Science.gov

Sample records for specific brain functions

  1. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  2. Human brain networks function in connectome-specific harmonic waves

    PubMed Central

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  3. Meta-analysis of functional brain imaging in specific phobia.

    PubMed

    Ipser, Jonathan C; Singh, Leesha; Stein, Dan J

    2013-07-01

    Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry.

  4. Endocannabinoid functions controlling neuronal specification during brain development.

    PubMed

    Harkany, Tibor; Keimpema, Erik; Barabás, Klaudia; Mulder, Jan

    2008-04-16

    Endocannabinoids (eCBs) regulate a broad range of physiological functions in the postnatal brain and are implicated in the neuropathogenesis of psychiatric and metabolic diseases. Accumulating evidence indicates that eCB signaling also serves key functions during neurodevelopment; and is inherently involved in the control of neurogenesis, neural progenitor proliferation, lineage segregation, and the migration and phenotypic specification of immature neurons. Recent advances in developmental biology define fundamental eCB-driven cellular mechanisms that also contribute to our understanding of the molecular substrates of prenatal drug, in particular cannabis, actions. Here, we summarize known organizing principles of eCB-signaling systems in the developing telencephalon, and outline the sequence of decision points and underlying signaling pathways upon CB1 cannabinoid receptor activation that contribute to neuronal diversification in the developing brain. Finally, we discuss how these novel principles affect the formation of complex neuronal networks.

  5. Functional specificity in the human brain: A window into the functional architecture of the mind

    PubMed Central

    Kanwisher, Nancy

    2010-01-01

    Is the human mind/brain composed of a set of highly specialized components, each carrying out a specific aspect of human cognition, or is it more of a general-purpose device, in which each component participates in a wide variety of cognitive processes? For nearly two centuries, proponents of specialized organs or modules of the mind and brain—from the phrenologists to Broca to Chomsky and Fodor—have jousted with the proponents of distributed cognitive and neural processing—from Flourens to Lashley to McClelland and Rumelhart. I argue here that research using functional MRI is beginning to answer this long-standing question with new clarity and precision by indicating that at least a few specific aspects of cognition are implemented in brain regions that are highly specialized for that process alone. Cortical regions have been identified that are specialized not only for basic sensory and motor processes but also for the high-level perceptual analysis of faces, places, bodies, visually presented words, and even for the very abstract cognitive function of thinking about another person’s thoughts. I further consider the as-yet unanswered questions of how much of the mind and brain are made up of these functionally specialized components and how they arise developmentally. PMID:20484679

  6. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations.

    PubMed

    Morgan, Julie A; Corrigan, Frances; Baune, Bernhard T

    2015-01-01

    Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer's disease, depression, and Parkinson's disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important CNS functions have yet to be clarified. Here we review murine evidence about the effects of exercise on discrete brain regions involved in important CNS functions. Exercise effects on circadian rhythm, central metabolism, cardiovascular function, stress responses in the brain stem and hypothalamic pituitary axis, and movement are examined. The databases Pubmed, Web of Science, and Embase were searched for articles investigating regional brain adaptations to exercise. Brain regions examined included the brain stem, hypothalamus, and basal ganglia. We found evidence of multiple regional adaptations to both forced and voluntary exercise. Exercise can induce molecular adaptations in neuronal function in many instances. Taken together, these findings suggest that the regional physiological adaptations that occur with exercise could constitute a promising field for elucidating molecular and cellular mechanisms of recovery in psychiatric and neurological health conditions.

  7. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  8. Electro-acupuncture at different acupoints modulating the relative specific brain functional network

    NASA Astrophysics Data System (ADS)

    Fang, Jiliang; Wang, Xiaoling; Wang, Yin; Liu, Hesheng; Hong, Yang; Liu, Jun; Zhou, Kehua; Wang, Lei; Xue, Chao; Song, Ming; Liu, Baoyan; Zhu, Bing

    2010-11-01

    Objective: The specific brain effects of acupoint are important scientific concern in acupuncture. However, previous acupuncture fMRI studies focused on acupoints in muscle layer on the limb. Therefore, researches on acupoints within connective tissue at trunk are warranted. Material and Methods: Brain effects of acupuncture on abdomen at acupoints Guanyuan (CV4) and Zhongwan (CV12) were tested using fMRI on 21 healthy volunteers. The data acquisition was performed at resting state, during needle retention, electroacupuncture (EA) and post-EA resting state. Needling sensations were rated after every electroacupuncture (EA) procedure. The needling sensations and the brain functional activity and connectivity were compared between CV4 and CV12 using SPSS, SPM2 and the local and remote connectivity maps. Results and conclusion: EA at CV4 and CV12 induced apparent deactivation effects in the limbic-paralimbic-neocortical network. The default mode of the brain was modified by needle retention and EA, respectively. The functional brain network was significantly changed post EA. However, the minor differences existed between these two acupoints. The results demonstrated similarity between functional brain network mode of acupuncture modulation and functional circuits of emotional and cognitive regulation. Acupuncture may produce analgesia, anti-anxiety and anti-depression via the limbic-paralimbic-neocortical network (LPNN).

  9. Growth hormone in the brain: characteristics of specific brain targets for the hormone and their functional significance.

    PubMed

    Nyberg, F

    2000-10-01

    During the past decade studies have shown that growth hormone (GH) may exert profound effects on the central nervous system (CNS). For instance, GH replacement therapy was found to improve the psychological capabilities in adult GH deficient (GHD) patients. Furthermore, beneficial effects of the hormone on certain functions, including memory, mental alertness, motivation, and working capacity, have been reported. Likewise, GH treatment of GHD children has been observed to produce significant improvement in many behavioral problems seen in these individuals. Studies also indicated that GH therapy affects the cerebrospinal fluid levels of various hormones and neurotransmitters. Further support that the CNS is a target for GH emerges from observations indicating that the hormone may cross the blood-brain barrier (BBB) and from studies confirming the presence of GH receptors in the brain. It was previously shown that specific binding sites for GH are present in discrete areas in the CNS of both humans and rats. Among these regions are the choroid plexus, hippocampus, hypothalamus, and spinal cord. The density of GH binding in the various brain regions was found to decline with increasing age. More recently, we were able to clone and determine the structure of several GH receptors in the rat and human brain. Although the brain receptor proteins for the hormone were shown to differ in molecular size compared to those present in peripheral tissues the corresponding transcripts did not seem to differ from their peripheral congeners. GH receptors in the hypothalamus are likely to be involved in the regulatory mechanism for hormone secretion and those located in the choroid plexus have been suggested to have a role in the receptor-mediated transport of GH across the BBB. The functions mediated by the GH receptors identified in the hippocampus are not yet known but recently it was speculated that they may be involved in the hormone's action on memory and cognitive functions.

  10. Molecular and functional characterization of riboflavin specific transport system in rat brain capillary endothelial cells.

    PubMed

    Patel, Mitesh; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-08-15

    Riboflavin is an important water soluble vitamin (B2) required for metabolic reactions, normal cellular growth, differentiation and function. Mammalian brain cells cannot synthesize riboflavin and must import from systemic circulation. However, the uptake mechanism, cellular translocation and intracellular trafficking of riboflavin in brain capillary endothelial cells are poorly understood. The primary objective of this study is to investigate the existence of a riboflavin-specific transport system and delineate the uptake and intracellular regulation of riboflavin in immortalized rat brain capillary endothelial cells (RBE4). The uptake of [3H]-riboflavin is sodium, temperature and energy dependent but pH independent. [3H]-Riboflavin uptake is saturable with K(m) and V(max) values of 19 ± 3 μM and 0.235 ± 0.012 pmol/min/mg protein, respectively. The uptake process is inhibited by unlabelled structural analogs (lumiflavin, lumichrome) but not by structurally unrelated vitamins. Ca(++)/calmodulin and protein kinase A (PKA) pathways are found to play an important role in the intracellular regulation of [3H]-riboflavin. Apical and baso-lateral uptake of [3H]-riboflavin clearly indicates that a riboflavin specific transport system is predominantly localized on the apical side of RBE4 cells. A 628 bp band corresponding to a riboflavin transporter is revealed in RT-PCR analysis. These findings, for the first time report the existence of a specialized and high affinity transport system for riboflavin in RBE4 cells. The blood-brain barrier (BBB) is a major obstacle limiting drug transport inside the brain as it regulates drug permeation from systemic circulation. This transporter can be utilized for targeted delivery in enhancing brain permeation of highly potent drugs on systemic administration.

  11. Non-verbal emotion communication training induces specific changes in brain function and structure

    PubMed Central

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  12. Reduced specificity of functional connectivity in the aging brain during task performance.

    PubMed

    Geerligs, Linda; Maurits, Natasha M; Renken, Remco J; Lorist, Monicque M

    2014-01-01

    The importance of studying connectivity in the aging brain is increasingly recognized. Recent studies have shown that connectivity within the default mode network is reduced with age and have demonstrated a clear relation of these changes with cognitive functioning. However, research on age-related changes in other functional networks is sparse and mainly focused on prespecified functional networks. Using functional magnetic resonance imaging, we investigated age-related changes in functional connectivity during a visual oddball task in a range of functional networks. It was found that compared with young participants, elderly showed a decrease in connectivity between areas belonging to the same functional network. This was found in the default mode network and the somatomotor network. Moreover, in all identified networks, elderly showed increased connectivity between areas within these networks and areas belonging to different functional networks. Decreased connectivity within functional networks was related to poorer cognitive functioning in elderly. The results were interpreted as a decrease in the specificity of functional networks in older participants.

  13. PECAM-1 isoform-specific functions in PECAM-1-deficient brain microvascular endothelial cells.

    PubMed

    DiMaio, Terri A; Sheibani, Nader

    2008-03-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is alternatively spliced generating eight isoforms that only differ in the length of their cytoplasmic domain. Multiple isoforms of PECAM-1 are present in the endothelium and their expression levels are regulated during vascular development and angiogenesis. However, the functional significance of PECAM-1 isoforms during these processes remains largely unknown. We recently showed that mouse brain endothelial (bEND) cells prepared from PECAM-1-deficient (PECAM-1-/-) mice differ in their cell adhesive and migratory properties compared to PECAM-1+/+ bEND cells. Here we demonstrate that the restoration of PECAM-1 expression in these cells affects their adhesive and migratory properties in an isoform-specific manner. Expression of Delta14&15 PECAM-1, the predominant isoform present in the mouse endothelium, in PECAM-1-/- bEND cells activated MAPK/ERKs, disrupted adherens junctions, and enhanced cell migration and capillary morphogenesis in Matrigel. In contrast, expression of Delta15 PECAM-1 in PECAM-1-/- bEND cells had minimal effects on their activation of MAPK/ERKs, migration, and capillary morphogenesis. The effects of PECAM-1 on cell adhesive and migratory properties were mediated in an isoform-specific manner, at least in part, through its interactions with intracellular signaling proteins, including SHP-2 and Src. These results suggest that the impact of PECAM-1 on EC adhesion, migration, and capillary morphogenesis is modulated by alternative splicing of its cytoplasmic domain. PMID:18029285

  14. Molecular cloning and functional expression of a brain-specific somatostatin receptor.

    PubMed Central

    Bruno, J F; Xu, Y; Song, J; Berelowitz, M

    1992-01-01

    The PCR and conventional library screening were used to clone the brain-specific somatostatin receptor rSSTR-4 from a rat genomic library. The deduced amino acid sequence encodes a protein of 384 amino acids and displays structural and sequence homologies with members of the G protein-receptor superfamily. The amino acid sequence of rSSTR-4 is 60% and 48% identical to that of somatostatin receptors SSTR-1 and SSTR-2, respectively, two recently cloned subtypes. Competition curve analysis of the binding properties of the receptor transiently expressed in COS-1 cells revealed a higher apparent affinity for somatostatin 14 than for somatostatin 28. In contrast, the somatostatin analogs SMS 201-995, IM 4-28, and MK-678 failed to displace specific binding in transfected cells. These characteristics resemble the pharmacological binding properties of the previously described brain-specific somatostatin-receptor subtype. Examination of the tissue distribution of mRNA for rSSTR-4 revealed expression limited to various brain regions with highest levels in the cortex and hippocampus. Thus, based on the pharmacology and tissue localization of this receptor, we conclude that rSSTR-4 represents a brain-specific somatostatin receptor. Images PMID:1360663

  15. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  16. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    PubMed Central

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  17. Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila.

    PubMed

    Hirth, F; Loop, T; Egger, B; Miller, D F; Kaufman, T C; Reichert, H

    2001-12-01

    Hox genes encode evolutionarily conserved transcription factors involved in the specification of segmental identity during embryonic development. This specification of identity is thought to be directed by differential Hox gene action, based on differential spatiotemporal expression patterns, protein sequence differences, interactions with co-factors and regulation of specific downstream genes. During embryonic development of the Drosophila brain, the Hox gene labial is required for the regionalized specification of the tritocerebral neuromere; in the absence of labial, the cells in this brain region do not acquire a neuronal identity and major axonal pathfinding deficits result. We have used genetic rescue experiments to investigate the functional equivalence of the Drosophila Hox gene products in the specification of the tritocerebral neuromere. Using the Gal4-UAS system, we first demonstrate that the labial mutant brain phenotype can be rescued by targeted expression of the Labial protein under the control of CNS-specific labial regulatory elements. We then show that under the control of these CNS-specific regulatory elements, all other Drosophila Hox gene products, except Abdominal-B, are able to efficiently replace Labial in the specification of the tritocerebral neuromere. We also observe a correlation between the rescue efficiency of the Hox proteins and the chromosomal arrangement of their encoding loci. Our results indicate that, despite considerably diverged sequences, most Hox proteins are functionally equivalent in their ability to replace Labial in the specification of neuronal identity. This suggests that in embryonic brain development, differences in Hox gene action rely mainly on cis-acting regulatory elements and not on Hox protein specificity. PMID:11731458

  18. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. PMID:26512872

  19. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities.

  20. Is the self a higher-order or fundamental function of the brain? The "basis model of self-specificity" and its encoding by the brain's spontaneous activity.

    PubMed

    Northoff, Georg

    2016-01-01

    What is the self? This is a question that has long been discussed in (Western) philosophy where the self is traditionally conceived a higher-order function at the apex or pinnacle of all functions. This tradition has been transferred to recent neuroscience where the self is often considered to be a higher-order cognitive function reflected in memory and other high-level judgements. However, other lines of research demonstrate a close and intimate relationship between self-specificity and more basic functions like perceptions, emotions and reward. This paper focuses on the relationship between self-specificity and other basic functions relating to emotions, reward and perception. I propose the basis model that conceives self-specificity as a fundamental feature of the brain's spontaneous activity. This is supported by recent findings showing rest-self overlap in midline regions as well as findings demonstrating that the resting state can predict subsequent degrees of self-specificity. I conclude that such self-specificity in the brain's spontaneous activity may be central in linking the self to either internal or external stimuli. This may also provide the basis for coding the self as subject in relation to internal (i.e., self-consciousness) or external (i.e., phenomenal consciousness) mental events.

  1. Is the self a higher-order or fundamental function of the brain? The "basis model of self-specificity" and its encoding by the brain's spontaneous activity.

    PubMed

    Northoff, Georg

    2016-01-01

    What is the self? This is a question that has long been discussed in (Western) philosophy where the self is traditionally conceived a higher-order function at the apex or pinnacle of all functions. This tradition has been transferred to recent neuroscience where the self is often considered to be a higher-order cognitive function reflected in memory and other high-level judgements. However, other lines of research demonstrate a close and intimate relationship between self-specificity and more basic functions like perceptions, emotions and reward. This paper focuses on the relationship between self-specificity and other basic functions relating to emotions, reward and perception. I propose the basis model that conceives self-specificity as a fundamental feature of the brain's spontaneous activity. This is supported by recent findings showing rest-self overlap in midline regions as well as findings demonstrating that the resting state can predict subsequent degrees of self-specificity. I conclude that such self-specificity in the brain's spontaneous activity may be central in linking the self to either internal or external stimuli. This may also provide the basis for coding the self as subject in relation to internal (i.e., self-consciousness) or external (i.e., phenomenal consciousness) mental events. PMID:26505808

  2. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  3. Specificity of Hemodynamic Brain Responses to Painful Stimuli: A functional near-infrared spectroscopy study

    PubMed Central

    Yücel, Meryem A.; Aasted, Christopher M.; Petkov, Mihayl P.; Borsook, David; Boas, David A.; Becerra, Lino

    2015-01-01

    Assessing pain in individuals not able to communicate (e.g. infants, under surgery, or following stroke) is difficult due to the lack of non-verbal objective measures of pain. Near-infrared spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring cerebral hemodynamic activity has the potential to provide such a measure. Here we used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical stimulus on healthy human subjects (n = 11). For both innocuous and noxious stimuli, we observed a signal change in the primary somatosensory cortex contralateral to the stimulus. The painful and non-painful stimuli can be differentiated based on their signal size and profile. We also observed that repetitive noxious stimuli resulted in adaptation of the signal. Furthermore, the signal was distinguishable from a skin sympathetic response to pain that tended to mask it. Our results support the notion that functional NIRS has a potential utility as an objective measure of pain. PMID:25820289

  4. Blockade of the brachial plexus abolishes activation of specific brain regions by electroacupuncture at LI4: a functional MRI study

    PubMed Central

    Gu, Weidong; Jiang, Wei; He, Jingwei; Liu, Songbin; Wang, Zhaoxin

    2015-01-01

    Objective Our aim was to test the hypothesis that electroacupuncture (EA) at acupuncture point LI4 activates specific brain regions by nerve stimulation that is mediatied through a pathway involving the brachial plexus. Methods Twelve acupuncture naive right-handed volunteers were allocated to receive three sessions of EA at LI4 in a random different order (crossover): (1) EA alone (EA); EA after injection of local anaesthetics into the deltoid muscle (EA+LA); and (3) EA after blockade of the brachial plexus (EA+NB). During each session, participants were imaged in a 3 T MRI scanner. Brain regions showing change in blood oxygen level-dependent (BOLD) signal (activation) were identified. Subjective acupuncture sensation was quantified after functional MRI scanning was completed. Results were compared between the three sessions for each individual, and averaged. Results Blockade of the brachial plexus inhibited acupuncture sensation during EA. EA and EA+LA activated the bilateral thalamus, basal ganglia, cerebellum and left putamen, whilst no significant activation was observed during EA+NB. The BOLD signal of the thalamus correlated significantly with acupuncture sensation score during EA. Conclusions Blockade of the brachial plexus completely abolishes patterns of brain activation induced by EA at LI4. The results suggest that EA activates specific brain regions through stimulation of the local nerves supplying the tissues at LI4, which transmit sensory information via the brachial plexus. Trial registration number ChiCTR-OO-13003389. PMID:26464415

  5. Functional Brain Imaging

    PubMed Central

    2006-01-01

    Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology Assessment (INAHTA). The database search was supplemented with a search of relevant Web sites and a review of the bibliographies of selected papers. General inclusion criteria were applied to all conditions. Those criteria included the following: Full reports of systematic reviews, randomized controlled trials (RCTs), cohort-control studies, prospective cohort studies (PCS’), and retrospective studies. Sample sizes of at least 20 patients (≥ 10 with condition being reviewed). English-language studies. Human studies. Any age. Studying at least one of the following: fMRI, PET, MRS, or MEG. Functional brain imaging modality must be compared with a clearly defined reference standard. Must report at least one of the following outcomes: sensitivity, specificity, accuracy, positive predictive value (PPV), receiver operating characteristic curve, outcome measuring impact on diagnostic testing, treatment, patient health, or cost. Summary of Findings There is evidence to indicate that PET can accurately diagnose AD; however, at this time, there is no evidence to suggest that a diagnosis of AD with PET alters the clinical outcomes of patients. The addition of MRS or O-(2-18F-Fluoroethyl)-L-Tyrosine (FET)-PET to gadolinium (Gd)-enhanced MRI for distinguishing malignant from benign tumours during primary diagnosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients to distinguish malignant from benign tumours is unclear, because patients with a suspected brain tumour will likely undergo a biopsy despite additional imaging results. The addition of MRS, FET-PET, or MRI T2 to Gd-enhanced MRI for the differentiation of recurrence from radiation necrosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients with a suspected recurrence is in the monitoring of

  6. Disease-Specific Probabilistic Brain Atlases

    PubMed Central

    Thompson, Paul; Mega, Michael S.; Toga, Arthur W.

    2009-01-01

    Atlases of the human brain, in health and disease, provide a comprehensive framework for understanding brain structure and function. The complexity and variability of brain structure, especially in the gyral patterns of the human cortex, present challenges in creating standardized brain atlases that reflect the anatomy of a population. This paper introduces the concept of a population-based, disease-specific brain atlas that can reflect the unique anatomy and physiology of a particular clinical subpopulation. Based on well-characterized patient groups, disease-specific atlases contain thousands of structure models, composite maps, average templates, and visualizations of structural variability, asymmetry and group-specific differences. They correlate the structural, metabolic, molecular and histologic hallmarks of the disease. Rather than simply fusing information from multiple subjects and sources, new mathematical strategies are introduced to resolve group-specific features not apparent in individual scans. High-dimensional elastic mappings, based on covariant partial differential equations, are developed to encode patterns of cortical variation. In the resulting brain atlas, disease-specific features and regional asymmetries emerge that are not apparent in individual anatomies. The resulting probabilistic atlas can identify patterns of altered structure and function, and can guide algorithms for knowledge-based image analysis, automated image labeling, tissue classification, data mining and functional image analysis. PMID:19424457

  7. Lutein and Brain Function

    PubMed Central

    Erdman, John W.; Smith, Joshua W.; Kuchan, Matthew J.; Mohn, Emily S.; Johnson, Elizabeth J.; Rubakhin, Stanislav S.; Wang, Lin; Sweedler, Jonathan V.; Neuringer, Martha

    2015-01-01

    Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta) model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities. PMID:26566524

  8. Eloquent Brain, Ethical Challenges: Functional Brain Mapping in Neurosurgery.

    PubMed

    Klein, Eran

    2015-06-01

    Functional brain mapping is an increasingly relied upon tool in presurgical planning and intraoperative decision making. Mapping allows personalization of structure-function relationships when surgical or other treatment of pathology puts eloquent functioning like language or vision at risk. As an innovative technology, functional brain mapping holds great promise but also raises important ethical questions. In this article, recent work in neuroethics on functional imaging and functional neurosurgery is explored and applied to functional brain mapping. Specific topics discussed in this article are incidental findings, responsible innovation, and informed consent.

  9. Modulating Brain Oscillations to Drive Brain Function

    PubMed Central

    Thut, Gregor

    2014-01-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  10. Neurotransmitter precursors and brain function.

    PubMed

    Conlay, L A; Zeisel, S H

    1982-04-01

    Brain function can be affected by the availability of dietary precursors of neurotransmitters. This occurs because the rate-limiting synthetic enzymes are not "saturated" with substrate under normal circumstances. Tyrosine affects catecholaminergic neurons that fire rapidly, whether in the brain stem to decrease blood pressure in hypertension or in the adrenal gland to increase blood pressure in hypotension, and has been used in the treatment of Parkinson's disease and depression. Choline forms acetylcholine and has been used successfully in the treatment of tardive dyskinesia and memory disorders. Tryptophan, which forms serotonin, has been used for chronic pain therapy, sleep disorders, depression, and appetite control. Although these substances may lack the potency of traditionally used agonists, they offer an increase in specificity because the enzymes necessary to convert them to neurotransmitters are found only in neurons. Precursors are also "physiological"; they are consumed as foods and, therefore, should be relatively safe therapeutic agents. PMID:6124895

  11. Dynamic imaging of brain function

    PubMed Central

    Hyder, Fahmeed

    2013-01-01

    In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neuronal activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used as a model to reveal activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with specified spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Because the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques. PMID:18839085

  12. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species.

  13. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. PMID:26481236

  14. The brain timewise: how timing shapes and supports brain function

    PubMed Central

    Hari, Riitta; Parkkonen, Lauri

    2015-01-01

    We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function. PMID:25823867

  15. The brain timewise: how timing shapes and supports brain function.

    PubMed

    Hari, Riitta; Parkkonen, Lauri

    2015-05-19

    We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.

  16. Brain foods: the effects of nutrients on brain function

    PubMed Central

    Gómez-Pinilla, Fernando

    2009-01-01

    It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or that are produced in the brain itself, influence cognitive ability. In addition, well-established regulators of synaptic plasticity, such as brain-derived neurotrophic factor, can function as metabolic modulators, responding to peripheral signals such as food intake. Understanding the molecular basis of the effects of food on cognition will help us to determine how best to manipulate diet in order to increase the resistance of neurons to insults and promote mental fitness. PMID:18568016

  17. Peroxisomes in brain development and function.

    PubMed

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-05-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer's disease, autism and amyotrophic lateral sclerosis. PMID:26686055

  18. Peroxisomes in brain development and function.

    PubMed

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-05-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer's disease, autism and amyotrophic lateral sclerosis.

  19. Modeling of functional brain imaging data

    NASA Astrophysics Data System (ADS)

    Horwitz, Barry

    1999-03-01

    The richness and complexity of data sets obtained from functional neuroimaging studies of human cognitive behavior, using techniques such as positron emission tomography and functional magnetic resonance imaging, have until recently not been exploited by computational neural modeling methods. In this article, following a brief introduction to functional neuroimaging methodology, two neural modeling approaches for use with functional brain imaging data are described. One, which uses structural equation modeling, examines the effective functional connections between various brain regions during specific cognitive tasks. The second employs large-scale neural modeling to relate functional neuroimaging signals in multiple, interconnected brain regions to the underlying neurobiological time-varying activities in each region. These two modeling procedures are illustrated using a visual processing paradigm.

  20. Functional brain changes in presymptomatic Huntington's disease.

    PubMed

    Reading, Sarah A J; Dziorny, Adam C; Peroutka, Laura A; Schreiber, Mathew; Gourley, Lisa M; Yallapragada, Venu; Rosenblatt, Adam; Margolis, Russell L; Pekar, James J; Pearlson, Godfrey D; Aylward, Elizabeth; Brandt, Jason; Bassett, Susan S; Ross, Christopher A

    2004-06-01

    Evidence suggests early structural brain changes in individuals with the Huntington's disease (HD) genetic mutation who are presymptomatic for the movement symptoms of the illness. The aim of this study was to investigate the presence of functional brain changes in this same population using functional magnetic resonance imaging. Subjects and matched controls underwent an functional magnetic resonance imaging "interference" protocol, a task known to be mediated in part by corticostriatal circuitry. In the setting of normal cognitive performance, presymptomatic HD subjects had significantly and specifically less activation in the left anterior cingulate cortex (BA 24, 32) compared with matched controls.

  1. Functional brain mapping of psychopathology

    PubMed Central

    Honey, G; Fletcher, P; Bullmore, E

    2002-01-01

    In this paper, we consider the impact that the novel functional neuroimaging techniques may have upon psychiatric illness. Functional neuroimaging has rapidly developed as a powerful tool in cognitive neuroscience and, in recent years, has seen widespread application in psychiatry. Although such studies have produced evidence for abnormal patterns of brain response in association with some pathological conditions, the core pathophysiologies remain unresolved. Although imaging techniques provide an unprecedented opportunity for investigation of physiological function of the living human brain, there are fundamental questions and assumptions which remain to be addressed. In this review we examine these conceptual issues under three broad sections: (1) characterising the clinical population of interest, (2) defining appropriate levels of description of normal brain function, and (3) relating these models to pathophysiological conditions. Parallel advances in each of these questions will be required before imaging techniques can impact on clinical decisions in psychiatry. PMID:11909899

  2. Lead poisoning and brain cell function

    SciTech Connect

    Goldstein, G.W. Kennedy Institute, Baltimore, MD )

    1990-11-01

    Exposure to excessive amounts of inorganic lead during the toddler years may produce lasting adverse effects upon brain function. Maximal ingestion of lead occurs at an age when major changes are occurring in the density of brain synaptic connections. The developmental reorganization of synapses is, in part, mediated by protein kinases, and these enzymes are particularly sensitive to stimulation by lead. By inappropriately activating specific protein kinases, lead poisoning may disrupt the development of neural networks without producing overt pathological alterations. The blood-brain barrier is another potential vulnerable site for the neurotoxic action of lead. protein kinases appear to regulate the development of brain capillaries and the expression of the blood-brain barrier properties. Stimulation of protein kinase by lead may disrupt barrier development and alter the precise regulation of the neuronal environment that is required for normal brain function. Together, these findings suggest that the sensitivity of protein kinases to lead may in part underlie the brain dysfunction observed in children poisoned by this toxicant.

  3. Prospects for Optogenetic Augmentation of Brain Function

    PubMed Central

    Jarvis, Sarah; Schultz, Simon R.

    2015-01-01

    The ability to optically control neural activity opens up possibilities for the restoration of normal function following neurological disorders. The temporal precision, spatial resolution, and neuronal specificity that optogenetics offers is unequalled by other available methods, so will it be suitable for not only restoring but also extending brain function? As the first demonstrations of optically “implanted” novel memories emerge, we examine the suitability of optogenetics as a technique for extending neural function. While optogenetics is an effective tool for altering neural activity, the largest impediment for optogenetics in neural augmentation is our systems level understanding of brain function. Furthermore, a number of clinical limitations currently remain as substantial hurdles for the applications proposed. While neurotechnologies for treating brain disorders and interfacing with prosthetics have advanced rapidly in the past few years, partially addressing some of these critical problems, optogenetics is not yet suitable for use in humans. Instead we conclude that for the immediate future, optogenetics is the neurological equivalent of the 3D printer: its flexibility providing an ideal tool for testing and prototyping solutions for treating brain disorders and augmenting brain function. PMID:26635547

  4. Secretin: specific binding to rat brain membranes

    SciTech Connect

    Fremeau, R.T. Jr.; Jensen, R.T.; Charlton, C.G.; Miller, R.L.; O'Donohue, T.L.; Moody, T.W.

    1983-08-01

    The binding of (/sup 125/I)secretin to rat brain membranes was investigated. Radiolabeled secretin bound with high affinity (KD . 0.2 nM) to a single class of noninteracting sites. Binding was specific, saturable, and reversible. Regional distribution studies indicated that the specific binding was greatest in the cerebellum, intermediate in the cortex, thalamus, striatum, hippocampus, and hypothalamus, and lowest in the midbrain and medulla/pons. Pharmacological studies indicated that only secretin, but not other peptides, inhibits binding of (/sup 125/I)secretin with high affinity. Also, certain guanine nucleotides inhibited high affinity binding. These data indicate that rat brain membranes possess high affinity binding sites specific for secretin and that with the use of (/sup 125/I) secretin the kinetics, stoichiometry, specificity, and distribution of secretin receptors can be directly investigated.

  5. Specific binding of atrial natriuretic factor in brain microvessels

    SciTech Connect

    Chabrier, P.E.; Roubert, P.; Braquet, P.

    1987-04-01

    Cerebral capillaries constitute the blood-brain barrier. Studies of specific receptors (neurotransmitters or hormones) located on this structure can be performed by means of radioligand-binding techniques on isolated brain microvessels. The authors examined on pure bovine cerebral microvessel preparations the binding of atrial natriuretic factor (ANF), using /sup 125/I-labeled ANF. Saturation and competition experiments demonstrated the presence of a single class of ANF-binding sites with high affinity and with a binding capacity of 58 fmol/mg of protein. The binding of /sup 125/I-labeled ANF to brain microvessels is specific, reversible, and time dependent, as is shown by association-dissociation experiments. The demonstration of specific ANF-binding sites on brain microvessels supposes a physiological role of ANF on brain microvasculature. The coexistence of ANF and angiotensin II receptors on this cerebrovascular tissue suggests that the two circulating peptides may act as mutual antagonists in the regulation of brain microcirculation and/or blood-brain barrier function.

  6. Brain diffusivity pattern is individual-specific information.

    PubMed

    Takao, H; Hayashi, N; Ohtomo, K

    2015-08-20

    The human brain is composed of complex networks of 100 billion neurons that underlie its higher functions. The set of neural connections in the brain has recently attracted growing interest from the scientific community. It is important to identify individual differences in these neural connections to study the background of individual differences in brain function and performance. In the present study, we investigated whether the pattern of brain diffusion, reflecting neural connections, is discernibly different among individuals; i.e., whether brain diffusivity is personally identifiable information. Using diffusion tensor imaging data from 224 healthy subjects scanned twice at an interval of about 1year, we performed brain recognition by spatial normalization of fractional anisotropy maps, feature extraction based on Principal Component Analysis, and calculation of the Euclidean distances between image pairs projected into the subspace. Even with only 16 dimensions used for projection, the rank-one identification rate was 99.1%. The rank-one identification rate was 100% with ⩾32 dimensions used for projection. The genuine accept rates were 95.1% and 100% at a false accept rate of 0.001%, with 16 and ⩾32 dimensions used for projection, respectively. There were no large differences in the Euclidean distance among different combinations of scanners used or between image pairs with and without scanner upgrade. The results indicate that brain diffusivity can identify a specific individual; i.e., the pattern of brain diffusion is personally identifiable information. Individual differences in brain diffusivity will form the basis of individual differences in personality and brain function. PMID:26116520

  7. DHA Effects in Brain Development and Function

    PubMed Central

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  8. DHA Effects in Brain Development and Function.

    PubMed

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-04

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  9. Brief Report: Brain Mechanisms in Autism: Functional and Structural Abnormalities.

    ERIC Educational Resources Information Center

    Minshew, Nancy J.

    1996-01-01

    This paper summarizes results of research on functional and structural abnormalities of the brain in autism. The current concept of causation is seen to involve multiple biologic levels. A consistent profile of brain function and dysfunction across methods has been found and specific neuropathologic findings have been found; but some research…

  10. Insulin action in brain regulates systemic metabolism and brain function.

    PubMed

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.

  11. Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains

    PubMed Central

    Yoo, Seung-Schik; Kim, Hyungmin; Filandrianos, Emmanuel; Taghados, Seyed Javid; Park, Shinsuk

    2013-01-01

    Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer’s intention to stimulate a rat’s brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer’s intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications. PMID:23573251

  12. Aging and functional brain networks

    SciTech Connect

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  13. Brain-specific epigenetic markers of schizophrenia

    PubMed Central

    Wockner, L F; Morris, C P; Noble, E P; Lawford, B R; Whitehall, V L J; Young, R M; Voisey, J

    2015-01-01

    Epigenetics plays a crucial role in schizophrenia susceptibility. In a previous study, we identified over 4500 differentially methylated sites in prefrontal cortex (PFC) samples from schizophrenia patients. We believe this was the first genome-wide methylation study performed on human brain tissue using the Illumina Infinium HumanMethylation450 Bead Chip. To understand the biological significance of these results, we sought to identify a smaller number of differentially methylated regions (DMRs) of more functional relevance compared with individual differentially methylated sites. Since our schizophrenia whole genome methylation study was performed, another study analysing two separate data sets of post-mortem tissue in the PFC from schizophrenia patients has been published. We analysed all three data sets using the bumphunter function found in the Bioconductor package minfi to identify regions that are consistently differentially methylated across distinct cohorts. We identified seven regions that are consistently differentially methylated in schizophrenia, despite considerable heterogeneity in the methylation profiles of patients with schizophrenia. The regions were near CERS3, DPPA5, PRDM9, DDX43, REC8, LY6G5C and a region on chromosome 10. Of particular interest is PRDM9 which encodes a histone methyltransferase that is essential for meiotic recombination and is known to tag genes for epigenetic transcriptional activation. These seven DMRs are likely to be key epigenetic factors in the aetiology of schizophrenia and normal brain neurodevelopment. PMID:26575221

  14. The Big Five default brain: functional evidence.

    PubMed

    Sampaio, Adriana; Soares, José Miguel; Coutinho, Joana; Sousa, Nuno; Gonçalves, Óscar F

    2014-11-01

    Recent neuroimaging studies have provided evidence that different dimensions of human personality may be associated with specific structural neuroanatomic correlates. Identifying brain correlates of a situation-independent personality structure would require evidence of a stable default mode of brain functioning. In this study, we investigated the correlates of the Big Five personality dimensions (Extraversion, Neuroticism, Openness/Intellect, Agreeableness, and Conscientiousness) and the default mode network (DMN). Forty-nine healthy adults completed the NEO-Five Factor. The results showed that the Extraversion (E) and Agreeableness (A) were positively correlated with activity in the midline core of the DMN, whereas Neuroticism (N), Openness (O), and Conscientiousness (C) were correlated with the parietal cortex system. Activity of the anterior cingulate cortex was positively associated with A and negatively with C. Regions of the parietal lobe were differentially associated with each personality dimension. The present study not only confirms previous functional correlates regarding the Big Five personality dimensions, but it also expands our knowledge showing the association between different personality dimensions and specific patterns of brain activation at rest.

  15. Describing functional diversity of brain regions and brain networks

    PubMed Central

    Anderson, Michael L.; Kinnison, Josh; Pessoa, Luiz

    2013-01-01

    Despite the general acceptance that functional specialization plays an important role in brain function, there is little consensus about its extent in the brain. We sought to advance the understanding of this question by employing a data-driven approach that capitalizes on the existence of large databases of neuroimaging data. We quantified the diversity of activation in brain regions as a way to characterize the degree of functional specialization. To do so, brain activations were classified in terms of task domains, such as vision, attention, and language, which determined a region’s functional fingerprint. We found that the degree of diversity varied considerably across the brain. We also quantified novel properties of regions and of networks that inform our understanding of several task-positive and task-negative networks described in the literature, including defining functional fingerprints for entire networks and measuring their functional assortativity, namely the degree to which they are composed of regions with similar functional fingerprints. Our results demonstrate that some brain networks exhibit strong assortativity, whereas other networks consist of relatively heterogeneous parts. In sum, rather than characterizing the contributions of individual brain regions using task-based functional attributions, we instead quantified their dispositional tendencies, and related those to each region’s affiliative properties in both task-positive and task-negative contexts. PMID:23396162

  16. Dietary amino acids and brain function.

    PubMed

    Fernstrom, J D

    1994-01-01

    Two groups of amino acids--the aromatic and the acidic amino acids--are reputed to influence brain function when their ingestion in food changes the levels of these amino acids in the brain. The aromatic amino acids (tryptophan, tyrosine, phenylalanine) are the biosynthetic precursors for the neurotransmitters serotonin, dopamine, and norepinephrine. Single meals, depending on their protein content, can rapidly influence uptake of aromatic amino acid into the brain and, as a result, directly modify their conversion to neurotransmitters. Such alterations in the production of transmitters can directly modify their release from neurons and, thus, influence brain function. The acidic amino acids glutamate and aspartate are themselves brain neurotransmitters. However, they do not have ready access to the brain from the circulation or the diet. As a result, the ingestion of proteins, which are naturally rich in aspartate and glutamate, has no effect on the level of acidic amino acid in the brain (or, thus, on brain function by this mechanism). Nevertheless, the food additives monosodium glutamate and aspartame (which contains aspartate) have been reputed to raise the level of acidic amino acid in the brain (when ingested in enormous amounts), to modify brain function, and even to cause neuronal damage. Despite such claims, a substantial body of published evidence clearly indicates that the brain is not affected by ingestion of aspartame and is affected by glutamate only when the amino acid is administered alone in extremely large doses. Therefore, when consumed in the diet neither compound presents a risk to normal brain function.

  17. Structural and functional connectivity in traumatic brain injury

    PubMed Central

    Xiao, Hui; Yang, Yang; Xi, Ji-hui; Chen, Zi-qian

    2015-01-01

    Traumatic brain injury survivors often experience cognitive deficits and neuropsychiatric symptoms. However, the neurobiological mechanisms underlying specific impairments are not fully understood. Advances in neuroimaging techniques (such as diffusion tensor imaging and functional MRI) have given us new insights on structural and functional connectivity patterns of the human brain in both health and disease. The connectome derived from connectivity maps reflects the entire constellation of distributed brain networks. Using these powerful neuroimaging approaches, changes at the microstructural level can be detected through regional and global properties of neuronal networks. Here we will review recent developments in the study of brain network abnormalities in traumatic brain injury, mainly focusing on structural and functional connectivity. Some connectomic studies have provided interesting insights into the neurological dysfunction that occurs following traumatic brain injury. These techniques could eventually be helpful in developing imaging biomarkers of cognitive and neurobehavioral sequelae, as well as predicting outcome and prognosis. PMID:26889200

  18. Promoting motor function by exercising the brain.

    PubMed

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects' motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson's patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  19. Neural Differentiation Modulates the Vertebrate Brain Specific Splicing Program

    PubMed Central

    Madgwick, Alicia; Fort, Philippe; Hanson, Peter S.; Thibault, Philippe; Gaudreau, Marie-Claude; Lutfalla, Georges; Möröy, Tarik; Abou Elela, Sherif; Chaudhry, Bill; Elliott, David J.; Morris, Christopher M.; Venables, Julian P.

    2015-01-01

    Alternative splicing patterns are known to vary between tissues but these patterns have been found to be predominantly peculiar to one species or another, implying only a limited function in fundamental neural biology. Here we used high-throughput RT-PCR to monitor the expression pattern of all the annotated simple alternative splicing events (ASEs) in the Reference Sequence Database, in different mouse tissues and identified 93 brain-specific events that shift from one isoform to another (switch-like) between brain and other tissues. Consistent with an important function, regulation of a core set of 9 conserved switch-like ASEs is highly conserved, as they have the same pattern of tissue-specific splicing in all vertebrates tested: human, mouse and zebrafish. Several of these ASEs are embedded within genes that encode proteins associated with the neuronal microtubule network, and show a dramatic and concerted shift within a short time window of human neural stem cell differentiation. Similarly these exons are dynamically regulated in zebrafish development. These data demonstrate that although alternative splicing patterns often vary between species, there is nonetheless a core set of vertebrate brain-specific ASEs that are conserved between species and associated with neural differentiation. PMID:25993117

  20. Can we observe epigenetic effects on human brain function?

    PubMed

    Nikolova, Yuliya S; Hariri, Ahmad R

    2015-07-01

    Imaging genetics has identified many contributions of DNA sequence variation to individual differences in brain function, behavior, and risk for psychopathology. Recent studies have extended this work beyond the genome by mapping epigenetic differences, specifically gene methylation in peripherally assessed DNA, onto variability in behaviorally and clinically relevant brain function. These data have generated understandable enthusiasm for the potential of such research to illuminate biological mechanisms of risk. We use our research on the effects of genetic and epigenetic variation in the human serotonin transporter on brain function to generate a guardedly optimistic opinion that the available data encourage continued research in this direction, and suggest strategies to promote faster progress.

  1. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  2. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  3. The restless brain: how intrinsic activity organizes brain function.

    PubMed

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.

  4. Bioengineered functional brain-like cortical tissue

    PubMed Central

    Tang-Schomer, Min D.; White, James D.; Tien, Lee W.; Schmitt, L. Ian; Valentin, Thomas M.; Graziano, Daniel J.; Hopkins, Amy M.; Omenetto, Fiorenzo G.; Haydon, Philip G.; Kaplan, David L.

    2014-01-01

    The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury. PMID:25114234

  5. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-01

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. PMID:21664231

  6. [Functional brain plasticity associated with motor learning].

    PubMed

    Doyon, Julien; Orban, Pierre; Barakat, Marc; Debas, Karen; Lungu, Ovidiu; Albouy, Geneviève; Fogel, Stuart; Proulx, Sébastien; Laventure, Samuel; Deslauriers, Jonathan; Duchesne, Catherine; Carrier, Julie; Benali, Habib

    2011-04-01

    This review presents the results of studies carried out in our laboratory that aim to investigate, through functional magnetic resonance imaging (fMRI), the brain plasticity associated with motor sequence learning, defined as our ability to integrate simple stereotyped movements into a single motor representation. Following a brief description of Doyon and colleagues' model (2002, 2005, 2009) of motor skill learning that has guided this work, we then describe the functional changes that occur at the different (rapid, slow, automatization) acquisition phases, and propose specific roles that the putamen, the cerebellum and their motor-related cortical areas, play in this form of motor behavior. Finally, we put forward evidence that post-training, non-REM sleep (and spindles in Stage 2 sleep, in particular) contributes to the consolidation of a motor sequence memory trace, and that increased activity within the striatum and/or the hippocampus mediates this mnemonic process.

  7. Brain Function: Implications for Schooling.

    ERIC Educational Resources Information Center

    Edwards, Clifford H.

    1982-01-01

    The implications of cerebral dominance for curriculum and instruction are enormous. Cognitive style, sex differences, instructional materials preparation and selection, and testing are affected by right or left brain hemisphere dominance. (CJ)

  8. Functional brain networks involved in reality monitoring.

    PubMed

    Metzak, Paul D; Lavigne, Katie M; Woodward, Todd S

    2015-08-01

    Source monitoring refers to the recollection of variables that specify the context and conditions in which a memory episode was encoded. This process involves using the qualitative and quantitative features of a memory trace to distinguish its source. One specific class of source monitoring is reality monitoring, which involves distinguishing internally generated from externally generated information, that is, memories of imagined events from real events. The purpose of the present study was to identify functional brain networks that underlie reality monitoring, using an alternative type of source monitoring as a control condition. On the basis of previous studies on self-referential thinking, it was expected that a medial prefrontal cortex (mPFC) based network would be more active during reality monitoring than the control condition, due to the requirement to focus on a comparison of internal (self) and external (other) source information. Two functional brain networks emerged from this analysis, one reflecting increasing task-related activity, and one reflecting decreasing task-related activity. The second network was mPFC based, and was characterized by task-related deactivations in areas resembling the default-mode network; namely, the mPFC, middle temporal gyri, lateral parietal regions, and the precuneus, and these deactivations were diminished during reality monitoring relative to source monitoring, resulting in higher activity during reality monitoring. This result supports previous research suggesting that self-referential thinking involves the mPFC, but extends this to a network-level interpretation of reality monitoring.

  9. Simple models of human brain functional networks.

    PubMed

    Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

    2012-04-10

    Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

  10. Hyper-connectivity of functional networks for brain disease diagnosis.

    PubMed

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  11. Forthergillian Lecture. Imaging human brain function.

    PubMed

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  12. Structure and function of complex brain networks.

    PubMed

    Sporns, Olaf

    2013-09-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a "rich club," centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed.

  13. Scale-Free Brain Functional Networks

    NASA Astrophysics Data System (ADS)

    Eguíluz, Victor M.; Chialvo, Dante R.; Cecchi, Guillermo A.; Baliki, Marwan; Apkarian, A. Vania

    2005-01-01

    Functional magnetic resonance imaging is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that (a)the distribution of functional connections, and the probability of finding a link versus distance are both scale-free, (b)the characteristic path length is small and comparable with those of equivalent random networks, and (c)the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small-world networks, reflect important functional information about brain states.

  14. Metabolism and functions of copper in brain.

    PubMed

    Scheiber, Ivo F; Mercer, Julian F B; Dringen, Ralf

    2014-05-01

    Copper is an important trace element that is required for essential enzymes. However, due to its redox activity, copper can also lead to the generation of toxic reactive oxygen species. Therefore, cellular uptake, storage as well as export of copper have to be tightly regulated in order to guarantee sufficient copper supply for the synthesis of copper-containing enzymes but also to prevent copper-induced oxidative stress. In brain, copper is of importance for normal development. In addition, both copper deficiency as well as excess of copper can seriously affect brain functions. Therefore, this organ possesses ample mechanisms to regulate its copper metabolism. In brain, astrocytes are considered as important regulators of copper homeostasis. Impairments of homeostatic mechanisms in brain copper metabolism have been associated with neurodegeneration in human disorders such as Menkes disease, Wilson's disease and Alzheimer's disease. This review article will summarize the biological functions of copper in the brain and will describe the current knowledge on the mechanisms involved in copper transport, storage and export of brain cells. The role of copper in diseases that have been connected with disturbances in brain copper homeostasis will also be discussed.

  15. Toward discovery science of human brain function.

    PubMed

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/.

  16. Toward discovery science of human brain function.

    PubMed

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

    2010-03-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID

  17. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized.

  18. The Brain Prize 2014: complex human functions.

    PubMed

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research?

  19. Imaging visual function of the human brain

    SciTech Connect

    Marg, E.

    1988-10-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references.

  20. Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time

    PubMed Central

    Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.

    2016-01-01

    Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and

  1. The connection between rhythmicity and brain function.

    PubMed

    Thaut, M H; Kenyon, G P; Schauer, M L; McIntosh, G C

    1999-01-01

    endeavor with important ramifications for the study of brain function, sensory perception, and motor behavior. One of the most exciting findings in this research, however, may be the evidence that the interaction between auditory rhythm and physical response can be effectively harnessed for specific therapeutic purposes in the rehabilitation of persons with movement disorders. PMID:10101675

  2. The connection between rhythmicity and brain function.

    PubMed

    Thaut, M H; Kenyon, G P; Schauer, M L; McIntosh, G C

    1999-01-01

    endeavor with important ramifications for the study of brain function, sensory perception, and motor behavior. One of the most exciting findings in this research, however, may be the evidence that the interaction between auditory rhythm and physical response can be effectively harnessed for specific therapeutic purposes in the rehabilitation of persons with movement disorders.

  3. Mapping brain function in freely moving subjects

    PubMed Central

    Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    Expression of many fundamental mammalian behaviors such as, for example, aggression, mating, foraging or social behaviors, depend on locomotor activity. A central dilemma in the functional neuroimaging of these behaviors has been the fact that conventional neuroimaging techniques generally rely on immobilization of the subject, which extinguishes all but the simplest activity. Ideally, imaging could occur in freely moving subjects, while presenting minimal interference with the subject’s natural behavior. Here we provide an overview of several approaches that have been undertaken in the past to achieve this aim in both tethered and freely moving animals, as well as in nonrestrained human subjects. Applications of specific radiotracers to single photon emission computed tomography and positron emission tomography are discussed in which brain activation is imaged after completion of the behavioral task and capture of the tracer. Potential applications to clinical neuropsychiatry are discussed, as well as challenges inherent to constraint-free functional neuroimaging. Future applications of these methods promise to increase our understanding of the neural circuits underlying mammalian behavior in health and disease. PMID:15465134

  4. Ethical issues of brain functional imaging: reading your mind.

    PubMed

    Karanasiou, Irene S; Biniaris, Christos G; Marsh, Andrew J

    2008-01-01

    Neuroimaging practice and research are overviewed in this paper through an ethics lens. The main ethical implications in biomedical research concerning functional brain imaging are discussed with the focus on issues related to imaging of personal information and privacy. Specific norms and guidelines will be eventually formed in the future under the umbrella of the new discipline of Neuroethics.

  5. Strengthening connections: functional connectivity and brain plasticity.

    PubMed

    Kelly, Clare; Castellanos, F Xavier

    2014-03-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist's toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

  6. Progesterone Receptors: Form and Function in Brain

    PubMed Central

    Brinton, Roberta Diaz; Thompson, Richard F.; Foy, Michael R.; Baudry, Michel; Wang, JunMing; Finch, Caleb E; Morgan, Todd E.; Stanczyk, Frank Z.; Pike, Christian J.; Nilsen, Jon

    2008-01-01

    Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRβ and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and / or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging. PMID:18374402

  7. Strengthening connections: functional connectivity and brain plasticity

    PubMed Central

    Kelly, Clare; Castellanos, F. Xavier

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into effects of experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypothesis for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology. PMID:24496903

  8. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  9. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  10. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  11. [Functional magnetic resonance imaging of psychopharmacological brain effects: an update].

    PubMed

    Braus, D F; Brassen, S; Weimer, E; Tost, H

    2003-02-01

    Functional magnetic resonance imaging (fMRI) is well established for the examination of functional activity in the living brain. The method permits the development of functional activation maps during perceptual, cognitive and emotional efforts with a high temporal and spatial resolution. As of late there has been growing interest in using this technique to investigate regionally specific brain activity following the administration of drugs such as nicotine, cocaine, lorazepam, scopolamine, antipsychotics or antidepressants. Studies in experimental animals investigate signal changes associated with the administration of psychopharmacological substances in different brain areas using a high magnetising field (> 4 Tesla). FMRI-studies in healthy human volunteers and psychiatric patients focus on cerebral activity following acute drug administration (single challenge) and on adaptive effects of the CNS due to long- term medication. Their results provide insights into brain physiology and neuropharmacological mechanisms which are in turn relevant for preclinical pharmacological studies, responder analyses and for the investigation of pathogenetic models in psychiatric diseases. However, with these new opportunities, additional methodological considerations and limitations emerge. Besides the need of controlling motion artefacts, the influence of interfering psychological variables, an exact specification of the experimental design, a standardised analysis for data adjustment and technical limitations have to be considered. This article provides an overview of the underlying model of brain function, present applications, future possibilities and methodological limitations of fMRI for the understanding of human psychopharmacology. PMID:12579470

  12. Functional interrelationship of brain aging and delirium.

    PubMed

    Rapazzini, Piero

    2016-02-01

    Theories on the development of delirium are complementary rather than competing and they may relate to each other. Here, we highlight that similar alterations in functional brain connectivity underlie both the observed age-related deficits and episodes of delirium. The default mode network (DMN) is a group of brain regions showing a greater level of activity at rest than during attention-based tasks. These regions include the posteromedial-anteromedial cortices and temporoparietal junctions. Evidence suggests that awareness is subserved through higher order neurons associated with the DMN. By using functional MRI disruption of DMN, connectivity and weaker task-induced deactivations of these regions are observed both in age-related cognitive impairment and during episodes of delirium. We can assume that an acute up-regulation of inhibitory tone within the brain acts to further disrupt network connectivity in vulnerable patients, who are predisposed by a reduced baseline connectivity, and triggers the delirium. PMID:25998952

  13. Functional interrelationship of brain aging and delirium.

    PubMed

    Rapazzini, Piero

    2016-02-01

    Theories on the development of delirium are complementary rather than competing and they may relate to each other. Here, we highlight that similar alterations in functional brain connectivity underlie both the observed age-related deficits and episodes of delirium. The default mode network (DMN) is a group of brain regions showing a greater level of activity at rest than during attention-based tasks. These regions include the posteromedial-anteromedial cortices and temporoparietal junctions. Evidence suggests that awareness is subserved through higher order neurons associated with the DMN. By using functional MRI disruption of DMN, connectivity and weaker task-induced deactivations of these regions are observed both in age-related cognitive impairment and during episodes of delirium. We can assume that an acute up-regulation of inhibitory tone within the brain acts to further disrupt network connectivity in vulnerable patients, who are predisposed by a reduced baseline connectivity, and triggers the delirium.

  14. Histamine function in brain disorders.

    PubMed

    Fernández-Novoa, L; Cacabelos, R

    2001-10-15

    The neurotransmitter histamine (HA) has been implicated in the regulation of numerous and important activities of the central nervous system as arousal, cognition, circadian rhythms and neuroendocrine regulation. The data presented here indicate the participation of the histaminergic system in central nervous system disorders, such as Alzheimer's disease and schizophrenia. We also present experimental data on histamine in an animal model of neurodegeneration and the cytotoxic effects of histamine on cultured rat endothelial cells. More studies are needed to investigate the role of the histaminergic system in central nervous system disorders. Peripheral cellular studies in health and disease, molecular studies on receptors and in vivo pharmacological studies may help us to better understand the function of the histaminergic system in health and disease.

  15. Integrating Retinoic Acid Signaling with Brain Function

    ERIC Educational Resources Information Center

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  16. Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses.

    PubMed

    Nieto-Castañón, Alfonso; Fedorenko, Evelina

    2012-11-15

    One important goal of cognitive neuroscience is to discover and explain properties common to all human brains. The traditional solution for comparing functional activations across brains in fMRI is to align each individual brain to a template brain in a Cartesian coordinate system (e.g., the Montreal Neurological Institute template). However, inter-individual anatomical variability leads to decreases in sensitivity (ability to detect a significant activation when it is present) and functional resolution (ability to discriminate spatially adjacent but functionally different neural responses) in group analyses. Subject-specific functional localizers have been previously argued to increase the sensitivity and functional resolution of fMRI analyses in the presence of inter-subject variability in the locations of functional activations (e.g., Brett et al., 2002; Fedorenko and Kanwisher, 2009, 2011; Fedorenko et al., 2010; Kanwisher et al., 1997; Saxe et al., 2006). In the current paper we quantify this dependence of sensitivity and functional resolution on functional variability across subjects in order to illustrate the highly detrimental effects of this variability on traditional group analyses. We show that analyses that use subject-specific functional localizers usually outperform traditional group-based methods in both sensitivity and functional resolution, even when the same total amount of data is used for each analysis. We further discuss how the subject-specific functional localization approach, which has traditionally only been considered in the context of ROI-based analyses, can be extended to whole-brain voxel-based analyses. We conclude that subject-specific functional localizers are particularly well suited for investigating questions of functional specialization in the brain. An SPM toolbox that can perform all of the analyses described in this paper is publicly available, and the analyses can be applied retroactively to any dataset, provided that

  17. See the brain at work: intraoperative laser Doppler functional brain imaging

    NASA Astrophysics Data System (ADS)

    Martin-Williams, E. J.; Raabe, A.; Van De Ville, D.; Leutenegger, M.; Szelényi, A.; Hattingen, E.; Gerlach, R.; Seifert, V.; Hauger, C.; Lopez, A.; Leitgeb, R.; Unser, M.; Lasser, T.

    2009-07-01

    During open brain surgery we acquire perfusion images non-invasively using laser Doppler imaging. The regions of brain activity show a distinct signal in response to stimulation providing intraoperative functional brain maps of remarkably strong contrast.

  18. Sialylation regulates brain structure and function

    PubMed Central

    Yoo, Seung-Wan; Motari, Mary G.; Susuki, Keiichiro; Prendergast, Jillian; Mountney, Andrea; Hurtado, Andres; Schnaar, Ronald L.

    2015-01-01

    Every cell expresses a molecularly diverse surface glycan coat (glycocalyx) comprising its interface with its cellular environment. In vertebrates, the terminal sugars of the glycocalyx are often sialic acids, 9-carbon backbone anionic sugars implicated in intermolecular and intercellular interactions. The vertebrate brain is particularly enriched in sialic acid-containing glycolipids termed gangliosides. Human congenital disorders of ganglioside biosynthesis result in paraplegia, epilepsy, and intellectual disability. To better understand sialoglycan functions in the nervous system, we studied brain anatomy, histology, biochemistry, and behavior in mice with engineered mutations in St3gal2 and St3gal3, sialyltransferase genes responsible for terminal sialylation of gangliosides and some glycoproteins. St3gal2/3 double-null mice displayed dysmyelination marked by a 40% reduction in major myelin proteins, 30% fewer myelinated axons, a 33% decrease in myelin thickness, and molecular disruptions at nodes of Ranvier. In part, these changes may be due to dysregulation of ganglioside-mediated oligodendroglial precursor cell proliferation. Neuronal markers were also reduced up to 40%, and hippocampal neurons had smaller dendritic arbors. Young adult St3gal2/3 double-null mice displayed impaired motor coordination, disturbed gait, and profound cognitive disability. Comparisons among sialyltransferase mutant mice provide insights into the functional roles of brain gangliosides and sialoglycoproteins consistent with related human congenital disorders.—Yoo, S.-W., Motari, M. G., Susuki, K., Prendergast, J., Mountney, A., Hurtado, A., Schnaar, R. L. Sialylation regulates brain structure and function. PMID:25846372

  19. The development of social brain functions in infancy.

    PubMed

    Grossmann, Tobias

    2015-11-01

    One fundamental question in psychology is what makes humans such intensely social beings. Probing the developmental and neural origins of our social capacities is a way of addressing this question. In the last 10 years the field of social-cognitive development has witnessed a surge in studies using neuroscience methods to elucidate the development of social information processing during infancy. While the use of electroencephalography (EEG)/event-related brain potentials (ERPs) and functional near-infrared spectroscopy (fNIRS) has revealed a great deal about the timing and localization of the cortical processes involved in early social cognition, the principles underpinning the early development of social brain functioning remain largely unexplored. Here I provide a framework that delineates the essential processes implicated in the early development of the social brain. In particular, I argue that the development of social brain functions in infancy is characterized by the following key principles: (a) self-relevance, (b) joint engagement, (c) predictability, (d) categorization, (e) discrimination, and (f) integration. For all of the proposed principles, I provide empirical examples to illustrate when in infancy they emerge. Moreover, I discuss to what extent they are in fact specifically social in nature or share properties with more domain-general developmental principles. Taken together, this article provides a conceptual integration of the existing EEG/ERPs and fNIRS work on infant social brain function and thereby offers the basis for a principle-based approach to studying the neural correlates of early social cognition.

  20. Encoding and Retrieving Faces and Places: Distinguishing Process- and Stimulus-Specific Differences in Brain Activity

    ERIC Educational Resources Information Center

    Prince, Steven E.; Dennis, Nancy A.; Cabeza, Roberto

    2009-01-01

    Among the most fundamental issues in cognitive neuroscience is how the brain may be organized into process-specific and stimulus-specific regions. In the episodic memory domain, most functional neuroimaging studies have focused on the former dimension, typically investigating the neural correlates of various memory processes. Thus, there is little…

  1. Coexpression networks identify brain region-specific enhancer RNAs in the human brain.

    PubMed

    Yao, Pu; Lin, Peijie; Gokoolparsadh, Akira; Assareh, Amelia; Thang, Mike W C; Voineagu, Irina

    2015-08-01

    Despite major progress in identifying enhancer regions on a genome-wide scale, the majority of available data are limited to model organisms and human transformed cell lines. We have identified a robust set of enhancer RNAs (eRNAs) expressed in the human brain and constructed networks assessing eRNA-gene coexpression interactions across human fetal brain and multiple adult brain regions. Our data identify brain region-specific eRNAs and show that enhancer regions expressing eRNAs are enriched for genetic variants associated with autism spectrum disorders.

  2. Electromagnetic inverse applications for functional brain imaging

    SciTech Connect

    Wood, C.C.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

  3. Functional brain asymmetry, handedness and menarcheal age.

    PubMed

    Nikolova, P; Stoyanov, Z; Negrev, N

    1994-12-01

    Functional brain asymmetry influences many functions of the organism; the neuroendocrine axis is one that has received insufficient attention. In this study we set us as the goal of studying the link between functional brain asymmetry and menarcheal age in females with left versus right manual dominance. The appearance of the first menarche was used as a natural model of functioning of the hypothalamic-pituitary-gonadal (HPG) axis. 1695 females, aged between 16 and 25 years, were interviewed by questionnaire about manual dominance and menarcheal age. 182 women were selected and divided into 2 groups: all left-handers (n = 91), and a control group of 91 right-handers. We found a significantly lower average age of menarcheal appearance in the left-handers' age of 12.09 +/- 0.16 years compared to the right-handers' age of 13.32 +/- 0.12 years (p < 0.001). The earliest menarcheal age in left-handers was 8 years and the peak of appearance at age 13 (in 30.76% of the cases). In right-handers these values were 10 and 14 years (in 40.60% of the cases), respectively. The data allow us to accept the existence of a link between functional brain asymmetry and menarche, which causes earlier activation of the HPG axis in left-handed females.

  4. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  5. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo.

  6. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  7. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  8. Electroencephalographic imaging of higher brain function.

    PubMed Central

    Gevins, A; Smith, M E; McEvoy, L K; Leong, H; Le, J

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities. PMID:10466140

  9. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  10. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  11. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain

    PubMed Central

    Belcher, Annabelle M.; Yen, Cecil Chern-Chyi; Notardonato, Lucia; Ross, Thomas J.; Volkow, Nora D.; Yang, Yihong; Stein, Elliot A.; Silva, Afonso C.; Tomasi, Dardo

    2016-01-01

    In combination with advances in analytical methods, resting-state fMRI is allowing unprecedented access to a better understanding of the network organization of the brain. Increasing evidence suggests that this architecture may incorporate highly functionally connected nodes, or “hubs”, and we have recently proposed local functional connectivity density (lFCD) mapping to identify highly-connected nodes in the human brain. Here, we imaged awake nonhuman primates to test whether, like the human brain, the marmoset brain contains FC hubs. Ten adult common marmosets (Callithrix jacchus) were acclimated to mild, comfortable restraint using individualized helmets. Following restraint training, resting BOLD data were acquired during eight consecutive 10 min scans for each subject. lFCD revealed prominent cortical and subcortical hubs of connectivity across the marmoset brain; specifically, in primary and secondary visual cortices (V1/V2), higher-order visual association areas (A19M/V6[DM]), posterior parietal and posterior cingulate areas (PGM and A23b/A31), thalamus, dorsal and ventral striatal areas (caudate, putamen, lateral septal nucleus, and anterior cingulate cortex (A24a). lFCD hubs were highly connected to widespread areas of the brain, and further revealed significant network-network interactions. These data provide a baseline platform for future investigations in a nonhuman primate model of the brain’s network topology. PMID:26973476

  12. The Role of Sleep in Emotional Brain Function

    PubMed Central

    Goldstein, Andrea N.; Walker, Matthew P.

    2014-01-01

    Rapidly emerging evidence continues to describe an intimate and causal relationship between sleep and emotional brain function. These findings are mirrored by longstanding clinical observations demonstrating that nearly all mood and anxiety disorders co-occur with one or more sleep abnormalities. This review aims to (1) provide a synthesis of recent findings describing the emotional brain and behavioral benefits triggered by sleep, and conversely, the detrimental impairments following a lack of sleep, (2) outline a proposed framework in which sleep, and specifically rapid-eye movement (REM) sleep, supports a process of affective brain homeostasis, optimally preparing the organism for next-day social and emotional functioning, and (3) describe how this hypothesized framework can explain the prevalent relationships between sleep and psychiatric disorders, with a particular focus on post-traumatic stress disorder and major depression. PMID:24499013

  13. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury.

    PubMed

    Bardin, Jonathan C; Fins, Joseph J; Katz, Douglas I; Hersh, Jennifer; Heier, Linda A; Tabelow, Karsten; Dyke, Jonathan P; Ballon, Douglas J; Schiff, Nicholas D; Voss, Henning U

    2011-03-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects.

  14. Structural and functional brain imaging in schizophrenia.

    PubMed Central

    Cleghorn, J M; Zipursky, R B; List, S J

    1991-01-01

    We present an evaluation of the contribution of structural and functional brain imaging to our understanding of schizophrenia. Methodological influences on the validity of the data generated by these new technologies include problems with measurement and clinical and anatomic heterogeneity. These considerations greatly affect the interpretation of the data generated by these technologies. Work in these fields to date, however, has produced strong evidence which suggests that schizophrenia is a disease which involves abnormalities in the structure and function of many brain areas. Structural brain imaging studies of schizophrenia using computed tomography (CT) and magnetic resonance imaging (MRI) are reviewed and their contribution to current theories of the pathogenesis of schizophrenia are discussed. Positron emission tomography (PET) studies of brain metabolic activity and dopamine receptor binding in schizophrenia are summarized and the critical questions raised by these studies are outlined. Future studies in these fields have the potential to yield critical insights into the pathophysiology of schizophrenia; new directions for studies of schizophrenia using these technologies are identified. PMID:1911736

  15. Individual diversity of functional brain network economy.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Ganger, Sebastian; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-04-01

    On average, brain network economy represents a trade-off between communication efficiency, robustness, and connection cost, although an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with seven Tesla functional magnetic resonance imaging and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=-0.97), and the physical connection cost in three-dimensional space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at three Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders.

  16. Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner.

    PubMed

    Tai, S; Hyatt, W S; Gu, C; Franks, L N; Vasiljevik, T; Brents, L K; Prather, P L; Fantegrossi, W E

    2015-12-01

    These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs.

  17. Projection-Specific Characteristics of Retinal Input to the Brain

    PubMed Central

    Gauvain, Gregory

    2015-01-01

    The brain receives information about the direction of object motion from several types of retinal ganglion cells (RGCs). On-Off direction-selective (DS) RGCs respond preferentially to stimuli moving quickly in one of four directions and provide a significant (but difficult to quantify) fraction of RGC input to the SC. On DS RGCs, in comparison, respond preferentially to stimuli moving slowly in one of three directions and are thought to only target retinorecipient nuclei comprising the accessory optic system, e.g., the medial terminal nucleus (MTN). To determine the fraction of SC-projecting RGCs that exhibit direction selectivity, and the specificity with which On-Off and On DS RGCs target retinorecipient areas, we performed optical and electrophysiological recordings from RGCs retrogradely labeled from the mouse SC and MTN. We found, surprisingly, that both On-Off and On DS RGCs innervate the SC; collectively they constitute nearly 40% of SC-projecting RGCs. In comparison, only On DS RGCs project to the MTN. Subsequent experiments revealed that individual On DS RGCs innervate either the SC or MTN and exhibit robust projection-specific differences in somatodendritic morphology, cellular excitability, and light-evoked activity; several projection-specific differences in the output of On DS RGCs correspond closely to differences in excitatory synaptic input the cells receive. Our results reveal a robust projection of On DS RGCs to the SC, projection-specific differences in the response properties of On DS RGCs, and biophysical and synaptic mechanisms that underlie these functional differences. PMID:25904807

  18. Projection-specific characteristics of retinal input to the brain.

    PubMed

    Gauvain, Gregory; Murphy, Gabe J

    2015-04-22

    The brain receives information about the direction of object motion from several types of retinal ganglion cells (RGCs). On-Off direction-selective (DS) RGCs respond preferentially to stimuli moving quickly in one of four directions and provide a significant (but difficult to quantify) fraction of RGC input to the SC. On DS RGCs, in comparison, respond preferentially to stimuli moving slowly in one of three directions and are thought to only target retinorecipient nuclei comprising the accessory optic system, e.g., the medial terminal nucleus (MTN). To determine the fraction of SC-projecting RGCs that exhibit direction selectivity, and the specificity with which On-Off and On DS RGCs target retinorecipient areas, we performed optical and electrophysiological recordings from RGCs retrogradely labeled from the mouse SC and MTN. We found, surprisingly, that both On-Off and On DS RGCs innervate the SC; collectively they constitute nearly 40% of SC-projecting RGCs. In comparison, only On DS RGCs project to the MTN. Subsequent experiments revealed that individual On DS RGCs innervate either the SC or MTN and exhibit robust projection-specific differences in somatodendritic morphology, cellular excitability, and light-evoked activity; several projection-specific differences in the output of On DS RGCs correspond closely to differences in excitatory synaptic input the cells receive. Our results reveal a robust projection of On DS RGCs to the SC, projection-specific differences in the response properties of On DS RGCs, and biophysical and synaptic mechanisms that underlie these functional differences. PMID:25904807

  19. Brain-specific delivery of naproxen using different carrier systems.

    PubMed

    Mahmoud, Sheha; Mohammad, Alhawi

    2010-11-01

    Naproxen is one of the most potent NSAIDs and plays an important role in the treatment of neurodegenerative diseases. Poor brain delivery of naproxen at therapeutic doses, in addition to its serious gastrointestinal side effects, has prompted research into the development of a specific carrier system that is capable of delivering naproxen to the brain at smaller doses. The purpose of this study was to evaluate two brain-specific carrier systems of naproxen. The first was the dihydropyridine/pyridinium redox system that utilized a lipophilic chemical delivery system coupled to the carboxylic acid group of naproxen through an ethanolamine linker. Secondly, an ascorbic acid system, which has reducing properties and acts as a biological carrier through sodium-dependent vitamin-C transporter, was used for brain-specific delivery of naproxen. The prepared prodrugs were stable in aqueous buffers (pH 1.2 and 7.4) and rapidly hydrolyzed in biological fluids. Bioavailability studies revealed that both prodrugs 10 and 17 were rapidly cleared from blood with half lives of about 1 h, which will likely decrease systemic adverse effects. The rapid clearance from the blood was accompanied by an increase in the prodrug concentration in the brain, which occurred as a result of the prodrug being more locked in compared to the parent drug naproxen.

  20. When "altering brain function" becomes "mind control".

    PubMed

    Koivuniemi, Andrew; Otto, Kevin

    2014-01-01

    Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.

  1. Functional Brain Networks in Schizophrenia: A Review

    PubMed Central

    Calhoun, Vince D.; Eichele, Tom; Pearlson, Godfrey

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event-related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA) which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large-scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their inter

  2. Perinatal choline influences brain structure and function.

    PubMed

    Zeisel, Steven H; Niculescu, Mihai D

    2006-04-01

    Choline is derived not only from the diet, but also from de novo synthesis. It is important for methyl-group metabolism, the formation of membranes, kidney function, and neurotransmission. When deprived of dietary choline, most adult men and postmenopausal women develop signs of organ dysfunction (fatty liver or muscle damage) and have a decreased capacity to convert homocysteine to methionine. Choline is critical during fetal development, when it influences stem cell proliferation and apoptosis, thereby altering brain structure and function (memory is permanently enhanced in rodents exposed to choline during the latter part of gestation). PMID:16673755

  3. Brain structure and function correlates of cognitive subtypes in schizophrenia.

    PubMed

    Geisler, Daniel; Walton, Esther; Naylor, Melissa; Roessner, Veit; Lim, Kelvin O; Charles Schulz, S; Gollub, Randy L; Calhoun, Vince D; Sponheim, Scott R; Ehrlich, Stefan

    2015-10-30

    Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity.

  4. Functional Specificity of the Visual Word Form Area: General Activation for Words and Symbols but Specific Network Activation for Words

    ERIC Educational Resources Information Center

    Reinke, Karen; Fernandes, Myra; Schwindt, Graeme; O'Craven, Kathleen; Grady, Cheryl L.

    2008-01-01

    The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols…

  5. A Bayesian Model of Category-Specific Emotional Brain Responses

    PubMed Central

    Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman

    2015-01-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  6. Using Saccadometry with Deep Brain Stimulation to Study Normal and Pathological Brain Function.

    PubMed

    Antoniades, Chrystalina A; FitzGerald, James J

    2016-01-01

    The oculomotor system involves a large number of brain areas including parts of the basal ganglia, and various neurodegenerative diseases including Parkinson's and Huntington's can disrupt it. People with Parkinson's disease, for example, tend to have increased saccadic latencies. Consequently, the quantitative measurement of saccadic eye movements has received considerable attention as a potential biomarker for neurodegenerative conditions. A lot more can be learned about the brain in both health and disease by observing what happens to eye movements when the function of specific brain areas is perturbed. Deep brain stimulation is a surgical intervention used for the management of a range of neurological conditions including Parkinson's disease, in which stimulating electrodes are placed in specific brain areas including several sites in the basal ganglia. Eye movement measurements can then be made with the stimulator systems both off and on and the results compared. With suitable experimental design, this approach can be used to study the pathophysiology of the disease being treated, the mechanism by which DBS exerts it beneficial effects, and even aspects of normal neurophysiology. PMID:27501123

  7. Does sleep restore the topology of functional brain networks?

    PubMed

    Koenis, Maria M G; Romeijn, Nico; Piantoni, Giovanni; Verweij, Ilse; Van der Werf, Ysbrand D; Van Someren, Eus J W; Stam, Cornelis J

    2013-02-01

    Previous studies have shown that healthy anatomical as well as functional brain networks have small-world properties and become less optimal with brain disease. During sleep, the functional brain network becomes more small-world-like. Here we test the hypothesis that the functional brain network during wakefulness becomes less optimal after sleep deprivation (SD). Electroencephalography (EEG) was recorded five times a day after a night of SD and after a night of normal sleep in eight young healthy subjects, both during eyes-closed and eyes-open resting state. Overall synchronization was determined with the synchronization likelihood (SL) and the phase lag index (PLI). From these coupling strength matrices the normalized clustering coefficient C (a measurement of local clustering) and path length L (a measurement of global integration) were computed. Both measures were normalized by dividing them by their corresponding C-s and L-s values of random control networks. SD reduced alpha band C/C-s and L/L-s and theta band C/C-s during eyes-closed resting state. In contrast, SD increased gamma-band C/C-s and L/L-s during eyes-open resting state. Functional relevance of these changes in network properties was suggested by their association with sleep deprivation-induced performance deficits on a sustained attention simple reaction time task. The findings indicate that SD results in a more random network of alpha-coupling and a more ordered network of gamma-coupling. The present study shows that SD induces frequency-specific changes in the functional network topology of the brain, supporting the idea that sleep plays a role in the maintenance of an optimal functional network.

  8. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  9. Transgenerational epigenetic effects on brain functions.

    PubMed

    Bohacek, Johannes; Gapp, Katharina; Saab, Bechara J; Mansuy, Isabelle M

    2013-02-15

    Psychiatric diseases are multifaceted disorders with complex etiology, recognized to have strong heritable components. Despite intense research efforts, genetic loci that substantially account for disease heritability have not yet been identified. Over the last several years, epigenetic processes have emerged as important factors for many brain diseases, and the discovery of epigenetic processes in germ cells has raised the possibility that they may contribute to disease heritability and disease risk. This review examines epigenetic mechanisms in complex diseases and summarizes the most illustrative examples of transgenerational epigenetic inheritance in mammals and their relevance for brain function. Environmental factors that can affect molecular processes and behavior in exposed individuals and their offspring, and their potential epigenetic underpinnings, are described. Possible routes and mechanisms of transgenerational transmission are proposed, and the major questions and challenges raised by this emerging field of research are considered.

  10. Clinton Woolsey: Functional Brain Mapping Pioneer

    PubMed Central

    Lyon, Will; Mehta, Tej I.; Pointer, Kelli B.; Walden, Daniel; Elmayan, Ardem; Swanson, Kyle I.; Kuo, John S.

    2014-01-01

    Dr. Clinton Woolsey was a leading twentieth century neuroscientist for almost four decades. His most significant achievements were the novel use and refinement of evoked potential techniques to functionally map mammalian brains, the discovery of secondary cortical areas, and a wide repertoire of comparative neurofunctional studies across many species. We discuss his life and work through a historical context with contemporaries, highlight the primitive state of brain mapping before Woolsey, and his involvement in advancing its rapid development through work at both Johns Hopkins University and University of Wisconsin in Madison. Dr. Woolsey’s lasting impact on basic and clinical neuroscience, neurosurgery, and neurology and his important roles as a scientific mentor and leader are also described. PMID:25105696

  11. Brain Functional and Structural Predictors of Language Performance.

    PubMed

    Skeide, Michael A; Brauer, Jens; Friederici, Angela D

    2016-05-01

    The relation between brain function and behavior on the one hand and the relation between structural changes and behavior on the other as well as the link between the 2 aspects are core issues in cognitive neuroscience. It is an open question, however, whether brain function or brain structure is the better predictor for age-specific cognitive performance. Here, in a comprehensive set of analyses, we investigated the direct relation between hemodynamic activity in 2 pairs of frontal and temporal cortical areas, 2 long-distance white matter fiber tracts connecting each pair and sentence comprehension performance of 4 age groups, including 3 groups of children between 3 and 10 years as well as young adults. We show that the increasing accuracy of processing complex sentences throughout development is correlated with the blood-oxygen-level-dependent activation of 2 core language processing regions in Broca's area and the posterior portion of the superior temporal gyrus. Moreover, both accuracy and speed of processing are correlated with the maturational status of the arcuate fasciculus, that is, the dorsal white matter fiber bundle connecting these 2 regions. The present data provide compelling evidence for the view that brain function and white matter structure together best predict developing cognitive performance. PMID:25770126

  12. Mapping Multiplex Hubs in Human Functional Brain Networks.

    PubMed

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  13. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  14. Split My Brain: A Case Study of Seizure Disorder and Brain Function

    ERIC Educational Resources Information Center

    Omarzu, Julia

    2004-01-01

    This case involves a couple deciding whether or not their son should undergo brain surgery to treat a severe seizure disorder. In examining this dilemma, students apply knowledge of brain anatomy and function. They also learn about brain scanning techniques and discuss the plasticity of the brain.

  15. Dynamic Functional Brain Connectivity for Face Perception

    PubMed Central

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive processing. We investigated the dynamic functional connectivity in face perception by analyzing time-dependent EEG phase synchronization in four different frequency bands: theta (4–7 Hz), alpha (8–14 Hz), beta (15–24 Hz), and gamma (25–45 Hz) bands in the early stages of face processing from 30 to 300 ms. High-density EEG were recorded from subjects who were passively viewing faces, buildings, and chairs. The dynamic connectivity within the core system and between the extended system were investigated. Significant differences between faces and non-faces mainly appear in theta band connectivity: (1) at the time segment of 90–120 ms between parietal area and occipito-temporal area in the right hemisphere, and (2) at the time segment of 150–180 ms between bilateral occipito-temporal areas. These results indicate (1) the importance of theta-band connectivity in the face-sensitive processing, and (2) that different parts of network are involved for the initial stage of face categorization and the stage of face structural encoding. PMID:26696870

  16. Brain Dynamics, Chaos and Bessel Functions

    NASA Astrophysics Data System (ADS)

    Freeman, W. J.; Capolupo, A.; Kozma, R.; Olivares del Campo, A.; Vitiello, G.

    2015-07-01

    By resorting to Freeman's observations showing that the distribution functions of impulse responses of cortex to sensory stimuli resemble Bessel functions, we study brain dynamics by considering the equivalence of spherical Bessel equation, in a given parametrization, to two oscillator equations, one damped and one amplified oscillator. The study of such a couple of equations, which are at the basis of the formulation of the dissipative many-body model, reveals the structure of the root loci of poles and zeros of solutions of Bessel equations, which are consistent with results obtained using ordinary differential equation techniques. We analyze stable and unstable limit cycles and consider thermodynamic features of brain functioning, which in this way may be described in terms of transitions between chaotic gas-like and ordered liquid-like behaviors. Nonlinearity dominates the dynamical critical transition regimes. Linear behavior, on the other hand, characterizes superpositions within self-organized neuronal domains in each dynamical phase. The formalism is consistent with the observed coexistence in circular causality of pulse density fields and wave density fields.

  17. Radial glial cell-specific ablation in the adult Zebrafish brain.

    PubMed

    Shimizu, Yuki; Ito, Yoko; Tanaka, Hideomi; Ohshima, Toshio

    2015-07-01

    The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs.

  18. Cell type-specific transcriptome profiling in mammalian brains

    PubMed Central

    LoVerso, Peter R.; Cui, Feng

    2016-01-01

    A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed. PMID:27100485

  19. piRNAs and Their Functions in the Brain

    PubMed Central

    Zuo, Lingjun; Wang, Zhiren; Tan, Yunlong; Chen, Xiangning; Luo, Xingguang

    2016-01-01

    Piwi-interacting RNAs (piRNAs) are the non-coding RNAs with 24–32 nucleotides (nt). They exhibit stark differences in length, expression pattern, abundance, and genomic organization when compared to micro-RNAs (miRNAs). There are hundreds of thousands unique piRNA sequences in each species. Numerous piRNAs have been identified and deposited in public databases. Since the piRNAs were originally discovered and well-studied in the germline, a few other studies have reported the presence of piRNAs in somatic cells including neurons. This paper reviewed the common features, biogenesis, functions, and distributions of piRNAs and summarized their specific functions in the brain. This review may provide new insights and research direction for brain disorders. PMID:27512315

  20. Cell type-specific gene expression profiling in brain tissue: comparison between TRAP, LCM and RNA-seq.

    PubMed

    Kim, TaeHyun; Lim, Chae-Seok; Kaang, Bong-Kiun

    2015-07-01

    The brain is an organ that consists of various cell types. As our knowledge of the structure and function of the brain progresses, cell type-specific research is gaining importance. Together with advances in sequencing technology and bioinformatics, cell type-specific transcriptome studies are providing important insights into brain cell function. In this review, we discuss 3 different cell type-specific transcriptome analyses i.e., Laser Capture Microdissection (LCM), Translating Ribosome Affinity Purification (TRAP)/RiboTag, and single cell RNA-Seq, that are widely used in the field of neuroscience. PMID:25603796

  1. Cell type-specific gene expression profiling in brain tissue: comparison between TRAP, LCM and RNA-seq

    PubMed Central

    Kim, TaeHyun; Lim, Chae-Seok; Kaang, Bong-Kiun

    2015-01-01

    The brain is an organ that consists of various cell types. As our knowledge of the structure and function of the brain progresses, cell type-specific research is gaining importance. Together with advances in sequencing technology and bioinformatics, cell type-specific transcriptome studies are providing important insights into brain cell function. In this review, we discuss 3 different cell type-specific transcriptome analyses i.e., Laser Capture Microdissection (LCM), Translating Ribosome Affinity Purification (TRAP)/RiboTag, and single cell RNA-Seq, that are widely used in the field of neuroscience. [BMB Reports 2015; 48(7): 388-394] PMID:25603796

  2. Phosphatidylserine in the brain: metabolism and function.

    PubMed

    Kim, Hee-Yong; Huang, Bill X; Spector, Arthur A

    2014-10-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.

  3. Dietary boron, brain function, and cognitive performance.

    PubMed Central

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and women. Within-subject designs were used to assess functional responses in all studies. Spectral analysis of electroencephalographic data showed effects of dietary boron in two of the three studies. When the low boron intake was compared to the high intake, there was a significant (p < 0.05) increase in the proportion of low-frequency activity, and a decrease in the proportion of higher-frequency activity, an effect often observed in response to general malnutrition and heavy metal toxicity. Performance (e.g., response time) on various cognitive and psychomotor tasks also showed an effect of dietary boron. When contrasted with the high boron intake, low dietary boron resulted in significantly poorer performance (p < 0.05) on tasks emphasizing manual dexterity (studies II and III); eye-hand coordination (study II); attention (all studies); perception (study III); encoding and short-term memory (all studies); and long-term memory (study I). Collectively, the data from these three studies indicate that boron may play a role in human brain function and cognitive performance, and provide additional evidence that boron is an essential nutrient for humans. PMID:7889884

  4. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production.

    PubMed

    Houlden, A; Goldrick, M; Brough, D; Vizi, E S; Lénárt, N; Martinecz, B; Roberts, I S; Denes, A

    2016-10-01

    Intestinal microbiota are critical for health with changes associated with diverse human diseases. Research suggests that altered intestinal microbiota can profoundly affect brain function. However, whether altering brain function directly affects the microbiota is unknown. Since it is currently unclear how brain injury induces clinical complications such as infections or paralytic ileus, key contributors to prolonged hospitalization and death post-stroke, we tested in mice the hypothesis that brain damage induced changes in the intestinal microbiota. Experimental stroke altered the composition of caecal microbiota, with specific changes in Peptococcaceae and Prevotellaceae correlating with the extent of injury. These effects are mediated by noradrenaline release from the autonomic nervous system with altered caecal mucoprotein production and goblet cell numbers. Traumatic brain injury also caused changes in the gut microbiota, confirming brain injury effects gut microbiota. Changes in intestinal microbiota after brain injury may affect recovery and treatment of patients should appreciate such changes.

  5. Brain microvascular function during cardiopulmonary bypass

    SciTech Connect

    Sorensen, H.R.; Husum, B.; Waaben, J.; Andersen, K.; Andersen, L.I.; Gefke, K.; Kaarsen, A.L.; Gjedde, A.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracers being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.

  6. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    PubMed

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states. PMID:27401999

  7. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    PubMed

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states.

  8. Imaging emotional brain functions: conceptual and methodological issues.

    PubMed

    Peper, Martin

    2006-06-01

    This article reviews the psychophysiological and brain imaging literature on emotional brain function from a methodological point of view. The difficulties in defining, operationalising and measuring emotional activation and, in particular, aversive learning will be considered. Emotion is a response of the organism during an episode of major significance and involves physiological activation, motivational, perceptual, evaluative and learning processes, motor expression, action tendencies and monitoring/subjective feelings. Despite the advances in assessing the physiological correlates of emotional perception and learning processes, a critical appraisal shows that functional neuroimaging approaches encounter methodological difficulties regarding measurement precision (e.g., response scaling and reproducibility) and validity (e.g., response specificity, generalisation to other paradigms, subjects or settings). Since emotional processes are not only the result of localised but also of widely distributed activation, a more representative model of assessment is needed that systematically relates the hierarchy of high- and low-level emotion constructs with the corresponding patterns of activity and functional connectivity of the brain.

  9. Data-driven analysis of functional brain interactions during free listening to music and speech.

    PubMed

    Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

    2015-06-01

    Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech. PMID:24526569

  10. Data-driven analysis of functional brain interactions during free listening to music and speech.

    PubMed

    Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

    2015-06-01

    Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.

  11. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    PubMed

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity.

  12. Abdominal Pain, the Adolescent and Altered Brain Structure and Function

    PubMed Central

    Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L.; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  13. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    PubMed

    Hubbard, Catherine S; Becerra, Lino; Heinz, Nicole; Ludwick, Allison; Rasooly, Tali; Wu, Rina; Johnson, Adriana; Schechter, Neil L; Borsook, David; Nurko, Samuel

    2016-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC) analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL). Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC), whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC). In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI), whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease-specific measures in

  14. Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks

    PubMed Central

    Michaelides, Michael; Anderson, Sarah Ann R.; Ananth, Mala; Smirnov, Denis; Thanos, Panayotis K.; Neumaier, John F.; Wang, Gene-Jack; Volkow, Nora D.; Hurd, Yasmin L.

    2013-01-01

    The ability to map the functional connectivity of discrete cell types in the intact mammalian brain during behavior is crucial for advancing our understanding of brain function in normal and disease states. We combined designer receptor exclusively activated by designer drug (DREADD) technology and behavioral imaging with μPET and [18F]fluorodeoxyglucose (FDG) to generate whole-brain metabolic maps of cell-specific functional circuits during the awake, freely moving state. We have termed this approach DREADD-assisted metabolic mapping (DREAMM) and documented its ability in rats to map whole-brain functional anatomy. We applied this strategy to evaluating changes in the brain associated with inhibition of prodynorphin-expressing (Pdyn-expressing) and of proenkephalin-expressing (Penk-expressing) medium spiny neurons (MSNs) of the nucleus accumbens shell (NAcSh), which have been implicated in neuropsychiatric disorders. DREAMM revealed discrete behavioral manifestations and concurrent engagement of distinct corticolimbic networks associated with dysregulation of Pdyn and Penk in MSNs of the NAcSh. Furthermore, distinct neuronal networks were recruited in awake versus anesthetized conditions. These data demonstrate that DREAMM is a highly sensitive, molecular, high-resolution quantitative imaging approach. PMID:24231358

  15. [Hunger-driven modulation in brain functions].

    PubMed

    Hirano, Yukinori; Saitoe, Minoru

    2014-01-01

    \\All organisms must obtain nutrition in order to survive and produce their progeny. In the natural environment, however, adequate nutrition or food is not always available. Thus, all organisms are equipped with mechanisms by which their nutritional condition alters their internal activities. In animals, the loss of nutritional intake (fasting) alters not only metabolism, but also behavior in a manner dependent on hormones such as insulin, glucagon, leptin, and ghrelin. As a result, animals are able to maintain their blood sugar level, and are motivated to crave food upon fasting. Moreover, our recent study revealed a novel role of hunger, which facilitates long-term memory (LTM) formation, and its molecular mechanism in the fruit fly, Drosophila. Here, we review the overall effect of fasting, and how fasting affects brain function. I then introduce our finding in which mild fasting facilitates LTM formation, and discuss its biological significance. PMID:24371130

  16. [Hunger-driven modulation in brain functions].

    PubMed

    Hirano, Yukinori; Saitoe, Minoru

    2014-01-01

    \\All organisms must obtain nutrition in order to survive and produce their progeny. In the natural environment, however, adequate nutrition or food is not always available. Thus, all organisms are equipped with mechanisms by which their nutritional condition alters their internal activities. In animals, the loss of nutritional intake (fasting) alters not only metabolism, but also behavior in a manner dependent on hormones such as insulin, glucagon, leptin, and ghrelin. As a result, animals are able to maintain their blood sugar level, and are motivated to crave food upon fasting. Moreover, our recent study revealed a novel role of hunger, which facilitates long-term memory (LTM) formation, and its molecular mechanism in the fruit fly, Drosophila. Here, we review the overall effect of fasting, and how fasting affects brain function. I then introduce our finding in which mild fasting facilitates LTM formation, and discuss its biological significance.

  17. Non-specific Immunostaining by a Rabbit Antibody against Gustducin α Subunit in Mouse Brain

    PubMed Central

    Redding, Kevin; Chen, Bei; Cohen, Akiva S.; Cohen, Noam A.

    2015-01-01

    Gustducin is a guanosine nucleotide-binding protein functionally coupled with taste receptors and thus originally identified in taste cells of the tongue. Recently, bitter taste receptors and gustducin have been detected in the airways, digestive tracts and brain. The existing studies showing taste receptors and gustducin in the brain were carried out exclusively on frozen sections. In order to avoid the technical shortcomings associated with frozen sectioning, we performed immunofluorescence staining using vibratome-cut sections from mouse brains. Using a rabbit gustducin antibody, we could not detect neurons or astrocytes as reported previously. Rather, we found dense fibers in the nucleus accumbens and periventricular areas. We assumed these staining patterns to be specific after confirmation with conventional negative control staining. For the verification of this finding, we stained gustducin knockout mouse brain and tongue sections with the same rabbit gustducin antibody. Whereas negative staining was confirmed in the tongue, intensive fibers were constantly stained in the brain. Moreover, immunostaining with a goat gustducin antibody could not demonstrate the fibers in the brain tissue. The present study implies a cross immunoreaction that occurs with the rabbit gustducin antibody in mouse brain samples, suggesting that the conventional negative controls may not be sufficient when an immunostaining pattern is to be verified. PMID:25411190

  18. Effects of the diet on brain function

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.

    1981-01-01

    The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neutrotransmitter products.

  19. Effects of the diet on brain function

    NASA Astrophysics Data System (ADS)

    Fernstrom, John D.

    The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neurotransmitter products.

  20. Effects of Deep Brain Stimulation on Autonomic Function.

    PubMed

    Basiago, Adam; Binder, Devin K

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  1. Effects of Deep Brain Stimulation on Autonomic Function

    PubMed Central

    Basiago, Adam; Binder, Devin K.

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  2. Mapping distributed brain function and networks with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  3. Heart and brain interconnection - clinical implications of changes in brain function during heart failure.

    PubMed

    Kim, Min-Seok; Kim, Jae-Joong

    2015-01-01

    Heart failure (HF) is a highly prevalent disorder worldwide and, consequently, a burden on the healthcare systems of many nations. Although the effects of HF are systemic, many therapeutic targets are focused on cardiac dysfunction. The brain is closely related to the heart, but there are few reports on the relationship between these organs. We describe the effects of the brain on HF progression. Specific brain regions control sympathetic drive and neurohumoral factors, which play an important role in disease exacerbation. In addition, we review some of our previous studies on deranged cerebral metabolism and reduced cerebral blood flow during HF. Although the reasons underlying these effects during HF remain uncertain, we propose plausible mechanisms for these phenomena. In addition, the clinical implications of such conditions in terms of predicting prognosis are discussed. Finally, we investigate cognitive impairment in patients with HF. Cognitive impairment through cerebral infarction or hypoperfusion is associated with adverse outcomes, including death. This brief review of brain function during the development of HF should assist with future strategies to better manage patients with this condition.

  4. Brain responses in 4-month-old infants are already language specific.

    PubMed

    Friederici, Angela D; Friedrich, Manuela; Christophe, Anne

    2007-07-17

    Language is the most important faculty that distinguishes humans from other animals. Infants learn their native language fast and effortlessly during the first years of life, as a function of the linguistic input in their environment. Behavioral studies reported the discrimination of melodic contours [1] and stress patterns [2, 3] in 1-4-month-olds. Behavioral [4, 5] and brain measures [6-8] have shown language-independent discrimination of phonetic contrasts at that age. Language-specific discrimination, however, has been reported for phonetic contrasts only for 6-12-month-olds [9-12]. Here we demonstrate language-specific discrimination of stress patterns in 4-month-old German and French infants by using electrophysiological brain measures. We compare the processing of disyllabic words differing in their rhythmic structure, mimicking German words being stressed on the first syllable, e.g., pápa/daddy[13], and French ones being stressed on the second syllable, e.g., papá/daddy. Event-related brain potentials reveal that experience with German and French differentially affects the brain responses of 4-month-old infants, with each language group displaying a processing advantage for the rhythmic structure typical in its native language. These data indicate language-specific neural representations of word forms in the infant brain as early as 4 months of age. PMID:17583508

  5. Stimulation of functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  6. The relationship between childhood aerobic fitness and brain functional connectivity.

    PubMed

    Kamijo, Keita; Takeda, Yuji; Takai, Yohei; Haramura, Miki

    2016-10-01

    Several studies have indicated that higher levels of childhood aerobic fitness is associated with superior cognitive function, and this association is disproportionately observed in tasks requiring greater top-down control. We designed the current study to clarify the relationship between childhood fitness and top-down control in terms of functional connectivity among brain regions, by evaluating phase-locking values (PLVs), which is a measure of frequency-specific phase synchrony between electroencephalographic signals during a visual search task. Lower-fit and higher-fit children performed a visual search task that included feature search and conjunction search conditions. The conjunction search condition required greater top-down control to reduce interference from task-irrelevant distractors that shared a basic feature with the target. Results indicated that higher-fit children exhibited higher response accuracy relative to lower-fit children across search conditions. The results of PLVs showed that higher-fit children had greater functional connectivity for the conjunction relative to the feature search condition, whereas lower-fit children showed no difference in functional connectivity between search conditions. Furthermore, PLVs showed different time courses between groups; that is, higher-fit children sustained upregulation of top-down control throughout the task period, whereas lower-fit children transiently upregulated top-down control after stimulus onset and could not sustain the upregulation. These findings suggest that higher levels of childhood aerobic fitness is related to brain functional connectivity involved in the sustained upregulation of top-down control.

  7. Cytokine Signaling Modulates Blood-Brain Barrier Function

    PubMed Central

    Pan, Weihong; Stone, Kirsten P.; Hsuchou, Hung; Manda, Vamshi K.; Zhang, Yan; Kastin, Abba J.

    2014-01-01

    The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease. PMID:21834767

  8. Topographic Brain Mapping: A Window on Brain Function?

    ERIC Educational Resources Information Center

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  9. Basic, specific, mechanistic? Conceptualizing musical emotions in the brain.

    PubMed

    Omigie, Diana

    2016-06-01

    The number of studies investigating music processing in the human brain continues to increase, with a large proportion of them focussing on the correlates of so-called musical emotions. The current Review highlights the recent development whereby such studies are no longer concerned only with basic emotions such as happiness and sadness but also with so-called music-specific or "aesthetic" ones such as nostalgia and wonder. It also highlights how mechanisms such as expectancy and empathy, which are seen as inducing musical emotions, are enjoying ever-increasing investigation and substantiation with physiological and neuroimaging methods. It is proposed that a combination of these approaches, namely, investigation of the precise mechanisms through which so-called music-specific or aesthetic emotions may arise, will provide the most important advances for our understanding of the unique nature of musical experience. PMID:26172307

  10. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  11. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions.

  12. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  13. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  14. Brain serotonin and pituitary-adrenal functions

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

    1973-01-01

    It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

  15. Chemotherapy Altered Brain Functional Connectivity in Women with Breast Cancer: A Pilot Study

    PubMed Central

    Dumas, Julie A.; Makarewicz, Jenna; Schaubhut, Geoffrey J.; Devins, Robert; Albert, Kimberly; Dittus, Kim; Newhouse, Paul A.

    2013-01-01

    Adjuvant chemotherapy is associated with improvements in long-term cancer survival. However, reports of cognitive impairment following treatment emphasize the importance of understanding the long-term effects of chemotherapy on brain functioning. Cognitive deficits found in chemotherapy patients suggest a change in brain functioning that affects specific cognitive domains such as attentional processing and executive functioning. This study examined the processes potentially underlying these changes in cognition by examining brain functional connectivity pre- and post-chemotherapy in women with breast cancer. Functional connectivity examines the temporal correlation between spatially remote brain regions in an effort to understand how brain networks support specific cognitive functions. Nine women diagnosed with breast cancer completed a functional magnetic resonance imaging (fMRI) session before chemotherapy, one month after, and one year after the completion of chemotherapy. Seed-based functional connectivity analyses were completed using seeds in the intraparietal sulcus (IPS) to examine connectivity in the dorsal anterior attention network and in the posterior cingulate cortex (PCC) to examine connectivity in the default mode network. Results showed decreased functional connectivity one month after chemotherapy that partially returned to baseline at one year in the dorsal attention network. Decreased connectivity was seen in the default mode network at one month and one year following chemotherapy. In addition, increased subjective memory complaints were noted at one month and one year post-chemotherapy. These findings suggest a detrimental effect of chemotherapy on brain functional connectivity that is potentially related to subjective cognitive assessment. PMID:23852814

  16. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice

    PubMed Central

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M.; Song, Hongjun; Ming, Guo-li; Xu, Zhiheng

    2016-01-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice. PMID:27249678

  17. Laser technique for anatomical-functional study of the medial prefrontal cortex of the brain

    NASA Astrophysics Data System (ADS)

    Sanchez-Huerta, Laura; Hernandez, Adan; Ayala, Griselda; Marroquin, Javier; Silva, Adriana B.; Khotiaintsev, Konstantin S.; Svirid, Vladimir A.; Flores, Gonzalo; Khotiaintsev, Sergei N.

    1999-05-01

    The brain represents one of the most complex systems that we know yet. In its study, non-destructive methods -- in particular, behavioral studies play an important role. By alteration of brain functioning (e.g. by pharmacological means) and observation of consequent behavior changes an important information on brain organization and functioning is obtained. For inducing local alterations, permanent brain lesions are employed. However, for correct results this technique has to be quasi-non-destructive, i.e. not to affect the normal brain function. Hence, the lesions should be very small, accurate and applied precisely over the structure (e.g. the brain nucleus) of interest. These specifications are difficult to meet with the existing techniques for brain lesions -- specifically, neurotoxical, mechanical and electrical means because they result in too extensive damage. In this paper, we present new laser technique for quasi-non- destructive anatomical-functional mapping in vivo of the medial prefrontal cortex (MPFC) of the rat. The technique is based on producing of small-size, well-controlled laser- induced lesions over some areas of the MPFC. The anesthetized animals are subjected to stereotactic surgery and certain points of the MPFC are exposed the confined radiation of the 10 W cw CO2 laser. Subsequent behavioral changes observed in neonatal and adult animals as well as histological data prove effectiveness of this technology for anatomical- functional studies of the brain by areas, and as a treatment method for some pathologies.

  18. Area-specific migration and recruitment of new neurons in the adult songbird brain.

    PubMed

    Vellema, Michiel; van der Linden, Annemie; Gahr, Manfred

    2010-05-01

    Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation or after 38 days to study recruitment. Migration and incorporation of new neurons was apparent throughout many but not all parts of the canary forebrain and was quantitatively related to mitotic levels in the most closely associated proliferative zones. Surprisingly, some areas of the vocal control system sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model, where cells originating from the overlying lateral ventricle can move independently in any direction. Other plastic song control areas, such as the medial magnocellular nucleus of anterior nidopallium and the robust nucleus of arcopallium, were specifically avoided by migrating neurons, while migration toward the olfactory bulb showed high specificity, similar to the mammalian rostral migratory stream. Thus, different mechanisms appear to organize area-specific neuron recruitment in different recipients of the adult songbird brain, unrelated to global plasticity of brain regions.

  19. Estimating functional brain networks by incorporating a modularity prior.

    PubMed

    Qiao, Lishan; Zhang, Han; Kim, Minjeong; Teng, Shenghua; Zhang, Limei; Shen, Dinggang

    2016-11-01

    Functional brain network analysis has become one principled way of revealing informative organization architectures in healthy brains, and providing sensitive biomarkers for diagnosis of neurological disorders. Prior to any post hoc analysis, however, a natural issue is how to construct "ideal" brain networks given, for example, a set of functional magnetic resonance imaging (fMRI) time series associated with different brain regions. Although many methods have been developed, it is currently still an open field to estimate biologically meaningful and statistically robust brain networks due to our limited understanding of the human brain as well as complex noises in the observed data. Motivated by the fact that the brain is organized with modular structures, in this paper, we propose a novel functional brain network modeling scheme by encoding a modularity prior under a matrix-regularized network learning framework, and further formulate it as a sparse low-rank graph learning problem, which can be solved by an efficient optimization algorithm. Then, we apply the learned brain networks to identify patients with mild cognitive impairment (MCI) from normal controls. We achieved 89.01% classification accuracy even with a simple feature selection and classification pipeline, which significantly outperforms the conventional brain network construction methods. Moreover, we further explore brain network features that contributed to MCI identification, and discovered potential biomarkers for personalized diagnosis.

  20. Estimating functional brain networks by incorporating a modularity prior.

    PubMed

    Qiao, Lishan; Zhang, Han; Kim, Minjeong; Teng, Shenghua; Zhang, Limei; Shen, Dinggang

    2016-11-01

    Functional brain network analysis has become one principled way of revealing informative organization architectures in healthy brains, and providing sensitive biomarkers for diagnosis of neurological disorders. Prior to any post hoc analysis, however, a natural issue is how to construct "ideal" brain networks given, for example, a set of functional magnetic resonance imaging (fMRI) time series associated with different brain regions. Although many methods have been developed, it is currently still an open field to estimate biologically meaningful and statistically robust brain networks due to our limited understanding of the human brain as well as complex noises in the observed data. Motivated by the fact that the brain is organized with modular structures, in this paper, we propose a novel functional brain network modeling scheme by encoding a modularity prior under a matrix-regularized network learning framework, and further formulate it as a sparse low-rank graph learning problem, which can be solved by an efficient optimization algorithm. Then, we apply the learned brain networks to identify patients with mild cognitive impairment (MCI) from normal controls. We achieved 89.01% classification accuracy even with a simple feature selection and classification pipeline, which significantly outperforms the conventional brain network construction methods. Moreover, we further explore brain network features that contributed to MCI identification, and discovered potential biomarkers for personalized diagnosis. PMID:27485752

  1. [The transition of deep brain stimulation from disease specific to symptom specific indications].

    PubMed

    Okun, Michael S

    2012-01-01

    The success of chronic deep brain stimulation (DBS) and electrical neuro-network modulation (ENM) to address neurological and neuropsychiatric disorders has led the Food and Drug Administration (FDA), and also other worldwide regulatory agencies to grant approval for the use of DBS in specific disorders. In the United States, DBS is FDA approved for the treatment of advanced Parkinson's disease (PD), essential tremor (ET), obsessive compulsive disorder (OCD), and for dystonia. OCD and dystonia have been approved under a mechanism referred to as a humanitarian device exemption (HDE). However, as the field of DBS and ENM evolve there has been a shift in practice patterns from targeting diseases to targeting specific and disabling symptoms. This shift has been driving interdisciplinary DBS boards to collect, and to address symptom profiles in all potential DBS candidates. Based on a specific symptom profile, a strategic and personalized medicine approach can be undertaken. The personalized approach will take into consideration the brain target, a unilateral versus a bilateral procedure, and the potential for use of more than one DBS lead per brain hemisphere. Additionally, a personalized approach to DBS will also facilitate improved pre-operative medication adjustments, as well as optimal post-operative medication, behavioral, and device management. PMID:23196455

  2. Recovery of cognitive functions following nonprogressive brain injury.

    PubMed

    Wilson, B A

    1998-04-01

    It has recently become clear that the adult human brain is capable of more plasticity than previously thought. Investigations into the natural history of change following brain injury demonstrate that partial recovery of function can and does occur. Furthermore, there is increasing evidence that intervention through re-training or provision of compensatory memory aids can result in improved cognitive functioning.

  3. Sex hormones and brain dopamine functions.

    PubMed

    Sotomayor-Zarate, Ramon; Cruz, Gonzalo; Renard, Georgina M; Espinosa, Pedro; Ramirez, Victor D

    2014-01-01

    Sex hormones exert differential effects on a variety of sensitive tissues like the reproductive tract, gonads, liver, bone and adipose tissue, among others. In the brain, sex hormones act as neuroactive steroids regulating the function of neuroendocrine diencephalic structures like the hypothalamus. In addition, steroids can exert physiological effects upon cortical, limbic and midbrain structures, influencing different behaviors such as memory, learning, mood and reward. In the last three decades, the role of sex hormones on monoamine neurotransmitters in extra-hypothalamic areas related to motivated behaviors, learning and locomotion has been the focus of much research. The purpose of this thematic issue is to present the state of art concerning the effects of sex hormones on the neurochemical regulation of dopaminergic midbrain areas involved in neurobiological and pathological processes, such as addiction to drugs of abuse. We also discuss evidence of how neonatal exposure to sex hormones or endocrine disrupting chemicals can produce long-term changes on the neurochemical regulation of dopaminergic neurons in the limbic and midbrain areas. PMID:25540983

  4. Wearable sensor network to study laterality of brain functions.

    PubMed

    Postolache, Gabriela B; Girao, Pedro S; Postolache, Octavian A

    2015-08-01

    In the last decade researches on laterality of brain functions have been reinvigorated. New models of lateralization of brain functions were proposed and new methods for understanding mechanisms of asymmetry between right and left brain functions were described. We design a system to study laterality of motor and autonomic nervous system based on wearable sensors network. A mobile application was developed for analysis of upper and lower limbs movements, cardiac and respiratory function. The functionalities and experience gained with deployment of the system are described.

  5. 28 CFR 0.131 - Specific functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Tobacco, Firearms, and Explosives § 0.131 Specific functions. The Director of the Bureau of Alcohol, Tobacco, Firearms, and Explosives shall: (a) Operate laboratories in support of Bureau activities; provide... maintain an explosives license and permit database; (c) Operate the National Firearms Licensing Center...

  6. 28 CFR 0.131 - Specific functions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Tobacco, Firearms, and Explosives § 0.131 Specific functions. The Director of the Bureau of Alcohol, Tobacco, Firearms, and Explosives shall: (a) Operate laboratories in support of Bureau activities; provide... maintain an explosives license and permit database; (c) Operate the National Firearms Licensing Center...

  7. 28 CFR 0.131 - Specific functions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Tobacco, Firearms, and Explosives § 0.131 Specific functions. The Director of the Bureau of Alcohol, Tobacco, Firearms, and Explosives shall: (a) Operate laboratories in support of Bureau activities; provide... maintain an explosives license and permit database; (c) Operate the National Firearms Licensing Center...

  8. 28 CFR 0.131 - Specific functions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Tobacco, Firearms, and Explosives § 0.131 Specific functions. The Director of the Bureau of Alcohol, Tobacco, Firearms, and Explosives shall: (a) Operate laboratories in support of Bureau activities; provide... maintain an explosives license and permit database; (c) Operate the National Firearms Licensing Center...

  9. Violent Video Games Alter Brain Function in Young Men

    MedlinePlus

    ... and Updates News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men ... Using functional MRI, researchers have found that playing violent video games for one week causes changes in ...

  10. Traumatic Brain Injury and Neuronal Functionality Changes in Sensory Cortex

    PubMed Central

    Carron, Simone F.; Alwis, Dasuni S.; Rajan, Ramesh

    2016-01-01

    Traumatic brain injury (TBI), caused by direct blows to the head or inertial forces during relative head-brain movement, can result in long-lasting cognitive and motor deficits which can be particularly consequential when they occur in young people with a long life ahead. Much is known of the molecular and anatomical changes produced in TBI but much less is known of the consequences of these changes to neuronal functionality, especially in the cortex. Given that much of our interior and exterior lives are dependent on responsiveness to information from and about the world around us, we have hypothesized that a significant contributor to the cognitive and motor deficits seen after TBI could be changes in sensory processing. To explore this hypothesis, and to develop a model test system of the changes in neuronal functionality caused by TBI, we have examined neuronal encoding of simple and complex sensory input in the rat’s exploratory and discriminative tactile system, the large face macrovibrissae, which feeds to the so-called “barrel cortex” of somatosensory cortex. In this review we describe the short-term and long-term changes in the barrel cortex encoding of whisker motion modeling naturalistic whisker movement undertaken by rats engaged in a variety of tasks. We demonstrate that the most common form of TBI results in persistent neuronal hyperexcitation specifically in the upper cortical layers, likely due to changes in inhibition. We describe the types of cortical inhibitory neurons and their roles and how selective effects on some of these could produce the particular forms of neuronal encoding changes described in TBI, and then generalize to compare the effects on inhibition seen in other forms of brain injury. From these findings we make specific predictions as to how non-invasive extra-cranial electrophysiology can be used to provide the high-precision information needed to monitor and understand the temporal evolution of changes in neuronal

  11. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling

    PubMed Central

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-01-01

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content. DOI: http://dx.doi.org/10.7554/eLife.02862.001 PMID:25275323

  12. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  13. Bisphenol A Interaction With Brain Development and Functions

    PubMed Central

    2015-01-01

    Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA), an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose–response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health. PMID:26672480

  14. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces.

    PubMed

    Mandonnet, Emmanuel; Duffau, Hugues

    2014-01-01

    Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved.

  15. Mitochondrial function in the brain links anxiety with social subordination

    PubMed Central

    Hollis, Fiona; van der Kooij, Michael A.; Zanoletti, Olivia; Lozano, Laura; Cantó, Carles; Sandi, Carmen

    2015-01-01

    Dominance hierarchies are integral aspects of social groups, yet whether personality traits may predispose individuals to a particular rank remains unclear. Here we show that trait anxiety directly influences social dominance in male outbred rats and identify an important mediating role for mitochondrial function in the nucleus accumbens. High-anxious animals that are prone to become subordinate during a social encounter with a low-anxious rat exhibit reduced mitochondrial complex I and II proteins and respiratory capacity as well as decreased ATP and increased ROS production in the nucleus accumbens. A causal link for these findings is indicated by pharmacological approaches. In a dyadic contest between anxiety-matched animals, microinfusion of specific mitochondrial complex I or II inhibitors into the nucleus accumbens reduced social rank, mimicking the low probability to become dominant observed in high-anxious animals. Conversely, intraaccumbal infusion of nicotinamide, an amide form of vitamin B3 known to enhance brain energy metabolism, prevented the development of a subordinate status in high-anxious individuals. We conclude that mitochondrial function in the nucleus accumbens is crucial for social hierarchy establishment and is critically involved in the low social competitiveness associated with high anxiety. Our findings highlight a key role for brain energy metabolism in social behavior and point to mitochondrial function in the nucleus accumbens as a potential marker and avenue of treatment for anxiety-related social disorders. PMID:26621716

  16. Mitochondrial function in the brain links anxiety with social subordination.

    PubMed

    Hollis, Fiona; van der Kooij, Michael A; Zanoletti, Olivia; Lozano, Laura; Cantó, Carles; Sandi, Carmen

    2015-12-15

    Dominance hierarchies are integral aspects of social groups, yet whether personality traits may predispose individuals to a particular rank remains unclear. Here we show that trait anxiety directly influences social dominance in male outbred rats and identify an important mediating role for mitochondrial function in the nucleus accumbens. High-anxious animals that are prone to become subordinate during a social encounter with a low-anxious rat exhibit reduced mitochondrial complex I and II proteins and respiratory capacity as well as decreased ATP and increased ROS production in the nucleus accumbens. A causal link for these findings is indicated by pharmacological approaches. In a dyadic contest between anxiety-matched animals, microinfusion of specific mitochondrial complex I or II inhibitors into the nucleus accumbens reduced social rank, mimicking the low probability to become dominant observed in high-anxious animals. Conversely, intraaccumbal infusion of nicotinamide, an amide form of vitamin B3 known to enhance brain energy metabolism, prevented the development of a subordinate status in high-anxious individuals. We conclude that mitochondrial function in the nucleus accumbens is crucial for social hierarchy establishment and is critically involved in the low social competitiveness associated with high anxiety. Our findings highlight a key role for brain energy metabolism in social behavior and point to mitochondrial function in the nucleus accumbens as a potential marker and avenue of treatment for anxiety-related social disorders.

  17. Mitochondrial function in the brain links anxiety with social subordination.

    PubMed

    Hollis, Fiona; van der Kooij, Michael A; Zanoletti, Olivia; Lozano, Laura; Cantó, Carles; Sandi, Carmen

    2015-12-15

    Dominance hierarchies are integral aspects of social groups, yet whether personality traits may predispose individuals to a particular rank remains unclear. Here we show that trait anxiety directly influences social dominance in male outbred rats and identify an important mediating role for mitochondrial function in the nucleus accumbens. High-anxious animals that are prone to become subordinate during a social encounter with a low-anxious rat exhibit reduced mitochondrial complex I and II proteins and respiratory capacity as well as decreased ATP and increased ROS production in the nucleus accumbens. A causal link for these findings is indicated by pharmacological approaches. In a dyadic contest between anxiety-matched animals, microinfusion of specific mitochondrial complex I or II inhibitors into the nucleus accumbens reduced social rank, mimicking the low probability to become dominant observed in high-anxious animals. Conversely, intraaccumbal infusion of nicotinamide, an amide form of vitamin B3 known to enhance brain energy metabolism, prevented the development of a subordinate status in high-anxious individuals. We conclude that mitochondrial function in the nucleus accumbens is crucial for social hierarchy establishment and is critically involved in the low social competitiveness associated with high anxiety. Our findings highlight a key role for brain energy metabolism in social behavior and point to mitochondrial function in the nucleus accumbens as a potential marker and avenue of treatment for anxiety-related social disorders. PMID:26621716

  18. The modular and integrative functional architecture of the human brain

    PubMed Central

    Bertolero, Maxwell A.; Yeo, B. T. Thomas; D’Esposito, Mark

    2015-01-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions. PMID:26598686

  19. Centrality of Social Interaction in Human Brain Function.

    PubMed

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-01

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons.

  20. The Dynamic Dielectric at a Brain Functional Site and an EM Wave Approach to Functional Brain Imaging

    PubMed Central

    Li, X. P.; Xia, Q.; Qu, D.; Wu, T. C.; Yang, D. G.; Hao, W. D.; Jiang, X.; Li, X. M.

    2014-01-01

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging. PMID:25367217

  1. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    PubMed

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  2. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus

    PubMed Central

    Zhang, Jiyong; Sadowska, Grazyna B.; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A.; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Stonestreet, Barbara S.

    2015-01-01

    Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. PMID:25609424

  3. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience.

    PubMed

    Foster, Jane A; Lyte, Mark; Meyer, Emeran; Cryan, John F

    2016-05-01

    There is a growing appreciation of the importance of gut microbiota to health and disease. This has been driven by advances in sequencing technology and recent findings demonstrating the important role of microbiota in common health disorders such as obesity. Moreover, the potential role of gut microbiota in influencing brain function, behavior, and mental health has attracted the attention of neuroscientists and psychiatrists. At the 29(th) International College of Neuropsychopharmacology (CINP) World Congress held in Vancouver, Canada, in June 2014, a group of experts presented the symposium, "Gut microbiota and brain function: Relevance to psychiatric disorders" to review the latest findings in how gut microbiota may play a role in brain function, behavior, and disease. The symposium covered a broad range of topics, including gut microbiota and neuroendocrine function, the influence of gut microbiota on behavior, probiotics as regulators of brain and behavior, and imaging the gut-brain axis in humans. This report provides an overview of these presentations. PMID:26438800

  4. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    SciTech Connect

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra . E-mail: parmar_devendra@hotmail.com

    2006-11-15

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain.

  5. Dynamic reorganization of brain functional networks during cognition.

    PubMed

    Bola, Michał; Sabel, Bernhard A

    2015-07-01

    How does cognition emerge from neural dynamics? The dominant hypothesis states that interactions among distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to perform specific cognitive operations. But unlike resting-state networks, the complex organization of transient cognitive networks is typically not characterized within the graph theory framework. Thus, it is not known whether cognitive processing merely changes the strength of functional connections or, conversely, requires qualitatively new topological arrangements of functional networks. To address this question, we recorded high-density EEG while subjects performed a visual discrimination task. We conducted an event-related network analysis (ERNA) where source-space weighted functional networks were characterized with graph measures. ERNA revealed rapid, transient, and frequency-specific reorganization of the network's topology during cognition. Specifically, cognitive networks were characterized by strong clustering, low modularity, and strong interactions between hub-nodes. Our findings suggest that dense and clustered connectivity between the hub nodes belonging to different modules is the "network fingerprint" of cognition. Such reorganization patterns might facilitate global integration of information and provide a substrate for a "global workspace" necessary for cognition and consciousness to occur. Thus, characterizing topology of the event-related networks opens new vistas to interpret cognitive dynamics in the broader conceptual framework of graph theory.

  6. Beyond localized and distributed accounts of brain functions. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  7. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  8. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  9. Functional specializations for music processing in the human newborn brain.

    PubMed

    Perani, Daniela; Saccuman, Maria Cristina; Scifo, Paola; Spada, Danilo; Andreolli, Guido; Rovelli, Rosanna; Baldoli, Cristina; Koelsch, Stefan

    2010-03-01

    In adults, specific neural systems with right-hemispheric weighting are necessary to process pitch, melody, and harmony as well as structure and meaning emerging from musical sequences. It is not known to what extent the specialization of these systems results from long-term exposure to music or from neurobiological constraints. One way to address this question is to examine how these systems function at birth, when auditory experience is minimal. We used functional MRI to measure brain activity in 1- to 3-day-old newborns while they heard excerpts of Western tonal music and altered versions of the same excerpts. Altered versions either included changes of the tonal key or were permanently dissonant. Music evoked predominantly right-hemispheric activations in primary and higher order auditory cortex. During presentation of the altered excerpts, hemodynamic responses were significantly reduced in the right auditory cortex, and activations emerged in the left inferior frontal cortex and limbic structures. These results demonstrate that the infant brain shows a hemispheric specialization in processing music as early as the first postnatal hours. Results also indicate that the neural architecture underlying music processing in newborns is sensitive to changes in tonal key as well as to differences in consonance and dissonance.

  10. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  11. Hierarchical organization of brain functional networks during visual tasks

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  12. An Evolutionary Computation Approach to Examine Functional Brain Plasticity

    PubMed Central

    Roy, Arnab; Campbell, Colin; Bernier, Rachel A.; Hillary, Frank G.

    2016-01-01

    One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength

  13. An Evolutionary Computation Approach to Examine Functional Brain Plasticity.

    PubMed

    Roy, Arnab; Campbell, Colin; Bernier, Rachel A; Hillary, Frank G

    2016-01-01

    One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength

  14. Emotion-Induced Topological Changes in Functional Brain Networks.

    PubMed

    Park, Chang-Hyun; Lee, Hae-Kook; Kweon, Yong-Sil; Lee, Chung Tai; Kim, Ki-Tae; Kim, Young-Joo; Lee, Kyoung-Uk

    2016-01-01

    In facial expression perception, a distributed network is activated according to stimulus context. We proposed that an interaction between brain activation and stimulus context in response to facial expressions could signify a pattern of interactivity across the whole brain network beyond the face processing network. Functional magnetic resonance imaging data were acquired for 19 young healthy subjects who were exposed to either emotionally neutral or negative facial expressions. We constructed group-wise functional brain networks for 12 face processing areas [bilateral inferior occipital gyri (IOG), fusiform gyri (FG), superior temporal sulci (STS), amygdalae (AMG), inferior frontal gyri (IFG), and orbitofrontal cortices (OFC)] and for 73 whole brain areas, based on partial correlation of mean activation across subjects. We compared the topological properties of the networks with respect to functional distance-based measures, global and local efficiency, between the two types of face stimulus. In both face processing and whole brain networks, global efficiency was lower and local efficiency was higher for negative faces relative to neutral faces, indicating that network topology differed according to stimulus context. Particularly in the face processing network, emotion-induced changes in network topology were attributable to interactions between core (bilateral IOG, FG, and STS) and extended (bilateral AMG, IFG, and OFC) systems. These results suggest that changes in brain activation patterns in response to emotional face stimuli could be revealed as changes in the topological properties of functional brain networks for the whole brain as well as for face processing areas.

  15. Functional connectivity of the rodent brain using optical imaging

    NASA Astrophysics Data System (ADS)

    Guevara Codina, Edgar

    showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Graph analyses showed a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex ipsilateral to the treated carotid; however these changes are not reflected in differentiated metabolic estimates. Confounds remain due to the fact that carotid rigidification gives rise to neural decline in the hippocampus as well as unilateral alteration of vascular pulsatility; however the results support the need to look at several hemodynamic parameters when imaging the brain after arterial remodeling. The third article of this thesis studies a model of inflammatory injury on the newborn rat. Oxygen saturation and functional connectivity were assessed with photoacoustic tomography. Oxygen saturation was decreased in the site of the lesion and on the cortex ipsilateral to the injury; however this decrease is not fully explained by hypovascularization revealed by histology. Seed-based functional connectivity analysis showed that inter-hemispheric connectivity is not affected by inflammatory injury.

  16. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128

    PubMed Central

    2014-01-01

    MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases. PMID:24555688

  17. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128.

    PubMed

    Adlakha, Yogita K; Saini, Neeru

    2014-02-21

    MicroRNAs, the non-coding single-stranded RNA of 19-25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases.

  18. Complex Networks - A Key to Understanding Brain Function

    ScienceCinema

    Olaf Sporns

    2016-07-12

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  19. Complex Networks - A Key to Understanding Brain Function

    SciTech Connect

    Olaf Sporns

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  20. Complex Networks - A Key to Understanding Brain Function

    SciTech Connect

    Sporns, Olaf

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  1. Delineating multiple functions of VEGF-A in the adult brain.

    PubMed

    Licht, Tamar; Keshet, Eli

    2013-05-01

    Vascular endothelial growth factor-A (abbreviated throughout this review as VEGF) is mostly known for its angiogenic activity, for its activity as a vascular permeability factor, and for its vascular survival activity [1]. There is a growing body of evidence, however, that VEGF fulfills additional less 'traditional' functions in multiple organs, both during development, as well as homeostatic functions in fully developed organs. This review focuses on the multiple roles of VEGF in the adult brain and is less concerned with the roles played by VEGF during brain development, functions described elsewhere in this review series. Most functions of VEGF that are essential for proper brain development are, in fact, dispensable in the adult brain as was clearly demonstrated using a conditional brain-specific VEGF loss-of-function (LOF) approach. Thus, in contrast to VEGF LOF in the developing brain, a process which is detrimental for the growth and survival of blood vessels and leads to massive neuronal apoptosis [2-4], continued signaling by VEGF in the mature brain is no longer required for maintaining already established cerebral vasculature and its inhibition does not cause appreciable vessel regression, hypoxia or apoptosis [4-7]. Yet, VEGF continues to be expressed in the adult brain in a constitutive manner. Moreover, VEGF is expressed in the adult brain in a region-specific manner and in distinctive spatial patterns incompatible with an angiogenic role (see below), strongly suggesting angiogenesis-independent and possibly also perfusion-independent functions. Here we review current knowledge on some of these 'non-traditional', often unexpected homeostatic VEGF functions, including those unrelated to its effects on the brain vasculature. These effects could be mediated directly (on non-vascular cells expressing cognate VEGF receptors) or indirectly (via the endothelium). Experimental approaches aimed at distinguishing between these possibilities for each particular

  2. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  3. Generating Text from Functional Brain Images

    PubMed Central

    Pereira, Francisco; Detre, Greg; Botvinick, Matthew

    2011-01-01

    Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602

  4. Brain Hemispheric Functions and the Native American.

    ERIC Educational Resources Information Center

    Ross, Allen Chuck

    1982-01-01

    Uses brain research conducted by Dr. Roger Sperry to show that traditional Native Americans are more dominant in right hemisphere thinking, setting them apart from a modern left hemisphere-oriented society (especially emphasized in schools). Describes some characteristics of Native American thinking that illustrate a right hemisphere orientation…

  5. Neural Substrate Expansion for the Restoration of Brain Function.

    PubMed

    Chen, H Isaac; Jgamadze, Dennis; Serruya, Mijail D; Cullen, D Kacy; Wolf, John A; Smith, Douglas H

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  6. Neural Substrate Expansion for the Restoration of Brain Function

    PubMed Central

    Chen, H. Isaac; Jgamadze, Dennis; Serruya, Mijail D.; Cullen, D. Kacy; Wolf, John A.; Smith, Douglas H.

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  7. Space shuttle configuration accounting functional design specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  8. [Functions of microglia in the healthy brain: focus on neuroplasticity].

    PubMed

    Tishkina, A O; Stepanichev, M Iu; Aniol, V A; Guliaeva, N V

    2014-01-01

    Microglia is in the center of modern research because it is involved in neuroinflammation processes, which is considered as an important part of pathogenesis of many brain pathologies. On the contrary, normal physiological functions of microglia are less studied. Here we review modern data on functioning of microglia in the healthy brain. We consider involvement of microglia in angiogenesis, neurogenesis, synaptogenesis, long-term potentiation, and the mechanisms of microglia-neuron interaction. We further consider modern concept on active interaction of microglia with neurons in developing and healthy mature brain and the essential role of microglia in neuroplasticity mechanisms at various levels.

  9. Characterizing dynamic local functional connectivity in the human brain.

    PubMed

    Deng, Lifu; Sun, Junfeng; Cheng, Lin; Tong, Shanbao

    2016-01-01

    Functional connectivity (FC), obtained from functional magnetic resonance imaging (fMRI), brings insights into the functional organization of the brain. Recently, rich and complex behaviour of brain has been revealed by the dynamic fluctuation of FC, which had previously been regarded as confounding 'noise'. While the dynamics of long-distance, inter-regional FC has been extensively studied, the dynamics of local FC within a few millimetres in space remains largely unexplored. In this study, the local FC was depicted by regional homogeneity (ReHo), and the dynamics of local FC was obtained using sliding windows method. We observed a robust positive correlation between ReHo and its temporal variability, which was shown to be an intrinsic feature of the brain rather than a pure stochastic effect. Furthermore, fluctuation of ReHo was associated with global functional organization: (i) brain regions with higher centrality of inter-regional FC tended to possess higher ReHo variability; (ii) coherence of ReHo fluctuation was higher within brain's functional modules. Finally, we observed alteration of ReHo variability during a motor task compared with resting-state. Our findings associated the temporal fluctuation of ReHo with brain function, opening up the possibility of dynamic local FC study in the future. PMID:27231194

  10. Maintaining older brain functionality: A targeted review.

    PubMed

    Ballesteros, Soledad; Kraft, Eduard; Santana, Silvina; Tziraki, Chariklia

    2015-08-01

    The unprecedented growth in the number of older adults in our society is accompanied by the exponential increase in the number of elderly people who will suffer cognitive decline and dementia in the next decades. This will create an enormous cost for governments, families and individuals. Brain plasticity and its role in brain adaptation to the process of aging is influenced by other changes as a result of co-morbidities, environmental factors, personality traits (psychosocial variables) and genetic and epigenetic factors. This review summarizes recent findings obtained mostly from interventional studies that aim to prevent and/or delay age-related cognitive decline in healthy adults. There are a multitude of such studies. In this paper, we focused our review on physical activity, computerized cognitive training and social enhancement interventions on improving cognition, physical health, independent living and wellbeing of older adults. The methodological limitations of some of these studies, and the need for new multi-domain synergistic interventions, based on current advances in neuroscience and social-brain theories, are discussed. PMID:26054789

  11. Maintaining older brain functionality: A targeted review.

    PubMed

    Ballesteros, Soledad; Kraft, Eduard; Santana, Silvina; Tziraki, Chariklia

    2015-08-01

    The unprecedented growth in the number of older adults in our society is accompanied by the exponential increase in the number of elderly people who will suffer cognitive decline and dementia in the next decades. This will create an enormous cost for governments, families and individuals. Brain plasticity and its role in brain adaptation to the process of aging is influenced by other changes as a result of co-morbidities, environmental factors, personality traits (psychosocial variables) and genetic and epigenetic factors. This review summarizes recent findings obtained mostly from interventional studies that aim to prevent and/or delay age-related cognitive decline in healthy adults. There are a multitude of such studies. In this paper, we focused our review on physical activity, computerized cognitive training and social enhancement interventions on improving cognition, physical health, independent living and wellbeing of older adults. The methodological limitations of some of these studies, and the need for new multi-domain synergistic interventions, based on current advances in neuroscience and social-brain theories, are discussed.

  12. Memory Networks in Tinnitus: A Functional Brain Image Study

    PubMed Central

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

  13. Selectionist and evolutionary approaches to brain function: a critical appraisal.

    PubMed

    Fernando, Chrisantha; Szathmáry, Eörs; Husbands, Phil

    2012-01-01

    We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman's theory of neuronal group selection, Changeux's theory of synaptic selection and selective stabilization of pre-representations, Seung's Darwinian synapse, Loewenstein's synaptic melioration, Adam's selfish synapse, and Calvin's replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price's covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity, and variability) as the most powerful mechanism for search in a sparsely occupied search space. Examples are given of cases where parallel competitive search with information transfer among the units is more efficient than search without information transfer between units. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise.

  14. Selectionist and Evolutionary Approaches to Brain Function: A Critical Appraisal

    PubMed Central

    Fernando, Chrisantha; Szathmáry, Eörs; Husbands, Phil

    2012-01-01

    We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse, and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity, and variability) as the most powerful mechanism for search in a sparsely occupied search space. Examples are given of cases where parallel competitive search with information transfer among the units is more efficient than search without information transfer between units. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise. PMID:22557963

  15. Intersubject variability of and genetic effects on the brain's functional connectivity during infancy.

    PubMed

    Gao, Wei; Elton, Amanda; Zhu, Hongtu; Alcauter, Sarael; Smith, J Keith; Gilmore, John H; Lin, Weili

    2014-08-20

    Infancy is a period featuring a high level of intersubject variability but the brain basis for such variability and the potential genetic/environmental contributions remain largely unexplored. The assessment of the brain's functional connectivity during infancy by the resting state functional magnetic resonance imaging (rsfMRI) technique (Biswal et al., 1995) provides a unique means to probe the brain basis of intersubject variability during infancy. In this study, an unusually large typically developing human infant sample including 58 singletons, 132 dizygotic twins, and 98 monozygotic twins with rsfMRI scans during the first 2 years of life was recruited to delineate the spatial and temporal developmental patterns of both the intersubject variability of and genetic effects on the brain's functional connectivity. Through systematic voxelwise functional connectivity analyses, our results revealed that the intersubject variability at birth features lower variability in primary functional areas but higher values in association areas. Although the relative pattern remains largely consistent, the magnitude of intersubject variability undergoes an interesting U-shaped growth during the first 2 years of life. Overall, the intersubject variability patterns during infancy show both adult-like and infant-specific characteristics (Mueller et al., 2013). On the other hand, age-dependent genetic effects were observed showing significant but bidirectional relationships with intersubject variability. The temporal and spatial patterns of the intersubject variability of and genetic contributions to the brain's functional connectivity documented in this study shed light on the largely uncharted functional development of the brain during infancy.

  16. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

    PubMed Central

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-01

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719

  17. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. PMID:23501053

  18. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine.

  19. Impact of head morphology on local brain specific absorption rate from exposure to mobile phone radiation.

    PubMed

    Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C

    2015-01-01

    Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology.

  20. EEG-based research on brain functional networks in cognition.

    PubMed

    Wang, Niannian; Zhang, Li; Liu, Guozhong

    2015-01-01

    Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders. PMID:26405867

  1. [Determinism and Freedom of Choice in the Brain Functioning].

    PubMed

    Ivanitsky, A M

    2015-01-01

    The problem is considered whether the brain response is completely determined by the stimulus and the personal experience or in some cases the brain is free to choose its behavioral response to achieve the desired goal. The attempt is made to approach to this important philosophical problem basing on modern knowledge about the brain. The paper consists of four parts. In the first part the theoretical views about the free choice problem solving are considered, including views about the freedom of choice as a useful illusion, the hypothesis on appliance of quantum mechanics laws to the brain functioning and the theory of mentalism. In other tree parts consequently the more complicated brain functions such as choice reaction, thinking and creation are analyzed. The general conclusion is that the possibility of quite unpredictable, but sometimes very effective decisions increases when the brain functions are more and more complicated. This fact can be explained with two factors: increasing stochasticity of the brain processes and the role of top-down determinations from mental to neural levels, according to the theory of mentalism.

  2. Functional brain connectivity phenotypes for schizophrenia drug discovery.

    PubMed

    Dawson, Neil; Morris, Brian J; Pratt, Judith A

    2015-02-01

    While our knowledge of the pathophysiology of schizophrenia has increased dramatically, this has not translated into the development of new and improved drugs to treat this disorder. Human brain imaging and electrophysiological studies have provided dramatic new insight into the mechanisms of brain dysfunction in the disease, with a swathe of recent studies highlighting the differences in functional brain network and neural system connectivity present in the disorder. Only recently has the value of applying these approaches in preclinical rodent models relevant to the disorder started to be recognised. Here we highlight recent findings of altered functional brain connectivity in preclinical rodent models and consider their relevance to those alterations seen in the brains of schizophrenia patients. Furthermore, we highlight the potential translational value of using the paradigm of functional brain connectivity phenotypes in the context of preclinical schizophrenia drug discovery, as a means both to understand the mechanisms of brain dysfunction in the disorder and to reduce the current high attrition rate in schizophrenia drug discovery.

  3. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  4. Relationship Between Neurocognitive Function and Quality of Life After Whole-Brain Radiotherapy in Patients With Brain Metastasis

    SciTech Connect

    Li Jing; Bentzen, Soren M.; Li Jialiang; Renschler, Markus; Mehta, Minesh P.

    2008-05-01

    Purpose: To examine the relationship between neurocognitive function (NCF) and quality of life (QOL) in patients with brain metastases after whole-brain radiotherapy. Patients and Methods: A total of 208 patients from the whole-brain radiotherapy arm of a Phase III trial (PCI-P120-9801), who underwent regular NCF and QOL (ADL [activities of daily living] and FACT-Br [Functional Assessment of Cancer Therapy-Brain-specific]) testing, were analyzed. Spearman's rank correlation was calculated between NCF and QOL, using each patient's own data, at each time point. To test the hypothesis that NCF declines before QOL changes, the predictive effect of NCF from previous visits on QOL was studied with a linear mixed-effects model. Neurocognitive function or QOL deterioration was defined relative to each patient's own baseline. Lead or lag time, defined as NCF deterioration before or after the date of QOL decline, respectively, was computed. Results: At baseline, all NCF tests showed statistically significant correlations with ADL, which became stronger at 4 months. A similar observation was made with FACT-Br. Neurocognitive function scores from previous visits predicted ADL (p < 0.05 for seven of eight tests) or FACT-Br. Scores on all eight NCF tests deteriorated before ADL decline (net lead time 9-153 days); and scores on six of eight NCF tests deteriorated before FACT-Br (net lead time 9-82 days). Conclusions: Neurocognitive function and QOL are correlated. Neurocognitive function scores from previous visits are predictive of QOL. Neurocognitive function deterioration precedes QOL decline. The sequential association between NCF and QOL decline suggests that delaying NCF deterioration is a worthwhile treatment goal in brain metastases patients.

  5. PET scans relate clinical picture to more specific nerve function

    SciTech Connect

    Ziporyn, T.

    1985-02-15

    This article describes the historical development of the use of positron emission tomography in studies of brain chemistry and the specific pathways associated with specific disease states. Fluorine-18 is used to label dopa since dopa can cross the blood-brain barrier. This radiopharmaceutical has been used to study the role of dopamine in Parkinson's disease and other motor disorders. The new PET technologies may also allow insight into the cause of variable responses to levo-dopa therapy.

  6. Patient-specific computational biomechanics of the brain without segmentation and meshing.

    PubMed

    Zhang, Johnny Y; Joldes, Grand Roman; Wittek, Adam; Miller, Karol

    2013-02-01

    Motivated by patient-specific computational modelling in the context of image-guided brain surgery, we propose a new fuzzy mesh-free modelling framework. The method works directly on an unstructured cloud of points that do not form elements so that mesh generation is not required. Mechanical properties are assigned directly to each integration point based on fuzzy tissue classification membership functions without the need for image segmentation. Geometric integration is performed over an underlying uniform background grid. The verification example shows that, while requiring no hard segmentation and meshing, the proposed model gives, for all practical purposes, equivalent results to a finite element model. PMID:23345159

  7. Functional imaging of the brain with/sup 18/F-fluorodeoxyglucose

    SciTech Connect

    Reivich, M; Greenberg, J; Alavi, A; Hand, P; Rintelmann, W; Rosenquist, A; Christman, D; Fowler, J; MacGregor, R; Wolf, A

    1980-01-01

    A techniques is reported by which it is possible to determine which regions of the human brain become functionally active in response to a specific stimulus. The method utilizes /sup 18/F-2-fluoro-2-deoxyglucose ((/sup 18/F)-FDG) administered as a bolus. (/sup 18/F)-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation. The subject is then scanned during administration of a physiologic stimulus by position emission tomography and the three-dimensional distribution of /sup 18/F activity in the brain determined. (ACR)

  8. Human brain functional MRI and DTI visualization with virtual reality.

    PubMed

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

  9. Branched-chain amino acids and brain function.

    PubMed

    Fernstrom, John D

    2005-06-01

    Branched-chain amino acids (BCAAs) influence brain function by modifying large, neutral amino acid (LNAA) transport at the blood-brain barrier. Transport is shared by several LNAAs, notably the BCAAs and the aromatic amino acids (ArAAs), and is competitive. Consequently, when plasma BCAA concentrations rise, which can occur in response to food ingestion or BCAA administration, or with the onset of certain metabolic diseases (e.g., uncontrolled diabetes), brain BCAA concentrations rise, and ArAA concentrations decline. Such effects occur acutely and chronically. Such reductions in brain ArAA concentrations have functional consequences: biochemically, they reduce the synthesis and the release of neurotransmitters derived from ArAAs, notably serotonin (from tryptophan) and catecholamines (from tyrosine and phenylalanine). The functional effects of such neurochemical changes include altered hormonal function, blood pressure, and affective state. Although the BCAAs thus have biochemical and functional effects in the brain, few attempts have been made to characterize time-course or dose-response relations for such effects. And, no studies have attempted to identify levels of BCAA intake that might produce adverse effects on the brain. The only "model" of very high BCAA exposure is a very rare genetic disorder, maple syrup urine disease, a feature of which is substantial brain dysfunction but that probably cannot serve as a useful model for excessive BCAA intake by normal individuals. Given the known biochemical and functional effects of the BCAAs, it should be a straightforward exercise to design studies to assess dose-response relations for biochemical and functional effects and, in this context, to explore for adverse effect thresholds. PMID:15930466

  10. Region-specific growth restriction of brain following preterm birth

    PubMed Central

    Iwata, Sachiko; Katayama, Reiji; Kinoshita, Masahiro; Saikusa, Mamoru; Araki, Yuko; Takashima, Sachio; Abe, Toshi; Iwata, Osuke

    2016-01-01

    Regional brain sizes of very-preterm infants at term-equivalent age differ from those of term-born peers, which have been linked with later cognitive impairments. However, dependence of regional brain volume loss on gestational age has not been studied in detail. To investigate the spatial pattern of brain growth in neonates without destructive brain lesions, head MRI of 189 neonates with a wide range of gestational age (24–42 weeks gestation) was assessed using simple metrics measurements. Dependence of MRI findings on gestational age at birth (Agebirth) and the corrected age at MRI scan (AgeMRI) were assessed. The head circumference was positively correlated with AgeMRI, but not Agebirth. The bi-parietal width, deep grey matter area and the trans-cerebellar diameter were positively correlated with both Agebirth and AgeMRI. The callosal thickness (positive), atrial width of lateral ventricle (negative) and the inter-hemispheric distance (negative) were exclusively correlated with Agebirth. The callosal thickness and cerebral/cerebellar transverse diameters showed predominant dependence on Agebirth over AgeMRI, suggesting that brain growth after preterm-birth was considerably restricted or even became negligible compared with that in utero. Such growth restriction after preterm birth may extensively affect relatively more matured infants, considering the linear relationships observed between brain sizes and Agebirth. PMID:27658730

  11. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface.

    PubMed

    Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Song, Jie; Nair, Veena A; Grogan, Scott W; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2014-01-01

    This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.

  12. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface

    PubMed Central

    Young, Brittany M.; Nigogosyan, Zack; Walton, Léo M.; Song, Jie; Nair, Veena A.; Grogan, Scott W.; Tyler, Mitchell E.; Edwards, Dorothy F.; Caldera, Kristin; Sattin, Justin A.; Williams, Justin C.; Prabhakaran, Vivek

    2014-01-01

    This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions. PMID:25076886

  13. Functional specificity of local synaptic connections in neocortical networks

    PubMed Central

    Ko, Ho; Hofer, Sonja B.; Pichler, Bruno; Buchanan, Kate; Sjöström, P. Jesper; Mrsic-Flogel, Thomas D.

    2011-01-01

    Neuronal connectivity is fundamental to information processing in the brain. Understanding the mechanisms of sensory processing, therefore, requires uncovering how connection patterns between neurons relate to their function. On a coarse scale long range projections can preferentially link cortical regions with similar responses to sensory stimuli1-4. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro whose response properties were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the deg of functional specificity of local synaptic connections in visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information. PMID:21478872

  14. Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity

    PubMed Central

    Tain, Luke; Perrot-Minnot, Marie-Jeanne; Cézilly, Frank

    2006-01-01

    Manipulative parasites can alter the phenotype of intermediate hosts in various ways. However, it is unclear whether such changes are just by-products of infection or adaptive and enhance transmission to the final host. Here, we show that the alteration of serotonergic activity is functionally linked to the alteration of specific behaviour in the amphipod Gammarus pulex infected with acanthocephalan parasites. Pomphorhynchus laevis and, to a lesser extent, Pomphorhynchus tereticollis altered phototactism, but not geotactism, in G. pulex, whereas the reverse was true for Polymorphus minutus. Serotonin (5-hydroxytryptamine, 5-HT) injected to uninfected G. pulex mimicked the altered phototactism, but had no effect on geotactism. Photophilic G. pulex infected with P. laevis or P. tereticollis showed a 40% increase in brain 5-HT immunoreactivity compared to photophobic, uninfected individuals. In contrast, brain 5-HT immunoreactivity did not differ between P. minutus-infected and uninfected G. pulex. Finally, brain 5-HT immunoreactivity differed significantly among P. tereticollis-infected individuals in accordance with their degree of manipulation. Our results demonstrate that altered 5-HT activity is not the mere consequence of infection by acanthocephalans but is specifically linked to the disruption of host photophobic behaviour, whereas the alteration of other behaviours such as geotactism may rely on distinct physiological routes. PMID:17015346

  15. Characterizing dynamic local functional connectivity in the human brain

    PubMed Central

    Deng, Lifu; Sun, Junfeng; Cheng, Lin; Tong, Shanbao

    2016-01-01

    Functional connectivity (FC), obtained from functional magnetic resonance imaging (fMRI), brings insights into the functional organization of the brain. Recently, rich and complex behaviour of brain has been revealed by the dynamic fluctuation of FC, which had previously been regarded as confounding ‘noise’. While the dynamics of long-distance, inter-regional FC has been extensively studied, the dynamics of local FC within a few millimetres in space remains largely unexplored. In this study, the local FC was depicted by regional homogeneity (ReHo), and the dynamics of local FC was obtained using sliding windows method. We observed a robust positive correlation between ReHo and its temporal variability, which was shown to be an intrinsic feature of the brain rather than a pure stochastic effect. Furthermore, fluctuation of ReHo was associated with global functional organization: (i) brain regions with higher centrality of inter-regional FC tended to possess higher ReHo variability; (ii) coherence of ReHo fluctuation was higher within brain’s functional modules. Finally, we observed alteration of ReHo variability during a motor task compared with resting-state. Our findings associated the temporal fluctuation of ReHo with brain function, opening up the possibility of dynamic local FC study in the future. PMID:27231194

  16. Self-portraits of the brain: cognitive science, data visualization, and communicating brain structure and function.

    PubMed

    Goldstone, Robert L; Pestilli, Franco; Börner, Katy

    2015-08-01

    With several large-scale human brain projects currently underway and a range of neuroimaging techniques growing in availability to researchers, the amount and diversity of data relevant for understanding the human brain is increasing rapidly. A complete understanding of the brain must incorporate information about 3D neural location, activity, timing, and task. Data mining, high-performance computing, and visualization can serve as tools that augment human intellect; however, the resulting visualizations must take into account human abilities and limitations to be effective tools for exploration and communication. In this feature review, we discuss key challenges and opportunities that arise when leveraging the sophisticated perceptual and conceptual processing of the human brain to help researchers understand brain structure, function, and behavior.

  17. Functional neuroimaging of traumatic brain injury: advances and clinical utility

    PubMed Central

    Irimia, Andrei; Van Horn, John Darrell

    2015-01-01

    Functional deficits due to traumatic brain injury (TBI) can have significant and enduring consequences upon patients’ life quality and expectancy. Although functional neuroimaging is essential for understanding TBI pathophysiology, an insufficient amount of effort has been dedicated to the task of translating functional neuroimaging findings into information with clinical utility. The purpose of this review is to summarize the use of functional neuroimaging techniques – especially functional magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, magnetic resonance spectroscopy, and electroencephalography – for advancing current knowledge of TBI-related brain dysfunction and for improving the rehabilitation of TBI patients. We focus on seven core areas of functional deficits, namely consciousness, motor function, attention, memory, higher cognition, personality, and affect, and, for each of these, we summarize recent findings from neuroimaging studies which have provided substantial insight into brain function changes due to TBI. Recommendations are also provided to aid in setting the direction of future neuroimaging research and for understanding brain function changes after TBI. PMID:26396520

  18. Model of local temperature changes in brain upon functional activation.

    PubMed

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  19. Magnetic resonance and the human brain: anatomy, function and metabolism.

    PubMed

    Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

    2006-05-01

    The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth.

  20. Magnetic resonance and the human brain: anatomy, function and metabolism.

    PubMed

    Talos, I-F; Mian, A Z; Zou, K H; Hsu, L; Goldberg-Zimring, D; Haker, S; Bhagwat, J G; Mulkern, R V

    2006-05-01

    The introduction and development, over the last three decades, of magnetic resonance (MR) imaging and MR spectroscopy technology for in vivo studies of the human brain represents a truly remarkable achievement, with enormous scientific and clinical ramifications. These effectively non-invasive techniques allow for studies of the anatomy, the function and the metabolism of the living human brain. They have allowed for new understandings of how the healthy brain works and have provided insights into the mechanisms underlying multiple disease processes which affect the brain. Different MR techniques have been developed for studying anatomy, function and metabolism. The primary focus of this review is to describe these different methodologies and to briefly review how they are being employed to more fully appreciate the intricacies associated with the organ, which most distinctly differentiates the human species from the other animal forms on earth. PMID:16568243

  1. Hubs of brain functional networks are radically reorganized in comatose patients

    PubMed Central

    Achard, Sophie; Delon-Martin, Chantal; Vértes, Petra E.; Renard, Félix; Schenck, Maleka; Schneider, Francis; Heinrich, Christian; Kremer, Stéphane; Bullmore, Edward T.

    2012-01-01

    Human brain networks have topological properties in common with many other complex systems, prompting the following question: what aspects of brain network organization are critical for distinctive functional properties of the brain, such as consciousness? To address this question, we used graph theoretical methods to explore brain network topology in resting state functional MRI data acquired from 17 patients with severely impaired consciousness and 20 healthy volunteers. We found that many global network properties were conserved in comatose patients. Specifically, there was no significant abnormality of global efficiency, clustering, small-worldness, modularity, or degree distribution in the patient group. However, in every patient, we found evidence for a radical reorganization of high degree or highly efficient “hub” nodes. Cortical regions that were hubs of healthy brain networks had typically become nonhubs of comatose brain networks and vice versa. These results indicate that global topological properties of complex brain networks may be homeostatically conserved under extremely different clinical conditions and that consciousness likely depends on the anatomical location of hub nodes in human brain networks. PMID:23185007

  2. Chemotherapy altered brain functional connectivity in women with breast cancer: a pilot study.

    PubMed

    Dumas, Julie A; Makarewicz, Jenna; Schaubhut, Geoffrey J; Devins, Robert; Albert, Kimberly; Dittus, Kim; Newhouse, Paul A

    2013-12-01

    Adjuvant chemotherapy is associated with improvements in long-term cancer survival. However, reports of cognitive impairment following treatment emphasize the importance of understanding the long-term effects of chemotherapy on brain functioning. Cognitive deficits found in chemotherapy patients suggest a change in brain functioning that affects specific cognitive domains such as attentional processing and executive functioning. This study examined the processes potentially underlying these changes in cognition by examining brain functional connectivity pre- and post-chemotherapy in women with breast cancer. Functional connectivity examines the temporal correlation between spatially remote brain regions in an effort to understand how brain networks support specific cognitive functions. Nine women diagnosed with breast cancer completed a functional magnetic resonance imaging (fMRI) session before chemotherapy, 1 month after, and 1 year after the completion of chemotherapy. Seed-based functional connectivity analyses were completed using seeds in the intraparietal sulcus (IPS) to examine connectivity in the dorsal anterior attention network and in the posterior cingulate cortex (PCC) to examine connectivity in the default mode network. Results showed decreased functional connectivity 1 month after chemotherapy that partially returned to baseline at 1 year in the dorsal attention network. Decreased connectivity was seen in the default mode network at 1 month and 1 year following chemotherapy. In addition, increased subjective memory complaints were noted at 1 month and 1 year post-chemotherapy. These findings suggest a detrimental effect of chemotherapy on brain functional connectivity that is potentially related to subjective cognitive assessment.

  3. Democratic reinforcement: A principle for brain function

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, Dimitris; Bak, Per

    1995-05-01

    We introduce a simple ``toy'' brain model. The model consists of a set of randomly connected, or layered integrate-and-fire neurons. Inputs to and outputs from the environment are connected randomly to subsets of neurons. The connections between firing neurons are strengthened or weakened according to whether the action was successful or not. Unlike previous reinforcement learning algorithms, the feedback from the environment is democratic: it affects all neurons in the same way, irrespective of their position in the network and independent of the output signal. Thus no unrealistic back propagation or other external computation is needed. This is accomplished by a global threshold regulation which allows the system to self-organize into a highly susceptible, possibly ``critical'' state with low activity and sparse connections between firing neurons. The low activity permits memory in quiescent areas to be conserved since only firing neurons are modified when new information is being taught.

  4. The adolescent brain: Insights from functional neuroimaging research

    PubMed Central

    Ernst, M.; Mueller, S.C.

    2009-01-01

    With the development of functional neuroimaging tools, the past two decades have witnessed an explosion of work examining functional brain maps, mostly in the adult brain. Against this backdrop of work in adults, developmental research begins to gather a substantial body of knowledge about brain maturation. The purpose of this review is to present some of these findings from the perspective of functional neuroimaging. First, a brief survey of available neuroimaging techniques (i.e., fMRI, MRS, MEG, PET, SPECT, and infrared techniques) is provided. Next, the key cognitive, emotional, and social changes taking place during adolescence are outlined. The third section gives examples of how these behavioral changes can be understood from a neuroscience perspective. The conclusion places this functional neuroimaging research in relation to clinical and molecular work, and shows how answers will ultimately come from the combined efforts of these disciplines. PMID:18383544

  5. Reconciling abnormalities of brain network structure and function in schizophrenia.

    PubMed

    Fornito, Alex; Bullmore, Edward T

    2015-02-01

    Schizophrenia is widely regarded as a disorder of abnormal brain connectivity. Magnetic resonance imaging (MRI) suggests that patients show robust reductions of structural connectivity. However, corresponding changes in functional connectivity do not always follow, with increased functional connectivity being reported in many cases. Here, we consider different methodological and mechanistic accounts that might reconcile these apparently contradictory findings and argue that increased functional connectivity in schizophrenia likely represents a pathophysiological dysregulation of brain activity arising from abnormal neurodevelopmental wiring of structural connections linking putative hub regions of association cortex to other brain areas. Elucidating the pathophysiological significance of connectivity abnormalities in schizophrenia will be contingent on better understanding how network structure shapes and constrains function.

  6. How the brain attunes to sentence processing: Relating behavior, structure, and function

    PubMed Central

    Fengler, Anja; Meyer, Lars; Friederici, Angela D.

    2016-01-01

    Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5–6 years, 7–8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477

  7. How the brain attunes to sentence processing: Relating behavior, structure, and function.

    PubMed

    Fengler, Anja; Meyer, Lars; Friederici, Angela D

    2016-04-01

    Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5-6 years, 7-8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477

  8. Function-Structure Associations of the Brain: Evidence from Multimodal Connectivity and Covariance Studies

    PubMed Central

    Sui, Jing; Huster, Rene; Yu, Qingbao; Segall, Judith M.; Calhoun, Vince D

    2013-01-01

    Despite significant advances in multimodal imaging techniques and analysis approaches, unimodal studies are still the predominant way to investigate brain changes or group differences, including structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and electroencephalography (EEG). Multimodal brain studies can be used to understand the complex interplay of anatomical, functional and physiological brain alterations or development, and to better comprehend the biological significance of multiple imaging measures. To examine the function-structure associations of the brain in a more comprehensive and integrated manner, we reviewed a number of multimodal studies that combined two or more functional (fMRI and/or EEG) and structural (sMRI and/or DTI) modalities. In this review paper, we specifically focused on multimodal neuroimaging studies on cognition, aging, disease and behavior. We also compared multiple analysis approaches, including univariate and multivariate methods. The possible strengths and limitations of each method are highlighted, which can guide readers when selecting a method based on a given research question. In particular, we believe that multimodal fusion approaches will shed further light on the neuronal mechanisms underlying the major structural and functional pathophysiological features of both the healthy brain (e.g. development) or the diseased brain (e.g. mental illness). And in the latter case, may provide a more sensitive measure than unimodal imaging for disease classification, e.g. multimodal biomarkers, which potentially can be used to support clinical diagnosis based on neuroimaging techniques. PMID:24084066

  9. The Bilingual Brain as Revealed by Functional Neuroimaging.

    ERIC Educational Resources Information Center

    Abutalebi, Jubin; Cappa, Stefano F.; Perani, Daniela

    2001-01-01

    Functional neuroimaging of bilinguals and monolinguals used in conjunction with experimental cognitive tasks has been successful in establishing functional specialization as a principle of brain organization in humans. Consistent results show that attained proficiency and possibly language exposure are more important than age of acquisition as a…

  10. Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy.

    PubMed

    Solana, Ana Beatriz; Martínez, Kenia; Hernández-Tamames, Juan Antonio; San Antonio-Arce, Victoria; Toledano, Rafael; García-Morales, Irene; Alvárez-Linera, Juan; Gil-Nágel, Antonio; Del Pozo, Francisco

    2016-06-01

    Generalized Fixation-off Sensitivity (CGE-FoS) patients present abnormal EEG patterns when losing fixation. In the present work, we studied two CGE-FoS epileptic patients with simultaneous EEG-fMRI. We aim to identify brain areas that are specifically related to the pathology by identifying the brain networks that are related to the EEG brain altered rhythms. Three main analyses were performed: EEG standalone, where the voltage fluctuations in delta, alpha, and beta EEG bands were obtained; fMRI standalone, where resting-state fMRI ICA analyses for opened and closed eyes conditions were computed per subject; and, EEG-informed fMRI, where EEG delta, alpha and beta oscillations were used to analyze fMRI. Patient 1 showed EEG abnormalities for lower beta band EEG brain rhythm. Fluctuations of this rhythm were correlated with a brain network mainly composed by temporo-frontal areas only found in the closed eyes condition. Patient 2 presented alterations in all the EEG brain rhythms (delta, alpha, beta) under study when closing eyes. Several biologically relevant brain networks highly correlated (r > 0.7) to each other in the closed eyes condition were found. EEG-informed fMRI results in patient 2 showed hypersynchronized patterns in the fMRI correlation spatial maps. The obtained findings allow a differential diagnosis for each patient and different profiles with respect to healthy volunteers. The results suggest a different disruption in the functional brain networks of these patients that depends on their altered brain rhythms. This knowledge could be used to treat these patients by novel brain stimulation approaches targeting specific altered brain networks in each patient.

  11. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain.

    PubMed

    Ko, Younhee; Ament, Seth A; Eddy, James A; Caballero, Juan; Earls, John C; Hood, Leroy; Price, Nathan D

    2013-02-19

    To characterize gene expression patterns in the regional subdivisions of the mammalian brain, we integrated spatial gene expression patterns from the Allen Brain Atlas for the adult mouse with panels of cell type-specific genes for neurons, astrocytes, and oligodendrocytes from previously published transcriptome profiling experiments. We found that the combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain's major subdivisions. Moreover, the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny. Spatial expression profiles of astrocyte- and oligodendrocyte-specific genes also revealed regional differences; these defined fewer regions and were less distinct but still symmetrical in the coronal plane. Follow-up analysis suggested that region-based clustering of neuron-specific genes was related to (i) a combination of individual genes with restricted expression patterns, (ii) region-specific differences in the relative expression of functional groups of genes, and (iii) regional differences in neuronal density. Products from some of these neuron-specific genes are present in peripheral blood, raising the possibility that they could reflect the activities of disease- or injury-perturbed networks and collectively function as biomarkers for clinical disease diagnostics.

  12. Specific absorbed fractions of energy from internal photon sources in brain tumor and cerebrospinal fluid

    SciTech Connect

    Evans, J.F. )); Stubbs, J.B. )

    1995-03-01

    Transferrin, radiolabeled with In-111, can be coinjected into glioblastoma multiforme lesions, and subsequent scintigraphic imaging can demonstrate the biokinetics of the cytotoxic transferrin. The administration of [sup 111]In transferrin into a brain tumor results in distribution of radioactivity in the brain, brain tumor, and the cerebrospinal fluid (CSF). Information about absorbed radiation doses to these regions, as well as other nearby tissues and organs, is important for evaluating radiation-related risks from this procedure. The radiation dose is usually estimated for a mathematical representation of the human body. We have included source/target regions for the eye, lens of the eye, spinal column, spinal CSF, cranial CSF, and a 100-g tumor within the brain of an adult male phantom developed by Cristy and Eckerman. The spinal column, spinal CSF, and the eyes have not been routinely included in photon transport simulations. Specific absorbed fractions (SAFs) as a function of photon energy were calculated using the ALGAMP computer code, which utilizes Monte Carlo techniques for simulating photon transport. The ALGAMP code was run three times, with the source activity distributed uniformly within the tumor, cranial CSF, and the spinal CSF volumes. These SAFs, which were generated for 12 discrete photon energies ranging from 0.01 to 4.0 MeV, were used with decay scheme data to calculate [ital S]-values needed for estimating absorbed doses. [ital S]-values for [sup 111]In are given for three source regions (brain tumor, cranial CSF, and spinal CSF) and all standard target regions/organs, the eye and lens, as well as to tissues within these source regions. [ital S]-values for the skeletal regions containing active marrow are estimated. These results are useful in evaluating the radiation doses from intracranial administration of [sup 111]In transferrin.

  13. Ubiquity and specificity of reinforcement signals throughout the human brain.

    PubMed

    Vickery, Timothy J; Chun, Marvin M; Lee, Daeyeol

    2011-10-01

    Reinforcements and punishments facilitate adaptive behavior in diverse domains ranging from perception to social interactions. A conventional approach to understanding the corresponding neural substrates focuses on the basal ganglia and its dopaminergic projections. Here, we show that reinforcement and punishment signals are surprisingly ubiquitous in the gray matter of nearly every subdivision of the human brain. Humans played either matching-pennies or rock-paper-scissors games against computerized opponents while being scanned using fMRI. Multivoxel pattern analysis was used to decode previous choices and their outcomes, and to predict upcoming choices. Whereas choices were decodable from a confined set of brain structures, their outcomes were decodable from nearly all cortical and subcortical structures. In addition, signals related to both reinforcements and punishments were recovered reliably in many areas and displayed patterns not consistent with salience-based explanations. Thus, reinforcement and punishment might play global modulatory roles in the entire brain.

  14. Resting state magnetoencephalography functional connectivity in traumatic brain injury

    PubMed Central

    Tarapore, Phiroz E.; Findlay, Anne M.; LaHue, Sara C.; Lee, Hana; Honma, Susanne M.; Mizuiri, Danielle; Luks, Tracy L.; Manley, Geoffrey T.; Nagarajan, Srikantan S.; Mukherjee, Pratik

    2014-01-01

    Object Traumatic brain injury (TBI) is one of the leading causes of morbidity worldwide. One mechanism by which blunt head trauma may disrupt normal cognition and behavior is through alteration of functional connectivity between brain regions. In this pilot study, the authors applied a rapid automated resting state magnetoencephalography (MEG) imaging technique suitable for routine clinical use to test the hypothesis that there is decreased functional connectivity in patients with TBI compared with matched controls, even in cases of mild TBI. Furthermore, they posit that these abnormal reductions in MEG functional connectivity can be detected even in TBI patients without specific evidence of traumatic lesions on 3-T MR images. Finally, they hypothesize that the reductions of functional connectivity can improve over time across serial MEG scans during recovery from TBI. Methods Magnetoencephalography maps of functional connectivity in the alpha (8- to 12-Hz) band from 21 patients who sustained a TBI were compared with those from 18 age- and sex-matched controls. Regions of altered functional connectivity in each patient were detected in automated fashion through atlas-based registration to the control database. The extent of reduced functional connectivity in the patient group was tested for correlations with clinical characteristics of the injury as well as with findings on 3-T MRI. Finally, the authors compared initial connectivity maps with 2-year follow-up functional connectivity in a subgroup of 5 patients with TBI. Results Fourteen male and 7 female patients (17–53 years old, median 29 years) were enrolled. By Glasgow Coma Scale (GCS) criteria, 11 patients had mild, 1 had moderate, and 3 had severe TBI, and 6 had no GCS score recorded. On 3-T MRI, 16 patients had abnormal findings attributable to the trauma and 5 had findings in the normal range. As a group, the patients with TBI had significantly lower functional connectivity than controls (p < 0.01). Three

  15. Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain*†

    PubMed Central

    Simpson, Sean L.; Bowman, F. DuBois; Laurienti, Paul J.

    2014-01-01

    Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. PMID:25309643

  16. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces

    PubMed Central

    Mandonnet, Emmanuel; Duffau, Hugues

    2014-01-01

    Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved. PMID:24834030

  17. Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images

    SciTech Connect

    Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E.

    1994-06-01

    In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

  18. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners.

    PubMed

    Gard, Tim; Taquet, Maxime; Dixit, Rohan; Hölzel, Britta K; de Montjoye, Yves-Alexandre; Brach, Narayan; Salat, David H; Dickerson, Bradford C; Gray, Jeremy R; Lazar, Sara W

    2014-01-01

    Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation.

  19. [Endocrine functions of the brain in adult and developing mammals].

    PubMed

    Ugriumov, M V

    2009-01-01

    The main prerequisite for organism's viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats--before the blood-brain barrier is formed--proved to have equally high

  20. Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences.

    PubMed

    Madore, Kevin P; Szpunar, Karl K; Addis, Donna Rose; Schacter, Daniel L

    2016-09-20

    Recent behavioral work suggests that an episodic specificity induction-brief training in recollecting the details of a past experience-enhances performance on subsequent tasks that rely on episodic retrieval, including imagining future experiences, solving open-ended problems, and thinking creatively. Despite these far-reaching behavioral effects, nothing is known about the neural processes impacted by an episodic specificity induction. Related neuroimaging work has linked episodic retrieval with a core network of brain regions that supports imagining future experiences. We tested the hypothesis that key structures in this network are influenced by the specificity induction. Participants received the specificity induction or one of two control inductions and then generated future events and semantic object comparisons during fMRI scanning. After receiving the specificity induction compared with the control, participants exhibited significantly more activity in several core network regions during the construction of imagined events over object comparisons, including the left anterior hippocampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus. Induction-related differences in the episodic detail of imagined events significantly modulated induction-related differences in the construction of imagined events in the left anterior hippocampus and right inferior parietal lobule. Resting-state functional connectivity analyses with hippocampal and inferior parietal lobule seed regions and the rest of the brain also revealed significantly stronger core network coupling following the specificity induction compared with the control. These findings provide evidence that an episodic specificity induction selectively targets episodic processes that are commonly linked to key core network regions, including the hippocampus.

  1. MR Anatomy of Deep Brain Nuclei with Special Reference to Specific Diseases and Deep Brain Stimulation Localization

    PubMed Central

    Telford, Ryan; Vattoth, Surjith

    2014-01-01

    Summary Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures. PMID:24571832

  2. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  3. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience

    PubMed Central

    Lyte, Mark; Meyer, Emeran; Cryan, John F

    2016-01-01

    There is a growing appreciation of the importance of gut microbiota to health and disease. This has been driven by advances in sequencing technology and recent findings demonstrating the important role of microbiota in common health disorders such as obesity. Moreover, the potential role of gut microbiota in influencing brain function, behavior, and mental health has attracted the attention of neuroscientists and psychiatrists. At the 29th International College of Neuropsychopharmacology (CINP) World Congress held in Vancouver, Canada, in June 2014, a group of experts presented the symposium, “Gut microbiota and brain function: Relevance to psychiatric disorders” to review the latest findings in how gut microbiota may play a role in brain function, behavior, and disease. The symposium covered a broad range of topics, including gut microbiota and neuroendocrine function, the influence of gut microbiota on behavior, probiotics as regulators of brain and behavior, and imaging the gut-brain axis in humans. This report provides an overview of these presentations. PMID:26438800

  4. Telomerase deficiency affects normal brain functions in mice.

    PubMed

    Lee, Jaehoon; Jo, Yong Sang; Sung, Young Hoon; Hwang, In Koo; Kim, Hyuk; Kim, Song-Yi; Yi, Sun Shin; Choi, June-Seek; Sun, Woong; Seong, Je Kyung; Lee, Han-Woong

    2010-02-01

    Telomerase maintains telomere structures and chromosome stability, and it is essential for preserving the characteristics of stem and progenitor cells. In the brain, the hippocampus and the olfactory bulbs are continuously supplied with neural stem and progenitor cells that are required for adult neurogenesis throughout the life. Therefore, we examined whether telomerase plays important roles in maintaining normal brain functions in vivo. Telomerase reverse transcriptase (TERT) expression was observed in the hippocampus, the olfactory bulbs, and the cerebellum, but the telomerase RNA component (TERC) was not detected in hippocampus and olfactory bulbs. Interestingly, TERT-deficient mice exhibited significantly altered anxiety-like behaviors and abnormal olfaction measuring the functions of the hippocampus and the olfactory bulbs, respectively. However, the cerebellum-dependent behavior was not changed in these mutant mice. These results suggest that TERT is constitutively expressed in the hippocampus and the olfactory bulbs, and that it is important for regulating normal brain functions. PMID:19685288

  5. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    ERIC Educational Resources Information Center

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  6. Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training.

    PubMed

    Levine, Brian; Schweizer, Tom A; O'Connor, Charlene; Turner, Gary; Gillingham, Susan; Stuss, Donald T; Manly, Tom; Robertson, Ian H

    2011-01-01

    Executive functioning deficits due to brain disease affecting frontal lobe functions cause significant real-life disability, yet solid evidence in support of executive functioning interventions is lacking. Goal Management Training (GMT), an executive functioning intervention that draws upon theories concerning goal processing and sustained attention, has received empirical support in studies of patients with traumatic brain injury, normal aging, and case studies. GMT promotes a mindful approach to complex real-life tasks that pose problems for patients with executive functioning deficits, with a main goal of periodically stopping ongoing behavior to monitor and adjust goals. In this controlled trial, an expanded version of GMT was compared to an alternative intervention, Brain Health Workshop that was matched to GMT on non-specific characteristics that can affect intervention outcome. Participants included 19 individuals in the chronic phase of recovery from brain disease (predominantly stroke) affecting frontal lobe function. Outcome data indicated specific effects of GMT on the Sustained Attention to Response Task as well as the Tower Test, a visuospatial problem-solving measure that reflected far transfer of training effects. There were no significant effects on self-report questionnaires, likely owing to the complexity of these measures in this heterogeneous patient sample. Overall, these data support the efficacy of GMT in the rehabilitation of executive functioning deficits. PMID:21369362

  7. Task-specific brain reorganization in motor recovery induced by a hybrid-rehabilitation combining training with brain stimulation after stroke.

    PubMed

    Koganemaru, Satoko; Sawamoto, Nobukatsu; Aso, Toshihiko; Sagara, Akiko; Ikkaku, Tomoko; Shimada, Kenji; Kanematsu, Madoka; Takahashi, Ryosuke; Domen, Kazuhisa; Fukuyama, Hidenao; Mima, Tatsuya

    2015-03-01

    Recently, we have developed a new hybrid-rehabilitation combining 5Hz repetitive transcranial magnetic stimulation and extensor motor training of the paretic upper-limb for stroke patients with flexor hypertonia. We previously showed that the extensor-specific plastic change in M1 was associated with beneficial effects of our protocol (Koganemaru et al., 2010). Here, we investigated whether extensor-specific multiregional brain reorganization occurred after the hybrid-rehabilitation using functional magnetic resonance imaging. Eleven chronic stroke patients were scanned while performing upper-limb extensor movements. Untrained flexor movements were used as a control condition. The scanning and clinical assessments were done before, immediately and 2 weeks after the hybrid-rehabilitation. As a result, during the trained extensor movements, the imaging analysis showed a significant reduction of brain activity in the ipsilesional sensorimotor cortex, the contralesional cingulate motor cortex and the contralesional premotor cortex in association with functional improvements of the paretic hands. The activation change was not found for the control condition. Our results suggested that use-dependent plasticity induced by repetitive motor training with brain stimulation might be related to task-specific multi-regional brain reorganization. It provides a key to understand why repetitive training of the target action is one of the most powerful rehabilitation strategies to help patients.

  8. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  9. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    PubMed

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  10. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis

    PubMed Central

    Sprecher, Simon G.; Bernardo-Garcia, F. Javier; van Giesen, Lena; Hartenstein, Volker; Reichert, Heinrich; Neves, Ricardo; Bailly, Xavier; Martinez, Pedro; Brauchle, Michael

    2015-01-01

    ABSTRACT The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths. PMID:26581588

  11. Reduction of brain kynurenic acid improves cognitive function.

    PubMed

    Kozak, Rouba; Campbell, Brian M; Strick, Christine A; Horner, Weldon; Hoffmann, William E; Kiss, Tamas; Chapin, Douglas S; McGinnis, Dina; Abbott, Amanda L; Roberts, Brooke M; Fonseca, Kari; Guanowsky, Victor; Young, Damon A; Seymour, Patricia A; Dounay, Amy; Hajos, Mihaly; Williams, Graham V; Castner, Stacy A

    2014-08-01

    The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.

  12. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. PMID:24937013

  13. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    PubMed

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  14. Estimating brain's functional graph from the structural graph's Laplacian

    NASA Astrophysics Data System (ADS)

    Abdelnour, F.; Dayan, M.; Devinsky, O.; Thesen, T.; Raj, A.

    2015-09-01

    The interplay between the brain's function and structure has been of immense interest to the neuroscience and connectomics communities. In this work we develop a simple linear model relating the structural network and the functional network. We propose that the two networks are related by the structural network's Laplacian up to a shift. The model is simple to implement and gives accurate prediction of function's eigenvalues at the subject level and its eigenvectors at group level.

  15. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    PubMed

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered. PMID:18805445

  16. Darwin's evolution theory, brain oscillations, and complex brain function in a new "Cartesian view".

    PubMed

    Başar, Erol; Güntekin, Bahar

    2009-01-01

    Comparatively analyses of electrophysiological correlates across species during evolution, alpha activity during brain maturation, and alpha activity in complex cognitive processes are presented to illustrate a new multidimensional "Cartesian System" brain function. The main features are: (1) The growth of the alpha activity during evolution, increase of alpha during cognitive processes, and decrease of the alpha entropy during evolution provide an indicator for evolution of brain cognitive performance. (2) Human children younger than 3 years are unable to produce higher cognitive processes and do not show alpha activity till the age of 3 years. The mature brain can perform higher cognitive processes and demonstrates regular alpha activity. (3) Alpha activity also is significantly associated with highly complex cognitive processes, such as the recognition of facial expressions. The neural activity reflected by these brain oscillations can be considered as constituent "building blocks" for a great number of functions. An overarching statement on the alpha function is presented by extended analyzes with multiple dimensions that constitute a "Cartesian Hyperspace" as the basis for oscillatory function. Theoretical implications are considered.

  17. The microbiota-gut-brain axis in functional gastrointestinal disorders

    PubMed Central

    De Palma, Giada; Collins, Stephen M; Bercik, Premysl

    2014-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent and pose a significant burden on health care and society, and impact patients’ quality of life. FGIDs comprise a heterogeneous group of disorders, with unclear underlying pathophysiology. They are considered to result from the interaction of altered gut physiology and psychological factors via the gut-brain axis, where brain and gut symptoms are reciprocally influencing each other’s expression. Intestinal microbiota, as a part of the gut-brain axis, plays a central role in FGIDs. Patients with Irritable Bowel Syndrome, a prototype of FGIDs, display altered composition of the gut microbiota compared with healthy controls and benefit, at the gastrointestinal and psychological levels, from the use of probiotics and antibiotics. This review aims to recapitulate the available literature on FGIDs and microbiota-gut-brain axis. PMID:24921926

  18. Hierarchical Organization Unveiled by Functional Connectivity in Complex Brain Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Zemanová, Lucia; Zamora, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

    2006-12-01

    How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.

  19. Functional brain network changes associated with maintenance of cognitive function in multiple sclerosis.

    PubMed

    Helekar, Santosh A; Shin, Jae C; Mattson, Brandi J; Bartley, Krystle; Stosic, Milena; Saldana-King, Toni; Montague, P Read; Hutton, George J

    2010-01-01

    In multiple sclerosis (MS) functional changes in connectivity due to cortical reorganization could lead to cognitive impairment (CI), or reflect a re-adjustment to reduce the clinical effects of widespread tissue damage. Such alterations in connectivity could result in changes in neural activation as assayed by executive function tasks. We examined cognitive function in MS patients with mild to moderate CI and age-matched controls. We evaluated brain activity using functional magnetic resonance imaging (fMRI) during the successful performance of the Wisconsin card sorting (WCS) task by MS patients, showing compensatory maintenance of normal function, as measured by response latency and error rate. To assess changes in functional connectivity throughout the brain, we performed a global functional brain network analysis by computing voxel-by-voxel correlations on the fMRI time series data and carrying out a hierarchical cluster analysis. We found that during the WCS task there is a significant reduction in the number of smaller size brain functional networks, and a change in the brain areas representing the nodes of these networks in MS patients compared to age-matched controls. There is also a concomitant increase in the strength of functional connections between brain loci separated at intermediate-scale distances in these patients. These functional alterations might reflect compensatory neuroplastic reorganization underlying maintenance of relatively normal cognitive function in the face of white matter lesions and cortical atrophy produced by MS.

  20. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  1. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice.

    PubMed

    Izuo, Naotaka; Nojiri, Hidetoshi; Uchiyama, Satoshi; Noda, Yoshihiro; Kawakami, Satoru; Kojima, Shuji; Sasaki, Toru; Shirasawa, Takuji; Shimizu, Takahiko

    2015-01-01

    Oxidative stress is believed to greatly contribute to the pathogenesis of various diseases, including neurodegeneration. Impairment of mitochondrial energy production and increased mitochondrial oxidative damage are considered early pathological events that lead to neurodegeneration. Manganese superoxide dismutase (Mn-SOD, SOD2) is a mitochondrial antioxidant enzyme that converts toxic superoxide to hydrogen peroxide. To investigate the pathological role of mitochondrial oxidative stress in the central nervous system, we generated brain-specific SOD2-deficient mice (B-Sod2(-/-)) using nestin-Cre-loxp system. B-Sod2(-/-) showed perinatal death, along with severe growth retardation. Interestingly, these mice exhibited spongiform neurodegeneration in motor cortex, hippocampus, and brainstem, accompanied by gliosis. In addition, the mutant mice had markedly decreased mitochondrial complex II activity, but not complex I or IV, in the brain based on enzyme histochemistry. Furthermore, brain lipid peroxidation was significantly increased in the B-Sod2(-/-), without any compensatory alterations of the activities of other antioxidative enzymes, such as catalase or glutathione peroxidase. These results suggest that SOD2 protects the neural system from oxidative stress in the perinatal stage and is essential for infant survival and central neural function in mice. PMID:26301039

  2. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice

    PubMed Central

    Izuo, Naotaka; Nojiri, Hidetoshi; Uchiyama, Satoshi; Noda, Yoshihiro; Kawakami, Satoru; Kojima, Shuji; Sasaki, Toru; Shirasawa, Takuji; Shimizu, Takahiko

    2015-01-01

    Oxidative stress is believed to greatly contribute to the pathogenesis of various diseases, including neurodegeneration. Impairment of mitochondrial energy production and increased mitochondrial oxidative damage are considered early pathological events that lead to neurodegeneration. Manganese superoxide dismutase (Mn-SOD, SOD2) is a mitochondrial antioxidant enzyme that converts toxic superoxide to hydrogen peroxide. To investigate the pathological role of mitochondrial oxidative stress in the central nervous system, we generated brain-specific SOD2-deficient mice (B-Sod2−/−) using nestin-Cre-loxp system. B-Sod2−/− showed perinatal death, along with severe growth retardation. Interestingly, these mice exhibited spongiform neurodegeneration in motor cortex, hippocampus, and brainstem, accompanied by gliosis. In addition, the mutant mice had markedly decreased mitochondrial complex II activity, but not complex I or IV, in the brain based on enzyme histochemistry. Furthermore, brain lipid peroxidation was significantly increased in the B-Sod2−/−, without any compensatory alterations of the activities of other antioxidative enzymes, such as catalase or glutathione peroxidase. These results suggest that SOD2 protects the neural system from oxidative stress in the perinatal stage and is essential for infant survival and central neural function in mice. PMID:26301039

  3. Behavioral and pharmacological phenotypes of brain-specific diacylglycerol kinase δ-knockout mice.

    PubMed

    Usuki, Takako; Takato, Tamae; Lu, Qiang; Sakai, Hiromichi; Bando, Kana; Kiyonari, Hiroshi; Sakane, Fumio

    2016-10-01

    Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we reported that the δ isozyme of DGK was abundantly expressed in the mouse brain. However, the functions of DGKδ in the brain are still unclear. Because conventional DGKδ-knockout (KO) mice die within 24h after birth, we have generated brain-specific conditional DGKδ-KO mice to circumvent the lethality. In the novel object recognition test, the number of contacts in the DGKδ-KO mice to novel and familiar objects was greatly increased compared to the control mice, indicating that the DGKδ-KO mice showed irrational contacts with objects such as compulsive checking. In the marble burying test, which is used for analyzing obsessive-compulsive disorder (OCD)-like phenotypes, the DGKδ-KO mice buried more marbles than the control mice. Additionally, these phenotypes were significantly alleviated by the administration of an OCD remedy, fluoxetine. These results indicate that the DGKδ-KO mice showed OCD-like behaviors. Moreover, the number of long axon/neurites increased in both DGKδ-KO primary cortical neurons and DGKδ-knockdown neuroblastoma Neuro-2a cells compared to control cells. Conversely, overexpression of DGKδ decreased the number of long axon/neurites of Neuro-2a cells. Taken together, these results strongly suggest that a deficiency of DGKδ induces OCD-like behavior through enhancing axon/neurite outgrowth. PMID:27423518

  4. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice.

    PubMed

    Izuo, Naotaka; Nojiri, Hidetoshi; Uchiyama, Satoshi; Noda, Yoshihiro; Kawakami, Satoru; Kojima, Shuji; Sasaki, Toru; Shirasawa, Takuji; Shimizu, Takahiko

    2015-01-01

    Oxidative stress is believed to greatly contribute to the pathogenesis of various diseases, including neurodegeneration. Impairment of mitochondrial energy production and increased mitochondrial oxidative damage are considered early pathological events that lead to neurodegeneration. Manganese superoxide dismutase (Mn-SOD, SOD2) is a mitochondrial antioxidant enzyme that converts toxic superoxide to hydrogen peroxide. To investigate the pathological role of mitochondrial oxidative stress in the central nervous system, we generated brain-specific SOD2-deficient mice (B-Sod2(-/-)) using nestin-Cre-loxp system. B-Sod2(-/-) showed perinatal death, along with severe growth retardation. Interestingly, these mice exhibited spongiform neurodegeneration in motor cortex, hippocampus, and brainstem, accompanied by gliosis. In addition, the mutant mice had markedly decreased mitochondrial complex II activity, but not complex I or IV, in the brain based on enzyme histochemistry. Furthermore, brain lipid peroxidation was significantly increased in the B-Sod2(-/-), without any compensatory alterations of the activities of other antioxidative enzymes, such as catalase or glutathione peroxidase. These results suggest that SOD2 protects the neural system from oxidative stress in the perinatal stage and is essential for infant survival and central neural function in mice.

  5. Behavioral and pharmacological phenotypes of brain-specific diacylglycerol kinase δ-knockout mice.

    PubMed

    Usuki, Takako; Takato, Tamae; Lu, Qiang; Sakai, Hiromichi; Bando, Kana; Kiyonari, Hiroshi; Sakane, Fumio

    2016-10-01

    Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we reported that the δ isozyme of DGK was abundantly expressed in the mouse brain. However, the functions of DGKδ in the brain are still unclear. Because conventional DGKδ-knockout (KO) mice die within 24h after birth, we have generated brain-specific conditional DGKδ-KO mice to circumvent the lethality. In the novel object recognition test, the number of contacts in the DGKδ-KO mice to novel and familiar objects was greatly increased compared to the control mice, indicating that the DGKδ-KO mice showed irrational contacts with objects such as compulsive checking. In the marble burying test, which is used for analyzing obsessive-compulsive disorder (OCD)-like phenotypes, the DGKδ-KO mice buried more marbles than the control mice. Additionally, these phenotypes were significantly alleviated by the administration of an OCD remedy, fluoxetine. These results indicate that the DGKδ-KO mice showed OCD-like behaviors. Moreover, the number of long axon/neurites increased in both DGKδ-KO primary cortical neurons and DGKδ-knockdown neuroblastoma Neuro-2a cells compared to control cells. Conversely, overexpression of DGKδ decreased the number of long axon/neurites of Neuro-2a cells. Taken together, these results strongly suggest that a deficiency of DGKδ induces OCD-like behavior through enhancing axon/neurite outgrowth.

  6. Bilingual brain organization: a functional magnetic resonance adaptation study.

    PubMed

    Klein, Denise; Zatorre, Robert J; Chen, Jen-Kai; Milner, Brenda; Crane, Joelle; Belin, Pascal; Bouffard, Marc

    2006-05-15

    We used functional magnetic resonance adaptation (fMRA) to examine whether intra-voxel functional specificity may be present for first (L1)- and second (L2)-language processing. We examined within- and across-language adaptation for spoken words in English-French bilinguals who had acquired their L2 after the age of 4 years. Subjects listened to words presented binaurally through earphones. In two control conditions (one for each language), six identical words were presented to obtain maximal adaptation. The remaining six conditions each consisted of five words that were identical followed by a sixth word that differed. There were thus a total of eight experimental conditions: no-change (sixth word identical to first five); a change in meaning (different final word in L1); a change in language (final item translated into L2); a change in meaning and language (different final word in L2). The same four conditions were presented in L2. The study also included a silent baseline. At the neural level, within- and across-language word changes resulted in release from adaptation. This was true for separate analyses of L1 and L2. We saw no evidence for greater recovery from adaptation in across-language relative to within-language conditions. While many brain regions were common to L1 and L2, we did observe differences in adaptation for forward translation (L1 to L2) as compared to backward translation (L2 to L1). The results support the idea that, at the lexical level, the neural substrates for L1 and L2 in bilinguals are shared, but with some populations of neurons within these shared regions showing language-specific responses.

  7. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  8. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input.

  9. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents

    PubMed Central

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  10. Hyperbaric oxygen therapy improves cognitive functioning after brain injury.

    PubMed

    Liu, Su; Shen, Guangyu; Deng, Shukun; Wang, Xiubin; Wu, Qinfeng; Guo, Aisong

    2013-12-15

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.

  11. Covert brand recognition engages emotion-specific brain networks.

    PubMed

    Casarotto, Silvia; Ricciardi, Emiliano; Romani, Simona; Dalli, Daniele; Pietrini, Pietro

    2012-12-01

    Consumer goods' brands have become a major driver of consumers' choice: they have got symbolic, relational and even social properties that add substantial cultural and affective value to goods and services. Therefore, measuring the role of brands in consumers' cognitive and affective processes would be very helpful to better understand economic decision making. This work aimed at finding the neural correlates of automatic, spontaneous emotional response to brands, showing how deeply integrated are consumption symbols within the cognitive and affective processes of individuals. Functional magnetic resonance imaging (fMRI) was measured during a visual oddball paradigm consisting in the presentation of scrambled pictures as frequent stimuli, colored squares as targets, and brands and emotional pictures (selected from the International Affective Picture System [IAPS]) as emotionally-salient distractors. Affective rating of brands was assessed individually after scanning by a validated questionnaire. Results showed that, similarly to IAPS pictures, brands activated a well-defined emotional network, including amygdala and dorsolateral prefrontal cortex, highly specific of affective valence. In conclusion, this work identified the neural correlates of brands within cognitive and affective processes of consumers.

  12. Effects of Soccer Heading on Brain Structure and Function.

    PubMed

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player's unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6-12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  13. Effects of Soccer Heading on Brain Structure and Function

    PubMed Central

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  14. Functional constraints in the evolution of brain circuits

    PubMed Central

    Bosman, Conrado A.; Aboitiz, Francisco

    2015-01-01

    Regardless of major anatomical and neurodevelopmental differences, the vertebrate isocortex shows a remarkably well-conserved organization. In the isocortex, reciprocal connections between excitatory and inhibitory neurons are distributed across multiple layers, encompassing modular, dynamical and recurrent functional networks during information processing. These dynamical brain networks are often organized in neuronal assemblies interacting through rhythmic phase relationships. Accordingly, these oscillatory interactions are observed across multiple brain scale levels, and they are associated with several sensory, motor, and cognitive processes. Most notably, oscillatory interactions are also found in the complete spectrum of vertebrates. Yet, it is unknown why this functional organization is so well conserved in evolution. In this perspective, we propose some ideas about how functional requirements of the isocortex can account for the evolutionary stability observed in microcircuits across vertebrates. We argue that isocortex architectures represent canonical microcircuits resulting from: (i) the early selection of neuronal architectures based on the oscillatory excitatory-inhibitory balance, which lead to the implementation of compartmentalized oscillations and (ii) the subsequent emergence of inferential coding strategies (predictive coding), which are able to expand computational capacities. We also argue that these functional constraints may be the result of several advantages that oscillatory activity contributes to brain network processes, such as information transmission and code reliability. In this manner, similarities in mesoscale brain circuitry and input-output organization between different vertebrate groups may reflect evolutionary constraints imposed by these functional requirements, which may or may not be traceable to a common ancestor. PMID:26388716

  15. Efficiency and cost of economical brain functional networks.

    PubMed

    Achard, Sophie; Bullmore, Ed

    2007-02-01

    Brain anatomical networks are sparse, complex, and have economical small-world properties. We investigated the efficiency and cost of human brain functional networks measured using functional magnetic resonance imaging (fMRI) in a factorial design: two groups of healthy old (N = 11; mean age = 66.5 years) and healthy young (N = 15; mean age = 24.7 years) volunteers were each scanned twice in a no-task or "resting" state following placebo or a single dose of a dopamine receptor antagonist (sulpiride 400 mg). Functional connectivity between 90 cortical and subcortical regions was estimated by wavelet correlation analysis, in the frequency interval 0.06-0.11 Hz, and thresholded to construct undirected graphs. These brain functional networks were small-world and economical in the sense of providing high global and local efficiency of parallel information processing for low connection cost. Efficiency was reduced disproportionately to cost in older people, and the detrimental effects of age on efficiency were localised to frontal and temporal cortical and subcortical regions. Dopamine antagonism also impaired global and local efficiency of the network, but this effect was differentially localised and did not interact with the effect of age. Brain functional networks have economical small-world properties-supporting efficient parallel information transfer at relatively low cost-which are differently impaired by normal aging and pharmacological blockade of dopamine transmission.

  16. Fluctuations in Neuronal Activity: Clues to Brain Function

    NASA Astrophysics Data System (ADS)

    Pérez Velazquez, José L.; Guevara, Ramón; Belkas, Jason; Wennberg, Richard; Senjanoviè, Goran; García Dominguez, Luis

    2005-08-01

    Recordings from neuronal preparations, either in vitro or in the intact brain, are characterized by fluctuations, what is commonly considered as "noise". Due to the current recording and analysis methods, it is not feasible to separate what we term noise, from the "meaningful" neuronal activity. We propose that fluctuations serve to maintain brain activity in an optimal state for cognitive processing, not allowing it to fall into long-term periodic behaviour. We have studied fluctuations in magnetoencephalographic (MEG) recordings from normal subjects and epileptic patients, in electroencephalographic (EEG) recordings from children with impact injury, as well as in intracerebral electrophysiological recordings in freely moving rats. Specifically, we have determined phase locking patterns between brain areas from these recordings, which display fluctuations at different scales. We submit the idea that the variability in phase synchronization affords a more complete search of all possible phase differences in a hypothetical phase-locking state space that contributes to brain information processing. In brain pathologies, like epileptiform activity here studied, different levels of fluctuations in phase synchrony may favour the generation of stable synchronized states that characterize epileptic seizures. While the border between noise and high-dimensional dynamics is fuzzy, the scrutiny of neuronal fluctuations at different levels will provide important insights to the unravelling of the relation between brain and behaviour.

  17. Brain tumour cells interconnect to a functional and resistant network.

    PubMed

    Osswald, Matthias; Jung, Erik; Sahm, Felix; Solecki, Gergely; Venkataramani, Varun; Blaes, Jonas; Weil, Sophie; Horstmann, Heinz; Wiestler, Benedikt; Syed, Mustafa; Huang, Lulu; Ratliff, Miriam; Karimian Jazi, Kianush; Kurz, Felix T; Schmenger, Torsten; Lemke, Dieter; Gömmel, Miriam; Pauli, Martin; Liao, Yunxiang; Häring, Peter; Pusch, Stefan; Herl, Verena; Steinhäuser, Christian; Krunic, Damir; Jarahian, Mostafa; Miletic, Hrvoje; Berghoff, Anna S; Griesbeck, Oliver; Kalamakis, Georgios; Garaschuk, Olga; Preusser, Matthias; Weiss, Samuel; Liu, Haikun; Heiland, Sabine; Platten, Michael; Huber, Peter E; Kuner, Thomas; von Deimling, Andreas; Wick, Wolfgang; Winkler, Frank

    2015-12-01

    Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.

  18. Structural and functional clusters of complex brain networks

    NASA Astrophysics Data System (ADS)

    Zemanová, Lucia; Zhou, Changsong; Kurths, Jürgen

    2006-12-01

    Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.

  19. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.

  20. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults. PMID:17046669

  1. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration

    PubMed Central

    Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70–71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions. PMID:27333203

  2. Brain structure and executive functions in children with cerebral palsy: a systematic review.

    PubMed

    Weierink, Lonneke; Vermeulen, R Jeroen; Boyd, Roslyn N

    2013-05-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using the STROBE checklist. All articles scored between 58.7% and 70.5% for quality (100% is the maximum score). The included studies all reported poorer performance on EF tasks for children with CP compared to children without CP. For the selected EF measures non-significant effect sizes were found for the CP group compared to a semi-control group (children without cognitive deficits but not included in a control group). This could be due to the small sample sizes, group heterogeneity and lack of comparison of the CP group to typically developing children. The included studies did not consider specific brain areas associated with EF performance. To conclude, there is a paucity of brain imaging studies focused on EF in children with CP, especially of studies that include functional brain imaging. Outcomes of the present studies are difficult to compare as each study included different EF measures and cortical abnormality measures.

  3. Netrin 1 regulates blood-brain barrier function and neuroinflammation.

    PubMed

    Podjaski, Cornelia; Alvarez, Jorge I; Bourbonniere, Lyne; Larouche, Sandra; Terouz, Simone; Bin, Jenea M; Lécuyer, Marc-André; Saint-Laurent, Olivia; Larochelle, Catherine; Darlington, Peter J; Arbour, Nathalie; Antel, Jack P; Kennedy, Timothy E; Prat, Alexandre

    2015-06-01

    Blood-brain barrier function is driven by the influence of astrocyte-secreted factors. During neuroinflammatory responses the blood-brain barrier is compromised resulting in central nervous system damage and exacerbated pathology. Here, we identified endothelial netrin 1 induction as a vascular response to astrocyte-derived sonic hedgehog that promotes autocrine barrier properties during homeostasis and increases with inflammation. Netrin 1 supports blood-brain barrier integrity by upregulating endothelial junctional protein expression, while netrin 1 knockout mice display disorganized tight junction protein expression and barrier breakdown. Upon inflammatory conditions, blood-brain barrier endothelial cells significantly upregulated netrin 1 levels in vitro and in situ, which prevented junctional breach and endothelial cell activation. Finally, netrin 1 treatment during experimental autoimmune encephalomyelitis significantly reduced blood-brain barrier disruption and decreased clinical and pathological indices of disease severity. Our results demonstrate that netrin 1 is an important regulator of blood-brain barrier maintenance that protects the central nervous system against inflammatory conditions such as multiple sclerosis and experimental autoimmune encephalomyelitis.

  4. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss.

    PubMed

    Xu, Haibo; Fan, Wenliang; Zhao, Xueyan; Li, Jing; Zhang, Wenjuan; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong

    2016-05-01

    Sudden sensorineural hearing loss (SSNHL) is generally defined as sensorineural hearing loss of 30 dB or greater over at least three contiguous audiometric frequencies and within a three-day period. This hearing loss is usually unilateral and can be associated with tinnitus and vertigo. The pathogenesis of unilateral sudden sensorineural hearing loss is still unknown, and the alterations in the functional connectivity are suspected to involve one possible pathogenesis. Despite scarce findings with respect to alterations in brain functional networks in unilateral sudden sensorineural hearing loss, the alterations of the whole brain functional connectome and whether these alterations were already in existence in the acute period remains unknown. The aim of this study was to investigate the alterations of brain functional connectome in two large samples of unilateral sudden sensorineural hearing loss patients and to investigate the correlation between unilateral sudden sensorineural hearing loss characteristics and changes in the functional network properties. Pure tone audiometry was performed to assess hearing ability. Abnormal changes in the peripheral auditory system were examined using conventional magnetic resonance imaging. The graph theoretical network analysis method was used to detect brain connectome alterations in unilateral sudden sensorineural hearing loss. Compared with the control groups, both groups of unilateral SSNHL patients exhibited a significantly increased clustering coefficient, global efficiency, and local efficiency but a significantly decreased characteristic path length. In addition, the primary increased nodal strength (e.g., nodal betweenness, hubs) was observed in several regions primarily, including the limbic and paralimbic systems, and in the auditory network brain areas. These findings suggest that the alteration of network organization already exists in unilateral sudden sensorineural hearing loss patients within the acute period

  5. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss.

    PubMed

    Xu, Haibo; Fan, Wenliang; Zhao, Xueyan; Li, Jing; Zhang, Wenjuan; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong

    2016-05-01

    Sudden sensorineural hearing loss (SSNHL) is generally defined as sensorineural hearing loss of 30 dB or greater over at least three contiguous audiometric frequencies and within a three-day period. This hearing loss is usually unilateral and can be associated with tinnitus and vertigo. The pathogenesis of unilateral sudden sensorineural hearing loss is still unknown, and the alterations in the functional connectivity are suspected to involve one possible pathogenesis. Despite scarce findings with respect to alterations in brain functional networks in unilateral sudden sensorineural hearing loss, the alterations of the whole brain functional connectome and whether these alterations were already in existence in the acute period remains unknown. The aim of this study was to investigate the alterations of brain functional connectome in two large samples of unilateral sudden sensorineural hearing loss patients and to investigate the correlation between unilateral sudden sensorineural hearing loss characteristics and changes in the functional network properties. Pure tone audiometry was performed to assess hearing ability. Abnormal changes in the peripheral auditory system were examined using conventional magnetic resonance imaging. The graph theoretical network analysis method was used to detect brain connectome alterations in unilateral sudden sensorineural hearing loss. Compared with the control groups, both groups of unilateral SSNHL patients exhibited a significantly increased clustering coefficient, global efficiency, and local efficiency but a significantly decreased characteristic path length. In addition, the primary increased nodal strength (e.g., nodal betweenness, hubs) was observed in several regions primarily, including the limbic and paralimbic systems, and in the auditory network brain areas. These findings suggest that the alteration of network organization already exists in unilateral sudden sensorineural hearing loss patients within the acute period

  6. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions. PMID:27539656

  7. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions.

  8. Aberrant functional brain connectome in people with antisocial personality disorder.

    PubMed

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016-0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD.

  9. Aberrant functional brain connectome in people with antisocial personality disorder

    PubMed Central

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016–0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  10. Aberrant functional brain connectome in people with antisocial personality disorder.

    PubMed

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016-0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  11. Structural and functional rich club organization of the brain in children and adults.

    PubMed

    Grayson, David S; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G Costa; Stevens, Corinne; Nigg, Joel T; Fair, Damien A

    2014-01-01

    Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.

  12. Structural and Functional Plasticity in the Maternal Brain Circuitry

    ERIC Educational Resources Information Center

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  13. Brain Functioning: Implications for Curriculum and Instruction in Industrial Arts.

    ERIC Educational Resources Information Center

    Bame, E. Allen; Gatewood, Thomas E.

    1983-01-01

    Following a review of research on hemispheric brain functioning, the authors discuss six program characteristics that can make industrial arts more responsive to the needs of junior high/middle school students: experiential, self-concept clarification, community orientation, interdisciplinary, exploratory, and responsive. (SK)

  14. The nicotinic cholinergic system function in the human brain.

    PubMed

    Nees, Frauke

    2015-09-01

    Research on the nicotinic cholinergic system function in the brain was previously mainly derived from animal studies, yet, research in humans is growing. Up to date, findings allow significant advances on the understanding of nicotinic cholinergic effects on human cognition, emotion and behavior using a range of functional brain imaging approaches such as pharmacological functional magnetic resonance imaging or positron emission tomography. Studies provided insights across various mechanistic psychological domains using different tasks as well as at rest in both healthy individuals and patient populations, with so far partly mixed results reporting both enhancements and decrements of neural activity related to the nicotinic cholinergic system. Moreover, studies on the relation between brain structure and the nicotinic cholinergic system add important information in this context. The present review summarizes the current status of human brain imaging studies and presents the findings within a theoretical and clinical perspective as they may be useful not only for an advancement of the understanding of basic nicotinic cholinergic-related mechanisms, but also for the development and integration of psychological and pharmacological treatment approaches. Patterns of functional neuroanatomy and neural circuitry across various cognitive and emotional domains may be used as neuropsychological markers of mental disorders such as addiction, Alzheimer's disease, Parkinson disease or schizophrenia, where nicotinic cholinergic system changes are characteristic. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  15. "Hotheaded": the role OF TRPV1 in brain functions.

    PubMed

    Martins, D; Tavares, I; Morgado, C

    2014-10-01

    The TRPV1 (vanilloid 1) channel is best known for its role in sensory transmission in the nociceptive neurons of the peripheral nervous system. Although first studied in the dorsal root ganglia as the receptor for capsaicin, TRPV1 has been recently recognized to have a broader distribution in the central nervous system, where it is likely to constitute an atypical neurotransmission system involved in several functions through modulation of both neuronal and glial activities. The endovanilloid-activated brain TRPV1 channels seem to be involved in somatosensory, motor and visceral functions. Recent studies suggested that TRPV1 channels also account for more complex functions, as addiction, anxiety, mood and cognition/learning. However, more studies are needed before the relevance of TRPV1 in brain activity can be clearly stated. This review highlights the increasing importance of TRPV1 as a regulator of brain function and discusses possible bases for the future development of new therapeutic approaches that by targeting brain TRPV1 receptors might be used for the treatment of several neurological disorders.

  16. Functional craniology and brain evolution: from paleontology to biomedicine

    PubMed Central

    Bruner, Emiliano; de la Cuétara, José Manuel; Masters, Michael; Amano, Hideki; Ogihara, Naomichi

    2014-01-01

    Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawbacks associated with the evolution of large brains. The study of the spatial relationships between skull and brain in the human genus has direct relevance in cranial surgery. Geometrical modeling can provide functional perspectives in evolution and brain physiology, like in simulations to investigate metabolic heat production and dissipation in the endocranial form. Analysis of the evolutionary constraints between facial and neural blocks can provide new information on visual impairment. The study of brain form variation in fossil humans can supply a different perspective for interpreting the processes behind neurodegeneration and Alzheimer’s disease. Following these examples, it is apparent that paleontology and biomedicine can exchange relevant information and contribute at the same time to the development of robust evolutionary hypotheses on brain evolution, while offering more comprehensive biological perspectives with regard to the interpretation of pathological processes. PMID:24765064

  17. Functional craniology and brain evolution: from paleontology to biomedicine.

    PubMed

    Bruner, Emiliano; de la Cuétara, José Manuel; Masters, Michael; Amano, Hideki; Ogihara, Naomichi

    2014-01-01

    Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawbacks associated with the evolution of large brains. The study of the spatial relationships between skull and brain in the human genus has direct relevance in cranial surgery. Geometrical modeling can provide functional perspectives in evolution and brain physiology, like in simulations to investigate metabolic heat production and dissipation in the endocranial form. Analysis of the evolutionary constraints between facial and neural blocks can provide new information on visual impairment. The study of brain form variation in fossil humans can supply a different perspective for interpreting the processes behind neurodegeneration and Alzheimer's disease. Following these examples, it is apparent that paleontology and biomedicine can exchange relevant information and contribute at the same time to the development of robust evolutionary hypotheses on brain evolution, while offering more comprehensive biological perspectives with regard to the interpretation of pathological processes.

  18. Memory Function Before and After Whole Brain Radiotherapy in Patients With and Without Brain Metastases

    SciTech Connect

    Welzel, Grit Fleckenstein, Katharina; Schaefer, Joerg; Hermann, Brigitte; Kraus-Tiefenbacher, Uta; Mai, Sabine K.; Wenz, Frederik

    2008-12-01

    Purpose: To prospectively compare the effect of prophylactic and therapeutic whole brain radiotherapy (WBRT) on memory function in patients with and without brain metastases. Methods and Materials: Adult patients with and without brain metastases (n = 44) were prospectively evaluated with serial cognitive testing, before RT (T0), after starting RT (T1), at the end of RT (T2), and 6-8 weeks (T3) after RT completion. Data were obtained from small-cell lung cancer patients treated with prophylactic cranial irradiation, patients with brain metastases treated with therapeutic cranial irradiation (TCI), and breast cancer patients treated with RT to the breast. Results: Before therapy, prophylactic cranial irradiation patients performed worse than TCI patients or than controls on most test scores. During and after WBRT, verbal memory function was influenced by pretreatment cognitive status (p < 0.001) and to a lesser extent by WBRT. Acute (T1) radiation effects on verbal memory function were only observed in TCI patients (p = 0.031). Subacute (T3) radiation effects on verbal memory function were observed in both TCI and prophylactic cranial irradiation patients (p = 0.006). These effects were more pronounced in patients with above-average performance at baseline. Visual memory and attention were not influenced by WBRT. Conclusions: The results of our study have shown that WBRT causes cognitive dysfunction immediately after the beginning of RT in patients with brain metastases only. At 6-8 weeks after the end of WBRT, cognitive dysfunction was seen in patients with and without brain metastases. Because cognitive dysfunction after WBRT is restricted to verbal memory, patients should not avoid WBRT because of a fear of neurocognitive side effects.

  19. Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain.

    PubMed Central

    Stamm, S; Casper, D; Lees-Miller, J P; Helfman, D M

    1993-01-01

    In this study we report on the developmental and regional expression of two brain-specific isoforms of tropomyosin, TMBr-1 and TMBr-3, that are generated from the rat alpha-tropomyosin gene via the use of alternative promoters and alternative RNA splicing. Western blot analysis using an exon-specific peptide polyclonal antibody revealed that the two isoforms are differentially expressed in development with TMBr-3 appearing in the embryonic brain at 16 days of gestation, followed by the expression of TMBr-1 at 20 days after birth. TMBr-3 was detected in all brain regions examined, whereas TMBr-1 was detected predominantly in brain areas that derived from the prosencephalon. Immunocytochemical studies on mixed primary cultures made from rat embryonic midbrain indicate that expression of the brain-specific epitope is restricted to neurons. The developmental pattern and neuronal localization of these forms of tropomyosin suggest that these isoforms have a specialized role in the development and plasticity of the nervous system. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7694294

  20. The Functional Connectivity Landscape of the Human Brain

    PubMed Central

    Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

    2014-01-01

    Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

  1. DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles

    PubMed Central

    Evans, S.J.; Choudary, P.V.; Vawter, M.P.; Li, J.; Meador-Woodruff, J.H.; Lopez, J.F.; Burke, S.M.; Thompson, R.C.; Myers, R.M.; Jones, E.G.; Bunney, W.E.; Watson, S.J.; Akil, H.

    2010-01-01

    Transcriptional profiles within discrete human brain regions are likely to reflect structural and functional specialization. Using DNA microarray technology, this study investigates differences in transcriptional profiles of highly divergent brain regions (the cerebellar cortex and the cerebral cortex) as well as differences between two closely related brain structures (the anterior cingulate cortex and the dorsolateral prefrontal cortex). Replication of this study across three independent laboratories, to address false-positive and false-negative results using microarray technology, is also discussed. We find greater than a thousand transcripts to be differentially expressed between cerebellum and cerebral cortex and very few transcripts to be differentially expressed between the two neocortical regions. We further characterized transcripts that were found to be specifically expressed within brain regions being compared and found that ontological classes representing signal transduction machinery, neurogenesis, synaptic transmission, and transcription factors were most highly represented. PMID:14572446

  2. Experience induces functional reorganization in brain regions involved in odor imagery in perfumers.

    PubMed

    Plailly, Jane; Delon-Martin, Chantal; Royet, Jean-Pierre

    2012-01-01

    Areas of expertise that cultivate specific sensory domains reveal the brain's ability to adapt to environmental change. Perfumers are a small population who claim to have a unique ability to generate olfactory mental images. To evaluate the impact of this expertise on the brain regions involved in odor processing, we measured brain activity in novice and experienced (student and professional) perfumers while they smelled or imagined odors. We demonstrate that olfactory imagery activates the primary olfactory (piriform) cortex (PC) in all perfumers, demonstrating that similar neural substrates were activated in odor perception and imagination. In professional perfumers, extensive olfactory practice influences the posterior PC, the orbitofrontal cortex, and the hippocampus; during the creation of mental images of odors, the activity in these areas was negatively correlated with experience. Thus, the perfumers' expertise is associated with a functional reorganization of key olfactory and memory brain regions, explaining their extraordinary ability to imagine odors and create fragrances.

  3. Pregnancy reduces brain sigma receptor function

    PubMed Central

    Bergeron, Richard; de Montigny, Claude; Debonnel, Guy

    1999-01-01

    Sigma (σ) receptors have recently been cloned, though their endogenous ligand(s) remain unidentified. However, some neuroactive steroids, such as progesterone, have a high affinity for these receptors. Some σ ligands, such as DTG, (+)-pentazocine and DHEA, act as σ ‘agonists' by potentiating the neuronal response to NMDA. Others, such as haloperidol, NE-100 and progesterone, act as σ ‘antagonists' by reversing the potentiations induced by σ ‘agonists'.We compared the effects of σ ‘agonists' in four series of female rats: in controls, at day 18 of pregnancy, at day 5 post-partum, and in ovariectomized rats following a 3-week treatment with a high dose of progesterone.In pregnant rats and following a 3-week treatment with progesterone, 10 fold higher doses of DTG, (+)-pentazocine and DHEA were required to elicit a selective potentiation of the NMDA response comparable to that obtained in control females. Conversely, at day 5 post-partum and following the 3-week treatment with a progesterone and after a 5-day washout, the potentiation of the NMDA response induced by the σ ‘agonist' DTG was greater than in control females.The present data suggest that endogenous progesterone acts as an ‘antagonist' at σ receptors. The resulting changes in the function of σ receptors during pregnancy and post-partum may be implicated in emotional phenomena occurring during these periods. PMID:10482906

  4. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.

    PubMed

    Mechling, Anna E; Hübner, Neele S; Lee, Hsu-Lei; Hennig, Jürgen; von Elverfeldt, Dominik; Harsan, Laura-Adela

    2014-08-01

    Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC.

  5. Human brain somatic representation: a functional magnetic resonance mapping

    NASA Astrophysics Data System (ADS)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  6. Complex function in the dynamic brain. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Anderson, Michael L.

    2014-09-01

    There is much to commend in this excellent overview of the progress we've made toward-and the challenges that remain for-developing an empirical framework for neuroscience that is adequate to the dynamic complexity of the brain [17]. Here I will limit myself first to highlighting the concept of dynamic affiliation, which I take to be the central feature of the functional architecture of the brain, and second to clarifying Pessoa's brief discussion of the ontology of cognition, to be sure readers appreciate this crucial issue.

  7. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    ERIC Educational Resources Information Center

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  8. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation

    PubMed Central

    Duffau, H; Capelle, L; Denvil, D; Sichez, N; Gatignol, P; Lopes, M; Mitchell, M; Sichez, J; Van Effenterre, R

    2003-01-01

    Objectives: To describe functional recovery after surgical resection of low grade gliomas (LGG) in eloquent brain areas, and discuss the mechanisms of compensation. Methods: Seventy-seven right-handed patients without deficit were operated on for a LGG invading primary and/or secondary sensorimotor and/or language areas, as shown anatomically by pre-operative MRI and intraoperatively by electrical brain stimulation and cortico-subcortical mapping. Results: Tumours involved 31 supplementary motor areas, 28 insulas, 8 primary somatosensory areas, 4 primary motor areas, 4 Broca's areas, and 2 left temporal language areas. All patients had immediate post-operative deficits. Recovery occurred within 3 months in all except four cases (definitive morbidity: 5%). Ninety-two percent of the lesions were either totally or extensively resected on post-operative MRI. Conclusions: These findings suggest that spatio-temporal functional re-organisation is possible in peritumoural brain, and that the process is dynamic. The recruitment of compensatory areas with long term perilesional functional reshaping would explain why: before surgery, there is no clinical deficit despite the tumour growth in eloquent regions; immediately after surgery, the occurrence of a deficit, which could be due to the resection of invaded areas participating (but not essential) to the function; and why three months after surgery, almost complete recovery had occurred. This brain plasticity, which decreases the long term risk of surgical morbidity, may be used to extend the limits of surgery in eloquent areas. PMID:12810776

  9. Tesmilifene modifies brain endothelial functions and opens the blood-brain/blood-glioma barrier.

    PubMed

    Walter, Fruzsina R; Veszelka, Szilvia; Pásztói, Mária; Péterfi, Zoltán A; Tóth, András; Rákhely, Gábor; Cervenak, László; Ábrahám, Csongor S; Deli, Mária A

    2015-09-01

    Tesmilifene, a tamoxifen analog with antihistamine action, has chemopotentiating properties in experimental and clinical cancer studies. In our previous works, tesmilifene increased the permeability of the blood-brain barrier (BBB) in animal and culture models. Our aim was to investigate the effects of tesmilifene on brain microvessel permeability in the rat RG2 glioma model and to reveal its mode of action in brain endothelial cells. Tesmilifene significantly increased fluorescein extravasation in the glioma. Short-term treatment with tesmilifene reduced the resistance and increased the permeability for marker molecules in a rat triple co-culture BBB model. Tesmilifene also affected the barrier integrity in brain endothelial cells co-cultured with RG2 glioblastoma cells. Tesmilifene inhibited the activity of P-glycoprotein and multidrug resistance-associated protein-1 efflux pumps and down-regulated the mRNA expression of tight junction proteins, efflux pumps, solute carriers, and metabolic enzymes important for BBB functions. Among the possible signaling pathways that regulate BBB permeability, tesmilifene activated the early nuclear translocation of NFκB. The MAPK/ERK and PI3K/Akt kinase pathways were also involved. We demonstrate for the first time that tesmilifene increases permeability marker molecule extravasation in glioma and inhibits efflux pump activity in brain endothelial cells, which may have therapeutic relevance. Tesmilifene, a chemopotentiator in experimental and clinical cancer studies increases vascular permeability in RG2 glioma in rats and permeability for marker molecules in a culture model of the blood-brain barrier. Tesmilifene inhibits the activity of efflux pumps and down-regulates the mRNA expression of tight junction proteins, transporters, and metabolic enzymes important for the blood-brain barrier functions, which may have therapeutic relevance.

  10. Effects of exercise on brain functions in diabetic animal models

    PubMed Central

    Yi, Sun Shin

    2015-01-01

    Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM. PMID:25987956

  11. Effects of exercise on brain functions in diabetic animal models.

    PubMed

    Yi, Sun Shin

    2015-05-15

    Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM.

  12. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    PubMed

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  13. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    PubMed Central

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  14. Language-specific memory traces of consonants in the brain.

    PubMed

    Shafer, Valerie L; Schwartz, Richard G; Kurtzberg, Diane

    2004-02-01

    This study examined whether experience with a native language affected processing of a place-of-articulation feature. In Experiment 1, 10 stimuli from a continuum of synthesized Hindi bilabial, dental and retroflexed stops were presented to English and Hindi speakers to examine discrimination and identification across the bilabial/dental and dental/retroflexed boundaries. In an oddball task designed to elicit mismatch negativity (MMN), subjects ignored these stimuli while their brain activity was recorded. All participants showed similar behavioral discrimination and identification. However, the English subjects were slower that the Hindi subjects on the discrimination task. All subjects were less accurate and slower at identifying and discriminating the dental and retroflexed compared to the bilabial sounds. A small MMN was observed for some of the bilabial-dental contrasts, but not for the dental-retroflexed contrasts. No group differences were found. In Experiment 2, MMN was observed to a greater stimulus difference (bilabial-retroflexed) and was earlier when the bilabial rather than the retroflexed sound served as the frequent stimulus for both groups. The MMN was also earlier for the Hindi than the English groups when the retroflexed sound served as the frequent stimulus. These results indicate that the Hindi speakers used detailed acoustic-phonetic information for more rapid brain discrimination than the English participants and that the dental-retroflexed discrimination is more difficult than the bilabial-dental discrimination for all speakers.

  15. Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration.

    PubMed

    Vermunt, Marit W; Creyghton, Menno P

    2016-10-01

    Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease.

  16. Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration.

    PubMed

    Vermunt, Marit W; Creyghton, Menno P

    2016-10-01

    Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease. PMID:27628759

  17. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  18. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    PubMed

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  19. Functional specificity of rat vibrissal primary afferents.

    PubMed

    Lucianna, Facundo A; Farfán, Fernando D; Pizá, Gabriel A; Albarracín, Ana L; Felice, Carmelo J

    2016-06-01

    In this study, we propose to analyze the peripheral vibrissal system specificity through its neuronal responses. Receiver operating characteristics (ROC) curve analyses were used, which required the implementation of a binary classifier (artificial neural network) trained to identify the applied stimulus. The training phase consisted of the observation of a predetermined amount of vibrissal sweeps on two surfaces of different texture and similar roughness. Our results suggest that the specificity of the peripheral vibrissal system easily permits the discrimination between perceived stimuli, quantified through neuronal responses, and that it can be evaluated through an ROC curve analysis. We found that such specificity makes a linear binary classifier capable of detecting differences between stimuli with five sweeps at most.

  20. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    PubMed Central

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  1. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    PubMed

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  2. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    PubMed

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  3. Impact of fatty acids on brain circulation, structure and function.

    PubMed

    Haast, Roy A M; Kiliaan, Amanda J

    2015-01-01

    The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (ω3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of brain health is increasingly endorsed across epidemiological and diet-interventional studies. Promising results are found regarding to the protection of proper brain circulation, structure and functionality in healthy and diseased humans and animal models. These include enhanced cerebral blood flow (CBF), white and gray matter integrity, and improved cognitive functioning, and are possibly mediated through increased neurovascular coupling, neuroprotection and neuronal plasticity, respectively. Contrary, studies investigating diets high in saturated fats provide opposite results, which may eventually lead to irreversible damage. Studies like these are of great importance given the high incidence of obesity caused by the increased and decreased consumption of respectively saturated fats and ω3-LCPUFAs in the Western civilization. This paper will review in vivo research conducted on the effects of ω3-LCPUFAs and saturated fatty acids on integrity (circulation, structure and function) of the young, aging and diseased brain.

  4. A review on functional and structural brain connectivity in numerical cognition

    PubMed Central

    Moeller, Korbinian; Willmes, Klaus; Klein, Elise

    2015-01-01

    Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075

  5. A review on functional and structural brain connectivity in numerical cognition.

    PubMed

    Moeller, Korbinian; Willmes, Klaus; Klein, Elise

    2015-01-01

    Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075

  6. GSK3 Function in the Brain during Development, Neuronal Plasticity, and Neurodegeneration

    PubMed Central

    Salcedo-Tello, Pamela; Ortiz-Matamoros, Abril; Arias, Clorinda

    2011-01-01

    GSK3 has diverse functions, including an important role in brain pathology. In this paper, we address the primary functions of GSK3 in development and neuroplasticity, which appear to be interrelated and to mediate age-associated neurological diseases. Specifically, GSK3 plays a pivotal role in controlling neuronal progenitor proliferation and establishment of neuronal polarity during development, and the upstream and downstream signals modulating neuronal GSK3 function affect cytoskeletal reorganization and neuroplasticity throughout the lifespan. Modulation of GSK3 in brain areas subserving cognitive function has become a major focus for treating neuropsychiatric and neurodegenerative diseases. As a crucial node that mediates a variety of neuronal processes, GSK3 is proposed to be a therapeutic target for restoration of synaptic functioning and cognition, particularly in Alzheimer's disease. PMID:21660241

  7. Partial sleep in the context of augmentation of brain function

    PubMed Central

    Pigarev, Ivan N.; Pigareva, Marina L.

    2014-01-01

    Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all “computational power” of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the “intellectual power” and the restorative function of sleep for visceral organs. PMID

  8. Birth Size and Brain Function 75 Years Later

    PubMed Central

    Muller, Majon; Sigurdsson, Sigurdur; Kjartansson, Olafur; Jonsson, Palmi V.; Garcia, Melissa; von Bonsdorff, Mikaela B.; Gunnarsdottir, Ingibjorg; Thorsdottir, Inga; Harris, Tamara B.; van Buchem, Mark; Gudnason, Vilmundur

    2014-01-01

    BACKGROUND: There are several lines of evidence pointing to fetal and other early origins of diseases of the aging brain, but there are no data directly addressing the hypotheses in an older population. We investigated the association of fetal size to late-age measures of brain structure and function in a large cohort of older men and women and explored the modifying effect of education on these associations. METHODS: Within the AGES (Age Gene/Environment Susceptibility)-Reykjavik population-based cohort (born between 1907 and 1935), archived birth records were abstracted for 1254 men and women who ∼75 years later underwent an examination that included brain MRI and extensive cognitive assessment. RESULTS: Adjustment for intracranial volume, demographic and medical history characteristics, and lower Ponderal index at birth (per kg/m3), an indicator of third-trimester fetal wasting, was significantly associated with smaller volumes of total brain and white matter; βs (95% confidence intervals) were −1.0 (−1.9 to −0.0) and −0.5 (−1.0 to −0.0) mL. Furthermore, lower Ponderal index was associated with slower processing speed and reduced executive functioning but only in those with low education (β [95% confidence interval]: −0.136 [−0.235 to −0.036] and −0.077 [−0.153 to −0.001]). CONCLUSIONS: This first study of its kind provides clinical measures suggesting that smaller birth size, as an indicator of a suboptimal intrauterine environment, is associated with late-life alterations in brain tissue volume and function. In addition, it shows that the effects of a suboptimal intrauterine environment on late-life cognitive function were present only in those with lower educational levels. PMID:25180277

  9. Two distinct forms of functional lateralization in the human brain.

    PubMed

    Gotts, Stephen J; Jo, Hang Joon; Wallace, Gregory L; Saad, Ziad S; Cox, Robert W; Martin, Alex

    2013-09-01

    The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability.

  10. Exercise-mimetic AICAR transiently benefits brain function.

    PubMed

    Guerrieri, Davide; van Praag, Henriette

    2015-07-30

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function. PMID:26286955

  11. Exercise-mimetic AICAR transiently benefits brain function.

    PubMed

    Guerrieri, Davide; van Praag, Henriette

    2015-07-30

    Exercise enhances learning and memory in animals and humans. The role of peripheral factors that may trigger the beneficial effects of running on brain function has been sparsely examined. In particular, it is unknown whether AMP-kinase (AMPK) activation in muscle can predict enhancement of brain plasticity. Here we compare the effects of running and administration of AMPK agonist 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 500 mg/kg), for 3, 7 or 14 days in one-month-old male C57BL/6J mice, on muscle AMPK signaling. At the time-points where we observed equivalent running- and AICAR-induced muscle pAMPK levels (7 and 14 days), cell proliferation, synaptic plasticity and gene expression, as well as markers of oxidative stress and inflammation in the dentate gyrus (DG) of the hippocampus and lateral entorhinal cortex (LEC) were evaluated. At the 7-day time-point, both regimens increased new DG cell number and brain-derived neurotrophic factor (BDNF) protein levels. Furthermore, microarray analysis of DG and LEC tissue showed a remarkable overlap between running and AICAR in the regulation of neuronal, mitochondrial and metabolism related gene classes. Interestingly, while similar outcomes for both treatments were stable over time in muscle, in the brain an inversion occurred at fourteen days. The compound no longer increased DG cell proliferation or neurotrophin levels, and upregulated expression of apoptotic genes and inflammatory cytokine interleukin-1β. Thus, an exercise mimetic that produces changes in muscle consistent with those of exercise does not have the same sustainable positive effects on the brain, indicating that only running consistently benefits brain function.

  12. Functional Brain Network Classification With Compact Representation of SICE Matrices.

    PubMed

    Zhang, Jianjia; Zhou, Luping; Wang, Lei; Li, Wanqing

    2015-06-01

    Recently, a sparse inverse covariance estimation (SICE) technique has been employed to model functional brain connectivity. The inverse covariance matrix (SICE matrix in short) estimated for each subject is used as a representation of brain connectivity to discriminate Alzheimers disease from normal controls. However, we observed that direct use of the SICE matrix does not necessarily give satisfying discrimination, due to its high dimensionality and the scarcity of training subjects. Looking into this problem, we argue that the intrinsic dimensionality of these SICE matrices shall be much lower, considering 1) an SICE matrix resides on a Riemannian manifold of symmetric positive definiteness matrices, and 2) human brains share common patterns of connectivity across subjects. Therefore, we propose to employ manifold-based similarity measures and kernel-based PCA to extract principal connectivity components as a compact representation of brain network. Moreover, to cater for the requirement of both discrimination and interpretation in neuroimage analysis, we develop a novel preimage estimation algorithm to make the obtained connectivity components anatomically interpretable. To verify the efficacy of our method and gain insights into SICE-based brain networks, we conduct extensive experimental study on synthetic data and real rs-fMRI data from the ADNI dataset. Our method outperforms the comparable methods and improves the classification accuracy significantly.

  13. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents.

    PubMed

    Moseley, R L; Ypma, R J F; Holt, R J; Floris, D; Chura, L R; Spencer, M D; Baron-Cohen, S; Suckling, J; Bullmore, E; Rubinov, M

    2015-01-01

    Endophenotypes are heritable and quantifiable markers that may assist in the identification of the complex genetic underpinnings of psychiatric conditions. Here we examined global hypoconnectivity as an endophenotype of autism spectrum conditions (ASCs). We studied well-matched groups of adolescent males with autism, genetically-related siblings of individuals with autism, and typically-developing control participants. We parcellated the brain into 258 regions and used complex-network analysis to detect a robust hypoconnectivity endophenotype in our participant group. We observed that whole-brain functional connectivity was highest in controls, intermediate in siblings, and lowest in ASC, in task and rest conditions. We identified additional, local endophenotype effects in specific networks including the visual processing and default mode networks. Our analyses are the first to show that whole-brain functional hypoconnectivity is an endophenotype of autism in adolescence, and may thus underlie the heritable similarities seen in adolescents with ASC and their relatives. PMID:26413477

  14. Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents

    PubMed Central

    Moseley, R.L.; Ypma, R.J.F.; Holt, R.J.; Floris, D.; Chura, L.R.; Spencer, M.D.; Baron-Cohen, S.; Suckling, J.; Bullmore, E.; Rubinov, M.

    2015-01-01

    Endophenotypes are heritable and quantifiable markers that may assist in the identification of the complex genetic underpinnings of psychiatric conditions. Here we examined global hypoconnectivity as an endophenotype of autism spectrum conditions (ASCs). We studied well-matched groups of adolescent males with autism, genetically-related siblings of individuals with autism, and typically-developing control participants. We parcellated the brain into 258 regions and used complex-network analysis to detect a robust hypoconnectivity endophenotype in our participant group. We observed that whole-brain functional connectivity was highest in controls, intermediate in siblings, and lowest in ASC, in task and rest conditions. We identified additional, local endophenotype effects in specific networks including the visual processing and default mode networks. Our analyses are the first to show that whole-brain functional hypoconnectivity is an endophenotype of autism in adolescence, and may thus underlie the heritable similarities seen in adolescents with ASC and their relatives. PMID:26413477

  15. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    PubMed

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks. PMID:26956115

  16. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function.

    PubMed

    Leisman, Gerry; Moustafa, Ahmed A; Shafir, Tal

    2016-01-01

    In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937

  17. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function

    PubMed Central

    Leisman, Gerry; Moustafa, Ahmed A.; Shafir, Tal

    2016-01-01

    In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937

  18. Sleep Restriction Impairs Blood–Brain Barrier Function

    PubMed Central

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J.; Wang, Yuping

    2014-01-01

    The blood–brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice. PMID:25355222

  19. Recruiting specialized macrophages across the borders to restore brain functions

    PubMed Central

    Corraliza, Inés

    2014-01-01

    Although is well accepted that the central nervous system has an immune privilege protected by the blood–brain barrier (BBB) and maintained by the glia, it is also known that in homeostatic conditions, peripheral immune cells are able to penetrate to the deepest regions of brain without altering the structural integrity of the BBB. Nearly all neurological diseases, including degenerative, autoimmune or infectious ones, compromising brain functions, develop with a common pattern of inflammation in which macrophages and microglia activation have been regarded often as the “bad guys.” However, recognizing the huge heterogeneity of macrophage populations and also the different expression properties of microglia, there is increasing evidence of alternative conditions in which these cells, if primed and addressed in the correct direction, could be essential for reparative and regenerative functions. The main proposal of this review is to integrate studies about macrophage’s biology at the brain borders where the ultimate challenge is to penetrate through the BBB and contribute to change or even stop the course of disease. Thanks to the efforts made in the last century, this special wall is currently recognized as a highly regulated cooperative structure, in which their components form neurovascular units. This new scenario prompted us to review the precise cross-talk between the mind and body modes of immune response. PMID:25228859

  20. Sleep restriction impairs blood-brain barrier function.

    PubMed

    He, Junyun; Hsuchou, Hung; He, Yi; Kastin, Abba J; Wang, Yuping; Pan, Weihong

    2014-10-29

    The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice.

  1. Functional brain networks associated with eating behaviors in obesity

    PubMed Central

    Park, Bo-yong; Seo, Jongbum; Park, Hyunjin

    2016-01-01

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores. PMID:27030024

  2. Functional brain networks associated with eating behaviors in obesity.

    PubMed

    Park, Bo-Yong; Seo, Jongbum; Park, Hyunjin

    2016-03-31

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores.

  3. TE-Dependent Spatial and Spectral Specificity of Functional Connectivity

    PubMed Central

    Wu, Changwei W.; Gu, Hong; Zou, Qihong; Lu, Hanbing; Stein, Elliot A.; Yang, Yihong

    2012-01-01

    Previous studies suggest that spontaneous fluctuations in the resting-state fMRI (RS-fMRI) signal may reflect fluctuations in transverse relaxation time (T2*) rather than spin density (S0). However, such S0 and T2* features have not been well characterized. In this study, spatial and spectral characteristics of functional connectivity on sensorimotor, default-mode, dorsal attention, and primary visual systems were examined using a multiple gradient-echo sequence at 3T. In the spatial domain, we found broad, local correlations at short echo times (TE ≤ 14 ms) due to dominant S0 contribution, whereas long-range connections mediated by T2* became explicit at TEs longer than 22 ms. In the frequency domain, compared with the flat spectrum of S0, spectral power of the T2*-weighted signal elevated significantly with increasing TE, particularly in the frequency ranges of 0.008-0.023 Hz and 0.037-0.043 Hz. Using the S0 spectrum as a reference, we propose two indices to measure spectral signal change (SSC) and spectral contrast-to-noise ratio (SCNR), respectively, for quantifying the RS-fMRI signal. These indices demonstrated TE dependency of connectivity-related fluctuation strength, resembling functional contrasts in activation-based fMRI. These findings further confirm that large-scale functional circuit connectivity based on BOLD contrast may be constrained within specific frequency ranges in every brain network, and the spectral features of S0 and T2* could be valuable for interpreting and quantifying RS-fMRI data. PMID:22119650

  4. Region-Specific Protein Abundance Changes in the Brain of MPTP-induced Parkinson’s Disease Mouse Model

    SciTech Connect

    Zhang, Xu; Zhou, Jianying; Chin, Mark H; Schepmoes, Athena A; Petyuk, Vladislav A; Weitz, Karl K; Petritis, Brianne O; Monroe, Matthew E; Camp, David G; Wood, Stephen A; Melega, William P; Bigelow, Diana J; Smith, Desmond J; Qian, Weijun; Smith, Richard D

    2010-02-15

    Parkinson’s disease (PD) is characterized by dopaminergic neurodegeneration in the nigrostriatal region of the brain; however, the neurodegeneration extends well beyond dopaminergic neurons. To gain a better understanding of the molecular changes relevant to PD, we applied two-dimensional LC-MS/MS to comparatively analyze the proteome changes in four brain regions (striatum, cerebellum, cortex, and the rest of brain) using a MPTP-induced PD mouse model with the objective to identify nigrostriatal-specific and other region-specific protein abundance changes. The combined analyses resulted in the identification of 4,895 non-redundant proteins with at least two unique peptides per protein. The relative abundance changes in each analyzed brain region were estimated based on the spectral count information. A total of 518 proteins were observed with significant MPTP-induced changes across different brain regions. 270 of these proteins were observed with specific changes occurring either only in the striatum and/or in the rest of the brain region that contains substantia nigra, suggesting that these proteins are associated with the underlying nigrostriatal pathways. Many of the proteins that exhibit significant abundance changes were associated with dopamine signaling, mitochondrial dysfunction, the ubiquitin system, calcium signaling, the oxidative stress response, and apoptosis. A set of proteins with either consistent change across all brain regions or with changes specific to the cortex and cerebellum regions were also detected. One of the interesting proteins is ubiquitin specific protease (USP9X), a deubiquination enzyme involved in the protection of proteins from degradation and promotion of the TGF-β pathway, which exhibited altered abundances in all brain regions. Western blot validation showed similar spatial changes, suggesting that USP9X is potentially associated with neurodegeneration. Together, this study for the first time presents an overall picture of

  5. Structural and Functional MRI Differences in Master Sommeliers: A Pilot Study on Expertise in the Brain

    PubMed Central

    Banks, Sarah J.; Sreenivasan, Karthik R.; Weintraub, David M.; Baldock, Deanna; Noback, Michael; Pierce, Meghan E.; Frasnelli, Johannes; James, Jay; Beall, Erik; Zhuang, Xiaowei; Cordes, Dietmar; Leger, Gabriel C.

    2016-01-01

    Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and non-experts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers’ brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers’ brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases.

  6. Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture?

    PubMed

    Ricciardi, Emiliano; Bonino, Daniela; Pellegrini, Silvia; Pietrini, Pietro

    2014-04-01

    While most of the research in blind individuals classically has focused on the compensatory plastic rearrangements that follow loss of sight, novel behavioral, anatomical and functional brain studies in individuals born deprived of sight represent a powerful tool to understand to what extent the brain functional architecture is programmed to develop independently from any visual experience. Here we review work from our lab and others, conducted in sighted and congenitally blind individuals, whose results indicate that vision is not a mandatory prerequisite for the brain cortical organization to develop and function. Similar cortical networks subtend visual and/or non-visual perception of form, space and movement, as well as action recognition, both in sighted and in congenitally blind individuals. These findings support the hypothesis of a modality independent, supramodal cortical organization. Visual experience, however, does play a role in shaping specific cortical sub-regions, as loss of sight is accompanied also by cross-modal plastic phenomena. Altogether, studying the blind brain is opening our eyes on how the brain develops and works.

  7. Structural and Functional MRI Differences in Master Sommeliers: A Pilot Study on Expertise in the Brain

    PubMed Central

    Banks, Sarah J.; Sreenivasan, Karthik R.; Weintraub, David M.; Baldock, Deanna; Noback, Michael; Pierce, Meghan E.; Frasnelli, Johannes; James, Jay; Beall, Erik; Zhuang, Xiaowei; Cordes, Dietmar; Leger, Gabriel C.

    2016-01-01

    Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and non-experts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers’ brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers’ brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases. PMID:27597821

  8. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks.

    PubMed

    Guye, Maxime; Bettus, Gaelle; Bartolomei, Fabrice; Cozzone, Patrick J

    2010-12-01

    Graph theoretical analysis of structural and functional connectivity MRI data (ie. diffusion tractography or cortical volume correlation and resting-state or task-related (effective) fMRI, respectively) has provided new measures of human brain organization in vivo. The most striking discovery is that the whole-brain network exhibits "small-world" properties shared with many other complex systems (social, technological, information, biological). This topology allows a high efficiency at different spatial and temporal scale with a very low wiring and energy cost. Its modular organization also allows for a high level of adaptation. In addition, degree distribution of brain networks demonstrates highly connected hubs that are crucial for the whole-network functioning. Many of these hubs have been identified in regions previously defined as belonging to the default-mode network (potentially explaining the high basal metabolism of this network) and the attentional networks. This could explain the crucial role of these hub regions in physiology (task-related fMRI data) as well as in pathophysiology. Indeed, such topological definition provides a reliable framework for predicting behavioral consequences of focal or multifocal lesions such as stroke, tumors or multiple sclerosis. It also brings new insights into a better understanding of pathophysiology of many neurological or psychiatric diseases affecting specific local or global brain networks such as epilepsy, Alzheimer's disease or schizophrenia. Graph theoretical analysis of connectivity MRI data provides an outstanding framework to merge anatomical and functional data in order to better understand brain pathologies. PMID:20349109

  9. Structural and Functional MRI Differences in Master Sommeliers: A Pilot Study on Expertise in the Brain.

    PubMed

    Banks, Sarah J; Sreenivasan, Karthik R; Weintraub, David M; Baldock, Deanna; Noback, Michael; Pierce, Meghan E; Frasnelli, Johannes; James, Jay; Beall, Erik; Zhuang, Xiaowei; Cordes, Dietmar; Leger, Gabriel C

    2016-01-01

    Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and non-experts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers' brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers' brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases. PMID:27597821

  10. Control channels in the brain and their influence on brain executive functions

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  11. Functional design specification: NASA form 1510

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The 1510 worksheet used to calculate approved facility project cost estimates is explained. Topics covered include data base considerations, program structure, relationship of the 1510 form to the 1509 form, and functions which the application must perform: WHATIF, TENENTER, TENTYPE, and data base utilities. A sample NASA form 1510 printout and a 1510 data dictionary are presented in the appendices along with the cost adjustment table, the floppy disk index, and methods for generating the calculated values (TENCALC) and for calculating cost adjustment (CONSTADJ). Storage requirements are given.

  12. Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain.

    PubMed

    Mehnert, Jan; Akhrif, Atae; Telkemeyer, Silke; Rossi, Sonja; Schmitz, Christoph H; Steinbrink, Jens; Wartenburger, Isabell; Obrig, Hellmuth; Neufang, Susanne

    2013-11-01

    Response inhibition is an attention function which develops relatively early during childhood. Behavioral data suggest that by the age of 3, children master the basic task requirements for the assessment of response inhibition but performance improves substantially until the age of 7. The neuronal mechanisms underlying these developmental processes, however, are not well understood. In this study, we examined brain activation patterns and behavioral performance of children aged between 4 and 6 years compared to adults by applying a go/no-go paradigm during near-infrared spectroscopy (NIRS) brain imaging. We furthermore applied task-independent functional connectivity measures to the imaging data to identify maturation of intrinsic neural functional networks. We found a significant group×condition related interaction in terms of inhibition-related reduced right fronto-parietal activation in children compared to adults. In contrast, motor-related activation did not differ between age groups. Functional connectivity analysis revealed that in the children's group, short-range coherence within frontal areas was stronger, and long-range coherence between frontal and parietal areas was weaker, compared to adults. Our findings show that in children aged from 4 to 6 years fronto-parietal brain maturation plays a crucial part in the cognitive development of response inhibition. PMID:23265620

  13. Sharing self-related information is associated with intrinsic functional connectivity of cortical midline brain regions

    PubMed Central

    Meshi, Dar; Mamerow, Loreen; Kirilina, Evgeniya; Morawetz, Carmen; Margulies, Daniel S.; Heekeren, Hauke R.

    2016-01-01

    Human beings are social animals and they vary in the degree to which they share information about themselves with others. Although brain networks involved in self-related cognition have been identified, especially via the use of resting-state experiments, the neural circuitry underlying individual differences in the sharing of self-related information is currently unknown. Therefore, we investigated the intrinsic functional organization of the brain with respect to participants’ degree of self-related information sharing using resting state functional magnetic resonance imaging and self-reported social media use. We conducted seed-based correlation analyses in cortical midline regions previously shown in meta-analyses to be involved in self-referential cognition: the medial prefrontal cortex (MPFC), central precuneus (CP), and caudal anterior cingulate cortex (CACC). We examined whether and how functional connectivity between these regions and the rest of the brain was associated with participants’ degree of self-related information sharing. Analyses revealed associations between the MPFC and right dorsolateral prefrontal cortex (DLPFC), as well as the CP with the right DLPFC, the left lateral orbitofrontal cortex and left anterior temporal pole. These findings extend our present knowledge of functional brain connectivity, specifically demonstrating how the brain’s intrinsic functional organization relates to individual differences in the sharing of self-related information. PMID:26948055

  14. Understanding structural-functional relationships in the human brain: a large-scale network perspective.

    PubMed

    Wang, Zhijiang; Dai, Zhengjia; Gong, Gaolang; Zhou, Changsong; He, Yong

    2015-06-01

    Relating the brain's structural connectivity (SC) to its functional connectivity (FC) is a fundamental goal in neuroscience because it is capable of aiding our understanding of how the relatively fixed SC architecture underlies human cognition and diverse behaviors. With the aid of current noninvasive imaging technologies (e.g., structural MRI, diffusion MRI, and functional MRI) and graph theory methods, researchers have modeled the human brain as a complex network of interacting neuronal elements and characterized the underlying structural and functional connectivity patterns that support diverse cognitive functions. Specifically, research has demonstrated a tight SC-FC coupling, not only in interregional connectivity strength but also in network topologic organizations, such as community, rich-club, and motifs. Moreover, this SC-FC coupling exhibits significant changes in normal development and neuropsychiatric disorders, such as schizophrenia and epilepsy. This review summarizes recent progress regarding the SC-FC relationship of the human brain and emphasizes the important role of large-scale brain networks in the understanding of structural-functional associations. Future research directions related to this topic are also proposed.

  15. Control of Brain Development, Function, and Behavior by the Microbiome

    PubMed Central

    Sampson, Timothy R.; Mazmanian, Sarkis K.

    2015-01-01

    Animals share an intimate and life-long partnership with a myriad of resident microbial species, collectively referred to as the microbiota. Symbiotic microbes have been shown to regulate nutrition and metabolism, and are critical for the development and function of the immune system. More recently, studies have suggested that gut bacteria can impact neurological outcomes – altering behavior and potentially affecting the onset and/or severity of nervous system disorders. In this review, we highlight emerging evidence that the microbiome extends its influence to the brain via various pathways connecting the gut to the central nervous system. While understanding and appreciation of a gut microbial impact on neurological function is nascent, unraveling gut-microbiome-brain connections holds the promise of transforming the neurosciences and revealing potentially novel etiologies for psychiatric and neurodegenerative disorders. PMID:25974299

  16. Control of brain development, function, and behavior by the microbiome.

    PubMed

    Sampson, Timothy R; Mazmanian, Sarkis K

    2015-05-13

    Animals share an intimate and life-long partnership with a myriad of resident microbial species, collectively referred to as the microbiota. Symbiotic microbes have been shown to regulate nutrition and metabolism and are critical for the development and function of the immune system. More recently, studies have suggested that gut bacteria can impact neurological outcomes--altering behavior and potentially affecting the onset and/or severity of nervous system disorders. In this review, we highlight emerging evidence that the microbiome extends its influence to the brain via various pathways connecting the gut to the central nervous system. While understanding and appreciation of a gut microbial impact on neurological function is nascent, unraveling gut-microbiome-brain connections holds the promise of transforming the neurosciences and revealing potentially novel etiologies for psychiatric and neurodegenerative disorders.

  17. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  18. Control of the blood-brain barrier function in cancer cell metastasis.

    PubMed

    Blecharz, Kinga G; Colla, Ruben; Rohde, Veit; Vajkoczy, Peter

    2015-10-01

    Cerebral metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumours. Actual treatment options for brain metastases that include surgical resection, radiotherapy and chemotherapy are rarely curative, although palliative treatment improves survival and life quality of patients carrying brain-metastatic tumours. Chemotherapy in particular has also shown limited or no activity in brain metastasis of most tumour types. Many chemotherapeutic agents used systemically do not cross the blood-brain barrier (BBB), whereas others may transiently weaken the BBB and allow extravasation of tumour cells from the circulation into the brain parenchyma. Increasing evidence points out that the interaction between the BBB and tumour cells plays a key role for implantation and growth of brain metastases in the central nervous system. The BBB, as the tightest endothelial barrier, prevents both early detection and treatment by creating a privileged microenvironment. Therefore, as observed in several in vivo studies, precise targetting the BBB by a specific transient opening of the structure making it permeable for therapeutic compounds, might potentially help to overcome this difficult clinical problem. Moreover, a better understanding of the molecular features of the BBB, its interrelation with metastatic tumour cells and the elucidation of cellular mechanisms responsible for establishing cerebral metastasis must be clearly outlined in order to promote treatment modalities that particularly involve chemotherapy. This in turn would substantially expand the survival and quality of life of patients with brain metastasis, and potentially increase the remission rate. Therefore, the focus of this review is to summarise the current knowledge on the role and function of the BBB in cancer metastasis.

  19. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  20. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing. PMID:20336685

  1. Global features of functional brain networks change with contextual disorder

    PubMed Central

    Andric, Michael; Hasson, Uri

    2015-01-01

    It is known that features of stimuli in the environment affect the strength of functional connectivity in the human brain. However, investigations to date have not converged in determining whether these also impact functional networks' global features, such as modularity strength, number of modules, partition structure, or degree distributions. We hypothesized that one environmental attribute that may strongly impact global features is the temporal regularity of the environment, as prior work indicates that differences in regularity impact regions involved in sensory, attentional and memory processes. We examined this with an fMRI study, in which participants passively listened to tonal series that had identical physical features and differed only in their regularity, as defined by the strength of transition structure between tones. We found that series-regularity induced systematic changes to global features of functional networks, including modularity strength, number of modules, partition structure, and degree distributions. In tandem, we used a novel node-level analysis to determine the extent to which brain regions maintained their within-module connectivity across experimental conditions. This analysis showed that primary sensory regions and those associated with default-mode processes are most likely to maintain their within-module connectivity across conditions, whereas prefrontal regions are least likely to do so. Our work documents a significant capacity for global-level brain network reorganization as a function of context. These findings suggest that modularity and other core, global features, while likely constrained by white-matter structural brain connections, are not completely determined by them. PMID:25988223

  2. Reactivation of Context-Specific Brain Regions during Retrieval

    ERIC Educational Resources Information Center

    Skinner, Erin I.; Grady, Cheryl L.; Fernandes, Myra A.

    2010-01-01

    The neural correlates of recollection were examined using event-related functional MRI. We examined how the presence of different visual context information during encoding of target words influenced later recollection for the words presented alone at retrieval. Participants studied words presented with different pictures of faces or scrambled…

  3. Neuroanatomical prerequisites for language functions in the maturing brain.

    PubMed

    Brauer, Jens; Anwander, Alfred; Friederici, Angela D

    2011-02-01

    The 2 major language-relevant cortical regions in the human brain, Broca's area and Wernicke's area, are connected via the fibers of the arcuate fasciculus/superior longitudinal fasciculus (AF/SLF). Here, we compared this pathway in adults and children and its relation to language processing during development. Comparison of fiber properties demonstrated lower anisotropy in children's AF/SLF, arguing for an immature status of this particular pathway with conceivably a lower degree of myelination. Combined diffusion tensor imaging (DTI) data and functional magnetic resonance imaging (fMRI) data indicated that in adults the termination of the AF/SLF fiber projection is compatible with functional activation in Broca's area, that is pars opercularis. In children, activation in Broca's area extended from the pars opercularis into the pars triangularis revealing an alternative connection to the temporal lobe (Wernicke's area) via the ventrally projecting extreme capsule fiber system. fMRI and DTI data converge to indicate that adults make use of a more confined language network than children based on ongoing maturation of the structural network. Our data suggest relations between language development and brain maturation and, moreover, indicate the brain's plasticity to adjust its function to available structural prerequisites. PMID:20566580

  4. Characterizing Resting-State Brain Function Using Arterial Spin Labeling.

    PubMed

    Chen, J Jean; Jann, Kay; Wang, Danny J J

    2015-11-01

    Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function.

  5. Totally Tubular: The Mystery behind Function and Origin of the Brain Ventricular System

    PubMed Central

    Lowery, Laura Anne; Sive, Hazel

    2010-01-01

    Summary A unique feature of the vertebrate brain is the brain ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system. PMID:19274662

  6. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574313

  7. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  8. Brain Oscillations and Functional Connectivity during Overt Language Production.

    PubMed

    Ewald, Arne; Aristei, Sabrina; Nolte, Guido; Abdel Rahman, Rasha

    2012-01-01

    In the present study we investigate the communication of different large scale brain sites during an overt language production task with state of the art methods for the estimation of EEG functional connectivity. Participants performed a semantic blocking task in which objects were named in semantically homogeneous blocks of trials consisting of members of a semantic category (e.g., all objects are tools) or in heterogeneous blocks, consisting of unrelated objects. The classic pattern of slower naming times in the homogeneous relative to heterogeneous blocks is assumed to reflect the duration of lexical selection. For the collected data in the homogeneous and heterogeneous conditions the imaginary part of coherency (ImC) was evaluated at different frequencies. The ImC is a measure for detecting the coupling of different brain sites acting on sensor level. Most importantly, the ImC is robust to the artifact of volume conduction. We analyzed the ImC at all pairs of 56 EEG channels across all frequencies. Contrasting the two experimental conditions we found pronounced differences in the theta band at 7 Hz and estimated the most dominant underlying brain sources via a minimum norm inverse solution based on the ImC. As a result of the source localization, we observed connectivity between occipito-temporal and frontal areas, which are well-known to play a major role in lexical-semantic language processes. Our findings demonstrate the feasibility of investigating interactive brain activity during overt language production.

  9. Functional magnetic resonance imaging reflects changes in brain functioning with sedation.

    PubMed

    Starbuck, Victoria N; Kay, Gary G; Platenberg, R. Craig; Lin, Chin-Shoou; Zielinski, Brandon A

    2000-12-01

    Functional magnetic resonance imaging (fMRI) studies have demonstrated localized brain activation during cognitive tasks. Brain activation increases with task complexity and decreases with familiarity. This study investigates how sleepiness alters the relationship between brain activation and task familiarity. We hypothesize that sleepiness prevents the reduction in activation associated with practice. Twenty-nine individuals rated their sleepiness using the Stanford Sleepiness Scale before fMRI. During imaging, subjects performed the Paced Auditory Serial Addition Test, a continuous mental arithmetic task. A positive correlation was observed between self-rated sleepiness and frontal brain activation. Fourteen subjects participated in phase 2. Sleepiness was induced by evening dosing with chlorpheniramine (CP) (8 mg or 12 mg) and terfenadine (60 mg) in the morning for 3 days before the second fMRI scan. The Multiple Sleep Latency Test (MSLT) was also performed. Results revealed a significant increase in fMRI activation in proportion to the dose of CP. In contrast, for all subjects receiving placebo there was a reduction in brain activation. MSLT revealed significant daytime sleepiness for subjects receiving CP. These findings suggest that sleepiness interferes with efficiency of brain functioning. The sleepy or sedated brain shows increased oxygen utilization during performance of a familiar cognitive task. Thus, the beneficial effect of prior task exposure is lost under conditions of sedation. Copyright 2000 John Wiley & Sons, Ltd. PMID:12404614

  10. Functional magnetic resonance imaging of the brain: a quick review.

    PubMed

    Vaghela, Viratsinh; Kesavadas, Chandrasekharan; Thomas, Bejoy

    2010-01-01

    Ability to non-invasively map the hemodynamic changes occurring focally in areas of brain involved in various motor, sensory and cognitive functions by functional magnetic resonance imaging (fMRI) has revolutionized research in neuroscience in the last two decades. This technique has already gained clinical use especially in pre-surgical evaluation of epilepsy and neurosurgical planning of resection of mass lesions adjacent to eloquent cortex. In this review we attempt to illustrate basic principles and techniques of fMRI, its applications, practical points to consider while performing and evaluating clinical fMRI and its limitations.

  11. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  12. Multifaceted Genomic Risk for Brain Function in Schizophrenia

    PubMed Central

    Chen, Jiayu; Calhoun, Vince D.; Pearlson, Godfrey D.; Ehrlich, Stefan; Turner, Jessica A.; Ho, Beng-Choon; Wassink, Thomas H.; Michael, Andrew M; Liu, Jingyu

    2012-01-01

    Recently, deriving candidate endophenotypes from brain imaging data has become a valuable approach to study genetic influences on schizophrenia (SZ), whose pathophysiology remains unclear. In this work we utilized a multivariate approach, parallel independent component analysis, to identify genomic risk components associated with brain function abnormalities in SZ. 5157 candidate single nucleotide polymorphisms (SNPs) were derived from genome-wide array based on their possible connections with SZ and further investigated for their associations with brain activations captured with functional magnetic resonance imaging (fMRI) during a sensorimotor task. Using data from 92 SZ patients and 116 healthy controls, we detected a significant correlation (r= 0.29; p= 2.41×10−5) between one fMRI component and one SNP component, both of which significantly differentiated patients from controls. The fMRI component mainly consisted of precentral and postcentral gyri, the major activated regions in the motor task. On average, higher activation in these regions was observed in participants with higher loadings of the linked SNP component, predominantly contributed to by 253 SNPs. 138 identified SNPs were from known coding regions of 100 unique genes. 31 identified SNPs did not differ between groups, but moderately correlated with some other group-discriminating SNPs, indicating interactions among alleles contributing towards elevated SZ susceptibility. The genes associated with the identified SNPs participated in four neurotransmitter pathways: GABA receptor signaling, dopamine receptor signaling, neuregulin signaling and glutamate receptor signaling. In summary, our work provides further evidence for the complexity of genomic risk to the functional brain abnormality in SZ and suggests a pathological role of interactions between SNPs, genes and multiple neurotransmitter pathways. PMID:22440650

  13. Human-specific hypomethylation of CENPJ, a key brain size regulator.

    PubMed

    Shi, Lei; Lin, Qiang; Su, Bing

    2014-03-01

    Both the enlarged brain and concurrent highly developed cognitive skills are often seen as distinctive characteristics that set humans apart from other primates. Despite this obvious differentiation, the genetic mechanisms that underlie such human-specific traits are not clearly understood. In particular, whether epigenetic regulations may play a key role in human brain evolution remain elusive. In this study, we used bisulfite sequencing to compare the methylation patterns of four known genes that regulate brain size (ASPM, CDK5RAP2, CENPJ, and MCPH1) in the prefrontal cortex among several primate species spanning the major lineages of primates (i.e., humans, great apes, lesser apes, and Old World monkeys). The results showed a human-specific hypomethylation in the 5' UTR of CENPJ in the brain, where methylation levels among humans are only about one-third of those found among nonhuman primates. Similar methylation patterns were also detected in liver, kidney, and heart tissues, although the between-species differences were much less pronounced than those in the brain. Further in vitro methylation assays indicated that the methylation status of the CENPJ promoter could influence its expression. We also detected a large difference in CENPJ expression in the human and nonhuman primate brains of both adult individuals and throughout the major stages of fetal brain development. The hypomethylation and comparatively high expression of CENPJ in the central nervous system of humans suggest that a human-specific--and likely heritable--epigenetic modification likely occurred during human evolution, potentially leading to a much larger neural progenitor pool during human brain development, which may have eventually contributed to the dramatically enlarged brain and highly developed cognitive abilities associated with humans. PMID:24288161

  14. Human-specific hypomethylation of CENPJ, a key brain size regulator.

    PubMed

    Shi, Lei; Lin, Qiang; Su, Bing

    2014-03-01

    Both the enlarged brain and concurrent highly developed cognitive skills are often seen as distinctive characteristics that set humans apart from other primates. Despite this obvious differentiation, the genetic mechanisms that underlie such human-specific traits are not clearly understood. In particular, whether epigenetic regulations may play a key role in human brain evolution remain elusive. In this study, we used bisulfite sequencing to compare the methylation patterns of four known genes that regulate brain size (ASPM, CDK5RAP2, CENPJ, and MCPH1) in the prefrontal cortex among several primate species spanning the major lineages of primates (i.e., humans, great apes, lesser apes, and Old World monkeys). The results showed a human-specific hypomethylation in the 5' UTR of CENPJ in the brain, where methylation levels among humans are only about one-third of those found among nonhuman primates. Similar methylation patterns were also detected in liver, kidney, and heart tissues, although the between-species differences were much less pronounced than those in the brain. Further in vitro methylation assays indicated that the methylation status of the CENPJ promoter could influence its expression. We also detected a large difference in CENPJ expression in the human and nonhuman primate brains of both adult individuals and throughout the major stages of fetal brain development. The hypomethylation and comparatively high expression of CENPJ in the central nervous system of humans suggest that a human-specific--and likely heritable--epigenetic modification likely occurred during human evolution, potentially leading to a much larger neural progenitor pool during human brain development, which may have eventually contributed to the dramatically enlarged brain and highly developed cognitive abilities associated with humans.

  15. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    PubMed

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  16. Atypical Brain Responses to Sounds in Children with Specific Language and Reading Impairments

    ERIC Educational Resources Information Center

    McArthur, Genevieve; Atkinson, Carmen; Ellis, Danielle

    2009-01-01

    This study tested if children with specific language impairment (SLI) or children with specific reading disability (SRD) have abnormal brain responses to sounds. We tested 6- to 12-year-old children with SLI (N = 19), children with SRD (N = 55), and age-matched controls (N = 36) for their passive auditory event-related potentials (ERPs) to tones,…

  17. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  18. Her versus his migraine: multiple sex differences in brain function and structure

    PubMed Central

    Linnman, Clas; Brawn, Jennifer; Burstein, Rami; Becerra, Lino; Borsook, David

    2012-01-01

    Migraine is twice as common in females as in males, but the mechanisms behind this difference are still poorly understood. We used high-field magnetic resonance imaging in male and female age-matched interictal (migraine free) migraineurs and matched healthy controls to determine alterations in brain structure. Female migraineurs had thicker posterior insula and precuneus cortices compared with male migraineurs and healthy controls of both sexes. Furthermore, evaluation of functional responses to heat within the migraine groups indicated concurrent functional differences in male and female migraineurs and a sex-specific pattern of functional connectivity of these two regions with the rest of the brain. The results support the notion of a ‘sex phenotype’ in migraine and indicate that brains are differentially affected by migraine in females compared with males. Furthermore, the results also support the notion that sex differences involve both brain structure as well as functional circuits, in that emotional circuitry compared with sensory processing appears involved to a greater degree in female than male migraineurs. PMID:22843414

  19. Structural architecture supports functional organization in the human aging brain at a regionwise and network level.

    PubMed

    Zimmermann, Joelle; Ritter, Petra; Shen, Kelly; Rothmeier, Simon; Schirner, Michael; McIntosh, Anthony R

    2016-07-01

    Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc. PMID:27041212

  20. Neuroplasticity as a function of second language learning: anatomical changes in the human brain.

    PubMed

    Li, Ping; Legault, Jennifer; Litcofsky, Kaitlyn A

    2014-09-01

    The brain has an extraordinary ability to functionally and physically change or reconfigure its structure in response to environmental stimulus, cognitive demand, or behavioral experience. This property, known as neuroplasticity, has been examined extensively in many domains. But how does neuroplasticity occur in the brain as a function of an individual's experience with a second language? It is not until recently that we have gained some understanding of this question by examining the anatomical changes as well as functional neural patterns that are induced by the learning and use of multiple languages. In this article we review emerging evidence regarding how structural neuroplasticity occurs in the brain as a result of one's bilingual experience. Our review aims at identifying the processes and mechanisms that drive experience-dependent anatomical changes, and integrating structural imaging evidence with current knowledge of functional neural plasticity of language and other cognitive skills. The evidence reviewed so far portrays a picture that is highly consistent with structural neuroplasticity observed for other domains: second language experience-induced brain changes, including increased gray matter (GM) density and white matter (WM) integrity, can be found in children, young adults, and the elderly; can occur rapidly with short-term language learning or training; and are sensitive to age, age of acquisition, proficiency or performance level, language-specific characteristics, and individual differences. We conclude with a theoretical perspective on neuroplasticity in language and bilingualism, and point to future directions for research.

  1. Model-free functional MRI analysis for detecting low-frequency functional connectivity in the human brain

    NASA Astrophysics Data System (ADS)

    Wismueller, Axel; Lange, Oliver; Auer, Dorothee; Leinsinger, Gerda

    2010-03-01

    Slowly varying temporally correlated activity fluctuations between functionally related brain areas have been identified by functional magnetic resonance imaging (fMRI) research in recent years. These low-frequency oscillations of less than 0.08 Hz appear to play a major role in various dynamic functional brain networks, such as the so-called 'default mode' network. They also have been observed as a property of symmetric cortices, and they are known to be present in the motor cortex among others. These low-frequency data are difficult to detect and quantify in fMRI. Traditionally, user-based regions of interests (ROI) or 'seed clusters' have been the primary analysis method. In this paper, we propose unsupervised clustering algorithms based on various distance measures to detect functional connectivity in resting state fMRI. The achieved results are evaluated quantitatively for different distance measures. The Euclidian metric implemented by standard unsupervised clustering approaches is compared with a non-metric topographic mapping of proximities based on the the mutual prediction error between pixel-specific signal dynamics time-series. It is shown that functional connectivity in the motor cortex of the human brain can be detected based on such model-free analysis methods for resting state fMRI.

  2. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    PubMed

    Schmidt, Christoph; Pester, Britta; Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz

    2016-01-01

    Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  3. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity

    PubMed Central

    Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz

    2016-01-01

    Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure. PMID:27064897

  4. Specific [(3)H]tryptophan binding sites in rat brain.

    PubMed

    Wong, P T; Lee, H S; Tan, C H; Teo, W L

    1989-01-01

    [(3)H]Tryptophan binds to a single population of sites in the rat cortical synaptosomal membranes. The binding is reversible and follows the law of mass action. By saturation studies using increasing concentration of [(3)H]tryptophan with decreasing specific radioactivity, the apparent K(d) obtained was approx. 0.8 ?M and the B(max) 110 pmol/mg protein. However, the IC(50) obtained for unlabelled tryptophan in displacing [(3)H]tryptophan binding (3.5 nM) was 0.26 ?M. All six naturally occurring aromatic amino acids studied displaced [(3)H]tryptophan binding with tryptophan and phenylalanine showing higher apparent affinity than histidine, tyrosine, dihydroxyphenylalanine and 5-hydroxytryptophan. These binding sites are proteins in nature as they are sensitive to trypsin and ?-chymotrypsin. It is observed that about 37% of the sites seem to be protected from the proteolytic enzymes by the membrane structure. Furthermore, they are extremely sensitive to phospholipase A(2) presumably because altered membrane phospholipids conduce a conformational change in the binding protein. A considerable degree of stereospecificity was demonstrated with the affinity for l-tryptophan about 90 times higher than that for d-tryptophan. The affinity for l-phenylalanine was 8 times higher than that for d-phenylalanine. Ligand specificity for the aromatic amino acids is remarkable as hydrocinnamic acid, 2-phenylethylamine, 5-hydroxytryptamine, histamine, dopamine, ?-aminobutyric acid, glutamic acid and taurine did not displace [(3)H]tryptophan binding. Therefore, these sites are termed aromatic amino acid binding sites (AABS). Whether or not AABS are involved in neuromodulation at the synapse awaits clarification. If so, the endogenous ligand for the AABS may well be tryptophan.

  5. Identifying functional subdivisions in the human brain using meta-analytic activation modeling-based parcellation.

    PubMed

    Yang, Yong; Fan, Lingzhong; Chu, Congying; Zhuo, Junjie; Wang, Jiaojian; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2016-01-01

    Parcellation of the human brain into fine-grained units by grouping voxels into distinct clusters has been an effective approach for delineating specific brain regions and their subregions. Published neuroimaging studies employing coordinate-based meta-analyses have shown that the activation foci and their corresponding behavioral categories may contain useful information about the anatomical-functional organization of brain regions. Inspired by these developments, we proposed a new parcellation scheme called meta-analytic activation modeling-based parcellation (MAMP) that uses meta-analytically obtained information. The raw meta data, including the experiments and the reported activation coordinates related to a brain region of interest, were acquired from the Brainmap database. Using this data, we first obtained the "modeled activation" pattern by modeling the voxel-wise activation probability given spatial uncertainty for each experiment that featured at least one focus within the region of interest. Then, we processed these "modeled activation" patterns across the experiments with a K-means clustering algorithm to group the voxels into different subregions. In order to verify the reliability of the method, we employed our method to parcellate the amygdala and the left Brodmann area 44 (BA44). The parcellation results were quite consistent with previous cytoarchitectonic and in vivo neuroimaging findings. Therefore, the MAMP proposed in the current study could be a useful complement to other methods for uncovering the functional organization of the human brain.

  6. On the effects of testosterone on brain behavioral functions

    PubMed Central

    Celec, Peter; Ostatníková, Daniela; Hodosy, Július

    2015-01-01

    Testosterone influences the brain via organizational and activational effects. Numerous relevant studies on rodents and a few on humans focusing on specific behavioral and cognitive parameters have been published. The results are, unfortunately, controversial and puzzling. Dosing, timing, even the application route seem to considerably affect the outcomes. In addition, the methods used for the assessment of psychometric parameters are a bit less than ideal regarding their validity and reproducibility. Metabolism of testosterone contributes to the complexity of its actions. Reduction to dihydrotestosterone by 5-alpha reductase increases the androgen activity; conversion to estradiol by aromatase converts the androgen to estrogen activity. Recently, the non-genomic effects of testosterone on behavior bypassing the nuclear receptors have attracted the interest of researchers. This review tries to summarize the current understanding of the complexity of the effects of testosterone on brain with special focus on their role in the known sex differences. PMID:25741229

  7. Brain region-specific altered expression and association of mitochondria-related genes in autism

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of

  8. Genetic and Environmental Contributions to Functional Connectivity Architecture of the Human Brain

    PubMed Central

    Yang, Zhi; Zuo, Xi-Nian; McMahon, Katie L.; Craddock, R. Cameron; Kelly, Clare; de Zubicaray, Greig I.; Hickie, Ian; Bandettini, Peter A.; Castellanos, F. Xavier; Milham, Michael P.; Wright, Margaret J.

    2016-01-01

    One of the grand challenges faced by neuroscience is to delineate the determinants of interindividual variation in the comprehensive structural and functional connection matrices that comprise the human connectome. At present, this endeavor appears most tractable at the macroanatomic scale, where intrinsic brain activity exhibits robust patterns of synchrony that recapitulate core functional circuits at the individual level. Here, we use a classical twin study design to examine the heritability of intrinsic functional network properties in 101 twin pairs, including network activity (i.e., variance of a network's specific temporal fluctuations) and internetwork coherence (i.e., correlation between networks' specific temporal fluctuations). Five of 7 networks exhibited significantly heritable (23.3–65.2%) network activity, 6 of the 21 internetwork coherences were significantly heritable (25.6–42.0%), and 11 of the 21 internetwork coherences were significantly influenced by common environmental factors (18.0–47.1%). These results suggest that the source of interindividual variation in functional connectome has a modular architecture: individual modules represented by intrinsic connectivity networks are genetic controlled, while environmental factors influence the interplays between the modules. This work further provides network-specific hypotheses for discovery of the specific genetic and environmental factors influencing functional specialization and integration of the human brain. PMID:26891986

  9. Class-specific effector functions of therapeutic antibodies.

    PubMed

    Pascal, Virginie; Laffleur, Brice; Cogné, Michel

    2012-01-01

    Physiology usually combines polyclonal antibodies of multiple classes in a single humoral response. Beyond their common ability to bind antigens, these various classes of human immunoglobulins carry specific functions which can each serve specific goals. In many cases, the function of a monoclonal therapeutic antibody may thus be modulated according to the class of its constant domains. Depending on the immunoglobulin class, different functional assays will be used in order to evaluate the functional activity of a monoclonal antibody.

  10. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Song; Maslov, Konstantin; Tsytsarev, Vassiliy; Wang, Lihong V.

    2009-07-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is applied to functional brain imaging in living mice. A near-diffraction-limited bright-field optical illumination is employed to achieve micrometer lateral resolution, and a dual-wavelength measurement is utilized to extract the blood oxygenation information. The variation in hemoglobin oxygen saturation (sO2) along vascular branching has been imaged in a precapillary arteriolar tree and a postcapillary venular tree, respectively. To the best of our knowledge, this is the first report on in vivo volumetric imaging of brain microvascular morphology and oxygenation down to single capillaries through intact mouse skulls. It is anticipated that: (i) chronic imaging enabled by this minimally invasive procedure will advance the study of cortical plasticity and neurological diseases; (ii) revealing the neuroactivity-dependent changes in hemoglobin concentration and oxygenation will facilitate the understanding of neurovascular coupling at the capillary level; and (iii) combining functional OR-PAM and high-resolution blood flowmetry will have the potential to explore cellular pathways of brain energy metabolism.

  11. Heritability of human brain functioning as assessed by electroencephalography

    SciTech Connect

    Beijsterveldt, C.E.M. van; Geus, E.J.C. de; Boomsma, D.I.

    1996-03-01

    To study the genetic and environmental contributions to individual differences in CNS functioning, the electroencephalogram (EEG) was measured in 213 twin pairs age 16 years. EEG was measured in 91 MZ and 122 DZ twins. To quantify sex differences in the genetic architecture, EEG was measured in female and male same-sex twins and in opposite-sex twins. EEG was recorded on 14 scalp positions during quiet resting with eyes closed. Spectral powers were calculated for four frequency bands: delta, theta, alpha, and beta. Twin correlations pointed toward high genetic influences for all these powers and scalp locations. Model fitting confirmed these findings; the largest part of the variance of the EEG is explained by additive genetic factors. The averaged heritabilities for the delta, theta, alpha, and beta frequencies was 76%, 89%, 89%, and 86%, respectively. Multivariate analyses suggested that the same genes for EEG alpha rhythm were expressed in different brain areas in the left and right hemisphere. This study shows that brain functioning, as indexed by rhythmic brain-electrical activity, is one of the most heritable characteristics in humans. 44 refs., 5 figs., 4 tabs.

  12. Modularity and Self-Organized Functional Architectures in the Brain

    NASA Astrophysics Data System (ADS)

    Iyer, Laxmi; Minai, Ali A.; Doboli, Simona; Brown, Vincent R.

    It is generally believed that cognition involves the self-organization of coherent dy- namic functional networks across several brain regions in response to incoming stimulus and internal modulation. These context-dependent networks arise continually from the spatiotemporally multi-scale structural substrate of the brain configured by evolution, development and previous experience, persisting for 100-200 ms and generating re- sponses such as imagery, recall and motor action. In the current paper, we show that a system of interacting modular attractor networks can use a selective mechanism for assembling functional networks from the modular substrate. We use the approach to develop a model of idea-generation in the brain. Ideas are modeled as combinations of concepts organized in a recurrent network that reflects previous associations between them. The dynamics of this network, resulting in the transient co-activation of concept groups, is seen as a search through the space of ideas, and attractor dynamics is used to "shape" this search. The process is required to encompass both rapid retrieval of old ideas in familiar contexts and efficient search for novel ones in unfamiliar situations (or during brainstorming). The inclusion of an adaptive modulatory mechanism allows the network to balance the competing requirements of exploiting previous learning and exploring new possibilities as needed in different contexts.

  13. Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: functional imaging in freely behaving rodent pups.

    PubMed

    Bock, Jörg; Riedel, Anett; Braun, Katharina

    2012-01-01

    The trumpet-tailed rat or degu (Octodon degus) is an established model to investigate the consequences of early stress on the development of emotional brain circuits and behavior. The aim of this study was to identify brain circuits, that respond to different stress conditions and to test if acute stress alters functional coupling of brain activity among prefrontal and limbic regions. Using functional imaging (2-Fluoro-deoxyglucose method) in 8-day-old male degu pups the following stress conditions were compared: (A) pups together with parents and siblings (control), (B) separation of the litter from the parents, (C) individual separation from parents and siblings, and (D) individual separation and presentation of maternal calls. Condition (B) significantly downregulated brain activity in the prefrontal cortex, hippocampus, nucleus accumbens (NAcc), and sensory areas compared to controls. Activity decrease was even more pronounced during condition (C), where, in contrast to all other regions, activity in the PAG was increased. Interestingly, brain activity in stress-associated brain regions such as the amygdala and habenula was not affected. In condition (D) maternal vocalizations "reactivated" brain activity in the cingulate and precentral medial cortex, NAcc, and striatum and in sensory areas. In contrast, reduced activity was measured in the prelimbic and infralimbic cortex (IL) and in the hippocampus and amygdala. Correlation analysis revealed complex, region- and situation-specific changes of interregional functional coupling among prefrontal and limbic brain regions during stress exposure. We show here for the first time that early life stress results in a widespread reduction of brain activity in the infant brain and changes interregional functional coupling. Moreover, maternal vocalizations can partly buffer stress-induced decrease in brain activity in some regions and evoked very different functional coupling patterns compared to the three other conditions.

  14. kappa-Opioid receptor signaling and brain reward function.

    PubMed

    Bruijnzeel, Adrie W

    2009-12-11

    The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administration of drugs of abuse increases the release of dopamine in the striatum and mediates the concomitant release of dynorphin-like peptides in this brain region. The reviewed studies suggest that chronic drug intake leads to an upregulation of the brain dynorphin system in the striatum and in particular in the dorsal part of the striatum/caudate putamen. This might inhibit drug-induced dopamine release and provide protection against the neurotoxic effects of high dopamine levels. After the discontinuation of chronic drug intake these neuroadaptations remain unopposed which has been suggested to contribute to the negative emotional state associated with drug withdrawal and increased drug intake. kappa-Opioid receptor agonists have also been shown to inhibit calcium channels. Calcium channel inhibitors have antidepressant-like effects and inhibit the release of norepinephrine. This might explain that in some studies kappa-opioid receptor agonists attenuate nicotine and opioid withdrawal symptomatology. A better understanding of the role of dynorphins in the regulation of brain reward function might contribute to the development of novel treatments for mood disorders and other disorders that stem from a dysregulation of the brain reward system.

  15. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    NASA Astrophysics Data System (ADS)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  16. Functional System and Areal Organization of a Highly Sampled Individual Human Brain.

    PubMed

    Laumann, Timothy O; Gordon, Evan M; Adeyemo, Babatunde; Snyder, Abraham Z; Joo, Sung Jun; Chen, Mei-Yen; Gilmore, Adrian W; McDermott, Kathleen B; Nelson, Steven M; Dosenbach, Nico U F; Schlaggar, Bradley L; Mumford, Jeanette A; Poldrack, Russell A; Petersen, Steven E

    2015-08-01

    Resting state functional MRI (fMRI) has enabled description of group-level functional brain organization at multiple spatial scales. However, cross-subject averaging may obscure patterns of brain organization specific to each individual. Here, we characterized the brain organization of a single individual repeatedly measured over more than a year. We report a reproducible and internally valid subject-specific areal-level parcellation that corresponds with subject-specific task activations. Highly convergent correlation network estimates can be derived from this parcellation if sufficient data are collected-considerably more than typically acquired. Notably, within-subject correlation variability across sessions exhibited a heterogeneous distribution across the cortex concentrated in visual and somato-motor regions, distinct from the pattern of intersubject variability. Further, although the individual's systems-level organization is broadly similar to the group, it demonstrates distinct topological features. These results provide a foundation for studies of individual differences in cortical organization and function, especially for special or rare individuals. VIDEO ABSTRACT. PMID:26212711

  17. Age-Specific Effects of Voluntary Exercise on Memory and the Older Brain

    PubMed Central

    Siette, Joyce; Westbrook, R. Frederick; Cotman, Carl; Sidhu, Kuldip; Zhu, Wanlin; Sachdev, Perminder; Valenzuela, Michael J.

    2014-01-01

    Background Physical exercise in early adulthood and mid-life improves cognitive function and enhances brain plasticity, but the effects of commencing exercise in late adulthood are not well-understood. Method We investigated the effects of voluntary exercise in the restoration of place recognition memory in aged rats and examined hippocampal changes of synaptic density and neurogenesis. Results We found a highly selective age-related deficit in place recognition memory that is stable across retest sessions and correlates strongly with loss of hippocampal synapses. Additionally, 12 weeks of voluntary running at 20 months of age removed the deficit in the hippocampally dependent place recognition memory. Voluntary running restored presynaptic density in the dentate gyrus and CA3 hippocampal subregions in aged rats to levels beyond those observed in younger animals, in which exercise had no functional or synaptic effects. By contrast, hippocampal neurogenesis, a possible memory-related mechanism, increased in both young and aged rats after physical exercise but was not linked with performance in the place recognition task. We used graph-based network analysis based on synaptic covariance patterns to characterize efficient intrahippocampal connectivity. This analysis revealed that voluntary running completely reverses the profound degradation of hippocampal network efficiency that accompanies sedentary aging. Furthermore, at an individual animal level, both overall hippocampal presynaptic density and subregional connectivity independently contribute to prediction of successful place recognition memory performance. Conclusions Our findings emphasize the unique synaptic effects of exercise on the aged brain and their specific relevance to a hippocampally based memory system for place recognition. PMID:22795967

  18. Prenatal famine exposure has sex-specific effects on brain size.

    PubMed

    de Rooij, Susanne R; Caan, Matthan W A; Swaab, Dick F; Nederveen, Aart J; Majoie, Charles B; Schwab, Matthias; Painter, Rebecca C; Roseboom, Tessa J

    2016-08-01

    Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the brain in older age. We investigated brain size and structure at age 68 years after prenatal famine exposure. T1-weighted structural magnetic resonance images of the brain were made in 118 Dutch famine birth cohort members. Of these 118 (44% male, age range 65-69 years), 41 had been exposed to famine in early gestation and 77 had been prenatally unexposed. Structural volumes were automatically assessed using FreeSurfer. Diffusion tensor imaging was performed and anisotropy and diffusivity were computed. Fluid attenuated inversion recovery was performed to assess white matter hyperintensities. Exposure to famine in early gestation was associated with smaller intracranial volume in males, but not females. Volumes of total brain, grey and white matter were also smaller in early exposed males, but these differences disappeared after adjusting for intracranial volume. Prenatally exposed males but not females, had a smaller intracranial and total brain volume compared to unexposed subjects. Our findings show that prenatal undernutrition permanently affected brain size.media-1vid110.1093/brain/aww132_video_abstractaww132_video_abstract.

  19. Prenatal famine exposure has sex-specific effects on brain size.

    PubMed

    de Rooij, Susanne R; Caan, Matthan W A; Swaab, Dick F; Nederveen, Aart J; Majoie, Charles B; Schwab, Matthias; Painter, Rebecca C; Roseboom, Tessa J

    2016-08-01

    Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the brain in older age. We investigated brain size and structure at age 68 years after prenatal famine exposure. T1-weighted structural magnetic resonance images of the brain were made in 118 Dutch famine birth cohort members. Of these 118 (44% male, age range 65-69 years), 41 had been exposed to famine in early gestation and 77 had been prenatally unexposed. Structural volumes were automatically assessed using FreeSurfer. Diffusion tensor imaging was performed and anisotropy and diffusivity were computed. Fluid attenuated inversion recovery was performed to assess white matter hyperintensities. Exposure to famine in early gestation was associated with smaller intracranial volume in males, but not females. Volumes of total brain, grey and white matter were also smaller in early exposed males, but these differences disappeared after adjusting for intracranial volume. Prenatally exposed males but not females, had a smaller intracranial and total brain volume compared to unexposed subjects. Our findings show that prenatal undernutrition permanently affected brain size.media-1vid110.1093/brain/aww132_video_abstractaww132_video_abstract. PMID:27401522

  20. Structural and Functional Plasticity in the Maternal Brain Circuitry.

    PubMed

    Pereira, Mariana

    2016-09-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young. PMID:27589496

  1. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function.

    PubMed

    Irwin, R W; Yao, J; To, J; Hamilton, R T; Cadenas, E; Brinton, R D

    2012-01-01

    The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails

  2. Disrupted Brain Functional Network Architecture in Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Feng, Yuan; Xu, Jin-Jing; Mao, Cun-Nan; Xia, Wenqing; Ren, Jun; Yin, Xindao

    2016-01-01

    Purpose: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated the disruptions of multiple brain networks in tinnitus patients. Nonetheless, several studies found no differences in network processing between tinnitus patients and healthy controls (HCs). Its neural bases are poorly understood. To identify aberrant brain network architecture involved in chronic tinnitus, we compared the resting-state fMRI (rs-fMRI) patterns of tinnitus patients and HCs. Materials and Methods: Chronic tinnitus patients (n = 24) with normal hearing thresholds and age-, sex-, education- and hearing threshold-matched HCs (n = 22) participated in the current study and underwent the rs-fMRI scanning. We used degree centrality (DC) to investigate functional connectivity (FC) strength of the whole-brain network and Granger causality to analyze effective connectivity in order to explore directional aspects involved in tinnitus. Results: Compared to HCs, we found significantly increased network centrality in bilateral superior frontal gyrus (SFG). Unidirectionally, the left SFG revealed increased effective connectivity to the left middle orbitofrontal cortex (OFC), left posterior lobe of cerebellum (PLC), left postcentral gyrus, and right middle occipital gyrus (MOG) while the right SFG exhibited enhanced effective connectivity to the right supplementary motor area (SMA). In addition, the effective connectivity from the bilateral SFG to the OFC and SMA showed positive correlations with tinnitus distress. Conclusions: Rs-fMRI provides a new and novel method for identifying aberrant brain network architecture. Chronic tinnitus patients have disrupted FC strength and causal connectivity mostly in non-auditory regions, especially the prefrontal cortex (PFC). The current findings will provide a new perspective for understanding the neuropathophysiological mechanisms in chronic tinnitus. PMID:27458377

  3. Developmental changes in category-specific brain responses to numbers and letters in a working memory task

    PubMed Central

    Libertus, Melissa E.; Brannon, Elizabeth M.; Pelphrey, Kevin A.

    2009-01-01

    Neuroimaging studies have identified a common network of brain regions involving the prefrontal and parietal cortices across a variety of working memory (WM) tasks. However, previous studies have also reported category-specific dissociations of activation within this network. In this study, we investigated the development of category-specific activation in a WM task with digits, letters, and faces. Eight-year-old children and adults performed a 2-back WM task while their brain activity was measured using functional magnetic resonance imaging (fMRI). Overall, children were significantly slower and less accurate than adults on all three WM conditions (digits, letters, and faces); however, within each age group, behavioral performance across the three conditions was very similar. FMRI results revealed category-specific activation in adults but not children in the intraparietal sulcus for the digit condition. Likewise, during the letter condition, category-specific activation was observed in adults but not children in the left occipital–temporal cortex. In contrast, children and adults showed highly similar brain-activity patterns in the lateral fusiform gyri when solving the 2-back WM task with face stimuli. Our results suggest that 8-year-old children do not yet engage the typical brain regions that have been associated with abstract or semantic processing of numerical symbols and letters when these processes are task-irrelevant and the primary task is demanding. Nevertheless, brain activity in letter-responsive areas predicted children’s spelling performance underscoring the relationship between abstract processing of letters and linguistic abilities. Lastly, behavioral performance on the WM task was predictive of math and language abilities highlighting the connection between WM and other cognitive abilities in development. PMID:19027079

  4. Analytical Operations Relate Structural and Functional Connectivity in the Brain.

    PubMed

    Saggio, Maria Luisa; Ritter, Petra; Jirsa, Viktor K

    2016-01-01

    Resting-state large-scale brain models vary in the amount of biological elements they incorporate and in the way they are being tested. One might expect that the more realistic the model is, the closer it should reproduce real functional data. It has been shown, instead, that when linear correlation across long BOLD fMRI time-series is used as a measure for functional connectivity (FC) to compare simulated and real data, a simple model performs just as well, or even better, than more sophisticated ones. The model in question is a simple linear model, which considers the physiological noise that is pervasively present in our brain while it diffuses across the white-matter connections, that is structural connectivity (SC). We deeply investigate this linear model, providing an analytical solution to straightforwardly compute FC from SC without the need of computationally costly simulations of time-series. We provide a few examples how this analytical solution could be used to perform a fast and detailed parameter exploration or to investigate resting-state non-stationarities. Most importantly, by inverting the analytical solution, we propose a method to retrieve information on the anatomical structure directly from functional data. This simple method can be used to complement or guide DTI/DSI and tractography results, especially for a better assessment of inter-hemispheric connections, or to provide an estimate of SC when only functional data are available. PMID:27536987

  5. Analytical Operations Relate Structural and Functional Connectivity in the Brain

    PubMed Central

    Saggio, Maria Luisa; Ritter, Petra; Jirsa, Viktor K.

    2016-01-01

    Resting-state large-scale brain models vary in the amount of biological elements they incorporate and in the way they are being tested. One might expect that the more realistic the model is, the closer it should reproduce real functional data. It has been shown, instead, that when linear correlation across long BOLD fMRI time-series is used as a measure for functional connectivity (FC) to compare simulated and real data, a simple model performs just as well, or even better, than more sophisticated ones. The model in question is a simple linear model, which considers the physiological noise that is pervasively present in our brain while it diffuses across the white-matter connections, that is structural connectivity (SC). We deeply investigate this linear model, providing an analytical solution to straightforwardly compute FC from SC without the need of computationally costly simulations of time-series. We provide a few examples how this analytical solution could be used to perform a fast and detailed parameter exploration or to investigate resting-state non-stationarities. Most importantly, by inverting the analytical solution, we propose a method to retrieve information on the anatomical structure directly from functional data. This simple method can be used to complement or guide DTI/DSI and tractography results, especially for a better assessment of inter-hemispheric connections, or to provide an estimate of SC when only functional data are available. PMID:27536987

  6. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  7. Brain potential and functional MRI evidence for how to handle two languages with one brain.

    PubMed

    Rodriguez-Fornells, Antoni; Rotte, Michael; Heinze, Hans-Jochen; Nösselt, Tömme; Münte, Thomas F

    2002-02-28

    Bilingual individuals need effective mechanisms to prevent interference from one language while processing material in the other. Here we show, using event-related brain potentials and functional magnetic resonance imaging (fMRI), that words from the non-target language are rejected at an early stage before semantic analysis in bilinguals. Bilingual Spanish/Catalan and monolingual Spanish subjects were instructed to press a button when presented with words in one language, while ignoring words in the other language and pseudowords. The brain potentials of bilingual subjects in response to words of the non-target language were not sensitive to word frequency, indicating that the meaning of non-target words was not accessed in bilinguals. The fMRI activation patterns of bilinguals included a number of areas previously implicated in phonological and pseudoword processing, suggesting that bilinguals use an indirect phonological access route to the lexicon of the target language to avoid interference.

  8. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc.

  9. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc. PMID:27102086

  10. Effect of disease and recovery on functional anatomy in brain tumor patients: insights from functional MRI and diffusion tensor imaging

    PubMed Central

    Abd-El-Barr, Muhammad M; Saleh, Emam; Huang, Raymond Y; Golby, Alexandra J

    2014-01-01

    Patients with brain tumors provide a unique opportunity to understand functional brain plasticity. Using advanced imaging techniques, such as functional MRI and diffusion tensor imaging, we have gained tremendous knowledge of brain tumor behavior, transformation, infiltration and destruction of nearby structures. Using these advanced techniques as an adjunct with more proven techniques, such as direct cortical stimulation, intraoperative navigation and advanced microsurgical techniques, we now are able to better formulate safer resection trajectories, perform larger resections at reduced risk and better counsel patients and their families about possible complications. Brain mapping in patients with brain tumors and other lesions has shown us that the old idea of fixed function of the adult cerebral cortex is not entirely true. Improving care for patients with brain lesions in the future will depend on better understanding of the functional organization and plasticity of the adult brain. Advanced noninvasive brain imaging will undoubtedly play a role in advancing this understanding. PMID:24660024

  11. Machine-learning to characterise neonatal functional connectivity in the preterm brain.

    PubMed

    Ball, G; Aljabar, P; Arichi, T; Tusor, N; Cox, D; Merchant, N; Nongena, P; Hajnal, J V; Edwards, A D; Counsell, S J

    2016-01-01

    Brain development is adversely affected by preterm birth. Magnetic resonance image analysis has revealed a complex fusion of structural alterations across all tissue compartments that are apparent by term-equivalent age, persistent into adolescence and adulthood, and associated with wide-ranging neurodevelopment disorders. Although functional MRI has revealed the relatively advanced organisational state of the neonatal brain, the full extent and nature of functional disruptions following preterm birth remain unclear. In this study, we apply machine-learning methods to compare whole-brain functional connectivity in preterm infants at term-equivalent age and healthy term-born neonates in order to test the hypothesis that preterm birth results in specific alterations to functional connectivity by term-equivalent age. Functional connectivity networks were estimated in 105 preterm infants and 26 term controls using group-independent component analysis and a graphical lasso model. A random forest-based feature selection method was used to identify discriminative edges within each network and a nonlinear support vector machine was used to classify subjects based on functional connectivity alone. We achieved 80% cross-validated classification accuracy informed by a small set of discriminative edges. These edges connected a number of functional nodes in subcortical and cortical grey matter, and most were stronger in term neonates compared to those born preterm. Half of the discriminative edges connected one or more nodes within the basal ganglia. These results demonstrate that functional connectivity in the preterm brain is significantly altered by term-equivalent age, confirming previous reports of altered connectivity between subcortical structures and higher-level association cortex following preterm birth.

  12. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.

    PubMed

    Ferreira, Luiz Kobuti; Regina, Ana Carolina Brocanello; Kovacevic, Natasa; Martin, Maria da Graça Morais; Santos, Pedro Paim; Carneiro, Camila de Godoi; Kerr, Daniel Shikanai; Amaro, Edson; McIntosh, Anthony Randal; Busatto, Geraldo F

    2016-09-01

    Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity.

  13. When Neuroscience 'Touches' Architecture: From Hapticity to a Supramodal Functioning of the Human Brain.

    PubMed

    Papale, Paolo; Chiesi, Leonardo; Rampinini, Alessandra C; Pietrini, Pietro; Ricciardi, Emiliano

    2016-01-01

    In the last decades, the rapid growth of functional brain imaging methodologies allowed cognitive neuroscience to address open questions in philosophy and social sciences. At the same time, novel insights from cognitive neuroscience research have begun to influence various disciplines, leading to a turn to cognition and emotion in the fields of planning and architectural design. Since 2003, the Academy of Neuroscience for Architecture has been supporting 'neuro-architecture' as a way to connect neuroscience and the study of behavioral responses to the built environment. Among the many topics related to multisensory perceptual integration and embodiment, the concept of hapticity was recently introduced, suggesting a pivotal role of tactile perception and haptic imagery in architectural appraisal. Arguments have thus risen in favor of the existence of shared cognitive foundations between hapticity and the supramodal functional architecture of the human brain. Precisely, supramodality refers to the functional feature of defined brain regions to process and represent specific information content in a more abstract way, independently of the sensory modality conveying such information to the brain. Here, we highlight some commonalities and differences between the concepts of hapticity and supramodality according to the distinctive perspectives of architecture and cognitive neuroscience. This comparison and connection between these two different approaches may lead to novel observations in regard to people-environment relationships, and even provide empirical foundations for a renewed evidence-based design theory. PMID:27375542

  14. When Neuroscience ‘Touches’ Architecture: From Hapticity to a Supramodal Functioning of the Human Brain

    PubMed Central

    Papale, Paolo; Chiesi, Leonardo; Rampinini, Alessandra C.; Pietrini, Pietro; Ricciardi, Emiliano

    2016-01-01

    In the last decades, the rapid growth of functional brain imaging methodologies allowed cognitive neuroscience to address open questions in philosophy and social sciences. At the same time, novel insights from cognitive neuroscience research have begun to influence various disciplines, leading to a turn to cognition and emotion in the fields of planning and architectural design. Since 2003, the Academy of Neuroscience for Architecture has been supporting ‘neuro-architecture’ as a way to connect neuroscience and the study of behavioral responses to the built environment. Among the many topics related to multisensory perceptual integration and embodiment, the concept of hapticity was recently introduced, suggesting a pivotal role of tactile perception and haptic imagery in architectural appraisal. Arguments have thus risen in favor of the existence of shared cognitive foundations between hapticity and the supramodal functional architecture of the human brain. Precisely, supramodality refers to the functional feature of defined brain regions to process and represent specific information content in a more abstract way, independently of the sensory modality conveying such information to the brain. Here, we highlight some commonalities and differences between the concepts of hapticity and supramodality according to the distinctive perspectives of architecture and cognitive neuroscience. This comparison and connection between these two different approaches may lead to novel observations in regard to people–environment relationships, and even provide empirical foundations for a renewed evidence-based design theory. PMID:27375542

  15. Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2016-07-01

    The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals.

  16. Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?

    PubMed Central

    Jalili, Mahdi

    2016-01-01

    The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals. PMID:27417262

  17. Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?

    PubMed

    Jalili, Mahdi

    2016-01-01

    The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer's Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals. PMID:27417262

  18. Functional networks underlying latent inhibition learning in the mouse brain.

    PubMed

    Puga, Frank; Barrett, Douglas W; Bastida, Christel C; Gonzalez-Lima, F

    2007-10-15

    The present study reports the first comprehensive map of brain networks underlying latent inhibition learning and the first application of structural equation modeling to cytochrome oxidase data. In latent inhibition, repeated exposure to a stimulus results in a latent form of learning that inhibits subsequent associations with that stimulus. As neuronal energy demands to form learned associations changes, so does the induction of the respiratory enzyme cytochrome oxidase. Therefore, cytochrome oxidase can be used as an endpoint metabolic marker of the effects of experience on regional brain metabolic capacity. Quantitative cytochrome oxidase histochemistry was used to map brain regions in mice trained on a tone-footshock fear conditioning paradigm with either tone preexposure (latent inhibition), conditioning only (acquisition), conditioning followed by tone alone (extinction), or no handling or conditioning (naive). The ventral cochlear nucleus, medial geniculate, CA1 hippocampus, and perirhinal cortex showed modified metabolic capacity due to latent inhibition. Structural equation modeling was used to determine the causal influences in an anatomical network of these regions and others thought to mediate latent inhibition, including the accumbens and entorhinal cortex. An uncoupling of ascending influences between auditory regions was observed in latent inhibition. There was also a reduced influence on the accumbens from the perirhinal cortex in both latent inhibition and extinction. The results suggest a specific network with a neural mechanism of latent inhibition that appears to involve sensory gating, as evidenced by modifications in metabolic capacity and effective connectivity between auditory regions and reduced perirhinal cortex influence on the accumbens.

  19. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    PubMed Central

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  20. Using computational models to relate structural and functional brain connectivity

    PubMed Central

    Hlinka, Jaroslav; Coombes, Stephen

    2012-01-01

    Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson–Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph–theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics. PMID:22805059

  1. Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain

    PubMed Central

    Herbst, Eric AF; Holloway, Graham P

    2015-01-01

    Abstract Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia–reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. PMID:25529987

  2. Regioisomers of phosphatidylcholine containing DHA and their potential to deliver DHA to the brain: role of phospholipase specificities.

    PubMed

    Chen, Su; Subbaiah, Papasani V

    2013-07-01

    Because neurons cannot synthesize docosahexaenoic acid (DHA), a dietary supplement of DHA in the form of phospholipids is recommended for maintaining proper brain functions. A model for delivering dietary sn-2-DHA phosphatidylcholine (PtdCho) to the brain involves phospholipase A2 based deacylation/reacylation cycle followed by delivery of DHA through high-density lipoproteins that bind to the brain capillary endothelial cells in the blood-brain barrier (BBB). Our previous study demonstrated preference of endothelial lipase (EL) for PtdCho species that contain sn-2-DHA, resulting in production of sn-2-DHA lysoPtdCho that is preferentially taken up by the brain. However, since CoA-dependent reacylation of lysoPtdCho with DHA at the sn-2 position is not favored in vivo, we proposed that sn-1-DHA PtdCho in the diet may be a superior source of DHA for the brain. To test this hypothesis, DHA PtdCho regioisomers were prepared, and their hydrolysis by physiologically relevant phospholipases was determined. The data presented here show that: (1) group X secretory PLA2 (sPLA2) is about threefold more active than group V sPLA2 in releasing sn-2 fatty acids from DHA regioisomers, and (2) EL shows its specificity for DHA PtdCho species in a concentration independent manner, suggesting that the enzyme could play a major role in generating free sn-1-DHA or/and sn-2-DHA lysoPtdCho from the regioisomers in the BBB. We propose that PtdCho species containing sn-1-DHA