Sample records for specific cation effects

  1. Development of a novel device to trap heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    PubMed

    Torigoe, Hidetaka; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Kozasa, Tetsuo

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel device to trap each of Hg(II) and Ag(I) cation. The device is composed of 5'-biotinylated T-rich or C-rich DNA oligonucleotides, BIO-T20: 5'-Bio-T(20)-3' or BIO-C20: 5'-Bio-C(20)-3' (Bio is a biotin), immobilized on streptavidin-coated polystylene beads. When the BIO-T20-immobilized beads were added to a solution containing Hg(II) cation, and the beads trapping Hg(II) cation were collected by centrifugation, almost all of Hg(II) cation were removed from the solution. Also, when the BIO-C20-immobilized beads were added to a solution containing Ag(I) cation, and the beads trapping Ag(I) cation were collected by centrifugation, almost all of Ag(I) cation were removed from the solution. We conclude that, using the novel device developed in this study, Hg(II) and Ag(I) cation can be effectively removed from the solution.

  2. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    PubMed

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  3. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    PubMed

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cytotoxic effect induced by retinoic acid loaded into galactosyl-sphingosine containing liposomes on human hepatoma cell lines.

    PubMed

    Díaz, Cecilia; Vargas, Ernesto; Gätjens-Boniche, Omar

    2006-11-15

    Two retinoids, ATRA and 13cisRA, were incorporated into liposomes of different composition and charge and added to two hepatoma cell lines with different degree of transformation to measure cytotoxicity by MTT assay. Retinoid-free cationic liposomes were more toxic than the other kinds (anionic and made only of PC) but were also the best delivery system for retinoic acid to induce specific cytotoxic effects on these tumor hepatoma cell lines. Galactosyl-sphingosine containing cationic liposomes increased the cytotoxic effect induced by ATRA on Hep3B cells when compared to glucosyl-sphingosine cationic liposomes, but did not improve the effect induced by free retinoid or ATRA loaded into liposomes without glycolipids. This suggests that in this cell line, ATRA is being incorporated by a mechanism mediated by the asialoglycoprotein receptor, but at the same time, non-specific sugar-independent capture is also taking place as well as free diffusion of ATRA directly through the membrane. Galactose-specific effect was not observed in HepG2 cells treated with ATRA or both cell lines treated with 13cisRA. In fact, treatment of HepG2 cells with retinoids entrapped into liposomes likely induces proliferation instead of cytotoxicity, a result that interferes with the measurement of cell death by MTT. Compared to the specific effect of ATRA entrapped into cationic liposomes, vesicles made only by PC, did not mediate a specific mechanism, since differences between ATRA in galactosyl- and glucosyl-shpingosine PC-liposomes were not statistically significant. The specific mechanism was not present in the myoblastic cell line C2C12, where ATRA incorporated into galactosyl- and glucosyl-sphingosine containing cationic and PC-liposomes, was able to induce cytotoxicity at the same extent. Micelles containing ATRA and galactosyl-sphingosine had a significantly more toxic effect than the retinoid administered together with glucosyl-sphingosine, in Hep3B cells. Also, micelles containing ATRA were more toxic than glycolipid-containing liposomes with ATRA, for both kinds of sphingosines. The same effect was not observed in C2C12 cells, where glycolipid-containing liposomes worked better than micelles, and a sugar-specific mechanism was not seen. This suggests that, even though galactose-containing cationic liposomes could be a promising approach, a galactose-specific emulsion system could be the best strategy to specifically deliver retinoic acid to liver tumor cells, since it shows tissue specificity (perhaps induced by ASGPR-mediated internalization) and a stronger cytotoxic effect than the retinoid incorporated into liposomes.

  5. Studies on Cation-induced Thylakoid Membrane Stacking, Fluorescence Yield, and Photochemical Efficiency 1

    PubMed Central

    Jennings, Robert Charles; Forti, Giorgio; Gerola, Paolo Domenico; Garlaschi, Flavio Massimo

    1978-01-01

    Trypsin digestion of photosynthetic membranes isolated from spinach (Spinacia oleracea L.) leaves eliminates the cation stimulation of chlorophyll fluorescence. High concentrations of cations protect the fluorescence yield against trypsin digestion, and the cation specificity for this protection closely resembles that required for the stimulation of fluorescence by cations. Trypsin digestion reverses cation-induced thylakoid stacking, and the time course of this effect seems to parallel that of the reversal of cation fluorescence. High concentrations of cations protect thylakoid stacking and cation-stimulated fluorescence alike. The cation stimulation of photosytem II photochemistry remains intact after trypsinization has reversed both cation-induced thylakoid stacking and fluorescence yield. It is concluded that cation-stimulated fluorescence yield, and not the cation stimulation of photosystem II photochemistry, is associated with thylakoid membrane stacking. ImagesFig. 2Fig. 3 PMID:16660630

  6. Extraordinary effects of specific monovalent cations on activation of reovirus transcriptase by chymotrypsin in vitro.

    PubMed

    Borsa, J; Sargent, M D; Long, D G; Chapman, J D

    1973-02-01

    Activation of reovirus transcriptase activity, latent in intact virions, by digestion of purified virions with chymotrypsin (CHT) in vitro shows a stringent requirement for specific monovalent cations. Cs(+), Rb(+), or K(+) ions are capable of facilitating activation by chymotryptic digestion. Na(+), Li(+), or NH(4) (+) ions are not capable of facilitating the CHT activation of polymerase activity and are antagonistic towards the effects of the facilitating ions. The data indicate that the effect of the cations is exerted on activation of the polymerase activity by CHT as opposed to an effect on polymerization per se. This effect may be important biologically in that it provides a mechanism whereby the virion can sense whether it is in an intracellular or an extracellular environment and thereby can avoid premature uncoating.

  7. Tissue-Specific and Cation/Anion-Specific DNA Methylation Variations Occurred in C. virgata in Response to Salinity Stress

    PubMed Central

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations. PMID:24223802

  8. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    PubMed

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  9. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*

    PubMed Central

    He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.

    2015-01-01

    Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728

  10. [The effect of entrapment of CpG sequence with cationic PLG nanoparticles on the immune responses of mice to pig paratyphoid vaccine].

    PubMed

    Wu, Mei; Shi, Ling; Liu, Shigui; Li, Jiangling; Wu, Kaiyuan; Wang, Lihuan; Shen, Yi; Liu, Kun; Zheng, Yong; Zhang, Xinshen; Gao, Rong

    2005-10-01

    Cationic PLG nanoparticles and liposome were prepared and used as package molecules to pack up pUC18-CpG. The effects of the packed pUC18-CpG on the cellular and humoral immune responses were detected in the mice that were inoculated with pig paratyphoid vaccine. The results showed that compared with the control, the amount of IgG and the titre of specific antibody were significantly increased in the sera of mice immunized with the CpG plasmid entrapped by cationic PLG nanoparticles; the proliferation and induced IL-2 bioactivity of lymphocytes were significantly enhanced in the spleen of the immunized mice; the stimulatory effect of cationic PLG nanoparticles was similar to or stronger than that of cationic liposome. These indicated that cationic PLG nanoparticle could be employed as an effective package molecule to promote the immunostimulatory effect of pUC18-CpG.

  11. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    PubMed Central

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  12. Extraordinary Effects of Specific Monovalent Cations on Activation of Reovirus Transcriptase by Chymotrypsin In Vitro

    PubMed Central

    Borsa, J.; Sargent, M. D.; Long, D. G.; Chapman, J. D.

    1973-01-01

    Activation of reovirus transcriptase activity, latent in intact virions, by digestion of purified virions with chymotrypsin (CHT) in vitro shows a stringent requirement for specific monovalent cations. Cs+, Rb+, or K+ ions are capable of facilitating activation by chymotryptic digestion. Na+, Li+, or NH4+ ions are not capable of facilitating the CHT activation of polymerase activity and are antagonistic towards the effects of the facilitating ions. The data indicate that the effect of the cations is exerted on activation of the polymerase activity by CHT as opposed to an effect on polymerization per se. This effect may be important biologically in that it provides a mechanism whereby the virion can sense whether it is in an intracellular or an extracellular environment and thereby can avoid premature uncoating. PMID:4347424

  13. Apoptosis induction and anti-cancer activity of LeciPlex formulations.

    PubMed

    Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S

    2014-10-01

    Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

  14. The structure and photochemical transformation of cyclopropylacetylene radical cation as revealed by matrix EPR and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.

    2012-05-01

    The primary radical cation of cyclopropylacetylene was first characterized by EPR spectroscopy in low-temperature freon matrices. The assignment was confirmed by specific deuteration and quantum-chemical calculations at PBE0 and CCSD(T) levels. Photolysis with visible light led to irreversible transformation of the initial species to a ring-open structure. Detailed computational analysis of energy and magnetic resonance parameters of possible reaction products justified formation of pent-3-en-1-yne radical cation (presumably, a (Z)-isomer). This conclusion was also supported by the effect of specific deuteration.

  15. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O`Neill, M.A.; Pellerin, P.J.M.; Warrenfeltz, D.; Vidal, S.; Darvill, A.G.; Albersheim, P.

    1999-03-02

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations. 15 figs.

  16. Plant rhamnogalacturonan II complexation of heavy metal cations

    DOEpatents

    O'Neill, Malcolm A.; Pellerin, Patrice J. M.; Warrenfeltz, Dennis; Vidal, Stephane; Darvill, Alan G.; Albersheim, Peter

    1999-01-01

    The present invention provides rhamnogalacturonan-II (RG-II) and relates to its ability to complex specific multivalent heavy metal cations. In the presence of boric acid, RG-II monomers form dimers that are cross-linked by a borate ester. The yield of such borate ester cross-linked dimers of RG-II is enhanced in the presence of specific heavy metal cations. The present invention further relates to the utility of RG-II in assays for the detection of specific heavy metal contamination; as a reagent useful in the removal of specific heavy metal cations contaminating foods and liquids, for example, fish, wines, etc.; as a pharmaceutical composition useful as an antidote in specific heavy metal cation poisoning; as a treatment for the detoxification of specific heavy metal cations from blood and/or tissues; and in a method of remediation of waters and soils contaminated with specific heavy metal cations.

  17. Effect of Several Clay Minerals and Humic Acid on the Survival of Klebsiella aerogenes Exposed to Ultraviolet Irradiation1

    PubMed Central

    Bitton, Gabriel; Henis, Y.; Lahav, N.

    1972-01-01

    The effect of various clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet (UV) irradiation was investigated. A protective effect was observed and found to depend on the specific light absorption and light scattering properties of the clay minerals and the humic acid used. The higher the specific absorption, the better was the survival of K. aerogenes after UV irradiation. Bacterial survival was lower in clays saturated with divalent cations (Ca, Zn) than in those homoionic to monovalent cations (K). PMID:5031559

  18. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    PubMed

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  19. Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect.

    PubMed

    Liu, Yu; Dinh, Jim; Tade, Moses O; Shao, Zongping

    2016-09-14

    Oxygen ions can be exploited as a charge carrier to effectively realize a new type of anion-intercalation supercapacitor. In this study, to get some useful guidelines for future materials development, we comparatively studied SrCoO3-δ (SC), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and Co3O4 as electrodes in supercapacitors with aqueous alkaline electrolyte. The effect of interaction between the electrode materials with the alkaline solution was focused on the structure and specific surface area of the electrode material, and ultimately the electrochemical performance was emphasized. Both BSCF and SC were found to experience cation leaching in alkaline solution, resulting in an increase in the specific surface area of the material, but overleaching caused the damage of perovskite structure of BSCF. Barium leaching was more serious than strontium, and the cation leaching was component dependent. Although high initial capacitance was achieved for BSCF, it was not a good candidate as intercalation-type electrode for supercapacitor because of poor cycling stability from serious Ba(2+) and Sr(2+) leaching. Instead, SC was a favorable electrode candidate for practical use in supercapacitors due to its high capacity and proper cation leaching capacity, which brought beneficial effect on cycling stability. It is suggested that cation leaching effect should be seriously considered in the development of new perovskite materials as electrodes for supercapacitors.

  20. Cationic liposomes as vaccine adjuvants.

    PubMed

    Christensen, Dennis; Korsholm, Karen S; Rosenkrands, Ida; Lindenstrøm, Thomas; Andersen, Peter; Agger, Else Marie

    2007-10-01

    Cationic liposomes are lipid-bilayer vesicles with a positive surface charge that have re-emerged as a promising new adjuvant technology. Although there is some evidence that cationic liposomes themselves can improve the immune response against coadministered vaccine antigens, their main functions are to protect the antigens from clearance in the body and deliver the antigens to professional antigen-presenting cells. In addition, cationic liposomes can be used to introduce immunomodulators to enhance and modulate the immune response in a desirable direction and, thereby, represent an efficient tool when designing tailor-made adjuvants for specific disease targets. In this article we review the recent progress on cationic liposomes as vehicles, enhancing the effect of immunomodulators and the presentation of vaccine antigens.

  1. Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations

    DOE PAGES

    Ye, Libin; Neale, Chris Andrew; Sljoka, Adnan; ...

    2018-04-10

    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A 2A GPCR. While Na + reinforces an inactive ensemble and a partial-agonist stabilized state, Ca 2+ and Mg 2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridgemore » specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. Lastly, an understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.« less

  2. Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Libin; Neale, Chris Andrew; Sljoka, Adnan

    Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A 2A GPCR. While Na + reinforces an inactive ensemble and a partial-agonist stabilized state, Ca 2+ and Mg 2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridgemore » specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. Lastly, an understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.« less

  3. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  4. Gating current studies reveal both intra- and extracellular cation modulation of K+ channel deactivation

    PubMed Central

    Wang, Zhuren; Zhang, Xue; Fedida, David

    1999-01-01

    The presence of permeant ions can modulate the rate of gating charge return in wild-type human heart K+ (hKv1.5) channels. Here we employ gating current measurements in a non-conducting mutant, W472F, of the hKv1.5 channel to investigate how different cations can modulate charge return and whether the actions can be specifically localized at the internal as well as the external mouth of the channel pore. Intracellular cations were effective at accelerating charge return in the sequence Cs+ > Rb+ > K+ > Na+ > NMG+. Extracellular cations accelerated charge return with the selectivity sequence Cs+ > Rb+ > Na+ = NMG+. Intracellular and extracellular cation actions were of relatively low affinity. The Kd for preventing slowing of the time constant of the off-gating current decay (τoff) was 20.2 mM for intracellular Cs+ (Csi+) and 358 mM for extracellular Cs+ (Cso+). Both intracellular and extracellular cations can regulate the rate of charge return during deactivation of hKv1.5, but intracellular cations are more effective. We suggest that ion crystal radius is an important determinant of this action, with larger ions preventing slowing more effectively. Important parallels exist with cation-dependent modulation of slow inactivation of ionic currents in this channel. However, further experiments are required to understand the exact relationship between acceleration of charge return and the slowing of inactivation of ionic currents by cations. PMID:10050001

  5. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.

    PubMed

    Durst, Julien; Chatenet, Marian; Maillard, Frédéric

    2012-10-05

    Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.

  6. Cation radius effects on the helix-coil transition of DNA. Cryptates and other large cations.

    PubMed Central

    Trend, B L; Knoll, D A; Ueno, M; Evans, D F; Bloomfield, V A

    1990-01-01

    Most polyelectrolyte theories of the effect of ions on the thermal melting of DNA assume that the predominant influence of the cations comes through their charge. Ion size and structure are treated, for analytic convenience, as negligible variables. We have examined the validity of this assumption by measuring the melting temperature of calf thymus DNA as a function of salt concentration with four univalent cations of different hydrated radii. These are K+ (3.3 A), (n-Pr)4N+ (4.5 A), (EtOH)4N+ (4.5 A), and C222-K+ (5 A). C222-K+ is a complex of cryptand C222 with K+. With K+ as the sole cation, Tm varies linearly with the log of ionic strength over the range 0.001-0.1 M. With all the K+ sequestered by an equimolar amount of C222, Tm is depressed by 10-20 degrees C and the slope of Tm vs. ionic strength is lower. At low ionic strength, an even greater reduction in Tm is achieved with (n-Pr)4N+; but the similar-sized (EtOH)4N+ gives a curve more similar to K+. Theoretical modeling, taking into account cation size through the Poisson-Boltzmann equation for cylindrical polyelectrolytes, predicts that larger cations should be less effective in stabilizing the double helix; but the calculated effect is less than observed experimentally. These results show that valence, cation size, and specific solvation effects are all important in determining the stability of the double-helical form of DNA. PMID:2344467

  7. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  8. Augmented liver targeting of exosomes by surface modification with cationized pullulan.

    PubMed

    Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko

    2017-07-15

    Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse liver injury model, the modification of PKH-labeled exosomes with pullulan enabled increased accumulation of PKH specifically in the injured liver. Furthermore the greater therapeutic effects against the liver injury compared with unmodified original exosomes was observed. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Cations Form Sequence Selective Motifs within DNA Grooves via a Combination of Cation-Pi and Ion-Dipole/Hydrogen Bond Interactions

    PubMed Central

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves. PMID:23940752

  10. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    PubMed

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  11. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    PubMed Central

    Kristensen, Kasper; Henriksen, Jonas R.; Andresen, Thomas L.

    2015-01-01

    Cationic membrane-active peptides have been studied for years in the hope of developing them into novel types of therapeutics. In this article, we investigate an effect that might have significant experimental implications for investigators who wish to study these peptides, namely, that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membrane-active peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show that, at typical experimental peptide concentrations, 90% or more of the peptides might be lost from solution due to rapid adsorption to the walls of the sample containers. Thus, our results emphasize that investigators should always keep these adsorption effects in mind when designing and interpreting experiments on cationic membrane-active peptides. We conclude the article by discussing different strategies for reducing the experimental impact of these adsorption effects. PMID:25932639

  12. Different cation stresses affect specifically osmotic root hydraulic conductance, involving aquaporins, ATPase and xylem loading of ions in Capsicum annuum, L. plants.

    PubMed

    Cabañero, Francisco J; Carvajal, Micaela

    2007-10-01

    In order to study the effect of nutrient stress on water uptake in pepper plants (Capsicum annuum L.), the excess or deficiency of the main cations involved in plant nutrition (K(+), Mg(2+), Ca(2+)) and two different degrees of salinity were related to the activity of plasma membrane H(+)-ATPase, the pH of the xylem sap, nutrient flux into the xylem (J(s)) and to a number of parameters related to water relations, such as root hydraulic conductance (L(0)), stomatal conductance (g(s)) and aquaporin activity. Excess of K(+), Ca(+) and NaCl produced a toxic effect on L(0) while Mg(2+) starvation produced a positive effect, which was in agreement with aquaporin functionality, but not with ATPase activity. The xylem pH was altered only by Ca treatments. The results obtained with each treatment could suggest that detection of the quality of the nutrient supply being received by roots can be related to aquaporins functionality, but also that each cation stress triggers specific responses that have to be assessed individually.

  13. Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; McCullough, Brannon R.; Pierre, Anaëlle; Grintsevich, Elena E.; Reisler, Emil; De La Cruz, Enrique M.

    2012-01-01

    The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments. PMID:23027950

  14. Trends in Effective Diffusion Coefficients for Ion-exchange Strengthening of Soda Lime Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Karlsson, Stefan; Wondraczek, Lothar; Ali, Sharafat; Jonson, Bo

    2017-04-01

    Monovalent cations enable efficient ion exchange processes due to their high mobility in silicate glasses. Numerous properties can be modified in this way, e.g., mechanical, optical, electrical or chemical performance. In particular, alkali cation exchange has received significant attention, primarily with respect to introducing compressive stress into the surface region of a glass, which increases mechanical durability. However, most of the present applications rely on specifically tailored matrix compositions in which the cation mobility is enhanced. This largely excludes the major area of soda lime silicates (SLS) such as are commodity in almost all large-scale applications of glasses. Basic understanding of the relations between structural parameters and the effective diffusion coefficients may help to improve ion-exchanged SLS glass products, on the one hand in terms of obtainable strength and on the other in terms of cost. In the present paper, we discuss the trends in the effective diffusion coefficients when exchanging Na+ for various monovalent cations (K+, Cu+, Ag+, Rb+ and Cs+) by drawing relations to physico-chemical properties. Correlations of effective diffusion coefficients were found for the bond dissociation energy and the electronic cation polarizability, indicating that localization and rupture of bonds are of importance for the ion exchange rate.

  15. Uptake of photosensitizers by bacteria is influenced by the presence of cations

    NASA Astrophysics Data System (ADS)

    Kishen, A.; George, S.

    2007-05-01

    This investigation studies the influence of cations on photosensitizer uptake by Enterococcus faecalis (gram positive) and Actinobacillus actinomycetemcomitans (gram negative). Methods- The uptake of Methylene blue (MB) and Indocyanine Green (ICG), by bacteria were studied under the influence of divalent cations (CaCl II & MgCl II) and EDTA. Further, E. faecalis cells subjected to trypsinisation and calcium channel blocker (verapamil) were also analysed for MB and ICG uptake inorder to understand the mechanism of photosensitizer uptake. Results- Uptake of ICG was enhanced in the presence of divalent cations in E. faecalis and A. actinomycetemcomitans. Treating cells with EDTA had no significant effect on the photosensitizer uptake, although the highest concentration tested showed an enhancement of uptake. In contrast to ICG, MB showed a decreased uptake by bacterial cells on subjecting them to divalent cations and EDTA. Calcium channel blocker had no significant inhibitory effect on photosensitizers uptake. However, trypsin treatment resulted in significant reduction of ICG uptake. The result suggested that ICG uptake by bacteria is mediated through specific transporter protein while MB is associated with the outer surface structures of bacterial cells.

  16. Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants

    PubMed Central

    Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong

    2014-01-01

    The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394

  17. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.

    PubMed

    Dishon, Matan; Zohar, Ohad; Sivan, Uri

    2011-11-01

    Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) < Ca(2+) < Na(+) < Sr(2+) < K(+) < Cs(+), follows cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.

  18. Molecular simulation study on Hofmeister cations and the aqueous solubility of benzene.

    PubMed

    Ganguly, Pritam; Hajari, Timir; van der Vegt, Nico F A

    2014-05-22

    We study the ion-specific salting-out process of benzene in aqueous alkali chloride solutions using Kirkwood-Buff (KB) theory of solutions and molecular dynamics simulations with different empirical force field models for the ions and benzene. Despite inaccuracies in the force fields, the simulations indicate that the decrease of the Setchenow salting-out coefficient for the series NaCl > KCl > RbCl > CsCl is determined by direct benzene-cation correlations, with the larger cations showing weak interactions with benzene. Although ion-specific aqueous solubilities of benzene may be affected by indirect ion-ion, ion-water, and water-water correlations, too, these correlations are found to be unimportant, with little to no effect on the Setchenow salting-out coefficients of the various salts. We further considered LiCl, which is experimentally known to be a weaker salting-out agent than NaCl and KCl and, therefore, ranks at an unusual position within the Hofmeister cation series. The simulations indicate that hydrated Li(+) ions can take part of the benzene hydration shell while the other cations are repelled by it. This causes weaker Li(+) exclusion around the solute and a resulting, weaker salting-out propensity of LiCl compared to that of the other salts. Removing benzene-water and benzene-salt electrostatic interactions in the simulations does not affect this mechanism, which may therefore also explain the smaller effect of LiCl, as compared to that of NaCl or KCl, on aqueous solvation and hydrophobic interaction of nonpolar molecules.

  19. Ionophores and receptors using cation-pi interactions: collarenes.

    PubMed

    Choi, H S; Suh, S B; Cho, S J; Kim, K S

    1998-10-13

    Cation-pi interactions are important forces in molecular recognition by biological receptors, enzyme catalysis, and crystal engineering. We have harnessed these interactions in designing molecular systems with circular arrangement of benzene units that are capable of acting as ionophores and models for biological receptors. [n]Collarenes are promising candidates with high selectivity for a specific cation, depending on n, because of their structural rigidity and well-defined cavity size. The interaction energies of [n]collarenes with cations have been evaluated by using ab initio calculations. The selectivity of these [n]collarenes in aqueous solution was revealed by using statistical perturbation theory in conjunction with Monte Carlo and molecular dynamics simulations. It has been observed that in [n]collarenes the ratio of the interaction energies of a cation with it and the cation with the basic building unit (benzene) can be correlated to its ion selectivity. We find that collarenes are excellent and efficient ionophores that bind cations through cation-pi interactions. [6]Collarene is found to be a selective host for Li+ and Mg2+, [8]collarene for K+ and Sr2+, and [10]collarene for Cs+ and Ba2+. This finding indicates that [10]collarene and [8]collarene could be used for effective separation of highly radioactive isotopes, 137Cs and 90Sr, which are major constituents of nuclear wastes. More interestingly, collarenes of larger cavity size can be useful in capturing organic cations. [12]Collarene exhibits a pronounced affinity for tetramethylammonium cation and acetylcholine, which implies that it could serve as a model for acetylcholinestrase. Thus, collarenes can prove to be novel and effective ionophores/model-receptors capable of heralding a new direction in molecular recognition and host-guest chemistry.

  20. Surface modification of ZSM-5 zeolite: effect of cation on selective conversion of biomass-derived oil

    NASA Astrophysics Data System (ADS)

    Widayatno, W. B.

    2017-04-01

    This paper reports the surface modification of high silica ZSM-5 zeolite, particularly emphasizing the effect of cation type on selective conversion of biomass-derived oil. XRD spectra of the NaOH-treated HZSM-5 showed notable crystallinity decrease at specific crystal plane orientation. The N2-physisorption tests confirmed mesoporosity evolution as NaOH concentration was increased. NH3-desorption tests revealed a significant change on surface acidity which involved realumination and cation replacement processes. The utilization of untreated HZSM-5 as well as hierarchical NaZSM-5 for catalytic conversion of bio-oil showed the effect of cation type and mesoporosity on chemicals distribution. The untreated HZSM-5 showed high selectivity to aromatics, which degraded gradually due to deactivation and poisoning of the acid sites. Meanwhile, hierarchical NaZSM-5 showed high selectivity to phenolic compound, which became more stable for 0.4M NaOH-treated zeolite (Na04). The current findings provide an additional insight on the potentials of NaZSM-5 for bio-oil valorization.

  1. In vivo cation exchange in quantum dots for tumor-specific imaging.

    PubMed

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  2. Protein destabilisation in ionic liquids: the role of preferential interactions in denaturation.

    PubMed

    Figueiredo, Angelo Miguel; Sardinha, Joao; Moore, Geoffrey R; Cabrita, Eurico J

    2013-12-07

    The preferential binding of anions and cations in aqueous solutions of the ionic liquids (ILs) 1-butyl-3-methylimidazolium ([C4mim](+)) and 1-ethyl-3-methylimidazolium ([C2mim](+)) chloride and dicyanamide (dca(-)) with the small alpha-helical protein Im7 was investigated using a combination of differential scanning calorimetry, NMR spectroscopy and molecular dynamics (MD) simulations. Our results show that direct ion interactions are crucial to understand the effects of ILs on the stability of proteins and that an anion effect is dominant. We show that the binding of weakly hydrated anions to positively charged or polar residues leads to the partial dehydration of the backbone groups, and is critical to control stability, explaining why dca(-) is more denaturing than Cl(-). Direct cation-protein interactions also mediate stability; cation size and hydrophobicity are relevant to account for destabilisation as shown by the effect of [C4mim](+) compared to [C2mim](+). The specificity in the interaction of IL ions with protein residues established by weak favourable interactions is confirmed by NMR chemical shift perturbation, amide hydrogen exchange data and MD simulations. Differences in specificity are due to the balance of interaction established between ion pairs and ion-solvent that determine the type of residues affected. When the interaction of both cation and anion with the protein is strong the net result is similar to a non-specific interaction, leading ultimately to unfolding. Since the nature of the ions is a determinant of the level of interaction with the protein towards denaturation or stabilisation, ILs offer a unique possibility to modulate protein stabilisation or even folding events.

  3. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions.

    PubMed

    Okur, Halil I; Hladílková, Jana; Rembert, Kelvin B; Cho, Younhee; Heyda, Jan; Dzubiella, Joachim; Cremer, Paul S; Jungwirth, Pavel

    2017-03-09

    Ions differ in their ability to salt out proteins from solution as expressed in the lyotropic or Hofmeister series of cations and anions. Since its first formulation in 1888, this series has been invoked in a plethora of effects, going beyond the original salting out/salting in idea to include enzyme activities and the crystallization of proteins, as well as to processes not involving proteins like ion exchange, the surface tension of electrolytes, or bubble coalescence. Although it has been clear that the Hofmeister series is intimately connected to ion hydration in homogeneous and heterogeneous environments and to ion pairing, its molecular origin has not been fully understood. This situation could have been summarized as follows: Many chemists used the Hofmeister series as a mantra to put a label on ion-specific behavior in various environments, rather than to reach a molecular level understanding and, consequently, an ability to predict a particular effect of a given salt ion on proteins in solutions. In this Feature Article we show that the cationic and anionic Hofmeister series can now be rationalized primarily in terms of specific interactions of salt ions with the backbone and charged side chain groups at the protein surface in solution. At the same time, we demonstrate the limitations of separating Hofmeister effects into independent cationic and anionic contributions due to the electroneutrality condition, as well as specific ion pairing, leading to interactions of ions of opposite polarity. Finally, we outline the route beyond Hofmeister chemistry in the direction of understanding specific roles of ions in various biological functionalities, where generic Hofmeister-type interactions can be complemented or even overruled by particular steric arrangements in various ion binding sites.

  4. Effect of Organic Cations on Hydrogen Oxidation Reaction of Carbon Supported Platinum

    DOE PAGES

    Chung, Hoon Taek; Choe, Yong-Kee; Martinez, Ulises; ...

    2016-11-02

    Effect of organic cations on hydrogen oxidation reaction (HOR) of carbon supported platinum (Pt/C) is investigated using three 0.1 M alkaline electrolytes, tetramethylammonium hydroxide (TMAOH), tetrabutylammonium hydroxide (TBAOH) and tetrabutylphosphonium hydroxide (TBPOH). Rotating disk electrode experiments indicate that the HOR of Pt/C is adversely impacted by time-dependent and potential-driven chemisorption of organic cations. In-situ infrared reflection adsorption spectroscopy experiments indicated that the specific chemisorption of organic cations drives the hydroxide co-adsorption on Pt surface. The co-adsorption of TMA + and hydroxide at 0.1 V vs. reversible hydrogen electrode is the strongest; consequently, complete removal of the co-adsorbed layer from Ptmore » surface is difficult even after exposure the Pt surface to 1.2 V. Conversely, the chemisorption of TBP+ is the weakest, yet notable decrease of HOR current density is still observed. The adsorption energies, ΔE, for TMA +, TBA +, and TBP + on Pt (111) surface from density functional theory are computed to be -2.79, -2.42 and -2.00 eV, respectively. The relatively low adsorption energy of TBP + is explained by the steric hindrance and electronic effect. This study emphasizes the importance of cationic group on HOR activity of alkaline anion exchange membrane fuel cells.« less

  5. The effect of ferricyanide with iodoacetate in calcium-free solution on passive cation permeability in human red blood cells: comparison with the Gardos-effect and with the influence of PCMBS on passive cation permeability.

    PubMed

    Fuhrmann, G F; Fehlau, R; Schneider, H; Knauf, P A

    1989-08-07

    Freshly prepared human red blood cells incubated with 5 mM ferricyanide, 0.2 mM iodoacetate and 2 mM adenosine in the presence of 5 mM EGTA demonstrate comparable increases in Na+ and K+ permeability (ferricyanide effect). This effect is unrelated to the Ca2+-activated K+ channel (Gardos effect) since influx of Ca2+ from outside the cell is excluded. Also this effect is different from the non-specific Na+ and K+ permeability change elicited by PCMBS. These differences become obvious by using various reagents. For example, A23187 and quinidine exert opposite effects in Gardos and ferricyanide experiments, where A23187 and atebrin react oppositely in the latter and in PCMBS experiments. The ferricyanide effect described here does not involve formation of nonspecific channels. The change in Na+ permeability separately from K+ permeability under certain circumstances suggests a more specific effect.

  6. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    PubMed Central

    Lacrămă, Ana-Maria; Putz, Mihai V.; Ostafe, Vasile

    2007-01-01

    Within the recently launched the spectral-structure activity relationship (S-SAR) analysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, along with the associated algebraic correlation factor in terms of the measured and predicted activity norms. The reliability of the present scheme is tested by assessing the Hansch factors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicity endpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium, choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, while confirming the cationic dominant influence when only lipophylicity is considered, demonstrate that the anionic effect dominates all other more specific interactions. It was also proved that the S-SAR vectorial model predicts considerably higher activity for the ionic liquids than for its anionic and cationic subsystems separately, in all considered cases. Moreover, through applying the least norm-correlation path principle, the complete toxicological hierarchies are presented, unfolding the ecological rules of combined cationic and anionic influences in ionic liquid toxicity.

  7. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    NASA Astrophysics Data System (ADS)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  8. Reinventing Cell Penetrating Peptides Using Glycosylated Methionine Sulfonium Ion Sequences.

    PubMed

    Kramer, Jessica R; Schmidt, Nathan W; Mayle, Kristine M; Kamei, Daniel T; Wong, Gerard C L; Deming, Timothy J

    2015-05-27

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess low cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.

  9. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Jessica R.; Schmidt, Nathan W.; Mayle, Kristine M.

    2015-04-15

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess lowmore » cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.« less

  10. Ordered DNA-Surfactant Hybrid Nanospheres Triggered by Magnetic Cationic Surfactants for Photon- and Magneto-Manipulated Drug Delivery and Release.

    PubMed

    Xu, Lu; Wang, Yitong; Wei, Guangcheng; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2015-12-14

    Here we construct for the first time ordered surfactant-DNA hybrid nanospheres of double-strand (ds) DNA and cationic surfactants with magnetic counterion, [FeCl3Br](-). The specificity of the magnetic cationic surfactants that can compact DNA at high concentrations makes it possible for building ordered nanospheres through aggregation, fusion, and coagulation. Cationic surfactants with conventional Br(-) cannot produce spheres under the same condition because they lose the DNA compaction ability. When a light-responsive magnetic cationic surfactant is used to produce nanospheres, a dual-controllable drug-delivery platform can be built simply by the applications of external magnetic force and alternative UV and visible light. These nanospheres obtain high drug absorption efficiency, slow release property, and good biocompatibility. There is potential for effective magnetic-field-based targeted drug delivery, followed by photocontrollable drug release. We deduce that our results might be of great interest for making new functional nucleic-acid-based nanomachines and be envisioned to find applications in nanotechnology and biochemistry.

  11. Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins

    PubMed Central

    2015-01-01

    Despite decades of investigations, the principal mechanisms responsible for the high affinity and specificity of proteins for key physiological cations K+, Na+, and Ca2+ remain a hotly debated topic. At the core of the debate is an apparent need (or lack thereof) for an accurate description of the electrostatic response of the charge distribution in a protein to the binding of an ion. These effects range from partial electronic polarization of the directly ligating atoms to long-range effects related to partial charge transfer and electronic delocalization effects. While accurate modeling of cation recognition by metalloproteins warrants the use of quantum-mechanics (QM) calculations, the most popular approximations used in major biomolecular simulation packages rely on the implicit modeling of electronic polarization effects. That is, high-level QM computations for ion binding to proteins are desirable, but they are often unfeasible, because of the large size of the reactive-site models and the need to sample conformational space exhaustively at finite temperature. Several solutions to this challenge have been proposed in the field, ranging from the recently developed Drude polarizable force-field for simulations of metalloproteins to approximate tight-binding density functional theory (DFTB). To delineate the usefulness of different approximations, we examined the accuracy of three recent and commonly used theoretical models and numerical algorithms, namely, CHARMM C36, the latest developed Drude polarizable force fields, and DFTB3 with the latest 3OB parameters. We performed MD simulations for 30 cation-selective proteins with high-resolution X-ray structures to create ensembles of structures for analysis with different levels of theory, e.g., additive and polarizable force fields, DFTB3, and DFT. The results from DFT computations were used to benchmark CHARMM C36, Drude, and DFTB3 performance. The explicit modeling of quantum effects unveils the key electrostatic properties of the protein sites and the importance of specific ion-protein interactions. One of the most interesting findings is that secondary coordination shells of proteins are noticeably perturbed in a cation-dependent manner, showing significant delocalization and long-range effects of charge transfer and polarization upon binding Ca2+. PMID:26574284

  12. Improvement of activated sludge dewaterability by humus soil induced bioflocculation.

    PubMed

    Choi, Young-Gyun; Kim, Seong-Hong; Kim, Hee-Jun; Kim, Gyu Dong; Chung, Tai-Hak

    2004-01-01

    Effects of humus soil particles on the dewaterability of activated sludge were investigated. Cations leaching increased proportionally with the dosage of humus soil, and the leaching was not significant after 2 h. Divalent cations, Ca2+ and Mg2+, leaching from the humus soil played an important role in improving dewaterability of the biological sludge. On the contrary, dewaterability was not affected or slightly deteriorated by the monovalent cations, K+ and Na+ leached from the humus soil. Improvement in dewaterability of the sludge by addition of humus soil was higher than that of equivalent cations mixture. It seemed that the decrease of supracolloidal bio-particles (1 to 100 microm in diameter) resulted in diminishing of the blinding effect on cake and filter medium. SRF (specific resistance to filtration) of the humus soil added sludge varied in parallel with the M/D (monovalent to divalent cation) ratio, and the M/D ratio could be utilized as a useful tool for evaluation of the sludge dewatering characteristics. Long-term effects of humus soil on the improvement of activated sludge dewaterability were clearly identified by continuous operation results of a bench-scale MLE (Modified Ludzack Ettinger) system combined with a humus soil contactor. On the other hand, dewaterability of the control sludge was only slightly improved by a decrease in M/D ratio of the wastewater influent.

  13. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants.

    PubMed

    Caban, Magda; Stepnowski, Piotr

    2017-05-15

    The main advantage of alkylimidazolium cation-based ionic liquids (ILs) as phase additives in RP-HPLC is believed to be the suppression of deleterious residual free silanols in chemically modified silica stationary phases. However, up to now, the influence of ILs was usually evaluated having in mind a particular IL salt as one compound, not as a specific mixture of cations and anions. This in fact led to some misinterpretation of observed results, very often related to the suppression effect, while in fact caused by the nature of IL anions, which contribute to the elevated chaotropicity of the separation phases. In the present study, we have attempted to consider the effect gained due to the presence of both ionic liquid entities in the mobile phase used for the separation of basic compounds. Tri-cyclic antidepressants (TCAs) were taken as representative analytes. The effect of ILs on the chromatographic separation of TCAs was investigated in comparison to common mobile phase additives and by the presentation of retention factors, tailing factors and theoretical plates. In addition, an overloading study was performed for the IL-based phases for the first time. In general, it was found that the effect of chaotropic hexafluorophosphate anions in ILs is much stronger and opposite to that caused by imidazolium cations. The overloading study gives interesting information on how imidazolium cations affect the separation of cationic analytes. Finally, the usefulness of imidazolium-based ILs as mobile phase modifiers in the RP-HPLC separation of basic compounds was discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Enhanced splicing correction effect by an oligo-aspartic acid-PNA conjugate and cationic carrier complexes.

    PubMed

    Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig

    2014-02-10

    Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2014-09-01

    Cationic lipid-incorporated liposomes modified with pH-sensitive polymers were prepared by introducing 3, 5-didodecyloxybenzamidine as a cationic lipid to egg yolk phosphatidylcholine liposomes modified with 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG) as a pH-sensitive polymer. These liposomes were stable at neutral pH, but were destabilized below pH 6.0 because MGlu-HPG changed its characteristics from hydrophilic to hydrophobic in response to the pH decrease. Cationic lipid inclusion improved their pH sensitivity at weakly acidic pH and association of liposomes with murine dendritic cell (DC) lines. Cationic lipid-incorporated liposomes delivered entrapped ovalbumin (OVA) molecules not only to cytosol but also to endosome/lysosome. Treatment with cationic lipid-incorporated liposomes induced up-regulation of antigen presentation-involved molecules on DCs, the promotion of cytokine production, and antigen presentation via both major histocompatibility complex (MHC) class I and II molecules. Especially, antigen presentation via MHC class II was promoted by cationic lipid inclusion, which might correspond to efficient endosome/lysosome delivery of OVA. Subcutaneous administration of OVA-loaded cationic lipid-incorporated liposomes induced antigen-specific antibody production in serum and Th1-dominant immune responses in the spleen. Furthermore, administration of the cationic lipid-incorporated liposomes to mice bearing E.G7-OVA tumor more significantly reduced the tumor volume than liposomes without cationic lipids. Therefore, cationic lipid inclusion into pH-sensitive polymer-modified liposomes, which can achieve both efficient antigen intracellular delivery and activation of antigen presenting cell, is an effective approach to develop antigen carriers for efficient cancer immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Development of a novel method to determine the concentration of heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    PubMed

    Kozasa, Tetsuo; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Torigoe, Hidetaka

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel sensor to determine the concentration of each of Hg(II) and Ag(I) cation. The sensor is composed of a dye-labelled T-rich or C-rich DNA oligonucleotide, F2T6W2D: 5'-Fam-T(2)CT(2)CT(2)C(4)T(2)GT(2)GT(2)-Dabcyl-3' or F2C6W2D: 5'-Fam-C(2)TC(2)TC(2)T(4)C(2)AC(2)AC(2)-Dabcyl-3', where 6-carboxyfluorescein (Fam) is a fluorophore and Dabcyl is a quencher. The addition of Hg(II) cation decreased the intensity of Fam emission of F2T6W2D at 520 nm in a concentration-dependent manner. Also, the addition of Ag(I) cation decreased the intensity of Fam emission of F2C6W2D at 520 nm in a concentration-dependent manner. We conclude that, using the novel sensor developed in this study, the concentration of each of Hg(II) and Ag(I) cation can be determined from the intensity of Fam emission at 520 nm.

  17. Structure of Polyelectrolyte Brushes in the Presence of Multivalent Counterions

    DOE PAGES

    Yu, Jing; Mao, Jun; Yuan, Guangcui; ...

    2016-07-20

    Polyelectrolyte brushes are of great importance to a wide range of fields, ranging from colloidal stabilization to responsive and tunable materials to lubrication. Here, we synthesized high-density polystyrenesulfonate (PSS) brushes using surface initiated atom transfer radical polymerization and performed neutron reflectivity (NR) and surface force measurements using a surface forces apparatus (SFA) to investigate the effect of monovalent Na +, divalent Ca 2+, Mg 2+, and Ba 2+, and trivalent Y 3+ counterions on the structure of the PSS brushes. NR and SFA results demonstrate that in monovalent salt solution the behavior of the PSS brushes agrees with scaling theorymore » well, exhibiting two distinct regimes: the osmotic and salted brush regimes. Introducing trivalent Y 3+ cations causes an abrupt shrinkage of the PSS brush due to the uptake of Y 3+ counterions. The uptake of Y 3+ counterions and shrinkage of the brush are reversible upon increasing the concentration of monovalent salt. Divalent cations, Mg 2+, Ca 2+, and Ba 2+, while all significantly affecting the structure of PSS brushes, show strong ion specific effects that are related to the specific interactions between the divalent cations and the sulfonate groups. Our results demonstrate that the presence of multivalent counterions, even at relatively low concentrations, can strongly affect the structure of polyelectrolyte brushes. Finally, the results also highlight the importance of ion specificity to the structure of polyelectrolyte brushes in solution.« less

  18. Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure.

    PubMed

    Castaneda, Nicholas; Zheng, Tianyu; Rivera-Jacquez, Hector J; Lee, Hyun-Ju; Hyun, Jaekyung; Balaeff, Alexander; Huo, Qun; Kang, Hyeran

    2018-04-12

    Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.

  19. Double layer effects in electrocatalysis: The oxygen reduction reaction and ethanol oxidation reaction on Au(111), Pt(111) and Ir(111) in alkaline media containing Na and Li cations

    DOE PAGES

    Lopes, Pietro P.; Strmcnik, Dusan; Jirkovsky, Jakub S.; ...

    2015-09-28

    Oxygen reduction and ethanol oxidation reactions were studied on Au(111), Pt(111) and Ir(111) in alkaline solutions containing sodium and/or lithium cations. By keeping the same (111) surface orientation and exploring oxophilicity trends and non-covalent interactions between OH ad and alkali metal cations (AMC n+), we were able to gain deep insights into the multiple roles that OH ad plays in these important electrocatalytic reactions. Cyclic voltammetry experiments revealed that OH ad formation initiates at distinct electrode potentials, governed by the oxophilicity of the specific metal surface, with further OH ad adlayer stabilization by non-covalent alkali-cation interactions and affecting the formationmore » of a “true oxide” layer at higher electrode potentials. Although OH ad is a simple spectator for the ORR, it promotes the ethanol oxidation reaction (EOR) at lower potentials and act as spectator at high OHad coverages. By changing the alkali metal cation at the interface (Li +) on more oxophilic surfaces, it was possible to promote the EOR even more, relative to Na +, without changing the product distribution for the reaction. This cation effect suggests that OH ad—Li +(H 2O) x clusters can stabilize the ethoxide adlayer, thus improving the EOR activity. Finally, our results indicate the importance of the entire electrochemical interface in determining the electrocatalytic activity during reaction.« less

  20. Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor

    NASA Astrophysics Data System (ADS)

    Sivakumarasamy, R.; Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Nishiguchi, K.; Fujiwara, A.; Clément, N.

    2018-05-01

    Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to 25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.

  1. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer.

    PubMed

    Duska, L R; Hamblin, M R; Bamberg, M P; Hasan, T

    1997-01-01

    The effect of charge modification of photoimmunoconjugates (PICs) on their biodistribution in a xenograft model of ovarian cancer was investigated. Chlorin(e6)c(e6) was attached site specifically to the F(ab')2 fragment of the murine monoclonal antibody OC125, directed against human ovarian cancer cells, via poly-1-lysine linkers carrying cationic or anionic charges. Preservation of immunoreactivity was checked by enzyme-linked immunosorbent assay (ELISA). PICs were radiolabelled with 125I and compared with non-specific rabbit IgG PICs after intraperitoneal (i.p.) injection into nude mice. Samples were taken from normal organs and tumour at 3 h and 24 h. Tumour to normal 125I ratios showed that the cationic OC125F(ab')2 PIC had the highest tumour selectivity. Ratios for c(e6) were uniformly higher than for 125I, indicating that c(e6) became separated from 125I. OC125F(ab')2 gave highest tissue values of 125I, followed by cationic OC125F(ab')2 PIC; other species were much lower. The amounts of c(e6) delivered per gram of tumour were much higher for cationic OC125F(ab')2 PIC than for other species. The results indicate that cationic charge stimulates the endocytosis and lysosomal degradation of the OC125F(ab')2-pl-c(e6) that has bound to the i.p. tumour. Positively charged PICs may have applications in the i.p. photoimmunotherapy of minimal residual ovarian cancer.

  2. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents.

    PubMed

    Mazzini, Virginia; Craig, Vincent S J

    2017-10-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity.

  3. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties

    PubMed Central

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E.; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L.; Ilies, Marc A.

    2014-01-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact towards plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process, and with transfection efficiency, cytotoxicity and internalization mechanism of the resultant nucleic acid complexes. We found that blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. Transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of co-lipids, their nature and amount present into lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically for obtaining efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  4. Coagulation of bitumen with kaolinite in aqueous solutions containing Ca2+, Mg2+ and Fe3+: effect of citric acid.

    PubMed

    Gan, Weibing; Liu, Qi

    2008-08-01

    Heterocoagulation experiments of kaolinite with solvent-diluted-bitumen were carried out to investigate the effect of hydrolyzable metal cations and citric acid on the liberation of bitumen from kaolinite. The adsorption of Ca(2+) and Mg(2+) on kaolinite, and zeta potentials of kaolinite and bitumen droplets in solutions containing 10(-3)mol/L of Ca(2+), Mg(2+) and Fe(3+) with or without citric acid were also measured. It was found that the heterocoagulation of bitumen with kaolinite was enhanced in the presence of the metal cations from pH 7 to pH 10.5, accompanied by a decrease in the magnitude of the zeta potentials and an increase in the adsorption of the metal cations on kaolinite and possibly on bitumen droplets. The addition of 5 x 10(-4)mol/L citric acid reduced the degree of coagulation from 90% to less than 40% in the presence of 10(-3)mol/L Ca(2+) and Mg(2+) cations at pH approximately 10, and at pH approximately 8 for Fe(3+). It was found that hydrolyzable metal cations enhanced bitumen-kaolinite interactions through electrical double layer compression and specific adsorption of the metal hydrolysis species on the surface of kaolinite. The effect of metal cations was removed by citric acid through formation of metal-citrate complexes and/or the adsorption of citrate anions, which restored the zeta potentials of both kaolinite and bitumen. Therefore, electrostatic attraction or repulsion was responsible for the coagulation or dispersion of kaolinite particles from bitumen droplets in the tested system.

  5. Thermo-responsive triblock copolymer phase transition behaviour in imidazolium-based ionic liquids: Role of the effect of alkyl chain length of cations.

    PubMed

    Umapathi, Reddicherla; Venkatesu, Pannuru

    2017-01-01

    Different biophysical techniques such as fluorescence spectroscopy, dynamic light scattering (DLS), viscosity (η) and Fourier transform infrared (FTIR) spectroscopy have been carried out to characterize the effect of imidazolium-based ionic liquids (ILs) on the thermo-responsive triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly-(ethylene glycol) (PEG-PPG-PEG). In addition, to demonstrate the distinct morphological changes of various self-assembled morphologies, we further employed field emission scanning electron microscope (FESEM). To investigate the effect of alkyl chain length of the cation, concentration of the ILs and the related Hofmeister series on the phase behaviour of PEG-PPG-PEG, we used a series of ILs possessing same Cl - anion and a set of cation [C n mim] + with increasing alkyl chain length of cation such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]) and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]). The critical micellization temperature (CMT) of the copolymer in the presence of well hydrated cations is directly correlated to their hydration. The overall specific ranking of ILs in decreasing the CMT of PEG-PPG-PEG in aqueous solution was [Emim][Cl]>[Bmim][Cl]>[Hmim][Cl]>[Dmim][Cl]. The trend of these ILs followed the well-known Hofmeister series of cations of ILs. The present study provides important information about the solution properties that can be helpful to tune the IL or temperature-sensitive copolymer CMT and micelle shapes which are crucial for understanding the drug delivery mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Lipoplexes prepared from cationic liposomes and mammalian DNA induce CpG-independent, direct cytotoxic effects in cell cultures and in mice.

    PubMed

    Khazanov, Elena; Simberg, Dmitri; Barenholz, Yechezkel

    2006-08-01

    Recent studies demonstrated the cytotoxic activity of bacterial DNA (pDNA) complexed with cationic lipids. This cytotoxicity is related to the ability of pDNA to induce potently the immune system, which is associated with release of inflammatory cytokines. Both activities seem to be related to the nonmethylated CpG sequences present in the pDNA. Here we study the cytotoxic activity of nonbacterial DNA complexed with cationic lipids against various tumor cell lines. Various nucleic acids complexed with cationic liposomes were prepared and their cytotoxic activity was studied in cell cultures and in tumor-bearing mice. Cell uptake of lipoplexes was evaluated, and mechanism of DNA cytotoxic activity was studied. We found that nonbacterial (vertebrate) genomic DNA when complexed with cationic lipids is highly cytotoxic against C-26 and M-109 tumor cells. Cationic lipids alone were not toxic to these cells. The cytotoxic activity does not result from nonspecific acidification of the intracellular milieu, as substitution of DNA by poly-L-glutamate did not result in cytotoxicity, although the level of uptake of anionic charges per cell was similar to that of the nucleic acids, suggesting that this cytotoxic effect is specific to nucleic acids. By studying the nucleic acid fate using confocal microscopy, we found that cytotoxicity correlated with the release of DNA into the cytoplasm following uptake of lipoplexes. Injection of calf thymus DNA-based lipoplexes to mice with peritoneal C-26 metastases resulted in doubling of median survival time and long-term survival in 20% of the tumor-bearing mice. Judging by low levels of IFN-gamma, TNF-alpha and IL-6 in the treated mice, this effect cannot be ascribed to Th-1 inflammation, but rather to a direct cytotoxic effect on the tumor cells. The above data provide a new insight into the mechanisms of lipoplex-mediated antitumor effects in vitro and in vivo and new perspectives in cancer therapy. 2006 John Wiley & Sons, Ltd.

  7. Role of bond adaptability in the passivation of colloidal quantum dot solids.

    PubMed

    Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H

    2013-09-24

    Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.

  8. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.

    PubMed

    Pan, Bingjun; Qiu, Hui; Pan, Bingcai; Nie, Guangze; Xiao, Lili; Lv, Lu; Zhang, Weiming; Zhang, Quanxing; Zheng, Shourong

    2010-02-01

    The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Theoretical Investigation of Anharmonic Effects Observed in the Infrared Spectra of the Formaldehyde Cation and its Hydroxymethylene Isomer

    NASA Astrophysics Data System (ADS)

    Madison, Lindsey R.; Mosley, Jonathan; Mauney, Daniel; Duncan, Michael A.; McCoy, Anne B.

    2016-06-01

    Formaldehyde is the smallest organic molecule and is a prime candidate for a thorough investigation regarding the anharmonic approximations made in computationally modeling its infrared spectrum. Mass-selected ion spectroscopy was used to detect mass 30 cations which include of HCOH^+ and CH_2O^+. In order to elucidate the differences between the structures of these isomers, infrared spectroscopy was performed on the mass 30 cations using Ar predissociation. Interestingly, several additional spectral features are observed that cannot be explained by the fundamental OH and CH stretch vibrations alone. By including anharmonic coupling between OH and CH stretching and various overtones and combination bands involving lower frequency vibrations, we are able to identify how specific modes couple and lead to the experimentally observed spectral features. We combine straight-forward, ab initio calculations of the anharmonic frequencies of the mass 30 cations with higher order, adiabatic approximations and Fermi resonance models. By including anharmonic effects we are able to confirm that the isomers of the CH_2O^+\\cdotAr system have substantially different, and thus distinguishable, IR spectra and that many of the features can only be explained with anharmonic treatments.

  11. Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Shirai, Shinnosuke; Okumura, Tomoaki; Morita, Akihiro

    2018-06-01

    Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.

  12. pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2017-10-01

    Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Regulation by divalent cations of /sup 3/H-baclofen binding to GABA/sub B/ sites in rat cerebellar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Goto, M.; Fukuda, H.

    1983-02-21

    When investigating the effects of divalent cations (Mg/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, Ba/sup 2 +/, Mn/sup 2 +/ and Ni/sup 2 +/) on /sup 3/H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of /sup 3/H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn/sup 2 +/ approx. = Ni/sup 2 +/ > Mg/sup 2 +/ > Ca/sup 2 +/ > Sr/sup 2 +/ > Ba/sup 2 +/. Scatchard analysis of the binding datamore » revealed a single component of the binding sites in the presence of 2.5 mM MgCl/sub 2/, 2.5 mM CaCl/sub 2/ or 0.3 mM MnCl/sub 2/ whereas two components appeared in the presence of 2.5 mM MnCl/sub 2/ or 1 mM NiCl/sub 2/. In the former, divalent cations altered the apparent affinity (K/sub d/) without affecting density of the binding sites (B/sub max/). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg/sup 2 +/, Ca/sup 2 +/, Mn/sup 2 +/, and Ni/sup 2 +/) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABA/sub B/ sites, the affinity for (-), (+) and (+/-)baclofen, GABA and ..beta..-phenyl GABA increased 2 - 6 fold in the presence of 2.5 mM MnCl/sub 2/, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl/sub 2/ and 1.2 mM MgSO/sub 4/), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABA/sub B/ sites for its ligands is probably regulated by divalent cations, through common sites of action.« less

  14. Phage Wrapping with Cationic Polymers Eliminates Non-specific Binding between M13 Phage and High pI Target Proteins

    PubMed Central

    Lamboy, Jorge A.; Arter, Jessica A.; Knopp, Kristeene A.; Der, Denise; Overstreet, Cathie M.; Palermo, Edmund; Urakami, Hiromitsu; Yu, Ting-Bin; Tezgel, Ozgul; Tew, Gregory; Guan, Zhibin; Kuroda, Kenichi; Weiss, Gregory A.

    2011-01-01

    M13 phage have provided scaffolds for nanostructure synthesis based upon self-assembled inorganic and hard materials interacting with phage-displayed peptides. Additionally, phage display has been used to identify binders to plastic, TiO2, and other surfaces. However, synthesis of phage-based materials through the hybridization of soft materials with the phage surface remains unexplored. Here, we present an efficient “phage wrapping” strategy for the facile synthesis of phage coated with soluble, cationic polymers. Polymers bearing high positive charge densities demonstrated the most effective phage wrapping, as shown by assays for blocking non-specific binding of the anionic phage coat to a high pI target protein. The results establish the functional group requirements for hybridizing phage with soft materials, and solve a major problem in phage display – non-specific binding by the phage to high pI target proteins. PMID:19856910

  15. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Sun, Tian-Meng; Mao, Cheng-Qiong; Wang, Hong-Xia; Wang, Jun

    2011-12-10

    Delivery of small interfering RNA (siRNA) has been one of the major hurdles for the application of RNA interference in therapeutics. Here, we describe a cationic lipid assisted polymeric nanoparticle system with stealthy property for efficient siRNA encapsulation and delivery, which was fabricated with poly(ethylene glycol)-b-poly(d,l-lactide), siRNA and a cationic lipid, using a double emulsion-solvent evaporation technique. By incorporation of the cationic lipid, the encapsulation efficiency of siRNA into the nanoparticles could be above 90% and the siRNA loading weight ratio was up to 4.47%, while the diameter of the nanoparticles was around 170 to 200nm. The siRNA retained its integrity within the nanoparticles, which were effectively internalized by cancer cells and escaped from the endosome, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in HepG2-luciferase cells which stably express luciferase, and suppression of polo-like kinase 1 (Plk1) expression in HepG2 cells, following delivery of specific siRNAs by the nanoparticles. Furthermore, the nanoparticles carrying siRNA targeting the Plk1 gene were found to induce remarkable apoptosis in both HepG2 and MDA-MB-435s cancer cells. Systemic delivery of specific siRNA by nanoparticles significantly inhibited luciferase expression in an orthotopic murine liver cancer model and suppressed tumor growth in a MDA-MB-435s murine xenograft model, suggesting its therapeutic promise in disease treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter.

    PubMed

    Kinclova-Zimmermannova, Olga; Falson, Pierre; Cmunt, Denis; Sychrova, Hana

    2015-04-24

    Na(+)/H(+) antiporters may recognize all alkali-metal cations as substrates but may transport them selectively. Plasma-membrane Zygosaccharomyces rouxii Sod2-22 antiporter exports Na(+) and Li(+), but not K(+). The molecular basis of this selectivity is unknown. We combined protein structure modeling, site-directed mutagenesis, phenotype analysis and cation efflux measurements to localize and characterize the cation selectivity region. A three-dimensional model of the ZrSod2-22 transmembrane domain was generated based on the X-ray structure of the Escherichia coli NhaA antiporter and primary sequence alignments with homologous yeast antiporters. The model suggested a close proximity of Thr141, Ala179 and Val375 from transmembrane segments 4, 5 and 11, respectively, forming a hydrophobic hole in the putative cation pathway's core. A series of mutagenesis experiments verified the model and showed that structural modifications of the hole resulted in altered cation selectivity and transport activity. The triple ZrSod2-22 mutant T141S-A179T-V375I gained K(+) transport capacity. The point mutation A179T restricted the antiporter substrate specificity to Li(+) and reduced its transport activity, while serine at this position preserved the native cation selectivity. The negative effect of the A179T mutation can be eliminated by introducing a second mutation, T141S or T141A, in the preceding transmembrane domain. Our experimental results confirm that the three residues found through modeling play a central role in the determination of cation selectivity and transport activity in Z. rouxii Na(+)/H(+) antiporter and that the cation selectivity can be modulated by repositioning a single local methyl group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel

    PubMed Central

    Gurnev, Philip A.; Bezrukov, Sergey M.

    2014-01-01

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the “charge inversion” phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine. PMID:23088396

  18. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.

    PubMed

    Gurnev, Philip A; Bezrukov, Sergey M

    2012-11-13

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.

  19. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer.

    PubMed Central

    Duska, L. R.; Hamblin, M. R.; Bamberg, M. P.; Hasan, T.

    1997-01-01

    The effect of charge modification of photoimmunoconjugates (PICs) on their biodistribution in a xenograft model of ovarian cancer was investigated. Chlorin(e6)c(e6) was attached site specifically to the F(ab')2 fragment of the murine monoclonal antibody OC125, directed against human ovarian cancer cells, via poly-1-lysine linkers carrying cationic or anionic charges. Preservation of immunoreactivity was checked by enzyme-linked immunosorbent assay (ELISA). PICs were radiolabelled with 125I and compared with non-specific rabbit IgG PICs after intraperitoneal (i.p.) injection into nude mice. Samples were taken from normal organs and tumour at 3 h and 24 h. Tumour to normal 125I ratios showed that the cationic OC125F(ab')2 PIC had the highest tumour selectivity. Ratios for c(e6) were uniformly higher than for 125I, indicating that c(e6) became separated from 125I. OC125F(ab')2 gave highest tissue values of 125I, followed by cationic OC125F(ab')2 PIC; other species were much lower. The amounts of c(e6) delivered per gram of tumour were much higher for cationic OC125F(ab')2 PIC than for other species. The results indicate that cationic charge stimulates the endocytosis and lysosomal degradation of the OC125F(ab')2-pl-c(e6) that has bound to the i.p. tumour. Positively charged PICs may have applications in the i.p. photoimmunotherapy of minimal residual ovarian cancer. PMID:9062404

  20. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications.

    PubMed

    Deslouches, Berthony; Di, Y Peter

    2017-07-11

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.

  1. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications

    PubMed Central

    Deslouches, Berthony; Di, Y. Peter

    2017-01-01

    In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs. PMID:28422728

  2. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes.

    PubMed

    Havrila, Marek; Stadlbauer, Petr; Islam, Barira; Otyepka, Michal; Šponer, Jiří

    2017-08-08

    G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG] 4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG] 4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na + ions move inside the GQs in a concerted manner, while larger relocations of the K + ions are typically separated. We suggest that the Joung-Cheatham SPC/E K + parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.

  3. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles.

    PubMed

    Liu, Lanxia; Ma, Pingchuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Song, Cunxian; Leng, Xigang; Kong, Deling; Ma, Guilei

    2016-03-10

    In this study, we used cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles as antigen delivery carriers to investigate how antigen-loading methods affect antigen exposure to the immune system and evaluated the resulting antigen-specific immune responses. We formulated three classes of antigen adsorbed and/or encapsulated cationic lipid-PLGA hybrid nanoparticles; we designated antigen-adsorbed (out), antigen-encapsulated (in), and antigen-adsorbed/encapsulated (both) nanoparticles. Our results demonstrate significantly more efficient lysosomal escape and cross-presentation of antigen from dendritic cells (DCs) that were exposed to "both" and "in" nanoparticles. In vivo experiments further revealed that "both" nanoparticles significantly more effectively provided not only adequate initial antigen exposure but also long-term antigen persistence at the injection site. Data from flow cytometry and ELISA analyses demonstrated elevated in vivo immune responses from mice that were immunized with nanoparticles-delivered OVA when compared with free OVA. In addition, "in" and "both" nanoparticles elicited significantly higher antigen-specific immune response than "out" nanoparticles and free OVA. These results suggest that the location of antigen entrapment is an important factor in modulating the immune responses of antigens delivered by nanoparticles. Overall, we propose here a promising approach for the future design of vaccines using cationic lipid-PLGA nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Spleen-specific suppression of TNF-alpha by cationic hydrogel-delivered antisense nucleotides for the prevention of arthritis in animal models.

    PubMed

    Dong, Lei; Xia, Suhua; Chen, Huan; Chen, Jiangning; Zhang, Junfeng

    2009-09-01

    This study developed a transplantable platform based on cationic hydrogels to deliver antisense oligodeoxynucleotides (ASOs) targeting the mRNA of TNF-alpha. Cationic agarose (c-agarose) was obtained by conjugating ethylenediamine to agarose via an N,N'-carbonyldiimidazole (CDI)-activation method. ASO-c-agarose system was constructed by mixing ASO in cationic agarose gel of proper concentration and gelation temperature. In vivo assessment of ASO distribution suggested that the system specifically target to spleen, wherein the c-agarose-delivered ASO had a concentration remarkably 50-fold higher than that of the naked ASO. The distribution of c-agarose-delivered ASO was scarcely detectable in liver and kidney. Next, three types of animal models were setup to evaluate the therapeutic efficacies of ASO-Gel, including the adjuvant-induced arthritis (AA), carrageen/lipopolysaccharide (LPS)-induced arthritis (CLA) and collagen-induced arthritis (CIA) models. The effects of ASO-c-agarose in alleviating inflammation and tissue destruction were evidenced in more than 90% of the testing animals, with decrease of main inflammatory cytokines, lightening of joint swelling and tissue damage, as well as increase in their body weights. All these findings suggest that this highly operable devise for the conveyance of antisense nucleotides together with its spleen-targeting property, could become a useful means of antisense-based therapeutics against rheumatoid arthritis and other diseases.

  5. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold

    PubMed Central

    Cao, Xu; Ma, Linlin; Yang, Fan

    2014-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes. PMID:24344247

  6. Sorption of organic cations onto silica surfaces over a wide concentration range of competing electrolytes.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Licha, Tobias; Worch, Eckhard; Börnick, Hilmar

    2016-12-15

    The fundamental understanding of organic cation-solid phase interactions is essential for improved predictions of the transport and ultimate environmental fates of widely used substances (e.g., pharmaceutical compounds) in the aquatic environment. We report sorption experiments of two cationic model compounds using two silica gels and a natural aquifer sediment. The sorbents were extensively characterized and the results of surface titrations under various background electrolyte concentrations were discussed. The salt dependency of sorption was systematically studied in batch experiments over a wide concentration range (five orders of magnitude) of inorganic ions in order to examine the influence of increasing competition on the sorption of organic cations. The organic cation uptake followed the Freundlich isotherm model and the sorption capacity decreases with an increase in the electrolyte concentration due to the underlying cation exchange processes. However, the sorption recovers considerably at high ionic strength (I>1M). To our knowledge, this effect has not been observed before and appears to be independent from the sorbent characteristics and sorbate structure. Furthermore, the recovery of sorption was attributed to specific, non-ionic interactions and a connection between the sorption coefficient and activity coefficient of the medium is presumed. Eventually, the reasons for the differing sorption affinities of both sorbates are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reaction enthalpy from the binding of multivalent cations to anionic polyelectrolytes in dilute solutions

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Kaub, Hans Peter; Deck, Sascha; Carl, Nico; Huber, Klaus

    2018-03-01

    Dilute solutions of sodium poly(styrene sulfonate) (NaPSS) in the presence of Al3+, Ca2+, and Ba2+ were analysed by means of isothermal titration calorimetry (ITC) in order to investigate the heat effect of bond formation between those cations and the anionic SO3- residues of NaPSS. The selection of the cations was guided by the solution behavior of the corresponding PSS salts from a preceding study [M. Hansch et al., J. Chem. Phys. 148(1), 014901 (2018)], where bonds between Ba2+ and anionic PSS showed an increasing solubility with decreasing temperature and Al3+ exhibited the inverse trend. Unlike to Al3+ and Ba2+, Ca2+ is expected to behave as a purely electrostatically interacting bivalent cation and was thus included in the present study. Results from ITC satisfactorily succeeded to explain the temperature-dependent solution behavior of the salts with Al3+ and Ba2+ and confirmed the non-specific behavior of Ca2+. Additional ITC experiments with salts of Ca2+ and Ba2+ and sodium poly(acrylate) complemented the results on PSS by data from a chemically different polyanion. Availability of these joint sets of polyanion-cation combinations not only offers the chance to identify common features and subtle differences in the solution behavior of polyelectrolytes in the presence of multi-valent cations but also points to a new class of responsive materials.

  8. π-Cation Interactions in Molecular Recognition: Perspectives on Pharmaceuticals and Pesticides.

    PubMed

    Liang, Zhibin; Li, Qing X

    2018-04-04

    The π-cation interaction that differs from the cation-π interaction is a valuable concept in molecular design of pharmaceuticals and pesticides. In this Perspective we present an up-to-date review (from 1995 to 2017) on bioactive molecules involving π-cation interactions with the recognition site, and categorize into systems of inhibitor-enzyme, ligand-receptor, ligand-transporter, and hapten-antibody. The concept of π-cation interactions offers use of π systems in a small molecule to enhance the binding affinity, specificity, selectivity, lipophilicity, bioavailability, and metabolic stability, which are physiochemical features desired for drugs and pesticides.

  9. Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions

    PubMed Central

    Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Razinkov, Vladimir; Chase, Susan F; Laue, Thomas M; Brems, David N

    2011-01-01

    Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3M) salt concentrations, in dilute (<0.1M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li+, Na+, K+, Rb+, Cs+, GdnH+, and Ca2+), identity. The Q* decreased in the order F− > Cl− > Br− > NO3− ∼ I− > SCN− > ClO4− ≫ SO42−, demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO42− anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface. PMID:21432935

  10. Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Brooks, Amanda E.; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S.; Brooks, Benjamin D.; Ghandehari, Hamidreza; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated through electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos (ZFE) were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regards to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity. PMID:23062017

  11. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02691a Click here for additional data file.

    PubMed Central

    Mazzini, Virginia

    2017-01-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific-ion effects and assist in the development of a quantitative predictive theory of ion specificity. PMID:29147533

  12. Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes

    PubMed Central

    Bernuy-Lopez, Carlos; Rioja-Monllor, Laura; Nakamura, Takashi; Ricote, Sandrine; O’Hayre, Ryan; Amezawa, Koji; Einarsrud, Mari-Ann

    2018-01-01

    The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration. PMID:29373541

  13. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms. © 2015 SETAC.

  14. Cation induced electrochromism in 2,4-dinitrophenylhydrazine (DNPH): Tuning optical properties of aromatic rings

    NASA Astrophysics Data System (ADS)

    Sanader, Željka; Brunet, Claire; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Mitrić, Roland; Bonačić-Koutecký, Vlasta

    2013-05-01

    We have theoretically investigated the influence of protons and noble metal cations on optical properties of 2,4-dinitrophenylhydrazine (DNPH). We show that optical properties of aromatic rings can be tuned by cation-induced electrochromism in DNPH due to binding to specific NO2 groups. Our findings on cation-induced electrochromism in DNPH may open new routes in two different application areas, due to the fact that DNPH can easily bind to biological molecules and surface materials through carbonyl groups.

  15. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    PubMed

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  16. Charge separation in photoredox reactions. Technical progress report, May 1, 1981-May 1, 1984. [N,N,N',N'-tetramethylbenzidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevan, L.

    1984-05-01

    The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles and vesicles are being studied by optical and electron magnetic resonance techniques including the time domain technique of electron spin echo modulation (ESEM). Photoionization of N,N,N',N'-tetramethylbenzidine (TMB) to give the cation radical has been carried out in both liquid and frozen micellar and vesicular solutions. Cation-water interactions have been detected by ESEM analysis and indicate that the cation is localized asymmetrically within these organized molecular assemblies. x-Doxylstearic acid spin probes have been used to determine that the neutral TMB molecule before photoionization is alsomore » localized asymmetrically within such organized molecular assemblies. Electron spin echo detection of laser photogenerated TMB cation in liquid micellar solutions gives a direct measurement of the phase memory magnetic relaxation time which gives additional structural information. The photoionization efficiency has been related to cation-water interactions measured by ESEM. The photoionization efficiency is also dependent on surface charge and is about twofold greater in cationic micelles and vesicles compared to anionic micelles and vesicles. TMB is in a less polar environment in vesicles compared to micelles consistent with ESEM results. The preferential adsorption of metal species at micellar surfaces has been detected by ESEM. Modifications in the micelle surface have been effected by added salts and varying counterions which have been related to cation-water interactions and to the TMB photoionization efficiency. Corresponding changes in the surface and internal micellar structure have been investigated by x-doxylstearic acid spin probes and specifically deuterated surfactants. The decay kinetics of TMB cations in micelles have been interpreted in terms of a time dependent rate constant.« less

  17. Keratin sponge/hydrogel II, active agent delivery

    USDA-ARS?s Scientific Manuscript database

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  18. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  19. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  20. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Guest-host interactions in sodium zeolite Y: Structural and dynamical [sup 23]Na double-rotation NMR study of H[sub 2]O, PMe[sub 3], Mo(CO)[sub 6], and Mo(CO)[sub 4](PMe[sub 3])[sub 2] adsorption in Na[sub 56]Y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jelinek, R.; Oezkar, S.; Malek, A.

    1993-01-27

    [sup 23]Na double-rotation NMR (DOR) provides site-specific structural and dynamical information on guest-host interactions within sodium zeolite Y pores. Quantitative adsorption of H[sub 2]O, PMe[sub 3], and Mo(CO)[sub 6] guests affects both the positions and line shapes of the [sup 23]Na resonances from specific extraframework Na[sup +] sites. The evolution of the [sup 23]Na DOR spectra with the progressive introduction of guest molecules allows one to probe direct solvation' effects involving the Na[sup +] cations in the larger supercages, as well as indirect effects on the Na[sup +] cations in adjacent smaller sodalite cavities. [sup 23]Na DOR experiments conducted atmore » two magnetic field strengths confirm that PMe[sub 3] coadsorption in 8[l brace]Mo(CO)[sub 6][r brace],16[l brace]PMe[sub 3][r brace]-Na[sub 56]Y, and PMe[sub 3] ligand-substitution in 8[l brace]cis-Mo(CO)[sub 4](PMe[sub 3])[sub 2][r brace]-Na[sub 56]Y give rise to progressive deshielding and enhanced quadrupolar interactions of the anchoring Na[sup +] cations in the [alpha]-cages, relative to those of the starting material, 8[l brace]Mo(CO)[sub 6][r brace]-Na[sub 56]Y. Spin-lattice relaxation measurements indicate that adsorption of PMe[sub 3] facilitates an increased motion of the Na[sup +] cations and/or guest species inside the [alpha]-cages. 22 refs., 6 figs., 1 tab.« less

  2. In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives.

    PubMed

    Severina, Inna I; Severin, Fedor F; Korshunova, Galina A; Sumbatyan, Natalya V; Ilyasova, Tatyana M; Simonyan, Ruben A; Rogov, Anton G; Trendeleva, Tatyana A; Zvyagilskaya, Renata A; Dugina, Vera B; Domnina, Lidia V; Fetisova, Elena K; Lyamzaev, Konstantin G; Vyssokikh, Mikhail Yu; Chernyak, Boris V; Skulachev, Maxim V; Skulachev, Vladimir P; Sadovnichii, Viktor A

    2013-06-27

    Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. XUV-induced reactions in benzene on sub-10 fs timescale: nonadiabatic relaxation and proton migration.

    PubMed

    Galbraith, M C E; Smeenk, C T L; Reitsma, G; Marciniak, A; Despré, V; Mikosch, J; Zhavoronkov, N; Vrakking, M J J; Kornilov, O; Lépine, F

    2017-08-02

    Unraveling ultrafast dynamical processes in highly excited molecular species has an impact on our understanding of chemical processes such as combustion or the chemical composition of molecular clouds in the universe. In this article we use short (<7 fs) XUV pulses to produce excited cationic states of benzene molecules and probe their dynamics using few-cycle VIS/NIR laser pulses. The excited states produced by the XUV pulses lie in an especially complex spectral region where multi-electronic effects play a dominant role. We show that very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation of these states, in agreement with the timescale expected for most excited cationic states in benzene. In the CH 3 + fragmentation channel of the doubly ionized benzene cation we identify pathways that involve structural rearrangement and proton migration to a specific carbon atom. Further, we observe non-trivial transient behavior in this fragment channel, which can be interpreted either in terms of propagation of the nuclear wavepacket in the initially excited electronic state of the cation or as a two-step electronic relaxation via an intermediate state.

  4. Transport and pharmacodynamics of albitiazolium, an antimalarial drug candidate

    PubMed Central

    Wein, S; Maynadier, M; Bordat, Y; Perez, J; Maheshwari, S; Bette-Bobillo, P; Tran Van Ba, C; Penarete-Vargas, D; Fraisse, L; Cerdan, R; Vial, H

    2012-01-01

    BACKGROUND AND PURPOSE Choline analogues, a new type of antimalarials, exert potent in vitro and in vivo antimalarial activity. This has given rise to albitiazolium, which is currently in phase II clinical trials to cure severe malaria. Here we dissected its mechanism of action step by step from choline entry into the infected erythrocyte to its effect on phosphatidylcholine (PC) biosynthesis. EXPERIMENTAL APPROACH We biochemically unravelled the transport and enzymatic steps that mediate de novo synthesis of PC and elucidated how albitiazolium enters the intracellular parasites and affects the PC biosynthesis. KEY RESULTS Choline entry into Plasmodium falciparum-infected erythrocytes is achieved both by the remnant erythrocyte choline carrier and by parasite-induced new permeability pathways (NPP), while parasite entry involves a poly-specific cation transporter. Albitiazolium specifically prevented choline incorporation into its end-product PC, and its antimalarial activity was strongly antagonized by choline. Albitiazolium entered the infected erythrocyte mainly via a furosemide-sensitive NPP and was transported into the parasite by a poly-specific cation carrier. Albitiazolium competitively inhibited choline entry via the parasite-derived cation transporter and also, at a much higher concentration, affected each of the three enzymes conducting de novo synthesis of PC. CONCLUSIONS AND IMPLICATIONS Inhibition of choline entry into the parasite appears to be the primary mechanism by which albitiazolium exerts its potent antimalarial effect. However, the pharmacological response to albitiazolium involves molecular interactions with different steps of the de novo PC biosynthesis pathway, which would help to delay the development of resistance to this drug. PMID:22471905

  5. The rhizotoxicity of metal cations is related to their strength of binding to hard ligands.

    PubMed

    Kopittke, Peter M; Menzies, Neal W; Wang, Peng; McKenna, Brigid A; Wehr, J Bernhard; Lombi, Enzo; Kinraide, Thomas B; Blamey, F Pax C

    2014-02-01

    Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al(3+) and Hg(2+), which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca(2+), Na(+), Mn(2+), and Zn(2+) , which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl(+), Ag(+), Cs(+), and Cu(2+)) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms. © 2013 SETAC.

  6. Quantitative assessment of surface functionality effects on microglial uptake and retention of PAMAM dendrimers

    NASA Astrophysics Data System (ADS)

    Liaw, Kevin; Gök, Ozgul; DeRidder, Louis B.; Kannan, Sujatha; Kannan, Rangaramanujam M.

    2018-04-01

    Dendrimers are a promising class of polymeric nanoparticles for delivery of therapeutics and diagnostics. Polyamidoamine (PAMAM) dendrimers have shown significant efficacy in many animal models, with performance dependent on surface functionalities. Understanding the effects of end groups on biological interactions is critical for rational design of dendrimer-mediated therapies. In this study, we quantify the cellular trafficking kinetics (endocytosis and exocytosis) of generation 4 neutral (D4-OH), cationic (D4-NH2), anionic (D3.5-COOH), and generation 6 neutral (D6-OH) PAMAM dendrimers to investigate the nanoscale effects of surface functionality and size on cellular interactions. Resting and LPS-activated microglia were studied due to their central roles in dendrimer therapies for central nervous system disorders. D4-OH exhibits greater cellular uptake and lower retention than the larger D6-OH. D4-OH and D3.5-COOH exhibit similar trafficking kinetics, while D4-NH2 exhibits significant membrane interactions, resulting in faster cell association but lower internalization. Cationic charge may also enhance vesicular escape for greater cellular retention and preferential partitioning to nuclei. LPS activation further improves uptake of dendrimers, with smaller and cationic dendrimers experiencing the greatest increases in uptake compared to resting microglia. These studies have implications for the dependence of trafficking pathway on dendrimer properties and inform the design of dendrimer constructs tailored to specific therapeutic needs. Cationic dendrimers are ideal for delivering genetic materials to nuclei, but toxicity may be a limiting factor. Smaller, neutral dendrimers are best suited for delivering high levels of therapeutics in acute neuroinflammation, while larger or cationic dendrimers provide robust retention for sustained release of therapeutics in longer-term diseases.

  7. Structural diversities induced by cation sizes in a series of fluorogermanophosphates: A2[GeF2(HPO4)2] (A = Na, K, Rb, NH4, and Cs).

    PubMed

    Chen, Zhang-Gai; Huang, Xia; Zhuang, Rong-Chuan; Zhang, Yu; Liu, Xin; Shi, Tao; Wang, Shuai-Hua; Wu, Shao-Fan; Mi, Jin-Xiao; Huang, Ya-Xi

    2017-09-12

    Germanophosphates, in comparison with other metal phosphates, have been less studied but potentially exhibit more diverse structural chemistry with wide applications. Herein we applied a hydro-/solvo-fluorothermal route to make use of both the "tailor effect" of fluoride for the formation of low dimensional anionic clusters and the presence of alkali cations of different sizes to align the anionic clusters to control the overall crystal symmetries of germanophosphates. The synergetic effects of fluoride and alkali cations led to structural changes from chain-like structures to layered structures in a series of five novel fluorogermanophosphates: A 2 [GeF 2 (HPO 4 ) 2 ] (A = Na, K, Rb, NH 4 , and Cs, denoted as Na, K, Rb, NH4, and Cs). Although these fluorogermanophosphates have stoichiometrically equivalent formulas, they feature different anionic clusters, diverse structural dimensionalities, and contrasting crystal symmetries. Chain-like structures were observed for the compounds with the smaller sized alkali ions (Na + , K + , and Rb + ), whereas layered structures were found for those containing the larger sized cations ((NH 4 ) + and Cs + ). Specifically, monoclinic space groups were observed for the Na, K, Rb, and NH4 compounds, whereas a tetragonal space group P4/mbm was found for the Cs compound. These compounds provide new insights into the effects of cation sizes on the anionic clusters built from GeO 4 F 2 octahedra and HPO 4 tetrahedra as well as their influences on the overall structural symmetries in germanophosphates. Further characterization including IR spectroscopy and thermal analyses for all five compounds is also presented.

  8. Changes in apparent molar water volume and DKP solubility yield insights on the Hofmeister effect.

    PubMed

    Payumo, Alexander Y; Huijon, R Michael; Mansfield, Deauna D; Belk, Laurel M; Bui, Annie K; Knight, Anne E; Eggers, Daryl K

    2011-12-15

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the nonideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water.

  9. Changes in Apparent Molar Water Volume and DKP Solubility Yield Insights on the Hofmeister Effect

    PubMed Central

    Payumo, Alexander Y.; Huijon, R. Michael; Mansfield, Deauna D.; Belk, Laurel M.; Bui, Annie K.; Knight, Anne E.; Eggers, Daryl K.

    2011-01-01

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the non-ideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water. PMID:22029390

  10. Axial stretch-dependent cation entry in dystrophic cardiomyopathy: Involvement of several TRPs channels

    PubMed Central

    Krzesiak, A.; Lipskaia, L.; Adnot, S.; Hajjar, R.J.; Cognard, C.

    2016-01-01

    In Duchenne muscular dystrophy (DMD), deficiency of the cytoskeletal protein dystrophin leads to well-described defects in skeletal muscle but also to dilated cardiomyopathy (DCM). In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The dystrophin deficiency leads to membrane instability and a high stress-induced Ca2+ influx due to dysregulation of sarcolemmal channels such as stretch-activated channels (SACs). In this work divalent cation entry has been explored in isolated ventricular Wild Type (WT) and mdx cardiomyocytes in two different conditions: at rest and during the application of an axial stretch. At rest, our results suggest that activation of TRPV2 channels participates to a constitutive basal cation entry in mdx cardiomyocytes.Using microcarbon fibres technique, an axial stretchwas applied to mimic effects of physiological conditions of ventricular filling and study on cation influx bythe Mn2+-quenching techniquedemonstrated a high stretch-dependentcationic influx in dystrophic cells, partially due to SACs. Involvement of TRPs channels in this excessive Ca2+ influx has been investigated using specific modulators and demonstratedboth sarcolemmal localization and an abnormal activity of TRPV2 channels. In conclusion, TRPV2 channels are demonstrated here to play a key role in cation influx and dysregulation in dystrophin deficient cardiomyocytes, enhanced in stretching conditions. PMID:26803937

  11. A novel micro-emulsion and micelle assembling method to prepare DEC205 monoclonal antibody coupled cationic nanoliposomes for simulating exosomes to target dendritic cells.

    PubMed

    Li, Kexin; Chang, Shasha; Wang, Zhongyan; Zhao, Xiuli; Chen, Dawei

    2015-08-01

    Cationic biomimetic exosomes were prepared using a novel micro-emulsion and micelle assembling method by introducing DEC205 monoclonal antibody as specific ligand to target dendritic cells (DCs). The Box-Behnken experimental design was applied for optimization of nanoliposomes (NLip) and DEC205 monoclonal antibody was then conjugated on the surface of NLip (DEC205-NLip). NLip and DEC205-NLip respectively had an average size of 62.7 ± 6.33 nm and 81.64 ± 4.25 nm, zeta potential of +30.5 ± 2.3 mV and +19.8 ± 1.8 mV and encapsulation efficiency of 91.02 ± 3.1% and 93.10 ± 2.2%. In addition, the toxicity studies confirmed DEC205 monoclonal antibody could significantly reduce the cytotoxicity of the cationic lipid against DCs. And the cellular uptake experiment evaluated the significant targeting effect of the DEC205 monoclonal antibody on DC cells. In conclusion, the novel method presented here to prepare biomimetic exosomes was an efficient approach to develop antigen carriers for specific DCs targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    NASA Astrophysics Data System (ADS)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light on the spectroscopy and fluorescence dynamics of these species. W. Domcke, D. R. Yarkony, and H. Köppel, Advanced Series in Physical Chemistry, World Scientific, Singapore (2004). M. H. Beck and A. Jäckle and G. A. Worth and H. -D. Meyer, Phys. Rep. 324, 1 (2000). S. Faraji, H. Köppel, (Part I) ; S. Faraji, H. Köppel, H.-D. Meyer, (Part II) J. Chem. Phys. 129, 074310 (2008).

  13. Effective concentration as a tool for quantitatively addressing preorganization in multicomponent assemblies: application to the selective complexation of lanthanide cations.

    PubMed

    Canard, Gabriel; Koeller, Sylvain; Bernardinelli, Gérald; Piguet, Claude

    2008-01-23

    The beneficial entropic effect, which may be expected from the connection of three tridentate binding units to a strain-free covalent tripod for complexing nine-coordinate cations (Mz+ = Ca2+, La3+, Eu3+, Lu3+), is quantitatively analyzed by using a simple thermodynamic additive model. The switch from pure intermolecular binding processes, characterizing the formation of the triple-helical complexes [M(L2)3]z+, to a combination of inter- and intramolecular complexation events in [M(L8)]z+ shows that the ideal structural fit observed in [M(L8)]z+ indeed masks large energetic constraints. This limitation is evidenced by the faint effective concentrations, ceff, which control the intramolecular ring-closing reactions operating in [M(L8)]z+. This predominence of the thermodynamic approach over the usual structural analysis agrees with the hierarchical relationships linking energetics and structures. Its simple estimation by using a single microscopic parameter, ceff, opens novel perspectives for the molecular tuning of specific receptors for the recognition of large cations, a crucial point for the programming of heterometallic f-f complexes under thermodynamic control.

  14. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization.

    PubMed

    Egorova, Ksenia S; Ananikov, Valentine P

    2014-02-01

    Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoprobing of the effect of Cu2+ cations on misfolding, interaction and aggregation of amyloid β peptide

    PubMed Central

    Lv, Zhengjian; Condron, Margaret M.; Teplow, David B.; Lyubchenko, Yuri L.

    2012-01-01

    Misfolding and aggregation of the amyloid β-protein (Aβ) are hallmarks of Alzheimer’s disease. Both processes are dependent on the environmental conditions, including the presence of divalent cations, such as Cu2+. Cu2+ cations regulate early stages of Aβ aggregation, but the molecular mechanism of Cu2+ regulation is unknown. In this study we applied single molecule AFM force spectroscopy to elucidate the role of Cu2+ cations on interpeptide interactions. By immobilizing one of two interacting Aβ42 molecules on a mica surface and tethering the counterpart molecule onto the tip, we were able to probe the interpeptide interactions in the presence and absence of Cu2+ cations at pH 7.4, 6.8, 6.0, 5.0, and 4.0. The results show that the presence of Cu2+ cations change the pattern of Aβ interactions for pH values between pH 7.4 and pH 5.0. Under these conditions, Cu2+ cations induce Aβ42 peptide structural changes resulting in N–termini interactions within the dimers. Cu2+ cations also stabilize the dimers. No effects of Cu2+ cations on Aβ–Aβ interactions were observed at pH 4.0, suggesting that peptide protonation changes the peptide-cation interaction. The effect of Cu2+ cations on later stages of Aβ aggregation was studied by AFM topographic images. The results demonstrate that substoichiometric Cu2+ cations accelerate the formation of fibrils at pH 7.4 and 5.0, whereas no effect of Cu2+ cations was observed at pH 4.0. Taken together, the combined AFM force spectroscopy and imaging analyses demonstrate that Cu2+ cations promote both the initial and the elongation stages of Aβ aggregation, but protein protonation diminishes the effect of Cu2+. PMID:23143330

  16. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    PubMed

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  17. Comparative analysis of cation/proton antiporter superfamily in plants.

    PubMed

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cation Exchange Water Softeners

    EPA Pesticide Factsheets

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  19. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    PubMed

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  20. Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family.

    PubMed

    Plotnikov, E Y; Silachev, D N; Jankauskas, S S; Rokitskaya, T I; Chupyrkina, A A; Pevzner, I B; Zorova, L D; Isaev, N K; Antonenko, Y N; Skulachev, V P; Zorov, D B

    2012-09-01

    It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C(12)R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C(12)R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C(12)R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.

  1. Light and dark-activated biocidal activity of conjugated polyelectrolytes.

    PubMed

    Ji, Eunkyung; Corbitt, Thomas S; Parthasarathy, Anand; Schanze, Kirk S; Whitten, David G

    2011-08-01

    This Spotlight on Applications provides an overview of a research program that has focused on the development and mechanistic study of cationic conjugated polyelectrolytes (CPEs) that function as light- and dark-active biocidal agents. Investigation has centered on poly-(phenylene ethynylene) (PPE) type conjugated polymers that are functionalized with cationic quaternary ammonium solubilizing groups. These polymers are found to interact strongly with Gram-positive and Gram-negative bacteria, and upon illumination with near-UV and visible light act to rapidly kill the bacteria. Mechanistic studies suggest that the cationic PPE-type polymers efficiently sensitize singlet oxygen ((1)O(2)), and this cytotoxic agent is responsible for initiating the sequence of events that lead to light-activated bacterial killing. Specific CPEs also exhibit dark-active antimicrobial activity, and this is believed to arise due to interactions between the cationic/lipophilic polymers and the negatively charged outer membrane characteristic of Gram-negative bacteria. Specific results are shown where a cationic CPE with a degree of polymerization of 49 exhibits pronounced light-activated killing of E. coli when present in the cell suspension at a concentration of 1 μg mL(-1).

  2. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    PubMed

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  3. Zn2+, not Ca2+, is the most effective cation for activation of dolichol kinase of mammalian brain.

    PubMed

    Sakakihara, Y; Volpe, J J

    1985-12-15

    The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.

  4. Polyamine replacement by magnesium ions in BHK-21/C13 cells

    PubMed Central

    Melvin, Maureen A. L.; Keir, Hamish M.

    1979-01-01

    Cultures of BHK-21/C13 cells, whose growth was inhibited by deprivation of serum, were stimulated to grow by addition of serum to the culture medium. Addition of MgCl2 to the medium, to increase the concentration of Mg2+ ions by 15mm, 30min before addition of serum, had no effect on the stimulation of cell growth, but inhibited the accumulation of cellular spermidine, so that the spermidine/spermine molar ratio was lower in these cultures than in cultures that had received no additional cations. The increase in the activity of ornithine decarboxylase that occurs 4–5h after serum `step-up' was substantially diminished by increasing the concentration of Mg2+ ions, but not of Na+ or K+ ions, in the medium by 30mm, 30min before addition of serum, and this inhibition was maintained for at least 24h. Methylglyoxal bis(guanylhydrazone), added to serum-deprived cultures to a concentration of 20μm, 30min before addition of serum, severely inhibited the increase in cell growth. The inhibitory effects of the drug were prevented by simultaneous addition of spermidine to the medium (to 100μm), and were partly prevented by the simultaneous addition of Mg2+ ions (to 30mm). Mg2+ ions were particularly effective in overcoming the inhibitory effect of methylglyoxal bis(guanylhydrazone) on the synthesis of DNA. Thus although a certain lack of specificity for cations exists in BHK-21/C13 cells, in that Mg2+ ions can be substituted for polyamines, particularly spermidine, to some extent, there are cellular processes for which the requirement for polyamines as cations is specific. PMID:444220

  5. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  6. Redox Specificity of 2-Hydroxyacid-Coupled NAD+/NADH Dehydrogenases: A Study Exploiting “Reactive” Arginine as a Reporter of Protein Electrostatics

    PubMed Central

    Durani, Susheel

    2013-01-01

    With “reactive” arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD+-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs) and cytoplasmic and mitochondrial malate dehydrogenases (MDHs) are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in “reactivity” of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on “reactive” arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in ΔpKa of “reactive” arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure) or reduce NAD+ (cationic nicotinamide structure). The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide) or reduced (neutral nicotinamide) coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme. PMID:24391777

  7. Modified clay sorbents

    DOEpatents

    Fogler, H. Scott; Srinivasan, Keeran R.

    1990-01-01

    A novel modified clay sorbent and method of treating industrial effluents to remove trace pollutants, such as dioxins, biphenyls, and polyaromatics such as benzo(a)pyrene and pentachlorophenol. The novel clay sorbent has a composite structure in which the interlayer space of an expandable clay, such as smectite, is filled with polyvalent or multivalent inorganic cations which forces weaker surfactant cations to locate on the surface of the clay in such an orientation that the resulting composite is hydrophilic in nature. A specific example is cetylpyridinium-hydroxy aluminum-montmorillonite. In certain embodiments, a non-expanding clay, such as kaolinite, is used and surfactant cations are necessarily located on an external surface of the clay. A specific example is cetylpyridinium-kaolinite.

  8. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    PubMed

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  9. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  10. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Deng, Geng; Zhou, Yu; Ashraf, Hamad; Yu, Zhi-Wu

    2018-06-01

    Task-specific ionic liquids (ILs) are those with functional groups introduced in the cations or anions of ILs to bring about specific properties for various tasks. In this work, the hydrogen bonding interactions between a hydroxyl functionalized IL 1-(2-hydroxylethyl)-3-methylimidazolium tetrafluoroborate ([C2OHMIM][BF4]) and acetonitrile were investigated in detail by infrared spectroscopy, excess spectroscopy, two-dimensional correlation spectroscopy, combined with hydrogen nuclear magnetic resonance and density functional theory calculations (DFT). The hydroxyl group rather than C2sbnd H is found to be the main interaction site in the cation. And the ν(Osbnd H) is more sensitive than v(C-Hs) to the environment, which has been taken as an intrinsic probe to reflect the structural change of IL. Examining the region of ν(Osbnd H), by combining excess spectroscopy and DFT calculation, a number of species were identified in the mixtures. Other than the hydrogen bond between a cation and an anion, the hydroxyl group allows the formation of a hydrogen bond between two like-charged cations. The Osbnd H⋯O hydrogen bonding interactions in the hydroxyl-mediated cation-cation complexes are cooperative, while Osbnd H⋯F and C2sbnd H⋯F hydrogen bonding interactions in cation-anion complexes are anti-cooperative. These in-depth studies on the properties of the ionic liquid-acetonitrile mixtures may shed light on exploring their applications as mixed solvents and understanding the nature of doubly ionic hydrogen bonds.

  11. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.

    PubMed

    Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel

    2016-12-06

    Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.

  12. Spatial distribution and vertical migration of (137)Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident.

    PubMed

    Petrović, Jelena; Ćujić, Mirjana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan; Dragović, Snežana

    2013-06-01

    In this study, the specific activity of (137)Cs was determined by gamma-ray spectrometry in 72 surface soil samples and 11 soil profiles collected from the territory of Belgrade 25 years after the Chernobyl accident. Based on the data obtained the external effective gamma dose rates due to (137)Cs were assessed and geographically mapped. The influence of pedogenic factors (pH, specific electrical conductivity, cation exchange capacity, organic matter content, soil particle size and carbonate content) on the spatial and vertical distribution of (137)Cs in soil was estimated through Pearson correlations. The specific activity of (137)Cs in surface soil samples ranged from 1.00 to 180 Bq kg(-1), with a mean value of 29.9 Bq kg(-1), while in soil profiles they ranged from 0.90 to 58.0 Bq kg(-1), with a mean value of 15.3 Bq kg(-1). The mean external effective gamma dose at 1 m above the ground due to (137)Cs in the soil was calculated to be 1.96 nSv h(-1). Geographic mapping of the external effective gamma dose rates originating from (137)Cs revealed much higher dose rates in southern parts of Belgrade city and around the confluence of the Sava and Danube. Negative Pearson correlation coefficients were found between pH, cation exchange capacity and (137)Cs specific activity in surface soil. There were positive correlations between organic matter and (137)Cs specific activity in surface soil; and between specific electrical conductivity, organic matter, silt content and (137)Cs specific activity in soil profiles.

  13. Regeneration of Cation-Transport Capacity in HeLa Cell Membranes After Specific Blockade by Ouabain

    PubMed Central

    Vaughan, Gerald L.; Cook, John S.

    1972-01-01

    The cardiac glycoside, ouabain, inhibits alkali-cation transport in HeLa cells. It binds to 0.75 × 106 sites per cell, and the half-time for its dissociation is 16 hr. After partial blockade by ouabain, the cell generates new ouabain-binding sites, with total restoration of transport in 10% of a cell cycle(∼3 hr). This recovery requires protein synthesis and appears to be a response to altered cell-electrolyte content, since growth of cells in media with low K+ concentration enhances the titer of the transport enzyme in a fashion similar to the effect of ouabain. Totally blocked cells do not recover. PMID:4506784

  14. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    PubMed

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  15. Cation disorder in Ga1212.

    PubMed

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  16. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    PubMed

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  17. Interaction of the new monofunctional anticancer agent Phenanthriplatin with transporters for organic cations

    NASA Astrophysics Data System (ADS)

    Hucke, Anna; Park, Ga Young; Bauer, Oliver B.; Beyer, Georg; Köppen, Christina; Zeeh, Dorothea; Wehe, Christoph A.; Sperling, Michael; Schröter, Rita; Kantauskaitè, Marta; Hagos, Yohannes; Karst, Uwe; Lippard, Stephen J.; Ciarimboli, Giuliano

    2018-05-01

    Cancer treatment with platinum compounds is an important achievement of modern chemotherapy. However, despite the beneficial effects, the clinical impact of these agents is hampered by the development of drug resistance as well as dose-limiting side effects. The efficacy but also side effects of platinum complexes can be mediated by uptake through plasma membrane transporters. In the kidneys, plasma membrane transporters are involved in their secretion into the urine. Renal secretion is accomplished by uptake from the blood into the proximal tubules cells, followed by excretion into the urine. The uptake process is mediated mainly by organic cation transporters (OCT), which are expressed in the basolateral domain of the plasma membrane facing the blood. The excretion of platinum into the urine is mediated by exchange with protons via multidrug and toxin extrusion proteins (MATE) expressed in the apical domain of plasma membrane. Recently, the monofunctional, cationic platinum agent phenanthriplatin, which is able to escape common cellular resistance mechanisms, has been synthesized and investigated. In the present study, the interaction of phenanthriplatin with transporters for organic cations has been evaluated. Phenanthriplatin is a high affinity substrate for OCT2, but has a lower apparent affinity for MATEs. The presence of these transporters increased cytotoxicity of phenanthriplatin. Therefore, phenanthriplatin may be especially effective in the treatment of cancers that express OCTs, such as colon cancer cells. However, the interaction of phenanthriplatin with OCTs suggests that its use as chemotherapeutic agent may be complicated by OCT-mediated toxicity. Unlike cisplatin, phenanthriplatin interacts with high specificity with hMATE1 and hMATE2K in addition to hOCT2. This interaction may facilitate its efflux from the cells and thereby decrease overall efficacy and/or toxicity.

  18. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt.

    PubMed

    Jeżowski, P; Crosnier, O; Deunf, E; Poizot, P; Béguin, F; Brousse, T

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO 2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  19. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T.

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  20. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  1. Amylose-Based Cationic Star Polymers for siRNA Delivery.

    PubMed

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials.

  2. Detergents as selective inhibitors and inactivators of enzymes.

    PubMed

    Vincenzini, M T; Favilli, F; Stio, M; Vanni, P; Treves, C

    1985-01-01

    In order to study the detergent-enzyme interaction and to clarify whether such an interaction produces specific or non-specific effects, we investigated the action of natural and synthetic detergents on enzymatic systems of different levels of complexity (crystalline enzymes, crude homogenates, organ preparations, organisms in toto i.e. rats and germinating seeds). The enzyme-detergent interaction was examined both as a time-independent phenomenon (inhibition) and as a time-dependent phenomenon (inactivation). In in vitro experiments a clear inhibition of pyridine-dependent dehydrogenases by long-chain anionic detergents was found. Cationic detergents have their greatest effect on lipase, LDH, MDH and ICDH from rat liver homogenates. At low concentrations SDS inactivates all the dehydrogenase enzymes studied. With high concentrations (10 mM) of SDS and dodecyltrimethylammonium bromide (C12), there was a sharp and non-specific decrease of enzymatic activities. In the in vivo studies, rats were given detergents to drink; the cationic detergent (C12) was far more effective than SDS with enzymes from both intestine and liver homogenates. SDS and C12 do not seem to interfere with enzyme activities at the beginning of the germination of Pinus pinea and Triticum durum seeds. However a marked reduction of activities does occur at the respective maximum germination times of these seeds. The nonionic detergent is ineffective both as inhibitor and as inactivator.

  3. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  4. Molecular crowding has no effect on the dilution thermodynamics of the biologically relevant cation mixtures.

    PubMed

    Głogocka, Daria; Przybyło, Magdalena; Langner, Marek

    2017-04-01

    The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.

  5. The Effects of the Organic-Inorganic Interactions on the Thermal Transport Properties of CH3NH3PbI3.

    PubMed

    Hata, Tomoyuki; Giorgi, Giacomo; Yamashita, Koichi

    2016-04-13

    Methylammonium lead iodide perovskite (CH3NH3PbI3), the most investigated hybrid organic-inorganic halide perovskite, is characterized by a quite low thermal conductivity. The rotational motion of methylammonium cations is considered responsible for phonon transport suppression; however, to date, the specific mechanism of the process has not been clarified. In this study, we elucidate the role of rotations in thermal properties based on molecular dynamics simulations. To do it, we developed an empirical potential for CH3NH3PbI3 by fitting to ab initio calculations and evaluated its thermal conductivity by means of nonequilibrium molecular dynamics. Results are compared with model systems that include different embedded cations, and this comparison shows a dominant suppression effect provided by rotational motions. We also checked the temperature dependence of the vibrational density of states and specified the energy range in which anharmonic couplings occur. By means of phonon dispersion analysis, we were able to fully elucidate the suppression mechanism: the rotations are coupled with translational motions of cations, via which inorganic lattice vibrations are coupled and scatter each other.

  6. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    PubMed

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  7. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials.

    PubMed

    Min, Kyoungmin; Seo, Seung-Woo; Song, You Young; Lee, Hyo Sug; Cho, Eunseog

    2017-01-18

    First-principles calculations have been used to investigate the effects of Al and Mg doping on the prevention of degradation phenomena in Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 cathode materials. Specifically, we have examined the effects of dopants on the suppression of oxygen evolution and cation disordering, as well as their correlation. It is found that Al doping can suppress the formation of oxygen vacancies effectively, while Mg doping prevents the cation disordering behaviors, i.e., excess Ni and Li/Ni exchange, and Ni migration. This study also demonstrates that formation of oxygen vacancies can facilitate the construction of the cation disordering, and vice versa. Delithiation can increase the probabilities of formation of all defect types, especially oxygen vacancies. When oxygen vacancies are present, Ni can migrate to the Li site during delithiation. However, Al and Mg doping can inhibit Ni migration, even in structures with preformed oxygen defects. The analysis of atomic charge variations during delithiation demonstrates that the degree of oxidation behavior in oxygen atoms is alleviated in the case of Al doping, indicating the enhanced oxygen stability in this structure. In addition, changes in the lattice parameters during delithiation are suppressed in the Mg-doped structure, which suggests that Mg doping may improve the lattice stability.

  8. Effect of cationic polyelectrolytes on the performance of paper diagnostics for blood typing.

    PubMed

    McLiesh, Heather; Sharman, Scot; Garnier, Gil

    2015-09-01

    We investigated the effect that two common types of cationic polyelectrolytes used in papermaking might have on the performance of paper diagnostics using blood typing as an example. The results were analyzed in terms of red blood cells (RBC) retention and antibody-antigen specificity. Two questions were addressed: (1) can poly(amido-amine) epichlorohydrin (PAE) typically used for paper wet strength affect the diagnostic performance? (2) can high molecular weight cationic polyacrylamide (CPAM) employed as retention aid enhance or affect the selectivity and sensitivity of paper diagnostics? A series of paper varying in type of fibers and drying process were constructed with PAE and tested for blood typing performance. Residual PAE has no significant effect on blood typing paper diagnostics under normal conditions. Positives are unaffected with PAE, while negatives lose slight sharpness as some RBCs are unselectively retained. CPAM, the most common retention aid, can also be used to retain cells and biomolecules on paper. Paper towel was treated with CPAM solutions varying in polymer concentration and charge density and tested for blood typing. We found that CPAM dried on paper can retain RBC. CPAM affects the negative tests by retaining non-specifically individual RBC on fibers. RBC retention increases non-linearly with the CPAM charge density and concentration. As expected, wet CPAM retain RBCs at concentrations higher than 0.1wt%. As paper diagnostics are becoming a reality, more realistic papers than the Whatman filter paper will be engineered. This study provides guidance on how best use the required polymeric wet-strength and retention agents. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  9. Substituent and Solvent Effects on the Absorption Spectra of Cation-π Complexes of Benzene and Borazine: A Theoretical Study.

    PubMed

    Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2014-05-29

    Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σ p and σ m ). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes.

  10. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    PubMed

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + < K + < Cs + , and those of alkaline earth metal ions followed the order of Mg 2+ < Ca 2+ < Ba 2+ . With batch adsorption experiments and microscopic data, we verified that cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  11. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  12. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome.

    PubMed

    Zhen, Shuai; Takahashi, Yoichiro; Narita, Shunichi; Yang, Yi-Chen; Li, Xu

    2017-02-07

    The potent ability of CRISPR/Cas9 system to inhibit the expression of targeted gene is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of CRISPR/Cas9 into specific cell populations is still the principal challenge in the clinical development of CRISPR/Cas9 therapeutics. In this study, a flexible aptamer-liposome-CRISPR/Cas9 chimera was designed to combine efficient delivery and increased flexibility. Our chimera incorporated an RNA aptamer that specifically binds prostate cancer cells expressing the prostate-specific membrane antigen as a ligand. Cationic liposomes were linked to aptamers by the post-insertion method and were used to deliver therapeutic CRISPR/Cas9 that target the survival gene, polo-like kinase 1, in tumor cells. We demonstrate that the aptamer-liposome-CRISPR/Cas9 chimeras had a significant cell-type binding specificity and a remarkable gene silencing effect in vitro. Furthermore, silencing promoted a conspicuous regression of prostate cancer in vivo. Importantly, the approach described here provides a universal means of cell type-specific CRISPR/Cas9 delivery, which is a critical goal for the widespread therapeutic applicability of CRISPR/Cas9 or other nucleic acid drugs.

  13. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome

    PubMed Central

    Zhen, Shuai; Takahashi, Yoichiro; Narita, Shunichi; Yang, Yi-Chen; Li, Xu

    2017-01-01

    The potent ability of CRISPR/Cas9 system to inhibit the expression of targeted gene is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of CRISPR/Cas9 into specific cell populations is still the principal challenge in the clinical development of CRISPR/Cas9 therapeutics. In this study, a flexible aptamer-liposome-CRISPR/Cas9 chimera was designed to combine efficient delivery and increased flexibility. Our chimera incorporated an RNA aptamer that specifically binds prostate cancer cells expressing the prostate-specific membrane antigen as a ligand. Cationic liposomes were linked to aptamers by the post-insertion method and were used to deliver therapeutic CRISPR/Cas9 that target the survival gene, polo-like kinase 1, in tumor cells. We demonstrate that the aptamer-liposome-CRISPR/Cas9 chimeras had a significant cell-type binding specificity and a remarkable gene silencing effect in vitro. Furthermore, silencing promoted a conspicuous regression of prostate cancer in vivo. Importantly, the approach described here provides a universal means of cell type–specific CRISPR/Cas9 delivery, which is a critical goal for the widespread therapeutic applicability of CRISPR/Cas9 or other nucleic acid drugs. PMID:28030843

  14. Influence of lithium cations on prolyl peptide bonds.

    PubMed

    Kunz, Claudia; Jahreis, Günther; Günther, Robert; Berger, Stefan; Fischer, Gunter; Hofmann, Hans-Jörg

    2012-06-01

    The influence of lithium cations on the cis/trans isomerization of prolyl peptide bonds was investigated in a quantitative manner in trifluoroethanol (TFE) and acetonitrile, employing NMR techniques. The focus was on various environmental and structural aspects, such as lithium cation and water concentrations, the type of the partner amino acid in the prolyl peptide bond, and the peptide sequence length. Comparison of the thermodynamic parameters of the isomerization in LiCl/TFE and TFE shows a lithium cation concentration dependence of the cis/trans ratio, which saturates at cation concentrations >200 mM. A pronounced increase in the cis isomer content in the presence of lithium cations occurs with the exception of peptides with Gly-Pro and Asp-Pro moieties. The cation effect appears already at the dipeptide level. The salt concentration can considerably be reduced in solvents with a lower number of nucleophilic centers like acetonitrile. The lithium cation effect decreases with small amounts of water and disappears at a water concentration of about 5%. The isomerization kinetics under the influence of lithium cations suggests a weak cation interaction with the carbonyl oxygen of the peptide bond. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  15. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of cationic hydroxyethyl cellulose on glucose tolerance and obesity

    USDA-ARS?s Scientific Manuscript database

    Cholestyramine is a cationic polymer prescribed to lower cholesterol in humans. We investigated the effects of cationic hydroxyethyl cellulose (cHEC) on weight loss and metabolic disorders associated with obesity using both hamster and diet-induced obese mouse models. Golden Syrian hamsters and ob...

  17. Partitioning of dopant cations between β-tricalcium phosphate and fluorapatite

    NASA Astrophysics Data System (ADS)

    Jay, E. E.; Mallinson, P. M.; Fong, S. K.; Metcalfe, B. L.; Grimes, R. W.

    2011-07-01

    Mixed crystalline phase composite ceramics offer the possibility of partitioning defect species between the phases as well as occupancy of specific sites within a given phase. Here we use atomic scale simulations to study the site preference of an extensive range of divalent and trivalent substitutional ions across the five cation sites in β-tricalcium phosphate ( β-TCP) and the two cations sites in fluorapatite (FAp). This study indicates that in β-TCP small dopant species occupy the smaller of the five cation sites and vice versa. Conversely, in FAp, small divalent species occupy the nominally larger Ca(1) site while larger cations occupy the Ca(2) site. Partition energies between the two phases indicate that divalent species strongly segregate to β-TCP as do Al 3+ and Ga 3+, whereas all other (larger) trivalent ions exhibit little preference.

  18. Design and assembly of new non-viral RNAi delivery agents by microwave-assisted quaternization (MAQ) of tertiary amines

    PubMed Central

    Ghosh, Animesh; Mukherjee, Koushik; Jiang, Xinpeng; Zhou, Ying; McCarroll, Joshua; Qu, James; Swain, Pamela M.; Baigude, Huricha; Rana, Tariq M.

    2010-01-01

    RNA interference (RNAi), a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of non-viral gene delivery agents under safe and fast reaction conditions. PMID:20722369

  19. Selective interactions of trivalent cations Fe³⁺, Al³⁺ and Cr³⁺ turn on fluorescence in a naphthalimide based single molecular probe.

    PubMed

    Janakipriya, Subramaniyan; Chereddy, Narendra Reddy; Korrapati, Purnasai; Thennarasu, Sathiah; Mandal, Asit Baran

    2016-01-15

    Synthesis and fluorescence turn-on behavior of a naphthalimide based probe is described. Selective interactions of trivalent cations Fe(3+), Al(3+) or Cr(3+) with probe 1 inhibit the PET operating in the probe, and thereby, permit the detection of these trivalent cations present in aqueous samples and live cells. Failure of other trivalent cations (Eu(3+), Gd(3+) and Nb(3+)) to inhibit the PET process in 1 demonstrates the role of chelating ring size vis-à-vis ionic radius in the selective recognition of specific metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Therapeutic effect for liver-metastasized tumor by sequential intravenous injection of anionic polymer and cationic lipoplex of siRNA.

    PubMed

    Hattori, Yoshiyuki; Arai, Shohei; Kikuchi, Takuto; Ozaki, Kei-Ichi; Kawano, Kumi; Yonemochi, Etsuo

    2016-04-01

    Previously, we developed a novel siRNA transfer method to the liver by sequential intravenous injection of anionic polymer and cationic liposome/siRNA complex (cationic lipoplex). In this study, we investigated whether siRNA delivered by this sequential injection could significantly suppress mRNA expression of the targeted gene in liver metastasis and inhibit tumor growth. When cationic lipoplex was intravenously injected into mice bearing liver metastasis of human breast tumor MCF-7 at 1 min after intravenous injection of chondroitin sulfate C (CS) or poly-l-glutamic acid (PGA), siRNA was accumulated in tumor-metastasized liver. In terms of a gene silencing effect, sequential injections of CS or PGA plus cationic lipoplex of luciferase siRNA could reduce luciferase activity in liver MCF-7-Luc metastasis. Regarding the side effects, sequential injections of CS plus cationic lipoplex did not exhibit hepatic damage or induction of inflammatory cytokines in serum after repeated injections, but sequential injections of PGA plus cationic lipoplex did. Finally, sequential injections of CS plus cationic lipoplex of protein kinase N3 siRNA could suppress tumor growth in the mice bearing liver metastasis. From these findings, sequential injection of CS and cationic lipoplex of siRNA might be a novel systemic method of delivering siRNA to liver metastasis.

  1. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits

    PubMed Central

    2016-01-01

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the “stiffness site” affects filament mechanical properties. Incorporating a magnesium ion in the “polymerization site” does not seem to require any large-scale change to an actin subunit’s conformation. Binding of a magnesium ion in the “stiffness site” adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  2. Intervention effects of five cations and their correction on hemolytic activity of tentacle extract from the jellyfish Cyanea capillata

    PubMed Central

    2017-01-01

    Cations have generally been reported to prevent jellyfish venom-induced hemolysis through multiple mechanisms by spectrophotometry. Little attention has been paid to the potential interaction between cations and hemoglobin, potentially influencing the antagonistic effect of cations. Here, we explored the effects of five reported cations, La3+, Mn2+, Zn2+, Cu2+ and Fe2+, on a hemolytic test system and the absorbance of hemoglobin, which was further used to measure their effects on the hemolysis of tentacle extract (TE) from the jellyfish Cyanea capillata. All the cations displayed significant dose-dependent inhibitory effects on TE-induced hemolysis with various dissociation equilibrium constant (Kd) values as follows: La3+ 1.5 mM, Mn2+ 93.2 mM, Zn2+ 38.6 mM, Cu2+ 71.9 μM and Fe2+ 32.8 mM. The transparent non-selective pore blocker La3+ did not affect the absorbance of hemoglobin, while Mn2+ reduced it slightly. Other cations, including Zn2+, Cu2+ and Fe2+, greatly decreased the absorbance with Kd values of 35.9, 77.5 and 17.6 mM, respectively. After correction, the inhibitory Kd values were 1.4 mM, 45.8 mM, 128.5 μM and 53.1 mM for La3+, Zn2+, Cu2+ and Fe2+, respectively. Mn2+ did not inhibit TE-induced hemolysis. Moreover, the inhibitory extent at the maximal given dose of all cations except La3+ was also diminished. These corrected results from spectrophotometry were further confirmed by direct erythrocyte counting under microscopy. Our results indicate that the cations, except for La3+, can interfere with the absorbance of hemoglobin, which should be corrected when their inhibitory effects on hemolysis by jellyfish venoms are examined. The variation in the inhibitory effects of cations suggests that the hemolysis by jellyfish venom is mainly attributed to the formation of non-selective cation pore complexes over other potential mechanisms, such as phospholipases A2 (PLA2), polypeptides, protease and oxidation. Blocking the pore-forming complexes may be a primary strategy to improve the in vivo damage and mortality from jellyfish stings due to hemolytic toxicity. PMID:28503385

  3. Cationic composition and acid-base state of the extracellular fluid, and specific buffer value of hemoglobin from the branchiopod crustacean Triops cancriformis.

    PubMed

    Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K

    2009-04-01

    Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.

  4. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    NASA Astrophysics Data System (ADS)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  5. The cohering telomeres of Oxytricha.

    PubMed Central

    Oka, Y; Thomas, C A

    1987-01-01

    We have studied the process by which purified Oxytricha macronuclear DNA associates with itself to form large aggregates. The various macronuclear DNA molecules all have the same terminal or telomeric DNA sequences that are shown below. 5' C4A4C4A4C4--mean length----G4T4G4T4G4T4G4T4G4 G4T4G4T4G4T4G4T4G4-----2.4 kb------C4A4C4A4C4. When incubated at high concentrations, these telomeric sequences cohere with one another to form an unusual structure--one that is quite different from any DNA structure so far described. The evidence for this is the following: 1) These sequences cohere albeit slowly, in the presence of relatively high concentrations of Na+, and no other cation tested. This contrasts with the rapid coherence of complementary single-chain terminals of normal DNA (sticky ends) which occurs in the presence of any cation tested. 2) If the cohered form is transferred into buffers containing a special cation, K+, it becomes much more resistant to dissociation by heating. We estimate that K+ increases the thermal stability by 25 degrees or more. The only precedent known (to us) for a cation-specific stabilization is that seen in the quadruplex structure formed by poly I. The thermal stability of double helical macronuclear DNA depends on the cation concentration, but not the cation type. Limited treatment with specific nucleases show that the 3' and 5'-ended strands are essential for the formation of the cohering structure. Once in the cohered form, the telomeric sequences are protected from the action of nucleases. Coherence is inhibited by specific, but not by non-specific, synthetic oligomers, and by short telomeric fragments with or without their terminal single chains. We conclude that the coherence occurs by the formation of a novel condensed structure that involves the terminal nucleotides in three or four chains. Images PMID:3120149

  6. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  7. Filtrates and Residues: Qualitative Analysis of Some Transition Metals.

    ERIC Educational Resources Information Center

    Kilner, Cary

    1985-01-01

    Describes a qualitative analysis laboratory in which students examine specific precipitates that can be used to identify copper, cobalt, nickel, and iron cations. The objective of the laboratory is to determine which test or sequence of tests unambiguously identifies each cation and to use the results to identify several unknowns. (JN)

  8. Characterization and production of multifunctional cationic peptides derived from rice proteins.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito

    2017-04-01

    Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.

  9. Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals.

    PubMed

    Addleman, R S; Bennett, J; Tweedy, S H; Elshani, S; Wai, C M

    1998-08-01

    The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.

  10. How the spontaneous insertion of amphiphilic imidazolium-based cations changes biological membranes: a molecular simulation study.

    PubMed

    Lim, Geraldine S; Jaenicke, Stephan; Klähn, Marco

    2015-11-21

    The insertion of 1-octyl-3-methylimidazolium cations (OMIM(+)) from a diluted aqueous ionic liquid (IL) solution into a model of a bacterial cell membrane is investigated. Subsequently, the mutual interactions of cations inside the membrane and their combined effect on membrane properties are derived. The ionic liquid solution and the membrane model are simulated using molecular dynamics in combination with empirical force fields. A high propensity of OMIM(+) for membrane insertion is observed, with a cation concentration at equilibrium inside the membrane 47 times larger than in the solvent. Once inserted, cations exhibit a weak effective attraction inside the membrane at a distance of 1.3 nm. At this free energy minimum, negatively charged phosphates of the phospholipids are sandwiched between two OMIM(+) to form energetically favorable OMIM(+)-phosphate-OMIM(+) types of coordination. The cation-cation association free energy is 5.9 kJ mol(-1), whereas the activation barrier for dissociation is 10.1 kJ mol(-1). Subsequently, OMIM(+) are inserted into the leaflet of the membrane bilayer that represents the extracellular side. The cations are evenly distributed with mutual cation distances according to the found optimum distance of 1.3 nm. Because of the short length of the cation alkyl chains compared to lipid fatty acids, voids are generated in the hydrophobic core of the membrane. These voids disorder the fatty acids, because they enable fatty acids to curl into these empty spaces and also cause a thinning of the membrane by 0.6 nm. Additionally, the membrane density increases at its center. The presence of OMIM(+) in the membrane facilitates the permeation of small molecules such as ammonia through the membrane, which is chosen as a model case for small polar solutes. The permeability coefficient of the membrane with respect to ammonia increases substantially by a factor of seven. This increase is caused by a reduction of the involved free energy barriers, which is effected by the cations through the thinning of the membrane and favorable interactions of the delocalized OMIM(+) charge with ammonia inside the membrane. Overall, the results indicate the antimicrobial effect of amphiphilic imidazolium-based cations that are found in various common ILs. This effect is caused by an alteration of the permeability of the bacterial membrane and other property changes.

  11. Biocompatible water softening system using cationic protein from moringa oleifera extract

    NASA Astrophysics Data System (ADS)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-10-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  12. Calcium and zinc differentially affect the structure of lipid membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kučerka, Norbert; Dushanov, Ermuhammad; Kholmurodov, Kholmirzo T.

    Interactions of calcium (Ca 2+) and zinc (Zn 2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca 2+ and Zn 2+ cause DPPC bilayers to thicken, while further increases in Ca 2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn 2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Znmore » 2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Lastly, the radial distribution functions reveal a strong interaction between Ca 2+ and the phosphate oxygens, while Zn 2+ shows a much weaker binding specificity.« less

  13. Calcium and zinc differentially affect the structure of lipid membranes

    DOE PAGES

    Kučerka, Norbert; Dushanov, Ermuhammad; Kholmurodov, Kholmirzo T.; ...

    2017-03-09

    Interactions of calcium (Ca 2+) and zinc (Zn 2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca 2+ and Zn 2+ cause DPPC bilayers to thicken, while further increases in Ca 2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn 2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Znmore » 2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Lastly, the radial distribution functions reveal a strong interaction between Ca 2+ and the phosphate oxygens, while Zn 2+ shows a much weaker binding specificity.« less

  14. meso-Octamethylcalix[4]pyrrole as an effective macrocyclic receptor for the univalent thallium cation in the gas phase: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Polášek, Miroslav; Makrlík, Emanuel; Kvíčala, Jaroslav; Křížová, Věra; Vaňura, Petr

    2018-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent thallium cation (Tl+) forms with meso-octamethylcalix[4]pyrrole (1) the cationic complex species 1 Tl+. When this kinetically stable cation-π complex 1 Tl+ is collisionally activated, it decomposes by elimination of the whole ligand 1 or small meso-octamethylcalix[4]pyrrole fragments. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1 Tl+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a very effective macrocyclic receptor for the thallium cation.

  15. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  16. Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels

    PubMed Central

    Schneider, Elke; Machavoine, François; Pléau, Jean-Marie; Bertron, Anne-France; Thurmond, Robin L.; Ohtsu, Hiroshi; Watanabe, Takehiko; Schinkel, Alfred H.; Dy, Michel

    2005-01-01

    In this study, we identify the bidirectional organic cation transporter 3 (OCT3/Slc22a3) as the molecule responsible for histamine uptake by murine basophils. We demonstrate that OCT3 participates in the control of basophil functions because exogenous histamine can inhibit its own synthesis—and that of interleukin (IL)-4, IL-6, and IL-13—through this means of transport. Furthermore, ligands of H3/H4 histamine receptors or OCT3 inhibit histamine uptake, and outward transport of newly synthesized histamine. By doing so, they increase the histamine content of basophils, which explains why they mimic the effect of exogenous histamine. These drugs were no longer effective in histamine-free histidine decarboxylase (HDC)-deficient mice, in contrast with histamine itself. Histamine was not taken up and lost its inhibitory effect in mice deficient for OCT3, which proved its specific involvement. Intracellular histamine levels were increased strongly in IL-3–induced OCT3 −/− bone marrow basophils, and explained why they generated fewer cytokines than their wild-type counterpart. Their production was enhanced when histamine synthesis was blocked by the specific HDC inhibitor α-fluoro-methyl histidine, and underscored the determinant role of histamine in the inhibitory effect. We postulate that pharmacologic modulation of histamine transport might become instrumental in the control of basophil functions during allergic diseases. PMID:16061728

  17. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, Alexandre; Marceau, François, E-mail: franc

    Cation trapping in acidic cell compartments determines an antiproliferative effect that has a potential interest in oncology, as shown by clinical data and trials involving chloroquine and hydroxychloroquine. To further characterize the mechanism of this effect, we studied a series of 6 substituted triethylamine (s-Et{sub 3}N) drugs that encompasses a wide range of liposolubility (amiodarone, quinacrine, chloroquine, hydroxychloroquine, lidocaine, and procainamide). Three tumor cell lines and primary human endothelial cells were exploited in proliferation assays (48 h, cell counts). Accumulation of the autophagic effector LC3 II and the apoptotic marker cleaved PARP1 (immunoblots), cytotoxicity, cell cycle analysis and endocytic functionmore » were further tested in the p53-null histiocytic lymphoma U937 line. A profound and desynchronized antiproliferative effect was observed in response to all s-Et{sub 3}Ns with essentially no cell type specificity. Predictors of s-Et{sub 3}N potency were liposolubility and the acute accumulation of the autophagic effector LC3 II (6 h-treatments). For each s-Et{sub 3}N, there was an antiproliferative concentration range where cytotoxicity and apoptosis were not triggered in U937 cells (24–48 h-treatments). Quinacrine was the most potent cytostatic drug (1–5 μM). Co-treatment of cells with inhibitors of cholesterol, β-cyclodextrin or lovastatin, partially reversed the antiproliferative effect of each s-Et{sub 3}N. The cytopathology induced by cationic drug accumulation includes a cytostatic effect. Its intensity is cell type- and p53-independent, but predicted by the inhibition of autophagic flux and by the liposolubility of individual drugs and alleviated by cholesterol ablation. The superiority of quinacrine, biomarker value of LC3 II and antagonism by a statin may be clinically relevant. - Highlights: • Cation trapping in acidic cell compartments induces a cytostatic effect. • A series of substituted triethylamines has been studied in 4 cell types. • Cytostatic potency is predicted by lipophilicity and autophagic flux inhibition. • β-Cyclodextrin or lovastatin co-treatment reverses the antiproliferative effect.« less

  18. Rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides: is solute rotation always influenced by the length of the alkyl chain on the imidazolium cation?

    PubMed

    Gangamallaiah, V; Dutt, G B

    2012-10-25

    In an attempt to find out whether the length of the alkyl chain on the imidazolium cation has a bearing on solute rotation, temperature-dependent fluorescence anisotropies of three structurally similar solutes have been measured in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides. Solute-solvent coupling constants obtained from the experimentally measured reorientation times with the aid of Stokes-Einstein-Debye hydrodynamic theory indicate that there is no influence of the length of the alkyl chain on the rotation of nonpolar, anionic, and cationic solutes 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), respectively. It has also been noticed that the rotational diffusion of 9-PA is closer to the predictions of slip hydrodynamics, whereas the rotation of negatively charged FL and positively charged R110 is almost identical and follows stick hydrodynamics in these ionic liquids. Despite having similar shape and size, ionic solutes rotate slower by a factor of 3-4 compared to the nonpolar solute. Interplay of specific and electrostatic interactions between FL and the imidazolium cation of the ionic liquids, and between R110 and the bis(trifluoromethylsulfonyl)imide anion, appear to be responsible for the observed behavior. These results are an indication that the length of the alkyl chain on the imidazolium cation does not alter their physical properties in a manner that has an effect on solute rotation.

  19. Status of soil acidification in North America

    USGS Publications Warehouse

    Fenn, M.E.; Huntington, T.G.; Mclaughlin, S.B.; Eagar, C.; Gomez, A.; Cook, R.B.

    2006-01-01

    Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of leaching of base cations, increased availability of soil Al, and the accumulation and ultimate transmission of acidity from forest soils to streams. Losses of calcium from forest soils and forested watersheds have now been documented as a sensitive early indicator and a functionally significant response to acid deposition for a wide range of forest soils in North America. For red spruce, a clear link has been established between acidic deposition, alterations in calcium and aluminum supplies and increased sensitivity to winter injury. Cation depletion appears to contribute to sugar maple decline on some soils, specifically the high mortality rates observed in northern Pennsylvania over the last decade. While responses to liming have not been systematically examined in North America, in a study in Pennsylvania, restoring basic cations through liming increased basal area growth of sugar maple and levels of calcium and magnesium in soil and foliage. In the San Bernardino Mountains in southern California near the west coast, the pH of the A horizon has declined by at least 2 pH units (to pH 4.0-4.3) over the past 30 years, with no detrimental effects on bole growth; presumably, because of the Mediterranean climate, base cation pools are still high and not limiting for plant growth.

  20. Understanding the effect models of ionic liquids in the synthesis of NH4-Dw and γ-AlOOH nanostructures and their conversion into porous γ-Al2O3.

    PubMed

    Duan, Xiaochuan; Kim, Tongil; Li, Di; Ma, Jianmin; Zheng, Wenjun

    2013-05-03

    Well-dispersed ammonium aluminum carbonate hydroxide (NH4-Dw) and γ-AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic-liquid-assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4-Dw to γ-AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4-Dw and γ-AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4-Dw and γ-AlOOH nanostructures, which could be divided into cationic- or anionic-dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic-dominant regime, the ionic liquids mainly showed dispersion effects for the NH4-Dw nanostructures, whereas the anionic-dominant model could induce the self-assembly of the γ-AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as-prepared NH4-Dw and γ-AlOOH nanostructures were converted into porous γ-Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen-adsorption analysis, the obtained γ-Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High rate, long cycle life battery electrode materials with an open framework structure

    DOEpatents

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  2. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Wang, Yu-Cai; Long, Hong-Yan; Xiong, Meng-Hua; Mao, Cheng-Qiong; Yao, Yan-Dan; Wang, Jun

    2012-06-26

    The clinical success of therapeutics of small interfering RNA (siRNA) is still hindered by its delivery systems. Cationic polymer or lipid-based vehicles as the major delivery systems of siRNA cannot sufficiently satisfy siRNA therapeutic applications. It is hypothesized that cationic lipid-polymer hybrid nanoparticles may take advantage of both polymeric and lipid-based nanoparticles for siRNA delivery, while diminishing the shortcomings of both. In this study, cationic lipid-polymer hybrid nanoparticles were prepared by a single-step nanoprecipitation of a cationic lipid (N,N-bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide, BHEM-Chol) and amphiphilic polymers for systemic delivery of siRNA. The formed hybrid nanoparticles comprised a hydrophobic polylactide core, a hydrophilic poly(ethylene glycol) shell, and a cationic lipid monolayer at the interface of the core and the shell. Such hybrid nanoparticles exhibited excellent stability in serum and showed significantly improved biocompatibility compared to that of pure BHEM-Chol particles. The hybrid nanoparticles were capable of delivering siRNA into BT474 cells and facilitated the escape of loaded siRNA from the endosome into the cytoplasm. The hybrid nanoparticles carrying polo-like kinase 1 (Plk1)-specific siRNA (siPlk1) remarkably and specifically downregulated expression of the oncogene Plk1 and induced cancer cell apoptosis both in vitro and in vivo and significantly suppressed tumor growth following systemic administration. We demonstrate that this system is stable, nontoxic, highly efficient, and easy to scale up, bringing the clinical application of siRNA therapy one important step closer to reality.

  3. (4 + 3) Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations

    PubMed Central

    Lohse, Andrew G.; Hsung, Richard P.

    2011-01-01

    The use of heteroatom-substituted oxyallyl cations in (4 + 3) cycloadditions has had a tremendous impact on the development of cycloaddition chemistry. Extensive efforts have been exerted toward investigating the effect of oxygen-, sulfur-, and halogen-substituents on the reactivity of oxyallyl cations. Most recently, the use of nitrogen-stabilized oxyallyl cations has gained prominence in the area of (4 + 3) cycloadditions. The following article will provide an overview of this concept utilizing nitrogen-stabilized oxyallyl cations. PMID:21384451

  4. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    PubMed

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  5. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  6. Transport of K+ and other cations across phospholipid membranes by nonesterified fatty acids.

    PubMed

    Sharpe, M A; Cooper, C E; Wrigglesworth, J M

    1994-07-01

    The rate of change of internal pH and transmembrane potential has been monitored in liposomes following the external addition of various cation salts. Oleic acid increases the transmembrane movement of H+ following the imposition of a K+ gradient. An initial fast change in internal pH is seen followed by a slower rate of alkalinization. High concentrations of the fatty acid enhance the rate comparable to that seen in the presence of nigericin in contrast to the effect of FCCP (carbonyl cyanide p-(tri-fluoromethoxy)phenyl hydrazone) which saturates at an intermediate value. The ability of nonesterified fatty acids to catalyze the movement of cations across the liposome membrane increases with the degree of unsaturation and decreases with increasing chain length. Li and Na salts cause a similar initial fast pH change but have less effect on the subsequent slower rate. Similarly, the main effect of divalent cation salts is on the initial fast change. The membrane potential can enhance or inhibit cation transport depending on its polarity with respect to the cation gradient. It is concluded that nonesterified fatty acids have the capability to complex with, and transport, a variety of cations across phospholipid bilayers. However, they do not act simply as proton/cation exchangers analogous to nigericin nor as protonophores analogous to FCCP. The full cycle of ionophoric action involves a combination of both functions.

  7. Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics

    DOE PAGES

    Barnhill, William C.; Qu, Jun; Luo, Huimin; ...

    2014-11-17

    In our previous work we suggest great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent moremore » on molecular mass than on symmetry. While a larger cation size generally increases an IL’s solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Moreover, characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Our results provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.« less

  8. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  9. Effect of alcaline cations in zeolites on their dielectric properties.

    PubMed

    Legras, Benoît; Polaert, Isabelle; Estel, Lionel; Thomas, Michel

    2012-01-01

    The effect on dielectric properties of alkaline cations Li+, Na+ and K+ incorporated in a zeolite Faujasite structure X or Y, has been investigated. Two major phenomena have been proved to occur: ionic conductivity and rotational polarization of the water molecules adsorbed. The polarizability of the cation which is directly linked to its radius, affects ionic conductivity as well as rotational polarization. Li cations are more strongly Linked to the framework than K+ and Na+ and induce a lower ionic conductivity. K+ is weakly fixed and induces a ionic conductivity even at low solvation level. At low water content, the cation nature and number mainly control the free rotation of the water molecules and affect the relaxation frequency. Close to saturation, the water molecules are mainly linked together by H bonds: the cation nature and number do not really affect the global dielectric properties anymore.

  10. Red fluorescent probes for real-time imaging of the cell cycle by dynamic monitoring of the nucleolus and chromosome.

    PubMed

    Wang, Kang-Nan; Chao, Xi-Juan; Liu, Bing; Zhou, Dan-Jie; He, Liang; Zheng, Xiao-Hui; Cao, Qian; Tan, Cai-Ping; Zhang, Chen; Mao, Zong-Wan

    2018-03-08

    Two cationic molecular rotors, 1 and 2, capable of real-time cell-cycle imaging by specifically dynamic monitoring of nucleolus and chromosome changes were developed. A further study shows that fluorescence enhancements in the nucleolus and chromosome are attributed to a combination effect of interaction with nucleic acid and high condensation of the nucleolus and chromosome.

  11. Effect of a cationic surfactant on the volatilization of PAHs from soil.

    PubMed

    Lu, Li; Zhu, Lizhong

    2012-06-01

    Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil. The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid-vapor and solid-vapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis. DDPB affects both liquid-vapor and solid-vapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas-liquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas-liquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid-vapor volatilization of PAHs. The overall effect of the two simultaneous effects of DDPB on liquid-vapor and solid-vapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.

  12. Mutual influence between triel bond and cation-π interactions: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2017-12-01

    Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.

  13. Use of Shape Memory Alloys in the Robust Control of Smart Structures

    DTIC Science & Technology

    1993-08-01

    OHP (anions) @ Cation II I I JU Anion O0HP(cations) 0 Ano Cation electrf statically h eld in double layer 0 ’ Double Diff sion Bulk Layer L., Layer I...Effect in Thermoelastic In-Tl Martensite, Mem . Fac. Eng. Kyoto Univ., 43(2): 287-303 (1981) 43. A. Nagasawa, Memory Effect in In-Tl Alloy, J. Phys. Soc

  14. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  15. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    PubMed

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  16. Modulation of the Conformational Dynamics of Apo-Adenylate Kinase through a π-Cation Interaction.

    PubMed

    Halder, Ritaban; Manna, Rabindra Nath; Chakraborty, Sandipan; Jana, Biman

    2017-06-15

    Large-scale conformational transition from open to closed state of adenylate kinase (ADK) is essential for its catalytic cycle. Apo-ADK undergoes conformational transition in a way that closely resembles an open-to-closed conformational transition. Here, equilibrium simulations, free-energy simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations in combination with several bioinformatics approaches have been used to explore the molecular origin of this conformational transition in apo-ADK. In addition to its conventional open state, Escherichia coli apo-ADK adopts conformations that resemble a closed-like intermediate, the "half-open-half-closed" (HOHC) state, and a π-cation interaction can account for the stability of this HOHC state. Energetics and the electronic properties of this π-cation interaction have been explored using QM/MM calculations. Upon rescinding the π-cation interaction, the conformational landscape of the apo-ADK changes completely. The apo-ADK population is shifted completely toward the open state. This π-cation interaction is highly conserved in bacterial ADK; the cationic guanidinium moiety of a conserved ARG interacts with the delocalized π-electron cloud of either PHE or TYR. Interestingly, this study demonstrates the modulation of a principal protein dynamics by a conserved specific π-cation interaction across different organisms.

  17. Gas phase chemistry of N-benzylbenzamides with silver(I) cations: characterization of benzylsilver cation.

    PubMed

    Sun, Hezhi; Jin, Zhe; Quan, Hong; Sun, Cuirong; Pan, Yuanjiang

    2015-03-07

    The benzylsilver cation which emerges from the collisional dissociation of silver(I)-N-benzylbenzamide complexes was characterized by deuterium-labeling experiments, theoretical calculations, breakdown curves and substituent effects. The nucleophilic attack of the carbonyl oxygen on an α-hydrogen results in the generation of the benzylsilver cation, which is competitive to the AgH loss with the α-hydrogen.

  18. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G 1 LLKR 5 IKT 8 LL-NH 2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly 1 , Arg 5 , and Thr 8 and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF 5 IKK 8 LL-NH 2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  19. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the localization of plasmid DNA in the tumor tissue was observed only for the PEG-introduced cationized Pronectin F+-plasmid DNA complex injected. We conclude that the PEGylation of cationized Pronectin F+ is a promising way to enable the plasmid DNA to target to the tumor for gene expression. Coyright 2004 Elsevier B.V.

  20. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

    DOE PAGES

    Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra; ...

    2017-07-24

    The electrochemical reduction of CO 2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO 2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably formore » HCOO –, C 2H 4, and C 2H 5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO 2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. As a result, the observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.« less

  1. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra

    The electrochemical reduction of CO 2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO 2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably formore » HCOO –, C 2H 4, and C 2H 5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO 2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. As a result, the observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.« less

  2. A computational study of anion-modulated cation-π interactions.

    PubMed

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  3. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  4. The Effects of Various Ions on Resting and Spike Potentials of Barnacle Muscle Fibers

    PubMed Central

    Hagiwara, Susumu; Chichibu, Shiko; Naka, Ken-ichi

    1964-01-01

    Effects of monovalent cations and some anions on the electrical properties of the barnacle muscle fiber membrane were studied when the intra- or extracellular concentrations of those ions were altered by longitudinal intra-cellular injection. The resting potential of the normal fiber decreases linearly with increase of logarithm of [K+]out and the decrement for a tenfold increase in [K+]out is 58 mv when the product, [K+]out ·[Cl-]out, is kept constant. It also decreases with decreasing [K+]in but is always less than expected theoretically. The deviation becomes larger as [K+]in increases and the resting potential finally starts to decrease with increasing [K+]in for [K+]in > 250 mM. When the internal K+ concentration is decreased the overshoot of the spike potential increases and the time course of the spike potential becomes more prolonged. In substituting for the internal K+, Na+ and sucrose affect the resting and spike potentials similarly. Some organic cations (guanidine, choline, tris, and TMA) behave like sucrose while some other organic cations (TEA, TPA, and TBA) have a specific effect and prolong the spike potential if they are applied intracellularly or extracellularly. In all cases the active membrane potential increases linearly with the logarithm of [Ca++]out/[K+]in and the increment is about 29 mv for tenfold increase in this ratio. The fiber membrane is permeable to Cl- and other smaller anions (Br- and I-) but not to acetate- and larger anions (citrate-, sulfate-, and methanesulfonate-). PMID:14212147

  5. Effect of TRPV2 cation channels on the proliferation, migration and invasion of 5637 bladder cancer cells.

    PubMed

    Liu, Quanliang; Wang, Xinghuan

    2013-11-01

    Transient receptor potential vanilloid 2 (TRPV2), a nonselective cation channel, has become an attractive target gene for tumor studies due to its wide range of physiological and pathological functions. However, its specific role in bladder cancer development and progression remains unclear. The aim of the present study was to investigate the effects of TRPV2 on the proliferation, migration and invasion of 5637 bladder cancer cells in vitro . Rat TRPV2 cDNA was transfected into 5637 bladder cancer cells and changes in the behavior of the cells were detected. It was observed that TRPV2 enhanced bladder cancer cell migration and invasion; however, it did not affect cell proliferation in vitro . TRPV2 activity, which may be mediated by direct matrix metalloproteinase 2 (MMP2) regulation, is important in bladder tumor development and progression. The results of this study suggest that TRPV2 channels are a potential therapeutic target for bladder carcinoma.

  6. Effect of TRPV2 cation channels on the proliferation, migration and invasion of 5637 bladder cancer cells

    PubMed Central

    LIU, QUANLIANG; WANG, XINGHUAN

    2013-01-01

    Transient receptor potential vanilloid 2 (TRPV2), a nonselective cation channel, has become an attractive target gene for tumor studies due to its wide range of physiological and pathological functions. However, its specific role in bladder cancer development and progression remains unclear. The aim of the present study was to investigate the effects of TRPV2 on the proliferation, migration and invasion of 5637 bladder cancer cells in vitro. Rat TRPV2 cDNA was transfected into 5637 bladder cancer cells and changes in the behavior of the cells were detected. It was observed that TRPV2 enhanced bladder cancer cell migration and invasion; however, it did not affect cell proliferation in vitro. TRPV2 activity, which may be mediated by direct matrix metalloproteinase 2 (MMP2) regulation, is important in bladder tumor development and progression. The results of this study suggest that TRPV2 channels are a potential therapeutic target for bladder carcinoma. PMID:24223658

  7. Development of a stable cation modified graphene oxide membrane for water treatment

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; (Yet Yu, Tong; Graham, Nigel

    2017-12-01

    Membranes prepared from layers of graphene oxide (GO) offer substantial advantages over conventional materials for water treatment (e.g. greater flux), but the stability of GO membranes in water has not been achieved until now. In this study the behavior of GO membranes prepared with different quantities and species of cations has been investigated to establish the feasibility of their application in water treatment. A range of cation-modified GO membranes were prepared and exposed to aqueous solutions containing specific chemical constituents. In pure water, unmodified and Na-modified GO membranes were highly unstable, while GO membranes modified with multivalent cations were stable provided there were sufficient quantities of cations present; their relative capability to achieve GO stability was as follows: Al3+  >  Ca2+  >  Mg2+  >  Na+. It is believed that the mechanism of cross-linking, and membrane stability, is via metal-carboxylate chelates and cation-graphite surface interactions (cation-π interaction), and that the latter appears to increase with increasing cation valency. The instability of cation (Ca or Al)-modified GO membranes by NaCl solutions during permeation occurred as Na+ exchanged with the incorporated multivalent cations, but a high content of Al3+ in the GO membrane impeded Al3+/Na+ exchange and thus retained membrane stability. In solutions containing biopolymers representative of surface waters or seawater (protein and polysaccharide solutions), Ca-GO membranes (even with high Ca2+ content) were not stable, while Al-GO membranes were stable if the Al3+ content was sufficiently high; Al-formed membranes also had a greater flux than Ca-GO membranes.

  8. Equilibrium Acidities and Homolytic Bond Dissociation Enthalpies of the Acidic C-H Bonds in P-(Para-substituted benzyl)triphenylphosphonium Cations and Related Cations.

    PubMed

    Zhang, Xian-Man; Fry, Albert J.; Bordwell, Frederick G.

    1996-06-14

    Equilibrium acidities (pK(HA)) of six P-(para-substituted benzyl)triphenylphosphonium (p-GC(6)H(4)CH(2)PPh(3)(+)) cations, P-allyltriphenylphosphonium cation, P-cinnamyltriphenylphosphonium cation, and As-(p-cyanobenzyl)triphenylarsonium cation, together with the oxidation potentials [E(ox)(A(-))] of their conjugate anions (ylides) have been measured in dimethyl sulfoxide (DMSO) solution. The acidifying effects of the alpha-triphenylphosphonium groups on the acidic C-H bonds in toluene and propene were found to be ca 25 pK(HA) units (34 kcal/mol). Introduction of an electron-withdrawing group such as 4-NO(2), 4-CN, or 4-Br into the para position of the benzyl ring in p-GC(6)H(4)CH(2)PPh(3)(+) cations resulted in an additional acidity increase, but introduction of the 4-OEt electron-donating group decreases the acidity. The equilibrium acidities of p-GC(6)H(4)CH(2)PPh(3)(+) cations were nicely linearly correlated with the Hammett sigma(-) constants of the substituents (G) with a slope of 4.78 pK(HA) units (R(2) = 0.992) (Figure 1). Reversible oxidation potentials of the P-(para-substituted benzyl)triphenylphosphonium ylides were obtained by fast scan cyclic voltammetry. The homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bonds in these cations, estimated by combining their equilibrium acidities with the oxidation potentials of their corresponding conjugate anions, showed that the alpha-Ph(3)P(+) groups have negligible stabilizing or destabilizing effects on the adjacent radicals. The equilibrium acidity of As-(p-cyanobenzyl)triphenylarsonium cation is 4 pK(HA) units weaker than that of P-(p-cyanobenzyl)triphenylphosphonium cation, but the BDE of the acidic C-H bond in As-(p-cyanobenzyl)triphenylarsonium cation is ca 2 kcal/mol higher than that in P-(p-cyanobenzyl)triphenylphosphonium cation.

  9. SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering.

    PubMed

    Oh, Young-Ho; Jang, Hyeong Bin; Im, Suk; Song, Myoung Jong; Kim, So-Yeon; Park, Sung-Woo; Chi, Dae Yoon; Song, Choong Eui; Lee, Sungyul

    2011-01-21

    In the catalysis of S(N)2 fluorination reactions, the ionic liquid anion plays a key role as a Lewis base by binding to the counterion Cs(+) and thereby reducing the retarding Coulombic influence of Cs(+) on the nucleophile F(-). The reaction rates also depend critically on the structures of ionic liquid cation, for example, n-butyl imidazolium gives no S(N)2 products, whereas n-butylmethyl imidazolium works well. The origin of the observed phenomenal synergetic effects by the ionic liquid [mim-(t)OH][OMs], in which t-butanol is bonded covalently to the cation [mim], is that the t-butanol moiety binds to the leaving group of the substrate, moderating the retarding interactions between the acidic hydrogen and F(-). This work is a significant step toward designing and engineering solvents for promoting specific chemical reactions.

  10. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.

  11. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    NASA Astrophysics Data System (ADS)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06556e

  12. EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS

    PubMed Central

    Voss, J. G.

    1963-01-01

    Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942

  13. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Molten Bis(trifluoromethylsulfonyl)amide Salts: Effects of Cation Species.

    PubMed

    Kakinuma, Shohei; Shirota, Hideaki

    2018-05-25

    In this study, we have investigated the effects of cation structures on the temperature dependence of the intermolecular vibrational dynamics of ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. The ionic liquids used in this study are bis(trifluoromethylsulfonyl)amide [NTf 2 ] - salts of the cations 1-butyl-3-methylimidazolium [C 4 MIm] + , 1-butyl-1-methylpyrrolidinium [Pyrr 14 ] + , 1-butylpyridinium [C 4 Py] + , butyldiethylmethylammonium [N 1224 ] + , triethyloctylammonium [N 2228 ] + , and triethyloctylphosphonium [P 2228 ] + . All of the ionic liquids show temperature-dependent low-frequency spectra. A difference in the temperature dependence between the spectra of the aromatic and nonaromatic cation based ionic liquids is especially significant. In the case of the aromatic cation based ionic liquids [C 4 MIm][NTf 2 ] and [C 4 Py][NTf 2 ], the spectral intensities in the low-frequency region below ca. 50 cm -1 increase and the high-frequency components at ca. 80 cm -1 shift to lower frequencies with rising temperature. In contrast, the ionic liquids based on nonaromatic cations only exhibit an increase in the low-frequency region below ca. 50 cm -1 with increasing temperature, while the high-frequency region of the spectra above ca. 50 cm -1 shows little change with variation of the temperature. These results suggest that the presence or absence of aromatic rings is the main factor in determining the temperature-dependent spectral features, particularly in the high-frequency region. We also found that the alkyl chain length and central atoms of the nonaromatic quaternary cations do not have much influence on the temperature-dependent spectral features. The first moments of the aromatic cation based ionic liquids are a little more sensitive to temperature than those of the nonaromatic cation based ionic liquids. The temperature-dependent viscosities and fragilities of the ionic liquids have also been examined.

  14. Impaired Monoamine and Organic Cation Uptake in Choroid Plexus in Mice with Targeted Disruption of the Plasma Membrane Monoamine Transporter (Slc29a4) Gene*

    PubMed Central

    Duan, Haichuan; Wang, Joanne

    2013-01-01

    The choroid plexus (CP) forms the blood-cerebrospinal fluid (CSF) barrier and protects the brain from circulating metabolites, drugs, and toxins. The plasma membrane monoamine transporter (PMAT, SLC29A4) is a new polyspecific organic cation transporter that transports a wide variety of organic cations including biogenic amines, cationic drugs, and neurotoxins. PMAT is known to be expressed in the CP, but its specific role in CP transport of organic cations has not been clearly defined. Here we showed that PMAT transcript is highly expressed in human and mouse CPs, whereas transcripts of other functionally related transporters are minimally expressed in the CPs. Immunofluorescence staining further revealed that PMAT protein is localized to the apical (CSF-facing) membrane of the CP epithelium, consistent with a role of transporting organic cations from the CSF into CP epithelial cells. To further evaluate the role of PMAT in the CP, mice with targeted deletion of the Slc29a4 gene were generated and validated. Although Pmat−/− mice showed no overt abnormalities, the uptake of monoamines and the neurotoxin 1-methyl-4-phenylpyridinium was significantly reduced in CP tissues isolated from the knock-out mice. Together, our data demonstrated that PMAT is a major transporter for CP uptake of bioactive amines and xenobiotic cations. By removing its substrates from the CSF, PMAT may play an important role in protecting the brain from cationic neurotoxins and other potentially toxic organic cations. PMID:23255610

  15. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means ofmore » their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2+} cations. No qualitative difference with monovalent cations was found in what solvation is concerned, which suggests that no enhanced reduction of the mobility of these cations and their complexes in ILs respective to those of monovalent cations is to be expected.« less

  16. Cation-containing lipid membranes – experiment and md simulations

    DOE PAGES

    Kučerka, Norbert; Dushanov, Ermuhammas; Kholmurodov, Kholmirzo T.; ...

    2017-11-27

    Here, using small angle neutron diffraction and molecular dynamics simulations we studied the interactions between calcium (Ca 2+) or zinc (Zn 2+) cations, and oriented gel phase dipalmitoyl-phosphatidylcholine (DPPC) bilayers. For both cations studied at ~1:7 divalent metal ion to lipid molar ratio (Me2+:DPPC), bilayer thickness increased. Simulation results helped reveal subtle differences in the effects of the two cations on gel phase membranes.

  17. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.

    2017-02-01

    Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.

  18. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effect of harvest intensity on long-term calcium dynamics in soil and soil solution at three coniferous sites in Sweden

    NASA Astrophysics Data System (ADS)

    Zetterberg, Therese; Olsson, Bengt; Löfgren, Stefan; von Brömssen, Claudia; Brandtberg, Per-Olov

    2013-04-01

    Bioenergy from forests is a mean to reduce fossil fuel related carbon dioxide (CO2) emissions. The potential to replace fossil fuel with logging residues is large in countries with extensive forest resources such as Sweden where the supply of bioenergy to district heating plants has quintupled since the 1990's, now accounting for 46% of the total energy supply. However, the loss of nutrients and other elements in biomass is higher following harvest for bioenergy purposes (whole-tree harvest, WTH) compared with traditional clear-cutting (conventional harvest, CH). Calcium (Ca2+) is an important base cation, which buffer soils and surface water against acidification. The loss of Ca2+ and other base cations via harvest for bioenergy could therefore result in soil acidification and there is a growing concern in Sweden that the depletion in base cation pools would also lead to surface water acidification associated with lower base cation concentrations in runoff (Swedish Environmental Protection Agency, 2007). Furthermore, WTH may also prevent or delay a recovery from acidification in areas such as the southwestern parts of Sweden, where the pools of exchangeable cations have been substantially depleted as a result of historically high sulfate (SO42-) deposition. In this paper, long-term treatment differences in soil exchangeable Ca2+ pools (down to 20 cm) and soil solution Ca2+ concentrations at 50 cm soil depth were examined at three coniferous sites in Sweden following CH and WTH in 1974-76. The results showed that soil water concentrations of Ca2+were -17 μeq l-1 (or 40%) lower in WTH plots compared with CH plots, 27-30 years after harvest. The main treatment differences had largely disappeared 32 to 35 years after harvest although site specific treatment differences (ΔWTH-CH: -24 μeq l-1) were still measurable at the well-buffered site in northern Sweden. These results are in agreement with soil data showing that previously found treatment differences in Ca2+ pools had diminished in the forest floor but remained in deeper soil layers (-0.29, -0.37 and -0.24 kmolc ha-1 in the 5-10, 10-15 and 15-20 cm soil layer, respectively). The effects on soil Ca2+ pools appeared to be most pronounced at the well-buffered northern site. These results indicate that the effect of WTH on soil and soil solution concentrations is temporary but site specific. Contrary to common beliefs, the greatest effects were observed at the well-buffered site where the loss of Ca2+ during WTH is less likely to lead to acidification effects. The treatment effects on soil solution at the more acidic sites in southern Sweden were much smaller and probably not large enough to fully counterbalance the general recovery from acidification during the study period. References Swedish Environmental Protection Agency, 2007. Bara naturlig försurning. Bilagor till underlagsrapport till fördjupad utvärdering av miljömålen. Rapport 5780. 208 pp. In Swedish.

  20. Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels.

    PubMed

    Held, Katharina; Voets, Thomas; Vriens, Joris

    2016-01-01

    Opening and closing of voltage-gated cation channels allows the regulated flow of cations such as Na(+), K(+), and Ca(2+) across cell membranes, which steers essential physiological processes including shaping of action potentials and triggering Ca(2+)-dependent processes. Classical textbooks describe the voltage-gated cation channels as membrane proteins with a single, central aqueous pore. In recent years, however, evidence has accumulated for the existence of additional ion permeation pathways in this group of cation channels, distinct from the central pore, which here we collectively name non-canonical pores. Whereas the first non-canonical pores were unveiled only after making specific point mutations in the voltage-sensor region of voltage-gated Na(+) and K(+) channels, recent evidence indicates that they may also be functional in non-mutated channels. Moreover, several channelopathies have been linked to mutations that cause the appearance of a non-canonical ion permeation pathway as a new pathological mechanism. This review provides an integrated overview of the biophysical properties of non-canonical pores described in voltage-dependent cation channels (KV, NaV, Cav, Hv1, and TRPM3) and of the (patho)physiological impact of opening of such pores.

  1. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE PAGES

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...

    2017-07-12

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  2. Tunnel Structured α-MnO 2 with Different Tunnel Cations (H + , K + , Ag + ) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    α-MnO 2 type manganese dioxide is an interesting prospective cathode material for reversible lithium insertion owing to its cation accessible tunnels (0.46nm x 0.46nm), high voltage, and low cost. The tunneled structure is synthetically formed by the assistance of cations acting as structure directing agents where the cations may remain in the tunnel. The electrochemistry of this family of materials is strongly dependent on the morphological and physicochemical (i.e. surface area, crystallite size, and average manganese oxidation state) properties as well as tunnel occupancy. For this work, we prepared a set of materials Mn 8O 16·0.81H 2O, K 0.81Mn 8Omore » 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O with similar nanorod morphology, crystallite size, surface area, and tunnel water content. This set of samples allowed us to investigate the role of tunnel cations in the electrochemistry of α-MnO 2 type manganese dioxide in a lithium based environment while minimizing the effects of the other parameters. The electrochemistry was evaluated using cyclic voltammetry, galvanostatic cycling, rate capability, and galvanostatic intermittent titration type testing. Mn 8O 16·0.81H 2O showed higher loaded voltages, improved capacity retention, and higher specific energy relative to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O. After 100 cycles, Mn 8O 16·0.81H 2O delivered ~200% more capacity than Ag 1.33Mn 8O 16·0.95H 2O (64 vs. 129 mAh/g) and ~35% more capacity than K 0.81Mn 8O 16·0.78H 2O (85 vs. 129 mAh/g). Mn 8O 16·0.81H 2O also showed higher effective lithium diffusion coefficients (DLi+) and higher rate capability compared to K 0.81Mn 8O 16·0.78H 2O and Ag 1.33Mn 8O 16·0.95H 2O suggesting faster Li+ ion diffusion in the absence of large metal tunnel cations.« less

  3. In vitro biopharmaceutical evaluation of ciprofloxacin/metal cation complexes for pulmonary administration.

    PubMed

    Brillault, J; Tewes, F; Couet, W; Olivier, J C

    2017-01-15

    Pulmonary delivery of fluoroquinolones (FQs) is an interesting approach to treat lung infections as it may lead to high local concentrations while minimizing systemic exposure. However, FQs have a rapid diffusion through the lung epithelium giving the pulmonary route no advantage compared to the oral route. Interactions between FQs and metal cations form complexes which limit the diffusion through the epithelial barrier and would reduce the absorption of FQs and maintain high concentrations in the lung. The effects of this complexation depend on the FQ and the metal cations and optimum partners should be selected through in vitro experiments prior to aerosol drug formulation. In this study, CIP was chosen as a representative FQ and 5 cations (Ca 2+ , Mg 2+ , Zn 2+ , Al 3+ , Cu 2+ ) were selected to study the complexation and its effects on permeability, antimicrobial efficacy and cell toxicity. The results showed that the apparent association constants between CIP and cations ranked with the descending order: Cu 2+ >Al 3+ >Zn 2+ >Mg 2+ >Ca 2+ . When a target of 80% complexation was reached with the adequate concentrations of cations, the CIP permeability through the Calu-3 lung epithelial cells was decreased of 50%. Toxicity of the CIP on the Calu-3 cells, with an EC50 evaluated at 7μM, was not significantly affected by the presence of the cations. The minimum inhibitory concentration of CIP for Pseudomonas aeruginosa was not affected or slightly increased in the range of cation concentrations tested, except for Mg 2+ . In conclusion, permeability was the main parameter that was affected by the metal cation complexation while cell toxicity and antimicrobial activity were not or slightly modified. Cu 2+ , with the highest apparent constant of association and with no effect on cell toxicity and antimicrobial activity of the CIP, appeared as a promising cation for the development of a controlled-permeability formulation of CIP for lung treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Medium Effects on Minimum Inhibitory Concentrations of Nylon-3 Polymers against E. coli

    PubMed Central

    Choi, Heejun; Chakraborty, Saswata; Liu, Runhui; Gellman, Samuel H.; Weisshaar, James C.

    2014-01-01

    Minimum inhibitory concentrations (MICs) against E. coli were measured for three nylon-3 polymers using Luria-Bertani broth (LB), brain-heart infusion broth (BHI), and a chemically defined complete medium (EZRDM). The polymers differ in the ratio of hydrophobic to cationic subunits. The cationic homopolymer is inert against E. coli in BHI and LB, but becomes highly potent in EZRDM. A mixed hydrophobic/cationic polymer with a hydrophobic t-butylbenzoyl group at its N-terminus is effective in BHI, but becomes more effective in EZRDM. Supplementation of EZRDM with the tryptic digest of casein (often found in LB) recapitulates the LB and BHI behavior. Additional evidence suggests that polyanionic peptides present in LB and BHI may form electrostatic complexes with cationic polymers, decreasing activity by diminishing binding to the anionic lipopolysaccharide layer of E. coli. In contrast, two natural antimicrobial peptides show no medium effects. Thus, the use of a chemically defined medium helps to reveal factors that influence antimicrobial potency of cationic polymers and functional differences between these polymers and evolved antimicrobial peptides. PMID:25153714

  5. Influence of pendant chiral C(γ)-(alkylideneamino/guanidino) cationic side-chains of PNA backbone on hybridization with complementary DNA/RNA and cell permeability.

    PubMed

    Jain, Deepak R; Anandi V, Libi; Lahiri, Mayurika; Ganesh, Krishna N

    2014-10-17

    Intrinsically cationic and chiral C(γ)-substituted peptide nucleic acid (PNA) analogues have been synthesized in the form of γ(S)-ethyleneamino (eam)- and γ(S)-ethyleneguanidino (egd)-PNA with two carbon spacers from the backbone. The relative stabilization (ΔTm) of duplexes from modified cationic PNAs as compared to 2-aminoethylglycyl (aeg)-PNA is better with complementary DNA (PNA:DNA) than with complementary RNA (PNA:RNA). Inherently, PNA:RNA duplexes have higher stability than PNA:DNA duplexes, and the guanidino PNAs are superior to amino PNAs. The cationic PNAs were found to be specific toward their complementary DNA target as seen from their significantly lower binding with DNA having single base mismatch. The differential binding avidity of cationic PNAs was assessed by the displacement of DNA duplex intercalated ethidium bromide and gel electrophoresis. The live cell imaging of amino/guanidino PNAs demonstrated their ability to penetrate the cell membrane in 3T3 and MCF-7 cells, and cationic PNAs were found to be accumulated in the vicinity of the nuclear membrane in the cytoplasm. Fluorescence-activated cell sorter (FACS) analysis of cell permeability showed the efficiency to be dependent upon the nature of cationic functional group, with guanidino PNAs being better than the amino PNAs in both cell lines. The results are useful to design new biofunctional cationic PNA analogues that not only bind RNA better but also show improved cell permeability.

  6. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Atomistic Modeling of Cation Diffusion in Transition Metal Perovskites La1-xSrxMnO3+/-δfor Solid Oxide Fuel Cell Cathodes Applications

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry

    Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.

  8. Phase behavior in quaternary ammonium ionic liquid-propanol solutions: Hydrophobicity, molecular conformations, and isomer effects

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Kohki, Erica; Nakada, Ayumu; Kishimura, Hiroaki

    2017-07-01

    In ionic liquids (ILs), the effects of a quaternary ammonium cation containing a hydroxyl group were investigated and compared with the effect of a standard quaternary ammonium cation. The cation possessing a hydroxyl group is choline, Chol+, and the anion is bis(trifluoromethylsulfonyl)imide, TFSI-. Crystal polymorphism of pure [Chol][TFSI] was observed upon both cooling and heating by simultaneous X-ray diffraction and differential scanning calorimetry measurements. In contrast, [N3111][TFSI] (N3111+: N-trimethyl-N-propylammonium), a standard IL, demonstrated simple crystallization upon cooling. By adding 1-propanol or 2-propanol, the phase behaviors of the [Chol][TFSI]-based and [N3111][TFSI]-based mixtures were clearly distinguished. By Raman spectroscopy, the TFSI- anion conformers in the liquid state were shown to vary according to the propanol concentration, propanol isomer, and type of cation. The anomalous behaviors of pure [Chol][TFSI] and its mixtures are derived from hydrogen bonding of the hydroxyl group of Chol+ cation coupled with the hydrophobicity and packing efficiency of propanol.

  9. Influence of naturally occurring dissolved organic matter, colloids, and cations on nanofiltration of pharmaceutically active and endocrine disrupting compounds.

    PubMed

    Sadmani, A H M Anwar; Andrews, Robert C; Bagley, David M

    2014-12-01

    This study examined the rejection of selected pharmaceutically active (PhAC) and endocrine disrupting compounds (EDCs) when using nanofiltration as a function of naturally occurring dissolved organic matter (DOM), colloidal particles, cations and their interactions. Lake Ontario water served as a source of natural DOM and colloidal particles. PhAC/EDC rejection experiments were conducted using raw Lake Ontario water and Lake Ontario water that was pre-treated with either ultrafiltration to remove colloidal particles, or fluidized ion exchange resins to remove DOM. Additionally, the concentration of cations (Ca(2+), Mg(2+), and Na(+)) in the raw and pre-treated water matrices was varied. While ionic PhACs and EDCs exhibited high rejections from all the water matrices examined, neutral compounds were most effectively rejected in water containing DOM and no colloids, and least effectively rejected from colloid-containing water with increased cations but no DOM. The presence of DOM significantly improved compound rejection and the increase in cation concentration significantly decreased rejection. The presence of colloids had comparatively little effect except to mitigate the impact of increased cation concentration, apparently providing some cation-buffering capacity. The sequence in which constituents are removed from waters during treatment may significantly impact PhAC and EDC removal, especially of neutral compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Intercalation and retention of carbon dioxide in a smectite clay promoted by interlayer cations.

    PubMed

    Michels, L; Fossum, J O; Rozynek, Z; Hemmen, H; Rustenberg, K; Sobas, P A; Kalantzopoulos, G N; Knudsen, K D; Janek, M; Plivelic, T S; da Silva, G J

    2015-03-05

    A good material for CO2 capture should possess some specific properties: (i) a large effective surface area with good adsorption capacity, (ii) selectivity for CO2, (iii) regeneration capacity with minimum energy input, allowing reutilization of the material for CO2 adsorption, and (iv) low cost and high environmental friendliness. Smectite clays are layered nanoporous materials that may be good candidates in this context. Here we report experiments which show that gaseous CO2 intercalates into the interlayer nano-space of smectite clay (synthetic fluorohectorite) at conditions close to ambient. The rate of intercalation, as well as the retention ability of CO2 was found to be strongly dependent on the type of the interlayer cation, which in the present case is Li(+), Na(+) or Ni(2+). Interestingly, we observe that the smectite Li-fluorohectorite is able to retain CO2 up to a temperature of 35°C at ambient pressure, and that the captured CO2 can be released by heating above this temperature. Our estimates indicate that smectite clays, even with the standard cations analyzed here, can capture an amount of CO2 comparable to other materials studied in this context.

  11. Intercalation and Retention of Carbon Dioxide in a Smectite Clay promoted by Interlayer Cations

    PubMed Central

    Michels, L.; Fossum, J. O.; Rozynek, Z.; Hemmen, H.; Rustenberg, K.; Sobas, P. A.; Kalantzopoulos, G. N.; Knudsen, K. D.; Janek, M.; Plivelic, T. S.; da Silva, G. J.

    2015-01-01

    A good material for CO2 capture should possess some specific properties: (i) a large effective surface area with good adsorption capacity, (ii) selectivity for CO2, (iii) regeneration capacity with minimum energy input, allowing reutilization of the material for CO2 adsorption, and (iv) low cost and high environmental friendliness. Smectite clays are layered nanoporous materials that may be good candidates in this context. Here we report experiments which show that gaseous CO2 intercalates into the interlayer nano-space of smectite clay (synthetic fluorohectorite) at conditions close to ambient. The rate of intercalation, as well as the retention ability of CO2 was found to be strongly dependent on the type of the interlayer cation, which in the present case is Li+, Na+ or Ni2+. Interestingly, we observe that the smectite Li-fluorohectorite is able to retain CO2 up to a temperature of 35°C at ambient pressure, and that the captured CO2 can be released by heating above this temperature. Our estimates indicate that smectite clays, even with the standard cations analyzed here, can capture an amount of CO2 comparable to other materials studied in this context. PMID:25739522

  12. Effects of solvent and alkaline earth metals on the heat-induced precipitation process of sodium caseinate.

    PubMed

    Lopez, Francesco; Cuomo, Francesca; Nostro, Pierandrea Lo; Ceglie, Andrea

    2013-01-01

    The precipitation temperatures of sodium caseinate in H(2)O and D(2)O in the presence of Mg(2+), Ca(2+), Sr(2+) and Ba(2+) were investigated through fluorescence, turbidity and conductivity experiments. As for the ability of the divalent cations (1-17.5mM) to induce the precipitation process in H(2)O, the sequence Ba(2+) ≥ Ca(2+)>Mg(2+)>Sr(2+) was found. Remarkably, while at low salt concentrations (<10mM) precipitation temperatures (T(Ps)) were found to change significantly depending on the specific cation, at higher concentrations (>10mM) the differences among the different cations were greatly reduced. By fitting these results with a modified Jones-Dole equation, we confirmed that the less hydrated ions possess a greater capacity to induce precipitation. In D(2)O, the order of ion ability to induce caseinate precipitation was Ba(2+)>Ca(2+)>Sr(2+)>Mg(2+). The different hydrophobicity between D(2)O and H(2)O was shown to affect significantly the T(Ps) of caseinate in the presence of calcium, strontium and barium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process.

    PubMed

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B

    2013-09-28

    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  14. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  15. Competitive/co-operative interactions in acid base sandwich: role of cation vs. substituents.

    PubMed

    Kalpana, Ayyavoo; Akilandeswari, Lakshminarayanan

    2017-11-15

    The cation-π interaction can be envisaged as a lewis acid base interaction, and it is in line with Pearson's acid base concept. The critical examination of interactions between the π-acids (alkali metal cations - Li + , Na + and alkaline earth metal cations Mg 2+ , Ca 2+ ) on one face and tripodal Cr(CO) 3 moiety on the other π face of substituted arenes demonstrates the role of cation and substitutents in manipulating the interactions between them. The interaction of the two π acids on both faces of arene is not expectedly additive, rather it shows either depreciation of interaction energy revealing the competition of acids toward the base or enhancement of interaction energy denoting a cooperative effect. Among the metal cations under study, Mg 2+ shows a cooperative gesture. Although the substituents play a meek role, they unfailingly exert their electronic effects and are amply documented by excellent correlation of various parameters with the Hammett constant σ m . The elusive switching of λ max from the UV to IR region on binding Mg 2+ with substituted arene-Cr(CO) 3 complex is a characteristic clue that TDDFT can help design the ionic sensors for Mg 2+ cations.

  16. Soil Materials and Health: An new experience for teaching

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2014-05-01

    Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic clays in the field of the health is a source to develop numerous studies of cases in the teaching of different subjects related to the geoscience and a new opportunity to connect the learning with the reality. References -Carretero, MI 2002. Clay Minerals and Their Beneficial Effects upon Human Health. A review. Appl. Clay Sci. 21, pp. 155-163. -Choy, J.H., Choi, S.J., Oh, J.M., Park, T. 2007. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 36 pp. 122-132. -Del Hoyo, C. 2007. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 36, pp. 103-121. -Lopez-Galindo, A., Viseras Iborra, C. & Cerezo Gonzalez, P. 2005. Arcillas y salud. In: Conferencias de la XIX Reunion de la Sociedad Espanola de Arcillas. Rives, Ed., pp. 15-18.

  17. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods

    PubMed Central

    Bizarro, C. V.; Alemany, A.; Ritort, F.

    2012-01-01

    RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na+]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg2+ salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs. PMID:22492710

  18. [Noncovalent cation-π interactions--their role in nature].

    PubMed

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  19. Accurate prediction of cation-π interaction energy using substituent effects.

    PubMed

    Sayyed, Fareed Bhasha; Suresh, Cherumuttathu H

    2012-06-14

    Substituent effects on cation-π interactions have been quantified using a variety of Φ-X···M(+) complexes where Φ, X, and M(+) are the π-system, substituent, and cation, respectively. The cation-π interaction energy, E(M(+)), showed a strong linear correlation with the molecular electrostatic potential (MESP) based measure of the substituent effect, ΔV(min) (the difference between the MESP minimum (V(min)) on the π-region of a substituted system and the corresponding unsubstituted system). This linear relationship is E(M(+)) = C(M(+))(ΔV(min)) + E(M(+))' where C(M(+)) is the reaction constant and E(M(+))' is the cation-π interaction energy of the unsubstituted complex. This relationship is similar to the Hammett equation and its first term yields the substituent contribution of the cation-π interaction energy. Further, a linear correlation between C(M(+))() and E(M(+))()' has been established, which facilitates the prediction of C(M(+)) for unknown cations. Thus, a prediction of E(M(+)) for any Φ-X···M(+) complex is achieved by knowing the values of E(M(+))' and ΔV(min). The generality of the equation is tested for a variety of cations (Li(+), Na(+), K(+), Mg(+), BeCl(+), MgCl(+), CaCl(+), TiCl(3)(+), CrCl(2)(+), NiCl(+), Cu(+), ZnCl(+), NH(4)(+), CH(3)NH(3)(+), N(CH(3))(4)(+), C(NH(2))(3)(+)), substituents (N(CH(3))(2), NH(2), OCH(3), CH(3), OH, H, SCH(3), SH, CCH, F, Cl, COOH, CHO, CF(3), CN, NO(2)), and a large number of π-systems. The tested systems also include multiple substituted π-systems, viz. ethylene, acetylene, hexa-1,3,5-triene, benzene, naphthalene, indole, pyrrole, phenylalanine, tryptophan, tyrosine, azulene, pyrene, [6]-cyclacene, and corannulene and found that E(M)(+) follows the additivity of substituent effects. Further, the substituent effects on cationic sandwich complexes of the type C(6)H(6)···M(+)···C(6)H(5)X have been assessed and found that E(M(+)) can be predicted with 97.7% accuracy using the values of E(M(+))' and ΔV(min). All the Φ-X···M(+) systems showed good agreement between the calculated and predicted E(M(+))() values, suggesting that the ΔV(min) approach to substituent effect is accurate and useful for predicting the interactive behavior of substituted π-systems with cations.

  20. Orientation specific deposition of mesoporous particles

    NASA Astrophysics Data System (ADS)

    Kjellman, Tomas; Bodén, Niklas; Wennerström, Hâkan; Edler, Karen J.; Alfredsson, Viveka

    2014-11-01

    We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface). A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  1. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed Central

    Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  2. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  3. Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids.

    PubMed

    Kim, Jinsung; Moon, Sang Hui; Shin, Young-Cheul; Jeon, Ju-Hong; Park, Kyu Joo; Lee, Kyu Pil; So, Insuk

    2016-04-01

    Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.

  4. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specificmore » chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.« less

  5. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    PubMed

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-05

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.

  6. Production of iota toxin by Clostridium spiroforme: a requirement for divalent cations.

    PubMed

    Carman, R J; van Tassell, R L; Wilkins, T D

    1987-10-01

    The effects of divalent cations (Ca2+, Co2+ and Zn2+) on the production of iota toxin by Clostridium spiroforme were studied. Toxin production had an absolute requirement for one or more cations in the range 1-5 mM. Using bispecific antisera, we showed that production of both the components of the toxin (ia and ib) were enhanced by divalent cations added to brain-heart infusion supplemented with peptone and glucose.

  7. Cationic Exchanger with Activated Clay. Part I. Characteristics of the Materials and Preparation of the Cationic Exchanger. Part II. Chemical Separation. Part III. Effect of Thermal Treatment and Gamma Irradiation on the Internal Surface and Capacity of Acidic Montmorillonite; SCAMBIO CATIONICO CON ARGILLE ATTIVATE. PARTE I. CARATTERISTICHE DEI MATERIALI E PREPARAZIONE DELLO SCAMBIATORE CATIONICO. PARTE II. SEPARAZIONI CHIMICHE. PARTE III. EFFETTO DEL TRATTAMENTO TERMICO E DELLA IRRADIAZIONE GAMMA SULLA SUPERFICIE INTERNA E SULLA CAPACITA DELLE MONTMORILLONITI ACIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerrai, E.; Ronchetti, C.; Triulzi, C.

    1963-05-01

    The preparation of an acidic cationic exchanger from a calcium bentonite is described. The behavior and properties of acidic montmorillonite and activated clay are given as well as the effect of thermal treatment and gamma irradiation on cationic exchange capacity and internal surface area. (auth)

  8. The role of the peripheral anionic site and cation-pi interactions in the ligand penetration of the human AChE gorge.

    PubMed

    Branduardi, Davide; Gervasio, Francesco Luigi; Cavalli, Andrea; Recanatini, Maurizio; Parrinello, Michele

    2005-06-29

    We study the ligand (tetramethylammonium) recognition by the peripheral anionic site and its penetration of the human AChE gorge by using atomistic molecular dynamics simulations and our recently developed metadynamics method. The role of both the peripheral anionic site and the formation of cation-pi interactions in the ligand entrance are clearly shown. In particular, a simulation with the W286A mutant shows the fundamental role of this residue in anchoring the ligand at the peripheral anionic site of the enzyme and in positioning it prior to the gorge entrance. Once the ligand is properly oriented, the formation of specific and synchronized cation-pi interactions with W86, F295, and Y341 enables the gorge penetration. Eventually, the ligand is stabilized in a free energy basin by means of cation-pi interactions with W86.

  9. Antibody localization in the glomerular basement membrane may precede in situ immune deposit formation in rat glomeruli.

    PubMed

    Agodoa, L Y; Gauthier, V J; Mannik, M

    1985-02-01

    The administration of cationized antibodies, specific to human serum albumin, into the renal artery of rats caused transient presence of IgG in glomeruli by immunofluorescence microscopy. Intravenous infusion of appropriate doses of antigen after the injection of cationized antibodies resulted in immune deposit formation in glomeruli that persisted through 96 hr. By electron microscopy, these deposits were located in the subepithelial area. The injection of large doses of antigen produced immune deposits which were present in glomeruli for only a few hours, presumably due to formation of only small-latticed immune complexes. The presented data indicate that cationic antibodies bound to the fixed negative charges of the glomerular basement membrane can interact with circulating antigen to form immune deposits in glomeruli. This mechanism may be important because anionic antigens have been shown to induce the synthesis of cationic antibodies.

  10. The role of cathodic current in PEO of aluminum: Influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra

    NASA Astrophysics Data System (ADS)

    Rogov, A. B.; Shayapov, V. R.

    2017-02-01

    In this paper, the influence of cationic electrolytes composition on electrical and optical responses of plasma electrolytic oxidation process of A1050 aluminum alloy under alternating polarization is considered. The electrolytes consist of 0.1 M boric acid with addition of one of the following hydroxides: LiOH, NaOH, KOH, tetraethylammonium hydroxide, Ca(OH)2 up to pH value 9.2. Coatings microstructure, elemental and phase compositions were studied by SEM, EDS and XRD. It was shown that the hysteresis of anodic current-voltage curve (specific feature of "Soft sparking" PEO) was clear observed in the presence of sodium and potassium cations. It was found that composition of microdischarges plasma is also affected by the nature of the cations. It was shown that there are a number of reciprocal processes, which take place under anodic and cathodic polarization.

  11. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  12. Epitope mapping of imidazolium cations in ionic liquid-protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation.

    PubMed

    Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J

    2014-11-14

    We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).

  13. The effect of surface charge on the thermal stability and ice recrystallization inhibition activity of antifreeze protein III (AFP III).

    PubMed

    Deller, R C; Carter, B M; Zampetakis, I; Scarpa, F; Perriman, A W

    2018-01-01

    The aim of this study was to examine the effect of chemical cationization on the structure and function of antifreeze protein III (AFP III) over an extreme temperature range (-40°C to +90°C) using far-UV synchrotron radiation circular dichroism (SRCD) and ice recrystallization inhibition (IRI) assays. Chemical cationization was able to produce a modified AFP III with a net cationic charge at physiological pH that had enhanced resistance to denaturation at elevated temperatures, with no immediate negative impact on protein structure at subzero temperatures. Furthermore, cationized AFP III retained an IRI activity similar to that of native AFP III. Consequently, chemical cationization may provide a pathway to the development of more robust antifreeze proteins as supplementary cryoprotectants in the cryopreservation of clinically relevant cells. Copyright © 2017. Published by Elsevier Inc.

  14. [Inhibitory effect of benzimidazole derivatives on cholinesterases of animals in the presence of different substrates].

    PubMed

    Basova, N E; Kormilitsyn, B N; Perchenok, A Iu; Rosengart, E V; Saakov, V S; Suvorov, A A

    2014-01-01

    Specifically synthesized group of benzimidazole derivatives possessing varying degrees of delocalization of the positive charge in the cation group of the molecule has been studied in order to search for potential cholinergically active compounds and to study the role of the Coulomb interaction in cholinesterase catalysis. These compounds were reversible inhibitors of cholinesterase (ChE) of human erythrocytes, horse serum, brain of the frog Rana temporaria and visual ganglia of the Pacific squid Todarodes pacificus in the presence of acetylthiocholine iodide and propionylthiocholine iodide as substrates. The differences in the nature of reversible inhibitory effect were observed. The effect of the inhibitor structure and substrate nature, specific for each of the studied inhibitors, on the character of the process of reversible inhibition was found.

  15. Effects of cationic xylan from annual plants on the mechanical properties of paper.

    PubMed

    Deutschle, Alexander L; Römhild, Katrin; Meister, Frank; Janzon, Ron; Riegert, Christiane; Saake, Bodo

    2014-02-15

    Xylan from oat spelt and wheat was used as an additive to enhance the dry strength of paper. The absorption of xylan by the cellulose fibers was increased by cationization to different degrees of substitution. Paper hand sheets with different doses of xylan and industrial cationic starch were produced, and the mechanical properties were determined. Absorption measurements of cationic oat spelt xylan on pulp fibers explained the differing influences of low and high cationized xylan addition on paper strength. The addition of cationic oat spelt xylan with a degree of substitution of 0.1 at a 4% dose provided the largest improvement in the tensile-index (67%), burst-index (105%) and tear-index (77%). Compared to cationic starch, cationic oat spelt xylan additives led to similar paper strength values, excepting the tear strength. The structural differences and protein impurities made the wheat xylan unsuitable as a strength additive for paper pulp. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evolution in vitro of an RNA enzyme with altered metal dependence

    NASA Technical Reports Server (NTRS)

    Lehman, N.; Joyce, G. F.

    1993-01-01

    The Tetrahymena group I ribozyme catalyses a sequence-specific phosphodiester cleavage reaction on an external RNA oligonucleotide substrate in the presence of a divalent metal cation cofactor. This reaction proceeds readily with either Mg2+ or Mn2+, but no detectable reaction has been reported when other divalent cations are used as the sole cofactor. Cations such as Ca2+, Sr2+ and Ba2+ can stabilize the correct folded conformation of the ribozyme, thereby partially alleviating the Mg2+ or Mn2+ requirement. But catalysis by the ribozyme involves coordination of either Mg2+ or Mn2+ at the active site, resulting in an overall requirement for one of these two cations. Here we use an in vitro evolution process to obtain variants of the Tetrahymena ribozyme that are capable of cleaving an RNA substrate in reaction mixtures containing Ca2+ as the divalent cation. These findings extend the range of different chemical environments available to RNA enzymes and illustrate the power of in vitro evolution in generating macromolecular catalysts with desired properties.

  17. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    PubMed

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-19

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  18. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  19. Targeted drug delivery across the blood brain barrier in Alzheimer's disease.

    PubMed

    Rocha, Sandra

    2013-01-01

    The discovery of drugs for Alzheimer's disease (AD) therapy that can also permeate the blood brain barrier (BBB) is very difficult owing to its specificity and restrictive nature. The BBB disruption or the administration of the drug directly into the brain is not an option due to toxic effects and low diffusion of the therapeutic molecule in the brain parenchyma. A promising approach for drug systemic delivery to the central nervous system is the use of nanosized carriers. The therapeutic potential of certain nanopharmaceuticals for AD has already been demonstrated in vivo after systemic delivery. They are based on i) conjugates of drug and monoclonal antibodies against BBB endogenous receptors; ii) cationized or end terminal protected proteins/peptides; iii) liposomes and polymeric nanoparticles coated with polysorbate 80, cationic macromolecules or antibodies against BBB receptors/amyloid beta-peptides. Optimization and further validation of these systems are needed.

  20. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    DOE PAGES

    Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.; ...

    2017-11-03

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. Here in this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. Wemore » demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.« less

  1. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites.

    PubMed

    Gélvez-Rueda, María C; Hutter, Eline M; Cao, Duyen H; Renaud, Nicolas; Stoumpos, Constantinos C; Hupp, Joseph T; Savenije, Tom J; Kanatzidis, Mercouri G; Grozema, Ferdinand C

    2017-11-30

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron-hole pairs is of prime importance. In this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  2. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    PubMed Central

    2017-01-01

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. In this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations. PMID:29218073

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. Here in this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. Wemore » demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.« less

  4. Polarizability effects on the structure and dynamics of ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br; Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM; Ribeiro, Mauro C. C.

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibriummore » structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.« less

  5. The cation-π interaction.

    PubMed

    Dougherty, Dennis A

    2013-04-16

    The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is more polarizable than benzene but a decidedly poorer cation binder. Many studies have documented cation-π interactions in protein structures, where lysine or arginine side chains interact with phenylalanine, tyrosine, or tryptophan. In addition, countless studies have established the importance of the cation-π interaction in a range of biological processes. Our work has focused on molecular neurobiology, and we have shown that neurotransmitters generally use a cation-π interaction to bind to their receptors. We have also shown that many drug-receptor interactions involve cation-π interactions. A cation-π interaction plays a critical role in the binding of nicotine to ACh receptors in the brain, an especially significant case. Other researchers have established important cation-π interactions in the recognition of the "histone code," in terpene biosynthesis, in chemical catalysis, and in many other systems.

  6. The Cation-π Interaction

    PubMed Central

    DOUGHERTY, DENNIS A.

    2014-01-01

    CONSPECTUS The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author’s perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forgo aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction – Li+ binds to benzene with 38 kcal/mol of binding energy; NH4+ with 19 kcal/mol– distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2 – 5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) Cδ−–Hδ+ bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li+>Na+>K+>Rb+: as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is more polarizable than benzene, but a decidedly poorer cation binder. Many studies have documented cation-π interactions in protein structures, where Lys or Arg side chains interact with Phe, Tyr, or Trp. In addition, countless studies have established the importance of cation-π interaction in a range of biological processes. Our work has focused on molecular neurobiology, and we have shown that neurotransmitters generally use a cation-π interaction to bind to their receptors. We have also shown that many drug-receptor interactions involve cation-π interactions. A cation-π interaction plays a critical role in the binding of nicotine to ACh receptors in the brain, an especially significant case. Other researchers have established important cation-π interactions in the recognition of the “histone code,” in terpene biosynthesis, in chemical catalysis, and in many other systems. PMID:23214924

  7. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  8. Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.

    PubMed

    Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav

    2017-09-14

    The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

  9. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.

    PubMed

    Kathiresan, Murugavel; Velayutham, David

    2015-12-25

    The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.

  10. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane.

    PubMed

    Oberhauser, A; Alvarez, O; Latorre, R

    1988-07-01

    Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.

  11. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  12. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    PubMed

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Variable Temperature Infrared Spectroscopy Investigation of Benzoic Acid Interactions with Montmorillonite Clay Interlayer Water.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-07-01

    Molecular interactions between benzoic acid and cations and water contained in montmorillonite clay interlayer spaces are characterized by using variable temperature diffuse reflection infrared Fourier transform spectroscopy (VT-DRIFTS). Using sample perturbation and difference spectroscopy, infrared spectral changes resulting from removal of interlayer water and associated changes in local benzoic acid environments are identified. Difference spectra features can be correlated with changes in specific molecular vibrations that are characteristic of benzoic acid molecular orientation. Results suggest that the carboxylic acid functionality of benzoic acid interacts with interlayer cations through a bridging water molecule and that this interaction is affected by the nature of the cation present in the clay interlayer space.

  14. Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature.

    PubMed Central

    Otzen, Daniel E

    2002-01-01

    The 101-residue monomeric protein S6 unfolds in the anionic detergent sodium dodecyl sulfate (SDS) above the critical micelle concentration, with unfolding rates varying according to two different modes. Our group has proposed that spherical micelles lead to saturation kinetics in unfolding (mode 1), while cylindrical micelles prevalent at higher SDS concentrations induce a power-law dependent increase in the unfolding rate (mode 2). Here I investigate in more detail how micellar properties affect protein unfolding. High NaCl concentrations, which induce cylindrical micelles, favor mode 2. This is consistent with our model, though other effects such as electrostatic screening cannot be discounted. Furthermore, unfolding does not occur in mode 2 in the cationic detergent LTAB, which is unable to form cylindrical micelles. A strong retardation of unfolding occurs at higher LTAB concentrations, possibly due to the formation of dead-end protein-detergent complexes. A similar, albeit much weaker, effect is seen in SDS in the absence of salt. Chymotrypsin inhibitor 2 exhibits the same modes of unfolding in SDS as S6, indicating that this type of protein unfolding is not specific for S6. The unfolding process in mode 1 has an activation barrier similar in magnitude to that in water, while the activation barrier in mode 2 is strongly concentration-dependent. The strong pH-dependence of unfolding in SDS and LTAB suggests that the rate of unfolding in anionic detergent is modulated by repulsion between detergent headgroups and anionic side chains, while cationic side chains modulate unfolding rates in cationic detergents. PMID:12324439

  15. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    PubMed Central

    Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro

    2014-01-01

    Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614

  16. Self-aggregation of cationically modified poly(ε-caprolactone)2-co-poly(ethylene glycol) copolymers: Effect of cationic grafting ligand and poly(ε-caprolactone) chain length.

    PubMed

    Charoongchit, Pimchanok; Suksiriworapong, Jiraphong; Sripha, Kittisak; Mao, Shirui; Sapin-Minet, Anne; Maincent, Philippe; Junyaprasert, Varaporn Buraphacheep

    2017-03-01

    Cationic copolymers have been attractive to investigate due to their potential to complexation with anionic drugs and expected to use in the pharmaceutical application. In this study, the modified poly(ε-caprolactone) 2 -co-poly(ethylene glycol) copolymers (P(CL) 2 -PEG) were successfully synthesized by click reaction. The amount of small molecular cationic ligand, propargyltrimethyl ammonium iodide, was varied and grafted onto various mole ratios of P(CL) to PEG. The effects of P(CL) chain length and amount of the grafting cationic ligand on physicochemical properties of polymers and particles were studied. The number-average molecular weights of the copolymers grafted with cationic ligand were found ranging between 10,000 and 23,000g/mol as investigated by NMR. From DSC study, the results showed that the grafting ligand affected thermal behaviors of the copolymers by increasing the glass transition temperature and decreasing the melting temperature of the copolymers. Furthermore, these cationic copolymers could self-aggregate with their critical aggregation concentration depending on mole ratios of hydrophilic to hydrophobic portions. The particles containing higher amounts of the cationic ligand tended to aggregate in both acidic and basic pH environment and at high salt concentration. Additionally, particle size, size distribution (PdI), and morphology of self-assembling particles varied depending on P(CL) chain length and the amount of the grafting cationic ligand. The synthesized cationic copolymer showed a capability to encapsulate a high negatively charged drug, enoxaparin, with an encapsulation efficiency of 87%. After drug incorporation, the particles substantially changed in size, shape, PdI, and zeta potential to become more suitable for drug delivery. These cationic copolymers with flexible properties will be the candidate for further development as carriers for the delivery of negatively charged drugs. Copyright © 2016. Published by Elsevier B.V.

  17. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue

    PubMed Central

    Joshi, Shailendra; Singh-Moon, Rajinder P.; Wang, Mei; Chaudhuri, Durba B.; Holcomb, Mark; Straubinger, Ninfa L.; Bruce, Jeffrey N.; Bigio, Irving J.; Straubinger, Robert M.

    2014-01-01

    Object Transient cerebral hypoperfusion (TCH) has empirically been used to assist intraarterial (IA) drug delivery to brain tumors. Transient (< 3 min) reduction of cerebral blood flow (CBF) occurs during many neuro- and cardiovascular interventions and has recently been used to better target IA drugs to brain tumors. In the present experiments, we assessed whether the effectiveness of IA delivery of cationic liposomes could be improved by TCH. Methods Cationic liposomes composed of 1:1 DOTAP:PC (dioleoyl-trimethylammonium-propane:phosphatidylcholine) were administered to three groups of Sprague Dawley rats. In the first group, we tested the effect of blood flow reduction on IA delivery of cationic liposomes. In the second group, we compared TCH-assisted IA liposomal delivery vs. intravenous (IV) administration of the same dose. In the third group, we assessed retention of cationic liposomes in brain four hours after TCH assisted delivery. The liposomes contained a near infrared dye, DilC18(7), whose concentration could be measured in vivo by diffuse reflectance spectroscopy. Results IA injections of cationic liposomes during TCH increased their delivery approximately four-fold compared to injections during normal blood flow. Optical pharmacokinetic measurements revealed that relative to IV injections, IA injection of cationic liposomes during TCH produced tissue concentrations that were 100-fold greater. The cationic liposomes were retained in the brain tissue four hours after a single IA injection. There was no gross impairment of neurological functions in surviving animals. Conclusions Transient reduction in CBF significantly increased IA delivery of cationic liposomes in the brain. High concentrations of liposomes could be delivered to brain tissue after IA injections with concurrent TCH while none could be detected after IV injection. IA-TCH injections were well tolerated and cationic liposomes were retained for at least 4 hours after IA administration. These results should encourage development of cationic liposomal formulations of chemotherapeutic drugs and their IA delivery during TCH. PMID:24664370

  18. Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Kohki, Erica; Nakada, Ayumu; Tamatani, Kentaro; Abe, Hiroshi

    2018-03-01

    The liquid-liquid equilibria (LLE) of quaternary ammonium and phosphonium ionic liquid (IL)-propanol solutions were examined. The ILs contained cations with or without ether bonds; the anion in all the ILs was bis(trifluoromethanesulfonyl)imide (TFSI-). The cations without ether groups are tributylmethyl ammonium (N4441+), triethylpentyl phosphonium (P2225+), triethyloctyl phosphonium (P2228+), and tributylmethyl phosphonium (P4441+). The cations containing ether groups are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium, (N122(2O1)+), triethyl(methoxymethyl) phosphonium (P222(1O1)+), and triethyl(2-methoxyethyl) phosphonium, (P222(2O1)+). Propanol isomer effect was observed to affect the LLEs, reflecting the geometrical factors and hydrophobicities of 1-propanol and 2-propanol. According to Raman spectroscopy, the TFSI- anion conformers in the mixtures were altered in the presence of ether bonds in the cations. The universal quasichemical (UNIQUAC) interaction parameters are consistent with significant factors affecting IL-propanol solutions, such as the type of cation (ammonium or phosphonium), ether bonds, TFSI- conformers, and propanol isomer effects.

  19. Cation effects on phosphatidic acid monolayers at various pH conditions.

    PubMed

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pH<10, DPPA monolayers on water are predominantly populated by neutral species and display the highest packing density. Cations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Cation Effects on the Electron-Acceptor Side of Photosystem II.

    PubMed

    Khan, Sahr; Sun, Jennifer S; Brudvig, Gary W

    2015-06-18

    The normal pathway of electron transfer on the electron-acceptor side of photosystem II (PSII) involves electron transfer from quinone A, QA, to quinone B, QB. It is possible to redirect electrons from QA(-) to water-soluble Co(III) complexes, which opens a new avenue for harvesting electrons from water oxidation by immobilization of PSII on electrode surfaces. Herein, the kinetics of electron transfer from QA(-) to [Co(III)(terpy)2](3+) (terpy = 2,2';6',2″-terpyridine) are investigated with a spectrophotometric assay revealing that the reaction follows Michaelis-Menten saturation kinetics, is inhibited by cations, and is not affected by variation of the QA reduction potential. A negatively charged site on the stromal surface of the PSII protein complex, composed of glutamic acid residues near QA, is hypothesized to bind cations, especially divalent cations. The cations are proposed to tune the redox properties of QA through electrostatic interactions. These observations may thus explain the molecular basis of the effect of divalent cations like Ca(2+), Sr(2+), Mg(2+), and Zn(2+) on the redox properties of the quinones in PSII, which has previously been attributed to long-range conformational changes propagated from divalent cations binding to the Ca(II)-binding site in the oxygen-evolving complex on the lumenal side of the PSII complex.

  1. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  2. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure–Stability Relationships

    DOE PAGES

    Hugar, Kristina M.; Kostalik, IV, Henry A.; Coates, Geoffrey W.

    2015-06-11

    Highly base-stable cationic moieties are a critical component of anion exchange membranes (AEMs) in alkaline fuel cells (AFCs); however, the commonly employed organic cations have limited alkaline stability. To address this problem, we synthesized and characterized the stability of a series of imidazolium cations in 1, 2, or 5 M KOH/CD 3OH at 80 °C, systematically evaluating the impact of substitution on chemical stability. The substituent identity at each position of the imidazolium ring has a dramatic effect on the overall cation stability. In conclusion, we report imidazolium cations that have the highest alkaline stabilities reported to date, >99% cationmore » remaining after 30 days in 5 M KOH/CD 3OH at 80 °C.« less

  3. The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionarily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile.

    PubMed

    Schein, Jessica R; Hunt, Kevin A; Minton, Janet A; Schultes, Neil P; Mourad, George S

    2013-09-01

    The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI) 2 in Diglyme: Implications for Multivalent Electrolytes

    DOE PAGES

    Baskin, Artem; Prendergast, David

    2016-02-05

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, Artem; Prendergast, David

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  6. Effect of salt solutions on radiosensitivity of mammalian cells. I. Specific ion effects.

    PubMed

    Raaphorst, G P; Kruuv, J

    1977-07-01

    The radiation isodose survival curve of cells subjected to a wide concentration range of sucrose solutions has two maxima separated by a minimum. Both cations and anions can alter the cellular radiosensitivity above and beyond the osmotic effect observed for cells treated with sucrose solutions. The basic shape of the isodose curve can also be modulated by changes in temperature and solution exposure times. Some of these alterations in radiosensitivity may be related to changes in the amount and structure of cellular water or macromolecular conformation or to the direct effect of the ions, expecially at high solute concentrations.

  7. ZitB (YbgR), a Member of the Cation Diffusion Facilitator Family, Is an Additional Zinc Transporter in Escherichia coli

    PubMed Central

    Grass, Gregor; Fan, Bin; Rosen, Barry P.; Franke, Sylvia; Nies, Dietrich H.; Rensing, Christopher

    2001-01-01

    The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of 65Zn, suggesting ZitB-mediated efflux of zinc. PMID:11443104

  8. Influence of pH and Metal Cations on Aggregative Growth of Non-Slime-forming Strains of Zoogloea ramigera

    PubMed Central

    Angelbeck, Donald I.; Kirsch, Edwin J.

    1969-01-01

    Aggregative growth of non-slime-forming strains of Zoogloea ramigera was induced by growing the organisms at a depressed pH. Calcium and magnesium ion was found to reverse aggregative growth of the organisms. Conversely, aggregation was stimulated when the available inorganic cation concentration of the growth medium was lowered by the use of a chelating agent. The aggregative effects of pH depression or cation depletion and the dispersal effects of cation supplementation were observed only during cellular growth. The data suggest that aggregate formation of non-slime-forming strains of Z. ramigera may be related to the calcium or magnesium metabolism of the organisms, or both. Images PMID:4976326

  9. Anion-Cation Permeability Correlates with Hydrated Counterion Size in Glycine Receptor Channels

    PubMed Central

    Sugiharto, Silas; Lewis, Trevor M.; Moorhouse, Andrew J.; Schofield, Peter R.; Barry, Peter H.

    2008-01-01

    The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl− or \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter. PMID:18708455

  10. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. 3; The Polyacenes Anthracene, Tetracence, and Pentacene

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHS) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAHS. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400/cm (between about 1340 and 1500/cm) and near 1180/cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.

  11. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations. 3. The Polyacenes Anthracene, Tetracene, and Pentacene

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized Polycyclic Aromatic Hydrocarbons (PAH's) are thought to be responsible for a very common family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available on ionized PAH's. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene, tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene, tetracene, and pentacene tend to group around 1400 / cm (between about 1340 and 1500 / cm) and near 1180 /cm, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members of the interstellar PAH family.

  12. Ionic Liquid-Solute Interactions Studied by 2D NOE NMR Spectroscopy.

    PubMed

    Khatun, Sufia; Castner, Edward W

    2015-07-23

    Intermolecular interactions between a Ru(2+)(bpy)3 solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {(1)H-(19)F} HOESY and {(1)H-(1)H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru(2+)(bpy)3 solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru(2+)(bpy)3 solute interacts with both the polar head and the nonpolar tail groups of the 1-butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  13. Independence of solitary-cation properties on the atomic neighborhood in In1 -xGaxN alloys: A novel perspective for material engineering

    NASA Astrophysics Data System (ADS)

    Filippone, Francesco; Mattioli, Giuseppe; Amore Bonapasta, Aldo

    2017-11-01

    In InN, a genuine band gap opening observed after hydrogenation has been explained by means of the "solitary cation" model, a multi-H complex in which the central cation, In*, is fully separated from the structure [Pettinari et al., Adv. Funct. Mater. 25, 5353 (2015), 10.1002/adfm.201501858]. Similar effects of H on the host band gap have been observed in In-rich In1-xGaxN alloys. Paying attention to these materials, we have theoretically investigated the In* properties against three kinds of disorder, structural, compositional, and configurational, all of them possibly occurring in In1-xGaxN alloys. As a first major result we have found that a same, general solitary-cation model and mechanism explain the effects of hydrogenation on the electronic properties of both InN and In-rich In1-xGaxN alloys. Even more interestingly, in these alloys, both the energetics of the In* solitary cations and their effects on the band gap result to be thoroughly independent of their atomic neighborhood, in particular, of the number and spatial distribution of their cation neighbors. Significantly, this implies that band-gap opening effects can be safely predicted in whatever hydrogenated In-rich nitride alloy containing different In companions (e.g., B, Al, or Ga) as well as in InN-containing, unconventional compounds (e.g., ZnO-InN), thus offering novel opportunities for material engineering.

  14. Fabrication of Co0.5Ni0.5CrxFe2-xO4 materials via sol-gel method and their characterizations

    NASA Astrophysics Data System (ADS)

    Kadam, R. H.; Birajdar, A. P.; Alone, Suresh T.; Shirsath, Sagar E.

    2013-02-01

    Co0.5Ni0.5CrxFe2-xO4 nanoparticles have been designed by the sol-gel auto combustion method, using nitrates of the respective metal ions, and citric acid as the starting materials. The process takes only a few minutes to obtain as-received Cr-substituted Co-Ni ferrite powders. X-ray diffraction (XRD), vibrational sample magnetometer (VSM), transmission electron microscopy (TEM) are utilized in order to study the effect of variation in the Cr3+ substitution and its impact on particle size, lattice constant, specific surface area, cation distribution and magnetic properties. Lattice parameter, particle size found to decrease with increasing Cr3+ content, whereas specific surface area showed increasing trend with the Cr3+ substitution. Cation distribution indicates that the Cr, Co and Ni ions show preference toward octahedral [B] site, whereas Fe occupies both tetrahedral (A) and octahedral [B] sites. Saturation magnetization (MS) decreased from 65.1 to 40.6 emu/g with the increase in Cr3+ substitution. However, Coercivity increased from 198 to 365 Oe with the Cr3+ substitution.

  15. Microwave-Assisted Preparation and Characterization of a Polyoxometalate-Based Inorganic 2D Framework Anode for Enhancing Lithium-Ion Battery Performance.

    PubMed

    Nie, Yan-Mei; Liang, Shuang; Yu, Wei-Dong; Yuan, Hao; Yan, Jun

    2018-05-04

    A pure inorganic 2D network molybdophosphate, [Mn 3 Mo 12 O 24 (OH) 6 (HPO 3 ) 8 (H 2 O) 6 ] 4- (1 a), synthesized through microwave irradiation with the existence of Mn 2+ and organic cations and isolated as [(CH 3 ) 2 NH 2 ] 3 Na[Mn 3 Mo 12 O 24 (OH) 6 (HPO 3 ) 8 (H 2 O) 6 ]⋅12 H 2 O (1), is found to possess highly enhanced performance in lithium-ion batteries' anode materials. The molecule shows multielectron redox properties suitable for producing anode materials with a specific capacity of 602 mA h g -1 at 100 mA g -1 after 50 cycles in lithium-ion batteries, although its specific capacity is the highest among all the reported pure inorganic 2D polyoxometalates to date, the cyclic stability is not that satisfactory. A hybrid nanocomposite of this 2D network and polypyrrole cations effectively reduces the capacity fading in initial cycles, and increases the stability and improves the electrochemical performance of lithium-ion batteries as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A rapid nuclear staining test using cationic dyes contributes to efficient STR analysis of telogen hair roots.

    PubMed

    Lee, So-Yeon; Ha, Eun-Ju; Woo, Seung-Kyun; Lee, So-Min; Lim, Kyung-Hee; Eom, Yong-Bin

    2017-07-01

    Telogen hairs presented in the crime scene are commonly encountered as trace evidence. However, short tandem repeat (STR) profiling of the hairs currently have low and limited use due to poor success rate. To increase the success rate of STR profiling of telogen hairs, we developed a rapid and cost-effective method to estimate the number of nuclei in the hair roots. Five cationic dyes, Methyl green (MG), Harris hematoxylin (HH), Methylene blue (MB), Toluidine blue (TB), and Safranin O (SO) were evaluated in this study. We conducted a screening test based on microscopy and the percentage of loss with nuclear DNA, in order to select the best dye. MG was selected based on its specific nuclei staining and low adverse effect on the hair-associated nuclear DNA. We examined 330 scalp and 100 pubic telogen hairs with MG. Stained hairs were classified into five groups and analyzed by STR. The fast staining method revealed 70% (head hair) and 33.4% (pubic hair) of full (30 alleles) and high partial (18-29 alleles) STR profiling proportion from the lowest nuclei count group (one to ten nuclei). The results of this study demonstrated a rapid, specific, nondestructive, and high yield DNA profiling method applicable for screening telogen hairs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Use of cationic polymers to reduce pathogen levels during dairy manure separation.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy

    2016-01-15

    Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; Cavaliere, Chiara; Laganà, Aldo

    2013-03-01

    Upon administration, nanoparticles (NPs) are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a "protein corona". NP-protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here, we have investigated the effect of neutral dioleoylphosphatidylethanolamine (DOPE) and cholesterol on the adsorption of human plasma proteins onto the surface of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes of 100 nm in diameter. Quantitative analysis of the protein corona revealed that replacing cationic DOTAP lipids with neutral lipids, being indifferently DOPE or cholesterol, reduces the affinity of fibrinogen, prothrombin, vitamin K, and vitronectin for the lipid surface. On the other side, DOPE specifically promotes the adsorption of apolipoproteins and serum albumin, while cholesterol induces the preferential binding of immunoglobulins and complement proteins. The results of this study will help to explain why NPs of different lipid compositions have a dramatic difference in their in vivo transfection efficiency and will be useful for design of lipid NPs with optimal circulation profiles.

  19. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH

    NASA Astrophysics Data System (ADS)

    Itakura, Shoko; Hama, Susumu; Matsui, Ryo; Kogure, Kentaro

    2016-05-01

    Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects.Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects. Electronic supplementary information (ESI) available: De-condensation of siRNA cores by addition of heparin; time-lapse moving image of the siRNA release. See DOI: 10.1039/c5nr08365f

  20. Ecotoxicological assessment of flocculant modified soil for lake restoration using an integrated biotic toxicity index.

    PubMed

    Wang, Zhibin; Zhang, Honggang; Pan, Gang

    2016-06-15

    Flocculant modified soils/clays are being increasingly studied as geo-engineering materials for lake restoration and harmful algal bloom control. However, the potential impacts of adding these materials in aquatic ecological systems remain unclear. This study investigated the potential effects of chitosan, cationic starch, chitosan modified soils (MS-C) and cationic starch modified soils (MS-S) on the aquatic organisms by using a bioassay battery. The toxicity potential of these four flocculants was quantitatively assessed using an integrated biotic toxicity index (BTI). The test system includes four aquatic species, namely Chlorella vulgaris, Daphnia magna, Cyprinus carpio and Limnodrilus hoffmeisteri, which represent four trophic levels in the freshwater ecosystem. Results showed that median effect concentrations (EC50) of the MS-C and MS-S were 31-124 times higher than chitosan and cationic starch, respectively. D. magna was the most sensitive species to the four flocculants. Histological examination of C. carpio showed that significant pathological changes were found in gills. Different from chitosan and cationic starch, MS-C and MS-S significantly alleviated the acute toxicities of chitosan and cationic starch. The toxicity order of the four flocculants based on BTI were cationic starch > chitosan > MS-S > MS-C. The results suggested that BTI can be used as a quantitative and comparable indicator to assess biotic toxicity for aquatic geo-engineering materials. Chitosan or cationic starch modified soil/clay materials can be used at their optimal dosage without causing substantial adverse effects to the bioassay battery in aquatic ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  2. Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium.

    PubMed

    Kyzioł-Komosińska, Joanna; Augustynowicz, Joanna; Lasek, Wojciech; Czupioł, Justyna; Ociński, Daniel

    2018-05-15

    The present study focused on the use of the dry mass of the macrophyte Callitriche cophocarpa as an effective biosorbent for chromium removal from concentrated solutions, typical for industrial effluents. In order to evaluate the usability of C. cophocarpa as the Cr(III) sorbent, its detailed physicochemical characterization has been performed as well as the preliminary adsorption studies. The biosorbent was characterized by specific surface area (SSA), porosity, total organic carbon (TOC), inorganic content as well as the cation exchange capacity (CEC), dominant exchangeable cations and anion exchange capacity (AEC), point of zero charge (pH pzc ) and buffering capacity. The effect of the initial chromium concentration, solution pH and co-existing anions on the sorption effectiveness have been investigated. Based on theoretical isotherm models, the maximum adsorption capacity of the dry C. cophocarpa has been determined as 77.1 mg Cr(III)/g. Finally, the strength of Cr-binding onto the plant biomass has been evaluated using the BCR extraction method, stating that chromium was strongly and - under environmental conditions - irreversibly bound to the plant biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

    USGS Publications Warehouse

    Chiou, Cary T.; Rutherford, David W.

    1997-01-01

    The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.

  4. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    PubMed

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for estimation of K d values for more structurally complex organic cations to homoionic montmorillonites and to heteroionic soils (mean absolute error of 0.27 log unit). Accordingly, we concluded that the use of phenyltrimethylammonium as a probe compound was a promising means to account for the identity, affinity, and abundance of natural exchange ions in the prediction of organic cation sorption coefficients for environmental solids.

  5. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations

    PubMed Central

    Ratheal, Ian M.; Virgin, Gail K.; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-01-01

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na+ ions for two extracellular K+ ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na+ or K+; site III binds only Na+) are poorly understood. We studied cation selectivity by outward-facing sites (high K+ affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium+, methylguanidinium+, and aminoguanidinium+ produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K+, and (ii) induction of pump-mediated, guanidinium-derivative–carried inward current at negative potentials without Na+ and K+. In contrast, formamidinium+ and acetamidinium+ induced K+-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K+ congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li+ induced Na+-like VDI, whereas all metals tested except Na+ induced K+-like outward currents. Pump-mediated K+-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium+ derivatives suggest that Na+ binds to site III in a hydrated form and that the inward current observed without external Na+ and K+ represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  6. Gas-phase study of new organozinc reagents by IRMPD-spectroscopy, computational modelling and tandem-MS.

    PubMed

    Massah, Ahmad R; Dreiocker, Frank; Jackson, Richard F W; Pickup, Barry T; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2011-08-07

    An extensive set of organozinc iodides, useful for Negishi-type cross-coupling reactions, are investigated as respective cations after formal loss of iodide in the gas phase. Firstly, two new alkylzinc compounds derived from Tyrosine (Tyr) and Tryptophan (Trp) are closely examined. Secondly, the influence of specific protecting groups on the subtle balance between intra- and intermolecular coordination of zinc in these reagents is probed through trifluoroacetyl (TFA)-derivatized alkylzinc compounds. Finally, the influence of the strongly coordinating bidentate ligand N,N,N',N'-tetramethylethylenediamine (TMEDA) on the structure of alkylzinc cations is further explored in order to better understand the stability of the respective complexes towards water. A combination of electrospray (ESI)-MS/MS, accurate ion mass measurements, infrared multiple-photon dissociation (IRMPD) spectroscopy and computational modelling allowed the full characterisation of all dimethylformamide (DMF)-solvated and TMEDA-coordinated alkylzinc cations in the gas phase. The calculations indicate that the zinc cation in gas-phase alkylzinc-DMF or TMEDA-complex ions preferentially adopts a tetrahedral coordination sphere with four ligands. Additionally, conformers with only three binding partners bound to zinc but with effectively combined hydrogen-bond interactions are also found. Collision induced dissociation (CID) patterns demonstrate that the zinc-DMF interaction in tetrahedral four-coordinate mono-DMF-zinc complex ions as well as the interaction between TMEDA and zinc in the corresponding complex ions is even stronger than typical covalent bonds. In most cases, all major features of the IRMPD spectra are consistent with only a single major isomer, allowing secured identification and assignment. This journal is © the Owner Societies 2011

  7. Peptides Used in the Delivery of Small Noncoding RNA

    PubMed Central

    2015-01-01

    RNA interference (RNAi) is an endogenous process in which small noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), post-transcriptionally regulate gene expressions. In general, siRNA and miRNA/miRNA mimics are similar in nature and activity except their origin and specificity. Although both siRNAs and miRNAs have been extensively studied as novel therapeutics for a wide range of diseases, the large molecular weight, anionic surface charges, instability in blood circulation, and intracellular trafficking to the RISC after cellular uptake have hindered the translation of these RNAs from bench to clinic. As a result, a great variety of delivery systems have been investigated for safe and effective delivery of small noncoding RNAs. Among these systems, peptides, especially cationic peptides, have emerged as a promising type of carrier due to their inherent ability to condense negatively charged RNAs, ease of synthesis, controllable size, and tunable structure. In this review, we will focus on three major types of cationic peptides, including poly(l-lysine) (PLL), protamine, and cell penetrating peptides (CPP), as well as peptide targeting ligands that have been extensively used in RNA delivery. The delivery strategies, applications, and limitations of these cationic peptides in siRNA/miRNA delivery will be discussed. PMID:25157701

  8. Molecular field coefficients and cation distribution of substituted yttrium iron garnets

    NASA Astrophysics Data System (ADS)

    Röschmann, P.; Hansen, P.

    1981-10-01

    The saturation magnetization Ms(T) of Ga, Al, Sc, and CaVBi substituted Y3Fe5O12 (YIG) single crystals and of polycrystalline Ca/Ge and Ca/Ti substituted YIG has been investigated for 4.2 K ⩽T⩽TC. The samples were repeatedly annealed and quenched at different equilibrium temperatures 773 K⩽Te ⩽1523 K. The attained site exchange of Fe and the substituents between the a and d sites resulted in considerable changes of Ms(T). From a fit of the Néel molecular field theory to the Ms(T) data the dependence of the magnetic moments at T = 0 K and of the molecular field coefficients on the amount of nonmagnetic substitutions on the a and d sites were determined. It turned out that ion-specific sets of equations are required accounting for the ''particular ion effect'' of different cation species. The cation distributions inferred from the magnetic data have been analyzed along with a thermodynamic equilibrium model. The derived site stabilizing energies for the mixed Fe-Ga and Fe-Al garnets agree well with recently reported data. New results are presented for the site stabilizing energies in Ca/Ge:YIG and for the substituents Sc and Ti with octahedral site preference.

  9. Mobility and bioavailability reduction of soil TNT via sorption enhancement using monopotassium phosphate.

    PubMed

    Jung, Jae-Woong; Nam, Kyoungphile

    2014-06-30

    In this study, the effect of monopotassium phosphate (MKP) on the reduction in mobility and bioavailability of 2,4,6-trinitrotoluene (TNT) was tested. In the test soil, collected from an active firing range, of which cation binding sites were mostly exchanged with H(+) or Al(3+), potassium ions in MKP exchanged the existing cations and hence significantly increased TNT sorption. In addition, a competitive sorption experiment with hexafluorobenzene and 2,4-dinitrotoluene suggests that TNT was specifically sorbed through cation-polar interaction in the test soil. The unit-equivalent Freundlich sorption coefficient of TNT in MKP-amended soil (1370.96 mg-TNT/kg-soil) was about 13 times higher than that in untreated soil (106.23 mg-TNT/kg-soil). Finally, modified synthetic precipitation leaching procedure and hydroxypropyl-β-cyclodextrin extraction result revealed that MKP application could reduce both the leachability and bioavailability of soil TNT. The leachable and extractable fraction of TNT in untreated soil were 87.63% and 94.47% of the initial TNT, respectively, whereas these fractions decreased to 49.15% and 54.85% of the initial TNT in the presence of MKP, respectively. MKP application can be a benign technology which can reduce both mobility and bioavailability of TNT in soil. Copyright © 2014. Published by Elsevier B.V.

  10. Calorimetric and counterion binding studies of the interactions between micelles and ions. The observation of lyotropic series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, J.W.; Magid, L.J.

    1974-09-04

    Heats of transfer of a variety of salts from water to solutions of hexadecyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulfate (NaLS) were measured. Lyotropic series for both cations and anions were observed for all soaps, the series for the 2 cationic soaps being almost identical. The dependence of the observed heats of transfer for anions from H/sub 2/O to CTAB and DTAB solutions and for cations from H2O to NaLS solutions on the hydrated radii of the ions involved supports the contention that favorable binding of counterions depends on how closely they can approach the charged micellarmore » surfaces. It is clear that a lyotropic series similar to that existing for proteins exists for ion binding to micelles. The controlling factor in this binding seems to be the distance of closest approach of the ion to the micelle, although polarizable organic ions may be the exceptions. Chain length has little effect on binding. It is felt that the work discussed has established the usefulness of a calorimetric investigation and the use of ion-specific electrodes for characterizing surfactant systems containing more than one species of counterions. (37 refs.)« less

  11. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  12. Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina.

    PubMed

    Nivison-Smith, Lisa; Acosta, Monica L; Misra, Stuti; O'Brien, Brendan J; Kalloniatis, Michael

    2014-01-01

    Vinpocetine is a natural drug which exerts neuroprotective effects in ischaemia of the brain through actions on cation channels, glutamate receptors and other pathways. This study investigated the effect of vinpocetine on cation channel permeability of inner retinal neurons after acute retinal metabolic insult. We focused on amacrine and ganglion cells immunoreactive for calretinin or parvalbumin due to their previously documented susceptibility to ischaemia. Using the probe, 1-amino-4-guanidobutane (AGB), we observed increased cation channel permeability across amacrine and ganglion cells under ischaemia and hypoglycaemia but not anoxia. Calretinin and parvalbumin immunoreactivity was also reduced during ischaemia and hypoglyacemia but not anoxia. Vinpocetine decreased AGB entry into ischaemic and hypoglycaemic ganglion cells indicating that the drug can modulate unregulated cation entry. In addition, vinpocetine prevented the loss of calretinin and parvalbumin immunoreactivity following ischaemia suggesting it may indirectly regulate intracellular calcium. Vinpocetine also reduced AGB permeability in selected amacrine and ganglion cell populations following N-methyl-D-aspartate (NMDA) but not kainate activation suggesting that vinpocetine's regulation of cation channel permeability may partly involve NMDA sensitive glutamate receptors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Hemin/G-quadruplex structure and activity alteration induced by magnesium cations.

    PubMed

    Kosman, J; Juskowiak, B

    2016-04-01

    The influence of metal cations on G-quadruplex structure and peroxidase-mimicking DNAzyme activity was investigated. Experiments revealed a significant role of magnesium ion, which in the presence of potassium cation influenced DNAzyme activity. This ability has been associated with alteration of G-quadruplex topology and consequently affinity to bind hemin molecule. It has been demonstrated that G-quadruplex based on PS2.M sequence under these conditions formed parallel topology, which exhibited lower activity than that observed in standard potassium-containing solution. On the other hand DNAzyme/magnesium ion system based on telomeric sequence, which did not undergo significant structural changes, exhibited higher peroxidase activity upon magnesium ion addition. In both cases, the stabilization effect of magnesium cations on G-quadruplex structure was observed. The mechanism of DNAzyme activity alteration by magnesium ion can be explained by its influence on the pKa value of DNAzyme. Magnesium ion decreased pKa for PS2.M based system but increased it for telomeric DNAzyme. Magnesium cation effect on G-quadruplex structure as well as DNAzyme activity is particularly important since this ion is one of the most common metal cations in biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  15. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE PAGES

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; ...

    2015-11-24

    Complex doping schemes in R 3Al 5O 12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimummore » (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu 3B 5O 12 where B is Al, Ga, In, As, and Sb, and R 3Al 5O 12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  16. [Effect of univalent cations on the glutamate dehydrogenase of chlorella].

    PubMed

    Shatilov, V R; Kasparova, M A; Kretovich, V L

    1976-09-01

    Effect of univalent cations (Li+, K+, Na+ and Cs+) on the activity and some kinetic properties of the constitutive and the inducible glutamate dehydrogenases (GDH) of Chlorella pyrenoidosa Pringsheim 82T has been studied. All the cations used activate the inducible GDH and produced no such effect on the constitutive GDH. From the analysis of the kinetic behaviour in the presence of K+ the conclusion was made that K+ promotes and stabilyzes a catalitically advantagenous conformation of the inducible GDH. This phenomenon appears to have a physiological meaning, because of a higher K+ concentration in Chlorella cells (about 0.1 M) and its important role in metabolism.

  17. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  18. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil

    NASA Astrophysics Data System (ADS)

    Tang, Samuel C. N.; Yin, Ke; Lo, Irene M. C.

    2011-07-01

    Column experiments were conducted for examining the effectiveness of the cationic hydrogel on Cr(VI) removal from groundwater and soil. For in-situ groundwater remediation, the effects of background anions, humic acid (HA) and pH were studied. Cr(VI) has a higher preference for being adsorbed onto the cationic hydrogel than sulphate, bicarbonate ions and HA. However, the adsorbed HA reduced the Cr(VI) removal capacity of the cationic hydrogel, especially after regeneration of the adsorbents, probably due to the blockage of adsorption sites. The Cr(VI) removal was slightly influenced by the groundwater pH that could be attributed to Cr(VI) speciation. The 6-cycle regeneration and reusability study shows that the effectiveness of the cationic hydrogel remained almost unchanged. On average, 93% of the adsorbed Cr(VI) was recovered in each cycle and concentrated Cr(VI) solution was obtained after regeneration. For in-situ soil remediation, the flushing water pH had an insignificant effect on the release of Cr(VI) from the soils. Multiple-pulse flushing increased the removal of Cr(VI) from the soils. In contrast, more flushing water and longer operation may be required to achieve the same removal level by continuous flushing.

  19. IONIC EFFECTS ON LIGNIFICATION AND PEROXIDASE IN TISSUE CULTURES

    PubMed Central

    Lipetz, Jacques; Garro, Anthony J.

    1965-01-01

    Crown-gall tumor tissue cultures release peroxidase into the medium in response to the concentration of specific ions in the medium. This release is not due to diffusion from cut surfaces or injured cells. Calcium, magnesium, and ammonium were, in that order, most effective in increasing peroxidase release. The enzyme was demonstrated cytochemically on the cell walls and in the cytoplasm. Cell wall fractions, exhaustively washed in buffer, still contained bound peroxidase. This bound peroxidase could be released by treating the wall fractions with certain divalent cations or ammonium. The order of effectiveness for removing the enzyme from the washed cell walls is: Ca++ ≈ Sr++ > Ba++ > Mg++ > NH4 +. These data support the thesis presented that specific ions can control the deposition of lignin on cell walls by affecting the peroxidase levels on these walls. PMID:19866650

  20. Molecular Recognition and Structural Influences on Function in Bio-nanosystems of Nucleic Acids and Proteins

    NASA Astrophysics Data System (ADS)

    Sethaphong, Latsavongsakda

    This work examines smart material properties of rational self-assembly and molecular recognition found in nano-biosystems. Exploiting the sequence and structural information encoded within nucleic acids and proteins will permit programmed synthesis of nanomaterials and help create molecular machines that may carry out new roles involving chemical catalysis and bioenergy. Responsive to different ionic environments thru self-reorgnization, nucleic acids (NA) are nature's signature smart material; organisms such as viruses and bacteria use features of NAs to react to their environment and orchestrate their lifecycle. Furthermore, nucleic acid systems (both RNA and DNA) are currently exploited as scaffolds; recent applications have been showcased to build bioelectronics and biotemplated nanostructures via directed assembly of multidimensional nanoelectronic devices 1. Since the most stable and rudimentary structure of nucleic acids is the helical duplex, these were modeled in order to examine the influence of the microenvironment, sequence, and cation-dependent perturbations of their canonical forms. Due to their negatively charged phosphate backbone, NA's rely on counterions to overcome the inherent repulsive forces that arise from the assembly of two complementary strands. As a realistic model system, we chose the HIV-TAR helix (PDB ID: 397D) to study specific sequence motifs on cation sequestration. At physiologically relevant concentrations of sodium and potassium ions, we observed sequence based effects where purine stretches were adept in retaining high residency cations. The transitional space between adenine and guanosine nucleotides (ApG step) in a sequence proved the most favorable. This work was the first to directly show these subtle interactions of sequence based cationic sequestration and may be useful for controlling metallization of nucleic acids in conductive nanowires. Extending the study further, we explored the degree to which the structure of NA duplexes alone interacted with cations distinct from a specific sequence. Under physiologically relevant conditions, a duplex of RNA polyguanine-polycitidine was highly responsive and able to sequester cations to the middle of the purine stretches. The least responsive structure was a DNA polyadenine-polythymine duplex. A random sequence DNA duplex contorted into an RNA-like helix resulted in cationic dynamics similar to RNA systems. These studies showed that cation diffusive binding events in nucleic acid duplex structures are sequence specific and heavily influenced by structural aspects helical forms to account for much of the differences observed. Although structural information in nucleic acids is encoded within their sequence, linking amino acid sequence to protein structure is murkier; the structural information within proteins is encoded by the folding process itself: a complex phenomenon driven toward the equilibrium state of the active conformation. Upwards of two thirds of a protein's sequence can be substituted with similar amino acids without significantly perturbing its function; conserved residues of about 10% seem to be vital; since evolutionary selection pressure in proteins operates 3-dimenionally, a linear sequence is partially informative. We explored this problem by folding de-novo the cytosolic portion of the membrane protein, cellulose synthase, CESA1 from upland cotton, Gossypium hirsutum (Ghcesa1). The cytoplasmic region was generated by homology modeling and refined with molecular dynamics. These mutations impair local structural flexibility which likely results in cellulose that is produced at a lower rate and is less crystalline. Additional modeling of fragments of cellulose synthases from the model plant, Arabidopsis thaliana, offered novel insights into the function of conserved cytosolic domains within plant cellulose synthases. Transport mechanisms related to the transmembrane region revealed significant differences between plants and a bacterial complex. These studies generated possible mutations that may allow for the creation of new synthases and identified other avenues of research in order to develop technologies that may alter the crystallinity and other useful properties of cellulose. 1. Karplus, K., SAM-T08, HMM-based protein structure prediction. Nucleic Acids Research, 2009. 37: p. W492-W497.

  1. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    PubMed Central

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange complex. Adsorption to the clays was essentially immediate and was correlated with the cation-exchange capacity of the clays, indicating that adsorption was primarily to negatively charged sites on the clays. Adsorption was greater with low concentrations of clays in estuarine water than in distilled water, as the higher ionic strength of the estuarine water reduced the electrokinetic potential of both clay and virus particles. The addition of cations (as chloride salts) to distilled water enhanced adsorption, with divalent cations being more effective than monovalent cations and 10(-2) M resulting in more adsorption than 10(-3) M. Potassium ions suppressed reovirus adsorption to montmorillonite, probably by collapsing the clay lattices and preventing the expression of the interlayer-derived cation-exchange capacity. More virus was adsorbed by montmorillonite made homoionic to various mono-, di-, and trivalent cations (except by montmorillonite homoionic to potassium) than by comparable concentrations of kaolinite homoionic to the same cations. The sequence of the amount of adsorption to homoionic montmorillonite was Al greater than Ca greater than Mg greater than Na greater than K; the sequence of adsorption to kaolinite was Na greater than Al greater than Ca greater than Mg greater than K. The constant partition-type adsorption isotherms obtained when the clay concentration was maintained constant and the virus concentration was varied indicated that a fixed proportion of the added virus population was adsorbed, regardless of the concentration of infectious particles. A heterogeneity within the reovirus population was indicated. PMID:6639022

  2. Simple new method for effective concentration of 188Re solutions from alumina-based 188W-188Re generator.

    PubMed

    Guhlke, S; Beets, A L; Oetjen, K; Mirzadeh, S; Biersack, H J; Knapp, F F

    2000-07-01

    (188)Re is a useful generator-produced radioisotope currently under evaluation for a variety of therapeutic applications, including bone pain palliation and intravascular radiation therapy. Because the (188)W parent is available only in a relatively low specific activity (<0.15-0.19 GBq/mg) from reactor irradiation of enriched (186)W, relatively large volumes of 0.9% saline (>15 mL) are required for elution of the (188)Re daughter from traditional alumina-based (188)W-(188)Re generators. Because these large bolus volumes result in solutions with a relatively low specific volume activity of (188)Re (<1 GBq/mL for the 18.5-GBq generator), the availability of effective methods for eluent concentration is important. Our new approach is based on the use of 0.3 mol/L ammonium acetate as a representative salt of a weak acid instead of saline for generator elution. After generator elution, the ammonium acetate generator eluent (15-20 mL) is passed through a tandem IC-H Plus cation (Dowex-H)-anion (QMA Light) column system. Exchange of ammonium cations with hydrogen ions on the cation column forms an acetic acid solution containing perrhenate anions from which the macroscopic levels of the acetate anion of the eluent have been effectively removed. Because perrhenic acid is fully dissociated at this pH, the QMA Light column specifically traps the (188)Re-perrhenate, which is subsequently eluted with a low volume (<1 mL) of saline. Concentration ratios greater than 20:1 are readily achieved with this method. A typical clinical-scale generator loaded with 19.2 GBq (188)W was used to validate the approach. Saline elution provided (188)Re in a 75%-80% yield. Although elution with 0.15 mol/L NH4OAc gave lower yields (55%-60%), use of 0.3 mol/L NH4OAc provided yields comparable with those of saline (70%-75%). (188)W parent breakthrough was not detected after passage of the bolus through the tandem concentration system. Bolus volumes of 15-20 mL, which initially contained as much as 11.1-14.8 GBq (188)Re, were readily concentrated to less than 1 mL saline using QMA Light cartridges. The generator was evaluated for more than 3 mo with no decrease in performance. This approach represents a simple, rapid, and effective method using inexpensive disposable components of concentrating solutions of (188)Re for preparation of therapeutic agents.

  3. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.

    PubMed

    Cho, Dae Won; Parthasarathi, Ramakrishnan; Pimentel, Adam S; Maestas, Gabriel D; Park, Hea Jung; Yoon, Ung Chan; Dunaway-Mariano, Debra; Gnanakaran, S; Langan, Paul; Mariano, Patrick S

    2010-10-01

    Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.

  4. The permeability of the endplate channel to organic cations in frog muscle

    PubMed Central

    1980-01-01

    The relative permeability of endplate channels to many organic cations was determined by reversal-potential criteria. Endplate currents induced by iontophoretic "puffs" of acetylcholine were studied by a Vaseline gap, voltage clamp method in cut muscle fibers. Reversal potential changes were measured as the NaCl of the bathing medium was replaced by salts of organic cations, and permeability ratios relative to Na+ ions were calculated from the Goldman-Hodgkin-Katz equation. 40 small monovalent organic cations had permeability ratios larger than 0.1. The most permeant including NH4+, hydroxylamine, hydrazine, methylamine, guanidine, and several relatives of guanidine had permeability ratios in the range 1.3--2.0. However, even cations such as imidazole, choline, tris(hydroxymethyl)aminomethane, triethylamine, and glycine methylester were appreciably permeant with permeability ratios of 0.13--0.95. Four compounds with two charged nitrogen groups were also permeant. Molecular models of the permeant ions suggest that the smallest cross-section of the open pore must be at least as large as a square, 6.5 A x 6.5 A. Specific chemical factors seem to be less important than access or friction in determining the ionic selectivity of the endplate channel. PMID:6247422

  5. Quality characterization of groundwater in Koilsagar project area, Mahabubnagar District, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Raju, C. Sudarsana; Goud, P. V. Prakash

    1990-09-01

    Studies of groundwater chemistry in the Koilsagar project area of Andhra Pradesh indicate that the waters are sodium bicarbonate, sodium chloride, mixed cationic-mixed anionic, mixed cationic Na dominating bicarbonate, and mixed cationic Ca dominating bicarbonate types. Of them, sodium bicarbonate and mixed cationic Mg dominating bicarbonate types of waters are more prevalent. Isocone mapping of specific conductance indicates that the ionic concentration increases from east to west in the area. Graphical treatment of chemical data reveals that, in general, the area has basic water, whereas the left flank canal area is dominated by secondary alkaline water, and Pallamarri and Pedda Rajmur villages have strongly acidic waters. Ion-exchange studies show that cation-anion exchanges exist all over the area except for two places, which have a base exchange hardened type of water. Graphical representation further shows that most of the area has medium salinity-low sodium (C2S1) water useful for irrigation purposes. High salinity-low sodium (C3S1) and high salinity-medium sodium (C3S2) waters are present in some areas, which need adequate drainage to overcome the salinity problem.

  6. Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice

    PubMed Central

    Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K

    2011-01-01

    Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252

  7. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    NASA Astrophysics Data System (ADS)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was laboratory air. Because of strong aqueous U(VI)-carbonate solution complexes, the measurement of DIC concentrations was even important for systems set up in the 'absence' of CO2, due to low levels of CO2 contamination during the experiment.

  8. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  9. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    PubMed Central

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  10. Simultaneous flow of water and solutes through geological membranes-I. Experimental investigation

    USGS Publications Warehouse

    Kharaka, Y.K.; Berry, F.A.P.

    1973-01-01

    The relative retardation by geological membranes of cations and anions generally present in subsurface waters was investigated using a high pressure and high temperature 'filtration cell'. The solutions were forced through different clays and a disaggregated shale subjected to compaction pressures up to 9500 psi and to temperatures from 20 to 70??C. The overall efficiences measured increased with increase of exchange capacity of the material used and with decrease in concentration of the input solution. The efficiency of a given membrane increased with increasing compaction pressure but decreased slightly at higher temperatures for solutions of the same ionic concentration. The results further show that geological membranes are specific for different dissolved species. The retardation sequences varied depending on the material used and on experimental conditions. The sequences for monovalent and divalent cations at laboratory temperatures were generally as follows: Li < Na < NH3 < K < Rb < Cs Mg < Ca < Sr < Ba. The sequences for anions at room temperature were variable, but at 70??C, the sequence was: HCO3 < I < B < SO4 < Cl < Br. Monovalent cations contrary to some field data were generally retarded with respect to divalent cations. The differences in the filtration ratios among the divalent cations were smaller than those between the monovalent cations. The passage rate of B, HCO3, I and NH3 was greatly increased at 70??C. ?? 1973.

  11. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    PubMed

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  12. Enhanced magnetoelectric effect in M-type hexaferrites by Co substitution into trigonal bi-pyramidal sites

    NASA Astrophysics Data System (ADS)

    Beevers, J. E.; Love, C. J.; Lazarov, V. K.; Cavill, S. A.; Izadkhah, H.; Vittoria, C.; Fan, R.; van der Laan, G.; Dhesi, S. S.

    2018-02-01

    The magnetoelectric effect in M-type Ti-Co doped strontium hexaferrite has been studied using a combination of magnetometry and element specific soft X-ray spectroscopies. A large increase (>×30) in the magnetoelectric coefficient is found when Co2+ enters the trigonal bi-pyramidal site. The 5-fold trigonal bi-pyramidal site has been shown to provide an unusual mechanism for electric polarization based on the displacement of magnetic transition metal (TM) ions. For Co entering this site, an off-centre displacement of the cation may induce a large local electric dipole as well as providing an increased magnetostriction enhancing the magnetoelectric effect.

  13. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    PubMed Central

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  14. Facile Synthesis of Multivalent Folate-Block Copolymer Conjugates via Aqueous RAFT Polymerization: Targeted Delivery of siRNA and Subsequent Gene Suppression†

    PubMed Central

    York, Adam W.; Zhang, Yilin; Holley, Andrew C.; Guo, Yanlin; Huang, Faqing; McCormick, Charles L.

    2009-01-01

    Cell specific delivery of small interfering ribonucleic acid (siRNA) using well-defined multivalent folate-conjugated block copolymers is reported. Primary amine functional, biocompatible, hydrophilic-block-cationic copolymers were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. N-(2-hydroxypropyl)methacrylamide) (HPMA), a permanently hydrophilic monomer, was copolymerized with a primary amine containing monomer, N-(3-aminopropyl)methacrylamide (APMA). Poly(HPMA) confers biocompatibility while APMA provides amine functionality allowing conjugation of folate derivatives. (HPMA-stat-APMA) was chain extended with a cationic block, poly(N-[3-(dimethylamino)propyl]methacrylamide) in order to promote electrostatic complexation between the copolymer and the negatively charged phosphate backbone of siRNA. Notably, poly(HPMA) stabilizes the neutral complexes in aqueous solution while APMA allows the conjugation of a targeting moiety, thus, dually circumventing problems associated with the delivery of genes via cationically charged complexes (universal transfection). Fluorescence microscopy and gene down-regulation studies indicate that these neutral complexes can be specifically delivered to cancer cells that over-express folate receptors. PMID:19290625

  15. Capture of Pb2+ and Cu2+ Metal Cations by Neisseria meningitidis-type Capsular Polysaccharides.

    PubMed

    Ghimire, Sujan; McCarthy, Pumtiwitt C

    2018-05-05

    Heavy metal pollution of water is a significant environmental and public health concern. Current biological strategies for heavy metal removal from water are performed using microbial biopolymers, including polysaccharides, that are already fully formed. This creates limitations in adapting polysaccharides to increase binding affinity for specific metals. We propose that altering the specificity of polysaccharide-producing enzymes could be beneficial to improving metal capture by modified polysaccharides. We assess binding of Cu 2+ and Pb 2+ metal cations to Neisseria meningitidis -type polysaccharides. All concentrations of metal cations tested were able to completely bind to colominic acid. This polymer is equivalent to the capsular polysaccharide of N. meningitidis serogroup B comprised of a homopolymer of negatively charged sialic acid. There was slightly less binding observed with N. meningitidis serogroup W, which contains repeating units of the neutral sugar galactose and sialic acid. Our work represents the first assessment of the metal-binding properties of these capsular polysaccharides. Future work will seek to optimize metal-binding with Neisseria meningitidis serogroup W polysaccharide.

  16. Effect of cation type and concentration of nitrates on neurological disorders during experimental cerebral ischemia.

    PubMed

    Kuzenkov, V S; Krushinskii, A L; Reutov, V P

    2013-10-01

    Experiments were performed on the model of ischemic stroke due to bilateral occlusion of the carotid arteries. Nitrates had various effects on the dynamics of neurological disorders and mortality rate of Wistar rats, which depended on the cation type and concentration.

  17. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects.

    PubMed

    Zhao, Yanping; Geng, Jinju; Wang, Xiaorong; Gu, Xueyuan; Gao, Shixiang

    2011-07-01

    Contamination of environmental matrixes by human and animal wastes containing antibiotics is a growing health concern. Because tetracycline is one of the most widely-used antibiotics in the world, it is important to understand the factors that influence its mobility in soils. This study investigated the effects of pH, background electrolyte cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), heavy metal Cu(2+) and humic acid (HA) on tetracycline adsorption onto kaolinite. Results showed that tetracycline was greatly adsorbed by kaolinite over pH 3-6, then decreased with the increase of pH, indicating that tetracycline adsorption mainly through ion exchange of cations species and complexation of zwitterions species. In the presence of five types of cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), tetracycline adsorption decreased in accordance with the increasing of atomic radius and valence of metal cations, which suggested that outer-sphere complexes formed between tetracycline and kaolinite, and the existence of competitor ions lead to the decreasing adsorption. The presence of Cu(2+) greatly enhanced the adsorption probably by acting as a bridge ion between tetracycline species and the edge sites of kaolinite. HA also showed a major effect on the adsorption: at pH < 6, the presence of HA increased the adsorption, while the addition of HA showed little effect on tetracycline adsorption at higher pH. The soil environmental conditions, like pH, metal cations and soil organic matter, strongly influence the adsorption behavior of tetracycline onto kaolinite and need to be considered when assessing the environmental toxicity of tetracycline.

  18. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  19. The sensitivity of benzene cluster cation chemical ionization mass spectrometry to select biogenic terpenes

    NASA Astrophysics Data System (ADS)

    Lavi, Avi; Vermeuel, Michael P.; Novak, Gordon A.; Bertram, Timothy H.

    2018-06-01

    Benzene cluster cations are a sensitive and selective reagent ion for chemical ionization of select biogenic volatile organic compounds. We have previously reported the sensitivity of a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), using benzene cluster cation ion chemistry, for detection of dimethyl sulfide, isoprene and α-pinene. Here, we present laboratory measurements of the sensitivity of the same instrument to a series of terpenes, including isoprene, α-pinene, β-pinene, D-limonene, ocimene, β-myrcene, farnesene, α-humulene, β-caryophyllene, and isolongifolene at atmospherically relevant mixing ratios (< 100 pptv). In addition, we determine the dependence of CI-ToFMS sensitivity on the reagent ion neutral delivery concentration and water vapor concentration. We show that isoprene is primarily detected as an adduct (C5H8 ṡ C6H6+) with a sensitivity ranging between 4 and 10 ncps ppt-1, which depends strongly on the reagent ion precursor concentration, de-clustering voltages, and specific humidity (SH). Monoterpenes are detected primarily as the molecular ion (C10H16+) with an average sensitivity, across the five measured compounds, of 14 ± 3 ncps ppt-1 for SH between 7 and 14 g kg-1, typical of the boreal forest during summer. Sesquiterpenes are detected primarily as the molecular ion (C15H24+) with an average sensitivity, across the four measured compounds, of 9.6 ± 2.3 ncps ppt-1, that is also independent of specific humidity. Comparable sensitivities across broad classes of terpenes (e.g., monoterpenes and sesquiterpenes), coupled to the limited dependence on specific humidity, suggest that benzene cluster cation CI-ToFMS is suitable for field studies of biosphere-atmosphere interactions.

  20. Analysis of the Light-harvesting Pigment-Protein Complex of Wild Type and a Chlorophyll-b-less Mutant of Barley 1

    PubMed Central

    Burke, John J.; Steinback, Katherine E.; Arntzen, Charles J.

    1979-01-01

    we have compared chloroplast lamellae isolated from a chlorophyll-b-less mutant and wild type barley (Hordeum vulgare). The results demonstrate that: (a) one of the two major polypeptides comprising the lightharvesting complex (LHC) is present in the chlorophyll-b-less mutant; (b) higher cation concentrations are required to maintain grana stacks in the mutant; and (c) cation effects on excitation energy distribution are present in the chlorophyll-b-less mutant but are reduced in amount and are dependent on higher concentrations of cations. We interpret these data to support the concept that the LHC mediates cation-induced grana stacking and cation regulation of excitation energy distribution between photosystems I and Ii in chloroplast lamellae. A partial LHC complement in the mutant alters the quantitative cation requirement for both phenomena, but not the over-all qualitative response. Images PMID:16660704

  1. In situ remediation process using divalent metal cations

    DOEpatents

    Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.

    2004-12-14

    An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.

  2. Sulfates Dramatically Stabilize a Salt-Dependent Type of Glucagon Fibrils

    PubMed Central

    Pedersen, Jesper Søndergaard; Flink, James M.; Dikov, Dantcho; Otzen, Daniel Erik

    2006-01-01

    Recent work suggests that protein fibrillation mechanisms and the structure of the resulting protein fibrils are very sensitive to environmental conditions such as temperature and ionic strength. Here we report the effect of several inorganic salts on the fibrillation of glucagon. At acidic pH, fibrillation is much less influenced by cations than anions, for which the effects follow the electroselectivity series; e.g., the effect of sulfate is ∼65-fold higher than that of chloride per mole. Increased salt concentrations generally accelerate fibrillation, but result in formation of an alternate type of fibrils. Stability of these fibrils is highly affected by changes in anion concentration; the apparent melting temperature is increased by ∼22°C for any 10-fold concentration increase, indicating that the fibrils cannot exist without anions. In contrast, fibrillation under alkaline conditions is more affected by cations than anions. We conclude that ions interact directly as structural ligands with glucagon fibrils where they coordinate charges and assist in formation of new fibrils. As ex vivo amyloid plaques often contain large amounts of highly sulfated organic molecules, the specific effects of sulfate ions on glucagon may have general relevance in the study of amyloidosis and other protein deposition diseases. PMID:16533857

  3. Teaching Experiment to Elucidate a Cation-Pi Effect in an Alkyne Cycloaddition Reaction and Illustrate Hypothesis-Driven Design of Experiments

    ERIC Educational Resources Information Center

    St.Germain, Elijah J.; Horowitz, Andrew S.; Rucco, Dominic; Rezler, Evonne M.; Lepore, Salvatore D.

    2017-01-01

    An organic chemistry experiment is described that is based on recent research to elucidate a novel cation-pi interaction between tetraalkammonium cations and propargyl hydrazines. This nonbonded interaction is a key component of the mechanism of ammonium-catalyzed intramolecular cycloaddition of nitrogen to the terminal carbon of a C-C triple bond…

  4. The role of modifier cation field strength, oxygen speciation and network cation interaction in pressure-induced structural changes of silicate melts and glasses: 27Al, and 11B MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Bista, S.; Stebbins, J. F.

    2017-12-01

    In aluminosilicate melts and glasses, both non-bridging oxygen content (NBO) and modifier cation field strength (Mg>Ca>Na>K) are known to facilitate network cation (e.g. Al, B) coordination increase with pressure. However, the role of these two compositional parameters in pressure-induced structural changes is derived from data for a limited set of compositions, where effects of the interaction between these parameters is less understood. For example, the effects of NBO are largely based on studies of Na and K aluminosilicate glasses, but effects of geologically important, higher field strength modifier cations such as Mg2+ and Fe2+ could well be significantly different. In this study, we look at a wide compositional range of Na, Ca and Mg aluminosilicate glasses (quenched from high pressure melts near to the glass transition temperature) to understand the roles of NBO and modifier cation field strength that can extend our view of processes important for silicate melts common in nature. Our results show that the role of NBO in pressure-induced structural changes varies systematically with increasing field strength of the modifier cation. In Na aluminosilicate glasses recovered from 1.5 to 3 GPa, large increases in average aluminum coordination are observed in glasses with high NBO content, while no detectable increases are seen for low nominal NBO (jadeite). In contrast, Mg aluminosilicate glasses with both high and low NBO show similar, large increases in average aluminum coordination with increasing pressure. The behaviors of Ca aluminosilicates fall between those of Na and Mg-rich glasses. We have also looked at interactions between different network forming cations in pressure-induced structural changes in low NBO Ca-aluminoborosilicate glasses with varying B/Si. Both aluminum and boron increase dramatically in coordination in these compositions 1.5 to 3 GPa. Increases in both average aluminum coordination and densification are larger in compositions containing higher boron concentrations, suggesting an interaction between boron and aluminum network cations in pressure-induced structural changes.

  5. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.

    PubMed

    Zavyalova, Elena; Tagiltsev, Grigory; Reshetnikov, Roman; Arutyunyan, Alexander; Kopylov, Alexey

    2016-10-01

    Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K + , Na + , NH 4 + , Ba 2+ , and Sr 2+ ; on the contrary, Mn 2+ was coordinated in the grooves, outside the G-quadruplex. K + or Na + coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K + coordination provided the well-known high inhibitory activity of the aptamer, whereas Na + coordination supported low activity. Although NH 4 + coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba 2+ and Sr 2+ coordination. Mn 2+ coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a different sequence of loops in the G-quadruplex module provided an equilibrium of antiparallel and parallel G-quadruplexes that shifted with cation binding. In conclusion, structures of G-quadruplex aptamers are flexible enough and are fine-tuned with different cation coordination.

  6. Design principles from multiscale simulations to predict nanostructure in self-assembling ionic liquids

    DOE PAGES

    Nebgen, Benjamin Tyler; Magurudeniya, Harsha D.; Kwock, Kevin Wen Chi; ...

    2017-07-18

    Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinatingmore » anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. As a result, thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.« less

  7. Design principles from multiscale simulations to predict nanostructure in self-assembling ionic liquids.

    PubMed

    Nebgen, Benjamin T; Magurudeniya, Harsha D; Kwock, Kevin W C; Ringstrand, Bryan S; Ahmed, Towfiq; Seifert, Sönke; Zhu, Jian-Xin; Tretiak, Sergei; Firestone, Millicent A

    2017-12-14

    Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1 H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1 H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.

  8. Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage.

    PubMed

    Klar, Joakim; Piontek, Jörg; Milatz, Susanne; Tariq, Muhammad; Jameel, Muhammad; Breiderhoff, Tilman; Schuster, Jens; Fatima, Ambrin; Asif, Maria; Sher, Muhammad; Mäbert, Katrin; Fromm, Anja; Baig, Shahid M; Günzel, Dorothee; Dahl, Niklas

    2017-07-01

    Claudins constitute the major component of tight junctions and regulate paracellular permeability of epithelia. Claudin-10 occurs in two major isoforms that form paracellular channels with ion selectivity. We report on two families segregating an autosomal recessive disorder characterized by generalized anhidrosis, severe heat intolerance and mild kidney failure. All affected individuals carry a rare homozygous missense mutation c.144C>G, p.(N48K) specific for the claudin-10b isoform. Immunostaining of sweat glands from patients suggested that the disease is associated with reduced levels of claudin-10b in the plasma membranes and in canaliculi of the secretory portion. Expression of claudin-10b N48K in a 3D cell model of sweat secretion indicated perturbed paracellular Na+ transport. Analysis of paracellular permeability revealed that claudin-10b N48K maintained cation over anion selectivity but with a reduced general ion conductance. Furthermore, freeze fracture electron microscopy showed that claudin-10b N48K was associated with impaired tight junction strand formation and altered cis-oligomer formation. These data suggest that claudin-10b N48K causes anhidrosis and our findings are consistent with a combined effect from perturbed TJ function and increased degradation of claudin-10b N48K in the sweat glands. Furthermore, affected individuals present with Mg2+ retention, secondary hyperparathyroidism and mild kidney failure that suggest a disturbed reabsorption of cations in the kidneys. These renal-derived features recapitulate several phenotypic aspects detected in mice with kidney specific loss of both claudin-10 isoforms. Our study adds to the spectrum of phenotypes caused by tight junction proteins and demonstrates a pivotal role for claudin-10b in maintaining paracellular Na+ permeability for sweat production and kidney function.

  9. TRPV2 Channels Contribute to Stretch-Activated Cation Currents and Myogenic Constriction in Retinal Arterioles.

    PubMed

    McGahon, Mary K; Fernández, José A; Dash, Durga P; McKee, Jon; Simpson, David A; Zholos, Alex V; McGeown, J Graham; Curtis, Tim M

    2016-10-01

    Activation of the transient receptor potential channels, TRPC6, TRPM4, and TRPP1 (PKD2), has been shown to contribute to the myogenic constriction of cerebral arteries. In the present study we sought to determine the potential role of various mechanosensitive TRP channels to myogenic signaling in arterioles of the rat retina. Rat retinal arterioles were isolated for RT-PCR, Fura-2 Ca2+ microfluorimetry, patch-clamp electrophysiology, and pressure myography studies. In some experiments, confocal immunolabeling of wholemount preparations was used to examine the localization of specific mechanosensitive TRP channels in retinal vascular smooth muscle cells (VSMCs). Reverse transcription-polymerase chain reaction analysis demonstrated mRNA expression for TRPC1, M7, V1, V2, V4, and P1, but not TRPC6 or M4, in isolated retinal arterioles. Immunolabeling revealed plasma membrane, cytosolic and nuclear expression of TRPC1, M7, V1, V2, V4, and P1 in retinal VSMCs. Hypoosmotic stretch-induced Ca2+ influx in retinal VSMCs was reversed by the TRPV2 inhibitor tranilast and the nonselective TRPP1/V2 antagonist amiloride. Inhibitors of TRPC1, M7, V1, and V4 had no effect. Hypoosmotic stretch-activated cation currents were similar in Na+ and Cs+ containing solutions suggesting no contribution by TRPP1 channels. Direct plasma membrane stretch triggered cation current activity that was blocked by tranilast and specific TRPV2 pore-blocking antibodies and mimicked by the TRPV2 activator, Δ9-tetrahydrocannabinol. Preincubation of retinal arterioles with TRPV2 blocking antibodies prevented the development of myogenic tone. Our results suggest that retinal VSMCs express a range of mechanosensitive TRP channels, but only TRPV2 appears to contribute to myogenic signaling in this vascular bed.

  10. CNT loading into cationic cholesterol suspensions show improved DNA binding and serum stability and ability to internalize into cancer cells

    NASA Astrophysics Data System (ADS)

    Chhikara, Bhupender S.; Misra, Santosh K.; Bhattacharya, Santanu

    2012-02-01

    Methods which disperse single-walled carbon nanotubes (SWNTs) in water as ‘debundled’, while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol+) {Cholest-5en-3β-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3β-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3β-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3β-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol+) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol+ to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol+ suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol+ complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol+ formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.

  11. Studies on the inactivation of human parvovirus 4.

    PubMed

    Baylis, Sally A; Tuke, Philip W; Miyagawa, Eiji; Blümel, Johannes

    2013-10-01

    Human parvovirus 4 (PARV4) is a novel parvovirus, which like parvovirus B19 (B19V) can be a contaminant of plasma pools used to prepare plasma-derived medicinal products. Inactivation studies of B19V have shown that it is more sensitive to virus inactivation strategies than animal parvoviruses. However, inactivation of PARV4 has not yet been specifically addressed. Treatment of parvoviruses by heat or low-pH conditions causes externalization of the virus genome. Using nuclease treatment combined with real-time polymerase chain reaction, the extent of virus DNA externalization was used as an indirect measure of the inactivation of PARV4, B19V, and minute virus of mice (MVM) by pasteurization of albumin and by low-pH treatment. Infectivity studies were performed in parallel for B19V and MVM. PARV4 showed greater resistance to pasteurization and low-pH treatment than B19V, although PARV4 was not as resistant as MVM. There was a 2- to 3-log reduction of encapsidated PARV4 DNA after pasteurization and low-pH treatment. In contrast, B19V was effectively inactivated while MVM was stable under these conditions. Divalent cations were found to have a stabilizing effect on PARV4 capsids. In the absence of divalent cations, even at neutral pH, there was a reduction of PARV4 titer, an effect not observed for B19V or MVM. In the case of heat treatment and incubation at low pH, PARV4 shows intermediate resistance when compared to B19V and MVM. Divalent cations seem important for stabilizing PARV4 virus particles. © 2013 American Association of Blood Banks.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhill, William C.; Qu, Jun; Luo, Huimin

    In our previous work we suggest great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent moremore » on molecular mass than on symmetry. While a larger cation size generally increases an IL’s solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Moreover, characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Our results provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.« less

  13. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    NASA Astrophysics Data System (ADS)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  14. Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Yang, Zhong-Zhi; Li, Xin

    2005-09-01

    Intermolecular potential for alkaline-earth metal (Be(2+), Mg(2+), and Ca(2+)) cations in water has been derived using the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM), and it is consistent with what was previously applied to the hydration study of the monovalent cations. Parameters for the effective interaction between a cation and a water molecule were determined, reproducing the ab initio results. The static, dynamic, and thermodynamic properties of Be(2+)(aq), Mg(2+)(aq), and Ca(2+)(aq) were studied using these potential parameters. Be(2+) requires a more complicated form of the potential function than Mg(2+) and Ca(2+) in order to obtain better fits. Strong influences of the twofold charged cations on the structures of the hydration shells and some other properties of aqueous ionic solutions are discussed and compared with the results of a previous study of monovalent cations in water. At the same time, comparative study of the hydration properties of each cation is also discussed. This work demonstrates that ABEEM/MM provides a useful tool in the exploration of the hydration of double-charged cations in water.

  15. Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes

    DOE PAGES

    Berg, John M.; Gaunt, Andrew J.; May, Iain; ...

    2015-04-22

    A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW 9O 34] 9-, [AsW 9O 34] 9-, [SiW 9O 34] 10- and [GeW 9O 34] 10-) are multi-dentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO 2} 2+, {NpO 2} +, {NpO 2} 2+ & {PuO 2} 2+) in near neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two trilacunary anions, with additional cations (Na +, K + or NH 4 +) also often held within the cluster. Studies thus far have indicated that it is these additional +I cations, rather than the specific actinylmore » cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl (VI) cluster complex (NH 4) 13 [Na(NpO 2) 2(A-α- PW 9O 34) 2]·12H 2O. The anion in this complex, [Na(NpO 2) 2(PW 9O 34) 2] 13-, contains one Na + cation and two {NpO 2} 2+ cations held between two [PW 9O 34] 9- anions – with an additional partial occupancy NH 4 + or {NpO 2} 2+ cation also present. In the analogous uranium (VI) system, under similar reaction conditions that includes an excess of NH 4Cl in the parent solution, it was previously shown that [(NH 4) 2(U VIO 2) 2(A-PW 9O 34) 2] 12- is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO 2} 2+/[PW 9O 34] 9- and {UO 2} 2+/[PW 9O 34] 9- systems, both in solution and in solid state complexes crystallized from comparable salt solutions. The work revealed that varying the actinide element (Np vs. U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl (VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.« less

  16. Restructuring of a Peat in Interaction with Multivalent Cations: Effect of Cation Type and Aging Time

    PubMed Central

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation. PMID:23750256

  17. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    PubMed

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.

  18. Drug Discovery of Antimicrobial Photosensitizers Using Animal Models

    PubMed Central

    Sharma, Sulbha K.; Dai, Tianhong; Kharkwal, Gitika B.; Huang, Ying-Ying; Huang, Liyi; Bil De Arce, Vida J.; Tegos, George P.; Hamblin, Michael R.

    2012-01-01

    Antimicrobial photodynamic therapy (aPDT) is an emerging alternative to antibiotics motivated by growing problems with multi-drug resistant pathogens. aPDT uses non-toxic dyes or photosensitizers (PS) in combination with harmless visible of the correct wavelength to be absorbed by the PS. The excited state PS can form a long-lived triplet state that can interact with molecular oxygen to produce reactive oxygen species such as singlet oxygen and hydroxyl radical that kill the microbial cells. To obtain effective PS for treatment of infections it is necessary to use cationic PS with positive charges that are able to bind to and penetrate different classes of microbial cells. Other drug design criteria require PS with high absorption coefficients in the red/near infra-red regions of the spectrum where light penetration into tissue is maximum, high photostability to minimize photobleaching, and devising compounds that will selectively bind to microbial cells rather than host mammalian cells. Several molecular classes fulfill many of these requirements including phenothiazinium dyes, cationic tetrapyrroles such as porphyrins, phthalocyanines and bacteriochlorins, cationic fullerenes and cationic derivatives of other known PS. Larger structures such as conjugates between PS and cationic polymers, cationic nanoparticles and cationic liposomes that contain PS are also effective. In order to demonstrate in vivo efficacy it is necessary to use animal models of localized infections in which both PS and light can be effectively delivered into the infected area. This review will cover a range of mouse models we have developed using bioluminescent pathogens and a sensitive low light imaging system to non-invasively monitor the progress of the infection in real time. Effective aPDT has been demonstrated in acute lethal infections and chronic biofilm infections; in infections caused by Gram-positive, Gram-negative bacteria and fungi; in infections in wounds, third degree burns, skin abrasions and soft-tissue abscesses. This range of animal models also represents a powerful aid in antimicrobial drug discovery. PMID:21504410

  19. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    PubMed Central

    2016-01-01

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na+ would outcompete Cs+ by 1.8–2.1-fold; i.e., with Cs+ in 2-fold excess of Na+ the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res.2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na+ over Cs+. There is an ∼25% preferential occupancy of Li+ over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4–P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation–anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the development of next-generation nucleic acid computational models. PMID:27479701

  20. Cation dependence, pH tolerance, and dosage requirement of a bioflocculant produced by Bacillus spp. UPMB13: flocculation performance optimization through kaolin assays.

    PubMed

    Zulkeflee, Zufarzaana; Aris, Ahmad Zaharin; Shamsuddin, Zulkifli H; Yusoff, Mohd Kamil

    2012-01-01

    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na⁺, Ca²⁺, and Mg²⁺, while Fe²⁺ and Al³⁺ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl₂ and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.

  1. Cellular cation transport studied by 6/7Li and 23Na NMR in a porous Mo132 Keplerate type nano-capsule as model system.

    PubMed

    Rehder, Dieter; Haupt, Erhard T K; Müller, Achim

    2008-01-01

    Li+ ions can interplay with other cations intrinsically present in the intra- and extra-cellular space (i.e. Na+, K+, Mg2+ and Ca2+) have therapeutic effects (e.g. in the treatment of bipolar disorder) or toxic effects (at higher doses), likely because Li+ interferes with the intra-/extra-cellular concentration gradients of the mentioned physiologically relevant cations. The cellular transmembrane transport can be modelled by molybdenum-oxide-based Keplerates, i.e. nano-sized porous capsules containing 132 Mo centres, monitored through 6/7Li as well as 23Na NMR spectroscopy. The effects on the transport of Li+ cations through the 'ion channels' of these model cells, caused by variations in water amount, temperature, and by the addition of organic cationic 'plugs' and the shift reagent [Dy(PPP)2](7-) are reported. In the investigated solvent systems, water acts as a transport mediator for Li+. Likewise, the counter-transport (Li+/Na+, Li+/K+, Li+/Cs+ and Li+/Ca2+) has been investigated by 7Li NMR and, in the case of Li+/Na+ exchange, by 23Na NMR, and it has been shown that most (in the case of Na+ and K+, all (Ca2+) or almost none (Cs+) of the Li cations is extruded from the internal sites of the artificial cell to the extra-cellular medium, while Na+, K+ and Ca2+ are partially incorporated.

  2. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  3. Effect of cisplatin on organic ion transport in membrane vesicles from rat kidney cortex.

    PubMed

    Williams, P D; Hottendorf, G H

    1985-01-01

    Purified renal membrane vesicles were utilized to gain indirect information regarding the renal handling of cisplatin. The effects of cisplatin on prototypical organic anion (p-amino-hippurate, PAH) and cation (N1-methylnicotinamide; tetraethylammonium, TEA) transport in brush border and basolateral membrane vesicles prepared from rat kidney cortex were observed. While cisplatin inhibited organic cation transport (N1-methylnicotinamide; TEA) in brush border and basolateral membranes, no interaction with the organic anion (p-amino-hippurate) system was observed. Kinetic analyses revealed that cisplatin is a competitive inhibitor of TEA transport in brush border membranes with a ki of 0.12 mM. While the relationship between organic cation transport inhibition and cisplatin nephrotoxicity is unknown, it may suggest that the cisplatin complex itself is transported into the kidney by the organic cation system. The reported effect of the organic anion, probenecid, on the renal handling of cisplatin is discussed in light of these results.

  4. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains.

    PubMed

    Uyama, Makoto; Inoue, Kaori; Kinoshita, Koichi; Miyahara, Reiji; Yokoyama, Hirokazu; Nakano, Minoru

    2018-01-01

    It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower T m values have a greater ability to increase the fluidity.

  5. The adsorption of cationic and amphoteric copolymers on glass surfaces: zeta potential measurements, adsorption isotherm determination, and FT Raman characterization.

    PubMed

    Tartakovsky, Alla; Drutis, Dane M; Carnali, Joseph O

    2003-07-15

    The adsorption of cationic and amphoteric copolymers onto controlled pore glass (CPG) powders has been studied by measurement of the powder particle zeta (zeta) potential, by determination of the adsorption isotherm, and by FT Raman measurements of the polymer-coated powder. The cationic polymers consisted chiefly of homopolymers of dimethyldiallylammonium chloride (DMDAAC) or copolymers of DMDAAC and acrylamide. The amphoteric polymers studied included copolymers of DMDAAC and acrylic acid. The comonomer ratio was varied to explore the dependence of cationic charge density on the extent and effect of adsorption. Both types of polymers adsorb onto the anionic glass surface via an ion-exchange mechanism. Consequently, a correspondingly higher mass of a low-charge-density copolymer adsorbs than of a cationic homopolymer. The presence of the anionic portion in the amphoteric polymers does not significantly alter this picture. The zeta potential, however, reflects the overall nature of the polymer. Cationic polymers effectively neutralize the glass surface, while amphoteric polymers leave the zeta potential net negative. Adsorption isotherms, determined via the depletion technique using colloidal titration, were used to "calibrate" a FT Raman method. The latter was used to determined the amount of adsorbed polymer under solution conditions in which colloidal titration could not be performed.

  6. Effect of cations on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system.

    PubMed

    Chen, Yuanbo; Hu, Yongyou; Guo, Qian; Yan, Jia; Wu, Wenjin

    2016-09-01

    Cations had great influence on the self-assembly of rhamnolipid, which in turn affected the fate of triclosan. The migration of triclosan from sediment to water benefited its biodegradation but it could be transformed into more toxic compounds. To regulate the fate of triclosan and reduce environmental risks extremely, the effect of four common cations in surface water (Na(+)/K(+)/Ca(2+)/Mg(2+)) on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system was investigated. The interaction among cations, triclosan and rhamnolipid was explored based on self-assembly of rhamnolipid and water solubility of triclosan in rhamnolipid solutions. Results showed that cations had little influence on the fate of triclosan in the absence of rhamnolipid. Cations, especially Ca(2+)/Mg(2+), reduced the critical micelle concentration, micellar size and zeta potential of rhamnolipid solutions. The changes in self-assembly of rhamnolipid with different cations led to the difference of residual rhamnolipid concentration in water, which was nearly invariant with 0.01 M Na(+)/K(+) while decreased significantly with 0.01 M Ca(2+)/Mg(2+). Consequently, water solubility of triclosan in rhamnolipid solutions increased with the addition of Na(+)/K(+) whereas decreased with Ca(2+)/Mg(2+). In sediment-water- rhamnolipid system, triclosan was slightly solubilized from sediment to water with Na(+)/K(+) while deposited in sediment with Ca(2+)/Mg(2+). These findings provided an alternative application of rhamnolipid for the remediation of triclosan-polluted sediment. Copyright © 2016. Published by Elsevier Ltd.

  7. DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP.

    PubMed

    Aied, Ahmed; Zheng, Yu; Pandit, Abhay; Wang, Wenxin

    2012-02-01

    Cationic polymers with various structures have been widely investigated in the areas of medical diagnostics and molecular biology because of their unique binding properties and capability to interact with biological molecules in complex biological environments. In this work, we report the grafting of a linear cationic polymer from an atom transfer radical polymerization (ATRP) initiator bound to cellulose paper surface. We show successful binding of ATRP initiator onto cellulose paper and grafting of polymer chains from the immobilized initiator with ATRP. The cellulose paper grafted polymer was used in combination with PicoGreen (PG) to demonstrate detection of nucleic acids in the nanogram range in homogeneous solution and in a biological sample (serum). The results showed specific identification of hybridized DNA after addition of PG in both solutions.

  8. Electronic characterization of defects in narrow gap semiconductors

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1994-01-01

    We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.

  9. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions.

    PubMed

    Feng, Zhenxing; Hong, Wesley T; Fong, Dillon D; Lee, Yueh-Lin; Yacoby, Yizhak; Morgan, Dane; Shao-Horn, Yang

    2016-05-17

    Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal-air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1-xSrxCoO3-δ and (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1-ySry)2CoO4±δ/La1-xSrxCo0.2Fe0.8O3-δ. Sr enrichment in many electrocatalysts, such as La1-xSrxMO3-δ (M = Cr, Co, Mn, or Co and Fe) and Sm1-xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst's activity while maintaining stability to design efficient, cost-effective electrocatalysts.

  10. Lysine-containing cationic liposomes activate the NLRP3 inflammasome: Effect of a spacer between the head group and the hydrophobic moieties of the lipids.

    PubMed

    Li, Tianshu; He, Jieyan; Horvath, Gabor; Próchnicki, Tomasz; Latz, Eicke; Takeoka, Shinji

    2018-02-01

    Cationic lipids containing lysine head groups and ditetradecyl, dihexadecyl or dioctadecyl glutamate hydrophobic moieties with/without propyl, pentyl or heptyl spacers were applied for the preparation of cationic liposomes using a simple bath type-sonicator. The size distribution, zeta potential, cellular internalization, and cytotoxicity of the liposomes were characterized, and the innate immune stimulation, e.g., the NLRP3 inflammasome activation of human macrophages and THP-1 cells, was evaluated by the detection of IL-1β release. Comparatively, L3C14 and L5C14 liposomes, made from the lipids bearing lysine head groups, ditetradecyl hydrophobic chains and propyl or pentyl spacers, respectively, were the most potent to activate the NLRP3 inflammasome. The possible mechanism includes endocytosis of the cationic liposomes and subsequent lysosome rupture without significant inducement of reactive oxygen species production. In summary, we first disclosed the structural effect of cationic liposomes on the NLRP3 inflammasome activation, which gives an insight into the application of nanoparticles for improved immune response. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of cation amount in the electrolyte on characteristics of Ag/TiO2 based threshold switching devices.

    PubMed

    Yoo, Jongmyung; Song, Jeonghwan; Hwang, Hyunsang

    2018-06-18

    In this study, we investigate the effect of cation amount in electrolyte on Ag/TiO2 based threshold switching devices based on field-induced nucleation theory. For this purpose, normal Ag/TiO2, annealed Ag/TiO2, and Ag-Te/TiO2 based TS devices are prepared, which have different cation amounts in their electrolytes during the switching process. First, we find that all of the prepared TS devices follow the field-induced nucleation theory with different nucleation barrier energy (W0) by investigating the delay time dependency at various voltages and temperatures. Based on the investigation, we reveal that the amount of cations in the electrolyte during the switching process is the control parameter that affects the W0 values, which are found to be inversely proportional to the turn-off speed of the TS devices. This implies that the turn-off speed of the TS devices can be modulated by controlling the amount of cations in the matrix. © 2018 IOP Publishing Ltd.

  12. Effect of the crystal chemistry on the hydration mechanism of swelling micas

    NASA Astrophysics Data System (ADS)

    Pavón, Esperanza; Alba, María D.; Castro, Miguel A.; Cota, A.; Osuna, Francisco J.; Pazos, M. Carolina

    2017-11-01

    Swelling and dehydration under minor changes in temperature and water vapor pressure is an important property that clays and clay minerals exhibit. In particular, their interlayer space, the solid-water interface and the layers' collapse and re-expansion have received much attention because it affects to the dynamical properties of interlayer cations and thus the transfer and fate of water and pollutants. In this contribution, the dehydration and rehydration mechanism of a swelling high-charge mica family is examined by in situ X-ray Diffraction. The effect of the aluminosilicate layer charge and the physicochemical properties of the interlayer cations on these processes are analyzed. The results showed that the dehydration temperature and the number of steps involved in this process are related to the layer charge of the silicate and the physicochemical properties of the interlayer cations. Moreover, the ability to adsorb water molecules in a confined space with high electric field by the interlayer cations does not only depend on their hydration enthalpy but also on the electrostatic parameters of these cations.

  13. Programmable Payload Release from Transient Polymer Microcapsules Triggered by a Specific Ion Coactivation Effect.

    PubMed

    Tang, Shijia; Tang, Liuyan; Lu, Xiaocun; Liu, Huiying; Moore, Jeffrey S

    2018-01-10

    Stimuli-responsive materials activated by a pair of molecular or ionic species are of interest in the design of chemical logic gates and signal amplification schemes. There are relatively few materials whose coactivated response has been well-characterized. Here, we demonstrate a specific ion coactivation (SICA) effect at the interfaces of transient polymer solids and liquid solutions. We found that depolymerization of the transient polymer, cyclic poly(phthalaldehyde) (cPPA), exhibited a SICA effect when the cPPA core-shell microcapsules were suspended in ion-containing acidic methanol solutions. Significant acceleration in cPPA depolymerization rate is triggered by the combination of acid and ion coactivators. Intriguingly, the SICA effect is related to the Hofmeister behavior. The SICA effect is primarily determined by anions, and cations exhibit a secondary effect that modulates the coactivation strength. Based on these observations, we developed cPPA programmable microcapsules whose payload release rates depend on the composition and concentration of the salt/acidic-methanol solutions.

  14. Force Spectroscopy Reveals the Effect of Different Ions in the Nanomechanical Behavior of Phospholipid Model Membranes: The Case of Potassium Cation

    PubMed Central

    Redondo-Morata, Lorena; Oncins, Gerard; Sanz, Fausto

    2012-01-01

    How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes. PMID:22225799

  15. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    PubMed Central

    Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin

    2014-01-01

    Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171

  16. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE PAGES

    Feng, Guang; Li, Song; Zhao, Wei; ...

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  17. Calix[4]pyrrole as a Chloride Anion Receptor: Solvent and Counter-Cation Effects

    PubMed Central

    Sessler, Jonathan L.; Gross, Dustin E.; Cho, Won-Seob; Lynch, Vincent M.; Schmidtchen, Franz P.; Bates, Gareth W.; Light, Mark E.; Gale, Philip A.

    2008-01-01

    The interaction of calixpyrrole with several chloride salts has been studied in the solid state by X-ray crystallography as well as in solution by isothermal titration calorimetry (ITC) and 1H NMR spectroscopic titrations. The titration results in dimethylsulfoxide, acetonitrile, nitromethane, 1,2-dichloroethane and dichloromethane, carried out using various chloride salts, specifically tetraethylammonium (TEA), tetrapropylammonium (TPA), tetrabutylammonium (TBA), tetraethylphosphonium (TEP), tetrabutylphosphonium (TBP), and tetraphenylphosphonium (TPhP) showed no dependence on method of measurement. The resulting affinity constants (Ka's), on the other hand, were found to be highly dependent on the choice of solvent with Ka's ranging from 102−105 being recorded in the test solvents used for this study. In dichloromethane a strong dependence on the counter-cation was also seen, with the Ka's for the interaction with chloride ranging from 102−104. In the case of TPA, TBA and TBP the ITC data could not be fit to a 1:1 binding profile. PMID:16967979

  18. Effect of solvent, electronic, and steric factors on the reactivity of 1,1'-diethylferrocene, 1,1'-diacetylferrocene, and 1,1'-bis(diphenylphosphino)ferrocene towards hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Kochetkova, K. S.; Galkina, M. S.

    2017-07-01

    The oxidation of Fc(C2H5)2, Fc(COCH3)2, and Fc(PPh2)2, where Fc is a ferrocene, with hydrogen peroxide in aprotic (dioxane and acetonitrile) and hydroxyl-containing (ethanol, acetonitrile-water, and water) solvents is studied via electron spectroscopy. The reactivity of these metal complexes relative to an oxidant is due to the electron-donor or electron-acceptor properties of substituents, their sizes, and their capability for the specific solvation by a particular solvent. Possible mechanisms of the oxidation of metal complexes are discussed. When Fc(PPh2)2 is oxidized, the formation of ferrocenyl cation Fc+(PPh2)2 is due to the redox isomerism of ferrocenylphosphonium cation Fc(PPh2)P+Ph2, which can form during the reaction between protonated complex Fc(PPh2)P(H+)Ph2 and H2O2.

  19. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2005-11-28

    This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in the tumor tissue injected with the PEG-introduced cationized dextran-plasmid DNA complex plus the subsequent US irradiation. We conclude that complexation with the PEG-introduced cationized dextran combined with US irradiation is a promising way to target the plasmid DNA to the tumor for gene expression.

  20. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hassanpour, A.; Guo, P.; Shen, S.; Bianucci, P.

    2017-10-01

    Undoped and C-doped (C: Mg2+, Ni2+, Mn2+, Co2+, Cu2+, Cr3+) ZnO nanorods were synthesized by a hydrothermal method at temperatures as low as 60 °C. The effect of doping on the morphology of the ZnO nanorods was visualized by taking their cross section and top SEM images. The results show that the size of nanorods was increased in both height and diameter by cation doping. The crystallinity change of the ZnO nanorods due to each doping element was thoroughly investigated by an x-ray diffraction (XRD). The XRD patterns show that the wurtzite crystal structure of ZnO nanorods was maintained after cation addition. The optical Raman-active modes of undoped and cation-doped nanorods were measured with a micro-Raman setup at room temperature. The surface chemistry of samples was investigated by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. Finally, the effect of each cation dopant on band-gap shift of the ZnO nanorods was investigated by a photoluminescence setup at room temperature. Although the amount of dopants (Mg2+, Ni2+, and Co2+) was smaller than the amount of Mn2+, Cu2+, and Cr3+ in the nanorods, their effect on the band structure of the ZnO nanorods was profound. The highest band-gap shift was achieved for a Co-doped sample, and the best crystal orientation was for Mn-doped ZnO nanorods. Our results can be used as a comprehensive reference for engineering of the morphological, structural and optical properties of cation-doped ZnO nanorods by using a low-temperature synthesis as an economical mass-production approach.

  1. Comparison of the effects of divalent cations on the noradrenaline-evoked cation current in rabbit portal vein smooth muscle cells

    PubMed Central

    Aromolaran, A S; Large, W A

    1999-01-01

    The facilitatory effects of external Ca2+, Sr2+ and Ba2+ (Cao2+, Sro2+ and Bao2+) on the noradrenaline-evoked non-selective cation current (Icat) were compared in rabbit portal vein smooth muscle cells using patch pipette techniques. All divalent cations tested potentiated the amplitude of Icat and the potency sequence was Cao2+ > Sro2+ > Bao2+. Cao2+ and Sro2+ increased the amplitude of Icat by about eight times whereas Bao2+ produced only a threefold facilitation. The current-voltage relationship of Icat was not changed by Cao2+, Sro2+ or Bao2+. From noise analysis the single channel conductance (γ) was approximately 10 pS in divalent cation-free solution but was about 20 pS with Cao2+, Sro2+ and Bao2+. From noise and voltage-jump experiments it was apparent that at least three kinetically resolvable channel states are associated with Icat in divalent cation-free solution. Cao2+ and Sro2+ produced marked changes in the characteristics of the power spectrum and relaxations of Icat in response to voltage steps, consistent with a shift in the equilibrium between the channel states, whereas Bao2+ produced minimal effects. The data show that Cao2+, Sro2+ and Bao2+ increase the amplitude of Icat, which results in part from an increase in the single channel conductance. In addition the results suggest that Cao2+ and Sro2+ alter the kinetic behaviour of the single channels whereas Bao2+ has little effect on the equilibrium between the channel states. PMID:10545143

  2. Rare-gas effects on metabolism and inert gas narcosis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The detailed examination is reported of the theory that narcosis results from expansion of the cell membrane under high partial pressures. The research is partially based on the hypothesis that, like oxygen toxicity, the mechanism of metabolic effects of rare gases may be similar at both low and high pressures and are simply more observable at high pressures. Using adult female goats, the parameters measured include oxygen consumption, CO2 production, respiration rate, heart rate, rectal and skin temperatures and the analysis of electroencephalograms and evoked response. Additionally, the specific activity is measured of plasma glucose subsequent to injection of glucose-UL-C-14, intravenous infusion, specific activity of expired CO2, unesterified fatty acid levels and whole blood lactate-to-pyruvate ratios. Also studied were the effects of acetylsalicylic acid, vitamin E and cationic detergents (which alleviate narcosis) upon metabolic changes induced by high pressure narcosis.

  3. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel

    2014-05-01

    Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.

  4. The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors.

    PubMed

    Zhu, Jianbo; Xu, Youlong; Wang, Jie; Lin, Jun; Sun, Xiaofei; Mao, Shengchun

    2015-11-21

    In this work, polypyrrole/graphene doped by p-toluenesulfonic is prepared as an active material for supercapacitors, and its capacitance performance is investigated in various aqueous electrolytes including HCl, LiCl, NaCl, and KCl with a concentration of 3 M, respectively. A rising trend of capacitance is observed according to the cationic mobility (Li(+) < Na(+) < K(+) < H(+)), which is due to its effect on the ionic conductivity, efficient ion/charge diffusion/exchange and relaxation time. On the other hand, long-term cycling stability is in the following order: KCl < NaCl < LiCl < HCl, corresponding to the decreasing tendency of cation size (K(+) > Na(+) > Li(+) > H(+)). The reason can be attributed to the fact that the insertion/de-insertion of large size cation brings a significant doping level decrease and an over-oxidation increase during the charging-discharging cycles. Hence, we not only obtain good capacitance performance (280.3 F g(-1) at 5 mV s(-1)), superior rate capability (225.8 F g(-1) at 500 mV s(-1)) and high cycling stability (92.0% capacitance retention after 10,000 cycles at 1 A g(-1)) by employing 3 M HCl as an electrolyte, but also reveal that the electrolyte cations have a significant effect on the supercapacitors' electrochemical performance.

  5. Synthesis and Characterization of Modified BiOCl and Their Application in Adsorption of Low-Concentration Dyes from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qihang; Xing, Yongxing; Liu, Zhiliang; Ouyang, Jing; Du, Chunfang

    2018-03-01

    The synthesis and characterization of BiOCl and Fe3+-grafted BiOCl (Fe/BiOCl) is reported that are developed as efficient adsorbents for the removal of cationic dyes rhodamine B (RhB) and methylene blue (MB) as well as anionic dyes methyl orange (MO) and acid orange (AO) from aqueous solutions with low concentration of 0.01 0.04 mmol/L. Characterizations by various techniques indicate that Fe3+ grafting induced more open porous structure and higher specific surface area. Both BiOCl and Fe/BiOCl with negatively charged surfaces showed excellent adsorption efficiency toward cationic dyes, which could sharply reach 99.6 and nearly 100% within 3 min on BiOCl and 97.0 and 98.0% within 10 min on Fe/BiOCl for removing RhB and MB, respectively. However, Fe/BiOCl showed higher adsorption capacity than BiOCl toward ionic dyes. The influence of initial dye concentration, temperature, and pH value on the adsorption capacity is comprehensively studied. The adsorption process of RhB conforms to Langmuir adsorption isotherm and pseudo-second-order kinetic feature. The excellent adsorption capacities of as-prepared adsorbents toward cationic dyes are rationalized on the basis of electrostatic attraction as well as open porous structure and high specific surface area. In comparison with Fe/BiOCl, BiOCl displays higher selective efficiency toward cationic dyes in mixed dye solutions.

  6. Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids

    NASA Astrophysics Data System (ADS)

    Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong

    2018-03-01

    The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  7. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    PubMed Central

    Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong

    2018-01-01

    The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands. PMID:29600245

  8. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    PubMed

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-04

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental importance of cation alkyl chain length and its functionalization is demonstrated.

  9. Electrophilic assistance to the cleavage of an RNA model phopshodiester via specific and general base-catalyzed mechanisms.

    PubMed

    Corona-Martínez, David Octavio; Gomez-Tagle, Paola; Yatsimirsky, Anatoly K

    2012-10-19

    Kinetics of transesterification of the RNA model substrate 2-hydroxypropyl 4-nitrophenyl phosphate promoted by Mg(2+) and Ca(2+), the most common biological metals acting as cofactors for nuclease enzymes and ribozymes, as well as by Co(NH(3))(6)(3+), Co(en)(3)(3+), Li(+), and Na(+) cations, often employed as mechanistic probes, was studied in 80% v/v (50 mol %) aqueous DMSO, a medium that allows one to discriminate easily specific base (OH(-)-catalyzed) and general base (buffer-catalyzed) reaction paths. All cations assist the specific base reaction, but only Mg(2+) and Na(+) assist the general base reaction. For Mg(2+)-assisted reactions, the solvent deuterium isotope effects are 1.23 and 0.25 for general base and specific base mechanisms, respectively. Rate constants for Mg(2+)-assisted general base reactions measured with different bases fit the Brønsted correlation with a slope of 0.38, significantly lower than the slope for the unassisted general base reaction (0.77). Transition state binding constants for catalysts in the specific base reaction (K(‡)(OH)) both in aqueous DMSO and pure water correlate with their binding constants to 4-nitrophenyl phosphate dianion (K(NPP)) used as a minimalist transition state model. It was found that K(‡)(OH) ≈ K(NPP) for "protic" catalysts (Co(NH(3))(6)(3+), Co(en)(3)(3+), guanidinium), but K(‡)(OH) ≫ K(NPP) for Mg(2+) and Ca(2+) acting as Lewis acids. It appears from results of this study that Mg(2+) is unique in its ability to assist efficiently the general base-catalyzed transesterification often occurring in active sites of nuclease enzymes and ribozymes.

  10. Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure.

    PubMed

    Anderson, Michael; Schultz, Eric P; Martick, Monika; Scott, William G

    2013-10-23

    We have obtained a 1.55-Å crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni under conditions that permit detailed observations of Na(+) ion binding in the ribozyme's active site. At least two such Na(+) ions are observed. The first Na(+) ion binds to the N7 of G10.1 and the adjacent A9 phosphate in a manner identical with that previously observed for divalent cations. A second Na(+) ion binds to the Hoogsteen face of G12, the general base in the hammerhead cleavage reaction, thereby potentially dissipating the negative charge of the catalytically active enolate form of the nucleotide base. A potential but more ambiguous third site bridges the A9 and scissile phosphates in a manner consistent with that of previous predictions. Hammerhead ribozymes have been observed to be active in the presence of high concentrations of monovalent cations, including Na(+), but the mechanism by which monovalent cations substitute for divalent cations in hammerhead catalysis remains unclear. Our results enable us to suggest that Na(+) directly and specifically substitutes for divalent cations in the hammerhead active site. The detailed geometry of the pre-catalytic active-site complex is also revealed with a new level of precision, thanks to the quality of the electron density maps obtained from what is currently the highest-resolution ribozyme structure in the Protein Data Bank. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Spectroscopic and calorimetric investigations on the influence of calcium ions on the polyamine negatively charged phospholipid molecular interactions

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Bonora, S.; Fini, G.; Morelli, M. A.

    1993-06-01

    Polyamines do not interact with neutral phospholipids (phosphatidylcholines) but they do interact in the presence of bivalent and trivalent cations. The effect of polyvalent cations is explained in terms of dehydration of the bilayer surface. Polyamines interact strongly with negatively charged phospholipids; the presence of bivalent and trivalent cations do not change sensitively the type of interaction between polyamines and phosphatidic acids.

  12. Understanding cation ordering and oxygen vacancy site preference in Ba3CaNb2O9 from first-principles

    NASA Astrophysics Data System (ADS)

    Ding, Hepeng; Virkar, Anil; Liu, Feng

    2014-03-01

    We investigate the physical mechanism underlying the formation of the B-site cation ordering and the oxygen vacancy site selection in Ba3CaNb2O9 using density functional theory calculations. We found that either cation site exchange or oxygen vacancy formation induces negligible lattice strain. This implies that the ionic radius plays an insignificant role in governing these two processes. Furthermore, the electrostatic interactions are found dominant in the ordering of mixed valence species on one or more sites, the ionic bond strength is identified as the dominant force in governing both the 1:2 B-site cation ordering along the <111>direction and the oxygen vacancy site preference in Ba3CaNb2O9. Specifically, the cation ordering can be rationalized by the increased mixing bonding energy of the Ca-O-Nb bonds over the Ca-O-Ca and Nb-O-Nb bonds, i.e., 1/2(Ca-O-Ca + Nb-O-Nb)

  13. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    DOEpatents

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  14. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  15. Co-localization of fluorescent labeled lipid nanoparticles with specifically tagged subcellular compartments by single particle tracking at low nanoparticle to cell ratios.

    PubMed

    Tiffany, Matthew; Szoka, Francis C

    2016-11-01

    We utilized quantitative high-resolution single particle tracking to study the internalization and endosomal sorting of lipid nanoparticles (LNPs) by HeLa cells in vitro to gain a better understanding of how cells process LNPs that are used for siRNA delivery. We compared the trafficking of three formulations that have been demonstrated to deliver siRNA into cells. They were composed of either a tritratable anionic lipid, formulation of cholesterol hemisuccinate (CHEMS), or a titratatable cationic lipid formulation of 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA) or a non-titratable cationic formulation lipid formulation of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). They also contained either a substantial percentage of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol and 5 mole percent 1,2-dimyristoyl-sn-glycerol-[methoxy(polyethylene glycol)-2000 (PEG-DMG). We optically measured the endosomal pH experienced by individual LNPs, observed the internalization pathways used and tracked the particles as they co-localized with fluorescent protein tags on compartment-specific proteins, during endosomal sorting to the lysosome. The data revealed significant differences in the accumulation in subcellular compartments among the three formulations, which help to explain the observed effects LNP composition exerts on in vitro delivery efficiency.

  16. Long-term effects of commercial sawlog harvest on soil cation concentrations

    Treesearch

    Jennifer D. Knoepp; Wayne T. Swank

    1997-01-01

    There is increasing concern about the effects of nutrient removal associated with various forest harvesting practices on long-term site productivity. The authors measured exchangeable soil cation concentration responses to a commercial clearcut sawlog harvest in mixed hardwoods on a 59-ha watershed in the Southern Appalachians. Soils were sampled 17 months prior to and...

  17. Sequential intravenous injection of anionic polymer and cationic lipoplex of siRNA could effectively deliver siRNA to the liver.

    PubMed

    Hattori, Yoshiyuki; Arai, Shohei; Okamoto, Ryou; Hamada, Megumi; Kawano, Kumi; Yonemochi, Etsuo

    2014-12-10

    In this study, we developed novel siRNA transfer method to the liver by sequential intravenous injection of anionic polymer and cationic liposome/cholesterol-modified siRNA complex (cationic lipoplex). When cationic lipoplex was intravenously injected into mice, the accumulation of siRNA was mainly observed in the lungs. In contrast, when cationic lipoplex was intravenously injected at 1 min after intravenous injection of poly-L-glutamic acid (PGA) or chondroitin sulfate C (CS), siRNA was accumulated in the liver. In terms of suppression of gene expression in vivo, apolipoprotein B (ApoB) mRNA in the liver and low-density-lipoprotein (LDL) and very low-density-lipoprotein (VLDL) cholesterol level in serum were reduced at 48 h after single sequential injection of PGA or CS plus cationic lipoplex of cholesterol-modified ApoB siRNA. Furthermore, sequential injections of PGA plus cationic lipoplex of cholesterol-modified luciferase siRNA could reduce luciferase activity in tumor xenografts bearing liver metastasis of human breast tumor MCF-7-Luc. From these findings, sequential injection of anionic polymer and cationic lipoplex of siRNA might produce a systemic vector of siRNA to the liver. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Prediction of Intrinsic Cesium Desorption from Na-Smectite in Mixed Cation Solutions.

    PubMed

    Fukushi, Keisuke; Fukiage, Tomo

    2015-09-01

    Quantitative understanding of the stability of sorbed radionuclides in smectite is necessary to assess the performance of engineering barriers used for nuclear waste disposal. Our previous study demonstrated that the spatial organization of the smectite platelets triggered by the divalent cations led to the apparent fixation of intrinsic Cs in smectite, because some Cs is retained inside the formed tactoids. Natural water is usually a mixture of Na(+) and divalent cations (Ca(2+) and Mg(2+)). This study therefore investigated the desorption behavior of intrinsic Cs in Na-smecite in mixed Na(+)-divalent cation solutions under widely various cation concentrations using batch experiments, grain size measurements, and cation exchange modeling (CEM). Results show that increased Na(+) concentrations facilitate Cs desorption because Na(+) serves as the dispersion agent. A linear relation was obtained between the logarithm of the Na(+) fraction and the accessible Cs fraction in smectite. That relation enables the prediction of accessible Cs fraction as a function of solution cationic compositions. The corrected CEM considering the effects of the spatial organization suggests that the stability of intrinsic Cs in the smectite is governed by the Na(+) concentration, and suggests that it is almost independent of the concentrations of divalent cations in natural water.

  19. New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity.

    PubMed

    Pinazo, A; Petrizelli, V; Bustelo, M; Pons, R; Vinardell, M P; Mitjans, M; Manresa, A; Perez, L

    2016-05-01

    Cationic double chain surfactants have attracted much interest because they can give rise to cationic vesicles that can be used in biomedical applications. Using a simple and economical synthetic approach, we have synthesized four double-chain surfactants with different alkyl chain lengths (LANHCx). The critical aggregation concentration of the double chain surfactants is at least one order of magnitude lower than the CMC of their corresponding single-chain LAM and the solutions prepared with the LANHCx contain stable cationic vesicles. Encouragingly, these new arginine derivatives show very low haemolytic activity and weaker cytotoxic effects than conventional dialkyl dimethyl ammonium surfactants. In addition, the surfactant with the shortest alkyl chain exhibits good antimicrobial activity against Gram-positive bacteria. The results show that a rational design applied to cationic double chain surfactants might serve as a promising strategy for the development of safe cationic vesicular systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ion pair and solvation dynamics of [Bmim][BF4 ] + water system.

    PubMed

    Cascão, João; Silva, Wagner; Ferreira, Ana S D; Cabrita, Eurico J

    2018-02-01

    In this work, 1-butyl-3-methylimidazolium tetrafluoroborate/water mixtures were analysed over the whole water composition (x w ) in order to study the rotational and translational behaviour of the ions. We employed a multinuclear NMR approach to determine anion/cation/water diffusion coefficients and longitudinal relaxation rates at different water content. In neat ionic liquids (IL), the cation diffuses faster than the anion, and at low x w , anions and cations share almost the same diffusion coefficient, but above a critical water concentration, the anion begins to diffuse faster than the cation. We identified this composition as approximately 10% x w where the ions share the same diffusion coefficient. We found that the water at this composition seems to have a much more dramatic effect in the rotational diffusion of the anion that decreases substantially and approaches that of the anion in the diluted IL. Translational and rotational dynamics of the ions suggest that water is first incorporated in pockets in the nanostructure of the IL allowing the ions to maintain most of the cation/anion interactions present in neat IL but already disrupting some anion/cation interactions due to preferential interaction with the anion. HOESY and NOESY data show that water displays contacts both with the cation and the anion in a positive NOE regime in contrary to the negative regime found for the cation/anion and cation/cation cross-relaxation. This is in accordance with the high relative diffusion coefficient of water and suggests that water molecules can exchange between preferential location sites that allow water to maintain contacts both with the anion and cation. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  2. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  3. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection.

    PubMed

    Namvar, Ali; Bolhassani, Azam; Khairkhah, Niloofardokht; Motevalli, Fatemeh

    2015-07-01

    Delivery of the macromolecules including DNA, miRNA, and antisense oligonucleotides is typically mediated by carriers due to the large size and negative charge. Different physical (e.g., gene gun or electroporation), and chemical (e.g., cationic polymer or lipid) vectors have been already used to improve the efficiency of gene transfer. Polymer-based DNA delivery systems have attracted special interest, in particular via intravenous injection with many intra- and extracellular barriers. The recent progress has shown that stimuli-responsive polymers entitled as multifunctional nucleic acid vehicles can act to target specific cells. These nonviral carriers are classified by the type of stimulus including reduction potential, pH, and temperature. Generally, the physicochemical characterization of DNA-polymer complexes is critical to enhance the transfection potency via protection of DNA from nuclease digestion, endosomal escape, and nuclear localization. The successful clinical applications will depend on an exact insight of barriers in gene delivery and development of carriers overcoming these barriers. Consequently, improvement of novel cationic polymers with low toxicity and effective for biomedical use has attracted a great attention in gene therapy. This article summarizes the main physicochemical and biological properties of polyplexes describing their gene transfection behavior, in vitro and in vivo. In this line, the relative efficiencies of various cationic polymers are compared. © 2015 Wiley Periodicals, Inc.

  4. Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice?

    NASA Astrophysics Data System (ADS)

    Bella, Federico; Sacco, Adriano; Pugliese, Diego; Laurenti, Marco; Bianco, Stefano

    2014-10-01

    A multivariate chemometric approach is proposed for the first time for performance optimization of I-/I3- liquid electrolytes for dye-sensitized solar cells (DSSCs). Over the years the system composed by iodide/triiodide redox shuttle dissolved in organic solvent has been enriched with the addition of different specific cations and chemical compounds to improve the photoelectrochemical behavior of the cell. However, usually such additives act favorably with respect to some of the cell parameters and negatively to others. Moreover, the combined action of different compounds often yields contradictory results, and from the literature it is not possible to identify an optimal recipe. We report here a systematic work, based on a multivariate experimental design, to statistically and quantitatively evaluate the effect of different additives on the photovoltaic performances of the device. The effect of cation size in iodine salts, the iodine/iodide ratio in the electrolyte and the effect of type and concentration of additives are mutually evaluated by means of a Design of Experiment (DoE) approach. Through this statistical method, the optimization of the overall parameters is demonstrated with a limited number of experimental trials. A 25% improvement on the photovoltaic conversion efficiency compared with that obtained with a commercial electrolyte is demonstrated.

  5. Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose-Salt Blends.

    PubMed

    Thorat, Alpana A; Forny, Laurent; Meunier, Vincent; Taylor, Lynne S; Mauer, Lisa J

    2017-12-27

    The effects of salts on the stability of amorphous sucrose and its crystallization in different environments were investigated. Chloride (LiCl, NaCl, KCl, MgCl 2 , CaCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , and AlCl 3 ) and sulfate salts with the same cations (Na 2 SO 4 , K 2 SO 4 , MgSO 4 , CuSO 4 , Fe(II)SO 4 , and Fe(III)SO 4 ) were studied. Samples (sucrose controls and sucrose:salt 1:0.1 molar ratios) were lyophilized, stored in controlled temperature and relative humidity (RH) conditions, and monitored for one month using X-ray diffraction. Samples were also analyzed by differential scanning calorimetry, microscopy, and moisture sorption techniques. All lyophiles were initially amorphous, but during storage the presence of a salt had a variable impact on sucrose crystallization. While all samples remained amorphous when stored at 11 and 23% RH at 25 °C, increasing the RH to 33 and 40% RH resulted in variations in crystallization onset times. The recrystallization time generally followed the order monovalent cations < sucrose < divalent cations < trivalent cations. The presence of a salt typically increased water sorption as compared to sucrose alone when stored at the same RH; however, anticrystallization effects were observed for sucrose combined with salts containing di- and trivalent cations in spite of the increased water content. The cation valency and hydration number played a major role in dictating the impact of the added salt on sucrose crystallization.

  6. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils

    USGS Publications Warehouse

    Kurwadkar , Sudarshan T.; Adams, Craig D.; Meyer, Michael T.; Kolpin, Dana W.

    2007-01-01

    Sorption of sulfamethazine (SMN) and sulfathiazole (STZ) was investigated in three soils, a North Carolina loamy sand, an Iowa sandy loam, and a Missouri loam, under various pH conditions. A significant increase in the sorption coefficient (KD) was observed in all three soils, as the sulfonamides converted from an anionic form at higher pH to a neutral/cationic form at lower pH. Above pH 7.5, sulfonamides exist primarily in anionic form and have higher aqueous solubility and no cationic character, thereby consequently leading to lower sorption to soils. The effect of speciation on sorption is not the same for all sulfonamides; it is a function of the pH of the soil and the pKa of the sulfonamides. The results indicate that, for the soils under investigation, SMN has comparatively lower KD values than STZ. The pH-dependent sorption of sulfonamides was observed to be consistent in all three soils investigated. The KD values for each speciated formcationic, neutral, and anionicwere calculated using an empirical model in which the species-specific sorption coefficients (KD0, KD1, and KD2) were weighted with their respective fractions present at any given pH.

  7. Effect of counterions on the shape, hydration, and degree of order at the interface of cationic micelles: the triflate case.

    PubMed

    Lima, Filipe S; Cuccovia, Iolanda M; Horinek, Dominik; Amaral, Lia Q; Riske, Karin A; Schreier, Shirley; Salinas, Roberto K; Bastos, Erick L; Pires, Paulo A R; Bozelli, José Carlos; Favaro, Denize C; Rodrigues, Ana Clara B; Dias, Luís Gustavo; El Seoud, Omar A; Chaimovich, Hernan

    2013-04-02

    Specific ion effects in surfactant solutions affect the properties of micelles. Dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), and methanesulfonate (DTAMs) micelles are typically spherical, but some organic anions can induce shape or phase transitions in DTA(+) micelles. Above a defined concentration, sodium triflate (NaTf) induces a phase separation in dodecyltrimethylammonium triflate (DTATf) micelles, a phenomenon rarely observed in cationic micelles. This unexpected behavior of the DTATf/NaTf system suggests that DTATf aggregates have unusual properties. The structural properties of DTATf micelles were analyzed by time-resolved fluorescence quenching, small-angle X-ray scattering, nuclear magnetic resonance, and electron paramagnetic resonance and compared with those of DTAC, DTAB, and DTAMs micelles. Compared to the other micelle types, the DTATf micelles had a higher average number of monomers per aggregate, an uncommon disk-like shape, smaller interfacial hydration, and restricted monomer chain mobility. Molecular dynamic simulations supported these observations. Even small water-soluble salts can profoundly affect micellar properties; our data demonstrate that the -CF3 group in Tf(-) was directly responsible for the observed shape changes by decreasing interfacial hydration and increasing the degree of order of the surfactant chains in the DTATf micelles.

  8. Cationic PAMAM dendrimers disrupt key platelet functions

    PubMed Central

    Jones, Clinton F.; Campbell, Robert A.; Franks, Zechariah; Gibson, Christopher C.; Thiagarajan, Giridhar; Vieira-de-Abreu, Adriana; Sukavaneshvar, Sivaprasad; Mohammad, S. Fazal; Li, Dean Y.; Ghandehari, Hamidreza; Weyrich, Andrew S.; Brooks, Benjamin D.; Grainger, David W.

    2012-01-01

    Poly(amidoamine) (PAMAM) dendrimers have been proposed for a variety of biomedical applications and are increasingly studied as model nanomaterials for such use. The dendritic structure features both modular synthetic control of molecular size and shape and presentation of multiple equivalent terminal groups. These properties make PAMAM dendrimers highly functionalizable, versatile single-molecule nanoparticles with a high degree of consistency and low polydispersity. Recent nanotoxicological studies showed that intravenous administration of amine-terminated PAMAM dendrimers to mice was lethal, causing a disseminated intravascular coagulation-like condition. To elucidate the mechanisms underlying this coagulopathy, in vitro assessments of platelet functions in contact with PAMAM dendrimers were undertaken. This study demonstrates that cationic G7 PAMAM dendrimers activate platelets and dramatically alter their morphology. These changes to platelet morphology and activation state substantially altered platelet function, including increased aggregation and adherence to surfaces. Surprisingly, dendrimer exposure also attenuated platelet-dependent thrombin generation, indicating that not all platelet functions remained intact. These findings provide additional insight into PAMAM dendrimer effects on blood components and underscore the necessity for further research on the effects and mechanisms of PAMAM-specific and general nanoparticle toxicity in blood. PMID:22497592

  9. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles

    PubMed Central

    Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe

    2016-01-01

    Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947

  10. Emerging structural details of transient amyloid-β oligomers suggest designs for effective small molecule modulators

    NASA Astrophysics Data System (ADS)

    Chandra, Bappaditya; Halder, Swagata; Adler, Juliane; Korn, Alexander; Huster, Daniel; Maiti, Sudipta

    2017-05-01

    Small oligomers are the major toxic species in many amyloid related diseases, but they are difficult to characterize and target. Here we construct tetra-peptides FXFX (X = F/K), designed to exploit cation-π, π-π and hydrophobic interactions to disrupt the critical F19-L34 contact recently found in Aβ40 oligomers. FRFR accelerates Aβ40 aggregation, and strongly inhibits its binding to lipid membranes, which is important in the context of toxicity. FKFK lacks both of these effects, which correlates with the weaker interaction of K with aromatic residues. Thus it appears possible to tune specific contacts in the oligomer and effectively change its properties.

  11. An ATP-gated cation channel with some P2Z-like characteristics in gastric smooth muscle cells of toad.

    PubMed Central

    Ugur, M; Drummond, R M; Zou, H; Sheng, P; Singer, J J; Walsh, J V

    1997-01-01

    1. Whole-cell and single-channel currents elicited by extracellular ATP were studied in freshly dissociated smooth muscle cells from the stomach of the toad Bufo marinus using standard patch clamp and microfluorimetric techniques. 2. This ATP-gated cation channel shares a number of pharmacological and functional properties with native rat myometrium receptors, certain native P2Z purinoceptors and the recently cloned P2X7 purinoceptor. But, unlike the last two, the ATP-gated channel does not mediate the formation of large non-specific pores. Thus, it may represent a novel member of the P2X or P2Z class. 3. Extracellular application of ATP (> or = 150 microM) elicited an inward whole-cell current at negative holding potentials that was inwardly rectifying and showed no sign of desensitization. Na+, Cs+ and, to a lesser degree, the organic cation choline served as charge carriers, but Cl- did not. Ratiometric fura-2 measurements indicated that the current is carried in part by Ca2+. The EC50 for ATP was 700 microM in solutions with a low divalent cation concentration. 4. ATP (> or = 100 microM) at the extracellular surface of cell-attached or excised patches elicited inwardly rectifying single-channel currents with a 22 pS conductance. Cl- did not serve as a charge carrier but both Na+ and Cs+ did, as did choline to a lesser extent. The mean open time of the channel was quite long, with a range in hundreds of milliseconds at a holding potential of -70 mV. 5. Mg2+ and Ca2+ decreased the magnitude of the ATP-induced whole-cell currents. Mg2+ decreased both the amplitude and the activity of ATP-activated single-channel currents. 6. ADP, UTP, P1, P5-di-adenosine pentaphosphate (AP5A), adenosine and alpha, beta-methylene ATP (alpha, beta-Me-ATP) did not induce significant whole-cell current. ATP-gamma-S and 2-methylthio ATP (2-Me-S-ATP) were significantly less effective than ATP in inducing whole-cell currents, whereas benzoylbenzoyl ATP (BzATP) was more effective. BzATP, alpha, beta-Me-ATP, ATP-gamma-S and 2-Me-S-ATP induced single-channel currents, but a higher concentration of alpha, beta-Me-ATP was required. 7. BzATP did not induce the formation of large non-specific pores, as assayed using mag-fura-2 as a high molecular mass probe. PMID:9032690

  12. Acceleration of chemical weathering related to intensive agriculture: evidence from groundwater dating

    NASA Astrophysics Data System (ADS)

    Aquilina, Luc; Marçais, Jean; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Ben; Vergnaud, Virginie; Walter, Christian; Viville, Daniel; Chabaux, François; Pinay, Gilles

    2017-04-01

    Agricultural pollution is a matter of political and scientific concern throughout the world. Intensive agriculture can cause nutrient contamination of groundwater and surface water. Nutrient pollution causes eutrophication in freshwater and estuarine ecosystems. A secondary effect of agricultural intensification is river acidification. Oxidation of chemical fertilizers such as ammonium (NH4+) to nitrate (NO3-) produces H+ ions that cause leaching of cations from soil and deeper material to maintain charge balance. Monitoring of various rivers in Brittany (western France) revealed that agriculture intensification has led to increased cation export starting in the 1980s. From the cation ratios, we deduced that cation increase comes approximately equally from dissolution of carbonate added to soil (liming practices) and silicate dissolution. Cation export represented about 30% of the soil cation exchange potential. If compensated by liming, it may constitute a non-negligible source to atmospheric CO2 (Aquilina et al., 2012). We further investigated the potential for silicate dissolution through the use of groundwater dating in various sites of Brittany. Coupling chemical analyses to groundwater ages in a large range of aquifers and a large range of depths (down to 110m) allowed us to reconstruct a chronicle for the last 50 yrs of the cation concentrations of groundwater. It clearly shows a contemporaneous increase in sodium and nitrate and a decrease in calcium, with the most dramatic changes occurring during the 70s and 80s. Using groundwater dating, we were also able to determine a silica production geochronometer. A tight and linear relationship between silica concentration and groundwater age (Figure) was observed and allowed a production rate in groundwater to be determined. Except for short residence-times (Kerrien), the silica production rate for different granitic catchments was consistent, ranging from 0.3 to 0.4 mg.L-1.yr-1. To assess the role of anthropogenic activity in silica production rate, we compared production rates from Brittany with catchments in the Vosges Mountains, a relatively pristine area. Dissolution rates were much higher in the Brittany catchments, indicating the effect of human activities on chemical weathering and cation export at the catchment scale. Aquilina L. et al., 2012 - Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments. Env. Sci & Technology 46-17, 9447-9455..

  13. Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films.

    PubMed

    Hwang, Junho; Kataoka, Sho; Endo, Akira; Daiguji, Hirofumi

    2016-09-21

    Nanofluidic energy harvesting systems have attracted interest in the field of battery application, particularly for miniaturized electrical devices, because they possess excellent energy conversion capability for their size. In this study, a mesoporous silica (MPS)-based nanofluidic energy harvesting system was fabricated and selective ion transport in mesopores as a function of the salt gradient was investigated. Aqueous solutions with three different kinds of monovalent electrolytes-KCl, NaCl, and LiCl-with different diffusion coefficients (D + ) were considered. The highest power density was 3.90 W m -2 for KCl, followed by 2.39 W m -2 for NaCl and 1.29 W m -2 for LiCl. Furthermore, the dependency of power density on the type of cation employed indicates that the harvested energy increases as the cation mobility increases, particularly at high concentrations. This cation-specific dependency suggests that the maximum power density increases by increasing the diffusion coefficient ratio of cations to anions, making this ratio a critical parameter in enhancing the performance of nanofluidic energy harvesting systems with extremely small pores ranging from 2 to 3 nm.

  14. Ion Dynamics in a Mixed-Cation Alkoxy-Ammonium Ionic Liquid Electrolyte for Sodium Device Applications.

    PubMed

    Pope, Cameron R; Kar, Mega; MacFarlane, Douglas R; Armand, Michel; Forsyth, Maria; O'Dell, Luke A

    2016-10-18

    The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf 2 ] anion with various concentrations of Na[NTf 2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf 2 ] salt (over 2 mol kg -1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Theoretical and Experimental Insights into the Dissociation of 2-Hydroxyethylhydrazinium Nitrate Clusters Formed via Electrospray.

    PubMed

    Patrick, Amanda L; Vogelhuber, Kristen M; Prince, Benjamin D; Annesley, Christopher J

    2018-03-01

    Ionic liquids are used for myriad applications, including as catalysts, solvents, and propellants. Specifically, 2-hydroxyethylhydrazinium nitrate (HEHN) has been developed as a chemical propellant for space applications. The gas-phase behavior of HEHN ions and clusters is important in understanding its potential as an electrospray thruster propellant. Here, the unimolecular dissociation pathways of two clusters are experimentally observed, and theoretical modeling of hydrogen bonding and dissociation pathways is used to help rationalize those observations. The cation/deprotonated cation cluster [HEH 2 - H] + , which is observed from electrospray ionization, is calculated to be considerably more stable than the complementary cation/protonated anion adduct, [HEH + HNO 3 ] + , which is not observed experimentally. Upon collisional activation, a larger cluster [(HEHN) 2 HEH] + undergoes dissociation via loss of nitric acid at lower collision energies, as predicted theoretically. At higher collision energies, additional primary and secondary loss pathways open, including deprotonated cation loss, ion-pair loss, and double-nitric-acid loss. Taken together, these experimental and theoretical results contribute to a foundational understanding of the dissociation of protic ionic liquid clusters in the gas phase.

  16. Specific cationic emission of cisplatin following ionization by swift protons

    NASA Astrophysics Data System (ADS)

    Moretto-Capelle, Patrick; Champeaux, Jean-Philippe; Deville, Charlotte; Sence, Martine; Cafarelli, Pierre

    2016-05-01

    We have investigated collision-induced ionization and fragmentation by 100 keV protons of the radio sensitizing molecule cisplatin, which is used in cancer treatments. A large emission of HCl+ and NH2+ is observed, but surprisingly, no cationic fragments containing platinum are detected, in contrast to ionization-dissociation induced by electronic collision. Theoretical investigations show that the ionization processes take place on platinum and on chlorine atoms. We propose new ionization potentials for cisplatin. Dissociation limits corresponding to the measured fragmentation mass spectrum have been evaluated and the theoretical results show that the non-observed cationic fragments containing platinum are mostly associated with low dissociation energies. We have also investigated the reaction path for the hydrogen transfer from the NH3 group to the Cl atom, as well as the corresponding dissociation limits from this tautomeric form. Here again the cations containing platinum correspond to lower dissociation limits. Thus, the experimental results suggest that excited states, probably formed via inner-shell ionization of the platinum atom of the molecule, correlated to higher dissociation limits are favored.

  17. The effect of dietary cation-anion difference concentration and cation source on milk production and feed efficiency in lactating dairy cows.

    PubMed

    Iwaniuk, M E; Weidman, A E; Erdman, R A

    2015-03-01

    Feed costs currently account for 55% or more of the total cost of milk production in US dairy herds, and dairy producers are looking for strategies to improve feed efficiency [FE; 3.5% fat-corrected milk (FCM) per dry matter (DM) intake]. Increasing dietary cation-anion difference [DCAD; Na+K-Cl (mEq/kg of DM)] has been shown to increase milk production, FCM, and FE. However, the optimal DCAD concentration for maximal FE has yet to be determined. The objectives of this research were to test the effects of DCAD concentration and cation source on dairy FE. Sixty Holstein dairy cows (20 cows per experiment) were used in three 4×4 Latin square design experiments with 3-wk experimental periods. In experiments 1 and 2, we tested the effect of DCAD concentration: cows were fed a basal diet containing ~250 mEq/kg of DM DCAD that was supplemented with potassium carbonate at 0, 50, 100, and 150 mEq/kg of DM or 0, 125, 250, and 375 mEq/kg of DM in experiments 1 and 2, respectively. In experiment 3, we tested the effect of cation source: sodium sesquicarbonate replaced 0, 33, 67, and 100% of the supplemental potassium carbonate (150 mEq/kg of DM DCAD). The DCAD concentration had no effect on milk production, milk protein concentration, or milk protein yield in experiments 1 and 2. Dry matter intake was not affected by DCAD concentration in experiment 1 or by cation source in experiment 3. However, DMI increased linearly with increasing DCAD in experiment 2. We detected a linear increase in milk fat concentration and yield with increasing DCAD in experiments 1 and 2 and by substituting sodium sesquicarbonate for potassium carbonate in experiment 3. Increased milk fat concentration with increasing DCAD led to increases in 3.5% FCM in experiments 1 and 2. Maximal dairy FE was achieved at a DCAD concentration of 426 mEq/kg of DM in experiments 1 and 2 and by substituting Na for K in experiment 3. The results of these experiments suggest that both DCAD concentration and the cation source used to alter DCAD concentration have effects on milk fat content and yield and dairy FE. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Chemical modification of chitosan for efficient gene therapy.

    PubMed

    Jiang, Hu-Lin; Cui, Peng-Fei; Xie, Rong-Lin; Cho, Chong-Su

    2014-01-01

    Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy. © 2014 Elsevier Inc. All rights reserved.

  19. Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.

    1987-06-01

    To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SERmore » was Ca greater than or equal to Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of /sup 45/Ca, /sup 133/Ba, /sup 85/Sr, or /sup 54/Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer.« less

  20. Glyphosate sensitivity of 5-enol-pyruvylshikimate-3-phosphate synthase from Bacillus subtilis depends upon state of activation induced by monovalent cations.

    PubMed

    Fischer, R S; Rubin, J L; Gaines, C G; Jensen, R A

    1987-07-01

    The 5-enol-pyruvylshikimate-3-phosphate (EPSP) synthase from Bacillus subtilis was activated by monovalent cations, catalytic activity being negligible in the absence of monovalent cations. The order of cation effectiveness (NH4+ greater than K+ greater than Rb+ greater than Na+ = Cs+ = Li+) indicated that the extent of activation was directly related to the unhydrated cation radius. Ammonium salts, at physiological concentrations, were dramatically more effective than other cations. Activation by ammonium was instantaneous, was not influenced by the counter ion, and gave a hyperbolic saturation curve. Hill plots did not show detectable cooperativity in the binding of ammonium. Double-reciprocal plots indicated that ammonium increases the maximal velocity and decreases the apparent Michaelis constants of EPSP synthase with respect to both phosphoenol pyruvate (PEP) and shikimate 3-phosphate (S3P). A direct relationship between sensitivity to inhibition by glyphosate and the activation state of EPSP synthase was demonstrated. Hill plots indicated a single value for glyphosate binding throughout the range of ammonium activation. Double-reciprocal plots of substrate saturation data obtained with ammonium-activated enzyme in the presence of glyphosate showed glyphosate to behave as a competitive inhibitor with respect to PEP and as a mixed-type inhibitor relative to S3P. The increased glyphosate sensitivity of ammonium-activated EPSP synthase is attributed to a lowering of the inhibitor constant of glyphosate with respect to PEP. Erroneous underestimates of sensitivities of some bacterial EPSP synthases to inhibition by glyphosate may result from failure to recognize cation requirements of EPSP synthases.

  1. Ca2+ and Mn2+ Influx Through Receptor-Mediated Activation of Nonspecific Cation Channels in Mast Cells

    NASA Astrophysics Data System (ADS)

    Fasolato, Cristina; Hoth, Markus; Matthews, Gary; Penner, Reinhold

    1993-04-01

    Whole-cell patch-clamp recordings of membrane currents and Fura-2 measurements of free intracellular calcium concentration ([Ca2+]_i) were used to study calcium influx through receptor-activated cation channels in rat peritoneal mast cells. Cation channels were activated by the secretagogue compound 48/80, whereas a possible concomitant Ca2+ entry through pathways activated by depletion of calcium stores was blocked by dialyzing cells with heparin. Heparin effectively suppressed the transient Ca2+ release induced by 48/80 and abrogated inositol 1,4,5-trisphosphate-induced calcium influx without affecting activation of 50-pS cation channels. There was a clear correlation between changes in [Ca2+]_i and the activity of 50-pS channels. The changes in [Ca2+]_i increased with elevation of extracellular Ca2+. At the same time, inward currents through 50-pS channels were diminished as more Ca2+ permeated. This effect was due to a decrease in slope conductance and a reduction in the open probability of the cation channels. In physiological solutions, 3.6% of the total current was carried by Ca2+. The cation channels were not only permeable to Ca2+ but also to Mn2+, as evidenced by the quench of Fura-2 fluorescence. Mn2+ current through 50-pS channels could not be resolved at the single-channel level. Our results suggest that 50-pS cation channels partially contribute to sustained increases of [Ca2+]_i in mast cells following receptor activation.

  2. Lanthanide-organic complexes based on polyoxometalates: Solvent effect on the luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Qun; Liu Shuxia, E-mail: liusx@nenu.edu.cn; Liang Dadong

    2012-06-15

    A series of lanthanide-organic complexes based on polyoxometalates (POMs) [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}][W{sub 6}O{sub 19}] (Ln=La(1), Ce(2), Sm(3), Eu(4), Gd(5); DNBA=3,5-dinitrobenzoate; DMF=N,N-dimethylformamide) has been synthesized. These complexes consist of [W{sub 6}O{sub 19}]{sup 2-} and dimeric [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}]{sup 2+} cations. The luminescence properties of 4 are measured in solid state and different solutions, respectively. Notably, the emission intensity increases gradually with the increase of solvent permittivity, and this solvent effect can be directly observed by electrospray mass spectrometry (ESI-MS). The analyses of ESI-MS show that the eight coordinated solvent DMF units of dimeric cation are active. They can movemore » away from dimeric cations and exchange with solvent molecules. Although the POM anions escape from 3D supramolecular network, the dimeric state structure of [Ln{sub 2}(DNBA){sub 4}]{sup 2+} remains unchanged in solution. The conservation of red luminescence is attributed to the maintenance of the aggregated state structures of dimeric cations. - Graphical abstract: 3D POMs-based lanthanide-organic complexes performed the solvent effect on the luminescence property. The origin of such solvent effect can be understood and explained on the basis of the existence of coordinated active sites by the studies of ESI-MS. Highlights: Black-Right-Pointing-Pointer The solvent effect on the luminescence property of POMs-based lanthanide-organic complexes. Black-Right-Pointing-Pointer ESI-MS analyses illuminate the correlation between the structure and luminescence property. Black-Right-Pointing-Pointer The dimeric cations have eight active sites of solvent coordination. Black-Right-Pointing-Pointer The aggregated state structure of dimer cation remains unchanged in solution. Black-Right-Pointing-Pointer Luminescence associating with ESI-MS is a new method for investigating the interaction of complex and solvent.« less

  3. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.

  4. Structure of the S. aureus PI-specific phospholipase C reveals modulation of active site access by a titratable π-cation latched loop†

    PubMed Central

    Goldstein, Rebecca; Cheng, Jiongjia; Stec, Boguslaw; Roberts, Mary F.

    2012-01-01

    Staphylococcus aureus secretes a phosphatidylinositol-specific phospholipase C (PIPLC) as a virulence factor that is unusual in exhibiting higher activity at acidic pH values than other enzymes in this class. We have determined the crystal structure of this enzyme at pH 4.6 and pH 7.5. Under slightly basic conditions, the S. aureus PI-PLC structure closely follows the conformation of other bacterial PI-PLCs. However, when crystallized under acidic conditions, a large section of mobile loop at the αβ-barrel rim in the vicinity of the active site shows ~10 Å shift. This loop displacement at acidic pH is the result of a titratable intramolecular π-cation interaction between His258 and Phe249. This was verified by a structure of the mutant protein H258Y crystallized at pH 4.6, which does not exhibit the large loop shift. The intramolecular π-cation interaction for S. aureus PI-PLC provides an explanation for the activity of the enzyme at acid pH and also suggests how phosphatidylcholine, as a competitor for Phe249, may kinetically activate this enzyme. PMID:22390775

  5. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    PubMed Central

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information on sulfation and cation effects, the present results can be applied to building models of CS polymers and as a point of comparison in studies of CS polymer backbone dynamics and thermodynamics. PMID:25906376

  6. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    PubMed

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information on sulfation and cation effects, the present results can be applied to building models of CS polymers and as a point of comparison in studies of CS polymer backbone dynamics and thermodynamics.

  7. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  8. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  9. Polyimide-Clay Composite Materials for Space Application

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.; Connell, John W. (Technical Monitor)

    2005-01-01

    The introduction of nanometer-sized clay particles into a polyimide matrix has been shown to enhance the physical properties of specific polymer systems. The clay comprises large stacked platelets of the oxides of aluminum and silicon. These sheets have long dimensions on the order of tenths of a micrometer and thicknesses of several nanometers. Homogeneous dispersion of the clay platelets in the polymer matrix is necessary to achieve those enhancements in polymer properties. Natural montmorillonite with the empirical formula Na0.33Mg0.33Al1.67(OH)2(Si4O10) contains exchangeable inorganic cations. The clay lamellae stack together with the positive sodium ions situated between the surfaces of the individual sheets to balance negatively charged oxygen atoms that are on the surfaces of the sheets. These surface charges contribute to strong electrostatic forces which hold the sheets together tightly. Exfoliation can be accomplished only with unusual measures. In preparing clay nanocomposites, we have taken two steps to try to reduce these interlamellar forces in order to promote the separation (exfoliation) of the sheets and the dispersion of the individual clay particles throughout the organic polymer matrix. In the first step, some of the surface Na(+) ions are replaced with Li(+) ions. Unlike sodium cations, the lithium cations migrate into the interior of the lamellae when the system is heated. Their departure from the surface reduces the surface charge and therefore the attractive forces between the sheets. The loss of alkali metal cations from the surface can be measured as the cation exchange capacity (CEC) of the clay. For example, we found that the CEC of montmorillonite clay was reduced by almost two thirds by treating it with lithium ions and heating to 250 C for 24 hr. Lesser heating has a smaller effect on the CEC. X-ray diffraction measurements show that the d-spacing decreased from ca. 1.34 to 0.97 nm, apparently a consequence of a collapse of the clay layers. We observed that the d-spacing can be varied by altering the heat treatment. In the second part of our effort to reduce the interlamellar forces, the remaining inorganic surface cations were replaced by the trimethylphenylammonium ion (TMPA), the biphenyltrimethylammonium ion (BTMA), or the tetraphenylphosphonium ion (TPP).

  10. FRET study of G-quadruplex forming fluorescent oligonucleotide probes at the lipid monolayer interface.

    PubMed

    Swiatkowska, Angelika; Kosman, Joanna; Juskowiak, Bernard

    2016-01-05

    Spectral properties and G-quadruplex folding ability of fluorescent oligonucleotide probes at the cationic dioctadecyldimethylammonium bromide (DODAB) monolayer interface are reported. Two oligonucleotides, a 19-mer bearing thrombin binding aptamer sequence and a 21-mer with human telomeric sequence, were end-labeled with fluorescent groups (FAM and TAMRA) to give FRET probes F19T and F21T, respectively. The probes exhibited abilities to fold into a quadruplex structure and to bind metal cations (Na(+) and K(+)). Fluorescence spectra of G-quadruplex FRET probes at the monolayer interface are reported for the first time. Investigations included film balance measurements (π-A isotherms) and fluorescence spectra recording using a fiber optic accessory interfaced with a spectrofluorimeter. The effect of the presence of DODAB monolayer, metal cations and the surface pressure of monolayer on spectral behavior of FRET probes were examined. Adsorption of probe at the cationic monolayer interface resulted in the FRET signal enhancement even in the absence of metal cations. Variation in the monolayer surface pressure exerted rather modest effect on the spectral properties of probes. The fluorescence energy transfer efficiency of monolayer adsorbed probes increased significantly in the presence of sodium or potassium ion in subphase, which indicated that the probes retained their cation binding properties when adsorbed at the monolayer interface. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Investigating the effect of hardness cations on coagulation: The aspect of neutralisation through Al(III)-dissolved organic matter (DOM) binding.

    PubMed

    Zhou, Yuxuan; Yan, Mingquan; Liu, Ruiping; Wang, Dongsheng; Qu, Jiuhui

    2017-05-15

    Hardness cations are ubiquitous and abundant in source water, while the effect of hardness on the performance of coagulation for dissolved organic matter (DOM) removal in water treatment remains unclear due to the limitation of methods that can characterise the subtle interactions between DOM, coagulant and hardness cations. This work quantified the competition between coagulant Al 3+ and hardness cations to bind onto DOM using absorbance spectroscopy acquired at different Al 3+ concentrations in the absence and presence of Ca 2+ or Mg 2+ . The results indicate that, in the presence of either Mg 2+ or Ca 2+ , an increasing depression of the binding of Al 3+ -DOM could be observed in the differential spectra of DOM with the increasing of Mg 2+ or Ca 2+ at a level of 10, 100 and 1000 μM, with the observation being more significant at higher pH from 6.5 to 8.5. The results of zeta potentials of DOM indicate that the competition of hardness cations results in the negative DOM being less efficiently neutralised by Al 3+ . This study demonstrates that the removal of DOM by coagulation would significantly deteriorate with the presence of hardness cations, which would compete with coagulant Al 3+ to neutralise the unsaturated sites in DOM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Shifting the equilibrium mixture of gramicidin double helices toward a single conformation with multivalent cationic salts.

    PubMed Central

    Doyle, D A; Wallace, B A

    1998-01-01

    The conformation of the polypeptide antibiotic gramicidin is greatly influenced by its environment. In methanol, it exists as an equilibrium mixture of four interwound double-helical conformers that differ in their handedness, chain orientation, and alignment. Upon the addition of multivalent cationic salts, there is a shift in the equilibrium to a single conformer, which was monitored in this study by circular dichroism spectroscopy. With increasing concentrations of multivalent cations, both the magnitude of the entire spectrum and the ratio of the 229-nm to the 210-nm peak were increased. The spectral change is not related to the charge on the cation, but appears to be related to the cationic radius, with the maximum change in ellipticity occurring for cations with a radius of approximately 1 A. The effect requires the presence of an anion whose radius is greater than that of a fluoride ion, but is otherwise not a function of anion type. It is postulated that multivalent cations interact with a binding site in one of the conformers, known as species 1 (a left-handed, parallel, no stagger double helix), stabilizing a modified form of this type of structure. PMID:9675165

  13. Surface Enrichment in Equimolar Mixtures of Non-Functionalized and Functionalized Imidazolium-Based Ionic Liquids.

    PubMed

    Heller, Bettina S J; Kolbeck, Claudia; Niedermaier, Inga; Dommer, Sabine; Schatz, Jürgen; Hunt, Patricia; Maier, Florian; Steinrück, Hans-Peter

    2018-04-12

    For equimolar mixtures of ionic liquids with imidazolium-based cations of very different electronic structure, we observe very pronounced surface enrichment effects by angle-resolved X-ray photoelectron spectroscopy (XPS). For a mixture with the same anion, that is, 1-methyl-3-octylimidazolium hexafluorophosphate+1,3-di(methoxy)imidazolium hexafluorophosphate ([C 8 C 1 Im][PF 6 ]+[(MeO) 2 Im][PF 6 ]), we find a strong enrichment of the octyl chain-containing [C 8 C 1 Im] + cation and a corresponding depletion of the [(MeO) 2 Im] + cation in the topmost layer. For a mixture with different cations and anions, that is, [C 8 C 1 Im][Tf 2 N]+[(MeO) 2 Im][PF 6 ], we find both surface enrichment of the [C 8 C 1 Im] + cation and the [Tf 2 N] - (bis[(trifluoromethyl)sulfonyl]imide) anion, while [(MeO) 2 Im] + and [PF 6 ] - are depleted from the surface. We propose that the observed behavior in these mixtures is due to a lowering of the surface tension by the enriched components. Interestingly, we observe pronounced differences in the chemical shifts of the imidazolium ring signals of the [(MeO) 2 Im] + cations as compared to the non-functionalized cations. Calculations of the electronic structure and the intramolecular partial charge distribution of the cations contribute to interpreting these shifts for the two different cations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy.

    PubMed

    Choi, Jeong Uk; Lee, Seong Wook; Pangeni, Rudra; Byun, Youngro; Yoon, In-Soo; Park, Jin Woo

    2017-07-15

    To enhance the therapeutic effects of exogenous administration of growth factors (GFs) in the treatment of chronic wounds, we constructed GF combinations of highly skin-permeable epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and platelet-derived growth factor-A (PDGF-A). We genetically conjugated a low-molecular-weight protamine (LMWP) to the N-termini of these GFs to form LMWP-EGF, LMWP-IGF-I, and LMWP-PDGF-A. Subsequently, these molecules were complexed with hyaluronic acid (HA). Combinations of native or LMWP-fused GFs significantly promoted fibroblast proliferation and the synthesis of procollagen, with a magnification of these results observed after the GFs were complexed with HA. The optimal proportions of LMWP-EGF, LMWP-IGF-I, LMWP-PDGF-A, and HA were 1, 1, 0.02, and 200, respectively. After confirming the presence of a synergistic effect, we incorporated the LMWP-fused GFs-HA complex into cationic elastic liposomes (ELs) of 107±0.757nm in diameter and a zeta potential of 56.5±1.13mV. The LMWP-fused GFs had significantly improved skin permeation compared with native GFs. The in vitro wound recovery rate of the LMWP-fused GFs-HA complex was 23% higher than that of cationic ELs composed of LMWP-fused GFs alone. Moreover, the cationic ELs containing the LMWP-fused GFs-HA complex significantly accelerated the wound closure rate in a diabetic mouse model and the wound size was maximally decreased by 65% and 58% compared to cationic ELs loaded with vehicle or native GFs-HA complex, respectively. Thus, topical treatment with cationic ELs loaded with the LMWP-fused GFs-HA complex synergistically enhanced the healing of chronic wounds, exerting both rapid and prolonged effects. We believe that our study makes a significant contribution to the literature, because it demonstrated the potential application of cationic elastic liposomes as topical delivery systems for growth factors (GFs) that have certain limitations in their therapeutic effects (e.g., low percutaneous absorption of GFs at the lesion site and the requirement for various GFs at different healing stages). Topical treatment with cationic elastic liposomes loaded with highly skin-permeable low-molecular-weight protamine (LMWP)-fused GFs-hyaluronic acid (HA) complex synergistically enhanced the healing of diabetic wounds, exerting both rapid and prolonged effects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Substance P Activates Ca2+-Permeable Nonselective Cation Channels through a Phosphatidylcholine-Specific Phospholipase C Signaling Pathway in nNOS-Expressing GABAergic Neurons in Visual Cortex.

    PubMed

    Endo, Toshiaki; Yanagawa, Yuchio; Komatsu, Yukio

    2016-02-01

    To understand the functions of the neocortex, it is essential to characterize the properties of neurons constituting cortical circuits. Here, we focused on a distinct group of GABAergic neurons that are defined by a specific colocalization of intense labeling for both neuronal nitric oxide synthase (nNOS) and substance P (SP) receptor [neurokinin 1 (NK1) receptors]. We investigated the mechanisms of the SP actions on these neurons in visual cortical slices obtained from young glutamate decarboxylase 67-green fluorescent protein knock-in mice. Bath application of SP induced a nonselective cation current leading to depolarization that was inhibited by the NK1 antagonists in nNOS-immunopositive neurons. Ruthenium red and La(3+), transient receptor potential (TRP) channel blockers, suppressed the SP-induced current. The SP-induced current was mediated by G proteins and suppressed by D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), but not by inhibitors of phosphatidylinositol-specific PLC, adenylate cyclase or Src tyrosine kinases. Ca(2+) imaging experiments under voltage clamp showed that SP induced a rise in intracellular Ca(2+) that was abolished by removal of extracellular Ca(2+) but not by depletion of intracellular Ca(2+) stores. These results suggest that SP regulates nNOS neurons by activating TRP-like Ca(2+)-permeable nonselective cation channels through a PC-PLC-dependent signaling pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism

    PubMed Central

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna; Hardy, Micael; Ouari, Olivier; Joseph, Joy; Dwinell, Michael B.; Kalyanaraman, Balaraman

    2015-01-01

    One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide. PMID:26004344

  17. Chloride channel blockers activate an endogenous cationic current in oocytes of Bufo arenarum.

    PubMed

    Cavarra, M S; del Mónaco, S M; Kotsias, B A

    2004-07-01

    A two-electrode, voltage-clamp technique was used to measure the effect of the Cl(-) channel blockers, 9-anthracene carboxylic acid and niflumic acid, upon the ionic currents of oocytes of the South American toad Bufo arenarum. The main results were: (1) both blockers produced a reversible increase of the outward currents on a dose-dependent manner; (2) the activated outward current was voltage dependent; (3) the 9-anthracene carboxylic acid-sensitive current was blocked with barium; and (4) the effect of 9-anthracene carboxylic acid was more pronounced in a zero-K(+) solution than in standard (2 mmol l(-1)) or high (20 mmol l(-1)) K(+) solutions, indicating that a K(+) conductance is activated. The effect of the Cl(-) channel blockers could be due to a direct interaction with endogenous cationic channels. Another possible explanation is that Cl(-) that enter the cell during depolarizing steps in control solution inhibit this cationic conductance; thus, the blockade of Cl(-) channels by 9-anthracene carboxylic acid and niflumic acid would remove this inhibition, allowing the cationic current to flow freely.

  18. The effect of suspending solution supplemented with marine cations on the oxidation of Biolog GN MicroPlate substrates by Vibrionaceae bacteria.

    PubMed

    Noble, L D; Gow, J A

    1998-03-01

    Bacteria belonging to the family Vibrionaceae were suspended using saline and a solution prepared from a marine-cations supplement. The effect of this on the profile of oxidized substrates obtained when using Biolog GN MicroPlates was investigated. Thirty-nine species belonging to the genera Aeromonas, Listonella, Photobacterium, and Vibrio were studied. Of the strains studied, species of Listonella, Photobacterium, and Vibrio could be expected to benefit from a marine-cations supplement that contained Na+, K+, and Mg2+. Bacteria that are not of marine origin are usually suspended in normal saline. Of the 39 species examined, 9 were not included in the Biolog data base and were not identified. Of the 30 remaining species, 50% were identified correctly using either of the suspending solutions. A further 20% were correctly identified only when suspended in saline. Three species, or 10%, were correctly identified only after suspension in the marine-cations supplemented solution. The remaining 20% of species were not correctly identified by either method. Generally, more substrates were oxidized when the bacteria had been suspended in the more complex salts solution. Usually, when identifications were incorrect, the use of the marine-cations supplemented suspending solution had resulted in many more substrates being oxidized. Based on these results, it would be preferable to use saline to suspend the cells when using Biolog for identification of species of Vibrionaceae. A salts solution containing a marine-cations supplement would be preferable for environmental studies where the objective is to determine profiles of substrates that the bacteria have the potential to oxidize. If identifications are done using marine-cations supplemented suspending solution, it would be advisable to include reference cultures to determine the effect of the supplement. Of the Vibrio and Listonella species associated with human clinical specimens, 8 out of the 11 studied were identified correctly when either of the suspending solutions was used.

  19. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations.

    PubMed

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng

    2016-05-25

    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  20. Effect of cationic contaminants on polymer electrolyte fuel cell performance

    NASA Astrophysics Data System (ADS)

    Qi, Jing; Wang, Xiaofeng; Ozdemir, M. Ozan; Uddin, Md. Aman; Bonville, Leonard; Pasaogullari, Ugur; Molter, Trent

    2015-07-01

    The effect of cationic contaminants on polymer electrolyte fuel cell (PEFC) performance is investigated via in-situ injection of dilute cationic salt solutions. Four foreign cations (K+, Ba2+, Ca2+, Al3+) are chosen as contaminants in this study due to their prevalence and chemical structure (e.g. valence), however contaminants that have already received extensive coverage in the literature like sodium and iron are excluded. It is found that the cells with Ba(ClO4)2 and Ca(ClO4)2 injection exhibit little cell performance change during the current hold test, and the cells with Al(ClO4)3 and KClO4 injection show larger cell performance changes, i.e. decreasing cell voltage and increasing cell resistance. These cells with in-situ contaminant injection have a tendency to recover a portion of the lost performance after the recovery test when switched back to supersaturated air. The degradation in cell performance with the presence of cationic contaminants is mainly due, in addition to the membrane resistance increase associated with replacing protons on the sulfonate groups, to the increase in mass transport resistance and decrease in electrochemical surface area.

  1. On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters.

    PubMed

    Miró, Pere; Pierrefixe, Simon; Gicquel, Mickaël; Gil, Adrià; Bo, Carles

    2010-12-22

    Uranyl-peroxide nanoclusters display different topologies based on square, pentagonal and hexagonal building blocks. Computed complexation energies of different cations (Li(+), Na(+), K(+), Rb(+), and Cs(+)) with [UO(2)(O(2))(H(2)O)](n) (n = 4, 5, and 6) macrocycles suggest a strong cation templating effect. The inherent bent structure of a U-O(2)-U model dimer is demonstrated and justified through the analysis of its electronic structure, as well as of the inherent curvature of the four-, five-, and six-uranyl macrocyles. The curvature is enhaced by cation coordination, which is suggested to be the driving force for the self-assembly of the nanocapsules.

  2. Effect of Extra-Framework Cations of LTL Nanozeolites to Inhibit Oil Oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Kok-Hou; Cham, Hooi-Ying; Awala, Hussein; Ling, Tau Chuan; Mukti, Rino R.; Wong, Ka-Lun; Mintova, Svetlana; Ng, Eng-Poh

    2015-06-01

    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li+, Na+, K+, Ca2+) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.

  3. Propranolol transport across the inner blood-retinal barrier: potential involvement of a novel organic cation transporter.

    PubMed

    Kubo, Yoshiyuki; Shimizu, Yoshimi; Kusagawa, Yusuke; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2013-09-01

    The influx transport of propranolol across the inner blood-retinal barrier (BRB) was investigated. In the in vivo analysis of carotid artery single-injection method, [(3) H]propranolol uptake by the retina was greater than that of an internal reference compound, and was reduced by several organic cations. In the in vitro uptake study, TR-iBRB2 cells, an in vitro model of the inner BRB, showed a time-, concentration-, pH- and temperature-dependent [(3) H]propranolol uptake, suggesting the involvement of a carrier-mediated transport process in the influx of propranolol across the inner BRB. In the inhibition study, various organic cations, including drugs and candidates for the treatment of the retinal diseases, inhibited the [(3) H]propranolol uptake by TR-iBRB2 cells with no significant effects by the substrates and inhibitors of well-characterized organic cation transporters, suggesting that the influx transport of propranolol is performed by a novel transporter at the inner BRB. An analysis of the relationship between the inhibitory effect and the lipophilicity of inhibitors suggests a lipophilicity-dependent inhibitory effect of amines on the [(3) H]propranolol uptake by TR-iBRB2 cells. These results showed that influx transport of propranolol across the inner BRB is performed by a carrier-mediated transport process, suggesting the involvement of a novel organic cation transporter. Copyright © 2013 Wiley Periodicals, Inc.

  4. Flocculation and antimicrobial properties of a cationized starch.

    PubMed

    Liu, Zhouzhou; Huang, Mu; Li, Aimin; Yang, Hu

    2017-08-01

    In this study, a series of cationized starch-based flocculants (starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, St-CTA) containing various quaternary ammonium salt groups on the starch backbone were prepared using a simple etherification reaction. All of the prepared starch-based flocculants show effective performance for the flocculation of kaolin suspension, two bacterial (Escherichia coli and Staphylococcus aureus) suspensions, and two contaminant mixtures (kaolin and each bacterium) under most pH conditions. St-CTA with a high substitution degree of CTA demonstrates improved contaminant removal efficiency because of the strong cationic nature of the grafted quaternary ammonium salt groups and the charge naturalization flocculation effect. The antibacterial effects of St-CTA were also evaluated, considering that many quaternary ammonium salt compounds elicit bactericidal effects. Three-dimensional excitation-emission matrix spectra and direct cell morphological observation under scanning electron microscopy reveal that the starch-based flocculants exhibit better antibacterial effects on the Gram-negative bacterium E. coli than on the Gram-positive bacterium S. aureus. The thicker cell wall due to the presence of abundant peptidoglycan and teichoic acids of S. aureus than E. coli explains the uneasy breakage of S. aureus cell wall after being attacked by the cationized starch-based flocculants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Aggregation of trypsin and trypsin inhibitor by Al cation.

    PubMed

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-04-01

    Al cation may trigger protein structural changes such as aggregation and fibrillation, causing neurodegenerative diseases. We report the effect of Al cation on the solution structures of trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis, UV-Visible, Fourier transform infrared (FTIR) spectroscopic methods and atomic force microscopy (AFM). Thermodynamic parameters showed Al-protein bindings occur via H-bonding and van der Waals contacts for trypsin and trypsin inhibitor. AFM showed that Al cations are able to force trypsin into larger or more robust aggregates than trypsin inhibitor, with trypsin 5±1 SE (n=52) proteins per aggregate and for trypsin inhibitor 8.3±0.7 SE (n=118). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced more alterations of trypsin inhibitor conformation than trypsin. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Increase of the pharmacological and pharmacokinetic efficacy of negatively charged polypeptide recombinant hirudin in rats via parenteral route by association with cationic liposomes.

    PubMed

    Meng, Meng; Liu, Yu; Wang, Yi-Bo; Wang, Jian-Cheng; Zhang, Hua; Wang, Xue-Qing; Zhang, Xuan; Lu, Wan-Liang; Zhang, Qiang

    2008-06-04

    Two biodegradable cationic lipids, stearylamine and DC-Chol, were chosen to investigate the effect of cationic lipids on the in vitro and in vivo characteristics of hydrophilic proteins or peptides of low isoelectric point. Thrombin inhibitor recombinant hirudin variant-2 (rHV2) was selected as the model drug. The cationic lipids were found to achieve higher entrapment efficiency of rHV2 in liposomes than zwitterionic lipids. The positively charged liposomes became less positive and relatively stable in serum after loading rHV2. The cationic liposomes induced sustained release of rHV2 in the presence of plasma, significantly prolonged the antithrombotic efficacy and plasma level of rHV2 after intravenous injection in rats in comparison with neutral lipid liposomes, especially for stearylamine group. Both clotting times correlated well with plasma rHV2 levels. No serious adverse events were observed and physical state of rats was satisfactory for all the formulations. Electrostatic interaction between negative charge of rHV2 and cationic liposomes was confirmed and it might affect all the characteristics of rHV2 loaded cationic vehicles. The findings suggest that cationic liposomes may be a potential sustained-release delivery system for parenteral administration of hydrophilic proteins or peptides with low isoelectric point to prolong efficacy and improve bioavailability.

  7. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.

    PubMed

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K

    2017-10-19

    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  8. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Ill. Chemical data were evaluated to determine the principal, naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on-site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rainwater or snowmelt changed to an ionic composition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

  9. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    USGS Publications Warehouse

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

  10. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B

    2015-08-01

    Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.

  11. A Theoretical Investigation of the Infrared Spectroscopic Properties of Closed-Shell Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.

  12. Conversion of multiple analyte cation types to a single analyte anion type via ion/ion charge inversion.

    PubMed

    Hassell, Kerry M; LeBlanc, Yves; McLuckey, Scott A

    2009-11-01

    Charge inversion ion/ion reactions can convert several cation types associated with a single analyte molecule to a single anion type for subsequent mass analysis. Specifically, analyte ions present with one of a variety of cationizing agents, such as an excess proton, excess sodium ion, or excess potassium ion, can all be converted to the deprotonated molecule, provided that a stable anion can be generated for the analyte. Multiply deprotonated species that are capable of exchanging a proton for a metal ion serve as the reagent anions for the reaction. This process is demonstrated here for warfarin and for a glutathione conjugate. Examples for several other glutathione conjugates are provided as supplementary material to demonstrate the generality of the reaction. In the case of glutathione conjugates, multiple metal ions can be associated with the singly-charged analyte due to the presence of two carboxylate groups. The charge inversion reaction involves the removal of the excess cationizing agent, as well as any metal ions associated with anionic groups to yield a singly deprotonated analyte molecule. The ability to convert multiple cation types to a single anion type is analytically desirable in cases in which the analyte signal is distributed among several cation types, as is common in the electrospray ionization of solutions with relatively high salt contents. For analyte species that undergo efficient charge inversion, such as glutathione conjugates, there is the additional potential advantage for significantly improved signal-to-noise ratios when species that give rise to 'chemical noise' in the positive ion spectrum do not undergo efficient charge inversion.

  13. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies.

    PubMed

    Fangueiro, Joana F; Calpena, Ana C; Clares, Beatriz; Andreani, Tatiana; Egea, Maria A; Veiga, Francisco J; Garcia, Maria L; Silva, Amélia M; Souto, Eliana B

    2016-04-11

    Cationic lipid nanoparticles (LNs) have been tested for sustained release and site-specific targeting of epigallocatechin gallate (EGCG), a potential polyphenol with improved pharmacological profile for the treatment of ocular pathologies, such as age-related macular edema, diabetic retinopathy, and inflammatory disorders. Cationic EGCG-LNs were produced by double-emulsion technique; the in vitro release study was performed in a dialysis bag, followed by the drug assay using a previously validated RP-HPLC method. In vitro HET-CAM study was carried out using chicken embryos to determine the potential risk of irritation of the developed formulations. Ex vivo permeation profile was assessed using rabbit cornea and sclera isolated and mounted in Franz diffusion cells. The results show that the use of cationic LNs provides a prolonged EGCG release, following a Boltzmann sigmoidal profile. In addition, EGCG was successfully quantified in both tested ocular tissues, demonstrating the ability of these formulations to reach both anterior and posterior segment of the eye. The pharmacokinetic study of the corneal permeation showed a first order kinetics for both cationic formulations, while EGCG-cetyltrimethylammonium bromide (CTAB) LNs followed a Boltzmann sigmoidal profile and EGCG-dimethyldioctadecylammonium bromide (DDAB) LNs a first order profile. Our studies also proved the safety and non-irritant nature of the developed LNs. Thus, loading EGCG in cationic LNs is recognised as a promising strategy for the treatment of ocular diseases related to anti-oxidant and anti-inflammatory pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  15. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  16. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    PubMed Central

    2014-01-01

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959

  17. Competition between Anion Binding and Dimerization Modulates Staphylococcus aureus Phosphatidylinositol-specific Phospholipase C Enzymatic Activity*

    PubMed Central

    Cheng, Jiongjia; Goldstein, Rebecca; Stec, Boguslaw; Gershenson, Anne; Roberts, Mary F.

    2012-01-01

    Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) is a secreted virulence factor for this pathogenic bacterium. A novel crystal structure shows that this PI-PLC can form a dimer via helix B, a structural feature present in all secreted, bacterial PI-PLCs that is important for membrane binding. Despite the small size of this interface, it is critical for optimal enzyme activity. Kinetic evidence, increased enzyme specific activity with increasing enzyme concentration, supports a mechanism where the PI-PLC dimerization is enhanced in membranes containing phosphatidylcholine (PC). Mutagenesis of key residues confirm that the zwitterionic phospholipid acts not by specific binding to the protein, but rather by reducing anionic lipid interactions with a cationic pocket on the surface of the S. aureus enzyme that stabilizes monomeric protein. Despite its structural and sequence similarity to PI-PLCs from other Gram-positive pathogenic bacteria, S. aureus PI-PLC appears to have a unique mechanism where enzyme activity is modulated by competition between binding of soluble anions or anionic lipids to the cationic sensor and transient dimerization on the membrane. PMID:23038258

  18. Rotational diffusion of nondipolar and charged solutes in alkyl-substituted imidazolium triflimides: effect of C2 methylation on solute rotation.

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2014-08-07

    Rotational diffusion of a nondipolar solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and a charged solute rhodamine 110 (R110) has been investigated in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([BMMIM][Tf2N]) to understand the influence of the C2 methylation on solute rotation. The measured reorientation times of the nondipolar solute DMDPP are similar in both the ionic liquids and follow Stokes-Einstein-Debye hydrodynamic theory with slip hydrodynamics. In contrast, rotational diffusion of the charged solute R110 in [BMIM][Tf2N] obeys stick hydrodynamics due to specific interactions with the anion of the ionic liquid. Nevertheless, the intriguing result of this study is that the reorientation times of R110 in [BMMIM][Tf2N] deviate significantly from the predictions of stick hydrodynamics, especially at ambient temperatures. The solute-solvent boundary condition parameter Cobs, which is defined as the ratio of the measured reorientation time to the one calculated using the SED theory with stick boundary condition, for R110 is lower by a factor of 2 in [BMMIM][Tf2N] compared to [BMIM][Tf2N] at 298 K. Upon increasing the temperature, Cobs gradually increases and eventually matches with that obtained in [BMIM][Tf2N] at 348 K. It has been well established that methylation of the C2 position in [BMMIM][Tf2N] switches off the main hydrogen-bonding interaction between the anion and the cation, but increases the Coulombic interactions. As a consequence of the enhanced interionic interactions between the cation and anion of the ionic liquid, specific interactions between R110 and [Tf2N] diminish leading to the faster rotation of the solute. However, such an influence is not apparent in case of DMDPP as it does not experience specific interactions with either the cation or the anion of these ionic liquids.

  19. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.

    PubMed

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao

    2016-05-01

    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fascinating interaction of the ammonium cation with [2.2.2]paracyclophane: experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Makrlík, Emanuel; Sýkora, David; Böhm, Stanislav; Kvíčalová, Magdalena; Vaňura, Petr

    2018-05-01

    By means of electrospray ionisation mass spectrometry, it was evidenced experimentally that the ammonium cation (NH4+) reacts with the electroneutral [2.2.2]paracyclophane ligand (C24H24) to form the cationic complex [NH4(C24H24)]+. Moreover, applying quantum chemical calculations, the most probable conformation of the proven [NH4(C24H24)]+ complex was solved. In the complex [NH4(C24H24)]+ having a symmetry very close to C3, the 'central' cation NH4+ is coordinated by three strong bifurcated intramolecular hydrogen bonds to the corresponding six carbon atoms from the three benzene rings of [2.2.2]paracyclophane via cation-π interaction. Finally, the interaction energy, E(int), of the considered complex [NH4(C24H24)]+ was evaluated as -625.8 kJ/mol, confirming the formation of this fascinating complex species as well. It means that the [2.2.2]paracyclophane ligand can be considered as an effective receptor for the ammonium cation in the gas phase.

  1. Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites

    DOE PAGES

    Uberuaga, Blas Pedro; Pilania, Ghanshyam

    2015-07-08

    Perovskite structured oxides (ABO 3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O 6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO 6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two endmore » member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti 4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.« less

  2. Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery.

    PubMed

    Bose, Rajendran J C; Arai, Yoshie; Ahn, Jong Chan; Park, Hansoo; Lee, Soo-Hong

    2015-01-01

    Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,L-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid-polymer hybrid nanospheres (LPHNSs) were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52-60 mV), and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine-PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased.

  3. Dissociation of protonated N-(3-phenyl-2H-chromen-2-ylidene)-benzenesulfonamide in the gas phase: cyclization via sulfonyl cation transfer.

    PubMed

    Wang, Shanshan; Dong, Cheng; Yu, Lian; Guo, Cheng; Jiang, Kezhi

    2016-01-15

    In the tandem mass spectrometry of protonated N-(3-phenyl-2H-chromen-2-ylidene)benzenesulfonamides, the precursor ions have been observed to undergo gas-phase dissociation via two competing channels: (a) the predominant channel involves migration of the sulfonyl cation to the phenyl C atom and the subsequent loss of benzenesulfinic acid along with cyclization reaction, and (b) the minor one involves dissociation of the precursor ion to give an ion/neutral complex of [sulfonyl cation/imine], followed by decomposition to afford sulfonyl cation or the INC-mediated electron transfer to give an imine radical cation. The proposed reaction channels have been supported by theoretical calculations and D-labeling experiments. The gas-phase cyclization reaction originating from the N- to C-sulfonyl cation transfer has been first reported to the best of our knowledge. For the substituted sulfonamides, the presence of electron-donating groups (R(2) -) at the C-ring effectively facilitates the reaction channel of cyclization reaction, whereas that of electron-withdrawing groups inhibits this pathway. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  5. Solid Solutions of Rare Earth Cations in Mesoporous Anatase Beads and Their Performances in Dye-Sensitized Solar Cells

    PubMed Central

    Cavallo, Carmen; Salleo, Alberto; Gozzi, Daniele; Di Pascasio, Francesco; Quaranta, Simone; Panetta, Riccardo; Latini, Alessandro

    2015-01-01

    Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1–0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J–V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. PMID:26577287

  6. [C6 H14 N]PbBr3 : An ABX3 -Type Semiconducting Perovskite Hybrid with Above-Room-Temperature Phase Transition.

    PubMed

    Zhang, Jing; Liu, Xitao; Li, Xianfeng; Han, Shiguo; Tao, Kewen; Wang, Yuyin; Ji, Chengmin; Sun, Zhihua; Luo, Junhua

    2018-04-16

    Organic-inorganic hybrid perovskites, with the formula ABX 3 (A=organic cation, B=metal cation, and X=halide; for example, CH 3 NH 3 PbI 3 ), have diverse and intriguing physical properties, such as semiconduction, phase transitions, and optical properties. Herein, a new ABX 3 -type semiconducting perovskite-like hybrid, (hexamethyleneimine)PbBr 3 (1), consisting of one-dimensional inorganic frameworks and cyclic organic cations, is reported. Notably, the inorganic moiety of 1 adopts a perovskite-like architecture and forms infinite columns composed of face-sharing PbBr 6 octahedra. Strikingly, the organic cation exhibits a highly flexible molecular configuration, which triggers an above-room-temperature phase transition, at T c =338.8 K; this is confirmed by differential scanning calorimetry (DSC), specific heat capacity (C p ), and dielectric measurements. Further structural analysis reveals that the phase transition originates from the molecular configurational distortion of the organic cations coupled with small-angle reorientation of the PbBr 6 octahedra inside the inorganic components. Moreover, temperature-dependent conductivity and UV/Vis absorption measurements reveal that 1 also displays semiconducting behavior below T c . It is believed that this work will pave a potential way to design multifeatured perovskite hybrids by utilizing cyclic organic amines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Properties of a cationic peroxidase from Citrus jambhiri cv. Adalia.

    PubMed

    Mohamed, Saleh A; El-Badry, Mohamed O; Drees, Ehab A; Fahmy, Afaf S

    2008-08-01

    The major pool of peroxidase activity is present in the peel of some Egyptian citrus species and cultivars compared to the juice and pulp. Citrus jambhiri cv. Adalia had the highest peroxidase activity among the examined species. Four anionic and one cationic peroxidase isoenzymes from C. jambhiri were detected using the purification procedure including ammonium sulfate precipitation, chromatography on diethylaminoethanol-cellulose, carboxymethyl-cellulose, and Sephacryl S-200 columns. Cationic peroxidase POII is proved to be pure, and its molecular weight was 56 kDa. A study of substrate specificity identified the physiological role of POII, which catalyzed the oxidation of some phenolic substrates in the order of o-phenylenediamine > guaiacol > o-dianisidine > pyrogallol > catechol. The kinetic parameters (K (m), V (max), and V (max)/K (m)) of POII for hydrolysis toward H2O2 and electron donor substrates were studied. The enzyme had pH and temperature optima at 5.5 and 40 degrees C, respectively. POII was stable at 10-40 degrees C and unstable above 50 degrees C. The thermal inactivation profile of POII is biphasic and characterized by a rapid decline in activity on exposure to heat. The most of POII activity (70-80%) was lost at 50, 60, and 70 degrees C after 15, 10, and 5 min of incubation, respectively. Most of the examined metal ions had a very slight effect on POII except of Li+, Zn2+, and Hg2+, which had partial inhibitory effects. In the present study, the instability of peroxidase above 50 degrees C makes the high temperature short time treatment very efficient for the inactivation of peel peroxidase contaminated in orange juice to avoid the formation of off-flavors.

  8. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses A 2O–2MO–4SiO 2 with molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-05-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observedmore » that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.« less

  9. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    PubMed Central

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  10. CATION TRANSPORT AND PARTITIONING DURING A FIELD TEST OF ELECTROOSMOSIS

    EPA Science Inventory

    Field experiments were conducted to evaluate the effects of soil properties, such as the cation exchange capacity and mineral content, on pH, soluble ion concentrations, and electrical conductivity during electroosmosis in a silty clay soil. The soil is composed mainly of quartz ...

  11. Computational study of the RGD-peptide interactions with perovskite-type BFO-(1 1 1) membranes under aqueous conditions

    NASA Astrophysics Data System (ADS)

    Li, Hai-long; Bian, Liang; Hou, Wen-ping; Dong, Fa-Qin; Song, Mian-Xin; Zhang, Xiao-yan; Wang, Li-sheng

    2016-07-01

    We elucidated a number of facets regarding arginine-glycine-aspartate (RGD)-bismuth ferrite (BFO)-(1 1 1) membrane interactions and reactivity that have previously remained unexplored on a molecular level. Results demonstrate the intra-molecular interaction facilitates a ;horseshoe; structure of RGD adsorbed onto the BFO-(1 1 1) membrane, through the electrostatic (Asp-cation-Fe) and water-bridge (Osbnd H2O and H2Osbnd NH2) interactions. The effect of structural and electron-transfer interactions is attributed to the cation-valences, indicating that the divalent cations are electron-acceptors and the monovalent cations as electron-donors. Notably, the strongly bound Ca2+ ion exerts a ;gluing; effect on the Asp-side-chain, indicating a tightly packed RGD-BFO configuration. Thus, modulating the biological response of BFO-(1 1 1) membrane will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic perovskite-type micro-devices.

  12. 2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size

    NASA Astrophysics Data System (ADS)

    Köhler, Mateus Henrique; Bordin, José Rafael; Barbosa, Marcia C.

    2018-06-01

    Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+, Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.

  13. 2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size.

    PubMed

    Köhler, Mateus Henrique; Bordin, José Rafael; Barbosa, Marcia C

    2018-06-14

    Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS 2 ) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na + , Zn 2+ , and Fe 3+ ) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS 2 shows 100% of Fe 3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.

  14. Evaluation of capillary electrophoresis for in-flight ionic contaminant monitoring of SSF potable water

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Schultz, John R.; Sauer, Richard L.

    1992-01-01

    Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations. Preliminary results indicate that CE has an impressive selectivity and trace sensitivity, although considerable methods development remains to be performed.

  15. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    PubMed

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported. © 2014 Wiley Periodicals, Inc.

  16. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    PubMed

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Cation specific binding with protein surface charges

    PubMed Central

    Hess, Berk; van der Vegt, Nico F. A.

    2009-01-01

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of “matching water affinities.” This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K+ < Na+ < Li+ of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  18. How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers.

    PubMed

    Skulachev, Vladimir P

    2005-01-01

    Membrane-penetrating triphenyl alkyl phosphonium cations have been suggested for many years in our group as having the ability to measure mitochondrial potential were recently used by Murphy as vehicles to specifically target CoQ to mitochondria. As was shown in our group, the phosphonium derivative of CoQ (MitoQ) easily penetrates a planar bilayer phospholipid membrane as a cation, generating 60 mV electric potential (Deltapsi) per a 10-fold MitoQ gradient. This means that MitoQ should be unequally distributed across the inner mitochondrial membrane, the intramitochondrial [MitoQ] = extramitochondrial [MitoQ] x 10(3) at 180 mV Deltapsi. In line with such a calculation, Murphy and his colleagues reported that antioxidant efficiency of MitoQ added to mitochondria or cells appears to be very much higher than of CoQ. It was found that H2O2-induced apoptosis (Murphy) and the H2O2-mediated bystander killing of the cultivated cells (our group) are completely arrested by pretreatement of the cells with 10(-10) - 10(-8) M MitoQ. These effects indicate that MitoQ and similar compounds may be promising in treatment of heart attack, stroke and other diseases accompanied by massive apoptosis in the injured tissue. The very fact that: (i) MitoQ is not only accumulated by mitochondria but also can be regenerated in its reduced form by mitochondrial respiratory chain, (ii) it is the mitochondrial interior that produces a large portion of reactive oxygen species (ROS) in our body, and (iii) the most sensitive ROS targets are localized in the mitochondrial matrix suggest the MitoQ-like compounds are promising tools of molecular therapy of aerobic cells. In line with this suggestion, we found that addition of MitoQ strongly improves structural and biochemical parameters of cultivated cells. As to cationic tetrapeptides, recently advertised as mitochondrially-targeted Deltapsi-independent antioxidants, their effect is most probably mediated by an opioid activity inherent in some of these substances.

  19. Conformational effects on cationization of poly(ethylene glycol) by alkali metal ions in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Matsuyama, Shigetomo; Saito, Takeshi; Kinugasa, Shinichi; Nagahata, Ritsuko; Kawabata, Shin-Ichirou

    2005-12-01

    Conformational effects of polymer chains on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) were studied by using an equimolar mixture of uniform poly(ethylene glycol)s (PEGs) and by molecular dynamics simulations. Uniform PEGs with degrees of polymerization n = 8-39 were separated from commercial PEG samples by preparative supercritical fluid chromatography. MALDI-TOFMS spectra of an equimolar mixture of the uniform PEGs in aqueous ethanol were measured by adding a mixture of 2,5-dihydroxybenzoic acid (as a matrix reagent) and five alkali metal chlorides (LiCl, NaCl, KCl, RbCl, and CsCl). After optimization of the matrix concentration and laser power, five types of adduct cationized by Li+, Na+, K+, Rb+, and Cs+ could be identified simultaneously in the same spectrum. In the lower molecular-mass region around 103, the spectral intensity increase rapidly with increasing molecular mass of PEG; this rapid increase in the spectral intensity started at a lower molecular mass for smaller adduct cations. Molecular dynamics simulations were used to calculated the affinity of PEG for the adduct cations. These experimental and simulated results showed that the observed spectral intensities in MALDI-TOFMS were markedly affected by the species of adduct cations and the degree of polymerization of the PEG, and that they were dependent on the stability of the PEG-cation complex.

  20. Identification of an algal carbon fixation-enhancing factor extracted from Paramecium bursaria.

    PubMed

    Kato, Yutaka; Imamura, Nobutaka

    2011-01-01

    The green ciliate Paramecium bursaria contains several hundred symbiotic Chlorella species. We previously reported that symbiotic algal carbon fixation is enhanced by P. bursaria extracts and that the enhancing factor is a heat-stable, low-molecular-weight, water-soluble compound. To identify the factor, further experiments were carried out. The enhancing activity remained even when organic compounds in the extract were completely combusted at 700 degrees C, suggesting that the factor is an inorganic substance. Measurement of the major cations, K+, Ca2+, and Mg2+, by an electrode and titration of the extract resulted in concentrations of 0.90 mM, 0.55 mM, and 0.21 mM, respectively. To evaluate the effect of these cations, a mixture of the cations at the measured concentrations was prepared, and symbiotic algal carbon fixation was measured in the solution. The results demonstrated that the fixation was enhanced to the same extent as with the P. bursaria extract, and thus this mixture of K+, Ca2+, and Mg2+ was concluded to be the carbon fixation-enhancing factor. There was no effect of the cation mixture on free-living C. vulgaris. Comparison of the cation concentrations of nonsymbiotic and symbiotic Paramecium extracts revealed that the concentrations of K+ and Mg2+ in nonsymbiotic Paramecium extracts were too low to enhance symbiotic algal carbon fixation, suggesting that symbiotic P. bursaria provide suitable cation conditions for photosynthesis to its symbiotic Chlorella.

  1. Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides

    DOE PAGES

    Abdellahi, Aziz; Urban, Alexander; Dacek, Stephen; ...

    2016-07-13

    Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide cathodes (LiMO 2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, while in operando cation disorder has been observed in a large class of ordered compounds. The voltage slope (dV/dx u )is a critical quantity for the design of cation-disordered rocksalts, as it controls the Li capacity accessible at voltages below the stability limit of the electrolyte (~4.5-4.7 V). In this study, we develop a lattice model based on first principles to understand andmore » quantify the voltage slope of cation-disordered LiMO 2. We show that cation disorder increases the voltage slope of Li transition metal oxides by creating a statistical distribution of transition metal environments around Li sites, as well as by allowing Li occupation of highvoltage tetrahedral sites. We further demonstrate that the voltage slope increase upon disorder is generally smaller for highvoltage transition metals than for low-voltage transition metals due to a more effective screening of Li-M interactions by oxygen electrons. Short-range order in practical disordered compounds is found to further mitigate the voltage slope increase upon disorder. In conclusion, our analysis shows that the additional high-voltage tetrahedral capacity induced by disorder is smaller in Liexcess compounds than in stoichiometric LiMO 2 compounds.« less

  2. Irmpd Action Spectroscopy and Computational Approaches to Elucidate Gas-Phase Structures and Energetics of 2'-DEOXYCYTIDINE and Cytidine Sodium Complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Gao, Juehan; Oomens, Jos; Rodgers, M. T.

    2016-06-01

    The local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2'-deoxycytidine, [dCyd+Na]+, and cytidine, [Cyd+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these sodium cationized nucleosides are measured over the range extending from 500 to 1850 wn using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations, frequency analyses, and IR spectra of these species are determined at the B3LYP/6-311+G(d,p) level of theory. Single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. For both cytosine nucleosides, tridentate binding of the Na+ cation to the O2, O4' and O5' atoms of the nucleobase and sugar is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation vs. hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.

  3. Atmospheric CO2 enrichment and reactive nitrogen inputs interactively stimulate soil cation losses and acidification.

    PubMed

    Zhang, Li; Qiu, Yunpeng; Cheng, Lei; Wang, Yi; Liu, Lingli; Tu, Cong; Bowman, Dan C; Burkey, Kent O; Bian, Xinmin; Zhang, Weijian; Hu, Shuijin

    2018-05-17

    Reactive N inputs (Nr) may alleviate N-limitation of plant growth and are assumed to help sustain plant responses to the rising atmospheric CO2 (eCO2). However, Nr and eCO2 may elicit a cascade reaction that alters soil chemistry and nutrient availability, shifting the limiting factors of plant growth, particularly in acidic tropical and subtropical croplands with low organic matter and low nutrient cations. Yet, few have so far examined the interactive effects of Nr and eCO2 on the dynamics of soil cation nutrients and soil acidity. We investigated the cation dynamics in the plant-soil system with exposure to eCO2 and different N sources in a subtropical, acidic agricultural soil. eCO2 and Nr, alone and interactively, increased Ca2+ and Mg2+ in soil solutions or leachates in aerobic agroecosystems. eCO2 significantly reduced soil pH, and NH4+-N inputs amplified this effect, suggesting that eCO2-induced plant preference of NH4+-N and plant growth may facilitate soil acidification. This is, to our knowledge, the first direct demonstration of eCO2 enhancement of soil acidity, although other studies have previously shown that eCO2 can increase cation release into soil solutions. Together, these findings provide new insights into the dynamics of cation nutrients and soil acidity under future climatic scenarios, highlighting the urgency for more studies on plant-soil responses to climate change in acidic tropical and subtropical ecosystems.

  4. Cell wall-bound cationic and anionic class III isoperoxidases of pea root: biochemical characterization and function in root growth.

    PubMed

    Kukavica, Biljana M; Veljovicc-Jovanovicc, Sonja D; Menckhoff, Ljiljana; Lüthje, Sabine

    2012-07-01

    Cell wall isolated from pea roots was used to separate and characterize two fractions possessing class III peroxidase activity: (i) ionically bound proteins and (ii) covalently bound proteins. Modified SDS-PAGE separated peroxidase isoforms by their apparent molecular weights: four bands of 56, 46, 44, and 41kDa were found in the ionically bound fraction (iPOD) and one band (70kDa) was resolved after treatment of the cell wall with cellulase and pectinase (cPOD). Isoelectric focusing (IEF) patterns for iPODs and cPODs were significantly different: five iPODs with highly cationic pI (9.5-9.2) were detected, whereas the nine cPODs were anionic with pI values between pH 3.7 and 5. iPODs and cPODs showed rather specific substrate affinity and different sensitivity to inhibitors, heat, and deglycosylation treatments. Peroxidase and oxidase activities and their IEF patterns for both fractions were determined in different zones along the root and in roots of different ages. New iPODs with pI 9.34 and 9.5 were induced with root growth, while the activity of cPODs was more related to the formation of the cell wall in non-elongating tissue. Treatment with auxin that inhibits root growth led to suppression of iPOD and induction of cPOD. A similar effect was obtained with the widely used elicitor, chitosan, which also induced cPODs with pI 5.3 and 5.7, which may be specifically related to pathogen defence. The differences reported here between biochemical properties of cPOD and iPOD and their differential induction during development and under specific treatments implicate that they are involved in specific and different physiological processes.

  5. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  6. Conditioning polymers in today's shampoo formulations - efficacy, mechanism and test methods.

    PubMed

    Hössel, P; Dieing, R; Nörenberg, R; Pfau, A; Sander, R

    2000-02-01

    Today's shampoo formulations are beyond the stage of pure cleansing of the hair. Additional benefits are expected, e.g. conditioning, smoothing of the hair surface, improvement of combability and lather creaminess. Cationic polymers play an important role in providing many of those features. Therefore, within the last few years their use in shampoos has increased greatly. In the only last two decades, shampoo designation has gradually changed from '2-in-1' to '3-in-1' and then to 'multifunctional', as at present. The consumer demands products which live up to their promises. Modern shampoos contain a wide variety of ingredients such as co-surfactants, vitamins and pro-vitamins, protein derivatives, silicones, natural-based plant extracts and other 'active ingredients', but there is still a need for conditioning polymers. The specific objective of this study is to assess the conditioning efficacy of cationic polymers and to investigate their mechanisms in a shampoo system. The investigations were carried out on formulations that contained sodium lauryl ether sulphate and different cationic polymers, e.g. Polyquaternium 7, 10, 11, cationic guar gum and Luviquat Care (Polyquaternium 44), a new branched copolymer of vinylpyrrolidone (VP) and quaternized vinylimidazolium salts (QVI). We used test methods relevant to the applications in question, such as combing force measurements, the feel of the hair and the creaminess of the lather, to assess the efficacy. Atomic force microscopy and electrokinetics (streaming potential) were used to detect polymer residues on treated hair. All the polymers under investigation improved the overall performance of the shampoo formulations. This was demonstrated by means of combing force measurements, sensorial tests and analytical methods, namely zeta potential measurement and atomic force microscopy. Polyquaternium 44 exhibited the best conditioning properties on wet hair without sacrificing removability or absence of build-up. The latter are the most striking weaknesses of cationic Guar Gum-based polymers. Polyquaternium 10 can also be removed from the hair after rinsing with anionic surfactant but it does not perform as well as Polyquaternium 44 in the fields of wet combability and sensorial criteria such as lather creaminess and feel of the hair. We postulate that the outstanding properties of Polyquaternium 44 as a conditioning agent for shampoos are due to its tailor-made 'branched' structure. There is a clear correlation between the molecular weight and the efficacy of the new copolymers of VP and QVI. Only cationic polymers with a very high molecular weight are effective as conditioners in shampoos based on anionic surfactants. Surprisingly, they do not have to have a high cationic charge. On the basis of all our results, our postulation is that the polymer residue which is responsible for conditioning does not form a flat layer on the hair. Rather, the polymer residue adsorbs with the few cationic moieties, while the uncharged part of the polymer forms loops, which are orientated away from the hair and which are responsible for the reduced friction between hairs.

  7. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T.

    1994-12-31

    The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relationmore » between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.« less

  8. Cationic surfactants in the form of nanoparticles and micelles elicit different human neutrophil responses: a toxicological study.

    PubMed

    Hwang, Tsong-Long; Sung, Calvin T; Aljuffali, Ibrahim A; Chang, Yuan-Ting; Fang, Jia-You

    2014-02-01

    Cationic surfactants are an ingredient commonly incorporated into nanoparticles for clinical practicability; however, the toxicity of cationic surfactants in nanoparticles is not fully elucidated. We aimed to evaluate the inflammatory responses of cationic nanobubbles and micelles in human neutrophils. Soyaethyl morpholinium ethosulfate (SME) and hexadecyltrimethyl-ammonium bromide (CTAB) are the two cationic surfactants employed in this study. The zeta potential of CTAB nanobubbles was 80 mV, which was the highest among all formulations. Nanobubbles, without cationic surfactants, showed no cytotoxic effects on neutrophils in terms of inflammatory responses. Cationic nanobubbles caused a concentration-dependent cytotoxicity of degranulation (elastase release) and membrane damage (release of lactate dehydrogenase, LDH). Among all nanoparticles and micelles, CTAB-containing nanosystems showed the greatest inflammatory responses. A CTAB nanobubble diluent (1/150) increased the LDH release 80-fold. Propidium iodide staining and scanning electron microscopy (SEM) verified cell death and morphological change of neutrophils treated by CTAB nanobubbles. SME, in a micelle form, strengthened the inflammatory response more than SME-loaded nanobubbles. Membrane interaction and subsequent Ca(2+) influx were the mechanisms that triggered inflammation. The information obtained from this work is beneficial in designing nanoparticulate formulations for balancing clinical activity and toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [Carrier-mediated Transport of Cationic Drugs across the Blood-Tissue Barrier].

    PubMed

    Kubo, Yoshiyuki

    2015-01-01

    Studies of neurological dysfunction have revealed the neuroprotective effect of several cationic drugs, suggesting their usefulness in the treatment of neurological diseases. In the brain and retina, blood-tissue barriers such as blood-brain barrier (BBB) and blood-retinal barrier (BRB) are formed to restrict nonspecific solute transport between the circulating blood and neural tissues. Therefore study of cationic drug transport at these barriers is essential to achieve systemic delivery of neuroprotective agents into the neural tissues. In the retina, severe diseases such as diabetic retinopathy and macular degeneration can cause neurological dysfunction that dramatically affects patients' QOL. The BRB is formed by retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (outer BRB). Blood-to-retina transport of cationic drugs was investigated at the inner BRB, which is known to nourish two thirds of the retina. Blood-to-retinal transport of verapamil suggested that the barrier function of the BRB differs from that of the BBB. Moreover, carrier-mediated transport of verapamil and pyrilamine revealed the involvement of novel organic cation transporters at the inner BRB. The identified transport systems for cationic drugs are sensitive to several cationic neuroprotective and anti-angiogenic agents such as clonidine and propranolol, and the involvement of novel transporters was also suggested in their blood-to-retina transport across the inner BRB.

  10. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    PubMed

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHMg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  11. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    NASA Technical Reports Server (NTRS)

    Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.

    1995-01-01

    The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.

  12. The Design and Synthesis of Epoxy Matrix Composites Curable by Electron Beam Induced Cationic Polymerization

    NASA Technical Reports Server (NTRS)

    Crivello, James V.

    2000-01-01

    Several new series of novel, high reactivity epoxy resins are described which are designed specifically for the fabrication of high performance carbon fiber reinforced composites for commercial aircraft structural applications using cationic UV and e-beam curing. The objective of this investigation is to provide resin matrices which rapidly and efficiently cure under low e-beam doses which are suitable to high speed automated composite fabrication techniques such as automated tape and tow placement. It was further the objective of this work to provide resins with superior thermal, oxidative and atomic oxygen resistance.

  13. Evolution of organo-cyanometallate cages: supramolecular architectures and new Cs+-specific receptors.

    PubMed

    Boyer, Julie L; Kuhlman, Matthew L; Rauchfuss, Thomas B

    2007-04-01

    The ability of inorganic cyanometallate polymers to form interesting and useful complexes is well-known. This Account summarizes work, especially in our laboratories, aimed at replicating aspects of this inorganic chemistry in homogeneous solution using organometallic building blocks. A library of molecular organometallic cyanides and Lewis acids, with varying charges and labilities, are shown to give families of neutral and charged cages. Neutral and anionic cages, often molecular boxes, bind larger alkali metals tightly. Cubic frameworks show an unparalleled affinity for cesium cations over potassium cations. Noncubic cages are described including tetrahedranes, defect boxes, trigonal prisms, and hexagonal prisms.

  14. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    PubMed

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  15. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations.

    PubMed

    Owczarzy, Richard; Moreira, Bernardo G; You, Yong; Behlke, Mark A; Walder, Joseph A

    2008-05-13

    Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.

  16. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    PubMed

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial cyclization reaction leading to either polymerization of the radical cation, elimination of a proton from or solvent trapping of that intermediate, or solvent trapping of the radical cation can be identified in the proton NMR spectrum of the crude reaction material. Such an NMR spectrum shows retention of the trapping group. The problems can be addressed by tuning the radical cation, altering the trapping group, or channeling the reactive intermediate down a radical pathway. Specific examples each are shown in this Account. Problems with the second oxidation step can be identified by poor current efficiency or general decomposition in spite of cyclic voltammetry evidence for a rapid cyclization. Solutions involve improving the oxidation conditions for the radical after cyclization by either the addition of a properly placed electron-donating group in the substrate or an increase in the concentration of electrolyte in the reaction (a change that stabilizes the cation generated from the second oxidation step). Problems with the final cation typically lead to overoxidation. Solutions to this problem require an approach that either slows down elimination side reactions or changes the reaction conditions so that the cation can be quickly trapped in an irreversible fashion. Again, this Account highlights these strategies along with the specific experimental protocols utilized.

  17. Organic molecules as sorbing tracers for the assessment of surface areas in consolidated aquifer systems

    NASA Astrophysics Data System (ADS)

    Schaffer, Mario; Warner, Wiebke; Kutzner, Susann; Börnick, Hilmar; Worch, Eckhard; Licha, Tobias

    2017-03-01

    Based on the assumption that the specific surface area to volume ratio Asurf/V of consolidated rock materials is proportional to the surface area available for sorption, several inorganic cations were recently proposed as sorbing (cation exchanging) tracers for estimating these ratios in aquifers (e.g., for deriving the efficient heat exchange area of geothermal reservoirs). The main disadvantages of inorganic ions, however, are the limited number of suitable ions, their potential geogenic background, and their challenging online detection at trace concentrations. In this work, the spectrum of chemical substances used as sorbing tracers expands by considering fluorescent organic compounds that are cationic. They have the advantage of being highly water soluble and easy to measure online at very low concentrations. Results from systematic lab column experiments with seven selected organic cations under various conditions (different salinities and temperatures) are presented, emphasizing the potential of organic molecules as alternative sorbing tracers especially in consolidated aquifer systems. This work is a first stepping stone in identifying suitable molecular structures that can be selected or even individually adapted to the requirements of the tracer tests and prevailing aquifer conditions.

  18. Effects of cation stoichiometry on electronic and structural properties of LaNiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Cole R.; Lang, Andrew C.; Taheri, Mitra L.

    2015-07-15

    LaNiO{sub 3} films with varying La:Ni ratios were deposited onto SrTiO{sub 3} (001) substrates via molecular beam epitaxy to elucidate the effects of cation off-stoichiometry. The physical properties of La-deficient films are found to differ substantially from those of Ni-deficient films, with La-deficient films exhibiting lower electrical resistivities and smaller c-axis parameters than Ni-deficient films. No evidence of secondary phases is observed; however, transmission electron microscopy reveals an abundance of defects, the nature of which differs in lanthanum- and nickel-deficient films. This work illustrates the nontrivial role that cation stoichiometry can play on the functional properties of complex oxides.

  19. Effect of group electronegativity on electron transfer in bis(hydrazine) radical cations.

    PubMed

    Qin, Haimei; Zhong, Xinxin; Si, Yubing; Zhang, Weiwei; Zhao, Yi

    2011-04-14

    The radical cation of 4,10-ditert-butyl-5,9-diisopropyl-4,5,9,10-tetraazatetracyclo[6.2.2.2]-tetradecane (sBI4T(+)), as well as its substituted bis(hydrazine) radical cations, is chosen for the investigation of the electronegativity dependence of its intramolecular electron transfer. To do so, two parameters, reorganization energy and electronic coupling, are calculated with several ab initio approaches. It is found that the electronic couplings decrease with the increase of the group electronegativity while the reorganization energies do not show an explicit dependency. Furthermore, Marcus formula is employed to reveal those effect on the electron transfer rates. The predicted rates of electron transfer generally decrease with increasing group electronegativity, although not monotonically.

  20. Steep declines in atmospheric base cations in regions of Europe and North America

    NASA Astrophysics Data System (ADS)

    Hedin, Lars O.; Granat, Lennart; Likens, Gene E.; Adri Buishand, T.; Galloway, James N.; Butler, Thomas J.; Rodhe, Henning

    1994-01-01

    HUMAN activities have caused marked changes in atmospheric chemistry over large regions of Europe and North America. Although considerable attention has been paid to the effects of changes in the deposition of acid anions (such as sulphate and nitrate) on terrestrial and aquatic ecosystems1-7, little is known about whether the concentrations of basic components of the atmosphere have changed over time8,9 and what the biogeochemical consequences of such potential changes might be. In particular, there has been some controversy8-12 as to whether declines in base-cation deposition have countered effects of recent reductions in SO2emission. Here we report evidence for steep declines in the atmospheric concentrations of base cations (sum of non-sea-salt Ca2+, Mg2+, K+ and Na+) over the past 10 to 26 years from high-quality precipitation chemistry records in Europe and North America. To varying but generally significant degrees, these base-cation trends have offset recent reductions in sulphate deposition in the regions examined. The observed trends seem to be ecologically important on decadal timescales, and support earlier contentions8-10 that declines in the deposition of base cations may have contributed to increased sensitivity of poorly buffered ecosystems.

Top