, Sarah C.; Msall, Michael E.

    2011-01-01

    Children with autism spectrum disorders (ASD) have unique developmental and behavioral phenotypes, and they have specific challenges with communication, social skills, and repetitive behaviors. At this time, no single etiology for ASD has been identified. However, evidence from family studies and linkage analyses suggests that genetic factors play…

  17. SOCIAL PLAY BEHAVIOR IS ALTERED IN THE MALE RAT DUE TO PERINATAL EXPOSURE TO THE ANTIANDROGEN VINCLOZOLIN

    EPA Science Inventory

    Abstract:
    During mammalian sexual differentiation, androgens, and specifically, testosterone and dihydrotestosterone, are critical for the organization of the male phenotype. In rats, social play behavior is organized by androgens during the neonatal period. Males play more ...

  18. A phenotype of early infancy predicts reactivity of the amygdala in male adults.

    PubMed

    Schwartz, C E; Kunwar, P S; Greve, D N; Kagan, J; Snidman, N C; Bloch, R B

    2012-10-01

    One of the central questions that has occupied those disciplines concerned with human development is the nature of continuities and discontinuities from birth to maturity. The amygdala has a central role in the processing of novelty and emotion in the brain. Although there is considerable variability among individuals in the reactivity of the amygdala to novel and emotional stimuli, the origin of these individual differences is not well understood. Four-month old infants called high reactive (HR) demonstrate a distinctive pattern of vigorous motor activity and crying to specific unfamiliar visual, auditory and olfactory stimuli in the laboratory. Low-reactive infants show the complementary pattern. Here, we demonstrate that the HR infant phenotype predicts greater amygdalar reactivity to novel faces almost two decades later in adults. A prediction of individual differences in brain function at maturity can be made on the basis of a single behavioral assessment made in the laboratory at 4 months of age. This is the earliest known human behavioral phenotype that predicts individual differences in patterns of neural activity at maturity. These temperamental differences rooted in infancy may be relevant to understanding individual differences in vulnerability and resilience to clinical psychiatric disorder. Males who were HR infants showed particularly high levels of reactivity to novel faces in the amygdala that distinguished them as adults from all other sex/temperament subgroups, suggesting that their amygdala is particularly prone to engagement by unfamiliar faces. These findings underline the importance of taking gender into account when studying the developmental neurobiology of human temperament and anxiety disorders. The genetic study of behavioral and biologic intermediate phenotypes (or 'endophenotypes') indexing anxiety-proneness offers an important alternative to examining phenotypes based on clinically defined disorder. As the HR phenotype is characterized by specific patterns of reactivity to elemental visual, olfactory and auditory stimuli, well before complex social behaviors such as shyness or fearful interaction with strangers can be observed, it may be closer to underlying neurobiological mechanisms than behavioral profiles observed later in life. This possibility, together with the fact that environmental factors have less time to impact the 4-month phenotype, suggests that this temperamental profile may be a fruitful target for high-risk genetic studies.

  19. Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices.

    PubMed

    Jackson, Fatimah L C; Niculescu, Mihai D; Jackson, Robert T

    2013-10-01

    Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.

  20. Surprisal analysis of Glioblastoma Multiform (GBM) microRNA dynamics unveils tumor specific phenotype.

    PubMed

    Zadran, Sohila; Remacle, Francoise; Levine, Raphael

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer -specific phenotypic state. Utilizing global miRNA microarray expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature. MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by monitoring the dynamics of miRNAs present in patients' biopsy samples. We anticipate that the GBM-specific thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the development of future therapeutics for GBM.

  1. Cognitive, emotional and social phenotyping of mice in an observer-independent setting.

    PubMed

    Dere, Ekrem; Ronnenberg, Anja; Tampe, Björn; Arinrad, Sahab; Schmidt, Manuela; Zeisberg, Elisabeth; Ehrenreich, Hannelore

    2018-04-01

    Based on the intellicage paradigm, we have developed a novel cognitive, emotional and social phenotyping battery that permits comprehensive standardized behavioral characterization of mice in an experimenter-independent social setting. Evaluation of this battery in a large number of male and female C57BL/6 wildtype mice, tested in >20 independent cohorts, revealed high reproducibility of the behavioral readouts and may serve as future reference tool. We noticed robust sex-specific differences in general activity, cognitive and emotional behavior, but not regarding preference for social pheromones. Specifically, female mice revealed higher activity, decreased sucrose preference, impaired reversal and place-time-reward learning. Furthermore, female mice reacted more sensitively than males to reward-withdrawal showing a negative emotional contrast/Crespi-effect. In a series of validation experiments, we tested mice with different pathologies, including neuroligin-3 deficient mice (male Nlgn3 y/- and female Nlgn3 +/- ) for autistic behavior, oligodendrocyte-specific erythropoietin receptor knockout (oEpoR -/- ) mice for cognitive impairment, as well as mouse models of renal failure (unilateral ureteral obstruction and 5/6 nephrectomy) and of type 2 diabetes (ApoE -/- ) - for delineating potentially confounding effects of motivational factors (thirst, glucose-craving) on learning and memory assessments. As prominent features, we saw in Nlgn3 mutants reduced preference for social pheromones, whereas oEpoR -/- mice showed learning deficits in place or reversal learning tasks. Renal failure led to increased water intake, and diabetic metabolism to enhanced glucose preference, limiting interpretation of hereon based learning and memory performance in these mice. The phenotyping battery presented here may be well-suited as high-throughput multifaceted diagnostic instrument for translational neuropsychiatry and behavioral genetics. Copyright © 2018. Published by Elsevier Inc.

  2. Alcohol-related Genes Show an Enrichment of Associations with a Persistent Externalizing Factor

    PubMed Central

    Ashenhurst, James R.; Harden, K. Paige; Corbin, William R.; Fromme, Kim

    2016-01-01

    Research using twins has found that much of the variability in externalizing phenotypes – including alcohol and drug use, impulsive personality traits, risky sex and property crime – is explained by genetic factors. Nevertheless, identification of specific genes and variants associated with these traits has proven to be difficult, likely because individual differences in externalizing are explained by many genes of small individual effect. Moreover, twin research indicates that heritable variance in externalizing behaviors is mostly shared across the externalizing spectrum rather than specific to any behavior. We use a longitudinal, “deep phenotyping” approach to model a general externalizing factor reflecting persistent engagement in a variety of socially problematic behaviors measured at eleven assessment occasions spanning early adulthood (ages 18 to 28). In an ancestrally homogenous sample of non-Hispanic Whites (N = 337), we then tested for enrichment of associations between the persistent externalizing factor and a set of 3,281 polymorphisms within 104 genes that were previously identified as associated with alcohol-use behaviors. Next we tested for enrichment among domain-specific factors (e.g., property crime) composed of residual variance not accounted for by the common factor. Significance was determined relative to bootstrapped empirical thresholds derived from permutations of phenotypic data. Results indicated significant enrichment of genetic associations for persistent externalizing, but not for domain-specific factors. Consistent with twin research findings, these results suggest that genetic variants are broadly associated with externalizing behaviors rather than unique to specific behaviors. General Scientific Summary This study shows that variation in 104 genes is associated with socially problematic “externalizing” behavior, including substance misuse, property crime, risky sex, and aspects of impulsive personality. Importantly, this association was with the common variation across these behaviors rather than with the variation unique to any given behavior. The manuscript demonstrates a potentially advantageous technique for relating sets of hypothesized genes to complex traits or behaviors. PMID:27505405

  3. Evidence-Based Diagnosis and Treatment for Specific Learning Disabilities Involving Impairments in Written and/or Oral Language

    ERIC Educational Resources Information Center

    Berninger, Virginia W.; May, Maggie O'Malley

    2011-01-01

    Programmatic, multidisciplinary research provided converging brain, genetic, and developmental support for evidence-based diagnoses of three specific learning disabilities based on hallmark phenotypes (behavioral expression of underlying genotypes) with treatment relevance: dysgraphia (impaired legible automatic letter writing, orthographic…

  4. Oral acetate supplementation attenuates N-methyl D-aspartate receptor hypofunction-induced behavioral phenotypes accompanied by restoration of acetyl-histone homeostasis.

    PubMed

    Singh, Seema; Choudhury, Arnab; Gusain, Priya; Parvez, Suhel; Palit, Gautam; Shukla, Shubha; Ganguly, Surajit

    2016-04-01

    Aberrations in cellular acetate-utilization processes leading to global histone hypoacetylation have been implicated in the etiology of neuropsychiatric disorders like schizophrenia. Here, we investigated the role of acetate supplementation in the form of glyceryl triacetate (GTA) for the ability to restore the N-methyl D-aspartate (NMDA) receptor-induced histone hypoacetylation and to ameliorate associated behavioral phenotypes in mice. Taking cues from the studies in SH-SY5Y cells, we monitored acetylation status of specific lysine residues of histones H3 and H4 (H3K9 and H4K8) to determine the impact of oral GTA supplementation in vivo. Mice treated chronically with MK-801 (10 days; 0.15 mg/kg daily) induced hypoacetylation of H3K9 and H4K8 in the hippocampus. Daily oral supplementation of GTA (2.9 g/kg) was able to prevent this MK801-induced hypoacetylation significantly. Though MK-801-stimulated decreases in acetyl-H3K9 and acetyl-H4K8 were found to be associated with ERK1/2 activation, GTA seemed to act independent of this pathway. Simultaneously, GTA administration was able to attenuate the chronic MK-801-induced cognitive behavior phenotypes in elevated plus maze and novel object recognition tests. Not only MK-801, GTA also demonstrated protective effects against behavioral phenotypes generated by another NMDA receptor antagonist, ketamine. Acute (single injection) ketamine-mediated hyperactivity phenotype and chronic (10 days treatment) ketamine-induced phenotype of exaggerated immobility in forced swim test were ameliorated by GTA. The signature behavioral phenotypes induced by acute and chronic regimen of NMDA receptor antagonists seemed to be attenuated by GTA. This study thus provides a therapeutic paradigm of using dietary acetate supplement in psychiatric disorders.

  5. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    PubMed

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counterbalancing interactions between dnc and rut mutations for phenotypic rescue.

  6. Cyclic-AMP metabolism in synaptic growth, strength and precision: Neural and behavioral phenotype-specific counterbalancing effects between dnc PDE and rut AC mutations

    PubMed Central

    Ueda, Atsushi; Wu, Chun-Fang

    2012-01-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cAMP synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrate that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29–30 °C) decreased synaptic transmission in rut, but did not alter dnc and WT. Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counter balancing interactions between dnc and rut mutations for phenotypic rescue. PMID:22380612

  7. Proinflammatory T Cell Status Associated with Early Life Adversity.

    PubMed

    Elwenspoek, Martha M C; Hengesch, Xenia; Leenen, Fleur A D; Schritz, Anna; Sias, Krystel; Schaan, Violetta K; Mériaux, Sophie B; Schmitz, Stephanie; Bonnemberger, Fanny; Schächinger, Hartmut; Vögele, Claus; Turner, Jonathan D; Muller, Claude P

    2017-12-15

    Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA ( n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69 + CD8 + T cells ( p = 0.022), increased numbers of HLA-DR + CD4 and HLA-DR + CD8 T cells ( p < 0.001), as well as increased numbers of CD25 + CD8 + T cells ( p = 0.036). ELA also showed a trend toward higher numbers of CCR4 + CXCR3 - CCR6 + CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia?

    PubMed

    Gandal, M J; Anderson, R L; Billingslea, E N; Carlson, G C; Roberts, T P L; Siegel, S J

    2012-08-01

    Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1(neo-/-) mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition (PPI) and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice showed behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced PPI, auditory-evoked response N1 latency delay and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDAR hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  9. Understanding the Etiology of Complex Traits: Symbiotic Relationships between Psychology and Genetics

    ERIC Educational Resources Information Center

    Grigorenko, Elena L.

    2007-01-01

    The present article offers comments on the infusion of methodologies, approaches, reasoning strategies, and findings from the fields of genetics and genomics into studies of complex human behaviors (hereafter, complex phenotypes). Specifically, I discuss issues of generality and specificity, causality, and replicability as they pertain to…

  10. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene.

    PubMed

    Ryner, L C; Goodwin, S F; Castrillon, D H; Anand, A; Villella, A; Baker, B S; Hall, J C; Taylor, B J; Wasserman, S A

    1996-12-13

    Sexual orientation and courtship behavior in Drosophila are regulated by fruitless (fru), the first gene in a branch of the sex-determination hierarchy functioning specifically in the central nervous system (CNS). The phenotypes of new fru mutants encompass nearly all aspects of male sexual behavior. Alternative splicing of fru transcripts produces sex-specific proteins belonging to the BTB-ZF family of transcriptional regulators. The sex-specific fru products are produced in only about 500 of the 10(5) neurons that comprise the CNS. The properties of neurons expressing these fru products suggest that fru specifies the fates or activities of neurons that carry out higher order control functions to elicit and coordinate the activities comprising male courtship behavior.

  11. Automated Video Analysis System Reveals Distinct Diurnal Behaviors in C57BL/6 and C3H/HeN Mice

    PubMed Central

    Adamah-Biassi, E. B.; Stepien, I.; Hudson, R.L.; Dubocovich, M.L.

    2013-01-01

    Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in activity-like behaviors (i.e. walk, hang, jump, come down) (ALB), exploration-like behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), ingestion-like behaviors (i.e. drink, eat) (ILB) and resting-like behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 hr magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin. PMID:23337734

  12. Genetic and environmental contributions to the inverse association between specific autistic traits and experience seeking in adults.

    PubMed

    Romero-Martínez, Ángel; Moya-Albiol, Luís; Vinkhuyzen, Anna A E; Polderman, Tinca J C

    2016-12-01

    Autistic traits are characterized by social and communication problems, restricted, repetitive and stereotyped patterns of behavior, interests and activities. The relation between autistic traits and personality characteristics is largely unknown. This study focused on the relation between five specific autistic traits measured with the abridged version of the Autism Spectrum Quotient ("social problems," "preference for routine," "attentional switching difficulties," "imagination impairments," "fascination for numbers and patterns") and Experience Seeking (ES) in a general population sample of adults, and subsequently investigated the genetic and environmental etiology between these traits. Self-reported data on autistic traits and ES were collected in a population sample (n = 559) of unrelated individuals, and in a population based family sample of twins and siblings (n = 560). Phenotypic, genetic and environmental associations between traits were examined in a bivariate model, accounting for sex and age differences. Phenotypically, ES correlated significantly with "preference for routine" and "imagination impairments" in both samples but was unrelated to the other autistic traits. Genetic analyses in the family sample revealed that the association between ES and "preference for routine" and "imagination impairments" could largely be explained by a shared genetic factor (89% and 70%, respectively). Our analyses demonstrated at a phenotypic and genetic level an inverse relationship between ES and specific autistic traits in adults. ES is associated with risk taking behavior such as substance abuse, antisocial behavior and financial problems. Future research could investigate whether autistic traits, in particular strong routine preference and impaired imagination skills, serve as protective factors for such risky behaviors. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Reduced motivation in the BACHD rat model of Huntington disease is dependent on the choice of food deprivation strategy.

    PubMed

    Jansson, Erik Karl Håkan; Clemens, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2014-01-01

    Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models.

  14. Reduced Motivation in the BACHD Rat Model of Huntington Disease Is Dependent on the Choice of Food Deprivation Strategy

    PubMed Central

    Riess, Olaf; Nguyen, Huu Phuc

    2014-01-01

    Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models. PMID:25144554

  15. Are Endophenotypes Based on Measures of Executive Functions Useful for Molecular Genetic Studies of ADHD?

    ERIC Educational Resources Information Center

    Doyle, Alysa E.; Faraone, Stephen V.; Seidman, Larry J.; Willcutt, Erik G.; Nigg, Joel T.; Waldman, Irwin D.; Pennington, Bruce F.; Peart, Joanne; Biederman, Joseph

    2005-01-01

    Background: Behavioral genetic studies provide strong evidence that attention-deficit/hyperactivity disorder (ADHD) has a substantial genetic component. Yet, due to the complexity of the ADHD phenotype, questions remain as to the specific genes that contribute to this condition as well as the pathways from genes to behavior. Endophenotypes, or…

  16. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism.

    PubMed

    Moy, Sheryl S; Riddick, Natallia V; Nikolova, Viktoriya D; Teng, Brian L; Agster, Kara L; Nonneman, Randal J; Young, Nancy B; Baker, Lorinda K; Nadler, Jessica J; Bodfish, James W

    2014-02-01

    Restricted repetitive behaviors are core symptoms of autism spectrum disorders (ASDs). The range of symptoms encompassed by the repetitive behavior domain includes lower-order stereotypy and self-injury, and higher-order indices of circumscribed interests and cognitive rigidity. Heterogeneity in clinical ASD profiles suggests that specific manifestations of repetitive behavior reflect differential neuropathology. The present studies utilized a set of phenotyping tasks to determine a repetitive behavior profile for the C58/J mouse strain, a model of ASD core symptoms. In an observational screen, C58/J demonstrated overt motor stereotypy, but not over-grooming, a commonly-used measure for mouse repetitive behavior. Amphetamine did not exacerbate motor stereotypy, but had enhanced stimulant effects on locomotion and rearing in C58/J, compared to C57BL/6J. Both C58/J and Grin1 knockdown mice, another model of ASD-like behavior, had marked deficits in marble-burying. In a nose poke task for higher-order repetitive behavior, C58/J had reduced holeboard exploration and preference for non-social, versus social, olfactory stimuli, but did not demonstrate cognitive rigidity following familiarization to an appetitive stimulus. Analysis of available high-density genotype data indicated specific regions of divergence between C58/J and two highly-sociable strains with common genetic lineage. Strain genome comparisons identified autism candidate genes, including Cntnap2 and Slc6a4, located within regions divergent in C58/J. However, Grin1, Nlgn1, Sapap3, and Slitrk5, genes linked to repetitive over-grooming, were not in regions of divergence. These studies suggest that specific repetitive phenotypes can be used to distinguish ASD mouse models, with implications for divergent underlying mechanisms for different repetitive behavior profiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective.

    PubMed

    Melancia, Francesca; Trezza, Viviana

    2018-04-25

    Fragile X syndrome is the most common form of inherited mental retardation and the most frequent monogenic cause of syndromic autism spectrum disorders. The syndrome is caused by the loss of the Fragile X Mental Retardation Protein (FMRP), a key RNA-binding protein involved in synaptic plasticity and neuronal morphology. Patients show intellectual disability, social deficits, repetitive behaviors and impairments in social communication. The aim of this review is to outline the importance of behavioral phenotyping of animal models of FXS from a developmental perspective, by showing how the behavioral characteristics of FXS at the clinical level can be translated into effective, developmentally-specific and clinically meaningful behavioral readouts in the laboratory setting. After introducing the behavioral features, diagnostic criteria and off-label pharmacotherapy of FXS, we outline how FXS-relevant behavioral features can be modelled in laboratory animals in the course of development: we review the progress to date, discuss how behavioral phenotyping in animal models of FXS is essential to identify potential treatments, and discuss caveats and future directions in this research field. Copyright © 2018. Published by Elsevier B.V.

  18. Distinctive findings in a boy with Simpson-Golabi-Behmel syndrome.

    PubMed

    Halayem, Soumeyya; Hamza, Mariem; Maazoul, Faouzi; Ben Turkia, Hadhemi; Touati, Maissa; Tebib, Neji; Mrad, Ridha; Bouden, Asma

    2016-04-01

    Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked condition characterized by pre and post natal overgrowth, facial malformations, and visceral, skeletal, and neurological anomalies. The physical characteristics of SGBS have been well documented; however there is a lack of description regarding the behavioral phenotype. We report the case of a 6-year-old boy, with confirmed deletion of 6-8 exons of the glypican-3 gene (GPC3) who presents three distinctive findings: the persistence of the craniopharyngeal canal, an immune-allergic specificity, and a scarcely behavioral phenotype consisting in the association of Austim Spectrum Disorder with accompanying mild intellectual disability and language impairments. He also fulfilled the criteria of Attention Deficit Hyperactivity Disorder and Oppositional Defiant Disorder according to DSM 5 criteria. The specificities of the case are discussed in the light of recent pathophysiological data. © 2015 Wiley Periodicals, Inc.

  19. Using Perceptual Signatures to Define and Dissociate Condition-Specific Neural Etiology: Autism and Fragile X Syndrome as Model Conditions

    ERIC Educational Resources Information Center

    Bertone, Armando; Hanck, Julie; Kogan, Cary; Chaudhuri, Avi; Cornish, Kim

    2010-01-01

    The functional link between genetic alteration and behavioral end-state is rarely straightforward and never linear. Cases where neurodevlopmental conditions defined by a distinct genetic etiology share behavioral phenotypes are exemplary, as is the case for autism and Fragile X Syndrome (FXS). In this paper and its companion paper, we propose a…

  20. Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice.

    PubMed

    Adamah-Biassi, E B; Stepien, I; Hudson, R L; Dubocovich, M L

    2013-04-15

    Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in Activity-Like Behaviors (i.e. walk, hang, jump, come down) (ALB), Exploration-Like Behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), Ingestion-Like Behaviors (i.e. drink, eat) (ILB) and Resting-Like Behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal distribution analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 h magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The Neurodevelopmental Basis of Early Childhood Disruptive Behavior: Irritable and Callous Phenotypes as Exemplars.

    PubMed

    Wakschlag, Lauren S; Perlman, Susan B; Blair, R James; Leibenluft, Ellen; Briggs-Gowan, Margaret J; Pine, Daniel S

    2018-02-01

    The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].

  2. Humans display a reduced set of consistent behavioral phenotypes in dyadic games.

    PubMed

    Poncela-Casasnovas, Julia; Gutiérrez-Roig, Mario; Gracia-Lázaro, Carlos; Vicens, Julian; Gómez-Gardeñes, Jesús; Perelló, Josep; Moreno, Yamir; Duch, Jordi; Sánchez, Angel

    2016-08-01

    Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental research has adopted a game theoretical perspective, generating valuable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals' behavior when facing different situations and to define a comprehensive classification of the strategies underlying the observed behaviors. We present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals' actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (envious, optimist, pessimist, and trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts toward the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, which could be applied to simulating societies, policy-making scenario building, and even a variety of business applications.

  3. Behavioral and pharmacological phenotypes of brain-specific diacylglycerol kinase δ-knockout mice.

    PubMed

    Usuki, Takako; Takato, Tamae; Lu, Qiang; Sakai, Hiromichi; Bando, Kana; Kiyonari, Hiroshi; Sakane, Fumio

    2016-10-01

    Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we reported that the δ isozyme of DGK was abundantly expressed in the mouse brain. However, the functions of DGKδ in the brain are still unclear. Because conventional DGKδ-knockout (KO) mice die within 24h after birth, we have generated brain-specific conditional DGKδ-KO mice to circumvent the lethality. In the novel object recognition test, the number of contacts in the DGKδ-KO mice to novel and familiar objects was greatly increased compared to the control mice, indicating that the DGKδ-KO mice showed irrational contacts with objects such as compulsive checking. In the marble burying test, which is used for analyzing obsessive-compulsive disorder (OCD)-like phenotypes, the DGKδ-KO mice buried more marbles than the control mice. Additionally, these phenotypes were significantly alleviated by the administration of an OCD remedy, fluoxetine. These results indicate that the DGKδ-KO mice showed OCD-like behaviors. Moreover, the number of long axon/neurites increased in both DGKδ-KO primary cortical neurons and DGKδ-knockdown neuroblastoma Neuro-2a cells compared to control cells. Conversely, overexpression of DGKδ decreased the number of long axon/neurites of Neuro-2a cells. Taken together, these results strongly suggest that a deficiency of DGKδ induces OCD-like behavior through enhancing axon/neurite outgrowth. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Behavior of 10 patients with FG Syndrome (Opitz-Kaveggia Syndrome) and the p.R961W Mutation in the MED12 Gene

    PubMed Central

    Graham, John M; Visootsak, Jeannie; Dykens, Elisabeth; Huddleston, Lillie; Clark, Robin D; Jones, Kenneth L; Moeschler, John B; Opitz, John M; Morford, Jackie; Simensen, Richard; Rogers, R. Curtis; Schwartz, Charles E; Friez, Michael J; Stevenson, Roger E

    2011-01-01

    Opitz and Kaveggia [1974] reported on a family of five affected males with distinctive facial appearance, mental retardation, macrocephaly, imperforate anus and hypotonia. Risheg et al. [2007] identified an identical mutation (p.R961W) in MED12 in six families with Opitz-Kaveggia syndrome, including a surviving affected man from the family reported in 1974. The previously defined behavior phenotype of hyperactivity, affability, and excessive talkativeness is very frequent in young boys with this mutation, along with socially oriented, attention-seeking behaviors. We present case studies of two older males with FG syndrome and the p.R961W mutation to illustrate how their behavior changes with age. We also characterize the behavior of eight additional individuals with FG syndrome and this recurrent mutation in MED12 using the Vineland Adaptive Behavior Scales 2nd ed., the Reiss Profile of Fundamental Goals and Motivation Sensitivities, and the Achenbach Child Behavior Checklist. Males with this MED12 mutation had deficits in communication skills compared to their socialization and daily living skills. In addition, they were at increased risk for maladaptive behavior, with a propensity towards aggression, anxiety, and inattention. Based on the behavior phenotype in 10 males with this recurrent MED12 mutation, we offer specific recommendations and interventional strategies. Our findings reinforce the importance of testing for the p.R961W MED12 mutation in males who are suspected of having developmental and behavioral problems with a clinical phenotype that is consistent with FG syndrome. PMID:18973276

  5. [Behavioral characteristics of children with Prader-Willi syndrome in preschool and school age: an exploratory study on ritualistic behavior].

    PubMed

    Sarimski, Klaus; Ebner, Sarah; Wördemann, Claudia

    2012-01-01

    Parents of 64 children and youths with Prader-Willi syndrome (PWS) describe their children's behaviour on the "Temperament and Atypical Behavior Scale" (TABS) and the German version of the "Developmental Behavior Checklist" (VFE). In the younger age group, there are no specific behavioural abnormalities which characterize a behavioral phenotype. In the older age group the data reveal elevated levels of abnormal behaviors (communication disturbance, social relations and disruptive behaviors). Parents stress ritualistic behaviors as especially challenging. The results concerning form and age-dependency of abnormal behaviors are discussed in the context of prevention and treatment options.

  6. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  7. Animal models of speech and vocal communication deficits associated with psychiatric disorders

    PubMed Central

    Konopka, Genevieve; Roberts, Todd F.

    2015-01-01

    Disruptions in speech, language and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language when compared to vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. Here, we review animal models of vocal learning and vocal communication, and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language and vocal communication. PMID:26232298

  8. Functional Phenotypic Rescue of Caenorhabditis elegans Neuroligin-Deficient Mutants by the Human and Rat NLGN1 Genes

    PubMed Central

    Calahorro, Fernando; Ruiz-Rubio, Manuel

    2012-01-01

    Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders. PMID:22723984

  9. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    PubMed

    Calahorro, Fernando; Ruiz-Rubio, Manuel

    2012-01-01

    Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  10. External validity of a hierarchical dimensional model of child and adolescent psychopathology: Tests using confirmatory factor analyses and multivariate behavior genetic analyses.

    PubMed

    Waldman, Irwin D; Poore, Holly E; van Hulle, Carol; Rathouz, Paul J; Lahey, Benjamin B

    2016-11-01

    Several recent studies of the hierarchical phenotypic structure of psychopathology have identified a General psychopathology factor in addition to the more expected specific Externalizing and Internalizing dimensions in both youth and adult samples and some have found relevant unique external correlates of this General factor. We used data from 1,568 twin pairs (599 MZ & 969 DZ) age 9 to 17 to test hypotheses for the underlying structure of youth psychopathology and the external validity of the higher-order factors. Psychopathology symptoms were assessed via structured interviews of caretakers and youth. We conducted phenotypic analyses of competing structural models using Confirmatory Factor Analysis and used Structural Equation Modeling and multivariate behavior genetic analyses to understand the etiology of the higher-order factors and their external validity. We found that both a General factor and specific Externalizing and Internalizing dimensions are necessary for characterizing youth psychopathology at both the phenotypic and etiologic levels, and that the 3 higher-order factors differed substantially in the magnitudes of their underlying genetic and environmental influences. Phenotypically, the specific Externalizing and Internalizing dimensions were slightly negatively correlated when a General factor was included, which reflected a significant inverse correlation between the nonshared environmental (but not genetic) influences on Internalizing and Externalizing. We estimated heritability of the general factor of psychopathology for the first time. Its moderate heritability suggests that it is not merely an artifact of measurement error but a valid construct. The General, Externalizing, and Internalizing factors differed in their relations with 3 external validity criteria: mother's smoking during pregnancy, parent's harsh discipline, and the youth's association with delinquent peers. Multivariate behavior genetic analyses supported the external validity of the 3 higher-order factors by suggesting that the General, Externalizing, and Internalizing factors were correlated with peer delinquency and parent's harsh discipline for different etiologic reasons. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. CKD Self-management: Phenotypes and Associations With Clinical Outcomes.

    PubMed

    Schrauben, Sarah J; Hsu, Jesse Y; Rosas, Sylvia E; Jaar, Bernard G; Zhang, Xiaoming; Deo, Rajat; Saab, Georges; Chen, Jing; Lederer, Swati; Kanthety, Radhika; Hamm, L Lee; Ricardo, Ana C; Lash, James P; Feldman, Harold I; Anderson, Amanda H

    2018-03-24

    To slow chronic kidney disease (CKD) progression and its complications, patients need to engage in self-management behaviors. The objective of this study was to classify CKD self-management behaviors into phenotypes and assess the association of these phenotypes with clinical outcomes. Prospective cohort study. Adults with mild to moderate CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. 3,939 participants in the CRIC Study recruited between 2003 and 2008 served as the derivation cohort and 1,560 participants recruited between 2013 and 2015 served as the validation cohort. CKD self-management behavior phenotypes. CKD progression, atherosclerotic events, heart failure events, death from any cause. Latent class analysis stratified by diabetes was used to identify CKD self-management phenotypes based on measures of body mass index, diet, physical activity, blood pressure, smoking status, and hemoglobin A 1c concentration (if diabetic); Cox proportional hazards models. 3 identified phenotypes varied according to the extent of implementation of recommended CKD self-management behaviors: phenotype I characterized study participants with the most recommended behaviors; phenotype II, participants with a mixture of recommended and not recommended behaviors; and phenotype III, participants with minimal recommended behaviors. In multivariable-adjusted models for those with and without diabetes, phenotype III was strongly associated with CKD progression (HRs of 1.82 and 1.49), death (HRs of 1.95 and 4.14), and atherosclerotic events (HRs of 2.54 and 1.90; each P < 0.05). Phenotype II was associated with atherosclerotic events and death among those with and without diabetes. No consensus definition of CKD self-management; limited to baseline behavior data. There are potentially 3 CKD self-management behavior phenotypes that distinguish risk for clinical outcomes. These phenotypes may inform the development of studies and guidelines regarding optimal self-management. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  12. Brain nuclei in actively courting red-sided garter snakes: a paradigm of neural trimorphism.

    PubMed

    Krohmer, Randolph W; DeMarchi, Geno A; Baleckaitis, Daniel D; Lutterschmidt, Deborah I; Mason, Robert T

    2011-03-28

    During the breeding season, two distinct male phenotypes are exhibited by red-sided garter snakes (Thamnophis sirtalis parietalis), with courtship behavior being directed not only toward females, but also toward a sub-population of males called she-males. She-males are morphologically identical to other males except for a circulating androgen level three times that of normal males and their ability to produce a female-like pheromone. As in other vertebrates, limbic nuclei in the red-sided garter snake brain are involved in the control of sexual behaviors. For example, an intact anterior hypothalamus pre-optic area (AHPOA) is essential for the initiation and maintenance of reproduction. To determine if brain morphology varies among the three behavioral phenotypes (i.e., males, she-males, and females) during the breeding season, we examined the volume, cell size and cell density of the AHPOA as well as a control region, the external nucleus of the optic tract (ENOT). We used Luxol Fast Blue and Ziehl's Fuchsin to visualize neurons and glial cells, respectively. No significant differences were observed among the three behavioral phenotypes in the volume, cell size or density in the control region. In contrast, the volume, cell size and density of the AHPOA of she-males were significantly greater than those of both male and female snakes. While the volume of the AHPOA was significantly greater in females compared to males, no differences were observed in cell size or density. These differences in brain morphology suggest a possible underlying mechanism for phenotypic-specific behavioral patterns. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Forebrain-specific expression of monoamine oxidase A reduces neurotransmitter levels, restores the brain structure, and rescues aggressive behavior in monoamine oxidase A-deficient mice.

    PubMed

    Chen, Kevin; Cases, Olivier; Rebrin, Igor; Wu, Weihua; Gallaher, Timothy K; Seif, Isabelle; Shih, Jean Chen

    2007-01-05

    Previous studies have established that abrogation of monoamine oxidase (MAO) A expression leads to a neurochemical, morphological, and behavioral specific phenotype with increased levels of serotonin (5-HT), norepinephrine, and dopamine, loss of barrel field structure in mouse somatosensory cortex, and an association with increased aggression in adults. Forebrain-specific MAO A transgenic mice were generated from MAO A knock-out (KO) mice by using the promoter of calcium-dependent kinase IIalpha (CaMKIIalpha). The presence of human MAO A transgene and its expression were verified by PCR of genomic DNA and reverse transcription-PCR of mRNA and Western blot, respectively. Significant MAO A catalytic activity, autoradiographic labeling of 5-HT, and immunocytochemistry of MAO A were found in the frontal cortex, striatum, and hippocampus but not in the cerebellum of the forebrain transgenic mice. Also, compared with MAO A KO mice, lower levels of 5-HT, norepinephrine, and DA and higher levels of MAO A metabolite 5-hydroxyindoleacetic acid were found in the forebrain regions but not in the cerebellum of the transgenic mice. These results suggest that MAO A is specifically expressed in the forebrain regions of transgenic mice. This forebrain-specific differential expression resulted in abrogation of the aggressive phenotype. Furthermore, the disorganization of the somatosensory cortex barrel field structure associated with MAO A KO mice was restored and became morphologically similar to wild type. Thus, the lack of MAO A in the forebrain of MAO A KO mice may underlie their phenotypes.

  14. RNA-Sequencing Analysis Reveals a Regulatory Role for Transcription Factor Fezf2 in the Mature Motor Cortex

    PubMed Central

    Clare, Alison J.; Wicky, Hollie E.; Empson, Ruth M.; Hughes, Stephanie M.

    2017-01-01

    Forebrain embryonic zinc finger (Fezf2) encodes a transcription factor essential for the specification of layer 5 projection neurons (PNs) in the developing cerebral cortex. As with many developmental transcription factors, Fezf2 continues to be expressed into adulthood, suggesting it remains crucial to the maintenance of neuronal phenotypes. Despite the continued expression, a function has yet to be explored for Fezf2 in the PNs of the developed cortex. Here, we investigated the role of Fezf2 in mature neurons, using lentiviral-mediated delivery of a shRNA to conditionally knockdown the expression of Fezf2 in the mouse primary motor cortex (M1). RNA-sequencing analysis of Fezf2-reduced M1 revealed significant changes to the transcriptome, identifying a regulatory role for Fezf2 in the mature M1. Kyoto Encyclopedia Genes and Genomes (KEGG) pathway analyses of Fezf2-regulated genes indicated a role in neuronal signaling and plasticity, with significant enrichment of neuroactive ligand-receptor interaction, cell adhesion molecules and calcium signaling pathways. Gene Ontology analysis supported a functional role for Fezf2-regulated genes in neuronal transmission and additionally indicated an importance in the regulation of behavior. Using the mammalian phenotype ontology database, we identified a significant overrepresentation of Fezf2-regulated genes associated with specific behavior phenotypes, including associative learning, social interaction, locomotor activation and hyperactivity. These roles were distinct from that of Fezf2-regulated genes identified in development, indicating a dynamic transition in Fezf2 function. Together our findings demonstrate a regulatory role for Fezf2 in the mature brain, with Fezf2-regulated genes having functional roles in sustaining normal neuronal and behavioral phenotypes. These results support the hypothesis that developmental transcription factors are important for maintaining neuron transcriptomes and that disruption of their expression could contribute to the progression of disease phenotypes. PMID:28936162

  15. SLC6A4 markers modulate platelet 5-HT level and specific behaviors of autism: a study from an Indian population.

    PubMed

    Jaiswal, Preeti; Guhathakurta, Subhrangshu; Singh, Asem Surindro; Verma, Deepak; Pandey, Mritunjay; Varghese, Merina; Sinha, Swagata; Ghosh, Saurabh; Mohanakumar, Kochupurackal P; Rajamma, Usha

    2015-01-02

    Presence of platelet hyperserotonemia and effective amelioration of behavioral dysfunctions by selective serotonin reuptake inhibitors (SSRI) in autism spectrum disorders (ASD) indicate that irregularities in serotonin (5-HT) reuptake and its homeostasis could be the basis of behavioral impairments in ASD patients. SLC6A4, the gene encoding serotonin transporter (SERT) is considered as a potential susceptibility gene for ASD, since it is a quantitative trait locus for blood 5-HT levels. Three functional polymorphisms, 5-HTTLPR, STin2 and 3'UTR-SNP of SLC6A4 are extensively studied for possible association with the disorder, with inconclusive outcome. In the present study, we investigated association of these polymorphisms with platelet 5-HT content and symptoms severity as revealed by childhood autism rating scale in ASD children from an Indian population. Higher 5-HT level observed in ASD was highly significant in children with heterozygous and homozygous genotypes comprising of minor alleles of the markers. Quantitative transmission disequilibrium test demonstrated significant genetic effect of STin2 allele as well as STin2/3'UTR-SNP and 5-HTTLPR/3'UTR-SNP haplotypes on 5-HT levels, but no direct association with overall CARS score and ASD phenotype. Significant genetic effect of the markers on specific behavioral phenotypes was observed for various sub-phenotypes of CARS in quantitative trait analysis. Even though the 5-HT level was not associated with severity of behavioral CARS score, a significant negative relationship was observed for 5-HT levels and level and consistency of intellectual response and general impression in ASD children. Population-based study revealed higher distribution of the haplotype 10/G of STin2/3'UTR-SNP in male controls, suggesting protective effect of this haplotype in male cases. Overall results of the study suggest that SLC6A4 markers have specific genetic effect on individual ASD behavioral attributes, might be through the modulation of 5-HT content. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Behavioral and Psychological Phenotyping of Physical Activity and Sedentary Behavior: Implications for Weight Management.

    PubMed

    Bryan, Angela D; Jakicic, John M; Hunter, Christine M; Evans, Mary E; Yanovski, Susan Z; Epstein, Leonard H

    2017-10-01

    Risk for obesity is determined by a complex mix of genetics and lifetime exposures at multiple levels, from the metabolic milieu to psychosocial and environmental influences. These phenotypic differences underlie the variability in risk for obesity and response to weight management interventions, including differences in physical activity and sedentary behavior. As part of a broader effort focused on behavioral and psychological phenotyping in obesity research, the National Institutes of Health convened a multidisciplinary workshop to explore the state of the science in behavioral and psychological phenotyping in humans to explain individual differences in physical activity, both as a risk factor for obesity development and in response to activity-enhancing interventions. Understanding the behavioral and psychological phenotypes that contribute to differences in physical activity and sedentary behavior could allow for improved treatment matching and inform new targets for tailored, innovative, and effective weight management interventions. This summary provides the rationale for identifying psychological and behavioral phenotypes relevant to physical activity and identifies opportunities for future research to better understand, define, measure, and validate putative phenotypic factors and characterize emerging phenotypes that are empirically associated with initiation of physical activity, response to intervention, and sustained changes in physical activity. © 2017 The Obesity Society.

  17. Food-Related Impulsivity in Obesity and Binge Eating Disorder-A Systematic Update of the Evidence.

    PubMed

    Giel, Katrin E; Teufel, Martin; Junne, Florian; Zipfel, Stephan; Schag, Kathrin

    2017-10-27

    The specific eating pattern of Binge Eating Disorder (BED) patients has provoked the assumption that BED might represent a phenotype within the obesity spectrum that is characterized by increased impulsivity. Following the guidelines of the PRISMA statement (preferred reporting items for systematic reviews and meta-analyses), we here provide a systematic update on the evidence on food-related impulsivity in obese individuals, with and without BED, as well as normal-weight individuals. We separately analyzed potential group differences in the impulsivity components of reward sensitivity and rash-spontaneous behavior. Our search resulted in twenty experimental studies with high methodological quality. The synthesis of the latest evidence consolidates conclusions drawn in our initial systematic review that BED represents a distinct phenotype within the obesity spectrum that is characterized by increased impulsivity. Rash-spontaneous behavior in general, and specifically towards food, is increased in BED, while food-specific reward sensitivity is also increased in obese individuals without BED, but potentially to a lesser degree. A major next step for research entails the investigation of sub-domains and temporal components of inhibitory control in BED and obesity. Based on the evidence of impaired inhibitory control in BED, affected patients might profit from interventions that address impulsive behavior.

  18. Preschoolers with Down Syndrome Do Not yet Show the Learning and Memory Impairments Seen in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Roberts, Lynette V.; Richmond, Jenny L.

    2015-01-01

    Individuals with Down syndrome (DS) exhibit a behavioral phenotype of specific strengths and weaknesses, in addition to a generalized cognitive delay. In particular, adults with DS exhibit specific deficits in learning and memory processes that depend on the hippocampus, and there is some suggestion of impairments on executive function tasks that…

  19. Paradoxical effect of baclofen on social behavior in the fragile X syndrome mouse model.

    PubMed

    Zeidler, Shimriet; Pop, Andreea S; Jaafar, Israa A; de Boer, Helen; Buijsen, Ronald A M; de Esch, Celine E F; Nieuwenhuizen-Bakker, Ingeborg; Hukema, Renate K; Willemsen, Rob

    2018-06-01

    Fragile X syndrome (FXS) is a common monogenetic cause of intellectual disability, autism spectrum features, and a broad range of other psychiatric and medical problems. FXS is caused by the lack of the fragile X mental retardation protein (FMRP), a translational regulator of specific mRNAs at the postsynaptic compartment. The absence of FMRP leads to aberrant synaptic plasticity, which is believed to be caused by an imbalance in excitatory and inhibitory network functioning of the synapse. Evidence from studies in mice demonstrates that GABA, the major inhibitory neurotransmitter in the brain, and its receptors, is involved in the pathogenesis of FXS. Moreover, several FXS phenotypes, including social behavior deficits, could be corrected in Fmr1 KO mice after acute treatment with GABA B agonists. As FXS would probably require a lifelong treatment, we investigated the effect of chronic treatment with the GABA B agonist baclofen on social behavior in Fmr1 KO mice on two behavioral paradigms for social behavior: the automated tube test and the three-chamber sociability test. Unexpectedly, chronic baclofen treatment resulted in worsening of the FXS phenotypes in these behavior tests. Strikingly, baclofen treatment also affected wild-type animals in both behavioral tests, inducing a phenotype similar to that of untreated Fmr1 KO mice. Altogether, the disappointing results of recent clinical trials with the R-baclofen enantiomer arbaclofen and our current results indicate that baclofen should be reconsidered and further evaluated before its application in targeted treatment for FXS. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  20. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    PubMed

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  1. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    PubMed Central

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  2. Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic.

    PubMed

    Fuchs, Helmut; Aguilar-Pimentel, Juan Antonio; Amarie, Oana V; Becker, Lore; Calzada-Wack, Julia; Cho, Yi-Li; Garrett, Lillian; Hölter, Sabine M; Irmler, Martin; Kistler, Martin; Kraiger, Markus; Mayer-Kuckuk, Philipp; Moreth, Kristin; Rathkolb, Birgit; Rozman, Jan; da Silva Buttkus, Patricia; Treise, Irina; Zimprich, Annemarie; Gampe, Kristine; Hutterer, Christine; Stöger, Claudia; Leuchtenberger, Stefanie; Maier, Holger; Miller, Manuel; Scheideler, Angelika; Wu, Moya; Beckers, Johannes; Bekeredjian, Raffi; Brielmeier, Markus; Busch, Dirk H; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Schmidt-Weber, Carsten; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Gailus-Durner, Valérie; Hrabě de Angelis, Martin

    2017-09-29

    Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas. For hypothesis-driven phenotypic analyses, there are thirteen additional pipelines with focus on neurological and behavioral disorders, metabolic dysfunction, respiratory system malfunctions, immune-system disorders and imaging techniques. In this article, we give an overview of the pipelines and describe the scientific rationale behind the different test combinations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dissection of Drosophila Visual Circuits Implicative in Figure Motion

    NASA Astrophysics Data System (ADS)

    Kelley, Ross G.

    The Drosophila visual system offers a model to study the foundations of how motion signals are computed from raw visual input and transformed into behavioral output. My studies focus on how specific cells in the Drosophila nervous system implement this input-output transformation. The individual cell types are known from classical studies using Golgi impregnations, but the assembly of motion processing circuits and the behavioral outputs remain poorly understood. Using an electronic flight simulator for flies and a white-noise analysis developed by Aptekar et al., I screen specific neurons in the optic lobes for behavioral ramifications. This approach produces wing responses to both the spatial and temporal dynamics of motion signals. The results of these experiments give Spatiotemporal Action Fields (STAFs) across the entire visual panorama. Genetically inactivating a distinct grouping of cells in the third optic ganglion, the Lobula Plate, the Horizontal System (HS) cell group, produced a robust phenotype through STAF analysis. Using the Gal4-UAS transgene expression system, we selectively inactivated the HS cells by expressing in their membrane inward rectifying potassium channels (Kir2.1) to hyperpolarize these cells, preventing their role in synaptic signaling. The results of the experiments show mutants lose steering responses to several distinct categories of figure motion and reduced behavioral responses to figure motion set against a contrasting moving background, highlighting their role in figure tracking behavior. Finally, a synapse inactivating protein, tetanus toxin (TNT), expressed in the HS cell group, produces a different behavioral phenotype than overexpressing inward rectifier. TNT, a bacterial neurotoxin, cleaves SNARE proteins resulting in loss of synaptic output of the cell, but the dendrites are intact and signal normally, preserving dendro-dendritic interactions known to sculpt the visual receptive fields of these cells. The two distinct phenotypes to each genetically targeted silencer differentiate the functional role of dendritic integration versus axonal output in this important cell group.

  4. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    PubMed Central

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  5. Visual and acoustic components of courtship in the bird-of-paradise genus Astrapia (Aves: Paradisaeidae)

    PubMed Central

    Gillis, Julia M.; Laman, Timothy G.

    2017-01-01

    The distinctive and divergent courtship phenotypes of the birds-of-paradise make them an important group for gaining insights into the evolution of sexually selected phenotypic evolution. The genus Astrapia includes five long-tailed species that inhabit New Guinea’s montane forests. The visual and acoustic components of courtship among Astrapia species are very poorly known. In this study, we use audiovisual data from a natural history collection of animal behavior to fill gaps in knowledge about the visual and acoustic components of Astrapia courtship. We report seven distinct male behaviors and two female specific behaviors along with distinct vocalizations and wing-produced sonations for all five species. These results provide the most complete assessment of courtship in the genus Astrapia to date and provide a valuable baseline for future research, including comparative and evolutionary studies among these and other bird-of-paradise species. PMID:29134145

  6. Mapping pathological phenotypes in a mouse model of CDKL5 disorder.

    PubMed

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.

  7. Lessons learned from the dog genome.

    PubMed

    Wayne, Robert K; Ostrander, Elaine A

    2007-11-01

    Extensive genetic resources and a high-quality genome sequence position the dog as an important model species for understanding genome evolution, population genetics and genes underlying complex phenotypic traits. Newly developed genomic resources have expanded our understanding of canine evolutionary history and dog origins. Domestication involved genetic contributions from multiple populations of gray wolves probably through backcrossing. More recently, the advent of controlled breeding practices has segregated genetic variability into distinct dog breeds that possess specific phenotypic traits. Consequently, genome-wide association and selective sweep scans now allow the discovery of genes underlying breed-specific characteristics. The dog is finally emerging as a novel resource for studying the genetic basis of complex traits, including behavior.

  8. Reprint of: The new approach to epilepsy classification: Cognition and behavior in adult epilepsy syndromes.

    PubMed

    Baxendale, Sallie; Thompson, Pamela

    2016-11-01

    The revised terminology and concepts for the organization of seizures and epilepsy proposed by the ILAE Commission on Classification and Terminology in 2010 allows for a number of new opportunities in the study of cognition and behavior in adults. This review examines the literature that has looked for behavioral and cognitive correlates of the newly recognized genetic epilepsies in adults. While some studies report clear cognitive phenotypes associated with specific genetic mutations in adults with epilepsy, others report remarkable clinical heterogeneity. In the second part of this review, we discuss some of the factors that may influence the findings in this literature. Cognitive function is the product of both genetic and environmental influences. Neuropsychological phenotypes under direct genetic influence may be wider and more subtle than specific deficits within discreet cognitive domains and may be reflected in broader, multidimensional measures of cognitive function than those tapped by scores on standardized tests of function. Future studies must be carefully designed to reflect these factors. It is also imperative that studies with negative findings are assigned as much value as those with positive results and published accordingly. This article is part of a Special Issue titled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Neurogenetic and Neurodevelopmental Pathways to Learning Disabilities.

    ERIC Educational Resources Information Center

    Mazzocco, Michele M. M.; And Others

    1997-01-01

    This paper reviews ongoing research designed to specify the cognitive, behavioral, and neuroanatomical phenotypes of specific genetic etiologies of learning disability. The genetic disorders at the focus of the research include reading disability, neurofibromatosis type 1, Tourette syndrome, and fragile X syndrome. Implications for identifying…

  10. Appetitive behavior, compulsivity, and neurochemistry in Prader-Willi syndrome.

    PubMed

    Dimitropoulos, A; Feurer, I D; Roof, E; Stone, W; Butler, M G; Sutcliffe, J; Thompson, T

    2000-01-01

    Advances in genetic research have led to an increased understanding of genotype-phenotype relationships. Excessive eating and weight gain characteristic of Prader-Willi syndrome (PWS) have been the understandable focus of much of the research. The intense preoccupation with food, lack of satiation, and incessant food seeking are among the most striking features of PWS. It has become increasingly clear that the behavioral phenotype of PWS also includes symptoms similar to obsessive compulsive disorder, which in all probability interact with the incessant hunger and lack of satiation to engender the intense preoccupation and food seeking behavior that is characteristic of this disorder. Several lines of evidence suggest that genetic material on chromosome 15 may alter synthesis, release, metabolism, binding, intrinsic activity, or reuptake of specific neurotransmitters, or alter the receptor numbers and/or distribution involved in modulating feeding. Among the likely candidates are GABAnergic, serotonergic, and neuropeptidergic mechanisms. This review summarizes what is known about the appetitive behavior and compulsivity in PWS and discusses the possible mechanisms underlying these behaviors. MRDD Research Reviews 2000;6:125-130. Copyright 2000 Wiley-Liss, Inc.

  11. Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors

    NASA Astrophysics Data System (ADS)

    Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan

    The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.

  12. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21)

    PubMed Central

    Heon, Elise; Kim, Gunhee; Qin, Sophie; Garrison, Janelle E.; Tavares, Erika; Vincent, Ajoy; Nuangchamnong, Nina; Scott, C. Anthony; Slusarski, Diane C.; Sheffield, Val C.

    2016-01-01

    Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer’s vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration. PMID:27008867

  13. Autism beyond diagnostic categories: characterization of autistic phenotypes in schizophrenia.

    PubMed

    Kästner, Anne; Begemann, Martin; Michel, Tanja Maria; Everts, Sarah; Stepniak, Beata; Bach, Christiane; Poustka, Luise; Becker, Joachim; Banaschewski, Tobias; Dose, Matthias; Ehrenreich, Hannelore

    2015-05-13

    Behavioral phenotypical continua from health to disease suggest common underlying mechanisms with quantitative rather than qualitative differences. Until recently, autism spectrum disorders and schizophrenia were considered distinct nosologic entities. However, emerging evidence contributes to the blurring of symptomatic and genetic boundaries between these conditions. The present study aimed at quantifying behavioral phenotypes shared by autism spectrum disorders and schizophrenia to prepare the ground for biological pathway analyses. Specific items of the Positive and Negative Syndrome Scale were employed and summed up to form a dimensional autism severity score (PAUSS). The score was created in a schizophrenia sample (N = 1156) and validated in adult high-functioning autism spectrum disorder (ASD) patients (N = 165). To this end, the Autism Diagnostic Observation Schedule (ADOS), the Autism (AQ) and Empathy Quotient (EQ) self-rating questionnaires were applied back to back with the newly developed PAUSS. PAUSS differentiated between ASD, schizophrenia and a disease-control sample and substantially correlated with the Autism Diagnostic Observation Schedule. Patients with ADOS scores ≥12 obtained highest, those with scores <7 lowest PAUSS values. AQ and EQ were not found to vary dependent on ADOS diagnosis. ROC curves for ADOS and PAUSS resulted in AuC values of 0.9 and 0.8, whereas AQ and EQ performed at chance level in the prediction of ASD. This work underscores the convergence of schizophrenia negative symptoms and autistic phenotypes. PAUSS evolved as a measure capturing the continuous nature of autistic behaviors. The definition of extreme-groups based on the dimensional PAUSS may permit future investigations of genetic constellations modulating autistic phenotypes.

  14. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions?

    PubMed Central

    Hall, F. Scott; Perona, Maria T. G.

    2012-01-01

    This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that are determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms. PMID:22643448

  15. Learned helplessness and social avoidance in the Wistar-Kyoto rat

    PubMed Central

    Nam, Hyungwoo; Clinton, Sarah M.; Jackson, Nateka L.; Kerman, Ilan A.

    2014-01-01

    The Wistar-Kyoto (WKY) rat is an established depression model characterized by elevated anxiety- and depression-like behavior across a variety of tests. Here we further characterized specific behavioral and functional domains relevant to depression that are altered in WKY rats. Moreover, since early-life experience potently shapes emotional behavior, we also determined whether aspects of WKYs' phenotype were modifiable by early-life factors using neonatal handling or maternal separation. We first compared WKYs' behavior to that of Sprague–Dawley (SD), Wistar, and Spontaneously Hypertensive (SHR) rats in: the open field test, elevated plus maze, novelty-suppressed feeding test, a social interaction test, and the forced swim test (FST). WKYs exhibited high baseline immobility in the FST and were the only strain to show increased immobility on FST Day 2 vs. Day 1 (an indicator of learned helplessness). WKYs also showed greater social avoidance, along with enlarged adrenal glands and hearts relative to other strains. We next tested whether neonatal handling or early-life maternal separation stress influenced WKYs' behavior. Neither manipulation affected their anxiety- and depressive-like behaviors, likely due to a strong genetic underpinning of their phenotype. Our findings indicate that WKY rats are a useful model that captures specific functional domains relevant to clinical depression including: psychomotor retardation, behavioral inhibition, learned helplessness, social withdrawal, and physiological dysfunction. WKY rats appear to be resistant to early-life manipulations (i.e., neonatal handling) that are therapeutic in other strains, and may be a useful model for the development of personalized anti-depressant therapies for treatment resistant depression. PMID:24744709

  16. Learned helplessness and social avoidance in the Wistar-Kyoto rat.

    PubMed

    Nam, Hyungwoo; Clinton, Sarah M; Jackson, Nateka L; Kerman, Ilan A

    2014-01-01

    The Wistar-Kyoto (WKY) rat is an established depression model characterized by elevated anxiety- and depression-like behavior across a variety of tests. Here we further characterized specific behavioral and functional domains relevant to depression that are altered in WKY rats. Moreover, since early-life experience potently shapes emotional behavior, we also determined whether aspects of WKYs' phenotype were modifiable by early-life factors using neonatal handling or maternal separation. We first compared WKYs' behavior to that of Sprague-Dawley (SD), Wistar, and Spontaneously Hypertensive (SHR) rats in: the open field test, elevated plus maze, novelty-suppressed feeding test, a social interaction test, and the forced swim test (FST). WKYs exhibited high baseline immobility in the FST and were the only strain to show increased immobility on FST Day 2 vs. Day 1 (an indicator of learned helplessness). WKYs also showed greater social avoidance, along with enlarged adrenal glands and hearts relative to other strains. We next tested whether neonatal handling or early-life maternal separation stress influenced WKYs' behavior. Neither manipulation affected their anxiety- and depressive-like behaviors, likely due to a strong genetic underpinning of their phenotype. Our findings indicate that WKY rats are a useful model that captures specific functional domains relevant to clinical depression including: psychomotor retardation, behavioral inhibition, learned helplessness, social withdrawal, and physiological dysfunction. WKY rats appear to be resistant to early-life manipulations (i.e., neonatal handling) that are therapeutic in other strains, and may be a useful model for the development of personalized anti-depressant therapies for treatment resistant depression.

  17. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes).

    PubMed

    Kukekova, Anna V; Johnson, Jennifer L; Teiling, Clotilde; Li, Lewyn; Oskina, Irina N; Kharlamova, Anastasiya V; Gulevich, Rimma G; Padte, Ravee; Dubreuil, Michael M; Vladimirova, Anastasiya V; Shepeleva, Darya V; Shikhevich, Svetlana G; Sun, Qi; Ponnala, Lalit; Temnykh, Svetlana V; Trut, Lyudmila N; Acland, Gregory M

    2011-10-03

    Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.

  18. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    PubMed Central

    2011-01-01

    Background Two strains of the silver fox (Vulpes vulpes), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed. Results cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome. Conclusions Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information. PMID:21967120

  19. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    PubMed

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Identification of candidate mimicry proteins involved in parasite-driven phenotypic changes.

    PubMed

    Hebert, Francois Olivier; Phelps, Luke; Samonte, Irene; Panchal, Mahesh; Grambauer, Stephan; Barber, Iain; Kalbe, Martin; Landry, Christian R; Aubin-Horth, Nadia

    2015-04-15

    Endoparasites with complex life cycles are faced with several biological challenges, as they need to occupy various ecological niches throughout their development. Host phenotypes that increase the parasite's transmission rate to the next host have been extensively described, but few mechanistic explanations have been proposed to describe their proximate causes. In this study we explore the possibility that host phenotypic changes are triggered by the production of mimicry proteins from the parasite by using an ecological model system consisting of the infection of the threespine stickleback (Gasterosteus aculeatus) by the cestode Schistocephalus solidus. Using RNA-seq data, we assembled 9,093 protein-coding genes from which ORFs were predicted to generate a reference proteome. Based on a previously published method, we built two complementary analysis pipelines to i) establish a general classification of protein similarity among various species (pipeline A) and ii) identify candidate mimicry proteins showing specific host-parasite similarities (pipeline B), a key feature underlying the possibility of molecular mimicry. Ninety-four tapeworm proteins showed high local sequence homology with stickleback proteins. Four of these candidates correspond to secreted or membrane proteins that could be produced by the parasite and eventually be released in or be in contact with the host to modulate physiological pathways involved in various phenotypes (e.g. behaviors). One of these candidates belongs to the Wnt family, a large group of signaling molecules involved in cell-to-cell interactions and various developmental pathways. The three other candidates are involved in ion transport and post-translational protein modifications. We further confirmed that these four candidates are expressed in three different developmental stages of the cestode by RT-PCR, including the stages found in the host. In this study, we identified mimicry candidate peptides from a behavior-altering cestode showing specific sequence similarity with host proteins. Despite their potential role in modulating host pathways that could lead to parasite-induced phenotypic changes and despite our confirmation that they are expressed in the developmental stage corresponding to the altered host behavior, further investigations will be needed to confirm their mechanistic role in the molecular cross-talk taking place between S. solidus and the threespine stickleback.

  1. Contextual modulation of social and endocrine correlates of fitness: insights from the life history of a sex changing fish

    PubMed Central

    Pradhan, Devaleena S.; Solomon-Lane, Tessa K.; Grober, Matthew S.

    2015-01-01

    Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates. PMID:25691855

  2. Contextual modulation of social and endocrine correlates of fitness: insights from the life history of a sex changing fish.

    PubMed

    Pradhan, Devaleena S; Solomon-Lane, Tessa K; Grober, Matthew S

    2015-01-01

    Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates.

  3. Behavioral science and the study of gene-nutrition and gene-physical activity interactions in obesity research.

    PubMed

    Faith, Myles S

    2008-12-01

    This report summarizes emerging opportunities for behavioral science to help advance the field of gene-environment and gene-behavior interactions, based on presentations at The National Cancer Institute (NCI) Workshop, "Gene-Nutrition and Gene-Physical Activity Interactions in the Etiology of Obesity." Three opportunities are highlighted: (i) designing potent behavioral "challenges" in experiments, (ii) determining viable behavioral phenotypes for genetics studies, and (iii) identifying specific measures of the environment or environmental exposures. Additional points are underscored, including the need to incorporate novel findings from neuroimaging studies regarding motivation and drive for eating and physical activity. Advances in behavioral science theory and methods can play an important role in advancing understanding of gene-brain-behavior relationships in obesity onset.

  4. Dissection of C. elegans behavioral genetics in 3-D environments

    PubMed Central

    Kwon, Namseop; Hwang, Ara B.; You, Young-Jai; V. Lee, Seung-Jae; Ho Je, Jung

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments. PMID:25955271

  5. Neuropilin-1 interacts with the second branchial arch microenvironment to mediate chick neural crest cell dynamics

    PubMed Central

    McLennan, Rebecca; Kulesa, Paul M.

    2011-01-01

    Cranial neural crest cells (NCCs) require neuropilin signaling to reach and invade the branchial arches. Here, we use an in vivo chick model to investigate whether the neuropilin-1 knockdown phenotype is specific to the second branchial arch (ba2), changes in NCC behaviors and phenotypic consequences, and whether neuropilins work together to facilitate entry into and invasion of ba2. We find that cranial NCCs with reduced neuropilin-1 expression displayed shorter protrusions and decreased cell body and nuclear length-to-width ratios characteristic of a loss in polarity and motility, after specific interaction with ba2. Directed NCC migration was rescued by transplantation of transfected cells into rhombomere 4 of younger hosts. Lastly, reduction of neuropilin-2 expression by shRNA either solely or with reduction of neuropilin-1 expression did not lead to a stronger head phenotype. Thus, NCCs, independent of rhombomere origin, require neuropilin-1, but not neuropilin-2 to maintain polarity and directed migration into ba2. PMID:20503363

  6. Effect of lithium on behavioral disinhibition induced by electrolytic lesion of the median raphe nucleus

    PubMed Central

    Pezzato, Fernanda A.; Can, Adem; Hoshino, Katsumasa; Horta, José de Anchieta C.; Mijares, Miriam G.

    2014-01-01

    Rationale Alterations in brainstem circuits have been proposed as a possible mechanism underlying the etiology of mood disorders. Projections from the median raphe nucleus (MnR) modulate dopaminergic activity in the forebrain and are also part of a behavioral disinhibition/inhibition system that produces phenotypes resembling behavioral variations manifested during manic and depressive phases of bipolar disorder. Objective Assess the effect of chronic lithium treatment on behavioral disinhibition induced by MnR lesions. Methods MnR electrolytic lesions were performed in C57BL/6J mice, with sham operated and intact animals as control groups. Following recovery, mice were chronically treated with lithium (LiCl, added in chow) followed by behavioral testing. Results MnR lesion induced manic-like behavioral alterations including hyperactivity in the open field (OF), stereotyped circling, anxiolytic/risk taking in the elevated plus maze (EPM) and light/dark box (LDB) tests, and increased basal body temperature. Lithium was specifically effective in reducing OF hyperactivity and stereotypy but did not reverse (EPM) or had a nonspecific effect (LDB) on anxiety/risk taking measures. Additionally, lithium decreased saccharin preference and prevented weight loss during single housing. Conclusions Our data support electrolytic lesions of the MnR as an experimental model of a hyper-excitable/disinhibited phenotype consistent with some aspects of mania that are attenuated by the mood stabilizer lithium. Given lithium’s relatively specific efficacy in treating mania, these data support the hypothesis that manic symptoms derive not only from the stimulation of excitatory systems but also from inactivation or decreased activity of inhibitory mechanisms. PMID:25345734

  7. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions.

    PubMed

    Hau, Michaela; Goymann, Wolfgang

    2015-01-01

    Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments. In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward. We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone-behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.

  8. Mapping Pathological Phenotypes in a Mouse Model of CDKL5 Disorder

    PubMed Central

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L.; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T.

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder. PMID:24838000

  9. Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development.

    PubMed

    Casey, B J; Glatt, C E; Tottenham, N; Soliman, F; Bath, K; Amso, D; Altemus, M; Pattwell, S; Jones, R; Levita, L; McEwen, B; Magariños, A M; Gunnar, M; Thomas, K M; Mezey, J; Clark, A G; Hempstead, B L; Lee, F S

    2009-11-24

    There has been a dramatic rise in gene x environment studies of human behavior over the past decade that have moved the field beyond simple nature versus nurture debates. These studies offer promise in accounting for more variability in behavioral and biological phenotypes than studies that focus on genetic or experiential factors alone. They also provide clues into mechanisms of modifying genetic risk or resilience in neurodevelopmental disorders. Yet, it is rare that these studies consider how these interactions change over the course of development. In this paper, we describe research that focuses on the impact of a polymorphism in a brain-derived neurotrophic factor (BDNF) gene, known to be involved in learning and development. Specifically we present findings that assess the effects of genotypic and environmental loadings on neuroanatomic and behavioral phenotypes across development. The findings illustrate the use of a genetic mouse model that mimics the human polymorphism, to constrain the interpretation of gene-environment interactions across development in humans.

  10. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production.

    PubMed

    Tilot, Amanda K; Gaugler, Mary K; Yu, Qi; Romigh, Todd; Yu, Wanfeng; Miller, Robert H; Frazier, Thomas W; Eng, Charis

    2014-06-15

    PTEN Hamartoma Tumor Syndrome (PHTS) is an autosomal-dominant genetic condition underlying a subset of autism spectrum disorder (ASD) with macrocephaly. Caused by germline mutations in PTEN, PHTS also causes increased risks of multiple cancers via dysregulation of the PI3K and MAPK signaling pathways. Conditional knockout models have shown that neural Pten regulates social behavior, proliferation and cell size. Although much is known about how the intracellular localization of PTEN regulates signaling in cancer cell lines, we know little of how PTEN localization influences normal brain physiology and behavior. To address this, we generated a germline knock-in mouse model of cytoplasm-predominant Pten and characterized its behavioral and cellular phenotypes. The homozygous Pten(m3m4) mice have decreased total Pten levels including a specific drop in nuclear Pten and exhibit region-specific increases in brain weight. The Pten(m3m4) model displays sex-specific increases in social motivation, poor balance and normal recognition memory-a profile reminiscent of some individuals with high functioning ASD. The cytoplasm-predominant protein caused cellular hypertrophy limited to the soma and led to increased NG2 cell proliferation and accumulation of glia. The animals also exhibit significant astrogliosis and microglial activation, indicating a neuroinflammatory phenotype. At the signaling level, Pten(m3m4) mice show brain region-specific differences in Akt activation. These results demonstrate that differing alterations to the same autism-linked gene can cause distinct behavioral profiles. The Pten(m3m4) model is the first murine model of inappropriately elevated social motivation in the context of normal cognition and may expand the range of autism-related behaviors replicated in animal models. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia.

    PubMed

    Carr, Gregory V; Chen, Jingshan; Yang, Feng; Ren, Ming; Yuan, Peixiong; Tian, Qingjun; Bebensee, Audrey; Zhang, Grace Y; Du, Jing; Glineburg, Paul; Xun, Randy; Akhile, Omoye; Akuma, Daniel; Pickel, James; Barrow, James C; Papaleo, Francesco; Weinberger, Daniel R

    2016-11-01

    Overexpression in humans of KCNH2-3.1, which encodes a primate-specific and brain-selective isoform of the human ether-a-go-go-related potassium channel, is associated with impaired cognition, inefficient neural processing and schizophrenia. Here, we describe a new mouse model that incorporates the KCNH2-3.1 molecular phenotype. KCNH2-3.1 transgenic mice are viable and display normal sensorimotor behaviors. However, they show alterations in neuronal structure and microcircuit function in the hippocampus and prefrontal cortex, areas affected in schizophrenia. Specifically, in slice preparations from the CA1 region of the hippocampus, KCNH2-3.1 transgenic mice have fewer mature dendrites and impaired theta burst stimulation long-term potentiation. Abnormal neuronal firing patterns characteristic of the fast deactivation kinetics of the KCNH2-3.1 isoform were also observed in prefrontal cortex. Transgenic mice showed significant deficits in a hippocampal-dependent object location task and a prefrontal cortex-dependent T-maze working memory task. Interestingly, the hippocampal-dependent alterations were not present in juvenile transgenic mice, suggesting a developmental trajectory to the phenotype. Suppressing KCNH2-3.1 expression in adult mice rescues both the behavioral and physiological phenotypes. These data provide insight into the mechanism of association of KCNH2-3.1 with variation in human cognition and neuronal physiology and may explain its role in schizophrenia.

  12. Behavioral phenotypes of genetic syndromes with intellectual disability: comparison of adaptive profiles.

    PubMed

    Di Nuovo, Santo; Buono, Serafino

    2011-10-30

    The study of distinctive and consistent behaviors in the most common genetic syndromes with intellectual disability is useful to explain abnormalities or associated psychiatric disorders. The behavioral phenotypes revealed outcomes totally or partially specific for each syndrome. The aim of our study was to compare similarities and differences in the adaptive profiles of the five most frequent genetic syndromes, i.e. Down syndrome, Williams syndrome, Angelman syndrome, Prader-Willi syndrome, and Fragile-X syndrome (fully mutated), taking into account the relation with chronological age and the overall IQ level. The research was carried out using the Vineland Adaptive Behavior Scale (beside the Wechsler Intelligence scales to obtain IQ) with a sample of 181 persons (107 males and 74 females) showing genetic syndromes and mental retardation. Syndrome-based groups were matched for chronological age and mental age (excluding the Angelman group, presenting with severe mental retardation). Similarities and differences in the adaptive profiles are described, relating them to IQs and maladaptive behaviors. The results might be useful in obtaining a global index of adjustment for the assessment of intellectual disability level as well as for educational guidance and rehabilitative plans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Finding Susceptibility Genes for Developmental Disorders of Speech: The Long and Winding Road.

    ERIC Educational Resources Information Center

    Felsenfeld, Susan

    2002-01-01

    This article explores the gene-finding process for developmental speech disorders (DSDs), specifically disorders of articulation/phonology and stuttering. It reviews existing behavioral genetic studies of these phenotypes, discusses roadblocks that may impede the molecular study of DSDs, and reviews the findings of the small number of molecular…

  14. Estimating parametric phenotypes that determine anthesis date in zea mays: Challenges in combining ecophysiological models with genetics

    USDA-ARS?s Scientific Manuscript database

    Ecophysiological crop models encode intra-species behaviors using parameters that are presumed to summarize genotypic properties of individual lines or cultivars. These genotype-specific parameters (GSP’s) can be interpreted as quantitative traits that can be mapped or otherwise analyzed, as are mor...

  15. Effects of Sex Chromosome Aneuploidies on Brain Development: Evidence from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Lenroot, Rhoshel K.; Lee, Nancy Raitano; Giedd, Jay N.

    2009-01-01

    Variation in the number of sex chromosomes is a relatively common genetic condition, affecting as many as 1/400 individuals. The sex chromosome aneuploidies (SCAs) are associated with characteristic behavioral and cognitive phenotypes, although the degree to which specific individuals are affected can fall within a wide range. Understanding the…

  16. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals.

    PubMed

    Doremus-Fitzwater, Tamara L; Spear, Linda P

    2016-11-01

    Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET

    PubMed Central

    Peinado, Héctor; Alečković, Maša; Lavotshkin, Simon; Matei, Irina; Costa-Silva, Bruno; Moreno-Bueno, Gema; Hergueta-Redondo, Marta; Williams, Caitlin; García-Santos, Guillermo; Nitadori-Hoshino, Ayuko; Hoffman, Caitlin; Badal, Karen; Garcia, Benjamin A.; Callahan, Margaret K.; Yuan, Jianda; Martins, Vilma R.; Skog, Johan; Kaplan, Rosandra N.; Brady, Mary S.; Wolchok, Jedd D.; Chapman, Paul B.; Kang, Yibin; Bromberg, Jacqueline; Lyden, David

    2013-01-01

    Tumor-derived exosomes are emerging mediators of tumorigenesis with tissue-specific addresses and messages. We explored the function of melanoma-derived exosomes in the formation of primary tumor and metastases in mouse and human subjects. Exosomes from highly metastatic melanoma increased the metastatic behavior of primary tumors by permanently “educating” bone marrow (BM) progenitors via the MET receptor. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites, and reprogrammed BM progenitors towards a c-Kit+Tie2+Met+ pro-vasculogenic phenotype. Reducing Met expression in exosomes diminished the pro-metastatic behavior of BM cells. Importantly, MET expression was elevated in circulating CD45−C-KITlow/+TIE2+ BM progenitors from metastatic melanoma subjects. RAB1a, RAB5b, RAB7, and RAB27a were highly expressed in melanoma cells and Rab27a RNA interference decreased exosome production, preventing BM education, tumor growth and metastasis. Finally, we identified an exosome-specific “melanoma signature” with prognostic and therapeutic potential, comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. PMID:22635005

  18. Single-Nucleotide-Polymorphism-Based Association Mapping of Dog Stereotypes

    PubMed Central

    Jones, Paul; Chase, Kevin; Martin, Alan; Davern, Pluis; Ostrander, Elaine A.; Lark, Karl G.

    2008-01-01

    Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation, performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme selection, identified many additional significant loci. Less well-documented data for behavioral stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated with breed size. The strengths and limitations of the approach are discussed as well as its potential to identify loci regulating the within-breed incidence of specific polygenic diseases. PMID:18505865

  19. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

    PubMed

    Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C; Murphy, Geoffrey G; Umemori, Hisashi

    2016-07-01

    Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. How to consistently link extraversion and intelligence to the catechol-O-methyltransferase (COMT) gene: on defining and measuring psychological phenotypes in neurogenetic research.

    PubMed

    Wacker, Jan; Mueller, Erik M; Hennig, Jürgen; Stemmler, Gerhard

    2012-02-01

    The evidence for associations between genetic polymorphisms and complex behavioral/psychological phenotypes (traits) has thus far been weak and inconsistent. Using the well-studied Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene as an example, we demonstrate that using theoretical models to guide phenotype definition and measuring the phenotypes of interest with a high degree of specificity reveals strong gene-behavior associations that are consistent with prior work and that would have otherwise gone unnoticed. Only after statistically controlling for irrelevant portions of phenotype variance did we observe strong (Cohen's d = 0.33-0.70) and significant associations between COMT Val158Met and both cognitive and affective traits in a healthy male sample (N = 201) in Study 1: Carriers of the Met allele scored higher in fluid intelligence (reasoning) but lower in both crystallized intelligence (general knowledge) and the agency facet of extraversion. In Study 2, we conceptually replicated the association of COMT Val158Met with the agency facet of extraversion after partialing irrelevant phenotype variance in a female sample (N = 565). Finally, through reanalysis of a large published data set we showed that Met allele carriers also scored higher in indicators of fluid intelligence after partialing verbal fluency. Because the Met allele codes for a less efficient variant of the enzyme COMT, resulting in higher levels of extrasynaptic prefrontal dopamine, these observations provide further support for a role for dopamine in both intelligence and extraversion. More importantly, the present findings have important implications for the definition of psychological phenotypes in neurogenetic research.

  1. Is it all in the family? The effects of early social structure on neural-behavioral systems of prairie voles (Microtus ochrogaster).

    PubMed

    Greenberg, G D; van Westerhuyzen, J A; Bales, K L; Trainor, B C

    2012-08-02

    The transition to parenthood is generally associated with a reduction in anxiety or anxiety-like behavior across a wide range of species. In some species, juveniles provide supplementary parental care for younger siblings, a behavior known as alloparenting. Although the fitness consequences of alloparenting behavior have been a focus of evolutionary research, less is known about how alloparenting behavior impacts affective states. In the socially monogamous prairie vole (Microtus ochrogaster), most juveniles exhibit alloparenting behavior, making the species an ideal model for examining the effects of alloparenting on future behavioral outcomes. We randomly assigned juvenile voles to alloparenting (AL) or no alloparenting (NoAL) groups and behaviorally phenotyped them for anxiety-like and social behaviors using the elevated plus maze (EPM), open field test (OFT), startle box, social interaction test, juvenile affiliation test, and partner preference test. AL voles displayed more anxiety-like and less exploratory behaviors than NoAL voles, spending significantly less time in the open arms of the EPM and center of an open field. We dissected the CA1 region of the hippocampus and the bed nucleus of the stria terminalis (BNST) from brains of behaviorally phenotyped voles and nontested siblings as well. Decreased brain-derived neurotrophic factor (BDNF) expression in CA1 has generally been associated with increased anxiety-like behavior in other rodents, while an anxiogenic role for BDNF in BNST is less established. Western blot analyses showed that alloparenting experience increased expression of BDNF in the BNST but decreased BDNF expression in the CA1 region of hippocampus (CA1) of nontested voles. There were similar differences in BNST BDNF of behaviorally phenotyped voles, and BDNF levels within this region were negatively correlated with exploratory behavior (i.e. time in center of OFT). Our results suggest that BDNF signaling in BNST and CA1 fluctuate with alloparenting experience, and they contribute to an increasingly complex "BDNF hypothesis" in which behavioral effects of this molecule are region-specific. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Using Machine Learning to Discover Latent Social Phenotypes in Free-Ranging Macaques

    PubMed Central

    Madlon-Kay, Seth; Brent, Lauren J. N.; Heller, Katherine A.; Platt, Michael L.

    2017-01-01

    Investigating the biological bases of social phenotypes is challenging because social behavior is both high-dimensional and richly structured, and biological factors are more likely to influence complex patterns of behavior rather than any single behavior in isolation. The space of all possible patterns of interactions among behaviors is too large to investigate using conventional statistical methods. In order to quantitatively define social phenotypes from natural behavior, we developed a machine learning model to identify and measure patterns of behavior in naturalistic observational data, as well as their relationships to biological, environmental, and demographic sources of variation. We applied this model to extensive observations of natural behavior in free-ranging rhesus macaques, and identified behavioral states that appeared to capture periods of social isolation, competition over food, conflicts among groups, and affiliative coexistence. Phenotypes, represented as the rate of being in each state for a particular animal, were strongly and broadly influenced by dominance rank, sex, and social group membership. We also identified two states for which variation in rates had a substantial genetic component. We discuss how this model can be extended to identify the contributions to social phenotypes of particular genetic pathways. PMID:28754001

  3. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells.

    PubMed

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M; Wells, Alan

    2016-07-07

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due to malignant metastases in breast cancer.

  4. Patient-derived iPSCs show premature neural differentiation and neuron-type specific phenotypes relevant to neurodevelopment

    PubMed Central

    Yeh, Erika; Dao, Dang Q.; Wu, Zhi Y.; Kandalam, Santoshi M.; Camacho, Federico M.; Tom, Curtis; Zhang, Wandong; Krencik, Robert; Rauen, Katherine A.; Ullian, Erik M.; Weiss, Lauren A.

    2017-01-01

    Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events. PMID:29158583

  5. Autism-like behavioral phenotypes in BTBR T+tf/J mice.

    PubMed

    McFarlane, H G; Kusek, G K; Yang, M; Phoenix, J L; Bolivar, V J; Crawley, J N

    2008-03-01

    Autism is a behaviorally defined neurodevelopmental disorder of unknown etiology. Mouse models with face validity to the core symptoms offer an experimental approach to test hypotheses about the causes of autism and translational tools to evaluate potential treatments. We discovered that the inbred mouse strain BTBR T+tf/J (BTBR) incorporates multiple behavioral phenotypes relevant to all three diagnostic symptoms of autism. BTBR displayed selectively reduced social approach, low reciprocal social interactions and impaired juvenile play, as compared with C57BL/6J (B6) controls. Impaired social transmission of food preference in BTBR suggests communication deficits. Repetitive behaviors appeared as high levels of self-grooming by juvenile and adult BTBR mice. Comprehensive analyses of procedural abilities confirmed that social recognition and olfactory abilities were normal in BTBR, with no evidence for high anxiety-like traits or motor impairments, supporting an interpretation of highly specific social deficits. Database comparisons between BTBR and B6 on 124 putative autism candidate genes showed several interesting single nucleotide polymorphisms (SNPs) in the BTBR genetic background, including a nonsynonymous coding region polymorphism in Kmo. The Kmo gene encodes kynurenine 3-hydroxylase, an enzyme-regulating metabolism of kynurenic acid, a glutamate antagonist with neuroprotective actions. Sequencing confirmed this coding SNP in Kmo, supporting further investigation into the contribution of this polymorphism to autism-like behavioral phenotypes. Robust and selective social deficits, repetitive self-grooming, genetic stability and commercial availability of the BTBR inbred strain encourage its use as a research tool to search for background genes relevant to the etiology of autism, and to explore therapeutics to treat the core symptoms.

  6. Functional Dissection of the Neural Substrates for Sexual Behaviors in Drosophila melanogaster

    PubMed Central

    Meissner, Geoffrey W.; Manoli, Devanand S.; Chavez, Jose F.; Knapp, Jon-Michael; Lin, Tasha L.; Stevens, Robin J.; Mellert, David J.; Tran, David H.; Baker, Bruce S.

    2011-01-01

    The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ∼1000 GAL4 lines, using assays for general courtship, male–male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male–male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation. PMID:21705753

  7. Sex differences and within-family associations in the broad autism phenotype.

    PubMed

    Klusek, Jessica; Losh, Molly; Martin, Gary E

    2014-02-01

    While there is a strong sex bias in the presentation of autism, it is unknown whether this bias is also present in subclinical manifestations of autism among relatives, or the broad autism phenotype. This study examined this question and investigated patterns of co-occurrence of broad autism phenotype traits within families of individuals with autism. Pragmatic language and personality features of the broad autism phenotype were studied in 42 fathers and 50 mothers of individuals with autism using direct assessment tools used in prior family studies of the broad autism phenotype. Higher rates of aloof personality style were detected among fathers, while no sex differences were detected for other broad autism phenotype traits. Within individuals, pragmatic language features were associated with the social personality styles of the broad autism phenotype in mothers but not in fathers. A number of broad autism phenotype features were correlated within spousal pairs. Finally, the associations were detected between paternal broad autism phenotype characteristics and the severity of children's autism symptoms in all three domains (social, communication, and repetitive behaviors). Mother-child correlations were detected for aspects of communication only. Together, the findings suggest that most features of the broad autism phenotype express comparably in males and females and raise some specific questions about how such features might inform studies of the genetic basis of autism.

  8. Indirect genetic effect model using feeding behaviour traits to define the degree of interaction between mates: an implementation in pigs growth rate.

    PubMed

    Ragab, M; Piles, M; Quintanilla, R; Sánchez, J P

    2018-06-06

    An alternative implementation of the animal model including indirect genetic effect (IGE) is presented considering pair-mate-specific interaction degrees to improve the performance of the model. Data consisted of average daily gain (ADG) records from 663 pigs kept in groups of 10 to 14 mates during the fattening period. Three types of models were used to fit ADG data: (i) animal model (AM); (ii) AM with classical IGE (AM-IGE); and (iii) AM fitting IGE with a specific degree of interaction between each pair of mates (AM-IGEi). Several feeding behavior phenotypes were used to define the pair-mate-specific degree of interaction in AM-IGEi: feeding rate (g/min), feeding frequency (min/day), the time between consecutive visits to the feeder (min/day), occupation time (min/day) and an index considering all these variables. All models included systematic effects batch, initial age (covariate), final age (covariate), number of pigs per pen (covariate), plus the random effect of the pen. Estimated posterior mean (posterior SD) of heritability was 0.47 (0.15) using AM. Including social genetic effects in the model, total heritable variance expressed as a proportion of total phenotypic variance (T 2) was 0.54 (0.29) using AM-IGE, whereas it ranged from 0.51 to 0.55 (0.12 to 0.14) with AM-IGEi, depending on the behavior trait used to define social interactions. These results confirm the contribution of IGEs to the total heritable variation of ADG. Moreover, important differences between models were observed in EBV rankings. The percentage of coincidence of top 10% animals between AM and AM-IGEi ranged from 0.44 to 0.89 and from 0.41to 0.68 between AM-IGE and AM-IGEi. Based on the goodness of fit and predictive ability, social models are preferred for the genetic evaluation of ADG. Among models including IGEs, when the pair-specific degree of interaction was defined using feeding behavior phenotypes we obtained an increase in the accuracy of genetic parameters estimates, the better goodness of fit and higher predictive ability. We conclude that feeding behavior variables can be used to measure the interaction between pen mates and to improve the performance of models including IGEs.

  9. Brief Report: Autism-like Traits are Associated With Enhanced Ability to Disembed Visual Forms.

    PubMed

    Sabatino DiCriscio, Antoinette; Troiani, Vanessa

    2017-05-01

    Atypical visual perceptual skills are thought to underlie unusual visual attention in autism spectrum disorders. We assessed whether individual differences in visual processing skills scaled with quantitative traits associated with the broader autism phenotype (BAP). Visual perception was assessed using the Figure-ground subtest of the Test of visual perceptual skills-3rd Edition (TVPS). In a large adult cohort (n = 209), TVPS-Figure Ground scores were positively correlated with autistic-like social features as assessed by the Broader autism phenotype questionnaire. This relationship was gender-specific, with males showing a correspondence between visual perceptual skills and autistic-like traits. This work supports the link between atypical visual perception and autism and highlights the importance in characterizing meaningful individual differences in clinically relevant behavioral phenotypes.

  10. A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion.

    PubMed

    Brown, André E X; Yemini, Eviatar I; Grundy, Laura J; Jucikas, Tadas; Schafer, William R

    2013-01-08

    Visible phenotypes based on locomotion and posture have played a critical role in understanding the molecular basis of behavior and development in Caenorhabditis elegans and other model organisms. However, it is not known whether these human-defined features capture the most important aspects of behavior for phenotypic comparison or whether they are sufficient to discover new behaviors. Here we show that four basic shapes, or eigenworms, previously described for wild-type worms, also capture mutant shapes, and that this representation can be used to build a dictionary of repetitive behavioral motifs in an unbiased way. By measuring the distance between each individual's behavior and the elements in the motif dictionary, we create a fingerprint that can be used to compare mutants to wild type and to each other. This analysis has revealed phenotypes not previously detected by real-time observation and has allowed clustering of mutants into related groups. Behavioral motifs provide a compact and intuitive representation of behavioral phenotypes.

  11. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior

    PubMed Central

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A.; Nagy, Katelyn J.; Schneider, Joel P.

    2012-01-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. PMID:22841922

  12. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    PubMed

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.

  13. Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder.

    PubMed

    Frints, Suzanna G M; Ozanturk, Aysegul; Rodríguez Criado, Germán; Grasshoff, Ute; de Hoon, Bas; Field, Michael; Manouvrier-Hanu, Sylvie; E Hickey, Scott; Kammoun, Molka; Gripp, Karen W; Bauer, Claudia; Schroeder, Christopher; Toutain, Annick; Mihalic Mosher, Theresa; Kelly, Benjamin J; White, Peter; Dufke, Andreas; Rentmeester, Eveline; Moon, Sungjin; Koboldt, Daniel C; van Roozendaal, Kees E P; Hu, Hao; Haas, Stefan A; Ropers, Hans-Hilger; Murray, Lucinda; Haan, Eric; Shaw, Marie; Carroll, Renee; Friend, Kathryn; Liebelt, Jan; Hobson, Lynne; De Rademaeker, Marjan; Geraedts, Joep; Fryns, Jean-Pierre; Vermeesch, Joris; Raynaud, Martine; Riess, Olaf; Gribnau, Joost; Katsanis, Nicholas; Devriendt, Koen; Bauer, Peter; Gecz, Jozef; Golzio, Christelle; Gontan, Cristina; Kalscheuer, Vera M

    2018-05-04

    RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.

  14. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells formore » stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes a hypercontractile phenotype of ASMCs. • The hypercontractile phenotype transition was largely mediated via Rho/ROCK pathway. • ADAM33 knock-down had little effect on the stiffness, traction force and contractility of ASMCs.« less

  15. Fibromyalgia, mood disorders, and intense creative energy: A1AT polymorphisms are not always silent.

    PubMed

    Schmechel, Donald E; Edwards, Christopher L

    2012-12-01

    Persons with single copies of common alpha-1-antitrypsin polymorphisms such as S and Z are often considered "silent carriers". Published evidence however supports a complex behavioral phenotype or trait - intense creative energy ("ICE")-associated with A1AT polymorphisms. We now confirm that phenotype and present an association of fibromyalgia syndrome (FMS) and A1AT in a consecutive series of neurological patients. This is a retrospective case control series of 3176 consecutive patients presenting to Duke University Memory Clinic (747 patients) and to regional community-based Caldwell Hospital Neurology and Memory center (2429 patients). Work-up included medical history and examination, psychological evaluation, and genetic analysis. Chronic widespread pain (CWP) or FMS were diagnosed according to clinical guidelines, mostly as secondary diagnoses. Neurological patients carrying A1AT polymorphisms were common (ca 16% prevalence) and carriers had significantly higher use of inhaler and anxiolytic medications. Patients with ICE phenotype had a significantly higher proportion of A1AT polymorphisms (42%) compared to non-ICE patients (13%). Presence of CWP or FMS was common (14-22%) with average age at presentation of 56 years old and mostly female gender (82%). Patients with CWP/FMS had again significantly higher proportion of A1AT polymorphisms (38%) compared to other neurological patients (13%). Patients with anxiety disorders, bipolar I or bipolar II disorders or PTSD also had increased proportion of A1AT polymorphisms and significant overlap with ICE and FMS phenotype. Significant reductions in CWP/FMS prevalence are seen in apolipoprotein E4 carriers and methylene tetrahydrofolate reductase (MTHFR) mutation homozygotes. Since ICE phenotype is reported as a lifelong behavioral attribute, the presumption is that A1AT carriers have fundamental differences in brain development and inflammatory response. In support of this concept is finding those persons reporting a diagnosis of juvenile rheumatoid or idiopathic arthritis (JRA, JIA) had a significantly high proportion of A1AT polymorphisms (63%), suggesting a spectrum for JRA to later FMS presentations. Likewise, persons reporting a history of attention deficit disorder (ADD) had an increased proportion of A1AT polymorphisms (26%) compared to non-ADD persons (13%). Toxic environmental exposures are common (23%) and associated with diagnoses of PSP, PPA, FTD, FTD-PD, PD and ADVD. A1AT carriers were increased in cases of toxic exposure and PSP, PPA and FTD-PD. Our findings support the ICE behavioral phenotype for A1AT polymorphism carriers and the reported association with anxiety and bipolar spectrum disorders. We now extend that phenotype to apparent vulnerability to inflammatory muscle disease in a spectrum from JRA to fibromyalgia (FMS) and specific behavioral subsets of ADD, PTSD, and specific late onset neurological syndromes (FTD-PD and PPA). High and low risk FMS subsets can be defined using A1AT, MTHFR and APOE genotyping. Clinical diagnoses associated with A1AT polymorphisms included fibromyalgia, JRA/JIA, bipolar disorder, PTSD, primary progressive aphasia and FTDPD, but not most Alzheimer Disease subtypes. These results support an extended phenotype for A1AT mutation carriers beyond liver and lung vulnerability to selective advantages: ICE phenotype and disadvantages: fibromyalgia, affective disorders, and selected late onset neurological syndromes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes

    PubMed Central

    van Donkelaar, Marjolein M. J.; Hoogman, Martine; Pappa, Irene; Tiemeier, Henning; Buitelaar, Jan K.; Franke, Barbara; Bralten, Janita

    2018-01-01

    Reactive and proactive subtypes of aggression have been recognized to help parse etiological heterogeneity of this complex phenotype. With a heritability of about 50%, genetic factors play a role in the development of aggressive behavior. Imaging studies implicate brain structures related to social behavior in aggression etiology, most notably the amygdala and striatum. This study aimed to gain more insight into the pathways from genetic risk factors for aggression to aggression phenotypes. To this end, we conducted genome-wide gene-based cross-trait meta-analyses of aggression with the volumes of amygdala, nucleus accumbens and caudate nucleus to identify genes influencing both aggression and aggression-related brain volumes. We used data of large-scale genome-wide association studies (GWAS) of: (a) aggressive behavior in children and adolescents (EAGLE, N = 18,988); and (b) Magnetic Resonance Imaging (MRI)-based volume measures of aggression-relevant subcortical brain regions (ENIGMA2, N = 13,171). Second, the identified genes were further investigated in a sample of healthy adults (mean age (SD) = 25.28 (4.62) years; 43% male) who had genome-wide genotyping data and questionnaire data on aggression subtypes available (Brain Imaging Genetics, BIG, N = 501) to study their effect on reactive and proactive subtypes of aggression. Our meta-analysis identified two genes, MECOM and AVPR1A, significantly associated with both aggression risk and nucleus accumbens (MECOM) and amygdala (AVPR1A) brain volume. Subsequent in-depth analysis of these genes in healthy adults (BIG), including sex as an interaction term in the model, revealed no significant subtype-specific gene-wide associations. Using cross-trait meta-analysis of brain measures and psychiatric phenotypes, this study generated new hypotheses about specific links between genes, the brain and behavior. Results indicate that MECOM and AVPR1A may exert an effect on aggression through mechanisms involving nucleus accumbens and amygdala volumes, respectively. PMID:29666571

  17. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    PubMed

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.

  18. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes.

    PubMed

    Yin, Jiani; Chen, Wu; Yang, Hongxing; Xue, Mingshan; Schaaf, Christian P

    2017-01-03

    The alpha7 nicotinic acetylcholine receptor, encoded by the CHRNA7 gene, has been implicated in various psychiatric and behavioral disorders, including schizophrenia, bipolar disorder, epilepsy, autism, Alzheimer's disease, and Parkinson's disease, and is considered a potential target for therapeutic intervention. 15q13.3 microdeletion syndrome is a rare genetic disorder, caused by submicroscopic deletions on chromosome 15q. CHRNA7 is the only gene in this locus that has been deleted entirely in cases involving the smallest microdeletions. Affected individuals manifest variable neurological and behavioral phenotypes, which commonly include developmental delay/intellectual disability, epilepsy, and autism spectrum disorder. Subsets of patients have short attention spans, aggressive behaviors, mood disorders, or schizophrenia. Previous behavioral studies suggested that Chrna7 deficient mice had attention deficits, but were normal in baseline behavioral responses, learning, memory, and sensorimotor gating. Given a growing interest in CHRNA7-related diseases and a better appreciation of its associated human phenotypes, an in-depth behavioral characterization of the Chrna7 deficient mouse model appeared prudent. This study was designed to investigate whether Chrna7 deficient mice manifest phenotypes related to those seen in human individuals, using an array of 12 behavioral assessments and electroencephalogram (EEG) recordings on freely-moving mice. Examined phenotypes included social interaction, compulsive behaviors, aggression, hyperactivity, anxiety, depression, and somatosensory gating. Our data suggests that mouse behavior and EEG recordings are not sensitive to decreased Chrna7 copy number.

  19. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    PubMed Central

    Drapeau, Elodie; Dorr, Nate P.; Elder, Gregory A.; Buxbaum, Joseph D.

    2014-01-01

    Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent. PMID:24652766

  20. Effects of Two Commonly Found Strains of Influenza A Virus on Developing Dopaminergic Neurons, in Relation to the Pathophysiology of Schizophrenia

    PubMed Central

    Landreau, Fernando; Galeano, Pablo; Caltana, Laura R.; Masciotra, Luis; Chertcoff, Agustín; Pontoriero, A.; Baumeister, Elsa; Amoroso, Marcela; Brusco, Herminia A.; Tous, Mónica I.; Savy, Vilma L.; Lores Arnaiz, María del Rosario; de Erausquin, Gabriel A.

    2012-01-01

    Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis. PMID:23251423

  1. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees

    PubMed Central

    Robinson, Gene E.; Jakobsson, Eric

    2016-01-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization. PMID:27359102

  2. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    PubMed

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  3. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor

    PubMed Central

    St-Cyr, Sophie; McGowan, Patrick O.

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring. PMID:26082698

  4. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor.

    PubMed

    St-Cyr, Sophie; McGowan, Patrick O

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring.

  5. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    PubMed

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prader-Willi syndrome and autism spectrum disorders: an evolving story.

    PubMed

    Dykens, Elisabeth M; Lee, Evon; Roof, Elizabeth

    2011-09-01

    Prader-Willi syndrome (PWS) is well-known for its genetic and phenotypic complexities. Caused by a lack of paternally derived imprinted material on chromosome 15q11-q13, individuals with PWS have mild to moderate intellectual disabilities, repetitive and compulsive behaviors, skin picking, tantrums, irritability, hyperphagia, and increased risks of obesity. Many individuals also have co-occurring autism spectrum disorders (ASDs), psychosis, and mood disorders. Although the PWS 15q11-q13 region confers risks for autism, relatively few studies have assessed autism symptoms in PWS or directly compared social, behavioral, and cognitive functioning across groups with autism or PWS. This article identifies areas of phenotypic overlap and difference between PWS and ASD in core autism symptoms and in such comorbidities as psychiatric disorders, and dysregulated sleep and eating. Though future studies are needed, PWS provides a promising alternative lens into specific symptoms and comorbidities of autism.

  7. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain.

    PubMed

    Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru

    2018-05-10

    Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.

  8. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies.

    PubMed

    Patalano, Solenn; Vlasova, Anna; Wyatt, Chris; Ewels, Philip; Camara, Francisco; Ferreira, Pedro G; Asher, Claire L; Jurkowski, Tomasz P; Segonds-Pichon, Anne; Bachman, Martin; González-Navarrete, Irene; Minoche, André E; Krueger, Felix; Lowy, Ernesto; Marcet-Houben, Marina; Rodriguez-Ales, Jose Luis; Nascimento, Fabio S; Balasubramanian, Shankar; Gabaldon, Toni; Tarver, James E; Andrews, Simon; Himmelbauer, Heinz; Hughes, William O H; Guigó, Roderic; Reik, Wolf; Sumner, Seirian

    2015-11-10

    Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.

  9. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies

    PubMed Central

    Patalano, Solenn; Vlasova, Anna; Wyatt, Chris; Ewels, Philip; Camara, Francisco; Ferreira, Pedro G.; Asher, Claire L.; Jurkowski, Tomasz P.; Segonds-Pichon, Anne; Bachman, Martin; González-Navarrete, Irene; Minoche, André E.; Krueger, Felix; Lowy, Ernesto; Marcet-Houben, Marina; Rodriguez-Ales, Jose Luis; Nascimento, Fabio S.; Balasubramanian, Shankar; Gabaldon, Toni; Tarver, James E.; Andrews, Simon; Himmelbauer, Heinz; Hughes, William O. H.; Guigó, Roderic; Reik, Wolf; Sumner, Seirian

    2015-01-01

    Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity. PMID:26483466

  10. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs

    PubMed Central

    Wu, Ming; Nern, Aljoscha; Williamson, W Ryan; Morimoto, Mai M; Reiser, Michael B; Card, Gwyneth M; Rubin, Gerald M

    2016-01-01

    Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors. DOI: http://dx.doi.org/10.7554/eLife.21022.001 PMID:28029094

  11. Analyzing gene expression data in mice with the Neuro Behavior Ontology.

    PubMed

    Hoehndorf, Robert; Hancock, John M; Hardy, Nigel W; Mallon, Ann-Marie; Schofield, Paul N; Gkoutos, Georgios V

    2014-02-01

    We have applied the Neuro Behavior Ontology (NBO), an ontology for the annotation of behavioral gene functions and behavioral phenotypes, to the annotation of more than 1,000 genes in the mouse that are known to play a role in behavior. These annotations can be explored by researchers interested in genes involved in particular behaviors and used computationally to provide insights into the behavioral phenotypes resulting from differences in gene expression. We developed the OntoFUNC tool and have applied it to enrichment analyses over the NBO to provide high-level behavioral interpretations of gene expression datasets. The resulting increase in the number of gene annotations facilitates the identification of behavioral or neurologic processes by assisting the formulation of hypotheses about the relationships between gene, processes, and phenotypic manifestations resulting from behavioral observations.

  12. Is it all the X: familial learning dysfunction and the impact of behavioral aspects of the phenotypic presentation of XXY?

    PubMed

    Samango-Sprouse, Carole A; Stapleton, Emily; Sadeghin, Teresa; Gropman, Andrea L

    2013-02-15

    The behavioral phenotype of children with XXY has not been extensively studied until recently and this research has been confounded by insufficient study populations and ascertainment biases. The aim of the study was to expand the behavioral aspect of the XXY phenotype as well as investigate the role of existing familial learning disabilities (FLD) on behavioral problems. Behavioral phenotype of XXY includes social anxiety, ADHD, social communication, and atypical peer interactions. The Child Behavior Checklist (CBCL), Social Responsiveness Scale (SRS), and Gilliam Autism Rating Scale (GARS) were completed by the parents of 54 boys with XXY who had not received hormonal replacement prior to participation. Our findings suggest fewer behavioral deficits and lower severity in the general 47,XXY population than previously published and found significant differences between the groups with a positive FLD on the behavioral assessments. Findings demonstrate that boys with FLD exhibit an increased incidence and severity of behavioral problems. Our study expands on the findings of Samango-Sprouse et al. [Samango-Sprouse et al. (2012b) J Intellect Disabil Res] and the significant influence that FLD has on not only neurodevelopment, but also behavioral deficits. Our study suggests that part of the XXY phenotypic profile may be modulated by FLD. Further study is underway to examine the interaction between the many salient factors effecting behavioral and neurodevelopmental progression in XXY and variant forms. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  13. Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.

    PubMed

    Rittschof, C C; Robinson, G E

    2016-01-01

    The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.

  14. Behavioral phenotyping of mice in pharmacological and toxicological research.

    PubMed

    Karl, Tim; Pabst, Reinhard; von Hörsten, Stephan

    2003-07-01

    The evaluation of behavioral effects is an important component for the in vivo screening of drugs or potentially toxic compounds in mice. Ideally, such screening should be composed of monitoring general health, sensory functions, and motor abilities, right before specific behavioral domains are tested. A rational strategy in the design and procedure of testing as well as an effective composition of different well-established and reproducible behavioral tests can minimize the risk of false positive and false negative results in drug screening. In the present review we describe such basic considerations in planning experiments, selecting strains of mice, and propose groups of behavioral tasks suitable for a reliable detection of differences in specific behavioral domains in mice. Screening of general health and neurophysiologic functions (reflexes, sensory abilities) and motor function (pole test, wire hang test, beam walking, rotarod, accelerod, and footprint) as well as specific hypothesis-guided testing in the behavioral domains of learning and memory (water maze, radial maze, conditioned fear, and avoidance tasks), emotionality (open field, hole board, elevated plus maze, and object exploration), nociception (tail flick, hot plate), psychiatric-like conditions (porsolt swim test, acoustic startle response, and prepulse inhibition), and aggression (isolation-induced aggression, spontaneous aggression, and territorial aggression) are described in further detail. This review is designed to describe a general approach, which increases reliability of behavioral screening. Furthermore, it provides an overview on a selection of specific procedures suitable for but not limited to behavioral screening in pharmacology and toxicology.

  15. Novel clustering of items from the Autism Diagnostic Interview-Revised to define phenotypes within autism spectrum disorders

    PubMed Central

    Hu, Valerie W.; Steinberg, Mara E.

    2009-01-01

    Heterogeneity in phenotypic presentation of ASD has been cited as one explanation for the difficulty in pinpointing specific genes involved in autism. Recent studies have attempted to reduce the “noise” in genetic and other biological data by reducing the phenotypic heterogeneity of the sample population. The current study employs multiple clustering algorithms on 123 item scores from the Autism Diagnostic Interview-Revised (ADI-R) diagnostic instrument of nearly 2000 autistic individuals to identify subgroups of autistic probands with clinically relevant behavioral phenotypes in order to isolate more homogeneous groups of subjects for gene expression analyses. Our combined cluster analyses suggest optimal division of the autistic probands into 4 phenotypic clusters based on similarity of symptom severity across the 123 selected item scores. One cluster is characterized by severe language deficits, while another exhibits milder symptoms across the domains. A third group possesses a higher frequency of savant skills while the fourth group exhibited intermediate severity across all domains. Grouping autistic individuals by multivariate cluster analysis of ADI-R scores reveals meaningful phenotypes of subgroups within the autistic spectrum which we show, in a related (accompanying) study, to be associated with distinct gene expression profiles. PMID:19455643

  16. Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes.

    PubMed

    Ito-Ishida, Aya; Ure, Kerstin; Chen, Hongmei; Swann, John W; Zoghbi, Huda Y

    2015-11-18

    Inhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice.

    PubMed

    McMahon, John J; Yu, Wilson; Yang, Jun; Feng, Haihua; Helm, Meghan; McMahon, Elizabeth; Zhu, Xinjun; Shin, Damian; Huang, Yunfei

    2015-01-01

    Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice

    PubMed Central

    McMahon, John J.; Yu, Wilson; Yang, Jun; Feng, Haihua; Helm, Meghan; McMahon, Elizabeth; Zhu, Xinjun; Shin, Damian; Huang, Yunfei

    2014-01-01

    Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism. PMID:25315683

  19. Overexpression of α3/α5/β4 nicotinic receptor subunits modifies impulsive-like behavior.

    PubMed

    Viñals, Xavier; Molas, Susanna; Gallego, Xavier; Fernández-Montes, Rubén D; Robledo, Patricia; Dierssen, Mara; Maldonado, Rafael

    2012-05-01

    Recent studies have revealed that sequence variants in genes encoding the α3/α5/β4 nicotinic acetylcholine receptor subunits are associated with nicotine dependence. In this study, we evaluated two specific aspects of executive functioning related to drug addiction (impulsivity and working memory) in transgenic mice over expressing α3/α5/β4 nicotinic receptor subunits. Impulsivity and working memory were evaluated in an operant delayed alternation task, where mice must inhibit responding between 2 and 8s in order to receive food reinforcement. Working memory was also evaluated in a spontaneous alternation task in an open field. Transgenic mice showed less impulsive-like behavior than wild-type controls, and this behavioral phenotype was related to the number of copies of the transgene. Thus, transgenic Line 22 (16-28 copies) showed a more pronounced phenotype than Line 30 (4-5 copies). Overexpression of these subunits in Line 22 reduced spontaneous alternation behavior suggesting deficits in working memory processing in this particular paradigm. These results reveal the involvement of α3/α5/β4 nicotinic receptor subunits in working memory and impulsivity, two behavioral traits directly related to the vulnerability to develop nicotine dependence. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors

    PubMed Central

    Root, David H.; Melendez, Roberto I.; Zaborszky, Laszlo; Napier, T. Celeste

    2015-01-01

    The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally-relevant stimuli and coherent adaptive behaviors. PMID:25857550

  1. Somatostatin, neuronal vulnerability and behavioral emotionality.

    PubMed

    Lin, L C; Sibille, E

    2015-03-01

    Somatostatin (SST) deficits are common pathological features in depression and other neurological disorders with mood disturbances, but little is known about the contribution of SST deficits to mood symptoms or causes of these deficits. Here we show that mice lacking SST (Sst(KO)) exhibit elevated behavioral emotionality, high basal plasma corticosterone and reduced gene expression of Bdnf, Cortistatin and Gad67, together recapitulating behavioral, neuroendocrine and molecular features of human depression. Studies in Sst(KO) and heterozygous (Sst(HZ)) mice show that elevated corticosterone is not sufficient to reproduce the behavioral phenotype, suggesting a putative role for Sst cell-specific molecular changes. Using laser capture microdissection, we show that cortical SST-positive interneurons display significantly greater transcriptome deregulations after chronic stress compared with pyramidal neurons. Protein translation through eukaryotic initiation factor 2 (EIF2) signaling, a pathway previously implicated in neurodegenerative diseases, was most affected and suppressed in stress-exposed SST neurons. We then show that activating EIF2 signaling through EIF2 kinase inhibition mitigated stress-induced behavioral emotionality in mice. Taken together, our data suggest that (1) low SST has a causal role in mood-related phenotypes, (2) deregulated EIF2-mediated protein translation may represent a mechanism for vulnerability of SST neurons and (3) that global EIF2 signaling has antidepressant/anxiolytic potential.

  2. Somatostatin, neuronal vulnerability and behavioral emotionality

    PubMed Central

    Lin, LC; Sibille, E

    2014-01-01

    Somatostatin (SST) deficits are common pathological features in depression and other neurological disorders with mood disturbances, but little is known about the contribution of SST deficits to mood symptoms or causes of these deficits. Here we show that mice lacking Sst (SstKO) exhibit elevated behavioral emotionality, high basal plasma corticosterone and reduced gene expression of Bdnf, Cortistatin, and Gad67, together recapitulating behavioral, neuroendocrine and molecular features of human depression. Studies in SstKO and heterozygous (SstHZ) mice show that elevated corticosterone is not sufficient to reproduce the behavioral phenotype, suggesting a putative role for Sst cell-specific molecular changes. Using laser-capture microdissection, we show that cortical SST-positive interneurons display significantly greater transcriptome deregulations after chronic stress compared to pyramidal neurons. Protein translation through eukaryotic initiation factor 2 (EIF2) signaling, a pathway previously implicated in neurodegenerative diseases, was most affected and suppressed in stress-exposed SST neurons. We then show that activating EIF2 signaling through EIF2 kinase inhibition mitigated stress-induced behavioral emotionality in mice. Together, our data suggest that (1) low SST plays a causal role in mood-related phenotypes, (2) deregulated EIF2-mediated protein translation may represent a mechanism for vulnerability of SST neurons, and (3) that global EIF2 signaling has antidepressant/anxiolytic potential. PMID:25600109

  3. Phenotypic Robustness and the Assortativity Signature of Human Transcription Factor Networks

    PubMed Central

    Pechenick, Dov A.; Payne, Joshua L.; Moore, Jason H.

    2014-01-01

    Many developmental, physiological, and behavioral processes depend on the precise expression of genes in space and time. Such spatiotemporal gene expression phenotypes arise from the binding of sequence-specific transcription factors (TFs) to DNA, and from the regulation of nearby genes that such binding causes. These nearby genes may themselves encode TFs, giving rise to a transcription factor network (TFN), wherein nodes represent TFs and directed edges denote regulatory interactions between TFs. Computational studies have linked several topological properties of TFNs — such as their degree distribution — with the robustness of a TFN's gene expression phenotype to genetic and environmental perturbation. Another important topological property is assortativity, which measures the tendency of nodes with similar numbers of edges to connect. In directed networks, assortativity comprises four distinct components that collectively form an assortativity signature. We know very little about how a TFN's assortativity signature affects the robustness of its gene expression phenotype to perturbation. While recent theoretical results suggest that increasing one specific component of a TFN's assortativity signature leads to increased phenotypic robustness, the biological context of this finding is currently limited because the assortativity signatures of real-world TFNs have not been characterized. It is therefore unclear whether these earlier theoretical findings are biologically relevant. Moreover, it is not known how the other three components of the assortativity signature contribute to the phenotypic robustness of TFNs. Here, we use publicly available DNaseI-seq data to measure the assortativity signatures of genome-wide TFNs in 41 distinct human cell and tissue types. We find that all TFNs share a common assortativity signature and that this signature confers phenotypic robustness to model TFNs. Lastly, we determine the extent to which each of the four components of the assortativity signature contributes to this robustness. PMID:25121490

  4. Fitness consequences of maternal and embryonic responses to environmental variation: using reptiles as models for studies of developmental plasticity.

    PubMed

    Warner, Daniel A

    2014-11-01

    Environmental factors strongly influence phenotypic variation within populations. The environment contributes to this variation in two ways: (1) by acting as a determinant of phenotypic variation (i.e., plastic responses) and (2) as an agent of selection that "chooses" among existing phenotypes. Understanding how these two environmental forces contribute to phenotypic variation is a major goal in the field of evolutionary biology and a primary objective of my research program. The objective of this article is to provide a framework to guide studies of environmental sources of phenotypic variation (specifically, developmental plasticity and maternal effects, and their adaptive significance). Two case studies from my research on reptiles are used to illustrate the general approaches I have taken to address these conceptual topics. Some key points for advancing our understanding of environmental influences on phenotypic variation include (1) merging laboratory-based research that identifies specific environmental effects with field studies to validate ecological relevance; (2) using controlled experimental approaches that mimic complex environments found in nature; (3) integrating data across biological fields (e.g., genetics, morphology, physiology, behavior, and ecology) under an evolutionary framework to provide novel insights into the underlying mechanisms that generate phenotypic variation; (4) assessing fitness consequences using measurements of survival and/or reproductive success across ontogeny (from embryos to adults) and under multiple ecologically-meaningful contexts; and (5) quantifying the strength and form of natural selection in multiple populations over multiple periods of time to understand the spatial and temporal consistency of phenotypic selection. Research programs that focus on organisms that are amenable to these approaches will provide the most promise for advancing our understanding of the environmental factors that generate the remarkable phenotypic diversity observed within populations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior

    PubMed Central

    Fujita, Yuki; Masuda, Koji; Bando, Masashige; Nakato, Ryuichiro; Katou, Yuki; Tanaka, Takashi; Nakayama, Masahiro; Takao, Keizo; Miyakawa, Tsuyoshi; Tanaka, Tatsunori; Ago, Yukio

    2017-01-01

    Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/− mice. Smc3+/− mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/− mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype. PMID:28408410

  6. Presence of autism, hyperserotonemia, and severe expressive language impairment in Williams-Beuren syndrome.

    PubMed

    Tordjman, Sylvie; Anderson, George M; Cohen, David; Kermarrec, Solenn; Carlier, Michèle; Touitou, Yvan; Saugier-Veber, Pascale; Lagneaux, Céline; Chevreuil, Claire; Verloes, Alain

    2013-08-23

    Deletion of the Williams-Beuren syndrome (WBS) critical region (WBSCR), at 7q11.23, causes a developmental disorder commonly characterized by hypersociability and excessive talkativeness and often considered the opposite behavioral phenotype to autism. Duplication of the WBSCR leads to severe delay in expressive language. Gene-dosage effects on language development at 7q11.23 have been hypothesized. Molecular characterization of the WBSCR was performed by fluorescence in situ hybridization and high-resolution single-nucleotide polymorphism array in two individuals with severe autism enrolled in a genetic study of autism who showed typical WBS facial dysmorphism on systematic clinical genetic examination. The serotonin transporter promoter polymorphism (5-HTTLPR, locus SLC6A4) was genotyped. Platelet serotonin levels and urinary 6-sulfatoxymelatonin excretion were measured. Behavioral and cognitive phenotypes were examined. The two patients had common WBSCR deletions between proximal and medial low copy repeat clusters, met diagnostic criteria for autism and displayed severe impairment in communication, including a total absence of expressive speech. Both patients carried the 5-HTTLPR ss genotype and exhibited platelet hyperserotonemia and low melatonin production. Our observations indicate that behaviors and neurochemical phenotypes typically associated with autism can occur in patients with common WBSCR deletions. The results raise intriguing questions about phenotypic heterogeneity in WBS and regarding genetic and/or environmental factors interacting with specific genes at 7q11.23 sensitive to dosage alterations that can influence the development of social communication skills. Thus, the influence of WBSCR genes on social communication expression might be dramatically modified by other genes, such as 5-HTTLPR, known to influence the severity of social communication impairments in autism, or by environmental factors, such as hyperserotonemia, given that hyperserotonemia is found in WBS associated with autism but not in WBS without autism. In this regard, WBS provides a potentially fruitful model with which to develop integrated genetic, cognitive, behavioral and neurochemical approaches to study genotype-phenotype correlations, possible gene-environment interactions and genetic background effects. The results underscore the importance of considering careful clinical and molecular genetic examination of individuals diagnosed with autism.

  7. Effect of phenotype on health care costs in Crohn's disease: A European study using the Montreal classification.

    PubMed

    Odes, Selwyn; Vardi, Hillel; Friger, Michael; Wolters, Frank; Hoie, Ole; Moum, Bjørn; Bernklev, Tomm; Yona, Hagit; Russel, Maurice; Munkholm, Pia; Langholz, Ebbe; Riis, Lene; Politi, Patrizia; Bondini, Paolo; Tsianos, Epameinondas; Katsanos, Kostas; Clofent, Juan; Vermeire, Severine; Freitas, João; Mouzas, Iannis; Limonard, Charles; O'Morain, Colm; Monteiro, Estela; Fornaciari, Giovanni; Vatn, Morten; Stockbrugger, Reinhold

    2007-12-01

    Crohn's disease (CD) is a chronic inflammation of the gastrointestinal tract associated with life-long high health care costs. We aimed to determine the effect of disease phenotype on cost. Clinical and economic data of a community-based CD cohort with 10-year follow-up were analyzed retrospectively in relation to Montreal classification phenotypes. In 418 patients, mean total costs of health care for the behavior phenotypes were: nonstricturing-nonpenetrating 1690, stricturing 2081, penetrating 3133 and penetrating-with-perianal-fistula 3356 €/patient-phenotype-year (P<0.001), and mean costs of surgical hospitalization 215, 751, 1293 and 1275 €/patient-phenotype-year respectively (P<0.001). Penetrating-with-perianal-fistula patients incurred significantly greater expenses than penetrating patients for total care, diagnosis and drugs, but not surgical hospitalization. Total costs were similar in the location phenotypes: ileum 1893, colon 1748, ileo-colonic 2010 and upper gastrointestinal tract 1758 €/patient-phenotype-year, but surgical hospitalization costs differed significantly, 558, 209, 492 and 542 €/patient-phenotype-year respectively (P<0.001). By multivariate analysis, the behavior phenotype significantly impacted total, medical and surgical hospitalization costs, whereas the location phenotype affected only surgical costs. Younger age at diagnosis predicted greater surgical expenses. Behavior is the dominant phenotype driving health care cost. Use of the Montreal classification permits detection of cost differences caused by perianal fistula.

  8. A study of the influence of different genotypes on the physical and behavioral phenotypes of children and adults ascertained clinically as having PWS.

    PubMed

    Webb, T; Whittington, J; Clarke, D; Boer, H; Butler, J; Holland, A

    2002-10-01

    A population-based cohort of people with a clinical diagnosis of Prader-Willi syndrome (PWS) was genetically assessed using molecular diagnostic methods and subsequently divided into the following genetic subtypes involving chromosome 15: 'deletion', 'disomy' and genetically negative (referred to as 'PWS-like'). The physical and behavioral characteristics of the three groups were compared in order to evaluate the unique characteristics of the phenotype resulting from loss of expression of imprinted genes at 15q11q13 (PWS vs. PWS-like cases), the possible effect of either haploid insufficiency of non-imprinted genes (deletion cases), or gain of function of imprinted genes (disomy cases) located within the PWS critical region at 15q11q13. In this study, the main differences between probands with either a deletion or disomy are considered, and the possible involvement of contributing genes discussed. The differences within the PWS group proved difficult to quantify. It would appear that haploid insufficiency or gain of function are more subtle contributors than gender-specific genomic imprinting in the production of the PWS phenotype.

  9. The Autism Mental Status Exam: Sensitivity and Specificity Using DSM-5 Criteria for Autism Spectrum Disorder in Verbally Fluent Adults

    ERIC Educational Resources Information Center

    Grodberg, David; Weinger, Paige M.; Halpern, Danielle; Parides, Michael; Kolevzon, Alexander; Buxbaum, Joseph D.

    2014-01-01

    The phenotypic heterogeneity of adults suspected of autism spectrum disorder (ASD) requires a standardized diagnostic approach that is feasible in all clinical settings. The autism mental status exam (AMSE) is an eight-item observational assessment that structures the observation and documentation of social, communicative and behavioral signs and…

  10. Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole

    USGS Publications Warehouse

    McIntyre, P.B.; Baldwin, S.; Flecker, A.S.

    2004-01-01

    Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wildcaught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation. ?? Springer-Verlag 2004.

  11. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.

    PubMed

    Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M

    2015-11-18

    Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System

    PubMed Central

    Okaty, Benjamin W.; Freret, Morgan E.; Rood, Benjamin D.; Brust, Rachael D.; Hennessy, Morgan L.; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N.; Dymecki, Susan M.

    2016-01-01

    Summary Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-Seq to deconstruct the mouse 5HT system at multiple levels of granularity—from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal: principles underlying system organization, novel 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers new subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. PMID:26549332

  13. Prader-Willi-like phenotype: investigation of 1p36 deletion in 41 patients with delayed psychomotor development, hypotonia, obesity and/or hyperphagia, learning disabilities and behavioral problems.

    PubMed

    D'Angelo, Carla S; Da Paz, José A; Kim, Chong A; Bertola, Débora R; Castro, Claudia I E; Varela, Monica C; Koiffmann, Célia P

    2006-01-01

    Monosomy 1p36 is one of the most commonly observed mental retardation (MR) syndromes that results in a clinically recognizable phenotype including delayed psychomotor development and/or MR, hypotonia, epilepsy, hearing loss, growth delay, microcephaly, deep-set eyes, flat nasal bridge and pointed chin. Besides, a Prader-Willi syndrome (PWS)-like phenotype has been described in patients with 1p36 monosomy. Forty-one patients presenting hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who tested negative for PWS were investigated by FISH and/or microsatellite markers. Twenty-six were analyzed with a 1p-specific subtelomeric probe, and one terminal deletion was identified. Thirty patients (15 of which also studied by FISH) were investigated by microsatellite markers, and no interstitial 1p36 deletion was found. Our patient presenting the 1p36 deletion did not have the striking features of this monosomy, but her clinical and behavioral features were quite similar to those observed in patients with PWS, except for the presence of normal sucking at birth. The extent of the deletion could be limited to the most terminal 2.5 Mb of 1p36, within the chromosomal region 1p36.33-1p36.32, that is smaller than usually seen in monosomy 1p36 patients. Therefore, chromosome 1p36.33 deletion should be investigated in patients with hypotonia, developmental delay, obesity and/or hyperphagia and behavioral problems who test negative for PWS.

  14. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism.

    PubMed

    Dhamne, Sameer C; Silverman, Jill L; Super, Chloe E; Lammers, Stephen H T; Hameed, Mustafa Q; Modi, Meera E; Copping, Nycole A; Pride, Michael C; Smith, Daniel G; Rotenberg, Alexander; Crawley, Jacqueline N; Sahin, Mustafa

    2017-01-01

    Autism spectrum disorder (ASD) is a clinically and biologically heterogeneous condition characterized by social, repetitive, and sensory behavioral abnormalities. No treatments are approved for the core diagnostic symptoms of ASD. To enable the earliest stages of therapeutic discovery and development for ASD, robust and reproducible behavioral phenotypes and biological markers are essential to establish in preclinical animal models. The goal of this study was to identify electroencephalographic (EEG) and behavioral phenotypes that are replicable between independent cohorts in a mouse model of ASD. The larger goal of our strategy is to empower the preclinical biomedical ASD research field by generating robust and reproducible behavioral and physiological phenotypes in animal models of ASD, for the characterization of mechanistic underpinnings of ASD-relevant phenotypes, and to ensure reliability for the discovery of novel therapeutics. Genetic disruption of the SHANK3 gene, a scaffolding protein involved in the stability of the postsynaptic density in excitatory synapses, is thought to be responsible for a relatively large number of cases of ASD. Therefore, we have thoroughly characterized the robustness of ASD-relevant behavioral phenotypes in two cohorts, and for the first time quantified translational EEG activity in Shank3B null mutant mice. In vivo physiology and behavioral assays were conducted in two independently bred and tested full cohorts of Shank3B null mutant ( Shank3B KO) and wildtype littermate control (WT) mice. EEG was recorded via wireless implanted telemeters for 7 days of baseline followed by 20 min of recording following pentylenetetrazol (PTZ) challenge. Behaviors relevant to the diagnostic and associated symptoms of ASD were tested on a battery of established behavioral tests. Assays were designed to reproduce and expand on the original behavioral characterization of Shank3B KO mice. Two or more corroborative tests were conducted within each behavioral domain, including social, repetitive, cognitive, anxiety-related, sensory, and motor categories of assays. Relative to WT mice, Shank3B KO mice displayed a dramatic resistance to PTZ seizure induction and an enhancement of gamma band oscillatory EEG activity indicative of enhanced inhibitory tone. These findings replicated in two separate cohorts. Behaviorally, Shank3B KO mice exhibited repetitive grooming, deficits in aspects of reciprocal social interactions and vocalizations, and reduced open field activity, as well as variable deficits in sensory responses, anxiety-related behaviors, learning and memory. Robust animal models and quantitative, replicable biomarkers of neural dysfunction are needed to decrease risk and enable successful drug discovery and development for ASD and other neurodevelopmental disorders. Complementary to the replicated behavioral phenotypes of the Shank3B mutant mouse is the new identification of a robust, translational in vivo neurophysiological phenotype. Our findings provide strong evidence for robustness and replicability of key translational phenotypes in Shank3B mutant mice and support the usefulness of this mouse model of ASD for therapeutic discovery.

  15. Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship.

    PubMed

    Goodson, James L; Kabelik, David; Kelly, Aubrey M; Rinaldi, Jacob; Klatt, James D

    2009-05-26

    Mesolimbic dopamine (DA) circuits mediate a wide range of goal-oriented behavioral processes, and DA strongly influences appetitive and consummatory aspects of male sexual behavior. In both birds and mammals, mesolimbic projections arise primarily from the ventral tegmental area (VTA), with a smaller contribution from the midbrain central gray (CG). Despite the well known importance of the VTA cell group for incentive motivation functions, relationships of VTA subpopulations to specific aspects of social phenotype remain wholly undescribed. We now show that in male zebra finches (Estrildidae: Taeniopygia guttata), Fos activity within a subpopulation of tyrosine hydroxylase-immunoreactive (TH-ir; presumably dopaminergic) neurons in the caudal VTA is significantly correlated with courtship singing and coupled to gonadal state. In addition, the number of TH-ir neurons in this caudal subpopulation dichotomously differentiates courting from non-courting male phenotypes, and evolves in relation to sociality (flocking vs. territorial) across several related finch species. Combined, these findings for the VTA suggest that divergent social phenotypes may arise due to the differential assignment of "incentive value" to conspecific stimuli. TH-ir neurons of the CG (a population of unknown function in mammals) exhibit properties that are even more selectively and tightly coupled to the expression of courtship phenotypes (and appetitive courtship singing), both in terms of TH-ir cell number, which correlates significantly with constitutive levels of courtship motivation, and with TH-Fos colocalization, which increases in direct proportion to the phasic expression of song. We propose that these neurons may be core components of social communication circuits across diverse vertebrate taxa.

  16. Real-Time Assessment of Wellness and Disease in Daily Life.

    PubMed

    Ausiello, Dennis; Lipnick, Scott

    2015-09-01

    The next frontier in medicine involves better quantifying human traits, known as "phenotypes." Biological markers have been directly associated with disease risks, but poor measurement of behaviors such as diet and exercise limits our understanding of preventive measures. By joining together an uncommonly wide range of disciplines and expertise, the Kavli HUMAN Project will advance measurement of behavioral phenotypes, as well as environmental factors that impact behavior. By following the same individuals over time, KHP will liberate new understanding of dynamic links between behavioral phenotypes, disease, and the broader environment. As KHP advances understanding of the bio-behavioral complex, it will seed new approaches to the diagnosis, prevention, and treatment of human disease.

  17. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and ‘Schizophrenia-Like Behaviors' in Mice

    PubMed Central

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-01-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  18. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice.

    PubMed

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-02-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.

  19. Behavioral Analysis of Genetically Modified Mice Indicates Essential Roles of Neurosteroidal Estrogen

    PubMed Central

    Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro

    2011-01-01

    Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807

  20. The neurobehavior ontology: an ontology for annotation and integration of behavior and behavioral phenotypes.

    PubMed

    Gkoutos, Georgios V; Schofield, Paul N; Hoehndorf, Robert

    2012-01-01

    In recent years, considerable advances have been made toward our understanding of the genetic architecture of behavior and the physical, mental, and environmental influences that underpin behavioral processes. The provision of a method for recording behavior-related phenomena is necessary to enable integrative and comparative analyses of data and knowledge about behavior. The neurobehavior ontology facilitates the systematic representation of behavior and behavioral phenotypes, thereby improving the unification and integration behavioral data in neuroscience research. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Pancreatic Autoantibodies Against CUZD1 and GP2 Are Associated with Distinct Clinical Phenotypes of Crohn's Disease.

    PubMed

    Michaels, Maike Anna; Jendrek, Sebastian Torben; Korf, Tobias; Nitzsche, Thomas; Teegen, Bianca; Komorowski, Lars; Derer, Stefanie; Schröder, Torsten; Baer, Florian; Lehnert, Henrik; Büning, Jürgen; Fellerman, Klaus; Sina, Christian

    2015-12-01

    Inflammatory bowel disease (IBD) is characterized by a broad spectrum of clinical phenotypes with different outcomes. In the last decades, several IBD-associated autoantibodies have been identified and investigated for their diagnostic relevance. Autoantibodies against the pancreatic glycoproteins (PAB) CUB and zona pellucida-like domains-containing protein 1 (CUZD1), and glycoprotein 2 (GP2) have been demonstrated to possess high specificity for the diagnosis of IBD. Although several studies have shown significant interrelations of anti-GP2 positivity with disease phenotype, associations of clinical phenotypes with anti-CUZD1 are still unknown. The aim was to identify the association of clinical phenotypes with anti-CUZD1 and anti-GP2 in a well-defined German IBD cohort. Patients with IBD (224 patients with Crohn's disease and 136 patients with ulcerative colitis), who were tested for anti-GP2 and anti-CUZD1 immunoglobulin G and immunoglobulin A by indirect immunofluorescence on transfected cells between 2005 and 2013, were included. Serotype and specified phenotypic data were collected in retrospect and statistically analyzed. Both anti-GP2 (P < 0.001) and anti-CUZD1 (P < 0.001) were significantly more prevalent in patients with Crohn's disease than in ulcerative colitis. PAB positivity was associated with ileocolonic disease (P = 0.002), perianal disease (P = 0.011), immunosuppressive treatment (P = 0.036), and ASCA positivity (P = 0.036). Anti-CUZD1 positivity was associated with ileocolonic (P = 0.016) and perianal disease (P = 0.002), whereas anti-GP2 positivity was positively associated with stricturing behavior (P = 0.016). We found distinct clinical phenotypes to be associated with PAB positivity. Therefore, determination of PABs and their subgroup analysis might identify patients with complicated disease behavior. However, the clinical relevance of our findings should be further evaluated in prospective cohorts.

  2. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice.

    PubMed

    Zhang, R; Asai, M; Mahoney, C E; Joachim, M; Shen, Y; Gunner, G; Majzoub, J A

    2017-05-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light-dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.

  3. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    PubMed Central

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  4. Cryptic sexual dimorphism in spatial memory and hippocampal oxytocin receptors in prairie voles (Microtus ochrogaster).

    PubMed

    Rice, Marissa A; Hobbs, Lauren E; Wallace, Kelly J; Ophir, Alexander G

    2017-09-01

    Sex differences are well documented and are conventionally associated with intense sex-specific selection. For example, spatial memory is frequently better in males, presumably due to males' tendency to navigate large spaces to find mates. Alternatively, monogamy (in which sex-specific selection is relatively relaxed) should diminish or eliminate differences in spatial ability and the mechanisms associated with this behavior. Nevertheless, phenotypic differences between monogamous males and females persist, sometimes cryptically. We hypothesize that sex-specific cognitive demands are present in monogamous species that will influence neural and behavioral phenotypes. The effects of these demands should be observable in spatial learning performance and neural structures associated with spatial learning and memory. We analyzed spatial memory performance, hippocampal volume and cell density, and hippocampal oxytocin receptor (OTR) expression in the socially monogamous prairie vole. Compared to females, males performed better in a spatial memory and spatial learning test. Although we found no sex difference in hippocampal volume or cell density, male OTR density was significantly lower than females, suggesting that performance may be regulated by sub-cellular mechanisms within the hippocampus that are less obvious than classic neuroanatomical features. Our results suggest an expanded role for oxytocin beyond facilitating social interactions, which may function in part to integrate social and spatial information. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Structure and composition of the courtship phenotype in the bird of paradise Parotia lawesii (Aves: Paradisaeidae).

    PubMed

    Scholes, Edwin

    2008-01-01

    Ethology is rooted in the idea that behavior is composed of discrete units and sub-units that can be compared among taxa in a phylogenetic framework. This means that behavior, like morphology and genes, is inherently modular. Yet, the concept of modularity is not well integrated into how we envision the behavioral components of phenotype. Understanding ethological modularity, and its implications for animal phenotype organization and evolution, requires that we construct interpretive schemes that permit us to examine it. In this study, I describe the structure and composition of a complex part of the behavioral phenotype of Parotia lawesii Ramsay, 1885--a bird of paradise (Aves: Paradisaeidae) from the forests of eastern New Guinea. I use archived voucher video clips, photographic ethograms, and phenotype ontology diagrams to describe the modular units comprising courtship at various levels of integration. Results show P. lawesii to have 15 courtship and mating behaviors (11 males, 4 females) hierarchically arranged within a complex seven-level structure. At the finest level examined, male displays are comprised of 49 modular sub-units (elements) differentially employed to form more complex modular units (phases and versions) at higher-levels of integration. With its emphasis on hierarchical modularity, this study provides an important conceptual framework for understanding courtship-related phenotypic complexity and provides a solid basis for comparative study of the genus Parotia.

  6. Behavioral Screening for Toxicology | Science Inventory | US ...

    EPA Pesticide Factsheets

    Screening for behavioral toxicity, or neurotoxicity, has been in use for decades; however, only in the past 20 years has this become a standard practice in toxicology. Current screening batteries, such as the functional observational battery (FOB), are derived from protocols used in pharmacology, toxicology, and psychology. Although there is a range of protocols in use today, all focus on detailed observations and specific tests of reflexes and responses. Several neurological functions are typically assessed, including autonomic, neuromuscular, and sensory, as well as levels of activity and excitability. The tests have been shown to be valid in detecting expected effects of known neurotoxicants, and reliable and reproducible whn compared across laboratories. Regardless of the specific protocol used, proper conduct and statistical analyses of the data are critical. Interpretation is based on the information from individual end points as well as the profile, or pattern, of effects observed. As long as continual refinements are made, behavioral screening methods will continue to be important tools with which to protect human health in the future.autonomic function; behavior; behavioral phenotypes; behavioral toxicity; excitability; functional observational battery ; motor activity; mouse; neuromuscular function; positive controls; rat; screening battery ; sensory function Screening for behavioral toxicity, or neurotoxicity, has been in use for decades; how

  7. Overeating phenotypes in overweight and obese children.

    PubMed

    Boutelle, Kerri N; Peterson, Carol B; Crosby, Ross D; Rydell, Sarah A; Zucker, Nancy; Harnack, Lisa

    2014-05-01

    The purpose of this study was to identify overeating phenotypes and their correlates in overweight and obese children. One hundred and seventeen treatment-seeking overweight and obese 8-12year-old children and their parents completed the study. Children completed an eating in the absence of hunger (EAH) paradigm, the Eating Disorder Examination interview, and measurements of height and weight. Parents and children completed questionnaires that evaluated satiety responsiveness, food responsiveness, negative affect eating, external eating and eating in the absence of hunger. Latent profile analysis was used to identify heterogeneity in overeating phenotypes in the child participants. Latent classes were then compared on measures of demographics, obesity status and nutritional intake. Three latent classes of overweight and obese children were identified: High Satiety Responsive, High Food Responsive, and Moderate Satiety and Food Responsive. Results indicated that the High Food Responsive group had higher BMI and BMI-Z scores compared to the High Satiety Responsive group. No differences were found among classes in demographics or nutritional intake. This study identified three overeating phenotypes, supporting the heterogeneity of eating patterns associated with overweight and obesity in treatment-seeking children. These finding suggest that these phenotypes can potentially be used to identify high risk groups, inform prevention and intervention targets, and develop specific treatments for these behavioral phenotypes. Copyright © 2014. Published by Elsevier Ltd.

  8. The down syndrome behavioral phenotype: implications for practice and research in occupational therapy.

    PubMed

    Daunhauer, Lisa A; Fidler, Deborah J

    2011-01-01

    ABSTRACT Down syndrome (DS) is the most common chromosomal cause of intellectual disability. The genetic causes of DS are associated with characteristic outcomes, such as relative strengths in visual-spatial skills and relative challenges in motor planning. This profile of outcomes, called the DS behavioral phenotype, may be a critical tool for intervention planning and research in this population. In this article, aspects of the DS behavioral phenotype potentially relevant to occupational therapy practice are reviewed. Implications and challenges for etiology-informed research and practice are discussed.

  9. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.

    PubMed

    Lee, Sang Jin; Choi, Jin San; Park, Ki Suk; Khang, Gilson; Lee, Young Moo; Lee, Hai Bang

    2004-08-01

    Response of different types of cells on materials is important for the applications of tissue engineering and regenerative medicine. It is recognized that the behavior of the cell adhesion, proliferation, and differentiation on materials depends largely on surface characteristics such as wettability, chemistry, charge, rigidity, and roughness. In this study, we examined the behavior of MG63 osteoblast-like cells cultured on a polycarbonate (PC) membrane surfaces with different micropore sizes (0.2-8.0 microm in diameter). Cell adhesion and proliferation to the PC membrane surfaces were determined by cell counting and MTT assay. The effect of surface micropore on the MG63 cells was evaluated by cell morphology, protein content, and alkaline phosphatase (ALP) specific activity. It seems that the cell adhesion and proliferation were progressively inhibited as the PC membranes had micropores with increasing size, probably due to surface discontinuities produced by track-etched pores. Increasing micropore size of the PC membrane results in improved protein synthesis and ALP specific activity in isolated cells. There was a statistically significant difference (P<0.05) between different micropore sizes. The MG63 cells also maintained their phenotype under conditions that support a round cell shape. RT-PCR analysis further confirmed the osteogenic phenotype of the MG63 cells onto the PC membranes with different micropore sizes. In results, as micropore size is getting larger, cell number is reduced and cell differentiation and matrix production is increased. This study demonstrated that the surface topography plays an important role for phenotypic expression of the MG63 osteoblast-like cells.

  10. GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome.

    PubMed

    Danti, Federica Rachele; Galosi, Serena; Romani, Marta; Montomoli, Martino; Carss, Keren J; Raymond, F Lucy; Parrini, Elena; Bianchini, Claudia; McShane, Tony; Dale, Russell C; Mohammad, Shekeeb S; Shah, Ubaid; Mahant, Neil; Ng, Joanne; McTague, Amy; Samanta, Rajib; Vadlamani, Gayatri; Valente, Enza Maria; Leuzzi, Vincenzo; Kurian, Manju A; Guerrini, Renzo

    2017-04-01

    To describe better the motor phenotype, molecular genetic features, and clinical course of GNAO1 -related disease. We reviewed clinical information, video recordings, and neuroimaging of a newly identified cohort of 7 patients with de novo missense and splice site GNAO1 mutations, detected by next-generation sequencing techniques. Patients first presented in early childhood (median age of presentation 10 months, range 0-48 months), with a wide range of clinical symptoms ranging from severe motor and cognitive impairment with marked choreoathetosis, self-injurious behavior, and epileptic encephalopathy to a milder phenotype, featuring moderate developmental delay associated with complex stereotypies, mainly facial dyskinesia and mild epilepsy. Hyperkinetic movements were often exacerbated by specific triggers, such as voluntary movement, intercurrent illnesses, emotion, and high ambient temperature, leading to hospital admissions. Most patients were resistant to drug intervention, although tetrabenazine was effective in partially controlling dyskinesia for 2/7 patients. Emergency deep brain stimulation (DBS) was life saving in 1 patient, resulting in immediate clinical benefit with complete cessation of violent hyperkinetic movements. Five patients had well-controlled epilepsy and 1 had drug-resistant seizures. Structural brain abnormalities, including mild cerebral atrophy and corpus callosum dysgenesis, were evident in 5 patients. One patient had a diffuse astrocytoma (WHO grade II), surgically removed at age 16. Our findings support the causative role of GNAO1 mutations in an expanded spectrum of early-onset epilepsy and movement disorders, frequently exacerbated by specific triggers and at times associated with self-injurious behavior. Tetrabenazine and DBS were the most useful treatments for dyskinesia.

  11. Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior

    PubMed Central

    Wircer, Einav; Blechman, Janna; Borodovsky, Nataliya; Tsoory, Michael; Nunes, Ana Rita; Oliveira, Rui F; Levkowitz, Gil

    2017-01-01

    Proper response to stress and social stimuli depends on orchestrated development of hypothalamic neuronal circuits. Here we address the effects of the developmental transcription factor orthopedia (Otp) on hypothalamic development and function. We show that developmental mutations in the zebrafish paralogous gene otpa but not otpb affect both stress response and social preference. These behavioral phenotypes were associated with developmental alterations in oxytocinergic (OXT) neurons. Thus, otpa and otpb differentially regulate neuropeptide switching in a newly identified subset of OXT neurons that co-express the corticotropin-releasing hormone (CRH). Single-cell analysis revealed that these neurons project mostly to the hindbrain and spinal cord. Ablation of this neuronal subset specifically reduced adult social preference without affecting stress behavior, thereby uncoupling the contribution of a specific OXT cluster to social behavior from the general otpa−/− deficits. Our findings reveal a new role for Otp in controlling developmental neuropeptide balance in a discrete OXT circuit whose disrupted development affects social behavior. DOI: http://dx.doi.org/10.7554/eLife.22170.001 PMID:28094761

  12. Neural sex modifies the function of a C. elegans sensory circuit.

    PubMed

    Lee, Kyunghwa; Portman, Douglas S

    2007-11-06

    Though sex differences in animal behavior are ubiquitous, their neural and genetic underpinnings remain poorly understood. In particular, the role of functional differences in the neural circuitry that is shared by both sexes has not been extensively investigated. We have addressed these issues with C. elegans olfaction, a simple innate behavior mediated by sexually isomorphic neurons. Though males respond to the same olfactory attractants as do hermaphrodites, we find that each sex has a characteristic repertoire of olfactory preferences. These are not secondary to other sex-specific behaviors and do not require signaling from the gonad. Sex-specific olfactory preferences are controlled by tra-1, the master regulator of C. elegans sexual differentiation. Moreover, the genetic masculinization of neurons in an otherwise wild-type hermaphrodite is sufficient to switch the sexual phenotype of olfactory preference behavior. These studies reveal novel and unexpected sex differences in a C. elegans sensory behavior that is exhibited by both sexes. Our results indicate that these differences are a function of the chromosomally determined sexual identity of shared neural circuitry.

  13. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors.

    PubMed

    Jhang, Cian-Ling; Huang, Tzyy-Nan; Hsueh, Yi-Ping; Liao, Wenlin

    2017-10-15

    Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Which ante mortem clinical features predict progressive supranuclear palsy pathology?

    PubMed

    Respondek, Gesine; Kurz, Carolin; Arzberger, Thomas; Compta, Yaroslau; Englund, Elisabet; Ferguson, Leslie W; Gelpi, Ellen; Giese, Armin; Irwin, David J; Meissner, Wassilios G; Nilsson, Christer; Pantelyat, Alexander; Rajput, Alex; van Swieten, John C; Troakes, Claire; Josephs, Keith A; Lang, Anthony E; Mollenhauer, Brit; Müller, Ulrich; Whitwell, Jennifer L; Antonini, Angelo; Bhatia, Kailash P; Bordelon, Yvette; Corvol, Jean-Christophe; Colosimo, Carlo; Dodel, Richard; Grossman, Murray; Kassubek, Jan; Krismer, Florian; Levin, Johannes; Lorenzl, Stefan; Morris, Huw; Nestor, Peter; Oertel, Wolfgang H; Rabinovici, Gil D; Rowe, James B; van Eimeren, Thilo; Wenning, Gregor K; Boxer, Adam; Golbe, Lawrence I; Litvan, Irene; Stamelou, Maria; Höglinger, Günter U

    2017-07-01

    Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes. To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP. We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort. Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity. Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  15. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    PubMed

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Deletion 1q43 encompassing only CHRM3 in a patient with autistic disorder.

    PubMed

    Petersen, Andrea Klunder; Ahmad, Ausaf; Shafiq, Mustafa; Brown-Kipphut, Brigette; Fong, Chin-To; Anwar Iqbal, M

    2013-02-01

    Deletions on the distal portion of the long arm of chromosome 1 result in complex and highly variable clinical phenotypes which include intellectual disability, autism, seizures, microcephaly/craniofacial dysmorphology, corpus callosal agenesis/hypogenesis, cardiac and genital anomalies, hand and foot abnormalities and short stature. Genotype-phenotype correlation reported a minimum region of 2 Mb at 1q43-q44. We report on a 3 ½ year old male patient diagnosed with autistic disorder who has social withdrawal, eating problems, repetitive stereotypic behaviors including self-injurious head banging and hair pulling, and no seizures, anxiety, or mood swings. Array comparative genomic hybridization (aCGH) showed an interstitial deletion of 473 kb at 1q43 region (239,412,391-239,885,394; NCBI build37/hg19) harboring only CHRM3 (Acetylcholine Receptor, Muscarinic, 3; OMIM: 118494). Recently, another case with a de novo interstitial deletion of 911 kb at 1q43 encompassing three genes including CHRM3 was reported. The M3 muscarinic receptor influences a multitude of central and peripheral nervous system processes via its interaction with acetylcholine and may be an important modulator of behavior, learning and memory. We propose CHRM3 as a candidate gene responsible for our patient's specific phenotype as well as the overlapping phenotypic features of other patients with 1q43 or 1q43-q44 deletions. Copyright © 2013. Published by Elsevier Masson SAS.

  17. Elimination of Kalrn Expression in POMC Cells Reduces Anxiety-Like Behavior and Contextual Fear Learning

    PubMed Central

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A.; Mains, Richard E.

    2014-01-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. PMID:25014196

  18. The expression of interleukin-6 and its receptor in various brain regions and their roles in exploratory behavior and stress responses.

    PubMed

    Aniszewska, A; Chłodzińska, N; Bartkowska, K; Winnicka, M M; Turlejski, K; Djavadian, R L

    2015-07-15

    We examined the involvement of interleukin-6 (IL-6) and its receptor IL-6Rα on behavior and stress responses in mice. In the open field, both wild-type (WT) and IL-6 deficient mice displayed similar levels of locomotor activity; however, IL-6 deficient mice spent more time in the central part of the arena compared to control WT mice. After behavioral testing, mice were subjected to stress and then sacrificed. The levels of IL-6 and its receptor in their brains were determined. Immunohistochemical labeling of brain sections for IL-6 showed a high level of expression in the subventricular zone of the lateral ventricles and in the border zone of the third and fourth ventricles. Interestingly, 95% of the IL-6-expressing cells had an astrocytic phenotype, and the remaining 5% were microglial cells. A low level of IL-6 expression was observed in the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, cerebellum, midbrain and several brainstem structures. The vast majority of IL-6-expressing cells in these structures had a neuronal phenotype. Stress increased the number of IL-6-immunoreactive astrocytes and microglial cells. The levels of the IL-6Rα receptor were increased in the hypothalamus of stressed mice. Therefore, in this study, we describe for the first time the distribution of IL-6 in various types of brain cells and in previously unreported regions, such as the subventricular zone of the lateral ventricle. Moreover, we provide data on regional distribution and expression within specific cell phenotypes. This highly differential expression of IL-6 indicates its specific roles in the regulation of neuronal and astrocytic functions, in addition to the roles of IL-6 and its receptor IL-6Rα in stress responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Elder Self-Neglect in a Community-Dwelling U.S. Chinese Population: Findings from the Population Study of Chinese Elderly in Chicago (PINE) Study

    PubMed Central

    Dong, XinQi

    2014-01-01

    Objectives To examine the prevalence of self-neglect and its specific behaviors in a community-dwelling U.S. Chinese aging population. Design Population-based cohort study. Setting Community-dwelling population of Chinese older adults. Participants 3,159 Chinese older adults in the greater Chicago area interviewed from 2011-2013. Measurements Participant’s personal and home environment was rated based on prevalence of hoarding behavior, personal hygiene, repairs needed on the home, sanitary condition of the home, and adequacy of utilities. Prevalence estimates were presented across self-reported quality-of-life. Results Prevalence of self-neglect was 18.2% for mild self-neglect and 10.9% for moderate/severe self-neglect among Chinese older adults. In terms of specific phenotypes, unsanitary conditions (17.0%) was the most prevalent, followed by need of home repair (16.3%), hoarding behavior (14.9%), poor personal hygiene (11.3%), and inadequate utilities (4.2%). The prevalence of elder self-neglect of all severities and its phenotypes was higher among older adults with fair or poor quality-of-life as compared to that of older adults with good or very good quality-of-life. Lower quality-of-life was significantly associated with and increased risk for self-neglect of all severities (mild self-neglect: OR 1.93, 95% CI 1.26-2.96, p<0.001; moderate/severe self-neglect: OR 3.58, 95% CI 1.79-7.13, p<0.001) and specific personal and environmental hazards. Conclusion Elder self-neglect is prevalent, especially among those with lower levels of quality-of-life. Future research is needed to examine risk/protective factors associated with elder self-neglect. PMID:25439674

  20. Distribution of Response Time, Cortical, and Cardiac Correlates during Emotional Interference in Persons with Subclinical Psychotic Symptoms

    PubMed Central

    Holper, Lisa K. B.; Aleksandrowicz, Alekandra; Müller, Mario; Ajdacic-Gross, Vladeta; Haker, Helene; Fallgatter, Andreas J.; Hagenmuller, Florence; Kawohl, Wolfram; Rössler, Wulf

    2016-01-01

    A psychosis phenotype can be observed below the threshold of clinical detection. The study aimed to investigate whether subclinical psychotic symptoms are associated with deficits in controlling emotional interference, and whether cortical brain and cardiac correlates of these deficits can be detected using functional near-infrared spectroscopy (fNIRS). A data set derived from a community sample was obtained from the Zurich Program for Sustainable Development of Mental Health Services. 174 subjects (mean age 29.67 ± 6.41, 91 females) were assigned to four groups ranging from low to high levels of subclinical psychotic symptoms (derived from the Symptom Checklist-90-R). Emotional interference was assessed using the emotional Stroop task comprising neutral, positive, and negative conditions. Statistical distributional methods based on delta plots [behavioral response time (RT) data] and quantile analysis (fNIRS data) were applied to evaluate the emotional interference effects. Results showed that both interference effects and disorder-specific (i.e., group-specific) effects could be detected, based on behavioral RTs, cortical hemodynamic signals (brain correlates), and heart rate variability (cardiac correlates). Subjects with high compared to low subclinical psychotic symptoms revealed significantly reduced amplitudes in dorsolateral prefrontal cortices (interference effect, p < 0.001) and middle temporal gyrus (disorder-specific group effect, p < 0.001), supported by behavioral and heart rate results. The present findings indicate that distributional analyses methods can support the detection of emotional interference effects in the emotional Stroop. The results suggested that subjects with high subclinical psychosis exhibit enhanced emotional interference effects. Based on these observations, subclinical psychosis may therefore prove to represent a valid extension of the clinical psychosis phenotype. PMID:27660608

  1. Distribution of Response Time, Cortical, and Cardiac Correlates during Emotional Interference in Persons with Subclinical Psychotic Symptoms.

    PubMed

    Holper, Lisa K B; Aleksandrowicz, Alekandra; Müller, Mario; Ajdacic-Gross, Vladeta; Haker, Helene; Fallgatter, Andreas J; Hagenmuller, Florence; Kawohl, Wolfram; Rössler, Wulf

    2016-01-01

    A psychosis phenotype can be observed below the threshold of clinical detection. The study aimed to investigate whether subclinical psychotic symptoms are associated with deficits in controlling emotional interference, and whether cortical brain and cardiac correlates of these deficits can be detected using functional near-infrared spectroscopy (fNIRS). A data set derived from a community sample was obtained from the Zurich Program for Sustainable Development of Mental Health Services. 174 subjects (mean age 29.67 ± 6.41, 91 females) were assigned to four groups ranging from low to high levels of subclinical psychotic symptoms (derived from the Symptom Checklist-90-R). Emotional interference was assessed using the emotional Stroop task comprising neutral, positive, and negative conditions. Statistical distributional methods based on delta plots [behavioral response time (RT) data] and quantile analysis (fNIRS data) were applied to evaluate the emotional interference effects. Results showed that both interference effects and disorder-specific (i.e., group-specific) effects could be detected, based on behavioral RTs, cortical hemodynamic signals (brain correlates), and heart rate variability (cardiac correlates). Subjects with high compared to low subclinical psychotic symptoms revealed significantly reduced amplitudes in dorsolateral prefrontal cortices (interference effect, p < 0.001) and middle temporal gyrus (disorder-specific group effect, p < 0.001), supported by behavioral and heart rate results. The present findings indicate that distributional analyses methods can support the detection of emotional interference effects in the emotional Stroop. The results suggested that subjects with high subclinical psychosis exhibit enhanced emotional interference effects. Based on these observations, subclinical psychosis may therefore prove to represent a valid extension of the clinical psychosis phenotype.

  2. Paternal Aging Affects Behavior in Pax6 Mutant Mice: A Gene/Environment Interaction in Understanding Neurodevelopmental Disorders.

    PubMed

    Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko

    2016-01-01

    Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.

  3. Unmet clinical needs and burden in Angelman syndrome: a review of the literature.

    PubMed

    Wheeler, Anne C; Sacco, Patricia; Cabo, Raquel

    2017-10-16

    Angelman syndrome (AS) is a rare disorder with a relatively well-defined phenotype. Despite this, very little is known regarding the unmet clinical needs and burden of this condition, especially with regard to some of the most prevalent clinical features-movement disorders, communication impairments, behavior, and sleep. A targeted literature review using electronic medical databases (e.g., PubMed) was conducted to identify recent studies focused on specific areas of the AS phenotype (motor, communication, behavior, sleep) as well as epidemiology, diagnostic processes, treatment, and burden. 142 articles were reviewed and summarized. Findings suggest significant impairment across the life span in all areas of function. While some issues may resolve as individuals get older (e.g., hyperactivity), others become worse (e.g., movement disorders, aggression, anxiety). There are no treatments focused on the underlying etiology, and the symptom-based therapies currently prescribed do not have much, if any, empirical support. The lack of standardized treatment protocols or approved therapies, combined with the severity of the condition, results in high unmet clinical needs in the areas of motor functioning, communication, behavior, and sleep for individuals with AS and their families.

  4. Polymorphisms in the dopamine D4 receptor gene (DRD4) contribute to individual differences in human sexual behavior: desire, arousal and sexual function.

    PubMed

    Ben Zion, I Z; Tessler, R; Cohen, L; Lerer, E; Raz, Y; Bachner-Melman, R; Gritsenko, I; Nemanov, L; Zohar, A H; Belmaker, R H; Benjamin, J; Ebstein, R P

    2006-08-01

    Although there is some evidence from twin studies that individual differences in sexual behavior are heritable, little is known about the specific molecular genetic design of human sexuality. Recently, a specific dopamine D4 receptor (DRD4) agonist was shown in rats to induce penile erection through a central mechanism. These findings prompted us to examine possible association between the well-characterized DRD4 gene and core phenotypes of human sexual behavior that included desire, arousal and function in a group of 148 nonclinical university students. We observed association between the exon 3 repeat region, and the C-521T and C-616G promoter region SNPs, with scores on scales that measure human sexual behavior. The single most common DRD4 5-locus haplotype (19%) was significantly associated with Desire, Function and Arousal scores. The current results are consistent with animal studies that show a role for dopamine and specifically the DRD4 receptor in sexual behavior and suggest that one pathway by which individual variation in human desire, arousal and function are mediated is based on allelic variants coding for differences in DRD4 receptor gene expression and protein concentrations in key brain areas.

  5. Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline

    PubMed Central

    Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M.; Fontaine, Benjamin A.; Tager, Andrew M.

    2013-01-01

    Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320

  6. Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency

    PubMed Central

    Grabrucker, Stefanie; Boeckers, Tobias M.; Grabrucker, Andreas M.

    2016-01-01

    Zinc deficiency has recently been linked to the etiology of autism spectrum disorders (ASD) as environmental risk factor. With an estimated 17% of the world population being at risk of zinc deficiency, especially zinc deficiency during pregnancy might be a common occurrence, also in industrialized nations. On molecular level, zinc deficiency has been shown to affect a signaling pathway at glutamatergic synapses that has previously been identified through genetic mutations in ASD patients, the Neurexin-Neuroligin-Shank pathway, via altering zinc binding Shank family members. In particular, prenatal zinc deficient but not acute zinc deficient animals have been reported to display autism like behavior in some behavioral tests. However, a full behavioral analysis of a possible autism like behavior has been lacking so far. Here, we performed an extensive behavioral phenotyping of mice born from mothers with mild zinc deficiency during all trimesters of pregnancy. Prenatal zinc deficient animals were investigated as adults and gender differences were assessed. Our results show that prenatal zinc deficient mice display increased anxiety, deficits in nest building and various social interaction paradigm, as well as mild alterations in ultrasonic vocalizations. A gender specific analysis revealed only few sex specific differences. Taken together, given that similar behavioral abnormalities as reported here are frequently observed in ASD mouse models, we conclude that prenatal zinc deficient animals even without specific genetic susceptibility for ASD, already show some features of ASD like behavior. PMID:26973485

  7. Phenotypic divergence despite low genetic differentiation in house sparrow populations.

    PubMed

    Ben Cohen, Shachar; Dor, Roi

    2018-01-10

    Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.

  8. Targeting self-regulation to promote health behaviors in children.

    PubMed

    Miller, Alison L; Gearhardt, Ashley N; Fredericks, Emily M; Katz, Benjamin; Shapiro, Lilly Fink; Holden, Kelsie; Kaciroti, Niko; Gonzalez, Richard; Hunter, Christine; Lumeng, Julie C

    2018-02-01

    Poor self-regulation (i.e., inability to harness cognitive, emotional, motivational resources to achieve goals) is hypothesized to contribute to unhealthy behaviors across the lifespan. Enhancing early self-regulation may increase positive health outcomes. Obesity is a major public health concern with early-emerging precursors related to self-regulation; it is therefore a good model for understanding self-regulation and health behavior. Preadolescence is a transition when children increase autonomy in health behaviors (e.g., eating, exercise habits), many of which involve self-regulation. This paper presents the scientific rationale for examining self-regulation mechanisms that are hypothesized to relate to health behaviors, specifically obesogenic eating, that have not been examined in children. We describe novel intervention protocols designed to enhance self-regulation skills, specifically executive functioning, emotion regulation, future-oriented thinking, and approach bias. Interventions are delivered via home visits. Assays of self-regulation and obesogenic eating behaviors using behavioral tasks and self-reports are implemented and evaluated to determine feasibility and psychometrics and to test intervention effects. Participants are low-income 9-12 year-old children who have been phenotyped for self-regulation, stress, eating behavior and adiposity through early childhood. Study goals are to examine intervention effects on self-regulation and whether change in self-regulation improves obesogenic eating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Individual (co)variation in standard metabolic rate, feeding rate, and exploratory behavior in wild-caught semiaquatic salamanders.

    PubMed

    Gifford, Matthew E; Clay, Timothy A; Careau, Vincent

    2014-01-01

    Repeatability is an important concept in evolutionary analyses because it provides information regarding the benefit of repeated measurements and, in most cases, a putative upper limit to heritability estimates. Repeatability (R) of different aspects of energy metabolism and behavior has been demonstrated in a variety of organisms over short and long time intervals. Recent research suggests that consistent individual differences in behavior and energy metabolism might covary. Here we present new data on the repeatability of body mass, standard metabolic rate (SMR), voluntary exploratory behavior, and feeding rate in a semiaquatic salamander and ask whether individual variation in behavioral traits is correlated with individual variation in metabolism on a whole-animal basis and after conditioning on body mass. All measured traits were repeatable, but the repeatability estimates ranged from very high for body mass (R = 0.98), to intermediate for SMR (R = 0.39) and food intake (R = 0.58), to low for exploratory behavior (R = 0.25). Moreover, repeatability estimates for all traits except body mass declined over time (i.e., from 3 to 9 wk), although this pattern could be a consequence of the relatively low sample size used in this study. Despite significant repeatability in all traits, we find little evidence that behaviors are correlated with SMR at the phenotypic and among-individual levels when conditioned on body mass. Specifically, the phenotypic correlations between SMR and exploratory behavior were negative in all trials but significantly so in one trial only. Salamanders in this study showed individual variation in how their exploratory behavior changed across trials (but not body mass, SMR, and feed intake), which might have contributed to observed changing correlations across trials.

  10. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse.

    PubMed

    Shipley, Adam T; Imeh-Nathaniel, Adebobola; Orfanakos, Vasiliki B; Wormack, Leah N; Huber, Robert; Nathaniel, Thomas I

    2017-01-01

    The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish ( Orconectes rusticus ) for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.

  11. Animal Models of Maladaptive Traits: Disorders in Sensorimotor Gating and Attentional Quantifiable Responses as Possible Endophenotypes

    PubMed Central

    Vargas, Juan P.; Díaz, Estrella; Portavella, Manuel; López, Juan C.

    2016-01-01

    Traditional diagnostic scales are based on a number of symptoms to evaluate and classify mental diseases. In many cases, this process becomes subjective, since the patient must calibrate the magnitude of his/her symptoms and therefore the severity of his/her disorder. A completely different approach is based on the study of the more vulnerable traits of cognitive disorders. In this regard, animal models of mental illness could be a useful tool to characterize indicators of possible cognitive dysfunctions in humans. Specifically, several cognitive disorders such as schizophrenia involve a dysfunction in the mesocorticolimbic dopaminergic system during development. These variations in dopamine levels or dopamine receptor sensibility correlate with many behavioral disturbances. These behaviors may be included in a specific phenotype and may be analyzed under controlled conditions in the laboratory. The present study provides an introductory overview of different quantitative traits that could be used as a possible risk indicator for different mental disorders, helping to define a specific endophenotype. Specifically, we examine different experimental procedures to measure impaired response in attention linked to sensorimotor gating as a possible personality trait involved in maladaptive behaviors. PMID:26925020

  12. Autistic-spectrum disorders in Down syndrome: further delineation and distinction from other behavioral abnormalities.

    PubMed

    Carter, John C; Capone, George T; Gray, Robert M; Cox, Christiane S; Kaufmann, Walter E

    2007-01-05

    The present study extends our previous work characterizing the behavioral features of autistic-spectrum disorder (ASD) in Down syndrome (DS) using the Aberrant Behavior Checklist (ABC) and Autism Behavior Checklist (AutBehav). We examined which specific behaviors distinguished the behavioral phenotype of DS + ASD from other aberrant behavior disorders in DS, by determining the relative contribution of ABC and AutBehav subscales and items to the diagnosis of ASD. A total of 127 subjects (aged 2-24 years; mean age: 8.4 years; approximately 70% male), comprising: a cohort of 64 children and adolescents with DS and co-morbid ASD (DS + ASD), 19 with DS and stereotypic movement disorder (DS + SMD), 18 with DS and disruptive behaviors (DS + DB), and 26 with DS and no co-morbid behavior disorders (DS + none) were examined using the aforementioned measures of aberrant behavior. We found that subjects with DS + ASD showed the most severe aberrant behavior, especially stereotypy compared to DS + none and lethargy/social withdrawal and relating problems compared to DS + SMD. Specifically, relatively simple stereotypic behavior differentiated DS + ASD from DS + DB, whereas odd/bizarre stereotypic and anxious behavior characterized DS + ASD relative to DS + SMD and DS + none. Additionally, in a subset of subjects with DS + ASD and anxiety, social withdrawal was particularly pronounced. Overall, our findings indicate that a diagnosis of DS + ASD represents a distinctive set of aberrant behaviors marked by characteristic odd/bizarre stereotypic behavior, anxiety, and social withdrawal.

  13. SEE locomotor behavior test discriminates C57BL/6J and DBA/2J mouse inbred strains across laboratories and protocol conditions.

    PubMed

    Kafkafi, Neri; Lipkind, Dina; Benjamini, Yoav; Mayo, Cheryl L; Elmer, Gregory I; Golani, Ilan

    2003-06-01

    Conventional tests of behavioral phenotyping frequently have difficulties differentiating certain genotypes and replicating these differences across laboratories and protocol conditions. This study explores the hypothesis that automated tests can be designed to quantify ethologically relevant behavior patterns that more readily characterize heritable and replicable phenotypes. It used SEE (Strategy for the Exploration of Exploration) to phenotype the locomotor behavior of the C57BL/6 and DBA/2 mouse inbred strains across 3 laboratories. The 2 genotypes differed in 15 different measures of behavior, none of which had a significant genotype-laboratory interaction. Within the same laboratory, most of these differences were replicated in additional experiments despite the test photoperiod phase being changed and saline being injected. Results suggest that well-designed tests may considerably enhance replicability across laboratories.

  14. Hyperactivity with Agitative-Like Behavior in a Mouse Tauopathy Model.

    PubMed

    Jul, Pia; Volbracht, Christiane; de Jong, Inge E M; Helboe, Lone; Elvang, Anders Brandt; Pedersen, Jan Torleif

    2016-01-01

    Tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau. In addition to memory loss, patients experience behavioral symptoms such as agitation, aggression, depression, and insomnia. We explored the behavioral phenotype of a mouse model (rTg4510) carrying the human tau P301L mutation found in a familial form of FTD. We tested these mice in locomotor activity assays as well as in the Morris water maze to access spatial memory. In addition to cognitive impairments, rTg4510 mice exhibited a hyperactivity phenotype which correlated with progression of tau pathology and was dependent on P301L tau transgene expression. The hyperactive phenotype was characterized by significantly increased locomotor activity in a novel and in a simulated home cage environment together with a disturbed day/night cycle. The P301L-tau-dependent hyperactivity and agitative-like phenotype suggests that these mice may form a correlate to some of the behavioral disturbances observed in advanced AD and FTD.

  15. Elimination of Kalrn expression in POMC cells reduces anxiety-like behavior and contextual fear learning.

    PubMed

    Mandela, Prashant; Yan, Yan; LaRese, Taylor; Eipper, Betty A; Mains, Richard E

    2014-07-01

    Kalirin, a Rho GDP/GTP exchange factor for Rac1 and RhoG, is known to play an essential role in the formation and maintenance of excitatory synapses and in the secretion of neuropeptides. Mice unable to express any of the isoforms of Kalrn in cells that produce POMC at any time during development (POMC cells) exhibited reduced anxiety-like behavior and reduced acquisition of passive avoidance behavior, along with sex-specific alteration in the corticosterone response to restraint stress. Strikingly, lack of Kalrn expression in POMC cells closely mimicked the effects of global Kalrn knockout on anxiety-like behavior and passive avoidance conditioning without causing the other deficits noted in Kalrn knockout mice. Our data suggest that deficits in excitatory inputs onto POMC neurons are responsible for the behavioral phenotypes observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders.

    PubMed

    Smith, B L; Reyes, T M

    2017-10-01

    Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Suggestive Linkage of the Child Behavior Checklist Juvenile Bipolar Disorder Phenotype to 1p21, 6p21, and 8q21

    ERIC Educational Resources Information Center

    Doyle, Alysa E.; Biederman, Joseph; Ferreira, Manuel A. R.; Wong, Patricia; Smoller, Jordan W.; Faraone, Stephen V.

    2010-01-01

    Objective: Several studies have documented a profile of elevated scores on the Attention Problems, Aggressive Behavior and Anxious/Depressed scales of the Child Behavior Checklist (CBCL) in youth with bipolar disorder. The sum of these scales, referred to as the CBCL Juvenile Bipolar Disorder (JBD) phenotype, has modest diagnostic utility, and…

  18. Phenotypic plasticity in a population of odonates.

    PubMed

    Bowman, Randi M; Schmidt, Sharol; Weeks, Chelsea; Clark, Hunter; Brown, Christopher; Latta, Leigh C; Edgehouse, Michael

    2018-05-31

    The maintenance of phenotypic plasticity within a species ensures survival through environmental flux. Plastic strategies are increasingly important given the number and magnitude of modern anthropogenic threats to the environment. We tested for phenotypic plasticity in the odonate Argia vivida in response to resource limitation. By limiting food availability, effectively inducing hunger, we were able to quantify shifts in agonistic behavior during intraspecific interactions. Scoring behavior in one-on-one combat trials after 1 and 4 days without food revealed phenotypic plasticity. Three classes of genotypes were identified, genotypes exhibiting either increased aggression, decreased aggression, or no phenotypic plasticity, in response to resource limitation. The variable plastic strategies in this population of odonates likely aids in maintaining fitness in fluctuating environments.

  19. Pediatric Autoimmune Disorders Associated with Streptococcal Infections and Tourette's Syndrome in Preclinical Studies

    PubMed Central

    Spinello, Chiara; Laviola, Giovanni; Macrì, Simone

    2016-01-01

    Accumulating evidence suggests that Tourette's Syndrome (TS) – a multifactorial pediatric disorder characterized by the recurrent exhibition of motor tics and/or vocal utterances – can partly depend on immune dysregulation provoked by early repeated streptococcal infections. The natural and adaptive antibody-mediated reaction to streptococcus has been proposed to potentially turn into a pathological autoimmune response in vulnerable individuals. Specifically, in conditions of increased permeability of the blood brain barrier (BBB), streptococcus-induced antibodies have been proposed to: (i) reach neuronal targets located in brain areas responsible for motion control; and (ii) contribute to the exhibition of symptoms. This theoretical framework is supported by indirect evidence indicating that a subset of TS patients exhibit elevated streptococcal antibody titers upon tic relapses. A systematic evaluation of this hypothesis entails preclinical studies providing a proof of concept of the aforementioned pathological sequelae. These studies shall rest upon individuals characterized by a vulnerable immune system, repeatedly exposed to streptococcus, and carefully screened for phenotypes isomorphic to the pathological signs of TS observed in patients. Preclinical animal models may thus constitute an informative, useful tool upon which conducting targeted, hypothesis-driven experiments. In the present review we discuss the available evidence in preclinical models in support of the link between TS and pediatric autoimmune neuropsychiatric disorders associated with streptococcus infections (PANDAS), and the existing gaps that future research shall bridge. Specifically, we report recent preclinical evidence indicating that the immune responses to repeated streptococcal immunizations relate to the occurrence of behavioral and neurological phenotypes reminiscent of TS. By the same token, we discuss the limitations of these studies: limited evidence of behavioral phenotypes isomorphic to tics and scarce knowledge about the immunological phenomena favoring the transition from natural adaptive immunity to pathological outcomes. PMID:27445678

  20. A two-hit model of suicide-trait-related behaviors in the context of a schizophrenia-like phenotype: Distinct effects of lithium chloride and clozapine.

    PubMed

    Deslauriers, Jessica; Belleville, Karine; Beaudet, Nicolas; Sarret, Philippe; Grignon, Sylvain

    2016-03-15

    Schizophrenia patients show a high rate of premature mortality due to suicide. The pathophysiological mechanisms of these suicidal behaviors in schizophrenia do not appear to involve serotonergic neurotransmission as found in the general population. Our aim was to develop an in vivo model of schizophrenia presenting suicide-trait-related behaviors such as aggressiveness, impulsivity, anxiety and helplessness. We opted for a two-hit model: C57BL/6 dams were injected with polyI:C on gestational day 12. The pups were submitted to social isolation for 4weeks after weaning. During the last week of social isolation and 30min before behavioral testing, the mice received vehicle, lithium chloride or clozapine. Lithium chloride is well known for its suicide preventive effects in the non-schizophrenic population, while clozapine is the antipsychotic with the best-established suicide preventive effect. The two-hit model induced several schizophrenia-related and suicide-trait-related behaviors in male, but not female, mice. Additionally, lithium chloride improved prepulse inhibition, aggressiveness, impulsivity and anxiety-like behavior in socially isolated mice only, whereas clozapine prevented behavioral abnormalities mainly in mice prenatally exposed to polyI:C and submitted to isolated rearing. The distinct effects of lithium chloride and clozapine suggested that mice prenatally exposed to polyI:C and submitted to social isolation presented a distinct phenotype from that of mice submitted to social isolation only. Because diagnosing suicidal risk in patients is a challenge for psychiatrists given the lack of specific clinical predictors, our in vivo model could help in gaining a better understanding of the mechanisms underlying suicidal behavior in the context of schizophrenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Chronic Intermittent Ethanol Inhalation Increases Ethanol Self-administration in both C57BL/6J and DBA/2J Mice

    PubMed Central

    McCool, Brian A.; Chappell, Ann M.

    2015-01-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent ‘high’ and ‘low’ drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. PMID:25659650

  2. Long-term outcomes of youth who manifested the CBCL-Pediatric Bipolar Disorder phenotype during childhood and/or adolescence.

    PubMed

    Meyer, Stephanie E; Carlson, Gabrielle A; Youngstrom, Eric; Ronsaville, Donna S; Martinez, Pedro E; Gold, Philip W; Hakak, Rashelle; Radke-Yarrow, Marian

    2009-03-01

    Recent studies have identified a Child Behavior Checklist (CBCL) profile that characterizes children with severe aggression, inattention, and mood instability. This profile has been coined the CBCL-Pediatric Bipolar Disorder (PBD) phenotype, because it is commonly seen among children with bipolar disorder. However, mounting evidence suggests that the CBCL-PBD may be a better tool for identifying children with severe functional impairment and broad-ranging psychiatric comorbidities rather than bipolar disorder itself. No studies have followed individuals with the CBCL-PBD profile through adulthood, so its long-term implications remain unclear. The present authors examined diagnostic and functional trajectories of individuals with the CBCL-PBD profile from early childhood through young adulthood using data from a longitudinal high-risk study. Participants (n=101) are part of a 23-year study of youth at risk for major mood disorder who have completed diagnostic and functional assessments at regular intervals. Across development, participants with the CBCL-PBD phenotype exhibited marked psychosocial impairment, increased rates of suicidal thoughts and behaviors and heightened risk for comorbid anxiety, bipolar disorder, cluster B personality disorders and ADHD in young adulthood, compared to participants without this presentation. However, diagnostic accuracy for any one particular disorder was found to be low. Children with the CBCL-PBD profile are at risk for ongoing, severe, psychiatric symptomatology including behavior and emotional comorbidities in general, and bipolar disorder, anxiety, ADHD, cluster B personality disorders in particular. However, the value of this profile may be in predicting ongoing comorbidity and impairment, rather than any one specific DSM-IV diagnosis.

  3. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1.

    PubMed

    Nakad, Rania; Snoek, L Basten; Yang, Wentao; Ellendt, Sunna; Schneider, Franziska; Mohr, Timm G; Rösingh, Lone; Masche, Anna C; Rosenstiel, Philip C; Dierking, Katja; Kammenga, Jan E; Schulenburg, Hinrich

    2016-04-11

    The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes combined with activation of Ebox transcription factors appears to enhance susceptibility to B. thuringiensis. Our findings highlight the role of a single gene, npr-1, in fine-tuning nematode immune defense, showing the ability of the invertebrate immune system to produce highly specialized and potentially opposing immune responses via single regulatory genes.

  4. Variant of Rett syndrome and CDKL5 gene: clinical and autonomic description of 10 cases.

    PubMed

    Pini, Giorgio; Bigoni, Stefania; Engerström, Ingegerd Witt; Calabrese, Olga; Felloni, Beatrice; Scusa, Maria Flora; Di Marco, Pietro; Borelli, Paolo; Bonuccelli, Ubaldo; Julu, Peter O O; Nielsen, Jytte Bieber; Morin, Bodil; Hansen, Stig; Gobbi, Giuseppe; Visconti, Paola; Pintaudi, Maria; Edvige, Veneselli; Romanelli, Anna; Bianchi, Fabrizio; Casarano, Manuela; Battini, Roberta; Cioni, Giovanni; Ariani, Francesca; Renieri, Alessandra; Benincasa, Alberto; Delamont, Robert S; Zappella, Michele

    2012-02-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively females. The Hanefeld variant, or early-onset seizure variant, has been associated with mutations in CDKL5 gene. In recent years more than 60 patients with mutations in the CDKL5 gene have been described in the literature, but the cardiorespiratory phenotype has not been reported. Our aim is to describe clinical and autonomic features of these girls. 10 girls with CDKL5 mutations and a diagnosis of Hanefeld variant have been evaluated on axiological and clinical aspects. In all subjects an evaluation of the autonomic system was performed using the Neuroscope. Common features were gaze avoidance, repetitive head movements and hand stereotypies. The autonomic evaluation disclosed eight cases with the Forceful breather cardiorespiratory phenotype and two cases with the Apneustic breather phenotype. The clinical picture remains within the RTT spectrum but some symptoms are more pronounced in addition to the very early onset of seizures. The cardiorespiratory phenotype was dominated by Forceful breathers, while Feeble breathers were not found, differently from the general Rett population, suggesting a specific behavioral and cardiorespiratory phenotype of the RTT the Hanefeld variant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Novel application of the published kinase inhibitor set to identify therapeutic targets and pathways in triple negative breast cancer subtypes

    PubMed Central

    Phamduy, Theresa B.; Chrisey, Douglas B.

    2017-01-01

    Triple negative breast cancers (TNBCs) have high recurrence and metastasis rates. Acquisition of a mesenchymal morphology and phenotype in addition to driving migration is a consequential process that promotes metastasis. Although some kinases are known to regulate a mesenchymal phenotype, the role for a substantial portion of the human kinome remains uncharacterized. Here we evaluated the Published Kinase Inhibitor Set (PKIS) and screened a panel of TNBC cell lines to evaluate the compounds’ effects on a mesenchymal phenotype. Our screen identified 36 hits representative of twelve kinase inhibitor chemotypes based on reversal of the mesenchymal cell morphology, which was then prioritized to twelve compounds based on gene expression and migratory behavior analyses. We selected the most active compound and confirmed mesenchymal reversal on transcript and protein levels with qRT-PCR and Western Blot. Finally, we utilized a kinase array to identify candidate kinases responsible for the EMT reversal. This investigation shows the novel application to identify previously unrecognized kinase pathways and targets in acquisition of a mesenchymal TNBC phenotype that warrant further investigation. Future studies will examine specific roles of the kinases in mechanisms responsible for acquisition of the mesenchymal and/or migratory phenotype. PMID:28771473

  6. Mecp2 truncation in male mice promotes affiliative social behavior

    PubMed Central

    Pearson, B.L.; Defensor, E.B.; Pobbe, R.L.H.; Yamamoto, L.H.L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J.

    2018-01-01

    Mouse models of Rett syndrome, with targeted mutations in the Mecp2 gene, show a high degree of phenotypic consistency with the clinical syndrome. In addition to severe and age-specific regression in motor and cognitive abilities, a variety of studies have demonstrated that Mecp2 mutant mice display impaired social behavior. Conversely, other studies indicate complex enhancements of social behavior in Mecp2 mutant mice. Since social behavior is a complicated accumulation of constructs, we performed a series of classic and refined social behavior tasks and revealed a relatively consistent pattern of enhanced pro-social behavior in hypomorphic Mecp2308/Y mutant mice. Analyses of repetitive motor acts, and cognitive stereotypy did not reveal any profound differences due to genotype. Taken together, these results suggest that the mutations associated with Rett syndrome are not necessarily associated with autism-relevant social impairment in mice. However, this gene may be a valuable candidate for revealing basic mechanisms of affiliative behavior. PMID:21909962

  7. Genetic deletion of regulator of G-protein signaling 4 (RGS4) rescues a subset of fragile X related phenotypes in the FMR1 knockout mouse.

    PubMed

    Pacey, Laura K K; Doss, Lilian; Cifelli, Carlo; van der Kooy, Derek; Heximer, Scott P; Hampson, David R

    2011-03-01

    Fragile X syndrome (FXS), the most common cause of inherited mental retardation, is caused by the loss of the mRNA binding protein, FMRP. Persons with FXS also display epileptic seizures, social anxiety, hyperactivity, and autistic behaviors. The metabotropic glutamate receptor theory of FXS postulates that in the absence of FMRP, enhanced signaling though G-protein coupled group I metabotropic glutamate receptors in the brain contributes to many of the abnormalities observed in the disorder. However, recent evidence suggests that alterations in cellular signaling through additional G-protein coupled receptors may also be involved in the pathogenesis of FXS, thus providing impetus for examining downstream molecules. One group of signaling molecules situated downstream of the receptors is the regulator of G-protein signaling (RGS) proteins. Notably, RGS4 is highly expressed in brain and has been shown to negatively regulate signaling through Group I mGluRs and GABA(B) receptors. To examine the potential role for RGS4 in the pathogenesis of FXS, we generated FXS/RGS4 double knockout mice. Characterization of these mice revealed that a subset of FXS related phenotypes, including increased body weight, altered synaptic protein expression, and abnormal social behaviors, were rescued in the double knockout mice. Other phenotypes, such as hyperactivity and macroorchidism, were not affected by the loss of RGS4. These findings suggest that tissue and cell-type specific differences in GPCR signaling and RGS function may contribute to the spectrum of phenotypic differences observed in FXS. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD

    PubMed Central

    Cohen, S; Ifergane, G; Vainer, E; Matar, M A; Kaplan, Z; Zohar, J; Mathé, A A; Cohen, H

    2016-01-01

    Pharmacotherapeutic intervention during traumatic memory consolidation has been suggested to alleviate or even prevent the development of posttraumatic stress disorder (PTSD). We recently reported that, in a controlled, prospective animal model, depriving rats of sleep following stress exposure prevents the development of a PTSD-like phenotype. Here, we report that administering the wake-promoting drug modafinil to rats in the aftermath of a stressogenic experience has a similar prophylactic effect, as it significantly reduces the prevalence of PTSD-like phenotype. Moreover, we show that the therapeutic value of modafinil appears to stem from its ability to stimulate a specific circuit within the hypothalamus, which ties together the neuropeptide Y, the orexin system and the HPA axis, to promote adaptive stress responses. The study not only confirms the value of sleep prevention and identifies the mechanism of action of a potential prophylactic treatment after traumatic exposure, but also contributes to understanding mechanisms underlying the shift towards adaptive behavioral response. PMID:27727245

  9. Actin Out: Regulation of the Synaptic Cytoskeleton

    PubMed Central

    Spence, Erin F.; Soderling, Scott H.

    2015-01-01

    The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304

  10. Phenotypic and genetic structure of traits delineating personality disorder.

    PubMed

    Livesley, W J; Jang, K L; Vernon, P A

    1998-10-01

    The evidence suggests that personality traits are hierarchically organized with more specific or lower-order traits combining to form more generalized higher-order traits. Agreement exists across studies regarding the lower-order traits that delineate personality disorder but not the higher-order traits. This study seeks to identify the higher-order structure of personality disorder by examining the phenotypic and genetic structures underlying lower-order traits. Eighteen lower-order traits were assessed using the Dimensional Assessment of Personality Disorder-Basic Questionnaire in samples of 656 personality disordered patients, 939 general population subjects, and a volunteer sample of 686 twin pairs. Principal components analysis yielded 4 components, labeled Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity, that were similar across the 3 samples. Multivariate genetic analyses also yielded 4 genetic and environmental factors that were remarkably similar to the phenotypic factors. Analysis of the residual heritability of the lower-order traits when the effects of the higher-order factors were removed revealed a substantial residual heritable component for 12 of the 18 traits. The results support the following conclusions. First, the stable structure of traits across clinical and nonclinical samples is consistent with dimensional representations of personality disorders. Second, the higher-order traits of personality disorder strongly resemble dimensions of normal personality. This implies that a dimensional classification should be compatible with normative personality. Third, the residual heritability of the lower-order traits suggests that the personality phenotypes are based on a large number of specific genetic components.

  11. Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human ARX Mutations.

    PubMed

    Simonet, Jacqueline C; Sunnen, C Nicole; Wu, Jue; Golden, Jeffrey A; Marsh, Eric D

    2015-09-01

    Mutations in the Aristaless-Related Homeobox (ARX) gene cause structural anomalies of the brain, epilepsy, and neurocognitive deficits in children. During forebrain development, Arx is expressed in both pallial and subpallial progenitor cells. We previously demonstrated that elimination of Arx from subpallial-derived cortical interneurons generates an epilepsy phenotype with features overlapping those seen in patients with ARX mutations. In this report, we have selectively removed Arx from pallial progenitor cells that give rise to the cerebral cortical projection neurons. While no discernable seizure activity was recorded, these mice exhibited a peculiar constellation of behaviors. They are less anxious, less social, and more active when compared with their wild-type littermates. The overall cortical thickness was reduced, and the corpus callosum and anterior commissure were hypoplastic, consistent with a perturbation in cortical connectivity. Taken together, these data suggest that some of the structural and behavioral anomalies, common in patients with ARX mutations, are specifically due to alterations in pallial progenitor function. Furthermore, our data demonstrate that some of the neurobehavioral features found in patients with ARX mutations may not be due to on-going seizures, as is often postulated, given that epilepsy was eliminated as a confounding variable in these behavior analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Individual responsiveness to shock and colony-level aggression in honey bees: evidence for a genetic component

    PubMed Central

    Avalos, Arian; Rodríguez-Cruz, Yoselyn; Giray, Tugrul

    2015-01-01

    The phenotype of the social group is related to phenotypes of individuals that form that society. We examined how honey bee colony aggressiveness relates to individual response of male drones and foraging workers. Although the natural focus in colony aggression has been on the worker caste, the sterile females engaged in colony maintenance and defense, males carry the same genes. We measured aggressiveness scores of colonies and examined components of individual aggressive behavior in workers and haploid sons of workers from the same colony. We describe for the first time, that males, although they have no stinger, do bend their abdomen (abdominal flexion) in a posture similar to stinging behavior of workers in response to electric shock. Individual worker sting response and movement rates in response to shock were significantly correlated with colony scores. In the case of drones, sons of workers from the same colonies, abdominal flexion significantly correlated but their movement rates did not correlate with colony aggressiveness. Furthermore, the number of workers responding at increasing levels of voltage exhibits a threshold-like response, whereas the drones respond in increasing proportion to shock. We conclude that there are common and caste-specific components to aggressive behavior in honey bees. We discuss implications of these results on social and behavioral regulation and genetics of aggressive response. PMID:25729126

  13. Understanding The Role of Mate Selection Processes in Couples' Pair-Bonding Behavior.

    PubMed

    Horwitz, Briana N; Reynolds, Chandra A; Walum, Hasse; Ganiban, Jody; Spotts, Erica L; Reiss, David; Lichtenstein, Paul; Neiderhiser, Jenae M

    2016-01-01

    Couples are similar in their pair-bonding behavior, yet the reasons for this similarity are often unclear. A common explanation is phenotypic assortment, whereby individuals select partners with similar heritable characteristics. Alternatively, social homogamy, whereby individuals passively select partners with similar characteristic due to shared social backgrounds, is rarely considered. We examined whether phenotypic assortment and/or social homogamy can contribute to mate similarity using a twin-partner design. The sample came from the Twin and Offspring Study in Sweden, which included 876 male and female monozygotic and same-sex dizygotic twins plus their married or cohabitating partners. Results showed that variance in pair-bonding behavior was attributable to genetic and nonshared environmental factors. Furthermore, phenotypic assortment accounted for couple similarity in pair-bonding behavior. This suggests that individuals' genetically based characteristics are involved in their selection of mates with similar pair-bonding behavior.

  14. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    PubMed

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Computational Phenotyping in Psychiatry: A Worked Example

    PubMed Central

    2016-01-01

    Abstract Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (pathological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology—structuring therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal) responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data, and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational model but can, in principle, be applied in many domains of computational psychiatry. PMID:27517087

  16. Sexual dimorphism of gonadotropin-releasing hormone type-III (GnRH3) neurons and hormonal sex reversal of male reproductive behavior in Mozambique tilapia.

    PubMed

    Kuramochi, Asami; Tsutiya, Atsuhiro; Kaneko, Toyoji; Ohtani-Kaneko, Ritsuko

    2011-10-01

    In tilapia, hormone treatment during the period of sexual differentiation can alter the phenotype of the gonads, indicating that endocrine factors can cause gonadal sex reversal. However, the endocrine mechanism underlying sex reversal of reproductive behaviors remains unsolved. In the present study, we detected sexual dimorphism of gonadotropin-releasing hormone type III (GnRH3) neurons in Mozambique tilapia Oreochromis mossambicus. Our immunohistochemical observations showed sex differences in the number of GnRH3 immunoreactive neurons in mature tilapia; males had a greater number of GnRH3 neurons in the terminal ganglion than females. Treatment with androgen (11-ketotestosterone (11-KT) or methyltestosterone), but not that with 17β-estradiol, increased the number of GnRH3 neurons in females to a level similar to that in males. Furthermore, male-specific nest-building behavior was induced in 70% of females treated with 11-KT within two weeks after the onset of the treatment. These results indicate androgen-dependent regulation of GnRH3 neurons and nest-building behavior, suggesting that GnRH3 is importantly involved in sex reversal of male-specific reproductive behavior.

  17. Computational Phenotyping in Psychiatry: A Worked Example.

    PubMed

    Schwartenbeck, Philipp; Friston, Karl

    2016-01-01

    Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (pathological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology-structuring therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal) responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data, and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational model but can, in principle, be applied in many domains of computational psychiatry.

  18. Down syndrome: Cognitive and behavioral functioning across the lifespan.

    PubMed

    Grieco, Julie; Pulsifer, Margaret; Seligsohn, Karen; Skotko, Brian; Schwartz, Alison

    2015-06-01

    Individuals with Down syndrome (DS) commonly possess unique neurocognitive and neurobehavioral profiles that emerge within specific developmental periods. These profiles are distinct relative to others with similar intellectual disability (ID) and reflect underlying neuroanatomic findings, providing support for a distinctive phenotypic profile. This review updates what is known about the cognitive and behavioral phenotypes associated with DS across the lifespan. In early childhood, mild deviations from neurotypically developing trajectories emerge. By school-age, delays become pronounced. Nonverbal skills remain on trajectory for mental age, whereas verbal deficits emerge and persist. Nonverbal learning and memory are strengths relative to verbal skills. Expressive language is delayed relative to comprehension. Aspects of language skills continue to develop throughout adolescence, although language skills remain compromised in adulthood. Deficits in attention/executive functions are present in childhood and become more pronounced with age. Characteristic features associated with DS (cheerful, social nature) are personality assets. Children are at a lower risk for psychopathology compared to other children with ID; families report lower levels of stress and a more positive outlook. In youth, externalizing behaviors may be problematic, whereas a shift toward internalizing behaviors emerges with maturity. Changes in emotional/behavioral functioning in adulthood are typically associated with neurodegeneration and individuals with DS are higher risk for dementia of the Alzheimer's type. Individuals with DS possess many unique strengths and weaknesses that should be appreciated as they develop across the lifespan. Awareness of this profile by professionals and caregivers can promote early detection and support cognitive and behavioral development. © 2015 Wiley Periodicals, Inc.

  19. Age of onset and the subclassification of conduct/dissocial disorder

    PubMed Central

    Silberg, Judy; Moore, Ashlee A.; Rutter, Michael

    2015-01-01

    Background Conduct Disorder (CD) is a markedly heterogeneous psychiatric condition. Moffitt (1993) proposed that subclassification of CD should be according to age of onset. Our goals were to compare childhood-onset and adolescent-onset CD in terms of differences in phenotypic risk factors, genetic analyses, and factors associated with the persistence of antisocial behavior into young adulthood. Methods The data are from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and Young Adult Follow-Up (YAFU). Childhood-onset CD was defined as CD beginning at or before age 11. Adolescent-onset CD was defined as having CD onset between ages 14 and 17. These subgroups were compared on ADHD, young adult antisocial behavior (ASB), family dysfunction, and parental depression. Genetic analyses compare childhood-onset and adolescent-onset CD, as well as their cooccurrence with ADHD and ASB. Finally, predictors of persistence were examined. Results Childhood-onset CD was significantly associated with ADHD, ASB, family dysfunction, and parental depression. Adolescent-onset CD was marginally associated with parental depression (p = .05) but not with any of the other risk factors. Univariate genetic models showed that both childhood-onset and adolescent-onset CD involve a large genetic liability accounting for 62% and 65% of the variance, respectively. A common genetic factor (as well as an ADHD-specific factor) accounted for the cooccurence of childhood-onset CD and ADHD. The cooccurrence of childhood-onset CD and ASB are reflected by a common genetic factor with genetic specific effects on ASB. There was no etiological link between adolescent-onset CD and either ADHD or ASB. Both ADHD and family dysfunction were significantly associated with the persistence of antisocial behavior into young adulthood. Conclusions Phenotypic findings differentiated between childhood-onset and adolescent-onset CD. ADHD and family dysfunction predicted persistence of antisocial behavior into young adulthood. PMID:25359313

  20. Age of onset and the subclassification of conduct/dissocial disorder.

    PubMed

    Silberg, Judy; Moore, Ashlee A; Rutter, Michael

    2015-07-01

    Conduct Disorder (CD) is a markedly heterogeneous psychiatric condition. Moffitt (1993) proposed that subclassification of CD should be according to age of onset. Our goals were to compare childhood-onset and adolescent-onset CD in terms of differences in phenotypic risk factors, genetic analyses, and factors associated with the persistence of antisocial behavior into young adulthood. The data are from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and Young Adult Follow-Up (YAFU). Childhood-onset CD was defined as CD beginning at or before age 11. Adolescent-onset CD was defined as having CD onset between ages 14 and 17. These subgroups were compared on ADHD, young adult antisocial behavior (ASB), family dysfunction, and parental depression. Genetic analyses compare childhood-onset and adolescent-onset CD, as well as their cooccurrence with ADHD and ASB. Finally, predictors of persistence were examined. Childhood-onset CD was significantly associated with ADHD, ASB, family dysfunction, and parental depression. Adolescent-onset CD was marginally associated with parental depression (p = .05) but not with any of the other risk factors. Univariate genetic models showed that both childhood-onset and adolescent-onset CD involve a large genetic liability accounting for 62% and 65% of the variance, respectively. A common genetic factor (as well as an ADHD-specific factor) accounted for the cooccurrence of childhood-onset CD and ADHD. The cooccurrence of childhood-onset CD and ASB are reflected by a common genetic factor with genetic specific effects on ASB. There was no etiological link between adolescent-onset CD and either ADHD or ASB. Both ADHD and family dysfunction were significantly associated with the persistence of antisocial behavior into young adulthood. Phenotypic findings differentiated between childhood-onset and adolescent-onset CD. ADHD and family dysfunction predicted persistence of antisocial behavior into young adulthood. © 2014 Association for Child and Adolescent Mental Health.

  1. Fyn-Dependent Gene Networks in Acute Ethanol Sensitivity

    PubMed Central

    Farris, Sean P.; Miles, Michael F.

    2013-01-01

    Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders. PMID:24312422

  2. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses

    PubMed Central

    Pildervasser, João V. N.; Abrahao, Karina P.; Souza-Formigoni, Maria L. O.

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties. PMID:25152719

  3. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses.

    PubMed

    Pildervasser, João V N; Abrahao, Karina P; Souza-Formigoni, Maria L O

    2014-01-01

    Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties.

  4. Brief Report: Impact of Child Problem Behaviors and Parental Broad Autism Phenotype Traits on Substance Use among Parents of Children with ASD

    ERIC Educational Resources Information Center

    Wade, Jordan L.; Cox, Neill Broderick; Reeve, Ronald E.; Hull, Michael

    2014-01-01

    Using data from the Simons Simplex Collection, the present study examined the impact of child externalizing behavior and parental broad autism phenotype traits on substance use among parents of children with autism spectrum disorder (n = 2,388). For both fathers and mothers, child externalizing behaviors predicted tobacco use (OR = 1.01 and OR =…

  5. Forebrain-specific CRF overproduction during development is sufficient to induce enduring anxiety and startle abnormalities in adult mice.

    PubMed

    Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B

    2014-05-01

    Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure.

  6. Aggregates, Crystals, Gels, and Amyloids: Intracellular and Extracellular Phenotypes at the Crossroads of Immunoglobulin Physicochemical Property and Cell Physiology

    PubMed Central

    2013-01-01

    Recombinant immunoglobulins comprise an important class of human therapeutics. Although specific immunoglobulins can be purposefully raised against desired antigen targets by various methods, identifying an immunoglobulin clone that simultaneously possesses potent therapeutic activities and desirable manufacturing-related attributes often turns out to be challenging. The variable domains of individual immunoglobulins primarily define the unique antigen specificities and binding affinities inherent to each clone. The primary sequence of the variable domains also specifies the unique physicochemical properties that modulate various aspects of individual immunoglobulin life cycle, starting from the biosynthetic steps in the endoplasmic reticulum, secretory pathway trafficking, secretion, and the fate in the extracellular space and in the endosome-lysosome system. Because of the diverse repertoire of immunoglobulin physicochemical properties, some immunoglobulin clones' intrinsic properties may manifest as intriguing cellular phenotypes, unusual solution behaviors, and serious pathologic outcomes that are of scientific and clinical importance. To gain renewed insights into identifying manufacturable therapeutic antibodies, this paper catalogs important intracellular and extracellular phenotypes induced by various subsets of immunoglobulin clones occupying different niches of diverse physicochemical repertoire space. Both intrinsic and extrinsic factors that make certain immunoglobulin clones desirable or undesirable for large-scale manufacturing and therapeutic use are summarized. PMID:23533417

  7. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice.

    PubMed

    Ren, Zhen; Sahir, Nadia; Murakami, Shoko; Luellen, Beth A; Earnheart, John C; Lal, Rachnanjali; Kim, Ju Young; Song, Hongjun; Luscher, Bernhard

    2015-01-01

    Mice that were rendered heterozygous for the γ2 subunit of GABAA receptors (γ2(+/-) mice) have been characterized extensively as a model for major depressive disorder. The phenotype of these mice includes behavior indicative of heightened anxiety, despair, and anhedonia, as well as defects in hippocampus-dependent pattern separation, HPA axis hyperactivity and increased responsiveness to antidepressant drugs. The γ2(+/-) model thereby provides strong support for the GABAergic deficit hypothesis of major depressive disorder. Here we show that γ2(+/-) mice additionally exhibit specific defects in late stage survival of adult-born hippocampal granule cells, including reduced complexity of dendritic arbors and impaired maturation of synaptic spines. Moreover, cortical γ2(+/-) neurons cultured in vitro show marked deficits in GABAergic innervation selectively when grown under competitive conditions that may mimic the environment of adult-born hippocampal granule cells. Finally, brain extracts of γ2(+/-) mice show a numerical but insignificant trend (p = 0.06) for transiently reduced expression of brain derived neurotrophic factor (BDNF) at three weeks of age, which might contribute to the previously reported developmental origin of the behavioral phenotype of γ2(+/-) mice. The data indicate increasing congruence of the GABAergic, glutamatergic, stress-based and neurotrophic deficit hypotheses of major depressive disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Extensive morphological divergence and rapid evolution of the larval neuromuscular junction in Drosophila.

    PubMed

    Campbell, Megan; Ganetzky, Barry

    2012-03-13

    Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.

  9. Slo1 regulates ethanol-induced scrunching in freshwater planarians

    NASA Astrophysics Data System (ADS)

    Cochet-Escartin, Olivier; Carter, Jason A.; Chakraverti-Wuerthwein, Milena; Sinha, Joydeb; Collins, Eva-Maria S.

    2016-10-01

    When freshwater planarians are exposed to a low-percentage (0.5%-1%) alcohol solution, they display a characteristic ‘drunken’ phenotype. Here we show that this drunken phenotype is a mixture of cilia-mediated gliding and scrunching, a muscular-based planarian gait which we recently demonstrated to be triggered by adverse environmental stimuli. At exogenous ethanol concentrations ≥2% (v/v), planarians become gradually immobilized and ultimately die. Using RNA interference (RNAi) for targeted gene knockdown, we elucidate the molecular basis for ethanol sensing and show that the big potassium ion channel SLO1 is necessary for ethanol sensitivity in planarians. Because slo1(RNAi) animals maintain their ability to scrunch in response to other adverse triggers, these results suggest that slo1 specifically regulates ethanol sensitivity and not the scrunching gait per se. Furthermore, this study demonstrates the ease of performing pharmacological studies in planarians. Combined with the worms’ amenability to quantitative behavioral assays and targeted gene knockdown, planarians are a valuable model organism for studying the effect of neuroactive compounds on brain function and behavior.

  10. Preference for sucralose predicts behavioral responses to sweet and bittersweet tastants.

    PubMed

    Loney, Gregory C; Torregrossa, Ann-Marie; Carballo, Chris; Eckel, Lisa A

    2012-06-01

    Rats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent "bitter" side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl). Specifically, SA displayed decreased preference for and intakes of saccharin (≥41.5 mM) and sucrose-QHCl (>0.5 mM QHCl) solutions, relative to SP. In a second experiment involving brief-access (30-s) tests, SP and SA did not differ in their unconditioned licking responses across a range of sodium chloride or QHCl solutions (0.03-1 mM). However, the acceptability threshold for sucrose was lower in SA, relative to SP (0.06 and 0.13 M, respectively). Our findings suggest that phenotypic differences in sucralose preference are indicative of a more general difference in the hedonic processing of stimuli containing "bittersweet" or "sweet" taste qualities.

  11. Slk19p of Saccharomyces cerevisiae Regulates Anaphase Spindle Dynamics Through Two Independent Mechanisms

    PubMed Central

    Havens, Kyle A.; Gardner, Melissa K.; Kamieniecki, Rebecca J.; Dresser, Michael E.; Dawson, Dean S.

    2010-01-01

    Slk19p is a member of the Cdc-14 early anaphase release (FEAR) pathway, a signaling network that is responsible for activation of the cell-cycle regulator Cdc14p in Saccharomyces cerevisiae. Disruption of the FEAR pathway results in defects in anaphase, including alterations in the assembly and behavior of the anaphase spindle. Many phenotypes of slk19Δ mutants are consistent with a loss of FEAR signaling, but other phenotypes suggest that Slk19p may have FEAR-independent roles in modulating the behavior of microtubules in anaphase. Here, a series of SLK19 in-frame deletion mutations were used to test whether Slk19p has distinct roles in anaphase that can be ascribed to specific regions of the protein. Separation-of-function alleles were identified that are defective for either FEAR signaling or aspects of anaphase spindle function. The data suggest that in early anaphase one region of Slk19p is essential for FEAR signaling, while later in anaphase another region is critical for maintaining the coordination between spindle elongation and the growth of interpolar microtubules. PMID:20923975

  12. Slo1 regulates ethanol-induced scrunching in freshwater planarians.

    PubMed

    Cochet-Escartin, Olivier; Carter, Jason A; Chakraverti-Wuerthwein, Milena; Sinha, Joydeb; Collins, Eva-Maria S

    2016-09-09

    When freshwater planarians are exposed to a low-percentage (0.5%-1%) alcohol solution, they display a characteristic 'drunken' phenotype. Here we show that this drunken phenotype is a mixture of cilia-mediated gliding and scrunching, a muscular-based planarian gait which we recently demonstrated to be triggered by adverse environmental stimuli. At exogenous ethanol concentrations ≥2% (v/v), planarians become gradually immobilized and ultimately die. Using RNA interference (RNAi) for targeted gene knockdown, we elucidate the molecular basis for ethanol sensing and show that the big potassium ion channel SLO1 is necessary for ethanol sensitivity in planarians. Because slo1(RNAi) animals maintain their ability to scrunch in response to other adverse triggers, these results suggest that slo1 specifically regulates ethanol sensitivity and not the scrunching gait per se. Furthermore, this study demonstrates the ease of performing pharmacological studies in planarians. Combined with the worms' amenability to quantitative behavioral assays and targeted gene knockdown, planarians are a valuable model organism for studying the effect of neuroactive compounds on brain function and behavior.

  13. Reproducibility and replicability of rodent phenotyping in preclinical studies.

    PubMed

    Kafkafi, Neri; Agassi, Joseph; Chesler, Elissa J; Crabbe, John C; Crusio, Wim E; Eilam, David; Gerlai, Robert; Golani, Ilan; Gomez-Marin, Alex; Heller, Ruth; Iraqi, Fuad; Jaljuli, Iman; Karp, Natasha A; Morgan, Hugh; Nicholson, George; Pfaff, Donald W; Richter, S Helene; Stark, Philip B; Stiedl, Oliver; Stodden, Victoria; Tarantino, Lisa M; Tucci, Valter; Valdar, William; Williams, Robert W; Würbel, Hanno; Benjamini, Yoav

    2018-04-01

    The scientific community is increasingly concerned with the proportion of published "discoveries" that are not replicated in subsequent studies. The field of rodent behavioral phenotyping was one of the first to raise this concern, and to relate it to other methodological issues: the complex interaction between genotype and environment; the definitions of behavioral constructs; and the use of laboratory mice and rats as model species for investigating human health and disease mechanisms. In January 2015, researchers from various disciplines gathered at Tel Aviv University to discuss these issues. The general consensus was that the issue is prevalent and of concern, and should be addressed at the statistical, methodological and policy levels, but is not so severe as to call into question the validity and the usefulness of model organisms as a whole. Well-organized community efforts, coupled with improved data and metadata sharing, have a key role in identifying specific problems and promoting effective solutions. Replicability is closely related to validity, may affect generalizability and translation of findings, and has important ethical implications. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Spear, Linda P.

    2016-01-01

    Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a “reward-centric” phenotype—an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a “reward deficiency” syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater “pleasure” from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse. PMID:27524639

  15. Developmental programming modulates olfactory behavior in C. elegans via endogenous RNAi pathways

    PubMed Central

    Sims, Jennie R; Ow, Maria C; Nishiguchi, Mailyn A; Kim, Kyuhyung; Sengupta, Piali; Hall, Sarah E

    2016-01-01

    Environmental stress during early development can impact adult phenotypes via programmed changes in gene expression. C. elegans larvae respond to environmental stress by entering the stress-resistant dauer diapause pathway and resume development once conditions improve (postdauers). Here we show that the osm-9 TRPV channel gene is a target of developmental programming and is down-regulated specifically in the ADL chemosensory neurons of postdauer adults, resulting in a corresponding altered olfactory behavior that is mediated by ADL in an OSM-9-dependent manner. We identify a cis-acting motif bound by the DAF-3 SMAD and ZFP-1 (AF10) proteins that is necessary for the differential regulation of osm-9, and demonstrate that both chromatin remodeling and endo-siRNA pathways are major contributors to the transcriptional silencing of the osm-9 locus. This work describes an elegant mechanism by which developmental experience influences adult phenotypes by establishing and maintaining transcriptional changes via RNAi and chromatin remodeling pathways. DOI: http://dx.doi.org/10.7554/eLife.11642.001 PMID:27351255

  16. A Federated Network for Translational Cancer Research Using Clinical Data and Biospecimens

    PubMed Central

    Becich, Michael J.; Bollag, Roni J.; Chavan, Girish; Corrigan, Julia; Dhir, Rajiv; Feldman, Michael D.; Gaudioso, Carmelo; Legowski, Elizabeth; Maihle, Nita J.; Mitchell, Kevin; Murphy, Monica; Sakthivel, Mayur; Tseytlin, Eugene; Weaver, JoEllen

    2015-01-01

    Advances in cancer research and personalized medicine will require significant new bridging infrastructures, including more robust biorepositories that link human tissue to clinical phenotypes and outcomes. In order to meet that challenge, four cancer centers formed the TIES Cancer Research Network, a federated network that facilitates data and biospecimen sharing among member institutions. Member sites can access pathology data that is de-identified and processed with the TIES natural language processing system, which creates a repository of rich phenotype data linked to clinical biospecimens. TIES incorporates multiple security and privacy best practices that, combined with legal agreements, network policies and procedures, enable regulatory compliance. The TIES Cancer Research Network now provides integrated access to investigators at all member institutions, where multiple investigator-driven pilot projects are underway. Examples of federated search across the network illustrate the potential impact on translational research, particularly for studies involving rare cancers, rare phenotypes, and specific biologic behaviors. The network satisfies several key desiderata including local control of data and credentialing, inclusion of rich phenotype information, and applicability to diverse research objectives. The TIES Cancer Research Network presents a model for a national data and biospecimen network. PMID:26670560

  17. Pro-social 50-kHz ultrasonic communication in rats: post-weaning but not post-adolescent social isolation leads to social impairments—phenotypic rescue by re-socialization

    PubMed Central

    Seffer, Dominik; Rippberger, Henrike; Schwarting, Rainer K. W.; Wöhr, Markus

    2015-01-01

    Rats are highly social animals and social play during adolescence has an important role for social development, hence post-weaning social isolation is widely used to study the adverse effects of juvenile social deprivation and to induce behavioral phenotypes relevant to neuropsychiatric disorders, like schizophrenia. Communication is an important component of the rat's social behavior repertoire, with ultrasonic vocalizations (USV) serving as situation-dependent affective signals. High-frequency 50-kHz USV occur in appetitive situations and induce approach behavior, supporting the notion that they serve as social contact calls; however, post-weaning isolation effects on the behavioral changes displayed by the receiver in response to USV have yet to be studied. We therefore investigated the impact of post-weaning isolation on socio-affective information processing as assessed by means of our established 50-kHz USV radial maze playback paradigm. We showed that post-weaning social isolation specifically affected the behavioral response to playback of pro-social 50-kHz but not alarm 22-kHz USV. While group-housed rats showed the expected preference, i.e., approach, toward 50-kHz USV, the response was even stronger in short-term isolated rats (i.e., 1 day), possibly due to a higher level of social motivation. In contrast, no approach was observed in long-term isolated rats (i.e., 4 weeks). Importantly, deficits in approach were reversed by peer-mediated re-socialization and could not be observed after post-adolescent social isolation, indicating a critical period for social development during adolescence. Together, these results highlight the importance of social experience for affiliative behavior, suggesting a critical involvement of play behavior on socio-affective information processing in rats. PMID:25983681

  18. Extinction of an instrumental response: a cognitive behavioral assay in Fmr1 knockout mice.

    PubMed

    Sidorov, M S; Krueger, D D; Taylor, M; Gisin, E; Osterweil, E K; Bear, M F

    2014-06-01

    Fragile X (FX) is the most common genetic cause of intellectual disability and autism. Previous studies have shown that partial inhibition of metabotropic glutamate receptor signaling is sufficient to correct behavioral phenotypes in a mouse model of FX, including audiogenic seizures, open-field hyperactivity and social behavior. These phenotypes model well the epilepsy (15%), hyperactivity (20%) and autism (30%) that are comorbid with FX in human patients. Identifying reliable and robust mouse phenotypes to model cognitive impairments is critical considering the 90% comorbidity of FX and intellectual disability. Recent work characterized a five-choice visuospatial discrimination assay testing cognitive flexibility, in which FX model mice show impairments associated with decreases in synaptic proteins in prefrontal cortex (PFC). In this study, we sought to determine whether instrumental extinction, another process requiring PFC, is altered in FX model mice, and whether downregulation of metabotropic glutamate receptor signaling pathways is sufficient to correct both visuospatial discrimination and extinction phenotypes. We report that instrumental extinction is consistently exaggerated in FX model mice. However, neither the extinction phenotype nor the visuospatial discrimination phenotype is corrected by approaches targeting metabotropic glutamate receptor signaling. This work describes a novel behavioral extinction assay to model impaired cognition in mouse models of neurodevelopmental disorders, provides evidence that extinction is exaggerated in the FX mouse model and suggests possible limitations of metabotropic glutamate receptor-based pharmacotherapy. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Change in the Behavioral Phenotype of Adolescents and Adults with FXS: Role of the Family Environment.

    PubMed

    Smith, Leann E; Hong, Jinkuk; Greenberg, Jan S; Mailick, Marsha R

    2016-05-01

    The present study examined trajectories of adaptive behavior, behavior problems, psychological symptoms, and autism symptoms in adolescents and adults with fragile X syndrome (n = 147) over a three-year period. Adaptive behavior significantly increased over time, particularly for adolescents, and the severity of behavior problems decreased over time. Family environmental factors predicted phenotypic variables net of gender, intellectual disability status, and medication use. Maternal warmth was associated with higher levels of adaptive behavior, lower levels of autism symptoms, and decreases in behavior problems over time. Maternal depressive symptoms and criticism were associated with higher levels of psychological symptoms. Implications for interventions are discussed.

  20. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice

    PubMed Central

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A.; Hays, Seth A.; Paylor, Richard; Worley, Paul F.; Szumlinski, Karen K.

    2016-01-01

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5R/R) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5R/R mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders. PMID:26888925

  1. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice.

    PubMed

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A; Hays, Seth A; Paylor, Richard; Worley, Paul F; Szumlinski, Karen K; Huber, Kimberly M

    2016-02-17

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders. Copyright © 2016 the authors 0270-6474/16/362131-17$15.00/0.

  2. Reversible switching between epigenetic states in honeybee behavioral subcastes

    PubMed Central

    Herb, Brian R.; Wolschin, Florian; Hansen, Kasper D.; Aryee, Martin J.; Langmead, Ben; Irizarry, Rafael; Amdam, Gro V.; Feinberg, Andrew P.

    2012-01-01

    In honeybee societies, distinct caste phenotypes are created from the same genotype, suggesting a role for epigenetics in deriving these behaviorally different phenotypes. We found no differences in DNA methylation between irreversible worker/queen castes, but substantial differences between nurses and forager subcastes. Reverting foragers back to nurses reestablished methylation levels for a majority of genes and provided the first evidence in any organism of reversible epigenetic changes associated with behavior. PMID:22983211

  3. Is Sensory Over-Responsivity Distinguishable from Childhood Behavior Problems? A Phenotypic and Genetic Analysis

    ERIC Educational Resources Information Center

    Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill

    2012-01-01

    Background: Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior-genetic…

  4. Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine

    PubMed Central

    Bridge, Eli S.; Ross, Jeremy D.; Shipley, J. Ryan; Kelly, Jeffrey F.

    2018-01-01

    Complex behavioral traits, such as those making up a migratory phenotype, are regulated by multiple environmental factors and multiple genes. We investigated possible relationships between microsatellite variation at two candidate genes implicated in the control of migratory behavior, Clock and Adcyap1, and several aspects of migratory life-history and evolutionary divergence in the Painted Bunting (Passerina ciris), a species that shows wide variation in migratory and molting strategies across a disjunct distribution. We focused on Clock and Adcyap1 microsatellite variation across three Painted Bunting populations in Oklahoma, Louisiana, and North Carolina, and for the Oklahoma breeding population we used published migration tracking data on adult males to explore phenotypic variation in individual migratory behavior. We found no correlation between microsatellite allele size within either Clock and Adcyap1 relative to the initiation or duration of fall migration in adult males breeding in Oklahoma. We also show the lack of significant correlations with aspects of the migratory phenotype for the Louisiana population. Our research highlights the limitations of studying microsatellite allelic mutations that are of undetermined functional influence relative to complex behavioral phenotypes. PMID:29324772

  5. Breast Cancer Methylomes Establish an Epigenomic Foundation for Metastasis

    PubMed Central

    Fang, Fang; Turcan, Sevin; Rimner, Andreas; Kaufman, Andrew; Giri, Dilip; Morris, Luc G. T.; Shen, Ronglai; Seshan, Venkatraman; Mo, Qianxing; Heguy, Adriana; Baylin, Stephen B.; Ahuja, Nita; Viale, Agnes; Massague, Joan; Norton, Larry; Vahdat, Linda T.; Moynahan, Mary Ellen; Chan, Timothy A.

    2011-01-01

    Cancer-specific alterations in DNA methylation are hallmarks of human malignancies; however, the nature of the breast cancer epigenome and its effects on metastatic behavior remain obscure. To address this issue, we used genome-wide analysis to characterize the methylomes of breast cancers with diverse metastatic behavior. Groups of breast tumors were characterized by the presence or absence of coordinate hypermethylation at a large number of genes, demonstrating a breast CpG island methylator phenotype (B-CIMP). The B-CIMP provided a distinct epigenomic profile and was a strong determinant of metastatic potential. Specifically, the presence of the B-CIMP in tumors was associated with low metastatic risk and survival, and the absence of the B-CIMP was associated with high metastatic risk and death. B-CIMP loci were highly enriched for genes that make up the metastasis transcriptome. Methylation at B-CIMP genes accounted for much of the transcriptomal diversity between breast cancers of varying prognosis, indicating a fundamental epigenomic contribution to metastasis. Comparison of the loci affected by the B-CIMP with those affected by the hypermethylator phenotype in glioma and colon cancer revealed that the CIMP signature was shared by multiple human malignancies. Our data provide a unifying epigenomic framework linking breast cancers with varying outcome and transcriptomic changes underlying metastasis. These findings significantly enhance our understanding of breast cancer oncogenesis and aid the development of new prognostic biomarkers for this common malignancy. PMID:21430268

  6. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial genetic networks that would implement a more general theoretical model of phenotypic switching. We will use a new cloning strategy in order to systematically assemble a large number of genetic features, such as site-specific recombination components from the R64 plasmid, which invert several coexisting DNA segments. The inversion of these segments would lead to discrete phenotypic transitions inside a living cell. These artificial phenotypic switches can be controlled precisely in experiments and may serve as a benchmark for their natural counterparts.

  7. Insight from animal models of environmentally-driven epigenetic changes in the developing and adult brain

    PubMed Central

    Doherty, Tiffany S.; Roth, Tania L.

    2017-01-01

    The efforts of many neuroscientists are directed toward understanding the appreciable plasticity of the brain and behavior. In recent years, epigenetics has become a core of this focus as a prime mechanistic candidate for behavioral modifications. Animal models have been instrumental in advancing our understanding of environmentally-driven changes to the epigenome in the developing and adult brain. This review focuses mainly on such discoveries driven by adverse environments along with their associated behavioral outcomes. While much of the evidence discussed focuses on epigenetics within the central nervous system, several peripheral studies in humans who have experienced significant adversity are also highlighted. As we continue to unravel the link between epigenetics and phenotype, discerning the complexity and specificity of epigenetic changes induced by environments is an important step toward understanding optimal development and how to prevent or ameliorate behavioral deficits bred by disruptive environments. PMID:27687803

  8. Intellectual Profiles in KBG-Syndrome: A Wechsler Based Case-Control Study

    PubMed Central

    van Dongen, Linde C. M.; Wingbermühle, Ellen; Oomens, Wouter; Bos-Roubos, Anja G.; Ockeloen, Charlotte W.; Kleefstra, Tjitske; Egger, Jos I. M.

    2017-01-01

    KBG syndrome is a neurodevelopmental disorder (NDD) caused by loss-of-function of the ANKRD11 gene. The core phenotype comprises developmental delay (DD)/ intellectual disability (ID) and several specific facial dysmorphisms. In addition, both ADHD- and ASD-related symptoms have been mentioned. For the correct understanding of these developmental and behavioral characteristics however, it is of great importance to apply objective measures, which seldom has been done in patients with KBG syndrome. In this study, intelligence profiles of patients with KBG syndrome (n = 18) were compared with a control group comprising patients with NDD caused by various other genetic defects (n = 17), by means of the Wechsler scales. These scales were also used to measure speed of information processing, working memory, verbal comprehension and perceptual reasoning. No significant differences were found in the global level of intelligence of patients with KBG syndrome as compared to the patient genetic control group. The same was true for Wechsler subtest results. Hence, behavioral problems associated with KBG syndrome cannot directly be related to or explained by a specific intelligence profile. Instead, specific assessment of neurocognitive functions should be performed to clarify the putative behavioral problems as observed in this syndrome. PMID:29311865

  9. Concordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouse

    PubMed Central

    Liberman, Shayna A; Mashoodh, Rahia; Thompson, Robert C; Dolinoy, Dana C; Champagne, Frances A

    2012-01-01

    Recent advances in genomic technologies now enable a reunion of molecular and evolutionary biology. Researchers investigating naturally living animal populations are thus increasingly able to capitalize upon genomic technologies to connect molecular findings with multiple levels of biological organization. Using this vertical approach in the laboratory, epigenetic gene regulation has emerged as an important mechanism integrating genotype and phenotype. To connect phenotype to population fitness, however, this same vertical approach must now be applied to naturally living populations. A major obstacle to studying epigenetics in noninvasive samples is tissue specificity of epigenetic marks. Here, using the mouse as a proof-of-principle model, we present the first known attempt to validate an epigenetic assay for use in noninvasive samples. Specifically, we compare DNA methylation of the NGFI-A (nerve growth factor-inducible protein A) binding site in the promoter of the glucocorticoid receptor (Nr3c1) gene between central (hippocampal) and peripheral noninvasive (fecal) tissues in juvenile Balb/c mice that had received varying levels of postnatal maternal care. Our results indicate that while hippocampal DNA methylation profiles correspond to maternal behavior, fecal DNA methylation levels do not. Moreover, concordance in methylation levels between these tissues within individuals only emerges after accounting for the effects of postnatal maternal care. Thus, although these findings may be specific to the Nr3c1 gene, we urge caution when interpreting DNA methylation patterns from noninvasive tissues, and offer suggestions for further research in this field. PMID:23301177

  10. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism

    PubMed Central

    Eagleson, Kathie L.; Xie, Zhihui; Levitt, Pat

    2016-01-01

    People with autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy - the influence of one gene on distinct phenotypes - raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multi-functional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain, and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with ASD, reduces transcription and disrupts socially-relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways, and has a complex protein interactome that is enriched in ASD and other NDD candidates. The interactome is co-regulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, impacting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. PMID:27837921

  11. Self responses along cingulate cortex reveal quantitative neural phenotype for high functioning autism

    PubMed Central

    Chiu, Pearl H.; Kayali, M. Amin; Kishida, Kenneth T.; Tomlin, Damon; Klinger, Laura G.; Klinger, Mark R.; Montague, P. Read

    2014-01-01

    Summary Attributing behavioral outcomes correctly to oneself or to other agents is essential for all productive social exchange. We approach this issue in high-functioning males with autism spectrum disorder (ASD) using two separate fMRI paradigms. First, using a visual imagery task, we extract a basis set for responses along the cingulate cortex of control subjects that reveals an agent-specific eigenvector (self eigenmode) associated with imagining oneself executing a specific motor act. Second, we show that the same self eigenmode arises during one's own decision (the self phase) in an interpersonal exchange game (iterated trust game). Third, using this exchange game, we show that ASD males exhibit a severely diminished self eigenmode when playing the game with a human partner. This diminished response covaries parametrically with their behaviorally assessed symptom severity suggesting its value as an objective endophenotype. These findings may provide a quantitative assessment tool for high functioning ASD. PMID:18255038

  12. General and substance-specific predictors of young adult nicotine dependence, alcohol use disorder, and problem behavior: replication in two samples.

    PubMed

    Bailey, J A; Samek, D R; Keyes, M A; Hill, K G; Hicks, B M; McGue, M; Iacono, W G; Epstein, M; Catalano, R F; Haggerty, K P; Hawkins, J D

    2014-05-01

    This paper presents two replications of a heuristic model for measuring environment in studies of gene-environment interplay in the etiology of young adult problem behaviors. Data were drawn from two longitudinal, U.S. studies of the etiology of substance use and related behaviors: the Raising Healthy Children study (RHC; N=1040, 47% female) and the Minnesota Twin Family Study (MTFS; N=1512, 50% female). RHC included a Pacific Northwest, school-based, community sample. MTFS included twins identified from state birth records in Minnesota. Both studies included commensurate measures of general family environment and family substance-specific environments in adolescence (RHC ages 10-18; MTFS age 18), as well as young adult nicotine dependence, alcohol and illicit drug use disorders, HIV sexual risk behavior, and antisocial behavior (RHC ages 24, 25; MTFS age 25). Results from the two samples were highly consistent and largely supported the heuristic model proposed by Bailey et al. (2011). Adolescent general family environment, family smoking environment, and family drinking environment predicted shared variance in problem behaviors in young adulthood. Family smoking environment predicted unique variance in young adult nicotine dependence. Family drinking environment did not appear to predict unique variance in young adult alcohol use disorder. Organizing environmental predictors and outcomes into general and substance-specific measures provides a useful way forward in modeling complex environments and phenotypes. Results suggest that programs aimed at preventing young adult problem behaviors should target general family environment and family smoking and drinking environments in adolescence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Development, maternal effects, and behavioral plasticity.

    PubMed

    Mateo, Jill M

    2014-11-01

    Behavioral, hormonal, and genetic processes interact reciprocally, and differentially affect behavior depending on ecological and social contexts. When individual differences are favored either between or within environments, developmental plasticity would be expected. Parental effects provide a rich source for phenotypic plasticity, including anatomical, physiological, and behavioral traits, because parents respond to dynamic cues in their environment and can, in turn, influence offspring accordingly. Because these inter-generational changes are plastic, parents can respond rapidly to changing environments and produce offspring whose phenotypes are well suited for current conditions more quickly than occurs with changes based on evolution through natural selection. I review studies on developmental plasticity and resulting phenotypes in Belding's ground squirrels (Urocitellus beldingi), an ideal species, given the competing demands to avoid predation while gaining sufficient weight to survive an upcoming hibernation, and the need for young to learn their survival behaviors. I will show how local environments and perceived risk of predation influence not only foraging, vigilance, and anti-predator behaviors, but also adrenal functioning, which may be especially important for obligate hibernators that face competing demands on the storage and mobilization of glucose. Mammalian behavioral development is sensitive to the social and physical environments provided by mothers during gestation and lactation. Therefore, maternal effects on offspring's phenotypes, both positive and negative, can be particularly strong. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Often Asked but Rarely Answered: Can Asians Meet DSM-5/ICD-10 Autism Spectrum Disorder Criteria?

    PubMed Central

    Kim, So Hyun; Koh, Yun-Joo; Lim, Eun-Chung; Kim, Soo-Jeong; Leventhal, Bennett L.

    2016-01-01

    Abstract Objectives: To evaluate whether Asian (Korean children) populations can be validly diagnosed with autism spectrum disorder (ASD) using Western-based diagnostic instruments and criteria based on Diagnostic and Statistical Manual on Mental Disorders, 5th edition (DSM-5). Methods: Participants included an epidemiologically ascertained 7–14-year-old (N = 292) South Korean cohort from a larger prevalence study (N = 55,266). Main outcomes were based on Western-based diagnostic methods for Korean children using gold standard instruments, Autism Diagnostic Interview-Revised, and Autism Diagnostic Observation Schedule. Factor analysis and ANOVAs were performed to examine factor structure of autism symptoms and identify phenotypic differences between Korean children with ASD and non-ASD diagnoses. Results: Using Western-based diagnostic methods, Korean children with ASD were successfully identified with moderate-to-high diagnostic validity (sensitivities/specificities ranging 64%–93%), strong internal consistency, and convergent/concurrent validity. The patterns of autism phenotypes in a Korean population were similar to those observed in a Western population with two symptom domains (social communication and restricted and repetitive behavior factors). Statistically significant differences in the use of socially acceptable communicative behaviors (e.g., direct gaze, range of facial expressions) emerged between ASD versus non-ASD cases (mostly p < 0.001), ensuring that these can be a similarly valid part of the ASD phenotype in both Asian and Western populations. Conclusions: Despite myths, biases, and stereotypes about Asian social behavior, Asians (at least Korean children) typically use elements of reciprocal social interactions similar to those in the West. Therefore, standardized diagnostic methods widely used for ASD in Western culture can be validly used as part of the assessment process and research with Koreans and, possibly, other Asians. PMID:27315155

  15. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    PubMed

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Phenotypic integration in an extended phenotype: among-individual variation in nest-building traits of the alfalfa leafcutting bee (Megachile rotundata)

    USDA-ARS?s Scientific Manuscript database

    Structures such as nests and burrows are an essential component of many organisms’ life-cycle and requires a complex sequence of behaviors. Because behaviors can vary consistently among individuals and be correlated with one another, we hypothesized that these structures would 1) show evidence of am...

  17. Adapting Phonological Awareness Interventions for Children with Down Syndrome Based on the Behavioral Phenotype: A Promising Approach?

    ERIC Educational Resources Information Center

    Lemons, Christopher J.; King, Seth A.; Davidson, Kimberly A.; Puranik, Cynthia S.; Fulmer, Deborah; Mrachko, Alicia A.; Partanen, Jane; Al Otaiba, Stephanie; Fidler, Deborah J.

    2015-01-01

    Many children with Down syndrome demonstrate deficits in phonological awareness, a prerequisite to learning to read in an alphabetic language. The purpose of this study was to determine whether adapting a commercially available phonological awareness program to better align with characteristics associated with the behavioral phenotype of Down…

  18. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models

    PubMed Central

    Maulik, Malabika; Mitra, Swarup; Bult-Ito, Abel; Taylor, Barbara E.; Vayndorf, Elena M.

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans. PMID:28659967

  19. Accounting for the Down syndrome advantage?

    PubMed

    Esbensen, Anna J; Seltzer, Marsha Mailick

    2011-01-01

    The authors examined factors that could explain the higher levels of psychosocial well being observed in past research in mothers of individuals with Down syndrome compared with mothers of individuals with other types of intellectual disabilities. The authors studied 155 mothers of adults with Down syndrome, contrasting factors that might validly account for the ?Down syndrome advantage? (behavioral phenotype) with those that have been portrayed in past research as artifactual (maternal age, social supports). The behavioral phenotype predicted less pessimism, more life satisfaction, and a better quality of the mother?child relationship. However, younger maternal age and fewer social supports, as well as the behavioral phenotype, predicted higher levels of caregiving burden. Implications for future research on families of individuals with Down syndrome are discussed.

  20. Dissociation between sensitization and learning-related neuromodulation in an aplysiid species.

    PubMed

    Erixon, N J; Demartini, L J; Wright, W G

    1999-06-14

    Previous phylogenetic analyses of learning and memory in an opisthobranch lineage uncovered a correlation between two learning-related neuromodulatory traits and their associated behavioral phenotypes. In particular, serotonin-induced increases in sensory neuron spike duration and excitability, which are thought to underlie several facilitatory forms of learning in Aplysia, appear to have been lost over the course of evolution in a distantly related aplysiid, Dolabrifera dolabrifera. This deficit is paralleled by a behavioral deficit: individuals of Dolabrifera do not express generalized sensitization (reflex enhancement of an unhabituated response after a noxious stimulus is applied outside of the reflex receptive field) or dishabituation (reflex enhancement of a habituated reflex). The goal of the present study was to confirm and extend this correlation by testing for the neuromodulatory traits and generalized sensitization in an additional species, Phyllaplysia taylori, which is closely related to Dolabrifera. Instead, our results indicated a lack of correlation between the neuromodulatory and behavioral phenotypes. In particular, sensory neuron homologues in Phyllaplysia showed the ancestral neuromodulatory phenotype typified by Aplysia. Bath-applied 10 microM serotonin significantly increased homologue spike duration and excitability. However, when trained with the identical apparatus and protocols that produced generalized sensitization in Aplysia, individuals of Phyllaplysia showed no evidence of sensitization. Thus, this species expresses the neuromodulatory phenotype of its ancestors while appearing to express the behavioral phenotype of its near relative. These results suggests that generalized sensitization can be lost during the course of evolution in the absence of a deficit in these two neuromodulatory traits, and raises the possibility that the two traits may support some other form of behavioral plasticity in Phyllaplysia. The results also raise the question of the mechanistic basis of the behavioral deficit in Phyllaplysia.

  1. Deletion 2q37 syndrome: Cognitive-behavioral trajectories and autistic features related to breakpoint and deletion size.

    PubMed

    Fisch, Gene S; Falk, Rena E; Carey, John C; Imitola, Jaime; Sederberg, Maria; Caravalho, Karen S; South, Sarah

    2016-09-01

    Subtelomeric deletions have been reported in ∼2.5% of individuals with developmental disabilities. Subtelomeric deletion 2q37 has been detected in many individuals diagnosed with intellectual disabilities (ID) and autism spectrum disorders (ASD). Previously, genotype-phenotype correspondences were examined for their relationship to breakpoints 37.1, 37.2, or 37.3. Our purpose was to ascertain whether there were phenotypic differences at these breakpoints, elucidate the cognitive-behavioral phenotype in del2q37, and examine the genotype-phenotype association in the deletion with respect to cognitive-behavioral profiles and ASD. We administered a comprehensive cognitive-behavioral battery to nine children diagnosed with del 2q37, ages 3.9-17.75 years. ID for five tested with the Stanford-Binet (4th Edition) (SBFE) ranged from severe to mild [IQ Range: 36-59]. Adaptive behavior scores from the Vineland Adaptive Behavior Scale (VABS) were much below adequate levels (DQ Range: floor value ["19"] to 55). Autism scores from the Child Autism Rating Scale (CARS) ranged from 22 [non-autistic] to 56 [extremely autistic]; 5/8 [63%] children received scores on the autism spectrum. Participants with the largest deletions, 10.1 and 9.5 Mb, attained the highest IQ and DQ scores while those with the smallest deletions, 7.9 and 6.6 Mb, made the lowest IQ and DQ scores. No association between deletion breakpoint and phenotype were found. Assessment of the various deleted regions suggested histone deacetylase 4 gene (HDAC4) was a likely candidate gene for ASD in our sample. However, two earlier reports found no association between HDAC4 haploinsufficiency and ASD. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Pharmacotherapy for childhood obesity: present and future prospects

    PubMed Central

    Sherafat-Kazemzadeh, Roya; Yanovski, Susan Z.; Yanovski, Jack A.

    2012-01-01

    Pediatric obesity is a serious medical condition associated with significant comorbidities during childhood and adulthood. Lifestyle modifications are essential for treating children with obesity, yet many have insufficient response to improve health with behavioral approaches alone. This review summarizes the relatively sparse data on pharmacotherapy for pediatric obesity and presents information on obesity medications in development. Most previously studied medications demonstrated, at best, modest effects on body weight and obesity-related conditions. It is to be hoped that the future will bring new drugs targeting specific obesity phenotypes that will allow clinicians to use etiology-specific, and therefore more effective, anti-obesity therapies. PMID:22929210

  3. Trans-generational Effects of Early Life Stress: The Role of Maternal Behavior

    PubMed Central

    Schmauss, Claudia; Lee-McDermott, Zoe; Medina, Liorimar Ramos

    2014-01-01

    Using a rodent paradigm of early life stress, infant maternal separation (IMS), we examined whether IMS-triggered behavioral and epigenetic phenotypes of the stress-susceptible mouse strain Balb/c are propagated across generations. These phenotypes include impaired emotional behavior and deficits in executive cognitive functions in adulthood, and they are associated with increased acetylation of histone H4K12 protein (acH4K12) in the forebrain neocortex. These behavioral and epigenetic phenotypes are transmitted to the first progeny of IMS Balb/c mothers, but not fathers, and cross-fostering experiments revealed that this transmission is triggered by maternal behavior and modulated by the genetic background of the pups. In the continued absence of the original stressor, this transmission fades in later progenies. An adolescent treatment that lowers the levels of acH4K12 in IMS Balb/c mice augments their emotional abnormality but abolishes their cognitive deficits. Conversely, a treatment that further elevates the levels of acH4K12 improved the emotional phenotype but had no effects on the cognitive deficits. Moreover, treatments that prevent the emergence of either emotional or cognitive deficits in the mother also prevent the establishment of such deficits in her offspring, indicating that trans-generational effects of early life stress can be prevented. PMID:24786242

  4. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae).

    PubMed

    Cirino, Lauren A; Miller, Christine W

    2017-01-17

    Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae) spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata . This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak) over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon) decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this study is far from comprehensive, it provides tantalizing patterns that suggest many directions for future research.

  5. The evolution of courtship behaviors through the origination of a new gene in Drosophila

    PubMed Central

    Dai, Hongzheng; Chen, Ying; Chen, Sidi; Mao, Qiyan; Kennedy, David; Landback, Patrick; Eyre-Walker, Adam; Du, Wei; Long, Manyuan

    2008-01-01

    New genes can originate by the combination of sequences from unrelated genes or their duplicates to form a chimeric structure. These chimeric genes often evolve rapidly, suggesting that they undergo adaptive evolution and may therefore be involved in novel phenotypes. Their functions, however, are rarely known. Here, we describe the phenotypic effects of a chimeric gene, sphinx, that has recently evolved in Drosophila melanogaster. We show that a knockout of this gene leads to increased male–male courtship in D. melanogaster, although it leaves other aspects of mating behavior unchanged. Comparative studies of courtship behavior in other closely related Drosophila species suggest that this mutant phenotype of male–male courtship is the ancestral condition because these related species show much higher levels of male–male courtship than D. melanogaster. D. melanogaster therefore seems to have evolved in its courtship behaviors by the recruitment of a new chimeric gene. PMID:18508971

  6. Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory.

    PubMed

    Eacret, Darrell; Grafe, Laura A; Dobkin, Jane; Gotter, Anthony L; Rengerb, John J; Winrow, Christopher J; Bhatnagar, Seema

    2018-06-11

    Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors. Specifically, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to stimulate orexins prior to each of five consecutive days of social defeat stress in adult male rats. Additionally, we determined the role of the orexin 2 receptor in these behaviors by using a selective orexin 2 receptor antagonist (MK-1064) administered prior to each social defeat. Following the 5 day social defeat conditioning period, rats were evaluated in social interaction and novel object recognition paradigms to assess anxiety-like behavior and recognition memory, respectively. Activation of orexin neurons by DREADDs prior to each social defeat decreased the average latency to become defeated across 5 days, indicative of a passive coping strategy that we have previously linked to a stress vulnerable phenotype. Moreover, stimulation of orexin signaling during defeat conditioning decreased subsequent social interaction and performance in the novel object recognition test indicating increased subsequent anxiety-like behavior and reduced working memory. Blocking the orexin 2 receptor during repeated defeat did not alter these effects. Together, our results suggest that orexin neuron activation produces a passive coping phenotype during social defeat leading to subsequent anxiety-like behaviors and memory deficits. Copyright © 2018. Published by Elsevier B.V.

  7. [Genotype/phenotype correlation in autism: genetic models and phenotypic characterization].

    PubMed

    Bonnet-Brilhault, F

    2011-02-01

    Autism spectrum disorders are a class of conditions categorized by communication problems, ritualistic behaviors, and deficits in social behaviors. This class of disorders merges a heterogeneous group of neurodevelopmental disorders regarding some phenotypic and probably physiopathological aspects. Genetic basis is well admitted, however, considering phenotypic and genotypic heterogeneity, correspondences between genotype and phenotype have yet to be established. To better identify such correspondences, genetic models have to be identified and phenotypic markers have to be characterized. Recent insights show that a variety of genetic mechanisms may be involved in autism spectrum disorders, i.e. single gene disorders, copy number variations and polygenic mechanisms. These current genetic models are described. Regarding clinical aspects, several approaches can be used in genetic studies. Nosographical approach, especially with the concept of autism spectrum disorders, merges a large group of disorders with clinical heterogeneity and may fail to identify clear genotype/phenotype correlations. Dimensional approach referred in genetic studies to the notion of "Broad Autism Phenotype" related to a constellation of language, personality, and social-behavioral features present in relatives that mirror the symptom domains of autism, but are much milder in expression. Studies of this broad autism phenotype may provide a potentially important complementary approach for detecting the genes involved in these domains. However, control population used in those studies need to be well characterized too. Identification of endophenotypes seems to offer more promising results. Endophenotypes, which are supposed to be more proximal markers of gene action in the same biological pathway, linking genes and complex clinical symptoms, are thought to be less genetically complex than the broader disease phenotype, indexing a limited aspect of genetic risk for the disorder as a whole. However, strategies useful to characterize such phenotypic markers (for example, electrophysiological markers) have to take into account that autism is an early neurodevelopmental disorder occurring during childhood when brain development and maturation are in process. Recent genetic results have improved our knowledge in genetic basis in autism. Nevertheless, correspondences with phenotypic markers remain challenging according to phenotypic and genotypic heterogeneity. Copyright © 2010 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  8. Stem cell media culture of melanoma results in the induction of a nonrepresentative neural expression profile.

    PubMed

    Anaka, Matthew; Freyer, Claudia; Gedye, Craig; Caballero, Otavia; Davis, Ian D; Behren, Andreas; Cebon, Jonathan

    2012-02-01

    The ability of cell lines to accurately represent cancer is a major concern in preclinical research. Culture of glioma cells as neurospheres in stem cell media (SCM) has been shown to better represent the genotype and phenotype of primary glioblastoma in comparison to serum cell lines. Despite the use of neurosphere-like models of many malignancies, there has been no robust analysis of whether other cancers benefit from a more representative phenotype and genotype when cultured in SCM. We analyzed the growth properties, transcriptional profile, and genotype of melanoma cells grown de novo in SCM, as while melanocytes share a common precursor with neural cells, melanoma frequently demonstrates divergent behavior in cancer stem cell assays. SCM culture of melanoma cells induced a neural lineage gene expression profile that was not representative of matched patient tissue samples and which could be induced in serum cell lines by switching them into SCM. There was no enrichment for expression of putative melanoma stem cell markers, but the SCM expression profile did overlap significantly with that of SCM cultures of glioma, suggesting that the observed phenotype is media-specific rather than melanoma-specific. Xenografts derived from either culture condition provided the best representation of melanoma in situ. Finally, SCM culture of melanoma did not prevent ongoing acquisition of DNA copy number abnormalities. In conclusion, SCM culture of melanoma does not provide a better representation of the phenotype or genotype of metastatic melanoma, and the resulting neural bias could potentially confound therapeutic target identification. Copyright © 2011 AlphaMed Press.

  9. Generating Phenotypical Erroneous Human Behavior to Evaluate Human-automation Interaction Using Model Checking

    PubMed Central

    Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.

    2012-01-01

    Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914

  10. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study

    PubMed Central

    Mandillo, Silvia; Tucci, Valter; Hölter, Sabine M.; Meziane, Hamid; Banchaabouchi, Mumna Al; Kallnik, Magdalena; Lad, Heena V.; Nolan, Patrick M.; Ouagazzal, Abdel-Mouttalib; Coghill, Emma L.; Gale, Karin; Golini, Elisabetta; Jacquot, Sylvie; Krezel, Wojtek; Parker, Andy; Riet, Fabrice; Schneider, Ilka; Marazziti, Daniela; Auwerx, Johan; Brown, Steve D. M.; Chambon, Pierre; Rosenthal, Nadia; Tocchini-Valentini, Glauco; Wurst, Wolfgang

    2008-01-01

    Establishing standard operating procedures (SOPs) as tools for the analysis of behavioral phenotypes is fundamental to mouse functional genomics. It is essential that the tests designed provide reliable measures of the process under investigation but most importantly that these are reproducible across both time and laboratories. For this reason, we devised and tested a set of SOPs to investigate mouse behavior. Five research centers were involved across France, Germany, Italy, and the UK in this study, as part of the EUMORPHIA program. All the procedures underwent a cross-validation experimental study to investigate the robustness of the designed protocols. Four inbred reference strains (C57BL/6J, C3HeB/FeJ, BALB/cByJ, 129S2/SvPas), reflecting their use as common background strains in mutagenesis programs, were analyzed to validate these tests. We demonstrate that the operating procedures employed, which includes open field, SHIRPA, grip-strength, rotarod, Y-maze, prepulse inhibition of acoustic startle response, and tail flick tests, generated reproducible results between laboratories for a number of the test output parameters. However, we also identified several uncontrolled variables that constitute confounding factors in behavioral phenotyping. The EUMORPHIA SOPs described here are an important start-point for the ongoing development of increasingly robust phenotyping platforms and their application in large-scale, multicentre mouse phenotyping programs. PMID:18505770

  11. Emotional Eating Phenotype is Associated with Central Dopamine D2 Receptor Binding Independent of Body Mass Index

    PubMed Central

    Eisenstein, Sarah A.; Bischoff, Allison N.; Gredysa, Danuta M.; Antenor-Dorsey, Jo Ann V.; Koller, Jonathan M.; Al-Lozi, Amal; Pepino, Marta Y.; Klein, Samuel; Perlmutter, Joel S.; Moerlein, Stephen M.; Black, Kevin J.; Hershey, Tamara

    2015-01-01

    PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI. PMID:26066863

  12. AVPR1A Variant Associated with Preschoolers' Lower Altruistic Behavior

    PubMed Central

    Avinun, Reut; Israel, Salomon; Shalev, Idan; Gritsenko, Inga; Bornstein, Gary; Ebstein, Richard P.; Knafo, Ariel

    2011-01-01

    The genetic origins of altruism, defined here as a costly act aimed to benefit non-kin individuals, have not been examined in young children. However, previous findings concerning adults pointed at the arginine vasopressin receptor 1A (AVPR1A) gene as a possible candidate. AVPR1A has been associated with a range of behaviors including aggressive, affiliative and altruistic phenotypes, and recently a specific allele (327 bp) of one of its promoter region polymorphisms (RS3) has been singled out in particular. We modeled altruistic behavior in preschoolers using a laboratory-based economic paradigm, a modified dictator game (DG), and tested for association between DG allocations and the RS3 “target allele.” Using both population and family-based analyses we show a significant link between lower allocations and the RS3 “target allele,” associating it, for the first time, with a lower proclivity toward altruistic behavior in children. This finding helps further the understanding of the intricate mechanisms underlying early altruistic behavior. PMID:21980412

  13. Dopamine D4 receptor VNTR polymorphism associated with greater risk for substance abuse among adolescents with disruptive behavior disorders: Preliminary results.

    PubMed

    Mallard, Travis T; Doorley, James; Esposito-Smythers, Christianne L; McGeary, John E

    2016-01-01

    The variable number tandem repeats (VNTR) polymorphism of the dopamine D4 receptor gene (DRD4) has received considerable attention as a potential genetic contributor to addiction. However, is unclear whether the polymorphism is involved in developing general traits that lead to risky behavior or an intermediate phenotype more specific to substance use disorders. Association studies have produced equivocal results. To control for potential confounds, the present study examined whether the long variant of the DRD4 VNTR polymorphism (DRD4L) is associated with greater substance misuse in a homogenous clinical sample of youth with a disruptive behavior disorder (DBD). Fifty-one psychiatrically hospitalized adolescents (mean age = 14.86 years) with a DBD diagnosis were recruited as part of a larger study. Participants provided saliva samples for genotyping procedures after completing a diagnostic interview and an assessment battery. The odds of a substance use disorder diagnosis were significantly greater among DRD4L than DRD4S carriers (OR = 5.20, 95%CI:1.42-19.04, p = .01). Relative to DRD4S homozygotes, DRD4L carriers also reported greater marijuana use (t = -2.68, p = .01) and hard drug use (t = -2.26, p = .03). Although adolescents with DBDs are already at heightened risk for substance misuse, the present findings suggest that DRD4L further increases those odds. As differences persisted even among a psychiatrically homogenous sample of impulsive and risk-prone adolescents, the present findings suggest that DRD4L may be involved in the development of an intermediate phenotype specific to substance abuse (eg, cue-elicited craving). © American Academy of Addiction Psychiatry.

  14. Genetic Dissection of Anopheles gambiae Gut Epithelial Responses to Serratia marcescens

    PubMed Central

    Stathopoulos, Stavros; Neafsey, Daniel E.; Lawniczak, Mara K. N.; Muskavitch, Marc A. T.; Christophides, George K.

    2014-01-01

    Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component. PMID:24603764

  15. Relationship between the broad autism phenotype, social relationships and mental health for mothers of children with autism spectrum disorder.

    PubMed

    Pruitt, Megan M; Rhoden, Madeline; Ekas, Naomi V

    2018-02-01

    This study aimed to examine the mechanisms responsible for the association between the broad autism phenotype and depressive symptoms in mothers of a child with autism spectrum disorder. A total of 98 mothers who had a child with autism spectrum disorder between the ages of 2 and 16 years completed assessments of maternal broad autism phenotype, child behavior problems, romantic relationship satisfaction, friend support, family support, and maternal depressive symptoms. Results indicated that only romantic relationship satisfaction was a significant mediator of the relationship between maternal broad autism phenotype social abnormalities and maternal depressive symptoms, where greater broad autism phenotype social abnormalities were associated with lower relationship satisfaction, which in turn was associated with increased depressive symptoms. Child behavior problems were directly related to increased depressive symptoms. Implications regarding maternal mental health outcomes within this population as well as intervention implications are discussed.

  16. Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels

    PubMed Central

    Eagle, Andrew L.; Knox, Dayan; Roberts, Megan M.; Mulo, Kostika; Liberzon, Israel; Galloway, Matthew P.; Perrine, Shane A.

    2012-01-01

    Animal models of posttraumatic stress disorder (PTSD) can explore neurobiological mechanisms by which trauma enhances fear and anxiety reactivity. Single prolonged stress (SPS) shows good validity in producing PTSD-like behavior. While SPS-induced behaviors have been linked to enhanced glucocorticoid receptor (GR) expression, the molecular ramifications of enhanced GR expression have yet to be identified. Phosphorylated protein kinase B (pAkt) is critical for stress-mediated enhancement in general anxiety and memory, and may be regulated by GRs. However, it is currently unknown if pAkt levels are modulated by SPS, as well as if the specificity of GR and pAkt related changes contribute to anxiety-like behavior after SPS. The current study set out to examine the effects of SPS on GR and pAkt protein levels in the amygdala and hippocampus and to examine the specificity of these changes to unconditioned anxiety-like behavior. Levels of GR and pAkt were increased in the hippocampus, but not amygdala. Furthermore, SPS had no effect on unconditioned anxiety-like behavior suggesting that generalized anxiety is not consistently observed following SPS. The results suggest that SPS-enhanced GR expression is associated with phosphorylation of Akt, and also suggest that these changes are not related to an anxiogenic phenotype. PMID:23201176

  17. Transgenerational Epigenetic Programming of the Brain Transcriptome and Anxiety Behavior

    PubMed Central

    Skinner, Michael K.; Anway, Matthew D.; Savenkova, Marina I.; Gore, Andrea C.; Crews, David

    2008-01-01

    Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Further analysis of this transgenerational phenotype on the brain demonstrated reproducible changes in the brain transcriptome three generations (F3) removed from the exposure. The transgenerational alterations in the male and female brain transcriptomes were distinct. In the males, the expression of 92 genes in the hippocampus and 276 genes in the amygdala were transgenerationally altered. In the females, the expression of 1,301 genes in the hippocampus and 172 genes in the amygdala were transgenerationally altered. Analysis of specific gene sets demonstrated that several brain signaling pathways were influenced including those involved in axon guidance and long-term potentiation. An investigation of behavior demonstrated that the vinclozolin F3 generation males had a decrease in anxiety-like behavior, while the females had an increase in anxiety-like behavior. These observations demonstrate that an embryonic exposure to an environmental compound appears to promote a reprogramming of brain development that correlates with transgenerational sex-specific alterations in the brain transcriptomes and behavior. Observations are discussed in regards to environmental and transgenerational influences on the etiology of brain disease. PMID:19015723

  18. The Importance of Bacterial Culture to Food Microbiology in the Age of Genomics.

    PubMed

    Gill, Alexander

    2017-01-01

    Culture-based and genomics methods provide different insights into the nature and behavior of bacteria. Maximizing the usefulness of both approaches requires recognizing their limitations and employing them appropriately. Genomic analysis excels at identifying bacteria and establishing the relatedness of isolates. Culture-based methods remain necessary for detection and enumeration, to determine viability, and to validate phenotype predictions made on the bias of genomic analysis. The purpose of this short paper is to discuss the application of culture-based analysis and genomics to the questions food microbiologists routinely need to ask regarding bacteria to ensure the safety of food and its economic production and distribution. To address these issues appropriate tools are required for the detection and enumeration of specific bacterial populations and the characterization of isolates for, identification, phylogenetics, and phenotype prediction.

  19. Slow Physical Growth, Delayed Reflex Ontogeny, and Permanent Behavioral as Well as Cognitive Impairments in Rats Following Intra-generational Protein Malnutrition

    PubMed Central

    Naik, Aijaz A.; Patro, Ishan K.; Patro, Nisha

    2015-01-01

    Environmental stressors including protein malnutrition (PMN) during pre-, neo- and post-natal age have been documented to affect cognitive development and cause increased susceptibility to neuropsychiatric disorders. Most studies have addressed either of the three windows and that does not emulate the clinical conditions of intra-uterine growth restriction (IUGR). Such data fail to provide a complete picture of the behavioral alterations in the F1 generation. The present study thus addresses the larger window from gestation to F1 generation, a new model of intra-generational PMN. Naive Sprague Dawley (SD) dams pre-gestationally switched to LP (8% protein) or HP (20% protein) diets for 45 days were bred and maintained throughout gestation on same diets. Pups born (HP/LP dams) were maintained on the respective diets post-weaningly. The present study aimed to show the sex specific differences in the neurobehavioral evolution and behavioral phenotype of the HP/LP F1 generation pups. A battery of neurodevelopmental reflex tests, behavioral (Open field and forelimb gripstrength test), and cognitive [Elevated plus maze (EPM) and Morris water maze (MWM)] assays were performed. A decelerated growth curve with significantly restricted body and brain weight, delays in apparition of neuro-reflexes and poor performance in the LP group rats was recorded. Intra-generational PMN induced poor habituation-with-time in novel environment exploration, low anxiety and hyperactive like profile in open field test in young and adult rats. The study revealed poor forelimb neuromuscular strength in LP F1 pups till adulthood. Group occupancy plots in MWM test revealed hyperactivity with poor learning, impaired memory retention and integration, thus modeling the signs of early onset Alzehemier phenotype. In addition, a gender specific effect of LP diet with severity in males and favoring female sex was also noticed. PMID:26696810

  20. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability.

    PubMed

    Reggiani, Claudio; Coppens, Sandra; Sekhara, Tayeb; Dimov, Ivan; Pichon, Bruno; Lufin, Nicolas; Addor, Marie-Claude; Belligni, Elga Fabia; Digilio, Maria Cristina; Faletra, Flavio; Ferrero, Giovanni Battista; Gerard, Marion; Isidor, Bertrand; Joss, Shelagh; Niel-Bütschi, Florence; Perrone, Maria Dolores; Petit, Florence; Renieri, Alessandra; Romana, Serge; Topa, Alexandra; Vermeesch, Joris Robert; Lenaerts, Tom; Casimir, Georges; Abramowicz, Marc; Bontempi, Gianluca; Vilain, Catheline; Deconinck, Nicolas; Smits, Guillaume

    2017-07-19

    Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.

  1. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    PubMed

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID.

    PubMed

    van Bon, B W M; Coe, B P; Bernier, R; Green, C; Gerdts, J; Witherspoon, K; Kleefstra, T; Willemsen, M H; Kumar, R; Bosco, P; Fichera, M; Li, D; Amaral, D; Cristofoli, F; Peeters, H; Haan, E; Romano, C; Mefford, H C; Scheffer, I; Gecz, J; de Vries, B B A; Eichler, E E

    2016-01-01

    Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) maps to the Down syndrome critical region; copy number increase of this gene is thought to have a major role in the neurocognitive deficits associated with Trisomy 21. Truncation of DYRK1A in patients with developmental delay (DD) and autism spectrum disorder (ASD) suggests a different pathology associated with loss-of-function mutations. To understand the phenotypic spectrum associated with DYRK1A mutations, we resequenced the gene in 7162 ASD/DD patients (2446 previously reported) and 2169 unaffected siblings and performed a detailed phenotypic assessment on nine patients. Comparison of our data and published cases with 8696 controls identified a significant enrichment of DYRK1A truncating mutations (P=0.00851) and an excess of de novo mutations (P=2.53 × 10(-10)) among ASD/intellectual disability (ID) patients. Phenotypic comparison of all novel (n=5) and recontacted (n=3) cases with previous case reports, including larger CNV and translocation events (n=7), identified a syndromal disorder among the 15 patients. It was characterized by ID, ASD, microcephaly, intrauterine growth retardation, febrile seizures in infancy, impaired speech, stereotypic behavior, hypertonia and a specific facial gestalt. We conclude that mutations in DYRK1A define a syndromic form of ASD and ID with neurodevelopmental defects consistent with murine and Drosophila knockout models.

  3. Adolescent alcohol exposure and persistence of adolescent-typical phenotypes into adulthood: a mini-review

    PubMed Central

    Spear, Linda Patia; Swartzwelder, H. Scott

    2014-01-01

    Alcohol use is typically initiated during adolescence, which, along with young adulthood, is a vulnerable period for the onset of high-risk drinking and alcohol abuse. Given across-species commonalities in certain fundamental neurobehavioral characteristics of adolescence, studies in laboratory animals such as the rat have proved useful to assess persisting consequences of repeated alcohol exposure. Despite limited research to date, reports of long-lasting effects of adolescent ethanol exposure are emerging, along with certain common themes. One repeated finding is that adolescent exposure to ethanol sometimes results in the persistence of adolescent-typical phenotypes into adulthood. Instances of adolescent -like persistence have been seen in terms of baseline behavioral, cognitive, electrophysiological and neuroanatomical characteristics, along with the retention of adolescent-typical sensitivities to acute ethanol challenge. These effects are generally not observed after comparable ethanol exposure in adulthood. Persistence of adolescent-typical phenotypes is not always evident, and may be related to regionally-specific ethanol influences on the interplay between CNS excitation and inhibition critical for the timing of neuroplasticity. PMID:24813805

  4. Neuronal composition of the magnocellular division of the medial preoptic nucleus (MPN mag) is sex specific in the Syrian hamster (Mesocricetus auratus).

    PubMed

    Richendrfer, Holly A; Swann, Jennifer M

    2010-09-10

    The magnocellular division of the medial Preoptic nucleus (MPN mag) plays a critical role in the regulation of male sexual behavior in the hamster. Results from previous studies indicated that the number of neurons in the MPN mag is greater in males than females but failed to find significant differences in the volume of the nucleus suggesting that other elements in the nucleus may be greater in the female. The results of the present study, using NeuN to identify neurons, are in line with this hypothesis. The data show that (1) neurons in the MPN mag display two distinct phenotypes, those with a single nucleolus and those with multiple nucleoli; (2) the percentage of each phenotype is sex specific, differing over the course of development and (3) there is no sex difference in the number of glial cells at any age. Sex differences in the numbers of each type are correlated with developmental milestones and suggest that morphological changes are influenced by changes in circulating gonadal steroids during development. 2010 Elsevier B.V. All rights reserved.

  5. Parent and teacher perspectives about problem behavior in children with Williams syndrome.

    PubMed

    Klein-Tasman, Bonita P; Lira, Ernesto N; Li-Barber, Kirsten T; Gallo, Frank J; Brei, Natalie G

    2015-01-01

    Problem behavior of 52 children with Williams syndrome ages 6 to 17 years old was examined based on both parent and teacher report. Generally good inter-rater agreement was found. Common areas of problem behavior based both on parent and teacher report included attention problems, anxiety difficulties, repetitive behaviors (e.g., obsessions, compulsions, picking nose or skin), and social problems, reflecting a robust behavioral phenotype in Williams syndrome present across contexts. Some rater differences were observed; most notably, parents reported more attention and mood difficulties than did teachers, while teachers reported more oppositionality and aggression than did parents. Relations to intellectual functioning, age, and gender were examined. The implications of the findings for understanding the behavioral phenotype associated with Williams syndrome are discussed.

  6. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  7. Auditory Phenotype of Smith-Magenis Syndrome

    ERIC Educational Resources Information Center

    Brendal, Megan A.; King, Kelly A.; Zalewski, Christopher K.; Finucane, Brenda M.; Introne, Wendy; Brewer, Carmen C.; Smith, Ann C. M.

    2017-01-01

    Purpose: The purpose of this study was to describe the auditory phenotype of a large cohort with Smith-Magenis syndrome (SMS), a rare disorder including physical anomalies, cognitive deficits, sleep disturbances, and a distinct behavioral phenotype. Method: Hearing-related data were collected for 133 individuals with SMS aged 1-49 years. Audiogram…

  8. Identifying eating behavior phenotypes and their correlates: a novel direction toward improving weight management interventions

    PubMed Central

    Bouhlal, Sofia; McBride, Colleen M.; Trivedi, Niraj S.; Agurs-Collins, Tanya; Persky, Susan

    2017-01-01

    Common reports of over-response to food cues, difficulties with calorie restriction, and difficulty adhering to dietary guidelines suggest that eating behaviors could be interrelated in ways that influence weight management efforts. The feasibility of identifying robust eating phenotypes (showing face, content, and criterion validity) was explored based on well-validated individual eating behavior assessments. Adults (n=260; mean age 34 years) completed online questionnaires with measurements of nine eating behaviors including: appetite for palatable foods, binge eating, bitter taste sensitivity, disinhibition, food neophobia, pickiness and satiety responsiveness. Discovery-based visualization procedures that have the combined strengths of heatmaps and hierarchical clustering were used to investigate: 1) how eating behaviors cluster, 2) how participants can be grouped within eating behavior clusters, and 3) whether group clustering is associated with body mass index (BMI) and dietary self-efficacy levels. Two distinct eating behavior clusters and participant groups that aligned within these clusters were identified: one with higher drive to eat and another with food avoidance behaviors. Participants’ BMI (p=.0002) and dietary self-efficacy (p<.0001) were associated with cluster membership. Eating behavior clusters showed content and criterion validity based on their association with BMI (associated, but not entirely overlapping) and dietary self-efficacy. Identifying eating behavior phenotypes appears viable. These efforts could be expanded and ultimately inform tailored weight management interventions. PMID:28043857

  9. Evidence of Phenotypic and Genetic Relationships between Sociality, Emotional Reactivity and Production Traits in Japanese Quail

    PubMed Central

    Recoquillay, Julien; Leterrier, Christine; Calandreau, Ludovic; Bertin, Aline; Pitel, Frédérique; Gourichon, David; Vignal, Alain; Beaumont, Catherine; Le Bihan-Duval, Elisabeth; Arnould, Cécile

    2013-01-01

    The social behavior of animals, which is partially controlled by genetics, is one of the factors involved in their adaptation to large breeding groups. To understand better the relationships between different social behaviors, fear behaviors and production traits, we analyzed the phenotypic and genetic correlations of these traits in Japanese quail by a second generation crossing of two lines divergently selected for their social reinstatement behavior. Analyses of results for 900 individuals showed that the phenotypic correlations between behavioral traits were low with the exception of significant correlations between sexual behavior and aggressive pecks both at phenotypic (0.51) and genetic (0.90) levels. Significant positive genetic correlations were observed between emotional reactivity toward a novel object and sexual (0.89) or aggressive (0.63) behaviors. The other genetic correlations were observed mainly between behavioral and production traits. Thus, the level of emotional reactivity, estimated by the duration of tonic immobility, was positively correlated with weight at 17 and 65 days of age (0.76 and 0.79, respectively) and with delayed egg laying onset (0.74). In contrast, a higher level of social reinstatement behavior was associated with an earlier egg laying onset (-0.71). In addition, a strong sexual motivation was correlated with an earlier laying onset (-0.68) and a higher number of eggs laid (0.82). A low level of emotional reactivity toward a novel object and also a higher aggressive behavior were genetically correlated with a higher number of eggs laid (0.61 and 0.58, respectively). These results bring new insights into the complex determinism of social and emotional reactivity behaviors in birds and their relationships with production traits. Furthermore, they highlight the need to combine animal welfare and production traits in selection programs by taking into account traits of sociability and emotional reactivity. PMID:24324761

  10. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders

    PubMed Central

    Iriki, Atsushi; Isoda, Masaki

    2015-01-01

    Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles. PMID:26180116

  11. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth

    PubMed Central

    Corradi, Anna; Fadda, Manuela; Piton, Amélie; Patry, Lysanne; Marte, Antonella; Rossi, Pia; Cadieux-Dion, Maxime; Gauthier, Julie; Lapointe, Line; Mottron, Laurent; Valtorta, Flavia; Rouleau, Guy A.; Fassio, Anna; Benfenati, Fabio; Cossette, Patrick

    2014-01-01

    An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This ‘synaptic autism pathway’ notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD. PMID:23956174

  12. Photoperiod and aggression induce changes in ventral gland compounds exclusively in male Siberian hamsters.

    PubMed

    Rendon, Nikki M; Soini, Helena A; Scotti, Melissa-Ann L; Weigel, Ellen R; Novotny, Milos V; Demas, Gregory E

    2016-05-01

    Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Neurocognitive Allied Phenotypes for Schizophrenia and Bipolar Disorder

    PubMed Central

    Hill, S. Kristian; Harris, Margret S. H.; Herbener, Ellen S.; Pavuluri, Mani; Sweeney, John A.

    2008-01-01

    Psychiatric disorders are genetically complex and represent the end product of multiple biological and social factors. Links between genes and disorder-related abnormalities can be effectively captured via assessment of phenotypes that are both associated with genetic effects and potentially contributory to behavioral abnormalities. Identifying intermediate or allied phenotypes as a strategy for clarifying genetic contributions to disorders has been successful in other areas of medicine and is a promising strategy for identifying susceptibility genes in complex psychiatric disorders. There is growing evidence that schizophrenia and bipolar disorder, rather than being wholly distinct disorders, share genetic risk at several loci. Further, there is growing evidence of similarity in the pattern of cognitive and neurobiological deficits in these groups, which may be the result of the effects of these common genetic factors. This review was undertaken to identify patterns of performance on neurocognitive and affective tasks across probands with schizophrenia and bipolar disorder as well as unaffected family members, which warrant further investigation as potential intermediate trait markers. Available evidence indicates that measures of attention regulation, working memory, episodic memory, and emotion processing offer potential for identifying shared and illness-specific allied neurocognitive phenotypes for schizophrenia and bipolar disorder. However, very few studies have evaluated neurocognitive dimensions in bipolar probands or their unaffected relatives, and much work in this area is needed. PMID:18448479

  14. Early phenotypical diagnoses in Trembler-J mice model.

    PubMed

    Rosso, Gonzalo; Cal, Karina; Canclini, Lucía; Damián, Juan Pablo; Ruiz, Paul; Rodríguez, Héctor; Sotelo, José Roberto; Vazquez, Cristina; Kun, Alejandra

    2010-06-30

    Pmp-22 mutant mice (Trembler-J: B6.D2-Pmp22/J), are used as a model to study Charcot-Marie-Tooth type 1A (CMT1A). The identification of individual genotypes is a routine in the management of the Tr(J) colony. The earliest phenotypic manifestation of the pmp-22 mutation is just about 20th postnatal days, when pups begin to tremble. In this study, a rapid and simple diagnostic method was developed by modifying the Tail Suspension Test (MTST) to determine the difference between the Tr(J) and the wild-type mice phenotype. The animal behavioral phenotypes generated during the test were consistent with the specific genotype of each animal. The MTST allowed us to infer the heterozygous genotype in early postnatal stages, at 11 days after birth. The motor impairment of Tr(J) mice was also analyzed by a Fixed Bar Test (FBT), which revealed the disease evolution according to age. The main advantages of MTST are its objectivity, simplicity, and from the viewpoint of animal welfare, it is a non-invasive technique that combined with his rapidity show its very well applicability for use from an early age in these mice. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Changes in Crohn's disease phenotype over time in the Chinese population: validation of the Montreal classification system.

    PubMed

    Chow, Dorothy K L; Leong, Rupert W L; Lai, Larry H; Wong, Grace L H; Leung, Wai-Keung; Chan, Francis K L; Sung, Joseph J Y

    2008-04-01

    Phenotypic evolution of Crohn's disease occurs in whites but has never been described in other populations. The Montreal classification may describe phenotypes more precisely. The aim of this study was to validate the Montreal classification through a longitudinal sensitivity analysis in detecting phenotypic variation compared to the Vienna classification. This was a retrospective longitudinal study of consecutive Chinese Crohn's disease patients. All cases were classified by the Montreal classification and the Vienna classification for behavior and location. The evolution of these characteristics and the need for surgery were evaluated. A total of 109 patients were recruited (median follow-up: 4 years, range: 6 months-18 years). Crohn's disease behavior changed 3 years after diagnosis (P = 0.025), with an increase in stricturing and penetrating phenotypes, as determined by the Montreal classification, but was only detected by the Vienna classification after 5 years (P = 0.015). Disease location remained stable on follow-up in both classifications. Thirty-four patients (31%) underwent major surgery during the follow-up period with the stricturing [P = 0.002; hazard ratio (HR): 3.3; 95% CI: 1.5-7.0] and penetrating (P = 0.03; HR: 5.8; 95% CI: 1.2-28.2) phenotypes according to the Montreal classification associated with the need for major surgery. In contrast, colonic disease was protective against a major operation (P = 0.02; HR: 0.3; 95% CI: 0.08-0.8). This is the first study demonstrating phenotypic evolution of Crohn's disease in a nonwhite population. The Montreal classification is more sensitive to behavior phenotypic changes than is the Vienna classification after excluding perianal disease from the penetrating disease category and was useful in predicting course and the need for surgery.

  16. Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for "Food Addiction"?

    PubMed

    Carlier, Nina; Marshe, Victoria S; Cmorejova, Jana; Davis, Caroline; Müller, Daniel J

    2015-12-01

    There exists a continuous spectrum of overeating, where at the extremes there are casual overindulgences and at the other a 'pathological' drive to consume palatable foods. It has been proposed that pathological eating behaviors may be the result of addictive appetitive behavior and loss of ability to regulate the consumption of highly processed foods containing refined carbohydrates, fats, salt, and caffeine. In this review, we highlight the genetic similarities underlying substance addiction phenotypes and overeating compulsions seen in individuals with binge eating disorder. We relate these similarities to findings from neuroimaging studies on reward processing and clinical diagnostic criteria based on addiction phenotypes. The abundance of similarities between compulsive overeating and substance addictions puts forth a case for a 'food addiction' phenotype as a valid, diagnosable disorder.

  17. The Study to Explore Early Development (SEED): A Multisite Epidemiologic Study of Autism by the Centers for Autism and Developmental Disabilities Research and Epidemiology (CADDRE) Network

    ERIC Educational Resources Information Center

    Schendel, Diana E.; DiGuiseppi, Carolyn; Croen, Lisa A.; Fallin, M. Daniele; Reed, Philip L.; Schieve, Laura A.; Wiggins, Lisa D.; Daniels, Julie; Grether, Judith; Levy, Susan E.; Miller, Lisa; Newschaffer, Craig; Pinto-Martin, Jennifer; Robinson, Cordelia; Windham, Gayle C.; Alexander, Aimee; Aylsworth, Arthur S.; Bernal, Pilar; Bonner, Joseph D.; Blaskey, Lisa; Bradley, Chyrise; Collins, Jack; Ferretti, Casara J.; Farzadegan, Homayoon; Giarelli, Ellen; Harvey, Marques; Hepburn, Susan; Herr, Matthew; Kaparich, Kristina; Landa, Rebecca; Lee, Li-Ching; Levenseller, Brooke; Meyerer, Stacey; Rahbar, Mohammad H.; Ratchford, Andria; Reynolds, Ann; Rosenberg, Steven; Rusyniak, Julie; Shapira, Stuart K.; Smith, Karen; Souders, Margaret; Thompson, Patrick Aaron; Young, Lisa; Yeargin-Allsopp, Marshalyn

    2012-01-01

    The Study to Explore Early Development (SEED), a multisite investigation addressing knowledge gaps in autism phenotype and etiology, aims to: (1) characterize the autism behavioral phenotype and associated developmental, medical, and behavioral conditions and (2) investigate genetic and environmental risks with emphasis on immunologic, hormonal,…

  18. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  19. NON-MENDELIAN ETIOLOGIC FACTORS IN NEUROPSYCHIATRIC ILLNESS: PLEIOTROPY, EPIGENETICS, AND CONVERGENCE

    PubMed Central

    Deutsch, Curtis K; McIlvane, William J

    2013-01-01

    The target article by Charney on behavior genetics/genomics discusses how numerous molecular factors can inform heritability estimations and genetic association studies. These factors find application in the search for genes for behavioral phenotypes, including neuropsychiatric disorders. We elaborate upon how single causal factors can generate multiple phenotypes, and discuss how multiple causal factors may converge on common neurodevelopmental mechanisms. PMID:23095384

  20. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera).

    PubMed

    Kapheim, Karen M; Rao, Vikyath D; Yeoman, Carl J; Wilson, Brenda A; White, Bryan A; Goldenfeld, Nigel; Robinson, Gene E

    2015-01-01

    Host-symbiont dynamics are known to influence host phenotype, but their role in social behavior has yet to be investigated. Variation in life history across honey bee (Apis mellifera) castes may influence community composition of gut symbionts, which may in turn influence caste phenotypes. We investigated the relationship between host-symbiont dynamics and social behavior by characterizing the hindgut microbiome among distinct honey bee castes: queens, males and two types of workers, nurses and foragers. Despite a shared hive environment and mouth-to-mouth food transfer among nestmates, we detected separation among gut microbiomes of queens, workers, and males. Gut microbiomes of nurses and foragers were similar to previously characterized honey bee worker microbiomes and to each other, despite differences in diet, activity, and exposure to the external environment. Queen microbiomes were enriched for bacteria that may enhance metabolic conversion of energy from food to egg production. We propose that the two types of workers, which have the highest diversity of operational taxonomic units (OTUs) of bacteria, are central to the maintenance of the colony microbiome. Foragers may introduce new strains of bacteria to the colony from the environment and transfer them to nurses, who filter and distribute them to the rest of the colony. Our results support the idea that host-symbiont dynamics influence microbiome composition and, reciprocally, host social behavior.

  1. Clustering Suicide Attempters: Impulsive-Ambivalent, Well-Planned, or Frequent.

    PubMed

    Lopez-Castroman, Jorge; Nogue, Erika; Guillaume, Sebastien; Picot, Marie Christine; Courtet, Philippe

    2016-06-01

    Attempts to predict suicidal behavior within high-risk populations have so far shown insufficient accuracy. Although several psychosocial and clinical features have been consistently associated with suicide attempts, investigations of latent structure in well-characterized populations of suicide attempters are lacking. We analyzed a sample of 1,009 hospitalized suicide attempters that were recruited between 1999 and 2012. Eleven clinically relevant items related to the characteristics of suicidal behavior were submitted to a Hierarchical Ascendant Classification. Phenotypic profiles were compared between the resulting clusters. A decisional tree was constructed to facilitate the differentiation of individuals classified within the first 2 clusters. Most individuals were included in a cluster characterized by less lethal means and planning ("impulse-ambivalent"). A second cluster featured more carefully planned attempts ("well-planned"), more alcohol or drug use before the attempt, and more precautions to avoid interruptions. Finally, a small, third cluster included individuals reporting more attempts ("frequent"), more often serious or violent attempts, and an earlier age at first attempt. Differences across clusters by demographic and clinical characteristics were also found, particularly with the third cluster whose participants had experienced high levels of childhood abuse. Cluster analysis consistently supported 3 distinct clusters of individuals with specific features in their suicidal behaviors and phenotypic profiles that could help clinicians to better focus prevention strategies. © Copyright 2016 Physicians Postgraduate Press, Inc.

  2. Pervasive developmental disorders in Prader-Willi syndrome: the Leuven experience in 59 subjects and controls.

    PubMed

    Descheemaeker, Mie-Jef; Govers, Veerle; Vermeulen, Peter; Fryns, Jean-Pierre

    2006-06-01

    In the present study we investigated the co-morbidity of pervasive developmental disorder (PDD) in 59 Prader-Willi syndrome (PWS) individuals and in 59 non-specific mentally retarded controls, matched for IQ, gender, and age. The 'Pervasive Developmental Disorder Mentally Retardation Scale' (PDD-MRScale), a screening questionnaire based on the DSM-III-R criteria for PDD, has been applied in the PWS group and in the control group. Results of the present study revealed a striking autistic-like behavioral phenotype in the majority of the PWS individuals, particularly deficits in the quality of language and communication and of imagination and interests. This intersection with autistic symptomatology is an important addition to the behavioral phenotype in PWS persons. A first approach to delineate subtypes of autistic symptomalogy among PWS persons was performed. Nineteen percent of the PWS group did meet the full diagnostic DSM-III-R criteria for PDD in comparison with 15% in the control group. Results revealed that a higher IQ in PWS does not protect to develop genuine PDD and that uniparental disomy/imprinting mutation as genetic origin seems to be an additional risk factor for developing genuine PDD. The results of the present study suggest the importance of reconsidering the commonly recognized obsessive-compulsive like behavior in PWS persons within the broader spectrum of autism disorders. Copyright 2006 Wiley-Liss, Inc.

  3. Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee.

    PubMed

    Rittschof, Clare C; Bukhari, Syed Abbas; Sloofman, Laura G; Troy, Joseph M; Caetano-Anollés, Derek; Cash-Ahmed, Amy; Kent, Molly; Lu, Xiaochen; Sanogo, Yibayiri O; Weisner, Patricia A; Zhang, Huimin; Bell, Alison M; Ma, Jian; Sinha, Saurabh; Robinson, Gene E; Stubbs, Lisa

    2014-12-16

    Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.

  4. Vitamin C impacts anxiety-like behavior and stress-induced anorexia relative to social environment in SMP30/GNL knockout mice.

    PubMed

    Koizumi, Miwako; Kondo, Yoshitaka; Isaka, Ayumi; Ishigami, Akihito; Suzuki, Emiko

    2016-12-01

    The role of endogenous vitamin C (VC) in emotion and psychiatric measures has long been uncertain. We aimed to investigate how an individual's VC status impacts his or her mental health. Our hypothesis is that body VC levels modulate anxiety, anorexia, and depressive phenotypes under the influence of psychosocial rearing environments and sex. The VC status of senescence marker protein-30/gluconolactonase knockout mice, which lack the ability to synthesize VC, were continuously shifted from adequate (VC+) to depleted (VC-) by providing a water with or without VC. Despite weight loss in both sexes, suppressed feeding was specifically seen in males only during the VC- phase. Anxiety responses in the novelty-suppressed feeding paradigm were worse during the VC-, especially in females. Sensitivity to the forced swim test as determined by the initial latency was significantly shorter in the socially stable animals compared with socially unstable animals during the VC+ condition. The stress coping underlying depressive phenotypes was assessed by immobility duration in a series of forced swim tests. No significant differences were apparent between contrasting VC status. Homeostatic symptoms following stressful behavioral tests consisted of a great loss of appetite during the VC-. It should be noted that anorexia is extremely serious for the females. We conclude that endogenous VC status is critical for determining vulnerability to anxiety and anorexia in a sex-specific manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its) correlations to physiological and behavioral traits

    PubMed Central

    Quillet, Edwige; Bégout, Marie-Laure; Aupérin, Benoit; Khaw, Hooi Ling; Millot, Sandie; Valotaire, Claudiane; Kernéis, Thierry; Labbé, Laurent; Prunet, Patrick; Dupont-Nivet, Mathilde

    2017-01-01

    Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight) and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months), the plasma cortisol response to confinement stress (3 challenges) and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV) for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol) was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity. PMID:29253015

  6. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basilico, Nicoletta, E-mail: nicoletta.basilico@unimi.it; Magnetto, Chiara, E-mail: c.magnetto@inrim.it; D'Alessandro, Sarah, E-mail: sarah.dalessandro@unimi.it

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects ofmore » hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of HMEC-1. • Nontoxic dextran-shelled oxygen-loaded nanodroplets (OLNs) are uptaken by HMEC-1. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic phenotype. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic behavior.« less

  7. Early Cognitive/Social Deficits and Late Motor Phenotype in Conditional Wild-Type TDP-43 Transgenic Mice.

    PubMed

    Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M

    2016-01-01

    Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.

  8. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats.

    PubMed

    Gillette, Ross; Miller-Crews, Isaac; Nilsson, Eric E; Skinner, Michael K; Gore, Andrea C; Crews, David

    2014-10-01

    How an individual responds to the environment depends upon both personal life history as well as inherited genetic and epigenetic factors from ancestors. Using a 2-hit, 3 generations apart model, we tested how F3 descendants of rats given in utero exposure to the environmental endocrine-disrupting chemical (EDC) vinclozolin reacted to stress during adolescence in their own lives, focusing on sexually dimorphic phenotypic outcomes. In adulthood, male and female F3 vinclozolin- or vehicle-lineage rats, stressed or nonstressed, were behaviorally characterized on a battery of tests and then euthanized. Serum was used for hormone assays, and brains were used for quantitative PCR and transcriptome analyses. Results showed that the effects of ancestral exposure to vinclozolin converged with stress experienced during adolescence in a sexually dimorphic manner. Debilitating effects were seen at all levels of the phenotype, including physiology, behavior, brain metabolism, gene expression, and genome-wide transcriptome modifications in specific brain nuclei. Additionally, females were significantly more vulnerable than males to transgenerational effects of vinclozolin on anxiety but not sociality tests. This fundamental transformation occurs in a manner not predicted by the ancestral exposure or the proximate effects of stress during adolescence, an interaction we refer to as synchronicity.

  9. Preference for Sucralose Predicts Behavioral Responses to Sweet and Bittersweet Tastants

    PubMed Central

    Loney, Gregory C.; Torregrossa, Ann-Marie; Carballo, Chris

    2012-01-01

    Rats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent “bitter” side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl). Specifically, SA displayed decreased preference for and intakes of saccharin (≥41.5 mM) and sucrose–QHCl (>0.5 mM QHCl) solutions, relative to SP. In a second experiment involving brief-access (30-s) tests, SP and SA did not differ in their unconditioned licking responses across a range of sodium chloride or QHCl solutions (0.03–1 mM). However, the acceptability threshold for sucrose was lower in SA, relative to SP (0.06 and 0.13 M, respectively). Our findings suggest that phenotypic differences in sucralose preference are indicative of a more general difference in the hedonic processing of stimuli containing “bittersweet” or “sweet” taste qualities. PMID:22281530

  10. Developing Novel Automated Apparatus for Studying Battery of Social Behaviors in Mutant Mouse Models for Autism

    DTIC Science & Technology

    2013-06-01

    Psychiatry, 2008. 13(1): p. 4-26. 2. McFarlane, H.G., et al., Autism -like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav, 2008. 7(2): p. 152...63. 3. Brodkin, E.S., BALB/c mice: low sociability and other phenotypes that may be relevant to autism . Behav Brain Res, 2007. 176(1): p. 53-65. 4...S.S., et al., Development of a mouse test for repetitive, restricted behaviors: relevance to autism . Behav Brain Res, 2008. 188(1): p. 178-94. 6

  11. A Testosterone-Related Structural Brain Phenotype Predicts Aggressive Behavior From Childhood to Adulthood

    PubMed Central

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon

    2015-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805

  12. A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood.

    PubMed

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Ducharme, Simon

    2016-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here, we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6-22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Suppression of calbindin-D28k expression exacerbates SCA1 phenotype in a disease mouse model.

    PubMed

    Vig, Parminder J S; Wei, Jinrong; Shao, Qingmei; Lopez, Maripar E; Halperin, Rebecca; Gerber, Jill

    2012-09-01

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a polyglutamine tract in the mutant protein ataxin-1. The cerebellar Purkinje cells (PCs) are the major targets of mutant ataxin-1. The mechanism of PC death in SCA1 is not known; however, previous work indicates that downregulation of specific proteins involved in calcium homeostasis and signaling by mutant ataxin-1 is the probable cause of PC degeneration in SCA1. In this study, we explored if targeted deprivation of PC specific calcium-binding protein calbindin-D28k (CaB) exacerbates ataxin-1 mediated toxicity in SCA1 transgenic (Tg) mice. Using behavioral tests, we found that though both SCA1/+ and SCA1/+: CaB null (-/+) double mutants exhibited progressive impaired performance on the rotating rod, a simultaneous enhancement of exploratory activity, and absence of deficits in coordination, the double mutants were more severely impaired than SCA1/+ mice. With increasing age, SCA1/+ mice showed a progressive loss in the expression and localization of CaB and other PC specific calcium-binding and signaling proteins. In double mutants, these changes were more pronounced and had an earlier onset. Gene expression profiling of young mice exhibiting no behavior or biochemical deficits revealed a differential expression of many genes common to SCA1/+ and CaB-/+ lines, and unique to SCA1/+: CaB-/+ phenotype. Our study provides further evidence for a critical role of CaB in SCA1 pathogenesis, which may help identify new therapeutic targets to treat SCA1 or other cerebellar ataxias.

  14. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism.

    PubMed

    Eagleson, Kathie L; Xie, Zhihui; Levitt, Pat

    2017-03-01

    People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ.

    PubMed

    Sittig, Laura J; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios-Camacho, Camila M; Palmer, Abraham A

    2014-12-01

    Closely related substrains of inbred mice often show phenotypic differences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole-genome sequence data for both inbred strains (~3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies.

  16. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cByJ

    PubMed Central

    Sittig, Laura J.; Jeong, Choongwon; Tixier, Emily; Davis, Joe; Barrios Camacho, Camila M.; Palmer, Abraham A.

    2014-01-01

    Closely related substrains of inbred mice often show phenotypic difzferences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole genome sequence data for both inbred strains (∼3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies. PMID:24997021

  17. Multi-system Component Phenotypes of Bipolar Disorder for Genetic Investigations of Extended Pedigrees

    PubMed Central

    Fears, Scott C.; Service, Susan K.; Kremeyer, Barbara; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Franco, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Patricia; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Ericson, Marissa; Jalbrzikowski, Maria; Luykx, Jurjen J.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier; Glahn, David C.; Ospina-Duque, Jorge; Risch, Neil; Ruiz-Linares, Andrés; Thompson, Paul M.; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Freimer, Nelson B.; Bearden, Carrie E.

    2014-01-01

    IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), yet its pathogenesis remains poorly understood. A focus on measuring multi-system quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that impact on BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomic phenotypes that appear heritable and associated with severe bipolar disorder (BP-I), and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN Multi-generational pedigree study in two closely related, genetically isolated populations: the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (ANT). PARTICIPANTS 738 individuals, all from CVCR and ANT pedigrees, of whom 181 are affected with BP-I. MAIN OUTCOME MEASURE Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) phenotypes. RESULTS Seventy-five percent (126) of the phenotypes investigated were significantly heritable, and 31% (53) were associated with BP-I. About 1/4 of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions, and volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE This is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I-association within families that is consistent with expectations from case-control studies. Together these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder. PMID:24522887

  18. Organelles – understanding noise and heterogeneity in cell biology at an intermediate scale

    PubMed Central

    Chang, Amy Y.

    2017-01-01

    ABSTRACT Many studies over the years have shown that non-genetic mechanisms for producing cell-to-cell variation can lead to highly variable behaviors across genetically identical populations of cells. Most work to date has focused on gene expression noise as the primary source of phenotypic heterogeneity, yet other sources may also contribute. In this Commentary, we explore organelle-level heterogeneity as a potential secondary source of cellular ‘noise’ that contributes to phenotypic heterogeneity. We explore mechanisms for generating organelle heterogeneity and present evidence of functional links between organelle morphology and cellular behavior. Given the many instances in which molecular-level heterogeneity has been linked to phenotypic heterogeneity, we posit that organelle heterogeneity may similarly contribute to overall phenotypic heterogeneity and underline the importance of studying organelle heterogeneity to develop a more comprehensive understanding of phenotypic heterogeneity. Finally, we conclude with a discussion of the medical challenges associated with phenotypic heterogeneity and outline how improved methods for characterizing and controlling this heterogeneity may lead to improved therapeutic strategies and outcomes for patients. PMID:28183729

  19. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada).

    PubMed

    Cooley, John R; Marshall, David C; Hill, Kathy B R

    2018-01-23

    Male periodical cicadas (Magicicada spp.) infected with conidiospore-producing ("Stage I") infections of the entomopathogenic fungus Massospora cicadina exhibit precisely timed wing-flick signaling behavior normally seen only in sexually receptive female cicadas. Male wing-flicks attract copulation attempts from conspecific males in the chorus; close contact apparently spreads the infective conidiospores. In contrast, males with "Stage II" infections that produce resting spores that wait for the next cicada generation do not produce female-specific signals. We propose that these complex fungus-induced behavioral changes, which resemble apparently independently derived changes in other cicada-Massospora systems, represent a fungus "extended phenotype" that hijacks cicadas, turning them into vehicles for fungus transmission at the expense of the cicadas' own interests.

  20. Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autism.

    PubMed

    Kim, Oc-Hee; Cho, Hyun-Ju; Han, Enna; Hong, Ted Inpyo; Ariyasiri, Krishan; Choi, Jung-Hwa; Hwang, Kyu-Seok; Jeong, Yun-Mi; Yang, Se-Yeol; Yu, Kweon; Park, Doo-Sang; Oh, Hyun-Woo; Davis, Erica E; Schwartz, Charles E; Lee, Jeong-Soo; Kim, Hyung-Goo; Kim, Cheol-Hee

    2017-01-01

    DYRK1A maps to the Down syndrome critical region at 21q22. Mutations in this kinase-encoding gene have been reported to cause microcephaly associated with either intellectual disability or autism in humans. Intellectual disability accompanied by microcephaly was recapitulated in a murine model by overexpressing Dyrk1a which mimicked Down syndrome phenotypes. However, given embryonic lethality in homozygous knockout (KO) mice, no murine model studies could present sufficient evidence to link Dyrk1a dysfunction with autism. To understand the molecular mechanisms underlying microcephaly and autism spectrum disorders (ASD), we established an in vivo dyrk1aa KO model using zebrafish. We identified a patient with a mutation in the DYRK1A gene using microarray analysis. Circumventing the barrier of murine model studies, we generated a dyrk1aa KO zebrafish using transcription activator-like effector nuclease (TALEN)-mediated genome editing. For social behavioral tests, we have established a social interaction test, shoaling assay, and group behavior assay. For molecular analysis, we examined the neuronal activity in specific brain regions of dyrk1aa KO zebrafish through in situ hybridization with various probes including c-fos and crh which are the molecular markers for stress response. Microarray detected an intragenic microdeletion of DYRK1A in an individual with microcephaly and autism. From behavioral tests of social interaction and group behavior, dyrk1aa KO zebrafish exhibited social impairments that reproduce human phenotypes of autism in a vertebrate animal model. Social impairment in dyrk1aa KO zebrafish was further confirmed by molecular analysis of c-fos and crh expression. Transcriptional expression of c-fos and crh was lower than that of wild type fish in specific hypothalamic regions, suggesting that KO fish brains are less activated by social context. In this study, we established a zebrafish model to validate a candidate gene for autism in a vertebrate animal. These results illustrate the functional deficiency of DYRK1A as an underlying disease mechanism for autism. We also propose simple social behavioral assays as a tool for the broader study of autism candidate genes.

  1. Endocrinology of human female sexuality, mating, and reproductive behavior.

    PubMed

    Motta-Mena, Natalie V; Puts, David A

    2017-05-01

    Hormones orchestrate and coordinate human female sexual development, sexuality, and reproduction in relation to three types of phenotypic changes: life history transitions such as puberty and childbirth, responses to contextual factors such as caloric intake and stress, and cyclical patterns such as the ovulatory cycle. Here, we review the endocrinology underlying women's reproductive phenotypes, including sexual orientation and gender identity, mate preferences, competition for mates, sex drive, and maternal behavior. We highlight distinctive aspects of women's sexuality such as the possession of sexual ornaments, relatively cryptic fertile windows, extended sexual behavior across the ovulatory cycle, and a period of midlife reproductive senescence-and we focus on how hormonal mechanisms were shaped by selection to produce adaptive outcomes. We conclude with suggestions for future research to elucidate how hormonal mechanisms subserve women's reproductive phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Steve A.; Hazen, Samuel; Mullet, John

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to futuremore » strategies to optimize energy crop biomass yield.« less

  3. Hypergravity-induced altered behavior in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular mechanism of response to changes in gravity with a phenotypical outcome. Characterizing the changes in altered gravity that are consequential for the overall physiology of organisms is crucial for assessing the risks of long-term space travel.

  4. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

    PubMed

    Egan, Rupert J; Bergner, Carisa L; Hart, Peter C; Cachat, Jonathan M; Canavello, Peter R; Elegante, Marco F; Elkhayat, Salem I; Bartels, Brett K; Tien, Anna K; Tien, David H; Mohnot, Sopan; Beeson, Esther; Glasgow, Eric; Amri, Hakima; Zukowska, Zofia; Kalueff, Allan V

    2009-12-14

    The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.

  5. Movement ecology: size-specific behavioral response of an invasive snail to food availability.

    PubMed

    Snider, Sunny B; Gilliam, James F

    2008-07-01

    Immigration, emigration, migration, and redistribution describe processes that involve movement of individuals. These movements are an essential part of contemporary ecological models, and understanding how movement is affected by biotic and abiotic factors is important for effectively modeling ecological processes that depend on movement. We asked how phenotypic heterogeneity (body size) and environmental heterogeneity (food resource level) affect the movement behavior of an aquatic snail (Tarebia granifera), and whether including these phenotypic and environmental effects improves advection-diffusion models of movement. We postulated various elaborations of the basic advection diffusion model as a priori working hypotheses. To test our hypotheses we measured individual snail movements in experimental streams at high- and low-food resource treatments. Using these experimental movement data, we examined the dependency of model selection on resource level and body size using Akaike's Information Criterion (AIC). At low resources, large individuals moved faster than small individuals, producing a platykurtic movement distribution; including size dependency in the model improved model performance. In stark contrast, at high resources, individuals moved upstream together as a wave, and body size differences largely disappeared. The model selection exercise indicated that population heterogeneity is best described by the advection component of movement for this species, because the top-ranked model included size dependency in advection, but not diffusion. Also, all probable models included resource dependency. Thus population and environmental heterogeneities both influence individual movement behaviors and the population-level distribution kernels, and their interaction may drive variation in movement behaviors in terms of both advection rates and diffusion rates. A behaviorally informed modeling framework will integrate the sentient response of individuals in terms of movement and enhance our ability to accurately model ecological processes that depend on animal movement.

  6. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety

    PubMed Central

    Short, A K; Yeshurun, S; Powell, R; Perreau, V M; Fox, A; Kim, J H; Pang, T Y; Hannan, A J

    2017-01-01

    There is growing evidence that the preconceptual lifestyle and other environmental exposures of a father can significantly alter the physiological and behavioral phenotypes of their children. We and others have shown that paternal preconception stress, regardless of whether the stress was experienced during early-life or adulthood, results in offspring with altered anxiety and depression-related behaviors, attributed to hypothalamic–pituitary–adrenal axis dysregulation. The transgenerational response to paternal preconceptual stress is believed to be mediated by sperm-borne small noncoding RNAs, specifically microRNAs. As physical activity confers physical and mental health benefits for the individual, we used a model of voluntary wheel-running and investigated the transgenerational response to paternal exercise. We found that male offspring of runners had suppressed reinstatement of juvenile fear memory, and reduced anxiety in the light–dark apparatus during adulthood. No changes in these affective behaviors were observed in female offspring. We were surprised to find that running had a limited impact on sperm-borne microRNAs. The levels of three unique microRNAs (miR-19b, miR-455 and miR-133a) were found to be altered in the sperm of runners. In addition, we discovered that the levels of two species of tRNA-derived RNAs (tDRs)—tRNA-Gly and tRNA-Pro—were also altered by running. Taken together, we believe this is the first evidence that paternal exercise is associated with an anxiolytic behavioral phenotype of male offspring and altered levels of small noncoding RNAs in sperm. These small noncoding RNAs are known to have an impact on post-transcriptional gene regulation and can thus change the developmental trajectory of offspring brains and associated affective behaviors. PMID:28463242

  7. Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development.

    PubMed

    Bruining, Hilgo; Matsui, Asuka; Oguro-Ando, Asami; Kahn, René S; Van't Spijker, Heleen M; Akkermans, Guus; Stiedl, Oliver; van Engeland, Herman; Koopmans, Bastijn; van Lith, Hein A; Oppelaar, Hugo; Tieland, Liselotte; Nonkes, Lourens J; Yagi, Takeshi; Kaneko, Ryosuke; Burbach, J Peter H; Yamamoto, Nobuhiko; Kas, Martien J

    2015-10-01

    Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD.

    PubMed

    Lattante, Serena; de Calbiac, Hortense; Le Ber, Isabelle; Brice, Alexis; Ciura, Sorana; Kabashi, Edor

    2015-03-15

    Mutations in SQSTM1, encoding for the protein SQSTM1/p62, have been recently reported in 1-3.5% of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS/FTLD). Inclusions positive for SQSTM1/p62 have been detected in patients with neurodegenerative disorders, including ALS/FTLD. In order to investigate the pathogenic mechanisms induced by SQSTM1 mutations in ALS/FTLD, we developed a zebrafish model. Knock-down of the sqstm1 zebrafish ortholog, as well as impairment of its splicing, led to a specific phenotype, consisting of behavioral and axonal anomalies. Here, we report swimming deficits associated with shorter motor neuronal axons that could be rescued by the overexpression of wild-type human SQSTM1. Interestingly, no rescue of the loss-of-function phenotype was observed when overexpressing human SQSTM1 constructs carrying ALS/FTLD-related mutations. Consistent with its role in autophagy regulation, we found increased mTOR levels upon knock-down of sqstm1. Furthermore, treatment of zebrafish embryos with rapamycin, a known inhibitor of the mTOR pathway, yielded an amelioration of the locomotor phenotype in the sqstm1 knock-down model. Our results suggest that loss-of-function of SQSTM1 causes phenotypic features characterized by locomotor deficits and motor neuron axonal defects that are associated with a misregulation of autophagic processes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Can the Five Factor Model of Personality Account for the Variability of Autism Symptom Expression? Multivariate Approaches to Behavioral Phenotyping in Adult Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Schwartzman, Benjamin C.; Wood, Jeffrey J.; Kapp, Steven K.

    2016-01-01

    The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828;…

  10. Identifying eating behavior phenotypes and their correlates: A novel direction toward improving weight management interventions.

    PubMed

    Bouhlal, Sofia; McBride, Colleen M; Trivedi, Niraj S; Agurs-Collins, Tanya; Persky, Susan

    2017-04-01

    Common reports of over-response to food cues, difficulties with calorie restriction, and difficulty adhering to dietary guidelines suggest that eating behaviors could be interrelated in ways that influence weight management efforts. The feasibility of identifying robust eating phenotypes (showing face, content, and criterion validity) was explored based on well-validated individual eating behavior assessments. Adults (n = 260; mean age 34 years) completed online questionnaires with measurements of nine eating behaviors including: appetite for palatable foods, binge eating, bitter taste sensitivity, disinhibition, food neophobia, pickiness and satiety responsiveness. Discovery-based visualization procedures that have the combined strengths of heatmaps and hierarchical clustering were used to investigate: 1) how eating behaviors cluster, 2) how participants can be grouped within eating behavior clusters, and 3) whether group clustering is associated with body mass index (BMI) and dietary self-efficacy levels. Two distinct eating behavior clusters and participant groups that aligned within these clusters were identified: one with higher drive to eat and another with food avoidance behaviors. Participants' BMI (p = 0.0002) and dietary self-efficacy (p < 0.0001) were associated with cluster membership. Eating behavior clusters showed content and criterion validity based on their association with BMI (associated, but not entirely overlapping) and dietary self-efficacy. Identifying eating behavior phenotypes appears viable. These efforts could be expanded and ultimately inform tailored weight management interventions. Published by Elsevier Ltd.

  11. Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016

    PubMed Central

    Huvenne, Hélène; Dubern, Béatrice; Clément, Karine; Poitou, Christine

    2016-01-01

    Obesity results from a synergistic relationship between genes and the environment. The phenotypic expression of genetic factors involved in obesity is variable, allowing to distinguish several clinical pictures of obesity. Monogenic obesity is described as rare and severe early-onset obesity with abnormal feeding behavior and endocrine disorders. This is mainly due to autosomal recessive mutations in genes of the leptin-melanocortin pathway which plays a key role in the hypothalamic control of food intake. Melanocortin 4 receptor(MC4R)-linked obesity is characterized by the variable severity of obesity and no notable additional phenotypes. Mutations in the MC4R gene are involved in 2-3% of obese children and adults; the majority of these are heterozygous. Syndromic obesity is associated with mental retardation, dysmorphic features, and organ-specific developmental abnormalities. Additional genes participating in the development of hypothalamus and central nervous system have been regularly identified. But to date, not all involved genes have been identified so far. New diagnostic tools, such as whole-exome sequencing, will probably help to identify other genes. Managing these patients is challenging. Indeed, specific treatments are available only for specific types of monogenic obesity, such as leptin deficiency. Data on bariatric surgery are limited and controversial. New molecules acting on the leptin-melanocortin pathway are currently being developed. PMID:27241181

  12. Tracking footprints of artificial selection in the dog genome.

    PubMed

    Akey, Joshua M; Ruhe, Alison L; Akey, Dayna T; Wong, Aaron K; Connelly, Caitlin F; Madeoy, Jennifer; Nicholas, Thomas J; Neff, Mark W

    2010-01-19

    The size, shape, and behavior of the modern domesticated dog has been sculpted by artificial selection for at least 14,000 years. The genetic substrates of selective breeding, however, remain largely unknown. Here, we describe a genome-wide scan for selection in 275 dogs from 10 phenotypically diverse breeds that were genotyped for over 21,000 autosomal SNPs. We identified 155 genomic regions that possess strong signatures of recent selection and contain candidate genes for phenotypes that vary most conspicuously among breeds, including size, coat color and texture, behavior, skeletal morphology, and physiology. In addition, we demonstrate a significant association between HAS2 and skin wrinkling in the Shar-Pei, and provide evidence that regulatory evolution has played a prominent role in the phenotypic diversification of modern dog breeds. Our results provide a first-generation map of selection in the dog, illustrate how such maps can rapidly inform the genetic basis of canine phenotypic variation, and provide a framework for delineating the mechanistic basis of how artificial selection promotes rapid and pronounced phenotypic evolution.

  13. Mathematical Learning Disabilities in Special Populations: Phenotypic Variation and Cross-Disorder Comparisons

    PubMed Central

    Dennis, Maureen; Berch, Daniel B.; Mazzocco, Michèle M.M.

    2011-01-01

    What is mathematical learning disability (MLD)? The reviews in this special issue adopt different approaches to defining the construct of MLD. Collectively, they demonstrate the current status of efforts to establish a consensus definition and the challenges faced in this endeavor. In this commentary, we reflect upon the proposed pathways to mathematical learning difficulties and disabilities presented across the reviews. Specifically we consider how each of the reviews contributes to identifying the MLD phenotype by specifying the range of assets and deficits in mathematics, identifying sources of individual variation, and characterizing the natural progression of MLD over the life course. We show how principled comparisons across disorders address issues about the cognitive and behavioral co-morbidities of MLD, and whether commonalities in brain dysmorphology are associated with common mathematics performance profiles. We project the status of MLD research ten years hence with respect to theoretical gains, advances in methodology, and principled intervention studies. PMID:19213019

  14. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  15. Nuclear Matrix Association: Switching to the Invasive Cytotrophoblast

    PubMed Central

    Drennan, Kathryn J.; Linnemann, Amelia K.; Platts, Adrian E.; Heng, Henry H.; Armant, D. Randall; Krawetz, Stephen A.

    2010-01-01

    Abnormal trophoblast invasion is associated with the most common and most severe complications of human pregnancy. The biology of invasion, as well as the etiology of abnormal invasion remains poorly understood. The aim of this study was to characterize the transcriptome of the HTR-8/SVneo human cytotrophoblast cell line which displays well characterized invasive and non-invasive behavior, and to correlate the activity of the transcriptome with nuclear matrix attachment and cell phenotype. Comparison of the invasive to non-invasive HTR transcriptomes was unremarkable. In contrast, comparison of the MARs on chromosomes 14–18 revealed an increased number of MARs associated with the invasive phenotype. These attachment areas were more likely to be associated with silent rather than actively transcribed genes. This study supports that view that that nuclear matrix attachment may play an important role in cytotrophoblast invasion by ensuring specific silencing that facilitates invasion. PMID:20346505

  16. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    PubMed

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Structural variants in genes associated with human Williams-Beuren syndrome underlie stereotypical hypersociability in domestic dogs.

    PubMed

    vonHoldt, Bridgett M; Shuldiner, Emily; Koch, Ilana Janowitz; Kartzinel, Rebecca Y; Hogan, Andrew; Brubaker, Lauren; Wanser, Shelby; Stahler, Daniel; Wynne, Clive D L; Ostrander, Elaine A; Sinsheimer, Janet S; Udell, Monique A R

    2017-07-01

    Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1 , genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans.

  18. Neuroendocrine-Immune Circuits, Phenotypes, and Interactions

    PubMed Central

    Ashley, Noah T.; Demas, Gregory E.

    2016-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499

  19. Neuroendocrine-immune circuits, phenotypes, and interactions.

    PubMed

    Ashley, Noah T; Demas, Gregory E

    2017-01-01

    Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Neuropharmacological sequelae of persistent CNS viral infections: lessons from Borna disease virus.

    PubMed

    Solbrig, Marylou V; Koob, George F

    2003-03-01

    Borna Disease Virus (BDV) is a neurotropic RNA virus that is worldwide in distribution, causing movement and behavior disorders in a wide range of animal species. BDV has also been reported to be associated with neuropsychiatric diseases of humans by serologic study and by recovery of nucleic acid or virus from blood or brain. Natural infections of horses and sheep produce encephalitis with erratic excited behaviors, hyperkinetic movement or gait abnormalities; naturally infected cats have ataxic "staggering disease." Experimentally infected primates develop hyperactivity, aggression, disinhibition, then apathy; prosimians (lower primates) have hyperactivity, circadian disruption, abnormal social and dominance behaviors, and postural disorders. However, the neuropharmacological determinants of BD phenotypes in laboratory and natural hosts are incompletely understood. Here we review how experimentally infected rodents have provided models for examining behavioral, pharmacologic, and biochemical responses to viral challenge, and how rodents experimentally infected as neonates or as adolescents are providing models for examining age-specific neuropharmacological adaptations to viral injury.

  1. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior.

    PubMed

    McCarthy, Margaret M; Wright, Christopher L; Schwarz, Jaclyn M

    2009-05-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes.

  2. New tricks by an old dogma: Mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior

    PubMed Central

    McCarthy, Margaret M.; Wright, Christopher L.; Schwarz, Jaclyn M.

    2009-01-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes. PMID:19682425

  3. Genetics of Addiction: Future Focus on Gene × Environment Interaction?

    PubMed

    Vink, Jacqueline M

    2016-09-01

    The heritability of substance use is moderate to high. Successful efforts to find genetic variants associated with substance use (smoking, alcohol, cannabis) have been undertaken by large consortia. However, the proportion of phenotypic variance explained by the identified genetic variants is small. Interestingly, there is overlap between the genetic variants that influence different substances. Moreover, there are sets of "substance-specific" genes and sets of genes contributing to a "vulnerability for addictive behavior" in general. It is important to recognize that genes alone do not determine addiction phenotypes: Environmental factors such as parental monitoring, peer pressure, or socioeconomic status also play an important role. Despite a rich epidemiologic literature focused on the social determinants of substance use, few studies have examined the moderation of genetic influences like gene-environment (G × E) interactions. Understanding this balance may hold the key to understanding the individual differences in substance use, abuse, and addictive behavior. Recommendations for future research are described in this commentary and include increasing the power of G × E studies by using state-of-the-art methods such as polygenic risk scores instead of single genetic variants and taking genetic overlap between substances into account. Future genetic studies should also investigate environmental risk factors for addictive behavior more extensively to unravel the interaction between nature and nurture. Focusing on G × E interactions not only will give insight into the underlying biological mechanism but will also characterize subgroups (based on environmental factors) at high risk for addictive behaviors. With this information, we could bridge the gap between fundamental research and applications for society.

  4. The MC1R and ASIP Coat Color Loci May Impact Behavior in the Horse

    PubMed Central

    Jacobs, Lauren N.; Staiger, Elizabeth A.; Albright, Julia D.

    2016-01-01

    Shared signaling pathways utilized by melanocytes and neurons result in pleiotropic traits of coat color and behavior in many mammalian species. For example, in humans polymorphisms at MC1R cause red hair, increased heat sensitivity, and lower pain tolerance. In deer mice, rats, and foxes, ASIP polymorphisms causing black coat color lead to more docile demeanors and reduced activity. Horse (Equus caballus) base coat color is primarily determined by polymorphisms at the Melanocortin-1 Receptor (MC1R) and Agouti Signaling Protein (ASIP) loci, creating a black, bay, or chestnut coat. Our goal was to investigate correlations between genetic loci for coat color and temperament traits in the horse. We genotyped a total of 215 North American Tennessee Walking Horses for the 2 most common alleles at the MC1R (E/e) and ASIP (A/a) loci using previously published PCR and RFLP methods. The horses had a mean age of 10.5 years and comprised 83 geldings, 25 stallions, and 107 mares. To assess behavior, we adapted a previously published survey for handlers to score horses from 1 to 9 on 20 questions related to specific aspects of temperament. We utilized principle component analysis to combine the individual survey scores into 4 factors of variation in temperament phenotype. A factor component detailing self-reliance correlated with genotypes at the ASIP locus; black mares (aa) were more independent than bay mares (A_) (P = 0.0063). These findings illuminate a promising and novel animal model for future study of neuroendocrine mechanisms in complex behavioral phenotypes. PMID:26884605

  5. Behavioral Phenotyping of Murine Disease Models with the Integrated Behavioral Station (INBEST).

    PubMed

    Sakic, Boris; Cooper, Marcella P A; Taylor, Sarah E; Stojanovic, Milica; Zagorac, Bosa; Kapadia, Minesh

    2015-04-23

    Due to rapid advances in genetic engineering, small rodents have become the preferred subjects in many disciplines of biomedical research. In studies of chronic CNS disorders, there is an increasing demand for murine models with high validity at the behavioral level. However, multiple pathogenic mechanisms and complex functional deficits often impose challenges to reliably measure and interpret behavior of chronically sick mice. Therefore, the assessment of peripheral pathology and a behavioral profile at several time points using a battery of tests are required. Video-tracking, behavioral spectroscopy, and remote acquisition of physiological measures are emerging technologies that allow for comprehensive, accurate, and unbiased behavioral analysis in a home-base-like setting. This report describes a refined phenotyping protocol, which includes a custom-made monitoring apparatus (Integrated Behavioral Station, INBEST) that focuses on prolonged measurements of basic functional outputs, such as spontaneous activity, food/water intake and motivated behavior in a relatively stress-free environment. Technical and conceptual improvements in INBEST design may further promote reproducibility and standardization of behavioral studies.

  6. Cortisol in mother's milk across lactation reflects maternal life history and predicts infant temperament.

    PubMed

    Hinde, Katie; Skibiel, Amy L; Foster, Alison B; Del Rosso, Laura; Mendoza, Sally P; Capitanio, John P

    2015-01-01

    The maternal environment exerts important influences on offspring mass/growth, metabolism, reproduction, neurobiology, immune function, and behavior among birds, insects, reptiles, fish, and mammals. For mammals, mother's milk is an important physiological pathway for nutrient transfer and glucocorticoid signaling that potentially influences offspring growth and behavioral phenotype. Glucocorticoids in mother's milk have been associated with offspring behavioral phenotype in several mammals, but studies have been handicapped by not simultaneously evaluating milk energy density and yield. This is problematic as milk glucocorticoids and nutrients likely have simultaneous effects on offspring phenotype. We investigated mother's milk and infant temperament and growth in a cohort of rhesus macaque ( Macaca mulatta ) mother-infant dyads at the California National Primate Research Center ( N = 108). Glucocorticoids in mother's milk, independent of available milk energy, predicted a more Nervous, less Confident temperament in both sons and daughters. We additionally found sex differences in the windows of sensitivity and the magnitude of sensitivity to maternal-origin glucocorticoids. Lower parity mothers produced milk with higher cortisol concentrations. Lastly, higher cortisol concentrations in milk were associated with greater infant weight gain across time. Taken together, these results suggest that mothers with fewer somatic resources, even in captivity, may be "programming" through cortisol signaling, behaviorally cautious offspring that prioritize growth. Glucocorticoids ingested through milk may importantly contribute to the assimilation of available milk energy, development of temperament, and orchestrate, in part, the allocation of maternal milk energy between growth and behavioral phenotype.

  7. Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament

    PubMed Central

    Skibiel, Amy L.; Foster, Alison B.; Del Rosso, Laura; Mendoza, Sally P.; Capitanio, John P.

    2015-01-01

    The maternal environment exerts important influences on offspring mass/growth, metabolism, reproduction, neurobiology, immune function, and behavior among birds, insects, reptiles, fish, and mammals. For mammals, mother’s milk is an important physiological pathway for nutrient transfer and glucocorticoid signaling that potentially influences offspring growth and behavioral phenotype. Glucocorticoids in mother’s milk have been associated with offspring behavioral phenotype in several mammals, but studies have been handicapped by not simultaneously evaluating milk energy density and yield. This is problematic as milk glucocorticoids and nutrients likely have simultaneous effects on offspring phenotype. We investigated mother’s milk and infant temperament and growth in a cohort of rhesus macaque (Macaca mulatta) mother–infant dyads at the California National Primate Research Center (N = 108). Glucocorticoids in mother’s milk, independent of available milk energy, predicted a more Nervous, less Confident temperament in both sons and daughters. We additionally found sex differences in the windows of sensitivity and the magnitude of sensitivity to maternal-origin glucocorticoids. Lower parity mothers produced milk with higher cortisol concentrations. Lastly, higher cortisol concentrations in milk were associated with greater infant weight gain across time. Taken together, these results suggest that mothers with fewer somatic resources, even in captivity, may be “programming” through cortisol signaling, behaviorally cautious offspring that prioritize growth. Glucocorticoids ingested through milk may importantly contribute to the assimilation of available milk energy, development of temperament, and orchestrate, in part, the allocation of maternal milk energy between growth and behavioral phenotype. PMID:25713475

  8. Developmental mechanisms underlying variable, invariant and plastic phenotypes

    PubMed Central

    Abley, Katie; Locke, James C. W.; Leyser, H. M. Ottoline

    2016-01-01

    Background Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. Scope Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. Conclusion In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner. PMID:27072645

  9. Impaired clock output by altered connectivity in the circadian network.

    PubMed

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity.

  10. Region-specific deletions of RIM1 reproduce a subset of global RIM1α−/− phenotypes

    PubMed Central

    Haws, M E; Kaeser, P S; Jarvis, D L; Südhof, T C; Powell, C M

    2012-01-01

    The presynaptic protein RIM1α mediates multiple forms of presynaptic plasticity at both excitatory and inhibitory synapses. Previous studies of mice lacking RIM1α (RIM1α−/− throughout the brain showed that deletion of RIM1α results in multiple behavioral abnormalities. In an effort to begin to delineate the brain regions in which RIM1 deletion mediates these abnormal behaviors, we used conditional (floxed) RIM1 knockout mice (fRIM1). By crossing these fRIM1 mice to previously characterized transgenic cre lines, we aimed to delete RIM1 selectively in the dentate gyrus (DG), using a specific preproopiomelanocortin promoter driving cre recombinase (POMC-cre) line , and in pyramidal neurons of the CA3 region of hippocampus, using the kainate receptor subunit 1 promoter driving cre recombinase (KA-cre). Neither of these cre driver lines was uniquely selective to the targeted regions. In spite of this, we were able to reproduce a subset of the global RIM1α−/− behavioral abnormalities, thereby narrowing the brain regions in which loss of RIM1 is sufficient to produce these behavioral differences. Most interestingly, hypersensitivity to the pyschotomimetic MK-801 was shown in mice lacking RIM1 selectively in the DG, arcuate nucleus of the hypothalamus and select cerebellar neurons, implicating novel brain regions and neuronal subtypes in this behavior. PMID:22103334

  11. MicroRNA-133 Inhibits Behavioral Aggregation by Controlling Dopamine Synthesis in Locusts

    PubMed Central

    Wang, Yanli; Guo, Xiaojiao; He, Jing; Kang, Le

    2014-01-01

    Phenotypic plasticity is ubiquitous and primarily controlled by interactions between environmental and genetic factors. The migratory locust, a worldwide pest, exhibits pronounced phenotypic plasticity, which is a population density-dependent transition that occurs between the gregarious and solitary phases. Genes involved in dopamine synthesis have been shown to regulate the phase transition of locusts. However, the function of microRNAs in this process remains unknown. In this study, we report the participation of miR-133 in dopamine production and the behavioral transition by negatively regulating two critical genes, henna and pale, in the dopamine pathway. miR-133 participated in the post-transcriptional regulation of henna and pale by binding to their coding region and 3′ untranslated region, respectively. miR-133 displayed cellular co-localization with henna/pale in the protocerebrum, and its expression in the protocerebrum was negatively correlated with henna and pale expression. Moreover, miR-133 agomir delivery suppressed henna and pale expression, which consequently decreased dopamine production, thus resulting in the behavioral shift of the locusts from the gregarious phase to the solitary phase. Increasing the dopamine content could rescue the solitary phenotype, which was induced by miR-133 agomir delivery. Conversely, miR-133 inhibition increased the expression of henna and pale, resulting in the gregarious-like behavior of solitary locusts; this gregarious phenotype could be rescued by RNA interference of henna and pale. This study shows the novel function and modulation pattern of a miRNA in phenotypic plasticity and provides insight into the underlying molecular mechanisms of the phase transition of locusts. PMID:24586212

  12. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts.

    PubMed

    Yang, Meiling; Wei, Yuanyuan; Jiang, Feng; Wang, Yanli; Guo, Xiaojiao; He, Jing; Kang, Le

    2014-02-01

    Phenotypic plasticity is ubiquitous and primarily controlled by interactions between environmental and genetic factors. The migratory locust, a worldwide pest, exhibits pronounced phenotypic plasticity, which is a population density-dependent transition that occurs between the gregarious and solitary phases. Genes involved in dopamine synthesis have been shown to regulate the phase transition of locusts. However, the function of microRNAs in this process remains unknown. In this study, we report the participation of miR-133 in dopamine production and the behavioral transition by negatively regulating two critical genes, henna and pale, in the dopamine pathway. miR-133 participated in the post-transcriptional regulation of henna and pale by binding to their coding region and 3' untranslated region, respectively. miR-133 displayed cellular co-localization with henna/pale in the protocerebrum, and its expression in the protocerebrum was negatively correlated with henna and pale expression. Moreover, miR-133 agomir delivery suppressed henna and pale expression, which consequently decreased dopamine production, thus resulting in the behavioral shift of the locusts from the gregarious phase to the solitary phase. Increasing the dopamine content could rescue the solitary phenotype, which was induced by miR-133 agomir delivery. Conversely, miR-133 inhibition increased the expression of henna and pale, resulting in the gregarious-like behavior of solitary locusts; this gregarious phenotype could be rescued by RNA interference of henna and pale. This study shows the novel function and modulation pattern of a miRNA in phenotypic plasticity and provides insight into the underlying molecular mechanisms of the phase transition of locusts.

  13. The Social Behavioral Phenotype in Boys and Girls with an Extra X Chromosome (Klinefelter Syndrome and Trisomy X): A Comparison with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    van Rijn, Sophie; Stockmann, Lex; Borghgraef, Martine; Bruining, Hilgo; van Ravenswaaij-Arts, Conny; Govaerts, Lutgarde; Hansson, Kerstin; Swaab, Hanna

    2014-01-01

    The present study aimed to gain more insight in the social behavioral phenotype, and related autistic symptomatology, of children with an extra X chromosome in comparison to children with ASD. Participants included 60 children with an extra X chromosome (34 boys with Klinefelter syndrome and 26 girls with Trisomy X), 58 children with ASD and 106…

  14. Oxytocin and vasopressin neural networks: implications for social behavioral diversity and translational neuroscience

    PubMed Central

    Johnson, Zachary V.; Young, Larry J.

    2017-01-01

    Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. Individual and species-level variation in central organization of oxytocin and vasopressin systems has been linked to individual and species variation in social learning and behavior. In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts. PMID:28434591

  15. Phenotypic plasticity as an adaptation to a functional trade-off

    PubMed Central

    Yi, Xiao; Dean, Antony M

    2016-01-01

    We report the evolution of a phenotypically plastic behavior that circumvents the hardwired trade-off that exists when resources are partitioned between growth and motility in Escherichia coli. We propagated cultures in a cyclical environment, alternating between growth up to carrying capacity and selection for chemotaxis. Initial adaptations boosted overall swimming speed at the expense of growth. The effect of the trade-off was subsequently eased through a change in behavior; while individual cells reduced motility during exponential growth, the faction of the population that was motile increased as the carrying capacity was approached. This plastic behavior was produced by a single amino acid replacement in FliA, a regulatory protein central to the chemotaxis network. Our results illustrate how phenotypic plasticity potentiates evolvability by opening up new regions of the adaptive landscape. DOI: http://dx.doi.org/10.7554/eLife.19307.001 PMID:27692064

  16. Identifying Novel Phenotypes of Vulnerability and Resistance to Activity-Based Anorexia in Adolescent Female Rats

    PubMed Central

    Barbarich-Marsteller, Nicole C.; Underwood, Mark D.; Foltin, Richard W.; Myers, Michael M.; Walsh, B. Timothy; Barrett, Jeffrey S.; Marsteller, Douglas A.

    2018-01-01

    Objective Activity-based anorexia is a translational rodent model that results in severe weight loss, hyperactivity, and voluntary self-starvation. The goal of our investigation was to identify vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats. Method Sprague-Dawley rats were maintained under conditions of restricted access to food (N = 64; or unlimited access, N = 16) until experimental exit, predefined as a target weight loss of 30–35% or meeting predefined criteria for animal health. Nonlinear mixed effects statistical modeling was used to describe wheel running behavior, time to event analysis was used to assess experimental exit, and a regressive partitioning algorithm was used to classify phenotypes. Results Objective criteria were identified for distinguishing novel phenotypes of activity-based anorexia, including a vulnerable phenotype that conferred maximal hyperactivity, minimal food intake, and the shortest time to experimental exit, and a resistant phenotype that conferred minimal activity and the longest time to experimental exit. Discussion The identification of objective criteria for defining vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats provides an important framework for studying the neural mechanisms that promote vulnerability to or protection against the development of self-starvation and hyperactivity during adolescence. Ultimately, future studies using these novel phenotypes may provide important translational insights into the mechanisms that promote these maladaptive behaviors characteristic of anorexia nervosa. PMID:23853140

  17. Identifying novel phenotypes of vulnerability and resistance to activity-based anorexia in adolescent female rats.

    PubMed

    Barbarich-Marsteller, Nicole C; Underwood, Mark D; Foltin, Richard W; Myers, Michael M; Walsh, B Timothy; Barrett, Jeffrey S; Marsteller, Douglas A

    2013-11-01

    Activity-based anorexia is a translational rodent model that results in severe weight loss, hyperactivity, and voluntary self-starvation. The goal of our investigation was to identify vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats. Sprague-Dawley rats were maintained under conditions of restricted access to food (N = 64; or unlimited access, N = 16) until experimental exit, predefined as a target weight loss of 30-35% or meeting predefined criteria for animal health. Nonlinear mixed effects statistical modeling was used to describe wheel running behavior, time to event analysis was used to assess experimental exit, and a regressive partitioning algorithm was used to classify phenotypes. Objective criteria were identified for distinguishing novel phenotypes of activity-based anorexia, including a vulnerable phenotype that conferred maximal hyperactivity, minimal food intake, and the shortest time to experimental exit, and a resistant phenotype that conferred minimal activity and the longest time to experimental exit. The identification of objective criteria for defining vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats provides an important framework for studying the neural mechanisms that promote vulnerability to or protection against the development of self-starvation and hyperactivity during adolescence. Ultimately, future studies using these novel phenotypes may provide important translational insights into the mechanisms that promote these maladaptive behaviors characteristic of anorexia nervosa. Copyright © 2013 Wiley Periodicals, Inc.

  18. Habit Reversal Therapy for Body-Focused Repetitive Behaviors in Williams Syndrome: A Case Study

    PubMed Central

    Klein-Tasman, Bonita P.

    2013-01-01

    Williams syndrome (WS) is genetic neurodevelopmental disorder with a well-characterized cognitive and behavioral phenotype. Research has consistently demonstrated high rates of psychopathology in this population; however, little research has examined the use of empirically-supported psychosocial interventions in those with WS. The current case study reports on the use of Habit Reversal Therapy (HRT) to treat multiple body-focused repetitive behaviors in a child with WS. Although HRT is a well-established cognitive-behavioral intervention for body-focused repetitive behaviors, it has been infrequently used in populations with developmental disabilities. An etiologically-informed approach was used to adapt HRT to fit the known behavioral and cognitive phenotype of WS. Results suggest that HRT may be beneficial for this population. Modified treatment elements are described and future research areas highlighted. PMID:24357918

  19. Multiple autism-like behaviors in a novel transgenic mouse model

    PubMed Central

    Hamilton, Shannon M.; Spencer, Corinne M.; Harrison, Wilbur R.; Yuva-Paylor, Lisa A.; Graham, Deanna F.; Daza, Ray A.M.; Hevner, Robert F.; Overbeek, Paul A.; Paylor, Richard

    2011-01-01

    Autism spectrum disorder (ASD) diagnoses are behaviorally-based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach. It was determined that the transgene integrated within a noncoding region on the X chromosome. The MALTT line exhibited a complete repertoire of ASD-like behavioral deficits in all three domains required for an ASD diagnosis: reciprocal social interaction, communication, and repetitive or inflexible behaviors. Specifically, MALTT male mice showed deficits in social interaction and interest, abnormalities in pup and juvenile ultrasonic vocalization communications, and exhibited a repetitive stereotypy. Abnormalities were also observed in the domain of sensory function, a secondary phenotype prevalently associated with ASD. Mapping and expression studies suggested that the Fam46 gene family may be linked to the observed ASD-related behaviors. The MALTT line provides a unique genetic model for examining the underlying biological mechanisms involved in ASD-related behaviors. PMID:21093492

  20. Sequential social experiences interact to modulate aggression but not brain gene expression in the honey bee (Apis mellifera).

    PubMed

    Rittschof, Clare C

    2017-01-01

    In highly structured societies, individuals behave flexibly and cooperatively in order to achieve a particular group-level outcome. However, even in social species, environmental inputs can have long lasting effects on individual behavior, and variable experiences can even result in consistent individual differences and constrained behavioral flexibility. Despite the fact that such constraints on behavior could have implications for behavioral optimization at the social group level, few studies have explored how social experiences accumulate over time, and the mechanistic basis of these effects. In the current study, I evaluate how sequential social experiences affect individual and group level aggressive phenotypes, and individual brain gene expression, in the highly social honey bee ( Apis mellifera ). To do this, I combine a whole colony chronic predator disturbance treatment with a lab-based manipulation of social group composition. Compared to the undisturbed control, chronically disturbed individuals show lower aggression levels overall, but also enhanced behavioral flexibility in the second, lab-based social context. Disturbed bees display aggression levels that decline with increasing numbers of more aggressive, undisturbed group members. However, group level aggressive phenotypes are similar regardless of the behavioral tendencies of the individuals that make up the group, suggesting a combination of underlying behavioral tendency and negative social feedback influences the aggressive behaviors displayed, particularly in the case of disturbed individuals. An analysis of brain gene expression showed that aggression related biomarker genes reflect an individual's disturbance history, but not subsequent social group experience or behavioral outcomes. In highly social animals with collective behavioral phenotypes, social context may mask underlying variation in individual behavioral tendencies. Moreover, gene expression patterns may reflect behavioral tendency, while behavioral outcomes are further regulated by social cues perceived in real-time.

  1. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID

    PubMed Central

    van Bon, Bregje W.M.; Coe, Bradley P.; Bernier, Raphael; Green, Cherie; Gerdts, Jennifer; Witherspoon, Kali; Kleefstra, Tjitske; Willemsen, Marjolein H.; Kumar, Raman; Bosco, Paolo; Fichera, Marco; Li, Deana; Amaral, David; Cristofoli, Francesca; Peeters, Hilde; Haan, Eric; Romano, Corrado; Mefford, Heather C.; Scheffer, Ingrid; Gecz, Jozef; de Vries, Bert B.A.; Eichler, Evan E.

    2015-01-01

    Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) maps to the Down syndrome critical region; copy number increase of this gene are thought to play a major role in the neurocognitive deficits associated with Trisomy 21. Truncation of DYRK1A in patients with developmental delay (DD) and autism spectrum disorder (ASD) suggests a different pathology associated with loss-of-function mutations. To understand the phenotypic spectrum associated with DYRK1A mutations, we resequenced the gene in 7,162 ASD/DD patients (2,446 previously reported) and 2,169 unaffected siblings and performed a detailed phenotypic assessment on nine patients. Comparison of our data and published cases with 8,696 controls identified a significant enrichment of DYRK1A truncating mutations (p = 0.00851) and an excess of de novo mutations (p = 2.53×10−10) among ASD/intellectual disability (ID) patients. Phenotypic comparison of all novel (n = 5) and recontacted (n = 3) cases to previous case reports, including larger CNV and translocation events (n = 7), identifies a syndromal disorder among the 15 patients. It is characterized by ID, ASD, microcephaly, intrauterine growth retardation, febrile seizures in infancy, impaired speech, stereotypic behavior, hypertonia, and a specific facial gestalt. We conclude that mutations in DYRK1A define a syndromic form of ASD and ID with neurodevelopmental defects consistent with murine and Drosophila knockout models. PMID:25707398

  2. Selective preservation of cholinergic MeCP2 rescues specific Rett-syndrome-like phenotypes in MeCP2stop mice.

    PubMed

    Zhou, Huanhuan; Wu, Wei; Zhang, Ying; He, Haiyang; Yuan, Zhefeng; Zhu, Zhiwei; Zhao, Zhengyan

    2017-03-30

    RTT is a neurodevelopmental disorder characterized by growth regression, motor dysfunction, stereotypic hand movements, and autism features. Typical Rett syndrome (RTT) is predominantly caused by mutations in X-linked MeCP2 gene which encodes methyl-CpG-binding protein 2 (MeCP2). The brain-abundant MeCP2 protein mainly functions as a transcriptional regulator for neurodevelopment-associated genes. Specific functions of MeCP2 in certain neuron types remain to be known. Although cholinergic system is an important modulating system in brain, how MeCP2 in cholinergic neurons contribute to RTT has not been clearly understood. Here we use a mouse model with selectively activated endogenous MeCP2 in cholinergic neurons in otherwise MeCP2 stop mice to determine the cholinergic MeCP2 effects on rescuing the RTT-like phenotypes. We found cholinergic MeCP2 preservation could reverse some aspects of the RTT-like phenotypes in mice including hypolocomotion and increased anxiety level, and delay the onset of underweight, instead of improving the hypersocial abnormality and the poor general conditions such as short lifespan, low brain weight, and increasing severity score. Our findings suggest that selective activation of cholinergic MeCP2 is sufficient to reverse the locomotor impairment and increased anxiety-like behaviors at least in early symptomatic stage, supporting future development of RTT therapies associated with cholinergic system. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dexmedetomidine ameliorates nocifensive behavior in humanized sickle cell mice

    PubMed Central

    Calhoun, Gabriela; Wang, Li; Almeida, Luis E.F.; Kenyon, Nicholas; Afsar, Nina; Nouraie, Mehdi; Finkel, Julia C.; Quezado, Zenaide M.N.

    2015-01-01

    Patients with sickle cell disease (SCD) can have recurrent episodes of vaso-occlusive crises, which are associated with severe pain. While opioids are the mainstay of analgesic therapy, in some patients, increasing opioid use results in continued and increasing pain. Many believe that this phenomenon results from opioid-induced tolerance or hyperalgesia or that SCD pain involves non-opioid-responsive mechanisms. Dexmedetomidine, a specific α2-adrenoreceptor agonist, which has sedative and analgesic properties, reduces opioid requirements, and can facilitate opioid withdrawal in clinical settings. We hypothesized that dexmedetomidine would ameliorate the nociception phenotype of SCD mice. Townes and BERK SCD mice, strains known to have altered nociception phenotypes, were used in a crossover preclinical trial that measured nocifensive behavior before and after treatment with dexmedetomidine or vehicle. In a linear dose-effect relationship, over 60-min, dexmedetomidine, compared with vehicle, significantly increased hot plate latency in Townes and BERK mice (P≤0.006). In sickling, but not control mice, dexmedetomidine improved grip force, an indicator of muscle pain (P=0.002). As expected, dexmedetomidine had a sedative effect in sickling and control mice as it decreased wakefulness scores compared with vehicle (all P<0.001). Interestingly, the effects of dexmedetomidine on hot plate latency and wakefulness scores were different in sickling and control mice, i.e., dexmedetomidine-related increases in hotplate latency and decreases in wakefulness scores were significantly smaller in Townes sickling compared to control mice. In conclusion, these findings of beneficial effects of dexmedetomidine on the nociception phenotype in SCD mice might support the conduct of studies of dexmedetomidine in SCD patients. PMID:25724786

  4. Two distinct symptom-based phenotypes of depression in epilepsy yield specific clinical and etiological insights.

    PubMed

    Rayner, Genevieve; Jackson, Graeme D; Wilson, Sarah J

    2016-11-01

    Depression is common but underdiagnosed in epilepsy. A quarter of patients meet criteria for a depressive disorder, yet few receive active treatment. We hypothesize that the presentation of depression is less recognizable in epilepsy because the symptoms are heterogeneous and often incorrectly attributed to the secondary effects of seizures or medication. Extending the ILAE's new phenomenological approach to classification of the epilepsies to include psychiatric comorbidity, we use data-driven profiling of the symptoms of depression to perform a preliminary investigation of whether there is a distinctive symptom-based phenotype of depression in epilepsy that could facilitate its recognition in the neurology clinic. The psychiatric and neuropsychological functioning of 91 patients with focal epilepsy was compared with that of 77 healthy controls (N=168). Cluster analysis of current depressive symptoms identified three clusters: one comprising nondepressed patients and two symptom-based phenotypes of depression. The 'Cognitive' phenotype (base rate=17%) was characterized by symptoms taking the form of self-critical cognitions and dysphoria and was accompanied by pervasive memory deficits. The 'Somatic' phenotype (7%) was characterized by vegetative depressive symptoms and anhedonia and was accompanied by greater anxiety. It is hoped that identification of the features of these two phenotypes will ultimately facilitate improved detection and diagnosis of depression in patients with epilepsy and thereby lead to appropriate and timely treatment, to the benefit of patient wellbeing and the potential efficacy of treatment of the seizure disorder. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Habituation of medaka (Oryzias latipes) demonstrated by open-field testing.

    PubMed

    Matsunaga, Wataru; Watanabe, Eiji

    2010-10-01

    Habituation to novel environments is frequently studied to analyze cognitive phenotypes in animals, and an open-field test is generally conducted to investigate the changes that occur in animals during habituation. The test has not been used in behavioral studies of medaka (Oryzias latipes), which is recently being used in behavioral research. Therefore, we examined the open-field behavior of medaka on the basis of temporal changes in 2 conventional indexes of locomotion and position. The findings of our study clearly showed that medaka changed its behavior through multiple temporal phases as it became more familiar with new surroundings; this finding is consistent with those of other ethological studies in animals. During repeated open-field testing on 2 consecutive days, we observed that horizontal locomotion on the second day was less than that on the first day, which suggested that habituation is retained in fish for days. This temporal habituation was critically affected by water factors or visual cues of the tank, thereby suggesting that fish have spatial memory of their surroundings. Thus, the data from this study will afford useful fundamental information for behavioral phenotyping of medaka and for elucidating cognitive phenotypes in animals. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. The pharmacogenetics of body odor: as easy as ABCC?

    PubMed

    Brown, Sara

    2013-07-01

    ABCC11 genotype affects apocrine secretory cell function and determines individual body odor phenotype. Rodriguez et al. have applied genetic epidemiology using predetermined phenotype data to demonstrate an association between a single-nucleotide polymorphism (rs17822931) and the human behavior of deodorant application. Individuals with the ABCC11 genotype predicting a nonodorous phenotype report a significantly lower frequency of deodorant use.

  7. Advanced transgenic approaches to understand alcohol-related phenotypes in animals.

    PubMed

    Bilbao, Ainhoa

    2013-01-01

    During the past two decades, the use of genetically manipulated animal models in alcohol research has greatly improved the understanding of the mechanisms underlying alcohol addiction. In this chapter, we present an overview of the progress made in this field by summarizing findings obtained from studies of mice harboring global and conditional mutations in genes that influence alcohol-related phenotypes. The first part reviews behavioral paradigms for modeling the different phases of the alcohol addiction cycle and other alcohol-induced behavioral phenotypes in mice. The second part reviews the current data available using genetic models targeting the main neurotransmitter and neuropeptide systems involved in the reinforcement and stress pathways, focusing on the phenotypes modeling the alcohol addiction cycle. Finally, the third part will discuss the current findings and future directions, and proposes advanced transgenic mouse models for their potential use in alcohol research.

  8. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae)

    PubMed Central

    Cirino, Lauren A.; Miller, Christine W.

    2017-01-01

    Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae) spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata. This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak) over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon) decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this study is far from comprehensive, it provides tantalizing patterns that suggest many directions for future research. PMID:28106715

  9. Phenotypic and genetic overlap between autistic traits at the extremes of the general population.

    PubMed

    Ronald, Angelica; Happé, Francesca; Price, Thomas S; Baron-Cohen, Simon; Plomin, Robert

    2006-10-01

    To investigate children selected from a community sample for showing extreme autistic-like traits and to assess the degree to which these individual traits--social impairments (SIs), communication impairments (CIs), and restricted repetitive behaviors and interests (RRBIs)--are caused by genes and environments, whether all of them are caused by the same genes and environments, and how often they occur together (as required by an autism diagnosis). The most extreme-scoring 5% were selected from 3,419 8-year-old pairs in the Twins Early Development Study assessed on the Childhood Asperger Syndrome Test. Phenotypic associations between extreme traits were compared with associations among the full-scale scores. Genetic associations between extreme traits were quantified using bivariate DeFries-Fulker extremes analysis. Phenotypic relationships between extreme SIs, CIs, and RRBIs were modest. There was a degree of genetic overlap between them, but also substantial genetic specificity. This first twin study assessing the links between extreme individual autistic-like traits (SIs, CIs, and RRBIs) found that all are highly heritable but show modest phenotypic and genetic overlap. This finding concurs with that of an earlier study from the same cohort that showed that a total autistic symptoms score at the extreme showed high heritability and that SIs, CIs, and RRBIs show weak links in the general population. This new finding has relevance for both clinical models and future molecular genetic studies.

  10. Sex Differences in Autism-Like Behavioral Phenotypes and Postsynaptic Receptors Expression in the Prefrontal Cortex of TERT Transgenic Mice.

    PubMed

    Kim, Ki Chan; Cho, Kyu Suk; Yang, Sung Min; Gonzales, Edson Luck; Valencia, Schley; Eun, Pyeong Hwa; Choi, Chang Soon; Mabunga, Darine Froy; Kim, Ji-Woon; Noh, Judy Kyoungju; Kim, Hee Jin; Jeon, Se Jin; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2017-07-01

    Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.

  11. The light spot test: Measuring anxiety in mice in an automated home-cage environment.

    PubMed

    Aarts, Emmeke; Maroteaux, Gregoire; Loos, Maarten; Koopmans, Bastijn; Kovačević, Jovana; Smit, August B; Verhage, Matthijs; Sluis, Sophie van der

    2015-11-01

    Behavioral tests of animals in a controlled experimental setting provide a valuable tool to advance understanding of genotype-phenotype relations, and to study the effects of genetic and environmental manipulations. To optimally benefit from the increasing numbers of genetically engineered mice, reliable high-throughput methods for comprehensive behavioral phenotyping of mice lines have become a necessity. Here, we describe the development and validation of an anxiety test, the light spot test, that allows for unsupervised, automated, high-throughput testing of mice in a home-cage system. This automated behavioral test circumvents bias introduced by pretest handling, and enables recording both baseline behavior and the behavioral test response over a prolonged period of time. We demonstrate that the light spot test induces a behavioral response in C57BL/6J mice. This behavior reverts to baseline when the aversive stimulus is switched off, and is blunted by treatment with the anxiolytic drug Diazepam, demonstrating predictive validity of the assay, and indicating that the observed behavioral response has a significant anxiety component. Also, we investigated the effectiveness of the light spot test as part of sequential testing for different behavioral aspects in the home-cage. Two learning tests, administered prior to the light spot test, affected the light spot test parameters. The light spot test is a novel, automated assay for anxiety-related high-throughput testing of mice in an automated home-cage environment, allowing for both comprehensive behavioral phenotyping of mice, and rapid screening of pharmacological compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rapid loss of behavioral plasticity and immunocompetence under intense sexual selection.

    PubMed

    van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W

    2014-09-01

    Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male- and female-biased experimental evolution lines to male- and female-biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female-biased lines kicked sooner after exposure to male-biased sociosexual contexts, in male-biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male-biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  13. Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats

    PubMed Central

    2016-01-01

    Abstract Microglia are the primary immune cells of the brain and function in multiple ways to facilitate proper brain development. However, our current understanding of how these cells influence the later expression of normal behaviors is lacking. Using the laboratory rat, we administered liposomal clodronate centrally to selectively deplete microglia in the developing postnatal brain. We then assessed a range of developmental, juvenile, and adult behaviors. Liposomal clodronate treatment on postnatal days 0, 2, and 4 depleted microglia with recovery by about 10 days of age and induced a hyperlocomotive phenotype, observable in the second postnatal week. Temporary microglia depletion also increased juvenile locomotion in the open field test and decreased anxiety-like behaviors in the open field and elevated plus maze. These same rats displayed reductions in predator odor–induced avoidance behavior, but increased their risk assessment behaviors compared with vehicle-treated controls. In adulthood, postnatal microglia depletion resulted in significant deficits in male-specific sex behaviors. Using factor analysis, we identified two underlying traits—behavioral disinhibition and locomotion—as being significantly altered by postnatal microglia depletion. These findings further implicate microglia as being critically important to the development of juvenile and adult behavior. PMID:27957532

  14. Developmental suppression of schizophrenia-associated miR-137 alters sensorimotor function in zebrafish

    PubMed Central

    Giacomotto, J; Carroll, A P; Rinkwitz, S; Mowry, B; Cairns, M J; Becker, T S

    2016-01-01

    The neurodevelopmentally regulated microRNA miR-137 was strongly implicated as risk locus for schizophrenia in the most recent genome wide association study coordinated by the Psychiatric Genome Consortium (PGC). This molecule is highly conserved in vertebrates enabling the investigation of its function in the developing zebrafish. We utilized this model system to achieve overexpression and suppression of miR-137, both transiently and stably through transgenesis. While miR-137 overexpression was not associated with an observable specific phenotype, downregulation by antisense morpholino and/or transgenic expression of miR-sponge RNA induced significant impairment of both embryonic and larval touch-sensitivity without compromising overall anatomical development. We observed miR-137 expression and activity in sensory neurons including Rohon–Beard neurons and dorsal root ganglia, two neuronal cell types that confer touch-sensitivity in normal zebrafish, suggesting a role of these cell types in the observed phenotype. The lack of obvious anatomical or histological pathology in these cells, however, suggested that subtle axonal network defects or a change in synaptic function and neural connectivity might be responsible for the behavioral phenotype rather than a change in the cellular morphology or neuroanatomy. PMID:27219344

  15. Repetitive Self-Grooming Behavior in the BTBR Mouse Model of Autism is Blocked by the mGluR5 Antagonist MPEP

    PubMed Central

    Silverman, Jill L; Tolu, Seda S; Barkan, Charlotte L; Crawley, Jacqueline N

    2010-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including well-replicated deficits in reciprocal social interactions and social approach, unusual patterns of ultrasonic vocalization, and high levels of repetitive self-grooming. These phenotypes offer straightforward behavioral assays for translational investigations of pharmacological compounds. Two suggested treatments for autism were evaluated in the BTBR mouse model. Methyl-6-phenylethynyl-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor, blocks aberrant phenotypes in the Fmr1 mouse model of Fragile X, a comorbid neurodevelopmental disorder with autistic features. Risperidone has been approved by the United States Food and Drug Administration for the treatment of irritability, tantrums, and self-injurious behavior in autistic individuals. We evaluated the actions of MPEP and risperidone on two BTBR phenotypes, low sociability and high repetitive self-grooming. Open field activity served as an independent control for non-social exploratory activity and motor functions. C57BL/6J (B6), an inbred strain with high sociability and low self-grooming, served as the strain control. MPEP significantly reduced repetitive self-grooming in BTBR, at doses that had no sedating effects on open field activity. Risperidone reduced repetitive self-grooming in BTBR, but only at doses that induced sedation in both strains. No overall improvements in sociability were detected in BTBR after treatment with either MPEP or risperidone. Our findings suggest that antagonists of mGluR5 receptors may have selective therapeutic efficacy in treating repetitive behaviors in autism. PMID:20032969

  16. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4.

    PubMed

    Ey, E; Yang, M; Katz, A M; Woldeyohannes, L; Silverman, J L; Leblond, C S; Faure, P; Torquet, N; Le Sourd, A-M; Bourgeron, T; Crawley, J N

    2012-11-01

    Mutations in NLGN4X have been identified in individuals with autism spectrum disorders and other neurodevelopmental disorders. A previous study reported that adult male mice lacking neuroligin4 (Nlgn4) displayed social approach deficits in the three-chambered test, altered aggressive behaviors and reduced ultrasonic vocalizations. To replicate and extend these findings, independent comprehensive analyses of autism-relevant behavioral phenotypes were conducted in later generations of the same line of Nlgn4 mutant mice at the National Institute of Mental Health in Bethesda, MD, USA and at the Institut Pasteur in Paris, France. Adult social approach was normal in all three genotypes of Nlgn4 mice tested at both sites. Reciprocal social interactions in juveniles were similarly normal across genotypes. No genotype differences were detected in ultrasonic vocalizations in pups separated from the nest or in adults during reciprocal social interactions. Anxiety-like behaviors, self-grooming, rotarod and open field exploration did not differ across genotypes, and measures of developmental milestones and general health were normal. Our findings indicate an absence of autism-relevant behavioral phenotypes in subsequent generations of Nlgn4 mice tested at two locations. Testing environment and methods differed from the original study in some aspects, although the presence of normal sociability was seen in all genotypes when methods taken from Jamain et al. (2008) were used. The divergent results obtained from this study indicate that phenotypes may not be replicable across breeding generations, and highlight the significant roles of environmental, generational and/or procedural factors on behavioral phenotypes. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  17. Demographic, genetic, and environmental factors that modify disease course.

    PubMed

    Marrie, Ruth Ann

    2011-05-01

    As with susceptibility to disease, it is likely that multiple factors interact to influence the phenotype of multiple sclerosis and long-term disease outcomes. Such factors may include genetic factors, socioeconomic status, comorbid diseases, and health behaviors, as well as environmental exposures. An improved understanding of the influence of these factors on disease course may reap several benefits, such as improved prognostication, allowing us to tailor disease management with respect to intensity of disease-modifying therapies and changes in specific health behaviors, in the broad context of coexisting health issues. Such information can facilitate appropriately adjusted comparisons within and between populations. Elucidation of these factors will require careful study of well-characterized populations in which the roles of multiple factors are considered simultaneously. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.

    PubMed

    Wright, Christopher L; Schwarz, Jaclyn S; Dean, Shannon L; McCarthy, Margaret M

    2010-09-01

    Gonadal steroids organize the developing brain during a perinatal sensitive period and have enduring consequences for adult behavior. In male rodents testicular androgens are aromatized in neurons to estrogens and initiate multiple distinct cellular processes that ultimately determine the masculine phenotype. Within specific brain regions, overall cell number and dendritic morphology are the principal targets for hormonal organization. Recent advances have been made in elucidating the cellular mechanisms by which the neurological underpinnings of sexually dimorphic physiology and behavior are determined. These include estradiol-mediated prostaglandin synthesis, presynaptic release of glutamate, postsynaptic changes in glutamate receptors and changes in cell adhesion molecules. Sex differences in cell death are mediated by hormonal modulation of survival and death factors such as TNFalpha and Bcl-2/BAX. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Arylesterase Phenotype-Specific Positive Association Between Arylesterase Activity and Cholinesterase Specific Activity in Human Serum

    PubMed Central

    Aoki, Yutaka; Helzlsouer, Kathy J.; Strickland, Paul T.

    2014-01-01

    Context: Cholinesterase (ChE) specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking) with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose. PMID:24473115

  20. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen.

    PubMed

    Brice, Claire; Cubillos, Francisco A; Dequin, Sylvie; Camarasa, Carole; Martínez, Claudio

    2018-01-01

    Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.

  1. A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity.

    PubMed

    Acuna-Mendoza, Soledad; Martin, Sabrina; Kuchler-Bopp, Sabine; Ribes, Sandy; Thalgott, Jérémy; Chaussain, Catherine; Creuzet, Sophie; Lesot, Hervé; Lebrin, Franck; Poliard, Anne

    2017-12-01

    Neural crest (NC) cells are a migratory, multipotent population giving rise to numerous lineages in the embryo. Their plasticity renders attractive their use in tissue engineering-based therapies, but further knowledge on their in vivo behavior is required before clinical transfer may be envisioned. We here describe the isolation and characterization of a new mouse embryonic stem (ES) line derived from Wnt1-CRE-R26 Rosa TomatoTdv blastocyst and show that it displays the characteristics of typical ES cells. Further, these cells can be efficiently directed toward an NC stem cell-like phenotype as attested by concomitant expression of NC marker genes and Tomato fluorescence. As native NC progenitors, they are capable of differentiating toward typical derivative phenotypes and interacting with embryonic tissues to participate in the formation of neo-structures. Their specific fluorescence allows purification and tracking in vivo. This cellular tool should facilitate a better understanding of the mechanisms driving NC fate specification and help identify the key interactions developed within a tissue after in vivo implantation. Altogether, this novel model may provide important knowledge to optimize NC stem cell graft conditions, which are required for efficient tissue repair.

  2. Engineering microbial phenotypes through rewiring of genetic networks

    PubMed Central

    Rodrigues, Rui T.L.; Lee, Sangjin; Haines, Matthew

    2017-01-01

    Abstract The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build ‘orthogonal’ systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways. PMID:28369627

  3. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen

    PubMed Central

    2018-01-01

    Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway. PMID:29432462

  4. Deep-Time Convergence in Rove Beetle Symbionts of Army Ants.

    PubMed

    Maruyama, Munetoshi; Parker, Joseph

    2017-03-20

    Recent adaptive radiations provide striking examples of convergence [1-4], but the predictability of evolution over much deeper timescales is controversial, with a scarcity of ancient clades exhibiting repetitive patterns of phenotypic evolution [5, 6]. Army ants are ecologically dominant arthropod predators of the world's tropics, with large nomadic colonies housing diverse communities of socially parasitic myrmecophiles [7]. Remarkable among these are many species of rove beetle (Staphylinidae) that exhibit ant-mimicking "myrmecoid" body forms and are behaviorally accepted into their aggressive hosts' societies: emigrating with colonies and inhabiting temporary nest bivouacs, grooming and feeding with workers, but also consuming the brood [8-11]. Here, we demonstrate that myrmecoid rove beetles are strongly polyphyletic, with this adaptive morphological and behavioral syndrome having evolved at least 12 times during the evolution of a single staphylinid subfamily, Aleocharinae. Each independent myrmecoid clade is restricted to one zoogeographic region and highly host specific on a single army ant genus. Dating estimates reveal that myrmecoid clades are separated by substantial phylogenetic distances-as much as 105 million years. All such groups arose in parallel during the Cenozoic, when army ants diversified into modern genera [12] and rose to ecological dominance [13, 14]. This work uncovers a rare example of an ancient system of complex morphological and behavioral convergence, with replicate beetle lineages following a predictable phenotypic trajectory during their parasitic adaptation to host colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Genetic Psychophysiology: advances, problems, and future directions

    PubMed Central

    Anokhin, Andrey P.

    2014-01-01

    This paper presents an overview of historical advances and the current state of genetic psychophysiology, a rapidly developing interdisciplinary research linking genetics, brain, and human behavior, discusses methodological problems, and outlines future directions of research. The main goals of genetic psychophysiology are to elucidate the neural pathways and mechanisms mediating genetic influences on cognition and emotion, identify intermediate brain-based phenotypes for psychopathology, and provide a functional characterization of genes being discovered by large association studies of behavioral phenotypes. Since the initiation of this neurogenetic approach to human individual differences in the 1970s, numerous twin and family studies have provided strong evidence for heritability of diverse aspects of brain function including resting-state brain oscillations, functional connectivity, and event-related neural activity in a variety of cognitive and emotion processing tasks, as well as peripheral psychophysiological responses. These data indicate large differences in the presence and strength of genetic influences across measures and domains, permitting the selection of heritable characteristics for gene finding studies. More recently, candidate gene association studies began to implicate specific genetic variants in different aspects of neurocognition. However, great caution is needed in pursuing this line of research due to its demonstrated proneness to generate false-positive findings. Recent developments in methods for physiological signal analysis, hemodynamic imaging, and genomic technologies offer new exciting opportunities for the investigation of the interplay between genetic and environmental factors in the development of individual differences in behavior, both normal and abnormal. PMID:24739435

  6. Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost?

    PubMed

    Somers, Jason; Luong, Hang Ngoc Bao; Batterham, Philip; Perry, Trent

    2018-01-02

    Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.

  7. Brain Monoamine Oxidase-A Activity Predicts Trait Aggression

    PubMed Central

    Alia-Klein, Nelly; Goldstein, Rita Z.; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W.; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D.; Fowler, Joanna S.

    2008-01-01

    The genetic deletion of monoamine oxidase A (MAO A, an enzyme which breaks down the monoamine neurotransmitters norepinephrine, serotonin and dopamine) produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, MIM 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in-vivo in healthy non-smoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the Multidimensional Personality Questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than a third of the variability. Since trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  8. Specialized Information Processing Deficits and Distinct Metabolomic Profiles Following TM-Domain Disruption of Nrg1.

    PubMed

    O'Tuathaigh, Colm M P; Mathur, Naina; O'Callaghan, Matthew J; MacIntyre, Lynsey; Harvey, Richard; Lai, Donna; Waddington, John L; Pickard, Benjamin S; Watson, David G; Moran, Paula M

    2017-09-01

    Although there is considerable genetic and pathologic evidence for an association between neuregulin 1 (NRG1) dysregulation and schizophrenia, the underlying molecular and cellular mechanisms remain unclear. Mutant mice containing disruption of the transmembrane (TM) domain of the NRG1 gene constitute a heuristic model for dysregulation of NRG1-ErbB4 signaling in schizophrenia. The present study focused on hitherto uncharacterized information processing phenotypes in this mutant line. Using a mass spectrometry-based metabolomics approach, we also quantified levels of unique metabolites in brain. Across 2 different sites and protocols, Nrg1 mutants demonstrated deficits in prepulse inhibition, a measure of sensorimotor gating, that is, disrupted in schizophrenia; these deficits were partially reversed by acute treatment with second, but not first-, generation antipsychotic drugs. However, Nrg1 mutants did not show a specific deficit in latent inhibition, a measure of selective attention that is also disrupted in schizophrenia. In contrast, in a "what-where-when" object recognition memory task, Nrg1 mutants displayed sex-specific (males only) disruption of "what-when" performance, indicative of impaired temporal aspects of episodic memory. Differential metabolomic profiling revealed that these behavioral phenotypes were accompanied, most prominently, by alterations in lipid metabolism pathways. This study is the first to associate these novel physiological mechanisms, previously independently identified as being abnormal in schizophrenia, with disruption of NRG1 function. These data suggest novel mechanisms by which compromised neuregulin function from birth might lead to schizophrenia-relevant behavioral changes in adulthood. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  9. Natural History of Aging in Cornelia de Lange Syndrome

    PubMed Central

    KLINE, ANTONIE D.; GRADOS, MARCO; SPONSELLER, PAUL; LEVY, HOWARD P.; BLAGOWIDOW, NATALIE; SCHOEDEL, CHRISTIANNE; RAMPOLLA, JONI; CLEMENS, DOUGLAS K.; KRANTZ, IAN; KIMBALL, AMY; PICHARD, CARMEN; TUCHMAN, DAVID

    2016-01-01

    Observations about the natural history of aging in Cornelia de Lange syndrome (CdLS) are made, based on 49 patients from a multidisciplinary clinic for adolescents and adults. The mean age was 17 years. Although most patients remain small, obesity may develop. Gastroesophageal reflux persists or worsens, and there are early long-term sequelae, including Barrett esophagus in 10%; other gastrointestinal findings include risk for volvulus, rumination, and chronic constipation. Submucous cleft palate was found in 14%, most undetected before our evaluation. Chronic sinusitis was noted in 39%, often with nasal polyps. Blepharitis improves with age; cataracts and detached retina may occur. Decreased bone density is observed, with occasional fractures. One quarter have leg length discrepancy and 39% scoliosis. Most females have delayed or irregular menses but normal gynecologic exams and pap smears. Benign prostatic hypertrophy occurred in one male prior to 40 years. The phenotype is variable, but there is a distinct pattern of facial changes with aging. Premature gray hair is frequent; two patients had cutis verticis gyrata. Behavioral issues and specific psychiatric diagnoses, including self-injury, anxiety, attention-deficit disorder, autistic features, depression, and obsessive-compulsive behavior, often worsen with age. This work presents some evidence for accelerated aging in CdLS. Of 53% with mutation analysis, 55% demonstrate a detectable mutation in NIPBL or SMC1A. Although no specific genotype–phenotype correlations have been firmly established, individuals with missense mutations in NIPBL and SMC1A appear milder than those with other mutations. Based on these observations, recommendations for clinical management of adults with CdLS are made. PMID:17640042

  10. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    PubMed Central

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2009-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687

  11. Evolving the future: Toward a science of intentional change

    PubMed Central

    Wilson, David Sloan; Hayes, Steven C.; Biglan, Anthony; Embry, Dennis D.

    2015-01-01

    Humans possess great capacity for behavioral and cultural change, but our ability to manage change is still limited. This article has two major objectives: first, to sketch a basic science of intentional change centered on evolution; second, to provide examples of intentional behavioral and cultural change from the applied behavioral sciences, which are largely unknown to the basic sciences community. All species have evolved mechanisms of phenotypic plasticity that enable them to respond adaptively to their environments. Some mechanisms of phenotypic plasticity count as evolutionary processes in their own right. The human capacity for symbolic thought provides an inheritance system having the same kind of combinatorial diversity as does genetic recombination and antibody formation. Taking these propositions seriously allows an integration of major traditions within the basic behavioral sciences, such as behaviorism, social constructivism, social psychology, cognitive psychology, and evolutionary psychology, which are often isolated and even conceptualized as opposed to one another. The applied behavioral sciences include well-validated examples of successfully managing behavioral and cultural change at scales ranging from individuals to small groups to large populations. However, these examples are largely unknown beyond their disciplinary boundaries, for lack of a unifying theoretical framework. Viewed from an evolutionary perspective, they are examples of managing evolved mechanisms of phenotypic plasticity, including open-ended processes of variation and selection. Once the many branches of the basic and applied behavioral sciences become conceptually unified, we are closer to a science of intentional change than one might think. PMID:24826907

  12. Integrating different perspectives on socialization theory and research: a domain-specific approach.

    PubMed

    Grusec, Joan E; Davidov, Maayan

    2010-01-01

    There are several different theoretical and research approaches to the study of socialization, characterized by frequently competing basic tenets and apparently contradictory evidence. As a way of integrating approaches and understanding discrepancies, it is proposed that socialization processes be viewed from a domain perspective, with each domain characterized by a particular form of social interaction between the object and agent of socialization and by specific socialization mechanisms and outcomes. It is argued that this approach requires researchers to identify the domain of social interaction they are investigating, to understand that phenotypically similar behaviors may belong to different domains, and to acknowledge that caregivers who are effective in one type of interaction may not be effective in another.

  13. The overlap between anxiety, depression, and obsessive-compulsive disorder

    PubMed Central

    Goodwin, Guy M.

    2015-01-01

    The anxiety disorders include generalized anxiety disorder, specific phobia, social phobia, agoraphobia, and panic disorder. In addition to the specific symptoms of these disorders, there may be a common experience of anxiety and even dysphoria across the conditions, and of course recourse to the same drug or choice of drugs for treatment. This overlap probably occurs because of universal dimensions of distress or negative affectivity, a shared genetic predisposition, and a common neurobiology Evidence of shared genes is still based mainly on twin studies, but the shared neurobiology can be investigated directly by the investigation of emotional or cognitive bias either behaviorally or using functional brain imaging. This intermediate phenotype can then provide a substrate for understanding and developing medicines and psychological treatments. PMID:26487806

  14. A network approach to discerning the identities of C. elegans in a free moving population

    NASA Astrophysics Data System (ADS)

    Winter, Peter B.; Brielmann, Renee M.; Timkovich, Nicholas P.; Navarro, Helio T.; Teixeira-Castro, Andreia; Morimoto, Richard I.; Amaral, Luis A. N.

    2016-10-01

    The study of C. elegans has led to ground-breaking discoveries in gene-function, neuronal circuits, and physiological responses. Subtle behavioral phenotypes, however, are often difficult to measure reproducibly. We have developed an experimental and computational infrastructure to simultaneously record and analyze the physical characteristics, movement, and social behaviors of dozens of interacting free-moving nematodes. Our algorithm implements a directed acyclic network that reconstructs the complex behavioral trajectories generated by individual C. elegans in a free moving population by chaining hundreds to thousands of short tracks into long contiguous trails. This technique allows for the high-throughput quantification of behavioral characteristics that require long-term observation of individual animals. The graphical interface we developed will enable researchers to uncover, in a reproducible manner, subtle time-dependent behavioral phenotypes that will allow dissection of the molecular mechanisms that give rise to organism-level behavior.

  15. The Clinical Phenotype of Idiopathic Rapid Eye Movement Sleep Behavior Disorder at Presentation: A Study in 203 Consecutive Patients

    PubMed Central

    Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Santamaria, Joan

    2016-01-01

    Objective: To describe the clinical phenotype of idiopathic rapid eye movement (REM) sleep behavior disorder (IRBD) at presentation in a sleep center. Methods: Clinical history review of 203 consecutive patients with IRBD identified between 1990 and 2014. IRBD was diagnosed by clinical history plus video-polysomnographic demonstration of REM sleep with increased electromyographic activity linked to abnormal behaviors. Results: Patients were 80% men with median age at IRBD diagnosis of 68 y (range, 50–85 y). In addition to the already known clinical picture of IRBD, other important features were apparent: 44% of the patients were not aware of their dream-enactment behaviors and 70% reported good sleep quality. In most of these cases bed partners were essential to convince patients to seek medical help. In 11% IRBD was elicited only after specific questioning when patients consulted for other reasons. Seven percent did not recall unpleasant dreams. Leaving the bed occurred occasionally in 24% of subjects in whom dementia with Lewy bodies often developed eventually. For the correct diagnosis of IRBD, video-polysomnography had to be repeated in 16% because of insufficient REM sleep or electromyographic artifacts from coexistent apneas. Some subjects with comorbid obstructive sleep apnea reported partial improvement of RBD symptoms following continuous positive airway pressure therapy. Lack of therapy with clonazepam resulted in an increased risk of sleep related injuries. Synucleinopathy was frequently diagnosed, even in patients with mild severity or uncommon IRBD presentations (e.g., patients who reported sleeping well, onset triggered by a life event, nocturnal ambulation) indicating that the development of a neurodegenerative disease is independent of the clinical presentation of IRBD. Conclusions: We report the largest IRBD cohort observed in a single center to date and highlight frequent features that were not reported or not sufficiently emphasized in previous publications. Physicians should be aware of the full clinical expression of IRBD, a sleep disturbance that represents a neurodegenerative disease. Commentary: A commentary on this article appears in this issue on page 7. Citation: Fernández-Arcos A, Iranzo A, Serradell M, Gaig C, Santamaria J. The clinical phenotype of idiopathic rapid eye movement sleep behavior disorder at presentation: a study in 203 consecutive patients. SLEEP 2016;39(1):121–132. PMID:26940460

  16. Evolving Digital Ecological Networks

    PubMed Central

    Wagner, Aaron P.; Ofria, Charles

    2013-01-01

    “It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370

  17. Wine Expertise Predicts Taste Phenotype

    PubMed Central

    Hayes, John E; Pickering, Gary J

    2011-01-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance – with appropriate caveats about populations tested, outcomes measured and psychophysical methods used – an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli. PMID:22888174

  18. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carneiro, Ana; Airey, David; Thompson, Brent

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GKmore » variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.« less

  19. Wine Expertise Predicts Taste Phenotype.

    PubMed

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  20. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    PubMed Central

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count, and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits. PMID:27462346

  1. Overview of Social Cognitive Dysfunctions in Rare Developmental Syndromes With Psychiatric Phenotype

    PubMed Central

    Morel, Aurore; Peyroux, Elodie; Leleu, Arnaud; Favre, Emilie; Franck, Nicolas; Demily, Caroline

    2018-01-01

    Rare neurodevelopmental syndromes often present social cognitive deficits that may underlie difficulties in social interactions and increase the risk of psychosis or autism spectrum disorders. However, little is known regarding the specificities of social cognitive impairment across syndromes while it remains a major challenge for the care. Our review provides an overview of social cognitive dysfunctions in rare diseases associated with psychiatric symptoms (with a prevalence estimated between 1 in 1,200 and 1 in 25,000 live births: 22q11.2 deletion syndrome, Angelman syndrome, Fragile X syndrome, Klinefelter syndrome, Prader–Willi syndrome, Rett syndrome, Smith–Magenis syndrome, Turner syndrome, and Williams syndrome) and shed some light on the specific mechanisms that may underlie these skills in each clinical presentation. We first detail the different processes included in the generic expression “social cognition” before summarizing the genotype, psychiatric phenotype, and non-social cognitive profile in each syndrome. Then, we offer a systematic review of the social cognitive abilities and the disturbed mechanisms they are likely associated with. We followed the PRISMA process, including the definition of the relevant search terms, the selection of studies based on clear inclusion, and exclusion criteria and the quality appraisal of papers. We finally provide insights that may have considerable influence on the development of adapted therapeutic interventions such as social cognitive training (SCT) therapies specifically designed to target the psychiatric phenotype. The results of this review suggest that social cognition impairments share some similarities across syndromes. We propose that social cognitive impairments are strongly involved in behavioral symptoms regardless of the overall cognitive level measured by intelligence quotient. Better understanding the mechanisms underlying impaired social cognition may lead to adapt therapeutic interventions. The studies targeting social cognition processes offer new thoughts about the development of specific cognitive training programs, as they highlight the importance of connecting neurocognitive and SCT techniques. PMID:29774207

  2. Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes

    PubMed Central

    Dong, Tao; He, Jing; Wang, Shiqing; Wang, Lianzhang; Cheng, Yuqi; Zhong, Yi

    2016-01-01

    The etiology of autism is so complicated because it involves the effects of variants of several hundred risk genes along with the contribution of environmental factors. Therefore, it has been challenging to identify the causal paths that lead to the core autistic symptoms such as social deficit, repetitive behaviors, and behavioral inflexibility. As an alternative approach, extensive efforts have been devoted to identifying the convergence of the targets and functions of the autism-risk genes to facilitate mapping out causal paths. In this study, we used a reversal-learning task to measure behavioral flexibility in Drosophila and determined the effects of loss-of-function mutations in multiple autism-risk gene homologs in flies. Mutations of five autism-risk genes with diversified molecular functions all led to a similar phenotype of behavioral inflexibility indicated by impaired reversal-learning. These reversal-learning defects resulted from the inability to forget or rather, specifically, to activate Rac1 (Ras-related C3 botulinum toxin substrate 1)-dependent forgetting. Thus, behavior-evoked activation of Rac1-dependent forgetting has a converging function for autism-risk genes. PMID:27335463

  3. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    PubMed

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  4. Hybrid multiscale modeling and prediction of cancer cell behavior

    PubMed Central

    Habibi, Jafar

    2017-01-01

    Background Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. Methods In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Results Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Conclusion Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset. PMID:28846712

  5. Female Mecp2+/− mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies

    PubMed Central

    Samaco, Rodney C.; McGraw, Christopher M.; Ward, Christopher S.; Sun, Yaling; Neul, Jeffrey L.; Zoghbi, Huda Y.

    2013-01-01

    Rett syndrome (RTT) is an X-linked neurological disorder caused by mutations in the gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MeCP2). Typical RTT primarily affects girls and is characterized by a brief period of apparently normal development followed by the loss of purposeful hand skills and language, the onset of anxiety, hand stereotypies, autistic features, seizures and autonomic dysfunction. Mecp2 mouse models have extensively been studied to demonstrate the functional link between MeCP2 dysfunction and RTT pathogenesis. However, the majority of studies have focused primarily on the molecular and behavioral consequences of the complete absence of MeCP2 in male mice. Studies of female Mecp2+/− mice have been limited because of potential phenotypic variability due to X chromosome inactivation effects. To determine whether reproducible and reliable phenotypes can be detected Mecp2+/− mice, we analyzed Mecp2+/− mice of two different F1 hybrid isogenic backgrounds and at young and old ages using several neurobehavioral and physiological assays. Here, we report a multitude of phenotypes in female Mecp2+/− mice, some presenting as early as 5 weeks of life. We demonstrate that Mecp2+/− mice recapitulate several aspects of typical RTT and show that mosaic expression of MeCP2 does not preclude the use of female mice in behavioral and molecular studies. Importantly, we uncover several behavioral abnormalities that are present in two genetic backgrounds and report on phenotypes that are unique to one background. These findings provide a framework for pre-clinical studies aimed at improving the constellation of phenotypes in a mouse model of RTT. PMID:23026749

  6. Hybrid multiscale modeling and prediction of cancer cell behavior.

    PubMed

    Zangooei, Mohammad Hossein; Habibi, Jafar

    2017-01-01

    Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.

  7. Heterozygous Ambra1 Deficiency in Mice: A Genetic Trait with Autism-Like Behavior Restricted to the Female Gender

    PubMed Central

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1+/− females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1+/− mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1+/− females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation. PMID:24904333

  8. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender.

    PubMed

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.

  9. A specific pathway can be identified between genetic characteristics and behaviour profiles in Prader-Willi syndrome via cognitive, environmental and physiological mechanisms.

    PubMed

    Woodcock, K A; Oliver, C; Humphreys, G W

    2009-06-01

    Behavioural phenotypes associated with genetic syndromes have been extensively investigated in order to generate rich descriptions of phenomenology, determine the degree of specificity of behaviours for a particular syndrome, and examine potential interactions between genetic predispositions for behaviour and environmental influences. However, relationships between different aspects of behavioural phenotypes have been less frequently researched and although recent interest in potential cognitive phenotypes or endophenotypes has increased, these are frequently studied independently of the behavioural phenotypes. Taking Prader-Willi syndrome (PWS) as an example, we discuss evidence suggesting specific relationships between apparently distinct aspects of the PWS behavioural phenotype and relate these to specific endophenotypic characteristics. The framework we describe progresses through biological, cognitive, physiological and behavioural levels to develop a pathway from genetic characteristics to behaviour with scope for interaction with the environment at any stage. We propose this multilevel approach as useful in setting out hypotheses in order to structure research that can more rapidly advance theory.

  10. The effects of early life adversity on the immune system.

    PubMed

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sexually Dimorphic Effects of Ancestral Exposure to Vinclozolin on Stress Reactivity in Rats

    PubMed Central

    Gillette, Ross; Miller-Crews, Isaac; Nilsson, Eric E.; Skinner, Michael K.; Gore, Andrea C.

    2014-01-01

    How an individual responds to the environment depends upon both personal life history as well as inherited genetic and epigenetic factors from ancestors. Using a 2-hit, 3 generations apart model, we tested how F3 descendants of rats given in utero exposure to the environmental endocrine-disrupting chemical (EDC) vinclozolin reacted to stress during adolescence in their own lives, focusing on sexually dimorphic phenotypic outcomes. In adulthood, male and female F3 vinclozolin- or vehicle-lineage rats, stressed or nonstressed, were behaviorally characterized on a battery of tests and then euthanized. Serum was used for hormone assays, and brains were used for quantitative PCR and transcriptome analyses. Results showed that the effects of ancestral exposure to vinclozolin converged with stress experienced during adolescence in a sexually dimorphic manner. Debilitating effects were seen at all levels of the phenotype, including physiology, behavior, brain metabolism, gene expression, and genome-wide transcriptome modifications in specific brain nuclei. Additionally, females were significantly more vulnerable than males to transgenerational effects of vinclozolin on anxiety but not sociality tests. This fundamental transformation occurs in a manner not predicted by the ancestral exposure or the proximate effects of stress during adolescence, an interaction we refer to as synchronicity. PMID:25051444

  12. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo

    PubMed Central

    Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D

    2016-01-01

    Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans. PMID:26567514

  13. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo.

    PubMed

    Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D

    2016-06-01

    Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans.

  14. The Impact of BDNF Polymorphisms on Suicidality in Treatment-Resistant Major Depressive Disorder: A European Multicenter Study.

    PubMed

    Schosser, Alexandra; Carlberg, Laura; Calati, Raffaella; Serretti, Alessandro; Massat, Isabel; Spindelegger, Christoph; Linotte, Sylvie; Mendlewicz, Julien; Souery, Daniel; Zohar, Joseph; Montgomery, Stuart; Kasper, Siegfried

    2017-10-01

    Numerous studies have reported associations between the brain-derived neurotrophic factor (BDNF) gene and psychiatric disorders, including suicidal behavior, although with conflicting results. A total of 250 major depressive disorder patients were collected in the context of a European multicenter resistant depression study and treated with antidepressants at adequate doses for at least 4 weeks. Suicidality was assessed using the Mini International Neuropsychiatric Interview and Hamilton Rating Scale for Depression, and treatment response using the HAM-D. Genotyping was performed for the functional Val66Met polymorphism (rs6265) and 7 additional tagging single nucleotide polymorphisms within the BDNF gene. Neither BDNF single markers nor haplotypes were found to be associated with suicide risk and lifetime history of suicide attempts. Gender-specific analyses revealed nonsignificant single marker (rs908867) and haplotypic association with suicide risk in males after multiple testing correction. Analyzing treatment response phenotypes, the functional Val66Met polymorphism as well as rs10501087 showed significant genotypic and haplotypic association with suicide risk in remitters (n=34, 13.6%). Considering the sample size, the present findings need to be replicated in larger samples to confirm or refute a role of BDNF in the investigated suicidal behavior phenotypes. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  15. takeout-dependent longevity is associated with altered Juvenile Hormone signaling

    PubMed Central

    Chamseddin, Khalil H.; Khan, Sabina Q.; Nguyen, Mai L.H.; Antosh, Michael; Morris, Siti Nur Sarah; Kolli, Santharam; Neretti, Nicola; Helfand, Stephen L.; Bauer, Johannes H.

    2012-01-01

    In order to understand the molecular mechanisms of longevity regulation, we recently performed a screen designed to enrich for genes common to several longevity interventions. Using this approach, we identified the Drosophila melanogaster gene takeout. takeout is upregulated in a variety of long-lived flies, and extends life span when overexpressed. Here, we investigate the mechanisms of takeout-dependent longevity. takeout overexpression specifically in the fat body is sufficient to increase fly longevity and is additive to the longevity effects of dietary restriction. takeout long-lived flies do not show phenotypes often associated with increased longevity, such as enhanced stress resistance or major metabolic abnormalities. However, males exhibit greatly diminished courtship behavior, leading to a reduction in fertility. Interestingly, takeout contains a binding domain for Juvenile Hormone, a fly hormone that plays a role in the regulation of developmental transitions. Importantly, the longevity and courtship phenotypes of takeout overexpressing flies are reversed by treatment with the Juvenile Hormone analog methoprene. These data suggest that takeout is a key player in the tradeoff-switch between fertility and longevity. takeout may control fertility via modulation of courtship behavior. This regulation may occur through Juvenile Hormone binding to takeout and a subsequent reduction in Juvenile Hormone signaling activity. PMID:22940452

  16. Inheritance of steroid-independent male sexual behavior in male offspring of B6D2F1 mice.

    PubMed

    McInnis, Christine M; Bonthuis, Paul J; Rissman, Emilie F; Park, Jin Ho

    2016-04-01

    The importance of gonadal steroids in modulating male sexual behavior is well established. Individual differences in male sexual behavior, independent of gonadal steroids, are prevalent across a wide range of species, including man. However, the genetic mechanisms underlying steroid-independent male sexual behavior are poorly understood. A high proportion of B6D2F1 hybrid male mice demonstrates steroid-independent male sexual behavior (identified as "maters"), providing a mouse model that opens up avenues of investigation into the mechanisms regulating male sexual behavior in the absence of gonadal hormones. Recent studies have revealed several proteins that play a significant factor in regulating steroid-independent male sexual behavior in B6D2F1 male mice, including amyloid precursor protein (APP), tau, and synaptophysin. The specific goals of our study were to determine whether steroid-independent male sexual behavior was a heritable trait by determining if it was dependent upon the behavioral phenotype of the B6D2F1 sire, and whether the differential expression of APP, tau, and synaptophysin in the medial preoptic area found in the B6D2F1 sires that did and did not mate after gonadectomy was similar to those found in their male offspring. After adult B6D2F1 male mice were bred with C57BL/6J female mice, they and their male offspring (BXB1) were orchidectomized and identified as either maters or "non-maters". A significant proportion of the BXB1 maters was sired only from B6D2F1 maters, indicating that the steroid-independent male sexual behavior behavioral phenotype of the B6D2F1 hybrid males, when crossed with C57BL/6J female mice, is inherited by their male offspring. Additionally, APP, tau, and synaptophysin were elevated in in the medial preoptic area in both the B6D2F1 and BXB1 maters relative to the B6D2F1 and BXB1 non-maters, respectively, suggesting a potential genetic mechanism for the inheritance of steroid-independent male sexual behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Inheritance of steroid-independent male sexual behavior in male offspring of B6D2F1 mice

    PubMed Central

    McInnis, Christine M.; Bonthuis, Paul J.; Rissman, Emilie F.; Park, Jin Ho

    2016-01-01

    The importance of gonadal steroids in modulating male sexual behavior is well established. Individual differences in male sexual behavior, independent of gonadal steroids, are prevalent across a wide range of species, including man. However, the genetic mechanisms underlying steroid-independent male sexual behavior are poorly understood. A high proportion of B6D2F1 hybrid male mice demonstrate steroid-independent male sexual behavior (identified as “maters”), providing a mouse model that opens up avenues of investigation into the mechanisms regulating male sexual behavior in the absence of gonadal hormones. Recent studies have revealed several proteins that play a significant factor in regulating steroid-independent male sexual behavior in B6D2F1 male mice, including amyloid precursor protein (APP), tau, and synaptophysin. The specific goals of our study were to determine whether steroid-independent male sexual behavior was a heritable trait by determining if it was dependent upon the behavioral phenotype of the B6D2F1 sire, and whether the differential expression of APP, tau, and synaptophysin in the medial preoptic area found in the B6D2F1 sires that did and did not mate after gonadectomy was similar to those found in their male offspring. After adult B6D2F1 male mice were bred with C57BL/6J female mice, they and their male offspring (BXB1) were orchidectomized and identified as either maters or “non-maters.” A significant proportion of the BXB1 maters were sired only from B6D2F1 maters, indicating that the steroid-independent male sexual behavior behavioral phenotype of the B6D2F1 hybrid males, when crossed with C57BL/6J female mice, is inherited by their male offspring. Additionally, APP, tau, and synaptophysin were elevated in in the medial preoptic area in both the B6D2F1 and BXB1 maters relative to the B6D2F1 and BXB1 non-maters, respectively, suggesting a potential genetic mechanism for the inheritance of steroid-independent male sexual behavior. PMID:26940434

  18. A Behavior Analytic Approach to Exploratory Motor Behavior: How Can Caregivers Teach EM Behavior to Infants with Down Syndrome?

    ERIC Educational Resources Information Center

    Bauer, Sara M.; Jones, Emily A.

    2014-01-01

    Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…

  19. Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences

    PubMed Central

    Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya

    2016-01-01

    Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with gene orthology data retrieved from major DNA databases to find Hominidae-specific (HS) genes and HCNSs. We discovered that Down syndrome critical region 4 (DSCR4) is the only experimentally verified gene uniquely present in Hominidae. DSCR4 has no structural homology to any known protein and was inferred to have emerged in several steps through LTR/ERV1, LTR/ERVL retrotransposition, and transversion. Using the genomic distance as neutral evolution threshold, we identified 1,658 HS HCNSs. Polymorphism coverage and derived allele frequency analysis of HS HCNSs showed that these HCNSs are under purifying selection, indicating that they may harbor important functions. They are overrepresented in promoters/untranslated regions, in close proximity of genes involved in sensory perception of sound and developmental process, and also showed a significantly lower nucleosome occupancy probability. Interestingly, many ancestral sequences of the HS HCNSs showed very high evolutionary rates. This suggests that new functions emerged through some kind of positive selection, and then purifying selection started to operate to keep these functions. PMID:27289096

  20. Androgenic signaling systems and their role in behavioral evolution.

    PubMed

    Fuxjager, Matthew J; Schuppe, Eric R

    2018-06-05

    Sex steroids mediate the organization and activation of masculine reproductive phenotypes in diverse vertebrate taxa. However, the effects of sex steroid action in this context vary tremendously, in that steroid action influences reproductive physiology and behavior in markedly different ways (even among closely related species). This leads to the idea that the mechanisms underlying sex steroid action similarly differ across vertebrates in a manner that supports diversification of important sexual traits. Here, we highlight the Evolutionary Potential Hypothesis as a framework for understanding how androgen-dependent reproductive behavior evolves. This idea posits that the cellular mechanisms underlying androgenic action can independently evolve within a given target tissue to adjust the hormone's functional effects. The result is a seemingly endless number of permutations in androgenic signaling pathways that can be mapped onto the incredible diversity of reproductive phenotypes. One reason this hypothesis is important is because it shifts current thinking about the evolution of steroid-dependent traits away from an emphasis on circulating steroid levels and toward a focus on molecular mechanisms of hormone action. To this end, we also provide new empirical data suggesting that certain cellular modulators of androgen action-namely, the co-factors that dynamically adjust transcritpional effects of steroid action either up or down-are also substrates on which evolution can act. We then close the review with a detailed look at a case study in the golden-collared manakin (Manacus vitellinus). Work in this tropical bird shows how androgenic signaling systems are modified in specific parts of the skeletal muscle system to enhance motor performance necessary to produce acrobatic courtship displays. Altogether, this paper seeks to develop a platform to better understand how steroid action influences the evolution of complex animal behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A Functional Tph2 C1473G Polymorphism Causes an Anxiety Phenotype via Compensatory Changes in the Serotonergic System

    PubMed Central

    Berger, Stefan M; Weber, Tillmann; Perreau-Lenz, Stephanie; Vogt, Miriam A; Gartside, Sarah E; Maser-Gluth, Christiane; Lanfumey, Laurence; Gass, Peter; Spanagel, Rainer; Bartsch, Dusan

    2012-01-01

    The association of single-nucleotide polymorphisms (SNPs) in the human tryptophan hydroxylase 2 (TPH2) gene with anxiety traits and depression has been inconclusive. Observed inconsistencies might result from the fact that TPH2 polymorphisms have been studied in a genetically heterogeneous human population. A defined genetic background, control over environmental factors, and the ability to analyze the molecular and neurochemical consequences of introduced genetic alterations constitute major advantages of investigating SNPs in inbred laboratory mouse strains. To investigate the behavioral and neurochemical consequences of a functional C1473G SNP in the mouse Tph2 gene, we generated congenic C57BL/6N mice homozygous for the Tph2 1473G allele. The Arg447 substitution in the TPH2 enzyme resulted in a significant reduction of the brain serotonin (5-HT) in vivo synthesis rate. Despite decreased 5-HT synthesis, we could detect neither a reduction of brain region-specific 5-HT concentrations nor changes in baseline and stress-induced 5-HT release using a microdialysis approach. However, using a [35S]GTP-γ-S binding assay and 5-HT1A receptor autoradiography, a functional desensitization of 5-HT1A autoreceptors could be identified. Furthermore, behavioral analysis revealed a distinct anxiety phenotype in homozygous Tph2 1473G mice, which could be reversed with chronic escitalopram treatment. Alterations in depressive-like behavior could not be detected under baseline conditions or after chronic mild stress. These findings provide evidence for an involvement of functional Tph2 polymorphisms in anxiety-related behaviors, which are likely not caused directly by alterations in 5-HT content or release but are rather due to compensatory changes during development involving functional desensitization of 5-HT1A autoreceptors. PMID:22491354

  2. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy.

    PubMed

    Butler, Merlin G; Bittel, Douglas C; Kibiryeva, Nataliya; Talebizadeh, Zohreh; Thompson, Travis

    2004-03-01

    To determine whether phenotypic differences exist among individuals with Prader-Willi syndrome with either type I or type II deletions of chromosome 15 or maternal disomy 15 leading to a better understanding of cause and pathophysiology of this classical genetic syndrome. We analyzed clinical, anthropometric, and behavioral data in 12 individuals (5 men, 7 women; mean age: 25.9 +/- 8.8 years) with PWS and a type I (TI) deletion, 14 individuals (6 men, 8 women; mean age: 19.6 +/- 6.5 years) with PWS and a type II (TII) deletion, and 21 individuals (10 men, 11 women; mean age: 23.6 +/- 9.2 years) with PWS and maternal disomy 15 (UPD). The deletion type was determined by genotyping of DNA markers between proximal chromosome 15 breakpoints BP1 and BP2. TI deletions are approximately 500 kb larger than TII deletions. Several validated psychological and behavioral tests were used to assess phenotypic characteristics of individuals with PWS representing the 3 genetic subtypes. Significant differences were found between the 2 deletion groups and those with UPD in multiple psychological and behavioral tests, but no differences were observed in other clinical or anthropometric data studied. Adaptive behavior scores were generally worse in individuals with PWS and the TI deletion, and specific obsessive-compulsive behaviors were more evident in the TI individuals compared with those with UPD. Individuals with PWS with TI deletions also had poorer reading and math skills as well as visual-motor integration. Our study indicates that individuals with TI deletion generally have more behavioral and psychological problems than individuals with the TII deletion or UPD. Four recently identified genes have been identified in the chromosome region between BP1 and BP2 with 1 of the genes (NIPA-1) expressed in mouse brain tissue but not thought to be imprinted. It may be important for brain development or function. These genes are deleted in individuals with TI deletion and are implicated in compulsive behavior and lower intellectual ability in individuals with TI versus TII.

  3. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice

    PubMed Central

    Sungur, A. Özge; Stemmler, Lea; Wöhr, Markus; Rust, Marco B.

    2018-01-01

    Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for associative learning, but also for “non-matching-to-sample” learning. Here we report the absence of an ASD- or a SCZ-like phenotype in cofilin1 mutants, and we conclude that cofilin1 is relevant specifically for non-social cognition. PMID:29515378

  4. Ontogeny and adolescent alcohol exposure in Wistar rats: open field conflict, light/dark box and forced swim test.

    PubMed

    Desikan, Anita; Wills, Derek N; Ehlers, Cindy L

    2014-07-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. Studies in animal models have demonstrated that alcohol exposure during adolescence can cause a modification in some aspects of behavioral development, causing the "adolescent phenotype" to be retained into adulthood. However, the "adolescent phenotype" has not been studied for a number of behavioral tests. The objective of the present study was to investigate the ontogeny of behaviors over adolescence/young adulthood in the light/dark box, open field conflict and forced swim test in male Wistar rats. These data were compared to previously published data from rats that received intermittent alcohol vapor exposure during adolescence (AIE) to test whether they retained the "adolescent phenotype" in these behavioral tests. Three age groups of rats were tested (post-natal day (PD) 34-42; PD55-63; PD69-77). In the light/dark box test, younger rats escaped the light box faster than older adults, whereas AIE rats returned to the light box faster and exhibited more rears in the light than controls. In the open field conflict test, both younger and AIE rats had shorter times to first enter the center, spent more time in the center of the field, were closer to the food, and consumed more food than controls. In the forced swim test no clear developmental pattern emerged. The results of the light/dark box and the forced swim test do not support the hypothesis that adolescent ethanol vapor exposure can "lock-in" all adolescent phenotypes. However, data from the open field conflict test suggest that the adolescent and the AIE rats both engaged in more "disinhibited" and food motivated behaviors. These data suggest that, in some behavioral tests, AIE may result in a similar form of behavioral disinhibition to what is seen in adolescence. Copyright © 2014. Published by Elsevier Inc.

  5. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish

    PubMed Central

    Naville, Magali; Volff, Jean-Nicolas

    2017-01-01

    It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts. PMID:28738066

  6. Impulse Control Disorders and Related Complications of Parkinson’s Disease Therapy

    PubMed Central

    Lopez, Alexander M.; Weintraub, Daniel; Claassen, Daniel O.

    2017-01-01

    Impulsive and compulsive behaviors in Parkinson’s disease (PD) patients are most often attributed to dopamine agonist therapy; dysregulation of the mesocorticolimbic system accounts for this behavioral phenotype. The clinical presentation is commonly termed impulse control disorder (ICD): Behaviors include hypersexuality, compulsive eating, shopping, pathological gambling, and compulsive hobby participation. However, not all PD individuals taking dopamine agonists develop these behavioral changes. In this review, the authors focus on the similarities between the phenotypic presentation of ICDs with that of other reward-based behavioral disorders, including binge eating disorder, pathological gambling, and substance use disorders. With this comparison, we emphasize that the transition from an impulsive to compulsive behavior likely follows a ventral to dorsal striatal pattern, where an altered dopaminergic reward system underlies the emergence of these problematic behaviors. The authors discuss the neurobiological similarities between these latter disorders and ICDs, emphasizing similar pathophysiological processes and discussing treatment options that have potential for translation to PD patients. PMID:28511259

  7. Prenatal lipopolysaccharide exposure affects sexual dimorphism in different germlines of mice with a depressive phenotype.

    PubMed

    Reis-Silva, Thiago M; Cohn, Daniel W H; Sandini, Thaísa M; Udo, Mariana S B; Teodorov, Elizabeth; Bernardi, Maria Martha

    2016-03-15

    The objective of the present study was to investigate whether prenatal lipopolysaccharide (LPS) administration modifies the expression of depressive and non-depressive-like behavior in male and female mice across two generations. The sexual dimorphism of these mice was also examined in the open-field test. Male and female mice of the parental (F0) generation were selected for depressive- or non-depressive-like behavioral profiles using the tail suspension test (TST). Animals with similar profiles were matched for further mating. On gestation day (GD) 15, pregnant F0 mice received LPS (100μg/kg, i.p.) and were allowed to nurture their offspring freely. Adult male and female of the F1 generation were then selected according to behavioral profiles and observed in the open field. Male and female mice of the two behavioral profiles were then mated to obtain the F2 generation. Adults from the F2 generation were also behaviorally phenotyped, and open field behavior was assessed. Male mice that were selected for depressive- and non-depressive-like behaviors and treated or not with LPS in the parental generation exhibited similar proportions of behavioral profiles in both filial lines, but LPS exposure increased the number of depressive-like behavior. An effect of gender was observed in the F1 and F2 generations, in which male mice were more sensitive to the intergenerational effects of LPS in the TST. These data indicate that prenatal LPS exposure on GD15 in the F0 generation influenced the transmission of depressive- and non-depressive-like behavior across filial lines, with sexual dimorphism between phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells

    PubMed Central

    Gillet, Sébastien; Frankel, Nicholas W.; Weibel, Douglas B.

    2016-01-01

    Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206

  9. The RDoC initiative and the structure of psychopathology.

    PubMed

    Krueger, Robert F; DeYoung, Colin G

    2016-03-01

    The NIMH Research Domain Criteria (RDoC) project represents a welcome effort to circumvent the limitations of psychiatric categories as phenotypes for psychopathology research. Here, we describe the hierarchical and dimensional structure of phenotypic psychopathology and illustrate how this structure provides phenotypes suitable for RDoC research on neural correlates of psychopathology. A hierarchical and dimensional approach to psychopathology phenotypes holds great promise for delineating connections between neuroscience constructs and the patterns of affect, cognition, and behavior that constitute manifest psychopathology. © 2016 Society for Psychophysiological Research.

  10. Haploinsufficiency of CELF4 at 18q12.2 is associated with developmental and behavioral disorders, seizures, eye manifestations, and obesity

    PubMed Central

    Halgren, Christina; Bache, Iben; Bak, Mads; Myatt, Mikkel Wanting; Anderson, Claire Marie; Brøndum-Nielsen, Karen; Tommerup, Niels

    2012-01-01

    Only 20 patients with deletions of 18q12.2 have been reported in the literature and the associated phenotype includes borderline intellectual disability, behavioral problems, seizures, obesity, and eye manifestations. Here, we report a male patient with a de novo translocation involving chromosomes 12 and 18, with borderline IQ, developmental and behavioral disorders, myopia, obesity, and febrile seizures in childhood. We characterized the rearrangement with Affymetrix SNP 6.0 Array analysis and next-generation mate pair sequencing and found truncation of CELF4 at 18q12.2. This second report of a patient with a neurodevelopmental phenotype and a translocation involving CELF4 supports that CELF4 is responsible for the phenotype associated with deletion of 18q12.2. Our study illustrates the utility of high-resolution genome-wide techniques in identifying neurodevelopmental and neurobehavioral genes, and it adds to the growing evidence, including a transgenic mouse model, that CELF4 is important for human brain development. PMID:22617346

  11. Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2)

    PubMed Central

    Walz, Katherina; Paylor, Richard; Yan, Jiong; Bi, Weimin; Lupski, James R.

    2006-01-01

    Genomic disorders are conditions that result from DNA rearrangements, such as deletions or duplications. The identification of the dosage-sensitive gene(s) within the rearranged genomic interval is important for the elucidation of genes responsible for complex neurobehavioral phenotypes. Smith-Magenis syndrome is associated with a 3.7-Mb deletion in 17p11.2, and its clinical presentation is caused by retinoic acid inducible 1 (RAI1) haploinsufficiency. The reciprocal microduplication syndrome, dup(17)(p11.2p11.2), manifests several neurobehavioral abnormalities, but the responsible dosage-sensitive gene(s) remain undefined. We previously generated a mouse model for dup(17)(p11.2p11.2), Dp(11)17/+, that recapitulated most of the phenotypes observed in human patients. We have now analyzed compound heterozygous mice carrying a duplication [Dp(11)17] in one chromosome 11 along with a null allele of Rai1 in the other chromosome 11 homologue [Dp(11)17/Rai1– mice] in order to study the relationship between Rai1 gene copy number and the Dp(11)17/+ phenotypes. Normal disomic Rai1 gene dosage was sufficient to rescue the complex physical and behavioral phenotypes observed in Dp(11)17/+ mice, despite altered trisomic copy number of the other 18 genes present in the rearranged genomic interval. These data provide a model for variation in copy number of single genes that could influence common traits such as obesity and behavior. PMID:17024248

  12. Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins.

    PubMed

    Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S

    2014-08-01

    At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.

  13. Putting prey back together again: integrating predator-induced behavior, morphology, and life history.

    PubMed

    Hoverman, Jason T; Auld, Josh R; Relyea, Rick A

    2005-07-01

    The last decade has seen an explosion in the number of studies exploring predator-induced plasticity. Recently, there has been a call for more comprehensive approaches that can identify functional relationships between traits, constraints on phenotypic responses, and the cost and benefits of alternative phenotypes. In this study, we exposed Helisoma trivolvis, a freshwater snail, to a factorial combination of three resource levels and five predator environments (no predator, one or two water bugs, and one or two crayfish) and examined ten traits including behavior, morphology, and life history. Each predator induced a unique suite of behavioral and morphological responses. Snails increased near-surface habitat use with crayfish but not with water bugs. Further, crayfish induced narrow and high shells whereas water bugs induced wide shells and wide apertures. In terms of life history, both predators induced delayed reproduction and greater mass at reproduction. However, crayfish induced a greater delay in reproduction that resulted in reduced fecundity whereas water bugs did not induce differences in fecundity. Resource levels impacted the morphology of H. trivolvis; snails reared with greater resource levels produced higher shells, narrower shells, and wider apertures. Resource levels also impacted snail life history; lower resources caused longer times to reproduction and reduced fecundity. Based on an analysis of phenotypic correlations, the morphological responses to each predator most likely represent phenotypic trade-offs. Snails could either produce invasion-resistant shells for defense against water bugs or crush-resistant shells for defense against crayfish, but not both. Our use of a comprehensive approach to examine the responses of H. trivolvis has provided important information regarding the complexity of phenotypic responses to different environments, the patterns of phenotypic integration across environments, and the potential costs and benefits associated with plastic traits.

  14. The Association of Multiple Interacting Genes with Specific Phenotypes in Rice Using Gene Coexpression Networks1[C][W][OA

    PubMed Central

    Ficklin, Stephen P.; Luo, Feng; Feltus, F. Alex

    2010-01-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes. PMID:20668062

  15. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks.

    PubMed

    Ficklin, Stephen P; Luo, Feng; Feltus, F Alex

    2010-09-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.

  16. Change in the Behavioral Phenotype of Adolescents and Adults with FXS: Role of the Family Environment

    ERIC Educational Resources Information Center

    Smith, Leann E.; Hong, Jinkuk; Greenberg, Jan S.; Mailick, Marsha R.

    2016-01-01

    The present study examined trajectories of adaptive behavior, behavior problems, psychological symptoms, and autism symptoms in adolescents and adults with fragile X syndrome (n = 147) over a three-year period. Adaptive behavior significantly increased over time, particularly for adolescents, and the severity of behavior problems decreased over…

  17. Neuropeptidergic Signaling Partitions Arousal Behaviors in Zebrafish

    PubMed Central

    Schoppik, David; Shi, Veronica J.; Zimmerman, Steven; Coleman, Haley A.; Greenwood, Joel; Soucy, Edward R.

    2014-01-01

    Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal. PMID:24573274

  18. Behavioral profile of adults with Prader-Willi syndrome: correlations with individual and environmental variables.

    PubMed

    Jauregi, Joseba; Laurier, Virginie; Copet, Pierre; Tauber, Maithé; Thuilleaux, Denise

    2013-08-06

    Maladaptive behavior has been reported as a phenotypical feature in Prader-Willi syndrome (PWS). It severely limits social adaptation and the quality of life of children and adults with the syndrome. Different factors have been linked with the intensity and form of these behavioral disturbances but there is no consensus about the cause. Consequently, there is still controversy regarding management strategies and there is a need for new data. The behavior of 100 adults with PWS attending a dedicated center was assessed using the Developmental Behavior Checklist for Adults (DBC-A) and the PWS-specific Hyperphagia Questionnaire. The DBC-A was completed separately by trained caregivers at the center and relatives or caregivers in a natural setting. Genotype, gender, age, degree of obesity and cognitive impairment were analyzed as variables with a hypothetical influence on behavioral features. Patients showed a relatively high rate of behavioral disturbances other than hyperphagia. Disruptive and social relating were the highest scoring DBC-A subscales whereas anxiety/antisocial and self-absorbed were the lowest. When hospital caregiver and natural caregiver scores were compared, scores for the latter were higher for all subscales except for disruptive and anxiety/antisocial. These effects of institutional management were underlined. In the DBC-A, 22 items have descriptive indications of PWS behavior and were used for further comparisons and correlation analysis. In contrast to previous reports, rates of disturbed behavior were lower in patients with a deletion genotype. However, the behavioral profile was similar for both genotypes. No differences were found in any measurement when comparing type I and type II deletions. The other analyzed variables showed little relevance. Significant rates of behavioral disorders were highlighted and their typology described in a large cohort of adults with PWS. The deletion genotype was related to a lower severity of symptoms. Some major behavioral problems, such as hyperphagia, may be well controlled if living circumstances are adapted to the specific requirements of individuals with PWS.

  19. Behavioral profile of adults with Prader-Willi syndrome: correlations with individual and environmental variables

    PubMed Central

    2013-01-01

    Background Maladaptive behavior has been reported as a phenotypical feature in Prader–Willi syndrome (PWS). It severely limits social adaptation and the quality of life of children and adults with the syndrome. Different factors have been linked with the intensity and form of these behavioral disturbances but there is no consensus about the cause. Consequently, there is still controversy regarding management strategies and there is a need for new data. Methods The behavior of 100 adults with PWS attending a dedicated center was assessed using the Developmental Behavior Checklist for Adults (DBC-A) and the PWS-specific Hyperphagia Questionnaire. The DBC-A was completed separately by trained caregivers at the center and relatives or caregivers in a natural setting. Genotype, gender, age, degree of obesity and cognitive impairment were analyzed as variables with a hypothetical influence on behavioral features. Results Patients showed a relatively high rate of behavioral disturbances other than hyperphagia. Disruptive and social relating were the highest scoring DBC-A subscales whereas anxiety/antisocial and self-absorbed were the lowest. When hospital caregiver and natural caregiver scores were compared, scores for the latter were higher for all subscales except for disruptive and anxiety/antisocial. These effects of institutional management were underlined. In the DBC-A, 22 items have descriptive indications of PWS behavior and were used for further comparisons and correlation analysis. In contrast to previous reports, rates of disturbed behavior were lower in patients with a deletion genotype. However, the behavioral profile was similar for both genotypes. No differences were found in any measurement when comparing type I and type II deletions. The other analyzed variables showed little relevance. Conclusions Significant rates of behavioral disorders were highlighted and their typology described in a large cohort of adults with PWS. The deletion genotype was related to a lower severity of symptoms. Some major behavioral problems, such as hyperphagia, may be well controlled if living circumstances are adapted to the specific requirements of individuals with PWS. PMID:23919902

  20. Flexible architecture of inducible morphological plasticity.

    PubMed

    Kishida, Osamu; Nishimura, Kinya

    2006-05-01

    1. Predator-induced morphological defences are produced in response to an emergent predator regime. In natural systems, prey organisms usually experience temporal shifting of the composition of the predator assemblage and of the intensity of predation risk from each predator species. Although, a repetitive morphological change in response to a sequential shift of the predator regime such as alteration of the predator species or diminution of the predation risk may be adaptive, such flexible inducible morphological defences are not ubiquitous. 2. We experimentally addressed whether a flexible inducible morphological defence is accomplished in response to serial changes in the predation regime, using a model prey species which adopt different defensive morphological phenotypes in response to different predator species. Rana pirica (Matsui) tadpoles increased body depth and tail depth against the predatory larval salamander Hynobius retardatus (Dunn); on the other hand, they only increased tail depth against the predatory larval dragonfly Aeshna nigroflava (Martin). 3. Rana pirica tadpoles with the predator-specific phenotypes were subjected to removal or exchange of the predator species. After removal of the predator species, tadpoles with each predator-specific phenotype changed their phenotype to the nondefensive basic one, suggesting that both predator-specific phenotypes are costly to maintain. After an exchange of the predator species, tadpoles with each predator-specific phenotype reciprocally, flexibly shifted their phenotype to the now more suitable predator-specific one only by modifying their body part. The partial modification can effectively reduce time and energy expenditures involved in repetitive morphological changes, and therefore suggest that the costs of the flexible morphological changes are reduced.

  1. Pathologic findings in breast, fallopian tube, and ovary specimens in non-BRCA hereditary breast and/or ovarian cancer syndromes: a study of 18 patients with deleterious germline mutations in RAD51C, BARD1, BRIP1, PALB2, MUTYH, or CHEK2.

    PubMed

    Schoolmeester, J Kenneth; Moyer, Ann M; Goodenberger, McKinsey L; Keeney, Gary L; Carter, Jodi M; Bakkum-Gamez, Jamie N

    2017-12-01

    Germline BRCA mutations account for a significant proportion of genetic/familial risk of breast and ovarian cancer (GBOC) susceptibility, but a broader spectrum of GBOC susceptibility genes has emerged in recent years. Genotype-to-phenotype correlations are known for some established forms of GBOC; however, whether such correlations exist for less common GBOC variants is unclear. We reviewed our institution's experience with non-BRCA GBOC, looking specifically for trends in pathologic and clinical features. Eighteen women with deleterious germline mutations in RAD51C (5 patients), BARD1 (1 patient), BRIP1 (2 patients), PALB2 (3 patients), MUTYH (2 patients), or CHEK2 (5 patients) were identified between January 2011 and December 2016. Thirteen (72%) of 18 patients developed carcinoma of the breast, fallopian tube, or ovary, with 1 patient developing 2 separate primary neoplasms. Twelve (86%) of 14 tumors occurred in the breast. One (7%) arose in the fallopian tube and another (7%) arose in the ovary. Evidence of genotype-phenotype correlation was not identified. However, some data suggest that the type of alteration in select genes may influence tumor behavior and patient outcome. In our PALB2 mutation cohort, 2 patients with frameshift mutations led to early onset and rapid progression to stage IV breast cancer in contrast to stage IA breast cancer in 1 patient with a nonsense mutation. Despite no apparent genotype-phenotype trends, our data indicate that some loss-of-function variants in PALB2 may lead to differences in tumor behavior and patient outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders.

    PubMed

    Sukoff Rizzo, Stacey J; Crawley, Jacqueline N

    2017-02-08

    Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.

  3. Assessing Sociability, Social Memory, and Pup Retrieval in Mice.

    PubMed

    Zimprich, Annemarie; Niessing, Jörn; Cohen, Lior; Garrett, Lillian; Einicke, Jan; Sperling, Bettina; Schmidt, Mathias V; Hölter, Sabine M

    2017-12-20

    Adaptive social behavior is important in mammals, both for the well-being of the individual and for the thriving of the species. Dysfunctions in social behavior occur in many neurodevelopmental and psychiatric diseases, and research into the genetic components of disease-relevant social deficits can open up new avenues for understanding the underlying biological mechanisms and therapeutic interventions. Genetically modified mouse models are particularly useful in this respect, and robust experimental protocols are needed to reliably assess relevant social behavior phenotypes. Here we describe in detail three protocols to quantitatively measure sociability, one of the most frequently investigated social behavior phenotypes in mice, using a three-chamber sociability test. These protocols can be extended to also assess social memory. In addition, we provide a detailed protocol on pup retrieval, which is a particularly robust maternal behavior amenable to various scientific questions. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. Neurobehavioral Mutants Identified in an ENU Mutagenesis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Melloni N.; Dunning, Jonathan P; Wiley, Ronald G

    2007-01-01

    We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsivenessmore » to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.« less

  5. Reduced Tissue Levels of Noradrenaline Are Associated with Behavioral Phenotypes of the TgCRND8 Mouse Model of Alzheimer's Disease

    PubMed Central

    Francis, Beverly M; Yang, Jimao; Hajderi, Enid; Brown, Mary E; Michalski, Bernadeta; McLaurin, JoAnne; Fahnestock, Margaret; Mount, Howard T J

    2012-01-01

    Noradrenergic cell loss is well documented in Alzheimer's disease (AD). We have measured the tissue levels of catecholamines in an amyloid precursor protein-transgenic ‘TgCRND8' mouse model of AD and found reductions in noradrenaline (NA) within hippocampus, temporoparietal and frontal cortices, and cerebellum. An age-related increase in cortical NA levels was observed in non-Tg controls, but not in TgCRND8 mice. In contrast, NA levels declined with aging in the TgCRND8 hippocampus. Dopamine levels were unaffected. Reductions in the tissue content of NA were found to coincide with altered expression of brain-derived neurotrophic factor (BDNF) mRNA and to precede the onset of object memory impairment and behavioral despair. To test whether these phenotypes might be associated with diminished NA, we treated mice with dexefaroxan, an antagonist of presynaptic inhibitory α2-adrenoceptors on noradrenergic and cholinergic terminals. Mice 12 weeks of age were infused systemically for 28 days with dexefaroxan or rivastigmine, a cholinesterase inhibitor. Both dexefaroxan and rivastigmine improved TgCRND8 behavioral phenotypes and increased BDNF mRNA expression without affecting amyloid-β peptide levels. Our results highlight the importance of noradrenergic depletion in AD-like phenotypes of TgCRND8 mice. PMID:22491352

  6. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma*

    PubMed Central

    Scott, Milcah C.; Sarver, Aaron L.; Tomiyasu, Hirotaka; Cornax, Ingrid; Van Etten, Jamie; Varshney, Jyotika; O'Sullivan, M. Gerard; Subramanian, Subbaya; Modiano, Jaime F.

    2015-01-01

    We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma. PMID:26378234

  7. Phenotype of a child with Angelman syndrome born to a woman with Prader-Willi syndrome.

    PubMed

    Ostergaard, John R

    2015-09-01

    This report describes the phenotype, from early childhood to adolescence, of a girl with Angelman syndrome (AS) born following a maternal transmission of a germline paternal 15q11.2-q13 deletion. During early childhood, she showed a typical AS phenotype, such as jerky movements, poor sleep, high voltage electroencephalography pattern, epilepsy, and a severe developmental disability. As she grew older, indications of phenotypical traits similar to Prader-Willi syndrome (PWS) appeared, in particular hyperphagic behavior and a body fat distribution similar to that reported in PWS. She generally showed cheerful AS behavior and had the characteristic outbursts of laughter, but her attitude to other people did not reflect the usual shared enjoyment of interaction seen in children with AS. In unfamiliar surroundings, she withdrew socially, similar to children with PWS, and her insistence on the same, rigid routines was similar to behavior patterns in PWS. The dysmorphic facial features that characterize AS were blurred in adolescence. The specified features that this AS patient had in common with PWS were hardly incidental and, if verified by upcoming case reports of children born to women with a paternal 15q11.2-q13 deletion, they may show new aspects of genetic imprinting. © 2015 Wiley Periodicals, Inc.

  8. Δ9-tetrahydrocannabinol (Δ9-THC) administration after neonatal exposure to phencyclidine potentiates schizophrenia-related behavioral phenotypes in mice.

    PubMed

    Rodríguez, Guadalupe; Neugebauer, Nichole M; Yao, Katherine Lan; Meltzer, Herbert Y; Csernansky, John G; Dong, Hongxin

    2017-08-01

    The clinical onset of schizophrenia often coincides with cannabis use in adolescents and young adults. However, the neurobiological consequences of this co-morbidity are not well understood. In this study, we examined the effects of Δ9-THC exposure during early adulthood on schizophrenia-related behaviors using a developmental mouse model of schizophrenia. Phencyclidine (PCP) or saline was administered once in neonatal mice (at P7; 10mg/kg). In turn, Δ9-THC or saline was administered sub-acutely later in life to cohorts of animals who had received either PCP or saline (P55-80, 5mg/kg). Mice who were administered PCP alone displayed behavioral changes in the Morris water waze (MWM) and pre-pulse inhibition (PPI) task paradigm that were consistent with schizophrenia-related phenotypes, but not in the locomotor activity or novel object recognition (NOR) task paradigms. Mice who were administered PCP and then received Δ9-THC later in life displayed behavioral changes in the locomotor activity paradigm (p<0.001) that was consistent with a schizophrenia-related phenotype, as well as potentiated changes in the NOR (p<0.01) and MWM (p<0.05) paradigms as compared to mice that received PCP alone. Decreased cortical receptor expression of NMDA receptor 1 subunit (NR1) was observed in mice that received PCP and PCP+Δ9-THC, while mice that received Δ9-THC and PCP+Δ9-THC displayed decreases in CB1 receptor expression. These findings suggest that administration of Δ9-THC during the early adulthood can potentiate the development of schizophrenia-related behavioral phenotypes induced by neonatal exposure to PCP in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Magel2 knockout mice manifest altered social phenotypes and a deficit in preference for social novelty.

    PubMed

    Fountain, M D; Tao, H; Chen, C-A; Yin, J; Schaaf, C P

    2017-07-01

    MAGEL2 is one of five protein-coding, maternally imprinted, paternally expressed genes in the Prader-Willi syndrome (PWS)-critical domain on chromosome 15q11-q13. Truncating pathogenic variants of MAGEL2 cause Schaaf-Yang syndrome (SHFYNG) (OMIM #615547), a neurodevelopmental disorder related to PWS. Affected individuals manifest a spectrum of neurocognitive and behavioral phenotypes, including intellectual disability and autism spectrum disorder (ASD). Magel2 knockout mice carrying a maternally inherited, imprinted wild-type (WT) allele and a paternally inherited Magel2-lacZ knock-in allele, which abolishes endogenous Magel2 gene function, exhibit several features reminiscent of the human Prader-Willi phenotypes, including neonatal growth retardation, excessive weight gain after weaning and increased adiposity in adulthood. They were shown to have altered circadian rhythm, reduced motor activity and reduced fertility. An extensive assessment for autism-like behaviors in this mouse model was warranted, because of the high prevalence of ASD in human patients. The behavior of Magel2 knockout mice and their WT littermates were assayed via open field, elevated plus maze, tube, three-chamber and partition tests. Our studies confirm decreased horizontal activity of male and female mice and increased vertical activity of females, in the open field. Both sexes spent more time in the open arm of the elevated plus maze, suggestive of reductions in anxiety. Both sexes displayed a lack of preference for social novelty, via a lack of discrimination between known and novel partners in the partition test. The in-depth investigation of behavioral profiles caused by Magel2 loss-of-function helps to elucidate the etiology of behavioral phenotypes both for SHFYNG and PWS in general. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. Cognition, dopamine and bioactive lipids in schizophrenia

    PubMed Central

    Condray, Ruth; Yao, Jeffrey K.

    2011-01-01

    Schizophrenia is a remarkably complex disorder with a multitude of behavioral and biological perturbations. Cognitive deficits are a core feature of this disorder, and involve abnormalities across multiple domains, including memory, attention, and perception. The complexity of this debilitating illness has led to a view that the key to unraveling its pathophysiology lies in deconstructing the clinically-defined syndrome into pathophysiologically distinct intermediate phenotypes. Accumulating evidence suggests that one of these intermediate phenotypes may involve phospholipid signaling abnormalities, particularly in relation to arachidonic acid (AA). Our data show relationships between levels of AA and performance on tests of cognition for schizophrenia patients, with defects in AA signaling associated with deficits in cognition. Moreover, dopamine may moderate these relationships between AA and cognition. Taken together, cognitive deficits, dopaminergic neurotransmission, and bioactive lipids have emerged as related features of schizophrenia. Existing treatment options for cognitive deficits in schizophrenia do not specifically target lipid-derived signaling pathways; understanding these processes could inform efforts to identify novel targets for treatment innovation. PMID:21196378

  11. Phenotypic and genetic associations between the big five and trait emotional intelligence.

    PubMed

    Vernon, Philip A; Villani, Vanessa C; Schermer, Julie Aitken; Petrides, K V

    2008-10-01

    This study reports the first behavioral genetic investigation of the extent to which genetic and/or environmental factors contribute to the relationship between the Big Five personality factors and trait emotional intelligence. 213 pairs of adult monozygotic twins and 103 pairs of same-sex dizygotic twins completed the NEO-PI-R and the Trait Emotional Intelligence Questionnaire (TEIQue). Replicating previous non-twin studies, many significant phenotypic correlations were found between the Big Five factors - especially Neuroticism, Extraversion, and Conscientiousness - and the facets, factors, and global scores derived from the TEIQue. Bivariate behavioral genetic model-fitting analyses revealed that these phenotypic correlations were primarily attributable to correlated genetic factors and secondarily to correlated non-shared environmental factors. The results support the feasibility of incorporating EI as a trait within existing personality taxonomies.

  12. Animal biometrics: quantifying and detecting phenotypic appearance.

    PubMed

    Kühl, Hjalmar S; Burghardt, Tilo

    2013-07-01

    Animal biometrics is an emerging field that develops quantified approaches for representing and detecting the phenotypic appearance of species, individuals, behaviors, and morphological traits. It operates at the intersection between pattern recognition, ecology, and information sciences, producing computerized systems for phenotypic measurement and interpretation. Animal biometrics can benefit a wide range of disciplines, including biogeography, population ecology, and behavioral research. Currently, real-world applications are gaining momentum, augmenting the quantity and quality of ecological data collection and processing. However, to advance animal biometrics will require integration of methodologies among the scientific disciplines involved. Such efforts will be worthwhile because the great potential of this approach rests with the formal abstraction of phenomics, to create tractable interfaces between different organizational levels of life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Phenotype-specific CpG island methylation events in a murine model of prostate cancer.

    PubMed

    Camoriano, Marta; Kinney, Shannon R Morey; Moser, Michael T; Foster, Barbara A; Mohler, James L; Trump, Donald L; Karpf, Adam R; Smiraglia, Dominic J

    2008-06-01

    Aberrant DNA methylation plays a significant role in nearly all human cancers and may contribute to disease progression to advanced phenotypes. Study of advanced prostate cancer phenotypes in the human disease is hampered by limited availability of tissues. We therefore took advantage of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model to study whether three different phenotypes of TRAMP tumors (PRIM, late-stage primary tumors; AIP, androgen-independent primary tumors; and MET, metastases) displayed specific patterns of CpG island hypermethylation using Restriction Landmark Genomic Scanning. Each tumor phenotype displayed numerous hypermethylation events, with the most homogeneous methylation pattern in AIP and the most heterogeneous pattern in MET. Several loci displayed a phenotype-specific methylation pattern; the most striking pattern being loci methylated at high frequency in PRIM and AIP but rarely in MET. Examination of the mRNA expression of three genes, BC058385, Goosecoid, and Neurexin 2, which exhibited nonpromoter methylation, revealed increased expression associated with downstream methylation. Only methylated samples showed mRNA expression, in which tumor phenotype was a key factor determining the level of expression. The CpG island in the human orthologue of BC058385 was methylated in human AIP but not in primary androgen-stimulated prostate cancer or benign prostate. The clinical data show a proof-of-principle that the TRAMP model can be used to identify targets of aberrant CpG island methylation relevant to human disease. In conclusion, phenotype-specific hypermethylation events were associated with the overexpression of different genes and may provide new markers of prostate tumorigenesis.

  14. Sex-specific risk factors for childhood wheeze and longitudinal phenotypes of wheeze.

    PubMed

    Tse, Sze Man; Rifas-Shiman, Sheryl L; Coull, Brent A; Litonjua, Augusto A; Oken, Emily; Gold, Diane R

    2016-12-01

    Although sexual dimorphism in wheeze and asthma prevalence are well documented, sex-specific risk factors for wheeze and longitudinal wheeze phenotypes have not been well elucidated. By using a large prebirth cohort, this study aimed to identify sex-specific risk factors for wheeze from birth through midchildhood and identify distinct longitudinal wheeze phenotypes and the sex-specific risk factors associated with these phenotypes. Mothers reported child wheeze symptoms over the past year approximately yearly on 9 occasions starting at age 1 year. We identified sex-specific predictors of wheeze, wheeze phenotypes, and sex-specific predictors of these phenotypes by using generalized estimating equations, latent class mixed models, and multinomial logistic analysis, respectively. A total of 1623 children had information on wheeze at 1 or more time points. Paternal asthma was a stronger predictor of ever wheezing in boys (odds ratio [OR], 2.15; 95% CI, 1.74-2.66) than in girls (OR, 1.53; 95% CI, 1.19-1.96; P for sex by paternal asthma interaction = .03), whereas being black or Hispanic, birth weight for gestational age z score, and breast-feeding duration had stronger associations among girls. We identified 3 longitudinal wheeze phenotypes: never/infrequent wheeze (74.1%), early transient wheeze (12.7%), and persistent wheeze (13.1%). Compared with never/infrequent wheeze, maternal asthma, infant bronchiolitis, and atopic dermatitis were associated with persistent wheeze in both sexes, but paternal asthma was associated with persistent wheeze in boys only (OR, 4.27; 95% CI, 2.33-7.83; P for sex by paternal asthma interaction = .02), whereas being black or Hispanic was a predictor for girls only. We identified sex-specific predictors of wheeze and longitudinal wheeze patterns, which might have important prognostic value and allow for a more personalized approach to wheeze and asthma treatment. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Social Behavior and Cortisol Reactivity in Children with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Hessl, David; Glaser, Bronwyn; Dyer-Friedman, Jennifer; Reiss, Allan L.

    2006-01-01

    Objective: To examine the association between limbic-hypothalamic-pituitary-adrenal (L-HPA) axis reactivity and social behavior in children with fragile X syndrome (FXS). Method: Salivary cortisol changes and concurrent anxiety-related behaviors consistent with the behavioral phenotype of FXS were measured in 90 children with the fragile X full…

  16. Altered GPM6A/M6 dosage impairs cognition and causes phenotypes responsive to cholesterol in human and Drosophila.

    PubMed

    Gregor, Anne; Kramer, Jamie M; van der Voet, Monique; Schanze, Ina; Uebe, Steffen; Donders, Rogier; Reis, André; Schenck, Annette; Zweier, Christiane

    2014-12-01

    Glycoprotein M6A (GPM6A) is a neuronal transmembrane protein of the PLP/DM20 (proteolipid protein) family that associates with cholesterol-rich lipid rafts and promotes filopodia formation. We identified a de novo duplication of the GPM6A gene in a patient with learning disability and behavioral anomalies. Expression analysis in blood lymphocytes showed increased GPM6A levels. An increase of patient-derived lymphoblastoid cells carrying membrane protrusions supports a functional effect of this duplication. To study the consequences of GPM6A dosage alterations in an intact nervous system, we employed Drosophila melanogaster as a model organism. We found that knockdown of Drosophila M6, the sole member of the PLP family in flies, in the wing, and whole organism causes malformation and lethality, respectively. These phenotypes as well as the protrusions of patient-derived lymphoblastoid cells with increased GPM6A levels can be alleviated by cholesterol supplementation. Notably, overexpression as well as loss of M6 in neurons specifically compromises long-term memory in the courtship conditioning paradigm. Our findings thus indicate a critical role of correct GPM6A/M6 levels for cognitive function and support a role of the GPM6A duplication for the patient's phenotype. Together with other recent findings, this study highlights compromised cholesterol homeostasis as a recurrent feature in cognitive phenotypes. © 2014 WILEY PERIODICALS, INC.

  17. Atopic dermatitis phenotypes and the need for personalized medicine

    PubMed Central

    Cabanillas, Beatriz; Brehler, Ann-Christin; Novak, Natalija

    2017-01-01

    Purpose of review To describe recent developments in therapies which target the molecular mechanisms in atopic dermatitis. Recent findings Current advances in the understanding of the molecular basis of atopic dermatitis are leading to the stratification of different atopic dermatitis phenotypes. New therapies offer the option to target-specific molecules involved in the pathophysiology of atopic dermatitis. Current new therapies under investigation aim to modulate specific inflammatory pathways associated with distinctive atopic dermatitis phenotypes, which would potentially translate into the development of personalized, targeted-specific treatments of atopic dermatitis. Summary Despite the unmet need for well tolerated, effective, and personalized treatment of atopic dermatitis, the current standard treatments of atopic dermatitis do not focus on the individual pathogenesis of the disease. The development of targeted, phenotype-specific therapies has the potential to open a new promising era of individualized treatment of atopic dermatitis. PMID:28582322

  18. Gene Mutations and Genomic Rearrangements in the Mouse as a Result of Transposon Mobilization from Chromosomal Concatemers

    PubMed Central

    Geurts, Aron M; Collier, Lara S; Geurts, Jennifer L; Oseth, Leann L; Bell, Matthew L; Mu, David; Lucito, Robert; Godbout, Susan A; Green, Laura E; Lowe, Scott W; Hirsch, Betsy A; Leinwand, Leslie A; Largaespada, David A

    2006-01-01

    Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes. PMID:17009875

  19. Differentiated cell behavior: a multiscale approach using measure theory.

    PubMed

    Colombi, Annachiara; Scianna, Marco; Tosin, Andrea

    2015-11-01

    This paper deals with the derivation of a collective model of cell populations out of an individual-based description of the underlying physical particle system. By looking at the spatial distribution of cells in terms of time-evolving measures, rather than at individual cell paths, we obtain an ensemble representation stemming from the phenomenological behavior of the single component cells. In particular, as a key advantage of our approach, the scale of representation of the system, i.e., microscopic/discrete vs. macroscopic/continuous, can be chosen a posteriori according only to the spatial structure given to the aforesaid measures. The paper focuses in particular on the use of different scales based on the specific functions performed by cells. A two-population hybrid system is considered, where cells with a specialized/differentiated phenotype are treated as a discrete population of point masses while unspecialized/undifferentiated cell aggregates are represented by a continuous approximation. Numerical simulations and analytical investigations emphasize the role of some biologically relevant parameters in determining the specific evolution of such a hybrid cell system.

  20. A novel behavioral paradigm for assessing concept of nests in mice

    PubMed Central

    Kuang, Hui; Mei, Bing; Cui, Zhenzhong; Lin, Longnian; Tsien, Joe Z.

    2013-01-01

    Abstract concepts in the brain enable humans to efficiently and correctly recognize and categorize a seemingly infinite amount of objects and daily events. Such abstract generalization abilities are traditionally considered to be unique to humans and perhaps non-human primates. However, emerging neurophysiological recordings indicate the existence of neural correlates for the abstract concept of nests in the mouse brain. To facilitate the molecular and genetic analyses of concepts in the mouse model, we have developed a nest generalization test based on mice’s natural behavior. We show that inducible and forebrain-specific NMDA receptor knockout results in pronounced impairment in this test. Interestingly, this generalization deficit could be gradually compensated for over time by repeated experiences even in face of the continued deficit in object recognition memory. On the contrast, the forebrain-specific presenilin-1 knockout mice, which have subtle phenotypes, were normal in performing this test. Therefore, our study not only establishes a quantitative method for assessing the nest concept in mice, but also demonstrates its great potential in combining powerful mouse genetics for dissecting the molecular basis of concept formation in the brain. PMID:20350568

  1. Corticostriatal Regulation of Acute Pain

    PubMed Central

    Martinez, Erik; Lin, Harvey H.; Zhou, Haocheng; Dale, Jahrane; Liu, Kevin; Wang, Jing

    2017-01-01

    The mechanisms for acute pain regulation in the brain are not well understood. The prefrontal cortex (PFC) provides top-down control of emotional processes, and it projects to the nucleus accumbens (NAc). This corticostriatal projection forms an important regulatory pathway within the brain’s reward system. Recently, this projection has been suggested to control both sensory and affective phenotypes specifically associated with chronic pain. As this projection is also known to play a role in the transition from acute to chronic pain, we hypothesized that this corticostriatal circuit can also exert a modulatory function in the acute pain state. Here, we used optogenetics to specifically target the projection from the PFC to the NAc. We tested sensory pain behaviors with Hargreaves’ test and mechanical allodynia, and aversive pain behaviors with conditioned place preference (CPP) test. We found that the activation of this corticostriatal circuit gave rise to bilateral relief from peripheral nociceptive inputs. Activation of this circuit also provided important control for the aversive response to transient noxious stimulations. Hence, our results support a novel role for corticostriatal circuitry in acute pain regulation. PMID:28603489

  2. Common and distinct modulation of electrophysiological indices of feedback processing by autistic and psychopathic traits.

    PubMed

    Carter Leno, Virginia; Naples, Adam; Cox, Anthony; Rutherford, Helena; McPartland, James C

    2016-01-01

    Both autism spectrum disorder (ASD) and psychopathy are primarily characterized by social dysfunction; overlapping phenotypic features may reflect altered function in common brain mechanisms. The current study examined the degree to which neural response to social and nonsocial feedback is modulated by autistic versus psychopathic traits in a sample of typically developing adults (N = 31, 11 males, 18-52 years). Event-related potentials were recorded whilst participants completed a behavioral task and received feedback on task performance. Both autistic and psychopathic traits were associated with alterations in the neural correlates of feedback processing. Sensitivity to specific forms of feedback (social, nonsocial, positively valenced, negatively valenced) differed between the two traits. Autistic traits were associated with decreased sensitivity to social feedback. In contrast, the antisocial domain of psychopathic traits was associated with an overall decrease in sensitivity to feedback, and the interpersonal manipulation domain was associated with preserved processing of positively valenced feedback. Results suggest distinct alterations within specific mechanisms of feedback processing may underlie similar difficulties in social behavior.

  3. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism spectrum disorder.

    PubMed

    Coretti, Lorena; Cristiano, Claudia; Florio, Ermanno; Scala, Giovanni; Lama, Adriano; Keller, Simona; Cuomo, Mariella; Russo, Roberto; Pero, Raffaela; Paciello, Orlando; Mattace Raso, Giuseppina; Meli, Rosaria; Cocozza, Sergio; Calignano, Antonio; Chiariotti, Lorenzo; Lembo, Francesca

    2017-03-28

    Alterations of microbiota-gut-brain axis have been invoked in the pathogenesis of autism spectrum disorders (ASD). Mouse models could represent an excellent tool to understand how gut dysbiosis and related alterations may contribute to autistic phenotype. In this study we paralleled gut microbiota (GM) profiles, behavioral characteristics, intestinal integrity and immunological features of colon tissues in BTBR T + tf/J (BTBR) inbred mice, a well established animal model of ASD. Sex differences, up to date poorly investigated in animal models, were specifically addressed. Results showed that BTBR mice of both sexes presented a marked intestinal dysbiosis, alterations of behavior, gut permeability and immunological state with respect to prosocial C57BL/6j (C57) strain. Noticeably, sex-related differences were clearly detected. We identified Bacteroides, Parabacteroides, Sutterella, Dehalobacterium and Oscillospira genera as key drivers of sex-specific gut microbiota profiles associated with selected pathological traits. Taken together, our findings indicate that alteration of GM in BTBR mice shows relevant sex-associated differences and supports the use of BTBR mouse model to dissect autism associated microbiota-gut-brain axis alteration.

  4. Microcephalic osteodysplastic primordial dwarfism, with the fascinating history of "Mademoiselle Crachami".

    PubMed

    Bozkaya, O Giray

    2013-01-01

    This review critically examines the findings which characterize the dysmorphic, radiologic and behavioral phenotype of Microcephalic Osteodysplastic Primordial Dwarfism (MOPD) and has an historical perspective on it. MOPD is a group of primordial dwarfism syndromes with prenatal onset growth retardation, a typical craniofacial appearance and behavioral phenotype. In 1959, Mann and Russell have described the first case in a detailed report, and named "microcephalic midget of extreme type". In their report; based on historical records and a small painting, they pointed "Mademoiselle Crachami" as the oldest known case.

  5. Diet and Energy-Sensing Inputs Affect TorC1-Mediated Axon Misrouting but Not TorC2-Directed Synapse Growth in a Drosophila Model of Tuberous Sclerosis

    PubMed Central

    Dimitroff, Brian; Lee, Hyun-Gwan; Zhao, Na; O'Connor, Michael B.; Neufeld, Thomas P.; Selleck, Scott B.

    2012-01-01

    The Target of Rapamycin (TOR) growth regulatory system is influenced by a number of different inputs, including growth factor signaling, nutrient availability, and cellular energy levels. While the effects of TOR on cell and organismal growth have been well characterized, this pathway also has profound effects on neural development and behavior. Hyperactivation of the TOR pathway by mutations in the upstream TOR inhibitors TSC1 (tuberous sclerosis complex 1) or TSC2 promotes benign tumors and neurological and behavioral deficits, a syndrome known as tuberous sclerosis (TS). In Drosophila, neuron-specific overexpression of Rheb, the direct downstream target inhibited by Tsc1/Tsc2, produced significant synapse overgrowth, axon misrouting, and phototaxis deficits. To understand how misregulation of Tor signaling affects neural and behavioral development, we examined the influence of growth factor, nutrient, and energy sensing inputs on these neurodevelopmental phenotypes. Neural expression of Pi3K, a principal mediator of growth factor inputs to Tor, caused synapse overgrowth similar to Rheb, but did not disrupt axon guidance or phototaxis. Dietary restriction rescued Rheb-mediated behavioral and axon guidance deficits, as did overexpression of AMPK, a component of the cellular energy sensing pathway, but neither was able to rescue synapse overgrowth. While axon guidance and behavioral phenotypes were affected by altering the function of a Tor complex 1 (TorC1) component, Raptor, or a TORC1 downstream element (S6k), synapse overgrowth was only suppressed by reducing the function of Tor complex 2 (TorC2) components (Rictor, Sin1). These findings demonstrate that different inputs to Tor signaling have distinct activities in nervous system development, and that Tor provides an important connection between nutrient-energy sensing systems and patterning of the nervous system. PMID:22319582

  6. Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.

    PubMed

    Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim

    2013-10-04

    Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.

  7. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast, the large mutational target hypothesis places genomic architecture and a larger allelic pool at the forefront of rapid evolutionary change, particularly in genetic systems that are polygenic and regulatory in nature. Genomic data from brain and neural tissues in mammals as well as a preliminary survey of neurogenic genes from comparative genomic data support this hypothesis while rejecting both positive and relaxed selection on proteins or higher mutation rates. In mammals and invertebrates, neurogenic genes harbor larger protein-coding regions and possess a richer regulatory repertoire of miRNA targets and transcription factor binding sites. Overall, neurogenic genes cover a disproportionately large genomic fraction, providing a sizeable substrate for evolutionary, genetic, and molecular mechanisms to act upon. Readily available comparative and functional genomic data provide unexplored opportunities to test whether a distinct neurogenomic architecture can promote rapid behavioral change via several mechanisms unique to large genes, and which components of this large footprint are uniquely metazoan. The large mutational target hypothesis highlights the eminent roles of mutation and functional genomic architecture in generating rapid developmental and evolutionary change. It has broad implications on our understanding of the genetics of complex adaptive traits such as behavior by focusing on the importance of mutational input, from SNPs to alternative transcripts to transposable elements, on driving evolutionary rates of functional systems. Such functional divergence has important implications in promoting behavioral isolation across short- and long-term timescales. Due to genome-scaled polygenic adaptation, the large target effect also contributes to our inability to identify adapted behavioral candidate genes. The presence of large neurogenic genes, particularly in the mammalian brain and other neural tissues, further offers emerging insight into the etiology of neurodevelopmental and neurodegenerative diseases. The well-known correlation between neurological spectrum disorders in children and paternal age may simply be a direct result of aging fathers accumulating mutations across these large neurodevelopmental genes. The large mutational target hypothesis can also explain the rapid evolution of other functional systems covering a large genomic fraction such as male fertility and its preferential association with hybrid male sterility among closely related taxa. Overall, a focus on mutational potential may increase our power in understanding the genetic basis of complex phenotypes such as behavior while filling a general gap in understanding their evolution.

  8. Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs.

    PubMed

    Kubinyi, Enikő; Bence, Melinda; Koller, Dora; Wan, Michele; Pergel, Eniko; Ronai, Zsolt; Sasvari-Szekely, Maria; Miklósi, Ádám

    2017-01-01

    Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR) 19208A/G single nucleotide polymorphism (SNP) was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins) receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1) OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2) their effects differ between breeds.

  9. Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs

    PubMed Central

    Kubinyi, Enikő; Bence, Melinda; Koller, Dora; Wan, Michele; Pergel, Eniko; Ronai, Zsolt; Sasvari-Szekely, Maria; Miklósi, Ádám

    2017-01-01

    Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR) 19208A/G single nucleotide polymorphism (SNP) was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins) receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1) OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2) their effects differ between breeds. PMID:28936190

  10. Genetics Home Reference: FG syndrome

    MedlinePlus

    ... inheritance is that fathers cannot pass X-linked traits to their sons. Related Information What does it ... Opitz JO. Behavior phenotype of FG syndrome: cognition, personality, and behavior in eleven affected boys. Am J ...

  11. Emerging molecular phenotypes of asthma

    PubMed Central

    Ray, Anuradha; Oriss, Timothy B.

    2014-01-01

    Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577

  12. Overlap of food addiction and substance use disorders definitions: analysis of animal and human studies.

    PubMed

    Hone-Blanchet, Antoine; Fecteau, Shirley

    2014-10-01

    Food has both homeostatic and hedonic components, which makes it a potent natural reward. Food related reward could therefore promote an escalation of intake and trigger symptoms associated to withdrawal, suggesting a behavioral parallel with substance abuse. Animal and human theoretical models of food reward and addiction have emerged, raising further interrogations on the validity of a bond between Substance Use Disorders, as clinically categorized in the DSM 5, and food reward. These models propose that highly palatable food items, rich in sugar and/or fat, are overly stimulating to the brain's reward pathways. Moreover, studies have also investigated the possibility of causal link between food reward and the contemporary obesity epidemic, with obesity being potentiated and maintained due to this overwhelming food reward. Although natural rewards are a hot topic in the definition and categorization of Substance Use Disorders, proofs of concept and definite evidence are still inconclusive. This review focuses on available results from experimental studies in animal and human models exploring the concept of food addiction, in an effort to determine if it depicts a specific phenotype and if there is truly a neurobiological similarity between food addiction and Substance Use Disorders. It describes results from sugar, fat and sweet-fat bingeing in rodent models, and behavioral and neurobiological assessments in different human populations. Although pieces of behavioral and neurobiological evidence supporting a food addiction phenotype in animals and humans are interesting, it seems premature to conclude on its validity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Early social enrichment rescues adult behavioral and brain abnormalities in a mouse model of fragile X syndrome.

    PubMed

    Oddi, Diego; Subashi, Enejda; Middei, Silvia; Bellocchio, Luigi; Lemaire-Mayo, Valerie; Guzmán, Manuel; Crusio, Wim E; D'Amato, Francesca R; Pietropaolo, Susanna

    2015-03-13

    Converging lines of evidence support the use of environmental stimulation to ameliorate the symptoms of a variety of neurodevelopmental disorders. Applying these interventions at very early ages is critical to achieve a marked reduction of the pathological phenotypes. Here we evaluated the impact of early social enrichment in Fmr1-KO mice, a genetic mouse model of fragile X syndrome (FXS), a major developmental disorder and the most frequent monogenic cause of autism. Enrichment was achieved by providing male KO pups and their WT littermates with enhanced social stimulation, housing them from birth until weaning with the mother and an additional nonlactating female. At adulthood they were tested for locomotor, social, and cognitive abilities; furthermore, dendritic alterations were assessed in the hippocampus and amygdala, two brain regions known to be involved in the control of the examined behaviors and affected by spine pathology in Fmr1-KOs. Enrichment rescued the behavioral FXS-like deficits displayed in adulthood by Fmr1-KO mice, that is, hyperactivity, reduced social interactions, and cognitive deficits. Early social enrichment also eliminated the abnormalities shown by adult KO mice in the morphology of hippocampal and amygdala dendritic spines, namely an enhanced density of immature vs mature types. Importantly, enrichment did not induce neurobehavioral changes in WT mice, thus supporting specific effects on FXS-like pathology. These findings show that early environmental stimulation has profound and long-term beneficial effects on the pathological FXS phenotype, thereby encouraging the use of nonpharmacological interventions for the treatment of this and perhaps other neurodevelopmental diseases.

  14. Reliable cues and signals of fruit quality are contingent on the habitat in black elder (Sambucus nigra).

    PubMed

    Schaefer, H Martin; Braun, Julius

    2009-06-01

    Communication mediates interactions between organisms and can be based on signals or cues. Signals are selected for their signaling function, whereas cues evolve for reasons other than signaling. To be evolutionarily stable, communication needs to be reliable on average, but the mechanisms that enforce reliability are hotly debated in light of strong environmental influence on signals and cues. While fruit quality in black elder (Sambucus nigra) is unrelated to fruit color, it is indicated by alternative pedicel phenotypes. Information on fruit quality has thus been transferred from the fruit to the developmentally associated pedicels, which are environmentally determined cues. Within each phenotype, color variation indicates fruit quality. Communication by black elder is thus reliable, but the proximate mechanisms enforcing reliability are habitat specific. High irradiance increases both the contrasts of the visual cue and fruit quality in the anthocyanin-based red pedicel phenotype, while shaded plants of the chlorophyll-based green phenotype apparently use signals by forgoing photosynthesis. This is because lower chlorophyll content in green pedicels creates contrasting pedicels, and higher contrasts indicate higher sugar content in the fruits of green pedicels. Because anthocyanins are light-induced, plants use cues when exposed to high irradiance, whereas they apparently use costly signals in the shade by reducing chlorophyll content in the pedicels. In behavioral field and laboratory experiments we document that avian seed dispersers select among pedicel phenotypes that indicate different fruit quality. Plants can thus increase their reproductive success by sending highly informative cues. Our results indicate how reliable information transfer can be maintained both in cues and signals in spite of substantial environmental influence on visual traits.

  15. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans

    PubMed Central

    Hall, Sarah E.; Chirn, Gung-Wei; Lau, Nelson C.; Sengupta, Piali

    2013-01-01

    Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms. PMID:23329696

  16. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms

    PubMed Central

    Mascheretti, S; De Luca, A; Trezzi, V; Peruzzo, D; Nordio, A; Marino, C; Arrigoni, F

    2017-01-01

    Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging–genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging–genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging–genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of ‘biologically at-risk’ children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach. PMID:28045463

  17. Association of DNA methylation and monoamine oxidase A gene expression in the brains of different dog breeds.

    PubMed

    Eo, JungWoo; Lee, Hee-Eun; Nam, Gyu-Hwi; Kwon, Yun-Jeong; Choi, Yuri; Choi, Bong-Hwan; Huh, Jae-Won; Kim, Minkyu; Lee, Sang-Eun; Seo, Bohyun; Kim, Heui-Soo

    2016-04-15

    The monoamine oxidase A (MAOA) gene is an important candidate gene for human behavior that encodes an enzyme regulating the metabolism of key neurotransmitters. The regulatory mechanisms of the MAOA gene in dogs are yet to be elucidated. We measured MAOA gene transcription and analyzed the VNTR genotype and methylation status of the gene promoter region in different dog breeds to determine whether MAOA expression is correlated with the MAOA genotype or epigenetic modification in dogs. We found brain-specific expression of the MAOA gene and different transcription levels in different dog breeds including Beagle, Sapsaree, and German shepherd, and also a robust association of the DNA methylation of the gene promoter with mRNA levels. However, the 90 bp tandem repeats that we observed near the transcription start site were not variable, indicating no correlation with canine MAOA activity. These results show that differential DNA methylation in the MAOA promoter region may affect gene expression by modulating promoter activity. Moreover, the distinctive patterns of MAOA expression and DNA methylation may be involved in breed-specific or individual behavioral characteristics, such as aggression, because behavioral phenotypes are related to different physiological and neuroendocrine responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion.

    PubMed

    Talbot, Jared A; Currie, Ko W; Pearson, Bret J; Collins, Eva-Maria S

    2014-06-20

    Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. © 2014. Published by The Company of Biologists Ltd.

  19. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion

    PubMed Central

    Talbot, Jared A.; Currie, Ko W.; Pearson, Bret J.; Collins, Eva-Maria S.

    2014-01-01

    ABSTRACT Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. PMID:24950970

  20. Endocrine regulation and sexual differentiation of avian copulatory sexually selected characters.

    PubMed

    Brennan, Patricia L R; Adkins-Regan, Elizabeth

    2014-10-01

    Reproductive specializations in birds have provided intriguing model systems to better understand the role of endocrine mechanisms that regulate phenotype expression and the action of sexual selection. A comparative approach can elucidate how endocrine systems associated with control of sexual differentiation, sexual maturation, and reproductive physiology and behavior have diversified. Here we compare the copulatory sexually selected traits of two members of the galloanseriform superfamily: quail and ducks. Japanese quail have a non-intromittent penis, and they have evolved a unique foam gland that is known to be involved in post-copulatory sexual selection. In contrast, ducks have maintained a large intromittent penis that has evolved via copulatory male-male competition and has been elaborated in a sexually antagonistic race due to sexual conflict with females over mating. These adaptations function in concert with sex-specific and, in part, species-specific behaviors. Although the approaches to study these traits have been different, exploring the differences in neuroendocrine regulation of sexual behavior, development and seasonality of the foam gland and the penis side by side, allow us to suggest some areas where future research would be productive to better understand the evolution of novelty in sexually selected traits. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top