Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas.
Payton, Laura; Perrigault, Mickael; Bourdineaud, Jean-Paul; Marcel, Anjara; Massabuau, Jean-Charles; Tran, Damien
2017-08-01
RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.
Compensation for intracellular environment in expression levels of mammalian circadian clock genes
Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto
2014-01-01
The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription
Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo
2015-01-01
Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional–translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear “hubs” of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control. PMID:25378702
Effect of Resveratrol, a SIRT1 Activator, on the Interactions of the CLOCK/BMAL1 Complex
Park, Insung; Lee, Yool; Kim, Hee-Dae
2014-01-01
Background In mammals, the CLOCK/BMAL1 heterodimer is a key transcription factor complex that drives the cyclic expression of clock-controlled genes involved in various physiological functions and behavioral consequences. Recently, a growing number of studies have reported a molecular link between the circadian clock and metabolism. In the present study, we explored the regulatory effects of SIRTUIN1 (SIRT1), an NAD+-dependent deacetylase, on CLOCK/BMAL1-mediated clock gene expression. Methods To investigate the interaction between SIRT1 and CLOCK/BMAL1, we conducted bimolecular fluorescence complementation (BiFC) analyses supplemented with immunocytochemistry assays. BiFC experiments employing deletion-specific mutants of BMAL1 were used to elucidate the specific domains that are necessary for the SIRT1-BMAL1 interaction. Additionally, luciferase reporter assays were used to delineate the effects of SIRT1 on circadian gene expression. Results BiFC analysis revealed that SIRT1 interacted with both CLOCK and BMAL1 in most cell nuclei. As revealed by BiFC assays using various BMAL1 deletion mutants, the PAS-B domain of BMAL1 was essential for interaction with SIRT1. Activation of SIRT1 with resveratrol did not exert any significant change on the interaction with the CLOCK/BMAL1 complex. However, promoter analysis using Per1-Luc and Ebox-Luc reporters showed that SIRT1 significantly downregulated both promoter activities. This inhibitory effect was intensified by treatment with resveratrol, indicating a role for SIRT1 and its activator in CLOCK/BMAL1-mediated transcription of clock genes. Conclusion These results suggest that SIRT1 may form a regulatory complex with CLOCK/BMAL1 that represses clock gene expression, probably via deacetylase activity. PMID:25309798
GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.
Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E; Steger, David J; Lazar, Mitchell A
2015-06-26
Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. Copyright © 2015, American Association for the Advancement of Science.
Novel transcriptional networks regulated by CLOCK in human neurons.
Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve
2017-11-01
The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.
Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian
2015-09-01
Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.
Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C
2015-02-01
Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.
Lin, Changpo; Tang, Xiao; Xu, Lirong; Qian, Ruizhe; Shi, Zhenyu; Wang, Lixin; Cai, Tingting; Yan, Dong; Fu, Weiguo; Guo, Daqiao
2017-07-10
The clock genes are involved in regulating cardiovascular functions, and their expression disorders would lead to circadian rhythm disruptions of clock-controlled genes (CCGs), resulting in atherosclerotic plaque formation and rupture. Our previous study revealed the rhythmic expression of clock genes were attenuated in human plaque-derived vascular smooth muscle cells (PVSMCs), but failed to detect the downstream CCGs expressions and the underlying molecular mechanism. In this study, we examined the difference of CCGs rhythmic expression between human normal carotid VSMCs (NVSMCs) and PVSMCs. Furthermore, we compared the cholesterol and triglycerides levels between two groups and the link to clock genes and CCGs expressions. Seven health donors' normal carotids and 19 carotid plaques yielded viable cultured NVSMCs and PVSMCs. The expression levels of target genes were measured by quantitative real-time PCR and Western-blot. The intracellular cholesterol and triglycerides levels were measured by kits. The circadian expressions of apoptosis-related genes and fibrinolytic-related genes were disordered. Besides, the cholesterol levels were significant higher in PVSMCs. After treated with cholesterol or oxidized low density lipoprotein (ox-LDL), the expressions of clock genes were inhibited; and the rhythmic expressions of clock genes, apoptosis-related genes and fibrinolytic-related genes were disturbed in NVSMCs, which were similar to PVSMCs. The results suggested that intracellular high cholesterol content of PVSMCs would lead to the disorders of clock genes and CCGs rhythmic expressions. And further studies should be conducted to demonstrate the specific molecular mechanisms involved.
Common features in diverse insect clocks.
Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko
2015-01-01
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Ribas-Latre, Aleix; Eckel-Mahan, Kristin
2016-03-01
While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.
2010-01-01
Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(Oncorhynchus mykiss), Arctic charr (AC)(Salvelinus alpinus), and Atlantic salmon (AS)(Salmo salar) mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression. PMID:20670436
Regulation of circadian clock transcriptional output by CLOCK:BMAL1
Trott, Alexandra J.
2018-01-01
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726
Abruzzi, Katharine Compton; Rodriguez, Joseph; Menet, Jerome S.; Desrochers, Jennifer; Zadina, Abigail; Luo, Weifei; Tkachev, Sasha; Rosbash, Michael
2011-01-01
CLOCK (CLK) is a master transcriptional regulator of the circadian clock in Drosophila. To identify CLK direct target genes and address circadian transcriptional regulation in Drosophila, we performed chromatin immunoprecipitation (ChIP) tiling array assays (ChIP–chip) with a number of circadian proteins. CLK binding cycles on at least 800 sites with maximal binding in the early night. The CLK partner protein CYCLE (CYC) is on most of these sites. The CLK/CYC heterodimer is joined 4–6 h later by the transcriptional repressor PERIOD (PER), indicating that the majority of CLK targets are regulated similarly to core circadian genes. About 30% of target genes also show cycling RNA polymerase II (Pol II) binding. Many of these generate cycling RNAs despite not being documented in prior RNA cycling studies. This is due in part to different RNA isoforms and to fly head tissue heterogeneity. CLK has specific targets in different tissues, implying that important CLK partner proteins and/or mechanisms contribute to gene-specific and tissue-specific regulation. PMID:22085964
2013-01-01
Background Although out-of-lab investigation of the human circadian clock at the clock gene expression level remains difficult, a recent method using hair follicle cells might be useful. While exercise may function as an entrainment cue for circadian rhythms, it remains unclear whether exercise affects human circadian clock gene expression. Methods Efforts to observe apparent effects of exercise on clock gene expression require that several specific conditions be met: intense exercise should be habitually performed at a relatively uncommon time of day over an extended period; and any relative phase shift thereby observed should be validated by comparison of exercise and no-exercise periods. Wake-up and meal times should be kept almost constant over the experimental period. The present study was conducted using a professional fighter who met these strict criteria as subject. Facial hair samples were collected at 4-h intervals around the clock to ascertain rhythms of clock gene expression. Results During a period in which nighttime training (from 20:00 to 22:00) was habitually performed, circadian clock gene expression was phase-delayed by 2 to 4 h compared with that during a no-exercise period. Maximum level and circadian amplitude of clock gene expression were not affected by the nighttime training. Conclusion Our trial observations illustrate the possibility that heavy physical exercise might strongly affect the circadian phase of clock gene expression. Exercise might be therefore effective for the clinical care of circadian disorders. The results also suggest that athletes may require careful scheduling of heavy physical exercise to maintain normal circadian phase and ensure optimal athletic performance. PMID:24004634
Clock genes × stress × reward interactions in alcohol and substance use disorders.
Perreau-Lenz, Stéphanie; Spanagel, Rainer
2015-06-01
Adverse life events and highly stressful environments have deleterious consequences for mental health. Those environmental factors can potentiate alcohol and drug abuse in vulnerable individuals carrying specific genetic risk factors, hence producing the final risk for alcohol- and substance-use disorders development. The nature of these genes remains to be fully determined, but studies indicate their direct or indirect relation to the stress hypothalamo-pituitary-adrenal (HPA) axis and/or reward systems. Over the past decade, clock genes have been revealed to be key-players in influencing acute and chronic alcohol/drug effects. In parallel, the influence of chronic stress and stressful life events in promoting alcohol and substance use and abuse has been demonstrated. Furthermore, the reciprocal interaction of clock genes with various HPA-axis components, as well as the evidence for an implication of clock genes in stress-induced alcohol abuse, have led to the idea that clock genes, and Period genes in particular, may represent key genetic factors to consider when examining gene × environment interaction in the etiology of addiction. The aim of the present review is to summarize findings linking clock genes, stress, and alcohol and substance abuse, and to propose potential underlying neurobiological mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock
Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.
2015-01-01
SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300
Barca-Mayo, Olga; Pons-Espinal, Meritxell; Follert, Philipp; Armirotti, Andrea; Berdondini, Luca; De Pietri Tonelli, Davide
2017-01-01
Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition. PMID:28186121
Investigation of Seasonal and Latitudinal Effects on the Expression of Clock Genes in Drosophila
NASA Astrophysics Data System (ADS)
Hosseini, Seyede Sanaz; Nazarimehr, Fahimeh; Jafari, Sajad
The primary goal in this work is to develop a dynamical model capturing the influence of seasonal and latitudinal variations on the expression of Drosophila clock genes. To this end, we study a specific dynamical system with strange attractors that exhibit changes of Drosophila activity in a range of latitudes and across different seasons. Bifurcations of this system are analyzed to peruse the effect of season and latitude on the behavior of clock genes. Existing experimental data collected from the activity of Drosophila melanogaster corroborate the dynamical model.
Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.
Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518
So many genes, so little time: A practical approach to divergence-time estimation in the genomic era
2018-01-01
Phylogenomic datasets have been successfully used to address questions involving evolutionary relationships, patterns of genome structure, signatures of selection, and gene and genome duplications. However, despite the recent explosion in genomic and transcriptomic data, the utility of these data sources for efficient divergence-time inference remains unexamined. Phylogenomic datasets pose two distinct problems for divergence-time estimation: (i) the volume of data makes inference of the entire dataset intractable, and (ii) the extent of underlying topological and rate heterogeneity across genes makes model mis-specification a real concern. “Gene shopping”, wherein a phylogenomic dataset is winnowed to a set of genes with desirable properties, represents an alternative approach that holds promise in alleviating these issues. We implemented an approach for phylogenomic datasets (available in SortaDate) that filters genes by three criteria: (i) clock-likeness, (ii) reasonable tree length (i.e., discernible information content), and (iii) least topological conflict with a focal species tree (presumed to have already been inferred). Such a winnowing procedure ensures that errors associated with model (both clock and topology) mis-specification are minimized, therefore reducing error in divergence-time estimation. We demonstrated the efficacy of this approach through simulation and applied it to published animal (Aves, Diplopoda, and Hymenoptera) and plant (carnivorous Caryophyllales, broad Caryophyllales, and Vitales) phylogenomic datasets. By quantifying rate heterogeneity across both genes and lineages we found that every empirical dataset examined included genes with clock-like, or nearly clock-like, behavior. Moreover, many datasets had genes that were clock-like, exhibited reasonable evolutionary rates, and were mostly compatible with the species tree. We identified overlap in age estimates when analyzing these filtered genes under strict clock and uncorrelated lognormal (UCLN) models. However, this overlap was often due to imprecise estimates from the UCLN model. We find that “gene shopping” can be an efficient approach to divergence-time inference for phylogenomic datasets that may otherwise be characterized by extensive gene tree heterogeneity. PMID:29772020
Smith, Stephen A; Brown, Joseph W; Walker, Joseph F
2018-01-01
Phylogenomic datasets have been successfully used to address questions involving evolutionary relationships, patterns of genome structure, signatures of selection, and gene and genome duplications. However, despite the recent explosion in genomic and transcriptomic data, the utility of these data sources for efficient divergence-time inference remains unexamined. Phylogenomic datasets pose two distinct problems for divergence-time estimation: (i) the volume of data makes inference of the entire dataset intractable, and (ii) the extent of underlying topological and rate heterogeneity across genes makes model mis-specification a real concern. "Gene shopping", wherein a phylogenomic dataset is winnowed to a set of genes with desirable properties, represents an alternative approach that holds promise in alleviating these issues. We implemented an approach for phylogenomic datasets (available in SortaDate) that filters genes by three criteria: (i) clock-likeness, (ii) reasonable tree length (i.e., discernible information content), and (iii) least topological conflict with a focal species tree (presumed to have already been inferred). Such a winnowing procedure ensures that errors associated with model (both clock and topology) mis-specification are minimized, therefore reducing error in divergence-time estimation. We demonstrated the efficacy of this approach through simulation and applied it to published animal (Aves, Diplopoda, and Hymenoptera) and plant (carnivorous Caryophyllales, broad Caryophyllales, and Vitales) phylogenomic datasets. By quantifying rate heterogeneity across both genes and lineages we found that every empirical dataset examined included genes with clock-like, or nearly clock-like, behavior. Moreover, many datasets had genes that were clock-like, exhibited reasonable evolutionary rates, and were mostly compatible with the species tree. We identified overlap in age estimates when analyzing these filtered genes under strict clock and uncorrelated lognormal (UCLN) models. However, this overlap was often due to imprecise estimates from the UCLN model. We find that "gene shopping" can be an efficient approach to divergence-time inference for phylogenomic datasets that may otherwise be characterized by extensive gene tree heterogeneity.
Takeuchi, Tomomi; Newton, Linsey; Burkhardt, Alyssa; Mason, Saundra; Farré, Eva M.
2014-01-01
In Arabidopsis, the circadian clock regulates UV-B-mediated changes in gene expression. Here it is shown that circadian clock components are able to inhibit UV-B-induced gene expression in a gene-by-gene-specific manner and act downstream of the initial UV-B sensing by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and UVR8 (UV RESISTANCE LOCUS 8). For example, the UV-B induction of ELIP1 (EARLY LIGHT INDUCIBLE PROTEIN 1) and PRR9 (PSEUDO-RESPONSE REGULATOR 9) is directly regulated by LUX (LUX ARRYTHMO), ELF4 (EARLY FLOWERING 4), and ELF3. Moreover, time-dependent changes in plant sensitivity to UV-B damage were observed. Wild-type Arabidopsis plants, but not circadian clock mutants, were more sensitive to UV-B treatment during the night periods than during the light periods under diel cycles. Experiments performed under short cycles of 6h light and 6h darkness showed that the increased stress sensitivity of plants to UV-B in the dark only occurred during the subjective night and not during the subjective day in wild-type seedlings. In contrast, the stress sensitivity of Arabidopsis mutants with a compromised circadian clock was still influenced by the light condition during the subjective day. Taken together, the results show that the clock and light modulate plant sensitivity to UV-B stress at different times of the day. PMID:25147271
Takeuchi, Yuki; Kabutomori, Ryo; Yamauchi, Chihiro; Miyagi, Hitomi; Takemura, Akihiro; Okano, Keiko; Okano, Toshiyuki
2018-04-18
Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.
Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael
2017-02-01
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.
MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale
Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David
2014-01-01
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642
A Role for Timely Nuclear Translocation of Clock Repressor Proteins in Setting Circadian Clock Speed
Lee, Euna
2014-01-01
By means of a circadian clock system, all the living organisms on earth including human beings can anticipate the environmental rhythmic changes such as light/dark and warm/cold periods in a daily as well as in a yearly manner. Anticipating such environmental changes provide organisms with survival benefits via manifesting behavior and physiology at an advantageous time of the day and year. Cell-autonomous circadian oscillators, governed by transcriptional feedback loop composed of positive and negative elements, are organized into a hierarchical system throughout the organisms and generate an oscillatory expression of a clock gene by itself as well as clock controlled genes (ccgs) with a 24 hr periodicity. In the feedback loop, hetero-dimeric transcription factor complex induces the expression of negative regulatory proteins, which in turn represses the activity of transcription factors to inhibit their own transcription. Thus, for robust oscillatory rhythms of the expression of clock genes as well as ccgs, the precise control of subcellular localization and/or timely translocation of core clock protein are crucial. Here, we discuss how sub-cellular localization and nuclear translocation are controlled in a time-specific manner focusing on the negative regulatory clock proteins. PMID:25258565
Genomic clocks and evolutionary timescales
NASA Technical Reports Server (NTRS)
Blair Hedges, S.; Kumar, Sudhir
2003-01-01
For decades, molecular clocks have helped to illuminate the evolutionary timescale of life, but now genomic data pose a challenge for time estimation methods. It is unclear how to integrate data from many genes, each potentially evolving under a different model of substitution and at a different rate. Current methods can be grouped by the way the data are handled (genes considered separately or combined into a 'supergene') and the way gene-specific rate models are applied (global versus local clock). There are advantages and disadvantages to each of these approaches, and the optimal method has not yet emerged. Fortunately, time estimates inferred using many genes or proteins have greater precision and appear to be robust to different approaches.
Sutter, Carrie Hayes; Olesen, Kristin M; Kensler, Thomas W
2018-01-01
Diurnal oscillation of intracellular redox potential is known to couple metabolism with the circadian clock, yet the responsible mechanisms are not well understood. We show here that chemical activation of NRF2 modifies circadian gene expression and rhythmicity, with phenotypes similar to genetic NRF2 activation. Loss of Nrf2 function in mouse fibroblasts, hepatocytes and liver also altered circadian rhythms, suggesting that NRF2 stoichiometry and/or timing of expression are important to timekeeping in some cells. Consistent with this concept, activation of NRF2 at a circadian time corresponding to the peak generation of endogenous oxidative signals resulted in NRF2-dependent reinforcement of circadian amplitude. In hepatocytes, activated NRF2 bound specific enhancer regions of the core clock repressor gene Cry2, increased Cry2 expression and repressed CLOCK/BMAL1-regulated E-box transcription. Together these data indicate that NRF2 and clock comprise an interlocking loop that integrates cellular redox signals into tissue-specific circadian timekeeping. PMID:29481323
Frederick, Ariana; Goldsmith, Jory; de Zavalia, Nuria; Amir, Shimon
2017-01-01
Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP) and Enkephalin (Enk), expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis), thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%), and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable). These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.
Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.
Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong
2015-01-01
Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.
Speed control: cogs and gears that drive the circadian clock.
Zheng, Xiangzhong; Sehgal, Amita
2012-09-01
In most organisms, an intrinsic circadian (~24-h) timekeeping system drives rhythms of physiology and behavior. Within cells that contain a circadian clock, specific transcriptional activators and repressors reciprocally regulate each other to generate a basic molecular oscillator. A mismatch of the period generated by this oscillator with the external environment creates circadian disruption, which can have adverse effects on neural function. Although several clock genes have been extensively characterized, a fundamental question remains: how do these genes work together to generate a ~24-h period? Period-altering mutations in clock genes can affect any of multiple regulated steps in the molecular oscillator. In this review, we examine the regulatory mechanisms that contribute to setting the pace of the circadian oscillator. Copyright © 2012 Elsevier Ltd. All rights reserved.
Syed, Naeem H; Prince, Silvas J; Mutava, Raymond N; Patil, Gunvant; Li, Song; Chen, Wei; Babu, Valliyodan; Joshi, Trupti; Khan, Saad; Nguyen, Henry T
2015-12-01
Circadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses. Differential expression of many clock and SUB1 genes was found under flooding and drought conditions. Furthermore, natural variation in the amplitude and phase shifts in PRR7 and TOC1 genes was also discovered under drought and flooding conditions, respectively. PRR3 exhibited flooding- and drought-specific splicing patterns and may work in concert with PRR7 and TOC1 to achieve energy homeostasis under flooding and drought conditions. Higher expression of TOC1 also coincides with elevated levels of abscisic acid (ABA) and variation in glucose levels in the morning and afternoon, indicating that this response to abiotic stress is mediated by ABA, endogenous sugar levels, and the circadian clock to fine-tune photosynthesis and energy utilization under stress conditions. It is proposed that the presence of multiple clock gene paralogues with variation in DNA sequence, phase, and period could be used to screen exotic germplasm to find sources for drought and flooding tolerance. Furthermore, fine tuning of multiple clock gene paralogues (via a genetic engineering approach) should also facilitate the development of flooding- and drought-tolerant soybean varieties. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Oosterman, Johanneke E; Belsham, Denise D
2016-01-01
Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.
Oosterman, Johanneke E.; Belsham, Denise D.
2016-01-01
Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation. PMID:26784927
A non-circadian role for clock-genes in sleep homeostasis: a strain comparison.
Franken, Paul; Thomason, Ryan; Heller, H Craig; O'Hara, Bruce F
2007-10-18
We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.
Early sex-specific modulation of the molecular clock in trauma.
Mehraj, Vikram; Wiramus, Sandrine; Capo, Christian; Leone, Marc; Mege, Jean-Louis; Textoris, Julien
2014-01-01
Immune system biology and most physiologic functions are tightly linked to circadian rhythms. Time of day-dependent variations in many biologic parameters also play a fundamental role in the disease process. We previously showed that the genes encoding the peripheral molecular clock were modulated in a sex-dependent manner in Q fever. Here, we examined severe trauma patients at admission to the intensive care unit. Using quantitative real-time polymerase chain reaction, the whole-blood expression of the molecular clock components ARNTL, CLOCK, and PER2 was assessed in male and female trauma patients. Healthy volunteers of both sexes were used as controls. We observed a significant overexpression of both ARNTL and CLOCK in male trauma patients. We report, for the first time, the sex-related modulation of the molecular clock genes in the blood following severe trauma. These results emphasize the role of circadian rhythms in the immune response in trauma patients. Epidemiologic study, level IV.
Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis1
Tóth, Réka; Kevei, Éva; Hall, Anthony; Millar, Andrew J.; Nagy, Ferenc; Kozma-Bognár, László
2001-01-01
Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 h. Endogenous oscillators called circadian clocks regulate these rhythms. The circadian clocks are synchronized to the periodic environmental changes (e.g. day/night cycles) by specific stimuli; among these, the most important is the light. Photoreceptors, phytochromes, and cryptochromes are involved in setting the clock by transducing the light signal to the central oscillator. In this work, we analyzed the spatial, temporal, and long-term light-regulated expression patterns of the Arabidopsis phytochrome (PHYA to PHYE) and cryptochrome (CRY1 and CRY2) promoters fused to the luciferase (LUC+) reporter gene. The results revealed new details of the tissue-specific expression and light regulation of the PHYC and CRY1 and 2 promoters. More importantly, the data obtained demonstrate that the activities of the promoter::LUC+ constructs, with the exception of PHYC::LUC+, display circadian oscillations under constant conditions. In addition, it is shown by measuring the mRNA abundance of PHY and CRY genes under constant light conditions that the circadian control is also maintained at the level of mRNA accumulation. These observations indicate that the plant circadian clock controls the expression of these photoreceptors, revealing the formation of a new regulatory loop that could modulate gating and resetting of the circadian clock. PMID:11743105
Bordage, Simon; Sullivan, Stuart; Laird, Janet; Millar, Andrew J; Nimmo, Hugh G
2016-10-01
Circadian clocks allow the temporal compartmentalization of biological processes. In Arabidopsis, circadian rhythms display organ specificity but the underlying molecular causes have not been identified. We investigated the mechanisms responsible for the similarities and differences between the clocks of mature shoots and roots in constant conditions and in light : dark cycles. We developed an imaging system to monitor clock gene expression in shoots and light- or dark-grown roots, modified a recent mathematical model of the Arabidopsis clock and used this to simulate our new data. We showed that the shoot and root circadian clocks have different rhythmic properties (period and amplitude) and respond differently to light quality. The root clock was entrained by direct exposure to low-intensity light, even in antiphase to the illumination of shoots. Differences between the clocks were more pronounced in conditions where light was present than in constant darkness, and persisted in the presence of sucrose. We simulated the data successfully by modifying those parameters of a clock model that are related to light inputs. We conclude that differences and similarities between the shoot and root clocks can largely be explained by organ-specific light inputs. This provides mechanistic insight into the developing field of organ-specific clocks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals
Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter
2016-01-01
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573
Discrete gene replication events drive coupling between the cell cycle and circadian clocks
Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.
2016-01-01
Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936
Discrete gene replication events drive coupling between the cell cycle and circadian clocks.
Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K
2016-04-12
Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.
Bjarnason, G A; Jordan, R C; Wood, P A; Li, Q; Lincoln, D W; Sothern, R B; Hrushesky, W J; Ben-David, Y
2001-05-01
We studied the relative RNA expression of clock genes throughout one 24-hour period in biopsies obtained from the oral mucosa and skin from eight healthy diurnally active male study participants. We found that the human clock genes hClock, hTim, hPer1, hCry1, and hBmal1 are expressed in oral mucosa and skin, with a circadian profile consistent with that found in the suprachiasmatic nuclei and the peripheral tissues of rodents. hPer1, hCry1, and hBmal1 have a rhythmic expression, peaking early in the morning, in late afternoon, and at night, respectively, whereas hClock and hTim are not rhythmic. This is the first human study to show a circadian profile of expression for all five clock genes as documented in rodents, suggesting their functional importance in man. In concurrent oral mucosa biopsies, thymidylate synthase enzyme activity, a marker for DNA synthesis, had a circadian variation with peak activity in early afternoon, coinciding with the timing of S phase in our previous study on cell-cycle timing in human oral mucosa. The major peak in hPer1 expression occurs at the same time of day as the peak in G(1) phase in oral mucosa, suggesting a possible link between the circadian clock and the mammalian cell cycle.
Toloza-Villalobos, Jessica; Arroyo, José Ignacio; Opazo, Juan C
2015-01-01
The circadian clock is a central oscillator that coordinates endogenous rhythms. Members of six gene families underlie the metabolic machinery of this system. Although this machinery appears to correspond to a highly conserved genetic system in metazoans, it has been recognized that vertebrates possess a more diverse gene inventory than that of non-vertebrates. This difference could have originated in the two successive rounds of whole-genome duplications that took place in the common ancestor of the group. Teleost fish underwent an extra event of whole-genome duplication, which is thought to have provided an abundance of raw genetic material for the biological innovations that facilitated the radiation of the group. In this study, we assessed the relative contributions of whole-genome duplication and small-scale gene duplication to generate the repertoire of genes associated with the circadian clock of teleost fish. To achieve this goal, we annotated genes from six gene families associated with the circadian clock in eight teleost fish species, and we reconstructed their evolutionary history by inferring phylogenetic relationships. Our comparative analysis indicated that teleost species possess a variable repertoire of genes related to the circadian clock gene families and that the actual diversity of these genes has been shaped by a variety of phenomena, such as the complete deletion of ohnologs, the differential retention of genes, and lineage-specific gene duplications. From a functional perspective, the subfunctionalization of two ohnolog genes (PER1a and PER1b) in zebrafish highlights the power of whole-genome duplications to generate biological diversity.
Bazzi, Gaia; Podofillini, Stefano; Gatti, Emanuele; Gianfranceschi, Luca; Cecere, Jacopo G; Spina, Fernando; Saino, Nicola; Rubolini, Diego
2017-10-01
The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow warbler Phylloscopus trochilus , we investigated whether allelic variation at 5 polymorphic loci of 4 candidate genes ( Adcyap1 , Clock , Creb1 , and Npas2 ), predicted 2 major components of the annual schedule, namely timing of spring migration across the central Mediterranean sea and moult speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African winter quarters. We identified a novel Clock gene locus ( Clock region 3) showing polyQ polymorphism, which was however not significantly associated with any phenotypic trait. Npas2 allele size predicted male (but not female) spring migration date, with males bearing longer alleles migrating significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male (but not female) moult speed, longer alleles being associated with faster moult. All other genotype-phenotype associations were statistically non-significant. These findings provide new evidence for a role of candidate genes in modulating the phenology of different circannual activities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.
Circadian Rhythms Regulate Amelogenesis
Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A.; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros
2013-01-01
Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24h) intervals both at RNA and protein levels. This study also reveals that two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stage of amelogenesis might be under circadian control. Changes in clock genes expression patterns might result in significant alterations of enamel apposition and mineralization. PMID:23486183
Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.
Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot
2016-01-01
Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.
A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms.
Kozlov, Anatoly; Jaumouillé, Edouard; Machado Almeida, Pedro; Koch, Rafael; Rodriguez, Joseph; Abruzzi, Katharine C; Nagoshi, Emi
2017-07-12
Behavioral circadian rhythms are controlled by multioscillator networks comprising functionally different subgroups of clock neurons. Studies have demonstrated that molecular clocks in the fruit fly Drosophila melanogaster are regulated differently in clock neuron subclasses to support their specific functions (Lee et al., 2016; Top et al., 2016). The nuclear receptor unfulfilled ( unf ) represents a regulatory node that provides the small ventral lateral neurons (s-LNvs) unique characteristics as the master pacemaker (Beuchle et al., 2012). We previously showed that UNF interacts with the s-LNv molecular clocks by regulating transcription of the core clock gene period ( per ) (Jaumouillé et al., 2015). To gain more insight into the mechanisms by which UNF contributes to the functioning of the circadian master pacemaker, we identified UNF target genes using chromatin immunoprecipitation. Our data demonstrate that a previously uncharacterized gene CG7837 , which we termed R and B ( Rnb ), acts downstream of UNF to regulate the function of the s-LNvs as the master circadian pacemaker. Mutations and LNv-targeted adult-restricted knockdown of Rnb impair locomotor rhythms. RNB localizes to the nucleus, and its loss-of-function blunts the molecular rhythms and output rhythms of the s-LNvs, particularly the circadian rhythms in PDF accumulation and axonal arbor remodeling. These results establish a second pathway by which UNF interacts with the molecular clocks in the s-LNvs and highlight the mechanistic differences in the molecular clockwork within the pacemaker circuit. SIGNIFICANCE STATEMENT Circadian behavior is generated by a pacemaker circuit comprising diverse classes of pacemaker neurons, each of which contains a molecular clock. In addition to the anatomical and functional diversity, recent studies have shown the mechanistic differences in the molecular clockwork among the pacemaker neurons in Drosophila Here, we identified the molecular characteristics distinguishing the s-LNvs, the master pacemaker of the locomotor rhythms, from other clock neuron subtypes. We demonstrated that a newly identified gene Rnb is an s-LNv-specific regulator of the molecular clock and essential for the generation of circadian locomotor behavior. Our results provide additional evidence to the emerging view that the differential regulation of the molecular clocks underlies the functional differences among the pacemaker neuron subgroups. Copyright © 2017 the authors 0270-6474/17/376673-13$15.00/0.
Caba, Mario; González-Mariscal, Gabriela; Meza, Enrique
2018-01-01
Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia) can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research. PMID:29599751
Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta; Weikop, Pia; Rath, Martin Fredensborg
2018-02-01
A molecular circadian oscillator resides in neurons of the cerebral cortex, but its role is unknown. Using the Cre-LoxP method, we have here abolished the core clock gene Arntl in those neurons. This mouse represents the first model carrying a deletion of a circadian clock component specifically in an extrahypothalamic cell type of the brain. Molecular analyses of clock gene expression in the cerebral cortex of the Arntl conditional knockout mouse revealed disrupted circadian expression profiles, whereas clock gene expression in the suprachiasmatic nucleus was still rhythmic, thus showing that Arntl is required for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo
Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.
2014-01-01
SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.
Fang, Bin; Everett, Logan J; Jager, Jennifer; Briggs, Erika; Armour, Sean M; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A
2014-11-20
Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.
Ben-Moshe, Zohar; Vatine, Gad; Alon, Shahar; Tovin, Adi; Mracek, Philipp; Foulkes, Nicholas S; Gothilf, Yoav
2010-09-01
Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism.
Noninvasive method for assessing the human circadian clock using hair follicle cells
Akashi, Makoto; Soma, Haruhiko; Yamamoto, Takuro; Tsugitomi, Asuka; Yamashita, Shiko; Yamamoto, Takuya; Nishida, Eisuke; Yasuda, Akio; Liao, James K.; Node, Koichi
2010-01-01
A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting. PMID:20798039
Toda, Riko; Okano, Keiko; Takeuchi, Yuki; Yamauchi, Chihiro; Fukushiro, Masato; Takemura, Akihiro; Okano, Toshiyuki
2014-01-01
Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3) in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus). Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related) genes, Period (Per2 and Per4), in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related) genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.
Edwards, Kieron D.; Anderson, Paul E.; Hall, Anthony; Salathia, Neeraj S.; Locke, James C.W.; Lynn, James R.; Straume, Martin; Smith, James Q.; Millar, Andrew J.
2006-01-01
Temperature compensation contributes to the accuracy of biological timing by preventing circadian rhythms from running more quickly at high than at low temperatures. We previously identified quantitative trait loci (QTL) with temperature-specific effects on the circadian rhythm of leaf movement, including a QTL linked to the transcription factor FLOWERING LOCUS C (FLC). We have now analyzed FLC alleles in near-isogenic lines and induced mutants to eliminate other candidate genes. We showed that FLC lengthened the circadian period specifically at 27°C, contributing to temperature compensation of the circadian clock. Known upstream regulators of FLC expression in flowering time pathways similarly controlled its circadian effect. We sought to identify downstream targets of FLC regulation in the molecular mechanism of the circadian clock using genome-wide analysis to identify FLC-responsive genes and 3503 transcripts controlled by the circadian clock. A Bayesian clustering method based on Fourier coefficients allowed us to discriminate putative regulatory genes. Among rhythmic FLC-responsive genes, transcripts of the transcription factor LUX ARRHYTHMO (LUX) correlated in peak abundance with the circadian period in flc mutants. Mathematical modeling indicated that the modest change in peak LUX RNA abundance was sufficient to cause the period change due to FLC, providing a molecular target for the crosstalk between flowering time pathways and circadian regulation. PMID:16473970
Chronobiology in mammalian health.
Liu, Zhihua; Chu, Guiyan
2013-03-01
Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.
Circadian rhythms regulate amelogenesis.
Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros
2013-07-01
Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization. Copyright © 2013 Elsevier Inc. All rights reserved.
Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms
Atger, Florian; Mauvoisin, Daniel; Weger, Benjamin; Gobet, Cédric; Gachon, Frédéric
2017-01-01
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases. PMID:28337174
2014-01-01
Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress adaptation in plants. It is also envisioned that alternative splicing of the clock genes plays more complex roles than previously expected. PMID:24885185
Transcriptional oscillation of canonical clock genes in mouse peripheral tissues
Yamamoto, Takuro; Nakahata, Yasukazu; Soma, Haruhiko; Akashi, Makoto; Mamine, Takayoshi; Takumi, Toru
2004-01-01
Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN) of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak) showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box), which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements including 3 known elements, E-box, RORE, and DBPE. PMID:15473909
Obesity in mice with adipocyte-specific deletion of clock component Arntl
Paschos, Georgios K; Ibrahim, Salam; Song, Wen-Liang; Kunieda, Takeshige; Grant, Gregory; Reyes, Teresa M; Bradfield, Christopher A; Vaughan, Cheryl H; Eiden, Michael; Masoodi, Mojgan; Griffin, Julian L; Wang, Fenfen; Lawson, John A; FitzGerald, Garret A
2013-01-01
Adipocytes store excess energy in the form of triglycerides and signal the levels of stored energy to the brain. Here we show that adipocyte-specific deletion of Arntl (also known as Bmal1), a gene encoding a core molecular clock component, results in obesity in mice with a shift in the diurnal rhythm of food intake, a result that is not seen when the gene is disrupted in hepatocytes or pancreatic islets. Changes in the expression of hypothalamic neuropeptides that regulate appetite are consistent with feedback from the adipocyte to the central nervous system to time feeding behavior. Ablation of the adipocyte clock is associated with a reduced number of polyunsaturated fatty acids in adipocyte triglycerides. This difference between mutant and wild-type mice is reflected in the circulating concentrations of polyunsaturated fatty acids and nonesterified polyunsaturated fatty acids in hypothalamic neurons that regulate food intake. Thus, this study reveals a role for the adipocyte clock in the temporal organization of energy regulation, highlights timing as a modulator of the adipocyte-hypothalamic axis and shows the impact of timing of food intake on body weight. PMID:23142819
microRNA modulation of circadian clock period and entrainment
Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl
2007-01-01
microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428
ROS signaling pathways and biological rhythms: perspectives in crustaceans.
Fanjul-Moles, Maria Luisa
2013-01-01
This work reviews concepts regarding the endogenous circadian clock and the relationship between oxidative stress (OS), light and entrainment in different organisms including crustaceans, particularly crayfish. In the first section, the molecular control of circadian rhythms in invertebrates, particularly in Drosophila, is reviewed, and this model is contrasted with recent reports on the circadian genes and proteins in crayfish. Second, the redox mechanisms and signaling pathways that participate in the entrainment of the circadian clock in different organisms are reviewed. Finally, the light signals and transduction pathways involved in the entrainment of the circadian clock, specifically in relation to cryptochromes (CRYs) and their dual role in the circadian clock of different animal groups and their possible relationship to the circadian clock and redox mechanisms in crustaceans is discussed. The relationship between metabolism, ROS signals and transcription factors, such as HIF-1 alpha in crayfish, as well as the possibility that HIF-1 alpha participates in the regulation of circadian control genes (ccgs) in crustaceans is discussed.
Shaw, Lindsay M; Turner, Adrian S; Laurie, David A
2012-07-01
Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.
Ci, Haipeng; Wu, Nan; Su, Yanjie
2014-01-01
The arginine vasopressin receptor (AVPR) and oxytocin receptor (OXTR) genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. This study assessed interactions between the clock gene (rs1801260, rs6832769) and the OXTR (rs1042778, rs237887) and AVPR1b (rs28373064) genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436). The Prosocial Tendencies Measure (PTM-R) was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.
Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria
2012-06-21
The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.
The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.
Shin, Jieun; Sánchez-Villarreal, Alfredo; Davis, Amanda M; Du, Shen-Xiu; Berendzen, Kenneth W; Koncz, Csaba; Ding, Zhaojun; Li, Cuiling; Davis, Seth J
2017-07-01
Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator. © 2017 John Wiley & Sons Ltd.
Clock gene Per2 as a controller of liver carcinogenesis
Mteyrek, Ali; Filipski, Elisabeth; Guettier, Catherine; Okyar, Alper; Lévi, Francis
2016-01-01
Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression. PMID:27494874
A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells
Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.
2009-01-01
Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810
O’Grady, Joseph F.; Hoelters, Laura S.; Swain, Martin T.
2016-01-01
Background Talitrus saltator is an amphipod crustacean that inhabits the supralittoral zone on sandy beaches in the Northeast Atlantic and Mediterranean. T. saltator exhibits endogenous locomotor activity rhythms and time-compensated sun and moon orientation, both of which necessitate at least one chronometric mechanism. Whilst their behaviour is well studied, currently there are no descriptions of the underlying molecular components of a biological clock in this animal, and very few in other crustacean species. Methods We harvested brain tissue from animals expressing robust circadian activity rhythms and used homology cloning and Illumina RNAseq approaches to sequence and identify the core circadian clock and clock-related genes in these samples. We assessed the temporal expression of these genes in time-course samples from rhythmic animals using RNAseq. Results We identified a comprehensive suite of circadian clock gene homologues in T. saltator including the ‘core’ clock genes period (Talper), cryptochrome 2 (Talcry2), timeless (Taltim), clock (Talclk), and bmal1 (Talbmal1). In addition we describe the sequence and putative structures of 23 clock-associated genes including two unusual, extended isoforms of pigment dispersing hormone (Talpdh). We examined time-course RNAseq expression data, derived from tissues harvested from behaviourally rhythmic animals, to reveal rhythmic expression of these genes with approximately circadian period in Talper and Talbmal1. Of the clock-related genes, casein kinase IIβ (TalckIIβ), ebony (Talebony), jetlag (Taljetlag), pigment dispensing hormone (Talpdh), protein phosphatase 1 (Talpp1), shaggy (Talshaggy), sirt1 (Talsirt1), sirt7 (Talsirt7) and supernumerary limbs (Talslimb) show temporal changes in expression. Discussion We report the sequences of principle genes that comprise the circadian clock of T. saltator and highlight the conserved structural and functional domains of their deduced cognate proteins. Our sequencing data contribute to the growing inventory of described comparative clocks. Expression profiling of the identified clock genes illuminates tantalising targets for experimental manipulation to elucidate the molecular and cellular control of clock-driven phenotypes in this crustacean. PMID:27761341
The Circadian Clock in Cancer Development and Therapy
Fu, Loning; Kettner, Nicole M.
2014-01-01
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, as the world industrialized, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function and aging that are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anti-cancer therapies. PMID:23899600
Circadian Rhythms in Floral Scent Emission.
Fenske, Myles P; Imaizumi, Takato
2016-01-01
To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.
Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing
2016-11-01
The avian pineal gland is a master clock that can receive external photic cues and translate them into output rhythms. To clarify whether a shift in light wavelength can influence the circadian expression in chick pineal gland, a total of 240 Arbor Acre male broilers were exposed to white light (WL), red light (RL), green light (GL) or blue light (BL). After 2weeks light illumination, circadian expressions of seven core clock genes in pineal gland and the level of melatonin in plasma were examined. The results showed after illumination with monochromatic light, 24h profiles of all clock gene mRNAs retained circadian oscillation, except that RL tended to disrupt the rhythm of cCry2. Compared to WL, BL advanced the acrophases of the negative elements (cCry1, cCry2, cPer2 and cPer3) by 0.1-1.5h and delayed those of positive elements (cClock, cBmal1 and cBmal2) by 0.2-0.8h. And, RL advanced all clock genes except cClock and cPer2 by 0.3-2.1h, while GL delayed all clock genes by 0.5-1.5h except cBmal2. Meanwhile, GL increased the amplitude and mesor of positive and reduced both parameters of negative clock genes, but RL showed the opposite pattern. Although the acrophase of plasma melatonin was advanced by both GL and RL, the melatonin level was significantly increased in GL and decreased in RL. This tendency was consistent with the variations in the positive clock gene mRNA levels under monochromatic light and contrasted with those of negative clock genes. Therefore, we speculate that GL may enhance positive clock genes expression, leading to melatonin synthesis, whereas RL may enhance negative genes expression, suppressing melatonin synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V
2017-08-01
Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.
Namihira, M; Honma, S; Abe, H; Tanahashi, Y; Ikeda, M; Honma, K
1999-08-13
Circadian expression and light-responsiveness of the mammalian clock genes, Clock and BMAL1, in the rat retina were examined by in situ hydbribization under constant darkness. A small but significant daily variation was detected in the Clock transcript level, but not in BMAL1. Light increased the Clock and BMAL1 expressions significantly when examined 60 min after exposure. The light-induced gene expression was phase-dependent for Clock and peaked at ZT2, while rather constant throughout the day for BMAL1. These findings suggest that Clock and BMAL1 play different roles in the generation of circadian rhytm in the retina from those in the suprachiasmatic nucleus. Different roles are also suggested between the two genes in the photic signal transduction in the retina.
Interrelationship between 3,5,3′-triiodothyronine and the circadian clock in the rodent heart
Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot
2017-01-01
Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally-based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day- (TOD) dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, whether oscillations in T3 sensitivity in the heart occur is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by Real-Time qPCR. Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2, and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g., Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes were interrogated at 3-h intervals over the subsequent 24h-period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed time-of-day-dependent rhythms in cardiac T3 sensitivity, and that T3 alters the circadian clock in the heart. PMID:27661292
Diurnal oscillations of soybean circadian clock and drought responsive genes.
Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G; Nepomuceno, Alexandre
2014-01-01
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.
Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes
Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G.; Nepomuceno, Alexandre
2014-01-01
Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans. PMID:24475115
Chen, Chenghao; Xu, Min; Anantaprakorn, Yuto; Rosing, Mechthild; Stanewsky, Ralf
2018-05-21
Circadian clocks organize biological processes to occur at optimized times of day and thereby contribute to overall fitness. While the regular daily changes of environmental light and temperature synchronize circadian clocks, extreme external conditions can bypass the temporal constraints dictated by the clock. Despite advanced knowledge about how the daily light-dark changes synchronize the clock, relatively little is known with regard to how the daily temperature changes influence daily timing and how temperature and light signals are integrated. In Drosophila, a network of ∼150 brain clock neurons exhibit 24-hr oscillations of clock gene expression to regulate daily activity and sleep. We show here that a temperature input pathway from peripheral sensory organs, which depends on the gene nocte, targets specific subsets of these clock neurons to synchronize molecular and behavioral rhythms to temperature cycles. Strikingly, while nocte 1 mutant flies synchronize normally to light-dark cycles at constant temperatures, the combined presence of light-dark and temperature cycles inhibits synchronization. nocte 1 flies exhibit altered siesta sleep, suggesting that the sleep-regulating clock neurons are an important target for nocte-dependent temperature input, which dominates a parallel light input into these cells. In conclusion, we reveal a nocte-dependent temperature input pathway to central clock neurons and show that this pathway and its target neurons are important for the integration of sensory light and temperature information in order to temporally regulate activity and sleep during daily light and temperature cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★
Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano
2013-01-01
Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902
Matsuzaki, Jun; Kawahara, Yoshihiro; Izawa, Takeshi
2015-01-01
Plant circadian clocks that oscillate autonomously with a roughly 24-h period are entrained by fluctuating light and temperature and globally regulate downstream genes in the field. However, it remains unknown how punctual internal time produced by the circadian clock in the field is and how it is affected by environmental fluctuations due to weather or daylength. Using hundreds of samples of field-grown rice (Oryza sativa) leaves, we developed a statistical model for the expression of circadian clock-related genes integrating diurnally entrained circadian clock with phase setting by light, both responses to light and temperature gated by the circadian clock. We show that expression of individual genes was strongly affected by temperature. However, internal time estimated from expression of multiple genes, which may reflect transcriptional regulation of downstream genes, is punctual to 22 min and not affected by weather, daylength, or plant developmental age in the field. We also revealed perturbed progression of internal time under controlled environment or in a mutant of the circadian clock gene GIGANTEA. Thus, we demonstrated that the circadian clock is a regulatory network of multiple genes that retains accurate physical time of day by integrating the perturbations on individual genes under fluctuating environments in the field. PMID:25757473
Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela
2014-05-01
One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.
Genetic basis of allochronic differentiation in the fall armyworm.
Hänniger, Sabine; Dumas, Pascaline; Schöfl, Gerhard; Gebauer-Jung, Steffi; Vogel, Heiko; Unbehend, Melanie; Heckel, David G; Groot, Astrid T
2017-03-06
Very little is known on how changes in circadian rhythms evolve. The noctuid moth Spodoptera frugiperda (Lepidoptera: Noctuidae) consists of two strains that exhibit allochronic differentiation in their mating time, which acts as a premating isolation barrier between the strains. We investigated the genetic basis of the strain-specific timing differences to identify the molecular mechanisms of differentiation in circadian rhythms. Through QTL analyses we identified one major Quantitative trait chromosome (QTC) underlying differentiation in circadian timing of mating activity. Using RADtags, we identified this QTC to be homologous to Bombyx mori C27, on which the clock gene vrille is located, which thus became the major candidate gene. In S. frugiperda, vrille showed strain-specific polymorphisms. Also, vrille expression differed significantly between the strains, with the rice-strain showing higher expression levels than the corn-strain. In addition, RT-qPCR experiments with the other main clock genes showed that pdp1, antagonist of vrille in the modulatory feedback loop of the circadian clock, showed higher expression levels in the rice-strain than in the corn-strain. Together, our results indicate that the allochronic differentiation in the two strains of S. frugiperda is associated with differential transcription of vrille or a cis-acting gene close to vrille, which contributes to the evolution of prezygotic isolation in S. frugiperda.
The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.
Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi
2017-04-01
The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli
NASA Astrophysics Data System (ADS)
Qin, Chuanjie; Shao, Ting
2015-05-01
The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.
Schallner, Nils; Lieberum, Judith-Lisa; Gallo, David; LeBlanc, Robert H; Fuller, Patrick M; Hanafy, Khalid A; Otterbein, Leo E
2017-09-01
Subarachnoid hemorrhage (SAH) is associated with a temporal pattern of stroke incidence. We hypothesized that natural oscillations in gene expression controlling circadian rhythm affect the severity of neuronal injury. We moreover predict that heme oxygenase-1 (HO-1/ Hmox1 ) and its product carbon monoxide (CO) contribute to the restoration of rhythm and neuroprotection. Murine SAH model was used where blood was injected at various time points of the circadian cycle. Readouts included circadian clock gene expression, locomotor activity, vasospasm, neuroinflammatory markers, and apoptosis. In addition, cerebrospinal fluid and peripheral blood leukocytes from SAH patients and controls were analyzed for clock gene expression. Significant elevations in the clock genes Per-1 , Per-2 , and NPAS-2 were observed in the hippocampus, cortex, and suprachiasmatic nucleus in mice subjected to SAH at zeitgeber time (ZT) 12 when compared with ZT2. Clock gene expression amplitude correlated with basal expression of HO-1, which was also significantly greater at ZT12. SAH animals showed a significant reduction in cerebral vasospasm, neuronal apoptosis, and microglial activation at ZT12 compared with ZT2. In animals with myeloid-specific HO-1 deletion ( Lyz-Cre-Hmox1 fl/fl ), Per-1, Per-2 , and NPAS-2 expression was reduced in the suprachiasmatic nucleus, which correlated with increased injury. Treatment with low-dose CO rescued Lyz-Cre-Hmox1 fl/fl mice, restored Per-1, Per-2 , and NPAS-2 expression, and reduced neuronal apoptosis. Clock gene expression regulates, in part, the severity of SAH and requires myeloid HO-1 activity to clear the erythrocyte burden and inhibit neuronal apoptosis. Exposure to CO rescues the loss of HO-1 and thus merits further investigation in patients with SAH. © 2017 American Heart Association, Inc.
Barclay, Nicola L; Eley, Thalia C; Mill, Jonathan; Wong, Chloe C Y; Zavos, Helena M S; Archer, Simon N; Gregory, Alice M
2011-09-01
Research investigating associations between specific genes and individual differences with regards to the quality and timing of sleep has primarily focussed on serotonin-related and clock genes. However, there are only a few studies of this type and most of those to date have not considered the possibility of gene-environment interaction. Here, we describe associations between sleep quality and diurnal preference and three functional polymorphisms: 5HTTLPR, PERIOD3, and CLOCK 3111. Furthermore, we assessed whether associations between genotypes and sleep phenotypes were moderated by negative life events-a test of gene-environment interaction. DNA from buccal swabs was collected from 947 individuals [mean age = 20.3 years (SD = 1.77), age range = 18-27 years; 61.8% female] and genotyped for the three polymorphisms. Participants completed the Pittsburgh Sleep Quality Index and the Morningness-Eveningness Questionnaire. There was a significant main effect of 5HTTLPR on sleep quality, indicating that "long-long" homozygotes experienced significantly poorer sleep quality (mean = 6.35, SD = 3.36) than carriers of at least one "short" allele (mean = 5.67, SD = 2.96; β = -0.34, P = 0.005). There were no main effects of 5HTTLPR on diurnal preference; no main effects of PERIOD3 or CLOCK on sleep quality or diurnal preference; and no significant interactions with negative life events. The main effect of the "long" 5HTTLPR allele contradicts previous research, suggesting that perhaps the effects of this gene are heterogeneous in different populations. Failure to replicate previous research in relation to PERIOD3 and CLOCK concurs with previous research suggesting that the effects of these genes are small and may be related to population composition. Copyright © 2011 Wiley-Liss, Inc.
Genetic differences in human circadian clock genes among worldwide populations.
Ciarleglio, Christopher M; Ryckman, Kelli K; Servick, Stein V; Hida, Akiko; Robbins, Sam; Wells, Nancy; Hicks, Jennifer; Larson, Sydney A; Wiedermann, Joshua P; Carver, Krista; Hamilton, Nalo; Kidd, Kenneth K; Kidd, Judith R; Smith, Jeffrey R; Friedlaender, Jonathan; McMahon, Douglas G; Williams, Scott M; Summar, Marshall L; Johnson, Carl Hirschie
2008-08-01
The daily biological clock regulates the timing of sleep and physiological processes that are of fundamental importance to human health, performance, and well-being. Environmental parameters of relevance to biological clocks include (1) daily fluctuations in light intensity and temperature, and (2) seasonal changes in photoperiod (day length) and temperature; these parameters vary dramatically as a function of latitude and locale. In wide-ranging species other than humans, natural selection has genetically optimized adaptiveness along latitudinal clines. Is there evidence for selection of clock gene alleles along latitudinal/photoperiod clines in humans? A number of polymorphisms in the human clock genes Per2, Per3, Clock, and AANAT have been reported as alleles that could be subject to selection. In addition, this investigation discovered several novel polymorphisms in the human Arntl and Arntl2 genes that may have functional impact upon the expression of these clock transcriptional factors. The frequency distribution of these clock gene polymorphisms is reported for diverse populations of African Americans, European Americans, Ghanaians, Han Chinese, and Papua New Guineans (including 5 subpopulations within Papua New Guinea). There are significant differences in the frequency distribution of clock gene alleles among these populations. Population genetic analyses indicate that these differences are likely to arise from genetic drift rather than from natural selection.
Fenske, Myles P.; Hewett Hazelton, Kristen D.; Hempton, Andrew K.; Shim, Jae Sung; Yamamoto, Breanne M.; Riffell, Jeffrey A.; Imaizumi, Takato
2015-01-01
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia. PMID:26124104
Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato
2015-08-04
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.
Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang
2016-06-01
Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.
A circadian gene expression atlas in mammals: implications for biology and medicine.
Zhang, Ray; Lahens, Nicholas F; Ballance, Heather I; Hughes, Michael E; Hogenesch, John B
2014-11-11
To characterize the role of the circadian clock in mouse physiology and behavior, we used RNA-seq and DNA arrays to quantify the transcriptomes of 12 mouse organs over time. We found 43% of all protein coding genes showed circadian rhythms in transcription somewhere in the body, largely in an organ-specific manner. In most organs, we noticed the expression of many oscillating genes peaked during transcriptional "rush hours" preceding dawn and dusk. Looking at the genomic landscape of rhythmic genes, we saw that they clustered together, were longer, and had more spliceforms than nonoscillating genes. Systems-level analysis revealed intricate rhythmic orchestration of gene pathways throughout the body. We also found oscillations in the expression of more than 1,000 known and novel noncoding RNAs (ncRNAs). Supporting their potential role in mediating clock function, ncRNAs conserved between mouse and human showed rhythmic expression in similar proportions as protein coding genes. Importantly, we also found that the majority of best-selling drugs and World Health Organization essential medicines directly target the products of rhythmic genes. Many of these drugs have short half-lives and may benefit from timed dosage. In sum, this study highlights critical, systemic, and surprising roles of the mammalian circadian clock and provides a blueprint for advancement in chronotherapy.
TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription.
Cavadini, Gionata; Petrzilka, Saskia; Kohler, Philipp; Jud, Corinne; Tobler, Irene; Birchler, Thomas; Fontana, Adriano
2007-07-31
Production of TNF-alpha and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-alpha and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-alpha on the circadian timing system. TNF-alpha is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-alpha on clock genes is shared by IL-1beta, but not by IFN-alpha, and IL-6. Furthermore, TNF-alpha interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-alpha is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-alpha and IL-1beta, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.
Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J
2016-09-01
Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.
Lin, Eugene; Kuo, Po-Hsiu; Liu, Yu-Li; Yang, Albert C; Kao, Chung-Feng; Tsai, Shih-Jen
2017-04-11
Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 x 10-5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ~ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.
Rubin, Elad B; Shemesh, Yair; Cohen, Mira; Elgavish, Sharona; Robertson, Hugh M; Bloch, Guy
2006-11-01
The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.
Hwang, Jae-Woong; Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.; Rahman, Irfan
2014-01-01
Patients with obstructive lung diseases display abnormal circadian rhythms in lung function. We determined the mechanism whereby environmental tobacco/cigarette smoke (CS) modulates expression of the core clock gene BMAL1, through Sirtuin1 (SIRT1) deacetylase during lung inflammatory and injurious responses. Adult C57BL6/J and various mice mutant for SIRT1 and BMAL1 were exposed to both chronic (6 mo) and acute (3 and 10 d) CS, and we measured the rhythmic expression of clock genes, circadian rhythms of locomotor activity, lung function, and inflammatory and emphysematous responses in the lungs. CS exposure (100–300 mg/m3 particulates) altered clock gene expression and reduced locomotor activity by disrupting the central and peripheral clocks and increased lung inflammation, causing emphysema in mice. BMAL1 was acetylated and degraded in the lungs of mice exposed to CS and in patients with chronic obstructive pulmonary disease (COPD), compared with lungs of the nonsmoking controls, linking it mechanistically to CS-induced reduction of SIRT1. Targeted deletion of Bmal1 in lung epithelium augmented inflammation in response to CS, which was not attenuated by the selective SIRT1 activator SRT1720 (EC50=0.16 μM) in these mice. Thus, the circadian clock, specifically the enhancer BMAL1 in epithelium, plays a pivotal role, mediated by SIRT1-dependent BMAL1, in the regulation of CS-induced lung inflammatory and injurious responses.— Hwang, J.-W., Sundar, I. K., Yao, H., Sellix, M. T., Rahman, I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. PMID:24025728
Higashi, Takanobu; Tanigaki, Yusuke; Takayama, Kotaro; Nagano, Atsushi J; Honjo, Mie N; Fukuda, Hirokazu
2016-01-01
The timing of measurement during plant growth is important because many genes are expressed periodically and orchestrate physiological events. Their periodicity is generated by environmental fluctuations as external factors and the circadian clock as the internal factor. The circadian clock orchestrates physiological events such as photosynthesis or flowering and it enables enhanced growth and herbivory resistance. These characteristics have possible applications for agriculture. In this study, we demonstrated the diurnal variation of the transcriptome in tomato (Solanum lycopersicum) leaves through molecular timetable method in a sunlight-type plant factory. Molecular timetable methods have been developed to detect periodic genes and estimate individual internal body time from these expression profiles in mammals. We sampled tomato leaves every 2 h for 2 days and acquired time-course transcriptome data by RNA-Seq. Many genes were expressed periodically and these expressions were stable across the 1st and 2nd days of measurement. We selected 143 time-indicating genes whose expression indicated periodically, and estimated internal time in the plant from these expression profiles. The estimated internal time was generally the same as the external environment time; however, there was a difference of more than 1 h between the two for some sampling points. Furthermore, the stress-responsive genes also showed weakly periodic expression, implying that they were usually expressed periodically, regulated by light-dark cycles as an external factor or the circadian clock as the internal factor, and could be particularly expressed when the plant experiences some specific stress under agricultural situations. This study suggests that circadian clock mediate the optimization for fluctuating environments in the field and it has possibilities to enhance resistibility to stress and floral induction by controlling circadian clock through light supplement and temperature control.
Higashi, Takanobu; Tanigaki, Yusuke; Takayama, Kotaro; Nagano, Atsushi J.; Honjo, Mie N.; Fukuda, Hirokazu
2016-01-01
The timing of measurement during plant growth is important because many genes are expressed periodically and orchestrate physiological events. Their periodicity is generated by environmental fluctuations as external factors and the circadian clock as the internal factor. The circadian clock orchestrates physiological events such as photosynthesis or flowering and it enables enhanced growth and herbivory resistance. These characteristics have possible applications for agriculture. In this study, we demonstrated the diurnal variation of the transcriptome in tomato (Solanum lycopersicum) leaves through molecular timetable method in a sunlight-type plant factory. Molecular timetable methods have been developed to detect periodic genes and estimate individual internal body time from these expression profiles in mammals. We sampled tomato leaves every 2 h for 2 days and acquired time-course transcriptome data by RNA-Seq. Many genes were expressed periodically and these expressions were stable across the 1st and 2nd days of measurement. We selected 143 time-indicating genes whose expression indicated periodically, and estimated internal time in the plant from these expression profiles. The estimated internal time was generally the same as the external environment time; however, there was a difference of more than 1 h between the two for some sampling points. Furthermore, the stress-responsive genes also showed weakly periodic expression, implying that they were usually expressed periodically, regulated by light–dark cycles as an external factor or the circadian clock as the internal factor, and could be particularly expressed when the plant experiences some specific stress under agricultural situations. This study suggests that circadian clock mediate the optimization for fluctuating environments in the field and it has possibilities to enhance resistibility to stress and floral induction by controlling circadian clock through light supplement and temperature control. PMID:26904059
Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration
Musiek, Erik S.; Lim, Miranda M.; Yang, Guangrui; Bauer, Adam Q.; Qi, Laura; Lee, Yool; Roh, Jee Hoon; Ortiz-Gonzalez, Xilma; Dearborn, Joshua T.; Culver, Joseph P.; Herzog, Erik D.; Hogenesch, John B.; Wozniak, David F.; Dikranian, Krikor; Giasson, Benoit I.; Weaver, David R.; Holtzman, David M.; FitzGerald, Garret A.
2013-01-01
Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator–like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration. PMID:24270424
Diurnal Variation in Vascular and Metabolic Function in Diet-Induced Obesity
Prasai, Madhu J.; Mughal, Romana S.; Wheatcroft, Stephen B.; Kearney, Mark T.; Grant, Peter J.; Scott, Eleanor M.
2013-01-01
Circadian rhythms are integral to the normal functioning of numerous physiological processes. Evidence from human and mouse studies suggests that loss of rhythm occurs in obesity and cardiovascular disease and may be a neglected contributor to pathophysiology. Obesity has been shown to impair the circadian clock mechanism in liver and adipose tissue but its effect on cardiovascular tissues is unknown. We investigated the effect of diet-induced obesity in C57BL6J mice upon rhythmic transcription of clock genes and diurnal variation in vascular and metabolic systems. In obesity, clock gene function and physiological rhythms were preserved in the vasculature but clock gene transcription in metabolic tissues and rhythms of glucose tolerance and insulin sensitivity were blunted. The most pronounced attenuation of clock rhythm occurred in adipose tissue, where there was also impairment of clock-controlled master metabolic genes and both AMPK mRNA and protein. Across tissues, clock gene disruption was associated with local inflammation but diverged from impairment of insulin signaling. We conclude that vascular tissues are less sensitive to pathological disruption of diurnal rhythms during obesity than metabolic tissues and suggest that cellular disruption of clock gene rhythmicity may occur by mechanisms shared with inflammation but distinct from those leading to insulin resistance. PMID:23382450
Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael
2016-06-24
The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.
Alternative Splicing of Barley Clock Genes in Response to Low Temperature
Calixto, Cristiane P. G.; Simpson, Craig G.; Waugh, Robbie; Brown, John W. S.
2016-01-01
Alternative splicing (AS) is a regulated mechanism that generates multiple transcripts from individual genes. It is widespread in eukaryotic genomes and provides an effective way to control gene expression. At low temperatures, AS regulates Arabidopsis clock genes through dynamic changes in the levels of productive mRNAs. We examined AS in barley clock genes to assess whether temperature-dependent AS responses also occur in a monocotyledonous crop species. We identify changes in AS of various barley core clock genes including the barley orthologues of Arabidopsis AtLHY and AtPRR7 which showed the most pronounced AS changes in response to low temperature. The AS events modulate the levels of functional and translatable mRNAs, and potentially protein levels, upon transition to cold. There is some conservation of AS events and/or splicing behaviour of clock genes between Arabidopsis and barley. In addition, novel temperature-dependent AS of the core clock gene HvPPD-H1 (a major determinant of photoperiod response and AtPRR7 orthologue) is conserved in monocots. HvPPD-H1 showed a rapid, temperature-sensitive isoform switch which resulted in changes in abundance of AS variants encoding different protein isoforms. This novel layer of low temperature control of clock gene expression, observed in two very different species, will help our understanding of plant adaptation to different environments and ultimately offer a new range of targets for plant improvement. PMID:27959947
van den Berg, C B; Chaves, I; Herzog, E M; Willemsen, S P; van der Horst, G T J; Steegers-Theunissen, R P M
2017-01-01
The placenta is important in providing a healthy environment for the fetus and plays a central role in the pathophysiology of preeclampsia (PE). Fetal and placental developments are influenced by epigenetic programming. There is some evidence that PE is controlled to an altered circadian homeostasis. In a nested case-control study embedded in the Rotterdam Periconceptional Cohort, we obtained placental tissue, umbilical cord leukocytes (UCL), and human umbilical venous endothelial cells of 13 early-onset PE, 16 late-onset PE and 83 controls comprising 36 uncomplicated and 47 complicated pregnancies, i.e. 27 fetal growth restricted and 20 spontaneous preterm birth. To investigate the associations between PE and the epigenetics of circadian clock and clock-controlled genes in placental and newborn tissues, genome-wide DNA methylation analysis was performed using the Illumina HumanMethylation450K BeadChip and a candidate-gene approach using ANCOVA was applied on 939 CpGs of 39 circadian clock and clock-controlled genes. DNA methylation significantly differed in early-onset PE compared with spontaneous preterm birth at 6 CpGs in placental tissue (3.73 E-5 ≤ p ≤ 0.016) and at 21 CpGs in UCL (1.09 E-5 ≤ p ≤ 0.024). In early-onset PE compared with fetal growth restriction 2 CpGs in placental tissue (p < 0.05) and 8 CpGs in uncomplicated controls (4.78 E-5 ≤ p ≤ 0.049) were significantly different. Moreover, significantly different DNA methylation in early-onset PE compared with uncomplicated controls was shown at 6 CpGs in placental tissue (1.36 E-4 ≤ p ≤ 0.045) and 11 CpGs in uncomplicated controls (2.52 E-6 ≤ p ≤ 0.009). No significant associations were shown with late-onset PE between study groups or tissues. The most differentially methylated CpGs showed hypomethylation in placental tissue and hypermethylation in uncomplicated controls. In conclusion, DNA methylation of circadian clock and clock-controlled genes demonstrated most differences in UCL of early-onset PE compared with spontaneous preterm birth. Implications of the tissue-specific variations in epigenetic programming for circadian performance and long-term health need further investigation.
Barberà, Miquel; Collantes-Alegre, Jorge Mariano; Martínez-Torres, David
2017-04-01
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luciano, Amelia K; Zhou, Wenping; Santana, Jeans M; Kyriakides, Cleo; Velazquez, Heino; Sessa, William C
2018-06-08
C ircadian l ocomotor o utput c ycles k aput (CLOCK) is a transcription factor that activates transcription of clock-controlled genes by heterodimerizing with BMAL1 and binding to E-box elements on DNA. Although several phosphorylation sites on CLOCK have already been identified, this study characterizes a novel phosphorylation site at serine 845 (Ser-836 in humans). Here, we show that CLOCK is a novel AKT substrate in vitro and in cells, and this phosphorylation site is a negative regulator of CLOCK nuclear localization by acting as a binding site for 14-3-3 proteins. To examine the role of CLOCK phosphorylation in vivo , Clock S845A knockin mice were generated using CRISPR/Cas9 technology. Clock S845A mice are essentially normal with normal central circadian rhythms and hemodynamics. However, examination of core circadian gene expression from peripheral tissues demonstrated that Clock S845A mice have diminished expression of Per2, Reverba, Dbp, and Npas2 in skeletal muscle and Per2, Reverba, Dbp, Per1 , Rora, and Npas2 in the liver during the circadian cycle. The reduction in Dbp levels is associated with reduced H3K9ac at E-boxes where CLOCK binds despite no change in total CLOCK levels. Thus, CLOCK phosphorylation by AKT on Ser-845 regulates its nuclear translocation and the expression levels of certain core circadian genes in insulin-sensitive tissues.
Expression of Clock genes in the pineal glands of newborn rats with hypoxic-ischemic encephalopathy☆
Sun, Bin; Feng, Xing; Ding, Xin; Bao, Li; Li, Yongfu; He, Jun; Jin, Meifang
2012-01-01
Clock genes are involved in circadian rhythm regulation, and surviving newborns with hypoxic-ischemic encephalopathy may present with sleep-wake cycle reversal. This study aimed to determine the expression of the clock genes Clock and Bmal1, in the pineal gland of rats with hypoxic-ischemic brain damage. Results showed that levels of Clock mRNA were not significantly changed within 48 hours after cerebral hypoxia and ischemia. Expression levels of CLOCK and BMAL1 protein were significantly higher after 48 hours. The levels of Bmal1 mRNA reached a peak at 36 hours, but were significantly reduced at 48 hours. Experimental findings indicate that Clock and Bmal1 genes were indeed expressed in the pineal glands of neonatal rats. At the initial stage (within 36 hours) of hypoxic-ischemic brain damage, only slight changes in the expression levels of these two genes were detected, followed by significant changes at 36–48 hours. These changes may be associated with circadian rhythm disorder induced by hypoxic-ischemic brain damage. PMID:25538743
Snider, Kaitlin H.; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E.; Hoyt, Kari; Obrietan, Karl
2017-01-01
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299
Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao
2016-04-01
Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Ogueta, Maite; Hardie, Roger C; Stanewsky, Ralf
2018-06-04
The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Janich, Peggy; Arpat, Alaaddin Bulak; Castelo-Szekely, Violeta; Lopes, Maykel; Gatfield, David
2015-01-01
Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ. PMID:26486724
Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver.
Ando, Hitoshi; Ushijima, Kentaro; Shimba, Shigeki; Fujimura, Akio
2016-02-01
Fasting blood glucose (FBG) and hepatic glucose production are regulated according to a circadian rhythm. An early morning increase in FBG levels, which is pronounced among diabetic patients, is known as the dawn phenomenon. Although the intracellular circadian clock generates various molecular rhythms, whether the hepatic clock is involved in FBG rhythm remains unclear. To address this issue, we investigated the effects of phase shift and disruption of the hepatic clock on the FBG rhythm. In both C57BL/6J and diabetic ob/ob mice, FBG exhibited significant daily rhythms with a peak at the beginning of the dark phase. Light-phase restricted feeding altered the phase of FBG rhythm mildly in C57BL/6J mice and greatly in ob/ob mice, in concert with the phase shifts of mRNA expression rhythms of the clock and glucose production-related genes in the liver. Moreover, the rhythmicity of FBG and Glut2 expression was not detected in liver-specific Bmal1-deficient mice. Furthermore, treatment with octreotide suppressed the plasma growth hormone concentration but did not affect the hepatic mRNA expression of the clock genes or the rise in FBG during the latter half of the resting phase in C57BL/6J mice. These results suggest that the hepatic circadian clock plays a critical role in regulating the daily FBG rhythm, including the dawn phenomenon.
Sharma, Anupma; Wai, Ching Man; Ming, Ray
2017-01-01
Abstract Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. PMID:28922793
Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries
2016-02-15
The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Transforming growth factor-beta inhibits the expression of clock genes.
Gast, Heidemarie; Gordic, Sonja; Petrzilka, Saskia; Lopez, Martin; Müller, Andreas; Gietl, Anton; Hock, Christoph; Birchler, Thomas; Fontana, Adriano
2012-07-01
Disturbances of sleep-wake rhythms are an important problem in Alzheimer's disease (AD). Circadian rhythms are regulated by clock genes. Transforming growth factor-beta (TGF-β) is overexpressed in neurons in AD and is the only cytokine that is increased in cerebrospinal fluid (CSF). Our data show that TGF-β2 inhibits the expression of the clock genes Period (Per)1, Per2, and Rev-erbα, and of the clock-controlled genes D-site albumin promoter binding protein (Dbp) and thyrotroph embryonic factor (Tef). However, our results showed that TGF-β2 did not alter the expression of brain and muscle Arnt-like protein-1 (Bmal1). The concentrations of TGF-β2 in the CSF of 2 of 16 AD patients and of 1 of 7 patients with mild cognitive impairment were in the dose range required to suppress the expression of clock genes. TGF-β2-induced dysregulation of clock genes may alter neuronal pathways, which may be causally related to abnormal sleep-wake rhythms in AD patients. © 2012 New York Academy of Sciences.
Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie
2015-09-01
A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.
Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures
Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A.; Luján, Juan A.; Ordovás, José M.; Garaulet, Marta
2012-01-01
Aims to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. PMID:23251369
Regulation of the clock gene expression in human adipose tissue by weight loss.
Pivovarova, O; Gögebakan, Ö; Sucher, S; Groth, J; Murahovschi, V; Kessler, K; Osterhoff, M; Rudovich, N; Kramer, A; Pfeiffer, A F H
2016-06-01
The circadian clock coordinates numerous metabolic processes to adapt physiological responses to light-dark and feeding regimens and is itself regulated by metabolic cues. The implication of the circadian clock in the regulation of energy balance and body weight is widely studied in rodents but not in humans. Here we investigated (1) whether the expression of clock genes in human adipose tissue is changed by weight loss and (2) whether these alterations are associated with metabolic parameters. Subcutaneous adipose tissue (SAT) samples were collected before and after 8 weeks of weight loss on an 800 kcal per day hypocaloric diet (plus 200 g per day vegetables) at the same time of the day. Fifty overweight subjects who lost at least 8% weight after 8 weeks were selected for the study. The expression of 10 clock genes and key metabolic and inflammatory genes in adipose tissue was determined by quantitative real-time PCR. The expression of core clock genes PER2 and NR1D1 was increased after the weight loss. Correlations of PERIOD expression with body mass index (BMI) and serum total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol levels and of NR1D1 expression with total and LDL cholesterol were found that became non-significant after correction for multiple testing. Clock gene expression levels and their weight loss-induced changes tightly correlated with each other and with genes involved in fat metabolism (FASN, CPT1A, LPL, PPARG, PGC1A, ADIPOQ), energy metabolism (SIRT1), autophagy (LC3A, LC3B) and inflammatory response (NFKB1, NFKBIA, NLRP3, EMR1). Clock gene expression in human SAT is regulated by body weight changes and associated with BMI, serum cholesterol levels and the expression of metabolic and inflammatory genes. Our data confirm the tight crosstalk between molecular clock and metabolic and inflammatory pathways involved in adapting adipose tissue metabolism to changes of the energy intake in humans.
Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold.
Machado, Frederico Sander Mansur; Zhang, Zhi; Su, Yan; de Goede, Paul; Jansen, Remi; Foppen, Ewout; Coimbra, Cândido Celso; Kalsbeek, Andries
2018-01-01
Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia ( p < 0.001). Light phase cold exposure also increased metabolic rate and LA ( p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase ( p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP ( p < 0.0001) and REV-ERBα ( p < 0.01) in the BAT and CLOCK ( p < 0.05), PER2 ( p < 0.05), CRY1 ( p < 0.05), CRY2 ( p < 0.01), and REV-ERBα ( p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.
Honda, Kazuhisa; Kondo, Makoto; Hiramoto, Daichi; Saneyasu, Takaoki; Kamisoyama, Hiroshi
2017-05-01
The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks. Copyright © 2017 Elsevier Inc. All rights reserved.
Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y
2007-01-01
Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.
Lehmann, Robert; Abreu, Monica; Fuhr, Luise; Herzel, Hanspeter; Leser, Ulf; Relógio, Angela
2015-01-01
By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN) controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG). To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/β and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, β, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer. PMID:25945798
Landgraf, Dominic; Long, Jaimie E; Proulx, Christophe D; Barandas, Rita; Malinow, Roberto; Welsh, David K
2016-12-01
Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.
Landgraf, Dominic; Long, Jaimie E.; Proulx, Christophe D.; Barandas, Rita; Malinow, Roberto; Welsh, David K.
2016-01-01
Background Major depressive disorder is associated with disturbed circadian rhythms. To investigate the causal relationship between mood disorders and circadian clock disruption, previous studies in animal models have employed light/dark manipulations, global mutations of clock genes, or brain area lesions. However, light can impact mood by noncircadian mechanisms; clock genes have pleiotropic, clock-independent functions; and brain lesions not only disrupt cellular circadian rhythms but also destroy cells and eliminate important neuronal connections, including light reception pathways. Thus, a definitive causal role for functioning circadian clocks in mood regulation has not been established. Methods We stereotactically injected viral vectors encoding short hairpin RNA to knock down expression of the essential clock gene Bmal1 into the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN). Results In these SCN-specific Bmal1-knockdown (SCN-Bmal1-KD) mice, circadian rhythms were greatly attenuated in the SCN, while the mice were maintained in a standard light/dark cycle, SCN neurons remained intact, and neuronal connections were undisturbed, including photic inputs. In the learned helplessness paradigm, the SCN-Bmal1-KD mice were slower to escape, even before exposure to inescapable stress. They also spent more time immobile in the tail suspension test and less time in the lighted section of a light/dark box. The SCN-Bmal1-KD mice also showed greater weight gain, an abnormal circadian pattern of corticosterone, and an attenuated increase of corticosterone in response to stress. Conclusions Disrupting SCN circadian rhythms is sufficient to cause helplessness, behavioral despair, and anxiety-like behavior in mice, establishing SCN-Bmal1-KD mice as a new animal model of depression. PMID:27113500
Hartl, Daniel L.
2008-01-01
Simple models of molecular evolution assume that sequences evolve by a Poisson process in which nucleotide or amino acid substitutions occur as rare independent events. In these models, the expected ratio of the variance to the mean of substitution counts equals 1, and substitution processes with a ratio greater than 1 are called overdispersed. Comparing the genomes of 10 closely related species of Drosophila, we extend earlier evidence for overdispersion in amino acid replacements as well as in four-fold synonymous substitutions. The observed deviation from the Poisson expectation can be described as a linear function of the rate at which substitutions occur on a phylogeny, which implies that deviations from the Poisson expectation arise from gene-specific temporal variation in substitution rates. Amino acid sequences show greater temporal variation in substitution rates than do four-fold synonymous sequences. Our findings provide a general phenomenological framework for understanding overdispersion in the molecular clock. Also, the presence of substantial variation in gene-specific substitution rates has broad implications for work in phylogeny reconstruction and evolutionary rate estimation. PMID:18480070
Nicholas, B; Rudrasingham, V; Nash, S; Kirov, G; Owen, M J; Wimpory, D C
2007-06-01
Clock gene anomalies have been suggested as causative factors in autism. We screened eleven clock/clock-related genes in a predominantly high-functioning Autism Genetic Resource Exchange sample of strictly diagnosed autistic disorder progeny and their parents (110 trios) for association of clock gene variants with autistic disorder. We found significant association (P<0.05) for two single-nucleotide polymorphisms in per1 and two in npas2. Analysis of all possible combinations of two-marker haplotypes for each gene showed that in npas2 40 out of the 136 possible two-marker combinations were significant at the P<0.05 level, with the best result between markers rs1811399 and rs2117714, P=0.001. Haplotype analysis within per1 gave a single significant result: a global P=0.027 for the markers rs2253820-rs885747. No two-marker haplotype was significant in any of the other genes, despite the large number of tests performed. Our findings support the hypothesis that these epistatic clock genes may be involved in the etiology of autistic disorder. Problems in sleep, memory and timing are all characteristics of autistic disorder and aspects of sleep, memory and timing are each clock-gene-regulated in other species. We identify how our findings may be relevant to theories of autism that focus on the amygdala, cerebellum, memory and temporal deficits. We outline possible implications of these findings for developmental models of autism involving temporal synchrony/social timing.
Light signaling to the zebrafish circadian clock by Cryptochrome 1a
Tamai, T. Katherine; Young, Lucy C.; Whitmore, David
2007-01-01
Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light entrainment of the zebrafish clock. Intensity and phase response curves reveal a strong correlation between light induction of Cry1a and clock resetting. Overexpression studies show that Cry1a acts as a potent repressor of clock function and mimics the effect of constant light to “stop” the circadian oscillator. Yeast two-hybrid analysis demonstrates that the Cry1a protein interacts directly with specific regions of core clock components, CLOCK and BMAL, blocking their ability to fully dimerize and transactivate downstream targets, providing a likely mechanism for clock resetting. A comparison of entrainment of zebrafish cells to complete versus skeleton photoperiods reveals that clock phase is identical under these two conditions. However, the amplitude of the core clock oscillation is much higher on a complete photoperiod, as are the levels of light-induced Cry1a. We believe that Cry1a acts on the core clock machinery in both a continuous and discrete fashion, leading not only to entrainment, but also to the establishment of a high-amplitude rhythm and even stopping of the clock under long photoperiods. PMID:17785416
Association between genetic variants of the clock gene and obesity and sleep duration.
Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe
2015-12-01
Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.
Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver.
Guillaumond, Fabienne; Gréchez-Cassiau, Aline; Subramaniam, Malayannan; Brangolo, Sophie; Peteri-Brünback, Brigitta; Staels, Bart; Fiévet, Catherine; Spelsberg, Thomas C; Delaunay, Franck; Teboul, Michèle
2010-06-01
The circadian timing system coordinates many aspects of mammalian physiology and behavior in synchrony with the external light/dark cycle. These rhythms are driven by endogenous molecular clocks present in most body cells. Many clock outputs are transcriptional regulators, suggesting that clock genes primarily control physiology through indirect pathways. Here, we show that Krüppel-like factor 10 (KLF10) displays a robust circadian expression pattern in wild-type mouse liver but not in clock-deficient Bmal1 knockout mice. Consistently, the Klf10 promoter recruited the BMAL1 core clock protein and was transactivated by the CLOCK-BMAL1 heterodimer through a conserved E-box response element. Profiling the liver transcriptome from Klf10(-/-) mice identified 158 regulated genes with significant enrichment for transcripts involved in lipid and carbohydrate metabolism. Importantly, approximately 56% of these metabolic genes are clock controlled. Male Klf10(-/-) mice displayed postprandial and fasting hyperglycemia, a phenotype accompanied by a significant time-of-day-dependent upregulation of the gluconeogenic gene Pepck and increased hepatic glucose production. Consistently, functional data showed that the proximal Pepck promoter is repressed directly by KLF10. Klf10(-/-) females were normoglycemic but displayed higher plasma triglycerides. Correspondingly, rhythmic gene expression of components of the lipogenic pathway, including Srebp1c, Fas, and Elovl6, was altered in females. Collectively, these data establish KLF10 as a required circadian transcriptional regulator that links the molecular clock to energy metabolism in the liver.
Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl
2016-07-15
A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.
A role for clock genes in sleep homeostasis.
Franken, Paul
2013-10-01
The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here. Copyright © 2013 Elsevier Ltd. All rights reserved.
Steidle-Kloc, Eva; Schönfelder, Martin; Müller, Edith; Sixt, Sebastian; Schuler, Gerhard; Patsch, Wolfgang; Niebauer, Josef
2016-09-01
Recent findings revealed negative effects of deregulated molecular circadian rhythm in coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). Physical exercise training (ET) has been shown to promote anti-diabetic and anti-atherogenic responses in skeletal muscle of these patients, but the role of the circadian clock-machinery remains unknown. This study investigated whether mRNA expression of clock genes in skeletal muscle of CAD and T2DM patients is influenced by physical ET intervention. Nineteen patients with CAD and T2DM (age 64 ± 5 years) were randomised to either six months of ET (four weeks of in-hospital ET followed by a five-month ambulatory programme) or usual care. At the beginning of the study, after four weeks and after six months parameters of metabolic and cardiovascular risk factors, and physical exercise capacity were assessed. Gene expression was measured in skeletal muscle biopsies by quantitative real-time polymerase chain reaction (PCR). A selection of clock genes and associated components (circadian locomoter output cycle kaput protein (CLOCK), period (PER) 1, cryptochrome (CRY) 2 and aminolevulinate-deltA-synthase-1 (ALAS1)) was reliably measured and used for further analysis. A time-dependent effect in gene expression was observed in CLOCK (p = 0.013) and a significant interaction between time and intervention was observed for ALAS1 (p = 0.032; p = 0.014) as a result of ET. This is the first study to analyse clock gene expression in skeletal muscles of patients with CAD and T2DM participating in a long-lasting exercise intervention. ET, as one of the cornerstones in prevention and rehabilitation of CAD and T2DM, exerts no effects on CLOCK genes but meaningful effects on the clock-associated gene ALAS1. © The European Society of Cardiology 2016.
Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats
Westfall, Susan; Aguilar-Valles, Argel; Mongrain, Valérie; Luheshi, Giamal N.; Cermakian, Nicolas
2013-01-01
Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever. PMID:23527270
Metabolic rate does not calibrate the molecular clock
Lanfear, Robert; Thomas, Jessica A.; Welch, John J.; Brey, Thomas; Bromham, Lindell
2007-01-01
Rates of molecular evolution vary widely among lineages, but the causes of this variation remain poorly understood. It has been suggested that mass-specific metabolic rate may be one of the key factors determining the rate of molecular evolution, and that it can be used to derive “corrected” molecular clocks. However, previous studies have been hampered by a paucity of mass-specific metabolic rate data and have been largely limited to vertebrate taxa. Using mass-specific metabolic rate measurements and DNA sequence data for >300 metazoan species for 12 different genes, we find no evidence that mass-specific metabolic rate drives substitution rates. The mechanistic basis of the metabolic rate hypothesis is discussed in light of these findings. PMID:17881572
Sharma, Anupma; Wai, Ching Man; Ming, Ray; Yu, Qingyi
2017-09-01
Circadian clock provides fitness advantage by coordinating internal metabolic and physiological processes to external cyclic environments. Core clock components exhibit daily rhythmic changes in gene expression, and the majority of them are transcription factors (TFs) and transcription coregulators (TCs). We annotated 1,398 TFs from 67 TF families and 80 TCs from 20 TC families in pineapple, and analyzed their tissue-specific and diurnal expression patterns. Approximately 42% of TFs and 45% of TCs displayed diel rhythmic expression, including 177 TF/TCs cycling only in the nonphotosynthetic leaf tissue, 247 cycling only in the photosynthetic leaf tissue, and 201 cycling in both. We identified 68 TF/TCs whose cycling expression was tightly coupled between the photosynthetic and nonphotosynthetic leaf tissues. These TF/TCs likely coordinate key biological processes in pineapple as we demonstrated that this group is enriched in homologous genes that form the core circadian clock in Arabidopsis and includes a STOP1 homolog. Two lines of evidence support the important role of the STOP1 homolog in regulating CAM photosynthesis in pineapple. First, STOP1 responds to acidic pH and regulates a malate channel in multiple plant species. Second, the cycling expression pattern of the pineapple STOP1 and the diurnal pattern of malate accumulation in pineapple leaf are correlated. We further examined duplicate-gene retention and loss in major known circadian genes and refined their evolutionary relationships between pineapple and other plants. Significant variations in duplicate-gene retention and loss were observed for most clock genes in both monocots and dicots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Temporal Ordering of Dynamic Expression Data from Detailed Spatial Expression Maps.
Bailey, Charlotte S L; Bone, Robert A; Murray, Philip J; Dale, J Kim
2017-02-09
During somitogenesis, pairs of epithelial somites form in a progressive manner, budding off from the anterior end of the pre-somitic mesoderm (PSM) with a strict species-specific periodicity. The periodicity of the process is regulated by a molecular oscillator, known as the "segmentation clock," acting in the PSM cells. This clock drives the oscillatory patterns of gene expression across the PSM in a posterior-anterior direction. These so-called clock genes are key components of three signaling pathways: Wnt, Notch, and fibroblast growth factor (FGF). In addition, Notch signaling is essential for synchronizing intracellular oscillations in neighboring cells. We recently gained insight into how this may be mechanistically regulated. Upon ligand activation, the Notch receptor is cleaved, releasing the intracellular domain (NICD), which moves to the nucleus and regulates gene expression. NICD is highly labile, and its phosphorylation-dependent turnover acts to restrict Notch signaling. The profile of NICD production (and degradation) in the PSM is known to be oscillatory and to resemble that of a clock gene. We recently reported that both the Notch receptor and the Delta ligand, which mediate intercellular coupling, themselves exhibit dynamic expression at both the mRNA and protein levels. In this article, we describe the sensitive detection methods and detailed image analysis tools that we used, in combination with the computational modeling that we designed, to extract and overlay expression data from distinct points in the expression cycle. This allowed us to construct a spatio-temporal picture of the dynamic expression profile for the receptor, the ligand, and the Notch target clock genes throughout an oscillation cycle. Here, we describe the protocols used to generate and culture the PSM explants, as well as the procedure to stain for the mRNA or protein. We also explain how the confocal images were subsequently analyzed and temporally ordered computationally to generate ordered sequences of clock expression snapshots, hereafter defined as "kymographs," for the visualization of the spatiotemporal expression of Delta-like1 (Dll1) and Notch1 throughout the PSM.
Circadian clock: linking epigenetics to aging
Orozco-Solis, Ricardo; Sassone-Corsi, Paolo
2015-01-01
Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging. PMID:25033025
Dor, Roi; Lovette, Irby J.; Safran, Rebecca J.; Billerman, Shawn M.; Huber, Gernot H.; Vortman, Yoni; Lotem, Arnon; McGowan, Andrew; Evans, Matthew R.; Cooper, Caren B.; Winkler, David W.
2011-01-01
Recent studies of several species have reported a latitudinal cline in the circadian clock gene, Clock, which influences rhythms in both physiology and behavior. Latitudinal variation in this gene may hence reflect local adaptation to seasonal variation. In some bird populations, there is also an among-individual association between Clock poly-Q genotype and clutch initiation date and incubation period. We examined Clock poly-Q allele variation in the Barn Swallow (Hirundo rustica), a species with a cosmopolitan geographic distribution and considerable variation in life-history traits that may be influenced by the circadian clock. We genotyped Barn Swallows from five populations (from three subspecies) and compared variation at the Clock locus to that at microsatellite loci and mitochondrial DNA (mtDNA). We found very low variation in the Clock poly-Q region, as >96% of individuals were homozygous, and the two other alleles at this locus were globally rare. Genetic differentiation based on the Clock poly-Q locus was not correlated with genetic differentiation based on either microsatellite loci or mtDNA sequences. Our results show that high diversity in Clock poly-Q is not general across avian species. The low Clock variation in the background of heterogeneity in microsatellite and mtDNA loci in Barn Swallows may be an outcome of stabilizing selection on the Clock locus. PMID:22216124
Nakahata, Yasukazu; Yoshida, Mayumi; Takano, Atsuko; Soma, Haruhiko; Yamamoto, Takuro; Yasuda, Akio; Nakatsu, Toru; Takumi, Toru
2008-01-01
Background The circadian expression of the mammalian clock genes is based on transcriptional feedback loops. Two basic helix-loop-helix (bHLH) PAS (for Period-Arnt-Sim) domain-containing transcriptional activators, CLOCK and BMAL1, are known to regulate gene expression by interacting with a promoter element termed the E-box (CACGTG). The non-canonical E-boxes or E-box-like sequences have also been reported to be necessary for circadian oscillation. Results We report a new cis-element required for cell-autonomous circadian transcription of clock genes. This new element consists of a canonical E-box or a non-canonical E-box and an E-box-like sequence in tandem with the latter with a short interval, 6 base pairs, between them. We demonstrate that both E-box or E-box-like sequences are needed to generate cell-autonomous oscillation. We also verify that the spacing nucleotides with constant length between these 2 E-elements are crucial for robust oscillation. Furthermore, by in silico analysis we conclude that several clock and clock-controlled genes possess a direct repeat of the E-box-like elements in their promoter region. Conclusion We propose a novel possible mechanism regulated by double E-box-like elements, not to a single E-box, for circadian transcriptional oscillation. The direct repeat of the E-box-like elements identified in this study is the minimal required element for the generation of cell-autonomous transcriptional oscillation of clock and clock-controlled genes. PMID:18177499
Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice.
Sheward, W John; Maywood, Elizabeth S; French, Karen L; Horn, Jacqueline M; Hastings, Michael H; Seckl, Jonathan R; Holmes, Megan C; Harmar, Anthony J
2007-04-18
The master clock driving mammalian circadian rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and entrained by daily light/dark cycles. SCN lesions abolish circadian rhythms of behavior and result in a loss of synchronized circadian rhythms of clock gene expression in peripheral organs (e.g., the liver) and of hormone secretion (e.g., corticosterone). We examined rhythms of behavior, hepatic clock gene expression, and corticosterone secretion in VPAC2 receptor-null (Vipr2-/-) mice, which lack a functional SCN clock. Unexpectedly, although Vipr2-/- mice lacked robust circadian rhythms of wheel-running activity and corticosterone secretion, hepatic clock gene expression was strongly rhythmic, but advanced in phase compared with that in wild-type mice. The timing of food availability is thought to be an important entrainment signal for circadian clocks outside the SCN. Vipr2-/- mice consumed food significantly earlier in the 24 h cycle than wild-type mice, consistent with the observed timing of peripheral rhythms of circadian gene expression. When restricted to feeding only during the daytime (RF), mice develop rhythms of activity and of corticosterone secretion in anticipation of feeding time, thought to be driven by a food-entrainable circadian oscillator, located outside the SCN. Under RF, mice of both genotypes developed food-anticipatory rhythms of activity and corticosterone secretion, and hepatic gene expression rhythms also became synchronized to the RF stimulus. Thus, food intake is an effective zeitgeber capable of coordinating circadian rhythms of behavior, peripheral clock gene expression, and hormone secretion, even in the absence of a functional SCN clock.
Light directs zebrafish period2 expression via conserved D and E boxes.
Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S
2009-10-01
For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.
Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers
Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu
2016-01-01
Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN
Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth
2015-01-01
Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078
Crosstalk of clock gene expression and autophagy in aging
Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans
2016-01-01
Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892
Crosstalk of clock gene expression and autophagy in aging.
Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans
2016-08-28
Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2 , are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans , suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels.
Cermakian, Nicolas; Whitmore, David; Foulkes, Nicholas S.; Sassone-Corsi, Paolo
2000-01-01
Most clock genes encode transcription factors that interact to elicit cooperative control of clock function. Using a two-hybrid system approach, we have isolated two different partners of zebrafish (zf) CLOCK, which are similar to the mammalian BMAL1 (brain and muscle arylhydrocarbon receptor nuclear translocator-like protein 1). The two homologs, zfBMAL1 and zfBMAL2, contain conserved basic helix–loop–helix-PAS (Period-Arylhydrocarbon receptor-Singleminded) domains but diverge in the carboxyl termini, thus bearing different transcriptional activation potential. As for zfClock, the expression of both zfBmals oscillates in most tissues in the animal. However, in many tissues, the peak, levels, and kinetics of expression are different between the two genes and for the same gene from tissue to tissue. These results support the existence of independent peripheral oscillators and suggest that zfBMAL1 and zfBMAL2 may exert distinct circadian functions, interacting differentially with zfCLOCK at various times in different tissues. Our findings also indicate that multiple controls may be exerted by the central clock and/or that peripheral oscillators can differentially interpret central clock signals. PMID:10760301
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing
Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-01-01
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.
Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-04-23
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.
Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.
Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon
2015-01-01
The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.
Circadian clock regulation of the cell cycle in the zebrafish intestine.
Peyric, Elodie; Moore, Helen A; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.
Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine
Peyric, Elodie; Moore, Helen A.; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905
Rivas, Gustavo B S; Teles-de-Freitas, Rayane; Pavan, Márcio G; Lima, José B P; Peixoto, Alexandre A; Bruno, Rafaela Vieira
2018-06-01
Most organisms feature an endogenous circadian clock capable of synchronization with their environment. The most well-known synchronizing agents are light and temperature. The circadian clock of mosquitoes, vectors of many pathogens, drives important behaviors related to vectoral capacity, including oviposition, host seeking, and hematophagy. Main clock gene expression, as well as locomotor activity patterns, has been identified in Aedes aegypti and Culex quinquefasciatus under artificial light-dark cycles. Given that these mosquito species thrive in tropical areas, it is reasonable to speculate that temperature plays an important role in the circadian clock. Here, we provide data supporting a different hierarchy of light and temperature as zeitgebers of two mosquito species. We recorded their locomotor activity and quantified mRNA expression of the main clock genes in several combinations of light and temperature cycles. We observed that A. aegypti is more sensitive to temperature, while C. quinquefasciatus is more responsive to light. These variations in clock gene expression and locomotor activity may have affected the mosquito species' metabolism, energy expenditure, fitness cost, and pathogen transmission efficiency. Our findings are relevant to chronobiology studies and also have epidemiological implications.
Doi, Masao
2013-12-01
Recent advances in circadian biology strongly suggest that there are still genes involved in the generation and maintenance of biological rhythms that remain to be identified. It has been generally appreciated that circadian rhythms are generated intracellularly through transcription/translation-based autoregulatory feedback circuits of the clock genes. However, the existence of new intracellular clock machinery that cannot be explained by existing clock genes has recently been reported. This clock manifests as oxidation-reduction cycles of peroxiredoxin proteins, implying that as-yet-undiscovered clock genes may exist within cells to regulate redox cycling. Moreover, great strides have also been made in understanding the cell-cell communication-based robust circadian oscillations of the suprachiasmatic nucleus (SCN), the central pacemaker in the brain. Thousands of neurons that constitute the SCN maintain a high degree of synchrony in a way that allows the SCN neurons to create coherent signals as a whole. Inactivation of the genes involved in the cell-cell synchronization of the SCN, which include the genes encoding VIP, VPAC2, and RGS16, leads to altered circadian rhythms in behavior and physiologies. The purpose of this review is to provide an overview of recent advances in the circadian biology, with a special emphasis on the importance of cell-cell interactions within the SCN.
Molecular clock of HIV-1 envelope genes under early immune selection
Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...
2016-06-01
Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.
Molecular clock of HIV-1 envelope genes under early immune selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.
Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.
Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna
2017-01-01
To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we cloned two circadian clock genes, period (per) and timeless (tim) from the moth Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among the compared insects fοr both genes. We also investigated the expression patterns of per and tim in brains of larvae growing under 16L:8D (long days), constant darkness (DD) and 10L:14D (short days) conditions by qPCR assays. The results showed that mRNA accumulations encoding both genes exhibited diel oscillations under different photoperiods. The oscillation of per and tim mRNA, under short-day photoperiod differed from long-day. The difference between long-day and short-day conditions in the pattern of mRNA levels of per and tim appears to distinguish photoperiodic conditions clearly and both genes were influenced by photoperiod in different ways. We infer that not all photoperiodic clocks of insects interact with circadian clocks in the same fashion. Our results suggest that transcriptional regulations of the both clock genes act in the diapause programing in S. nonagrioides. The expression patterns of these genes are affected by photoperiod but runs with 24 h by entrainment to daily environmental cues. © 2016 Wiley Periodicals, Inc.
Machine Learning Helps Identify CHRONO as a Circadian Clock Component
Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.
2014-01-01
Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000
Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?
Camera, Donny M
2018-01-01
It is now well established that resistance exercise stimulates muscle protein synthesis and promotes gains in muscle mass and strength. However, considerable variability exists following standardized resistance training programs in the magnitude of muscle cross-sectional area and strength responses from one individual to another. Several studies have recently posited that alterations in satellite cell population, myogenic gene expression and microRNAs may contribute to individual variability in anabolic adaptation. One emerging factor that may also explain the variability in responses to resistance exercise is circadian rhythms and underlying molecular clock signals. The molecular clock is found in most cells within the body, including skeletal muscle, and principally functions to optimize the timing of specific cellular events around a 24 h cycle. Accumulating evidence investigating the skeletal muscle molecular clock indicates that exercise-induced contraction and its timing may regulate gene expression and protein synthesis responses which, over time, can influence and modulate key physiological responses such as muscle hypertrophy and increased strength. Therefore, the circadian clock may play a key role in the heterogeneous anabolic responses with resistance exercise. The central aim of this Hypothesis and Theory is to discuss and propose the potential interplay between the circadian molecular clock and established molecular mechanisms mediating muscle anabolic responses with resistance training. This article begins with a current review of the mechanisms associated with the heterogeneity in muscle anabolism with resistance training before introducing the molecular pathways regulating circadian function in skeletal muscle. Recent work showing members of the core molecular clock system can regulate myogenic and translational signaling pathways is also discussed, forming the basis for a possible role of the circadian clock in the variable anabolic responses with resistance exercise.
The circadian clock in cancer development and therapy
USDA-ARS?s Scientific Manuscript database
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The...
Circadian Clock Gene Expression in the Coral Favia fragum over Diel and Lunar Reproductive Cycles
Hoadley, Kenneth D.; Szmant, Alina M.; Pyott, Sonja J.
2011-01-01
Natural light cycles synchronize behavioral and physiological cycles over varying time periods in both plants and animals. Many scleractinian corals exhibit diel cycles of polyp expansion and contraction entrained by diel sunlight patterns, and monthly cycles of spawning or planulation that correspond to lunar moonlight cycles. The molecular mechanisms for regulating such cycles are poorly understood. In this study, we identified four molecular clock genes (cry1, cry2, clock and cycle) in the scleractinian coral, Favia fragum, and investigated patterns of gene expression hypothesized to be involved in the corals' diel polyp behavior and lunar reproductive cycles. Using quantitative PCR, we measured fluctuations in expression of these clock genes over both diel and monthly spawning timeframes. Additionally, we assayed gene expression and polyp expansion-contraction behavior in experimental corals in normal light:dark (control) or constant dark treatments. Well-defined and reproducible diel patterns in cry1, cry2, and clock expression were observed in both field-collected and the experimental colonies maintained under control light:dark conditions, but no pattern was observed for cycle. Colonies in the control light:dark treatment also displayed diel rhythms of tentacle expansion and contraction. Experimental colonies in the constant dark treatment lost diel patterns in cry1, cry2, and clock expression and displayed a diminished and less synchronous pattern of tentacle expansion and contraction. We observed no pattern in cry1, cry2, clock, or cycle expression correlated with monthly spawning events suggesting these genes are not involved in the entrainment of reproductive cycles to lunar light cycles in F. fragum. Our results suggest a molecular clock mechanism, potentially similar to that in described in fruit flies, exists within F. fragum. PMID:21573070
Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing
2017-08-01
To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhanced extinction of contextual fear conditioning in ClockΔ19 mutant mice.
Bernardi, Rick E; Spanagel, Rainer
2014-08-01
Clock genes have been implicated in several disorders, such as schizophrenia, bipolar disorder, autism spectrum disorders, and drug dependence. However, few studies to date have examined the role of clock genes in fear-related behaviors. The authors used mice with the ClockΔ19 mutation to assess the involvement of this gene in contextual fear conditioning. Male wild-type (WT) and ClockΔ19 mutant mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by daily 12-min retention trials. There were no differences between mutant and WT mice in the acquisition of contextual fear, and WT and mutant mice demonstrated similar freezing during the first retention session. However, extinction of contextual fear was accelerated in mutant mice across the remaining retention sessions, as compared to WT mice, suggesting a role for Clock in extinction following aversive learning. Because the ClockΔ19 mutation has previously been demonstrated to result in an increase in dopamine signaling, the authors confirmed the role of dopamine in extinction learning using preretention session administration of a low dose of the dopamine transport reuptake inhibitor modafinil (0.75 mg/kg), which resulted in decreased freezing across retention sessions. These findings are consistent with an emerging portrayal of the importance of Clock genes in noncircadian functions, as well as the important role of dopamine in extinction learning.
Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice.
Borck, Patricia Cristine; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Camargo, Rafael Ludemann; Boschero, Antonio Carlos; Vieira, Elaine; Carneiro, Everardo Magalhães
2017-12-01
Changes in nutritional state may alter circadian rhythms through alterations in expression of clock genes. Protein deficiency has a profound effect on body metabolism, but the effect of this nutrient restriction after weaning on biological clock has not been explored. Thus, this study aims to investigate whether the protein restriction affects the daily oscillation in the behavior and metabolic rhythms, as well as expression of clock genes in peripheral tissues. Male C57BL/6 J mice, after weaning, were fed a normal-protein (NP) diet or a low-protein (LP) diet for 8 weeks. Mice fed an LP diet did not show difference in locomotor activity and energy expenditure, but the food intake was increased, with parallel increased expression of the orexigenic neuropeptide Npy and disruption of the anorexigenic Pomc oscillatory pattern in the hypothalamus. LP mice showed disruption in the daily rhythmic patterns of plasma glucose, triglycerides and insulin. Also, the rhythmic expression of clock genes in peripheral tissues and pancreatic islets was altered in LP mice. In pancreatic islets, the disruption of clock genes was followed by impairment of daily glucose-stimulated insulin secretion and the expression of genes involved in exocytosis. Pharmacological activation of REV-ERBα could not restore the insulin secretion in LP mice. The present study demonstrates that protein restriction, leading to development of malnutrition, alters the peripheral clock and metabolic outputs, suggesting that this nutrient provides important entraining cues to regulate the daily fluctuation of biological clock. Copyright © 2017 Elsevier Inc. All rights reserved.
Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae.
Rund, Samuel S C; Hou, Tim Y; Ward, Sarah M; Collins, Frank H; Duffield, Giles E
2011-08-09
Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.
Redox rhythm reinforces the circadian clock to gate immune response.
Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian
2015-07-23
Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.
An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock.
Agrawal, Parul; Hardin, Paul E
2016-12-07
Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans. Copyright © 2016 Agrawal and Hardin.
Singh, Devraj; Kumar, Vinod
2017-04-01
The avian circadian pacemaker system is comprised of independent clocks in the retina, pineal and hypothalamus, as shown by daily and circadian oscillations of core clock genes (Per2, Cry1, Bmal1 and Clock) in several birds including migratory blackheaded buntings (Emberiza melanocephala). This study investigated the extra-hypothalamic brain circadian clocks in blackheaded buntings, and measured Per2, Cry1, Cry2, Bmal1 and Clock mRNA expressions at 4h intervals over 24h beginning 1h after light-on in the left and right telencephalon, optic tectum and cerebellum, the brain regions involved in several physiological and cognitive functions. Because of seasonal alterations in the circadian clock dependent brain functions, we measured daily clock gene oscillations in buntings photoperiod-induced with the non-migratory state under short days (SDnM), and the pre-migratory (LDpM), migratory (LDM) and post-migratory (refractory, LDR) states under long days. Daily Per2 oscillations were not altered with changes in the photoperiodic states, except for about 2-3h phase difference in the optic tectum between the SDnM and LDpM states. However, there were about 3-5h differences in the phase and 2 to 4 fold change in the amplitude of daily Bmal1 and Cry1 mRNA oscillations between the photoperiod-induced states. Further, Cry2 and Clock genes lacked a significant oscillation, except in Cb (Cry2) and TeO and Rt (Clock) under LDR state. Overall, these results show the presence of circadian clocks in extra-hypothalamic brain regions of blackheaded buntings, and suggest tissue-dependent alterations in the waveforms of mRNA oscillations with transitions in the photoperiod-induced seasonal states in a long-day species. Copyright © 2017 Elsevier B.V. All rights reserved.
Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas
2016-01-01
The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555
A reassessment of the emergence time of European bat lyssavirus type 1.
Hughes, Gareth J
2008-12-01
The previous study of the evolutionary rates of European bat lyssavirus type 1 (EBLV-1) used a strict molecular clock to estimate substitution rates of the nucleoprotein gene and in turn times of the most recent common ancestor (tMRCA) of the entire genotype and the two major EBLV-1 lineages (EBLV-1A and EBLV-1B). The results of that study suggested that the evolutionary rate of EBLV-1 was one of the lowest recorded for RNA viruses and that genetic diversity of EBLV-1 arose 500-750 years ago. Here I have shown that the use of a relaxed molecular clock (allowing branch rates to vary within a phylogeny) shows that these previous estimates should be revised. The relaxed clock provides a significantly better fit to all datasets. The substitution rate of EBLV-1B is compatible to that expected given previous estimates for the N gene of rabies virus whilst rate estimations for EBLV-1A appear to be confounded by substantial rate variation within the phylogeny. The relaxed clock substitution rate for EBLV-1 (1.1 x 10(-4)) is higher than had been estimated previously, and closer to that expected for the N gene. Moreover, tMRCA estimates for EBLV-1 are substantially reduced using the relaxed molecular clock (70-300 years) although the differing dynamics of EBLV-1A and EBLV-1B confound the confidence in this estimate. Current diversity of both EBLV-1A and EBLV-1B appears to have emerged within the last 100 years. Reconstruction of the population histories suggests that EBLV-1B may be emerging whilst the signal derived from the EBLV-1A phylogeny may be dampened by clade-specific dynamics.
USDA-ARS?s Scientific Manuscript database
Background Circadian rhythms regulate key biological processes influencing metabolic pathways. Dysregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. METHODS: We examin...
Andrade-Silva, Jéssica; Cipolla-Neto, José; Peliciari-Garcia, Rodrigo A
2014-01-01
Although the norepinephrine (NE) synchronization protocol was proved to be an important procedure for further modulating in vitro pineal melatonin synthesis, the maintenance of clock genes under the same conditions remained to be investigated. The aim of this study was to investigate the maintenance of the clock genes expression in pineal gland cultures under standard and NE-synchronized stimulation. The glands were separated into three experimental groups: Control, Standard (acute NE-stimulation), and NE-synchronized. The expression of Bmal1, Per2, Cry2, Rev-erbα, the clock controlled gene Dbp and Arylalkylamine-N-acetyltransferase were investigated, as well as melatonin content. No oscillations were observed in the expression of the investigated genes from the control group. Under Standard NE stimulation, the clock genes did not exhibit a rhythmic pattern of expression. However, in the NE-synchronized condition, a rhythmic expression pattern was observed in all cases. An enhancement in pineal gland responsiveness to NE stimulation, reflected in an advanced synthesis of melatonin was also observed. Our results reinforce our previous hypothesis that NE synchronization of pineal gland culture mimics the natural rhythmic release of NE in the gland, increasing melatonin synthesis and keeping the pineal circadian clock synchronized, ensuring the fine adjustments that are relied in the clockwork machinery. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Circadian rhythms and reproduction.
Boden, Michael J; Kennaway, David J
2006-09-01
There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.
mir-125a-5p-mediated Regulation of Lfng is Essential for the Avian Segmentation Clock
Riley, Maurisa F.; Bochter, Matthew S.; Wahi, Kanu; Nuovo, Gerard J.; Cole, Susan E.
2013-01-01
Summary Somites are embryonic precursors of the axial skeleton and skeletal muscles, and establish the segmental vertebrate body plan. Somitogenesis is controlled in part by a segmentation clock that requires oscillatory expression of genes including Lunatic fringe (Lfng). Oscillatory genes must be tightly regulated both at the transcriptional and post-transcriptional levels for proper clock function. Here we demonstrate that microRNA-mediated regulation of Lfng is essential for proper segmentation during chick somitogenesis. We find that mir-125a-5p targets evolutionarily conserved sequences in the Lfng 3′UTR, and that preventing interactions between mir-125a-5p and Lfng transcripts in vivo causes abnormal segmentation and perturbs clock activity. This provides strong evidence that miRNAs function in the post-transcriptional regulation of oscillatory genes in the segmentation clock. Further, this demonstrates that the relatively subtle effects of miRNAs on target genes can have broad effects in developmental situations that have critical requirements for tight post-transcriptional regulation. PMID:23484856
Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.
Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu
2016-02-01
The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Li, Xiaoxue; Wang, Siyang; Yang, Shuhong; Ying, Junjie; Yu, Hang; Yang, Chunlei; Liu, Yanyou; Wang, Yuhui; Cheng, Shuting; Xiao, Jing; Guo, Huiling; Jiang, Zhou; Wang, Zhengrong
2018-05-01
The circadian rhythm regulates numerous physiological activities, including sleep and wakefulness, behavior, immunity and metabolism. Previous studies have demonstrated that circadian rhythm disorder is associated with the occurrence of tumors. Responsible for regulating a number of functions, the Circadian locomotor output cycles kaput ( Clock ) gene is one of the core regulatory genes of circadian rhythm. The Clock gene has also been implicated in the occurrence and development of tumors in previously studies. The present study evaluated the role of the Clock gene in the proliferation and migration of mouse breast cancer 4T1 cells, and investigated its possible regulatory pathways and mechanisms. It was reported that downregulation of Clock facilitated the proliferation and migration of breast cancer cells. Further investigation revealed the involvement of IQ motif containing GTPase activating protein 1 (IQGAP1) protein expression in the Clock regulatory pathway, further influencing the expression of E-cadherin, a known proprietor of tumor cell migration and invasion. To the best of our knowledge, the present study is the first to report that Clock , acting through the regulation of the scaffolding protein IQGAP1, regulates the downstream expression of E-cadherin, thereby affecting tumor cell structure and motility. These results confirmed the role of Clock in breast cancer tumor etiology and provide insight regarding the molecular avenues of its regulatory nature, which may translate beyond breast cancer into other known functions of the gene.
Huang, Tien-sheng; Ruoff, Peter; Fjelldal, Per G
2010-10-01
In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.
Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben
2016-01-01
An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625
Strong resetting of the mammalian clock by constant light followed by constant darkness
Chen, Rongmin; Seo, Dong-oh; Bell, Elijah; von Gall, Charlotte; Lee, Choogon
2008-01-01
The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce behavioral and physiological arrhythmicity, by desynchronizing clock cells in the SCN (Ohta et al., 2005). We examined how the disordered clock cells resynchronize by probing the molecular clock and measuring behavior in mice transferred from LL to constant darkness (DD). The circadian locomotor activity rhythms disrupted in LL become robustly rhythmic again from the beginning of DD, and the starting phase of the rhythm in DD is specific, not random, suggesting that the desynchronized clock cells are quickly reset in an unconventional manner by the L:D transition. By measuring mPERIOD protein rhythms, we showed that the SCN and peripheral tissue clocks quickly become rhythmic again in phase with the behavioral rhythms. We propose that this resetting mechanism may be different from conventional phase shifting, which involves light-induction of Period genes (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997). Using our functional insights, we could shift the circadian phase of locomotor activity rhythms by 12 hours using a 15-hour LL treatment: essentially producing phase reversal by a single light pulse, a feat that has not been reported previously in wild-type mice and that has potential clinical utility. PMID:19005049
Sun, Linjie; Wang, Yan; Song, Yu; Cheng, Xiang-Rong; Xia, Shufang; Rahman, Md Ramim Tanver; Shi, Yonghui; Le, Guowei
2015-02-27
Circadian rhythmic disorders induced by high-fat diet are associated with metabolic diseases. Resveratrol could improve metabolic disorder, but few reports focused on its effects on circadian rhythm disorders in a variety of studies. The aim of the present study was to analyze the potential effects of resveratrol on high-fat diet-induced disorders about the rhythmic expression of clock genes and clock-controlled lipid metabolism. Male C57BL/6 mice were divided into three groups: a standard diet control group (CON), a high-fat diet (HFD) group and HFD supplemented with 0.1% (w/w) resveratrol (RES). The body weight, fasting blood glucose and insulin, plasma lipids and leptin, whole body metabolic status and the expression of clock genes and clock-controlled lipogenic genes were analyzed at four different time points throughout a 24-h cycle (8:00, 14:00, 20:00, 2:00). Resveratrol, being associated with rhythmic restoration of fasting blood glucose and plasma insulin, significantly decreased the body weight in HFD mice after 11 weeks of feeding, as well as ameliorated the rhythmities of plasma leptin, lipid profiles and whole body metabolic status (respiratory exchange ratio, locomotor activity, and heat production). Meanwhile, resveratrol modified the rhythmic expression of clock genes (Clock, Bmal1 and Per2) and clock-controlled lipid metabolism related genes (Sirt1, Pparα, Srebp-1c, Acc1 and Fas). The response pattern of mRNA expression for Acc1 was similar to the plasma triglyceride. All these results indicated that resveratrol reduced lipogenesis and ultimately normalized rhythmic expression of plasma lipids, possibly via its action on clock machinery. Copyright © 2015 Elsevier Inc. All rights reserved.
Chappell, Patrick E; White, Rachel S; Mellon, Pamela L
2003-12-03
Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsatile pattern similar to that observed in vivo. To explore possible molecular mechanisms governing secretory timing, we investigated the role of the molecular circadian clock in regulation of GnRH secretion. GT1-7 cells express many known core circadian clock genes, and we demonstrate that oscillations of these components can be induced by stimuli such as serum and the adenylyl cyclase activator forskolin, similar to effects observed in fibroblasts. Strikingly, perturbation of circadian clock function in GT1-7 cells by transient expression of the dominant-negative Clock-Delta19 gene disrupts normal ultradian patterns of GnRH secretion, significantly decreasing mean pulse frequency. Additionally, overexpression of the negative limb clock gene mCry1 in GT1-7 cells substantially increases GnRH pulse amplitude without a commensurate change in pulse frequency, demonstrating that an endogenous biological clock is coupled to the mechanism of neurosecretion in these cells and can regulate multiple secretory parameters. Finally, mice harboring a somatic mutation in the Clock gene are subfertile and exhibit a substantial increase in estrous cycle duration as revealed by examination of vaginal cytology. This effect persists in normal light/dark (LD) cycles, suggesting that a suprachiasmatic nucleus-independent endogenous clock in GnRH neurons is required for eliciting normal pulsatile patterns of GnRH secretion.
Weiss, Julia; Terry, Marta I; Martos-Fuentes, Marina; Letourneux, Lisa; Ruiz-Hernández, Victoria; Fernández, Juan A; Egea-Cortines, Marcos
2018-02-14
Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.
Amaral, Ian P G; Johnston, Ian A
2012-01-01
To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed.
Naldi, Aurélien; Baruchet, Michaël; Canella, Donatella; Le Martelot, Gwendal; Guex, Nicolas; Desvergne, Béatrice; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Martelot, Gwendal Le; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Delafontaine, Julien; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Martelot, Gwendal Le; Lammers, Fabienne; Baruchet, Michaël; Raghav, Sunil
2014-01-01
In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1 −/− mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved. PMID:24603613
Chun, Lauren E.; Hinds, Laura R.; Spencer, Robert L.
2016-01-01
Mood disorders are associated with dysregulation of prefrontal cortex (PFC) function, circadian rhythms, and diurnal glucocorticoid (corticosterone [CORT]) circulation. Entrainment of clock gene expression in some peripheral tissues depends on CORT. In this study, we characterized over the course of the day the mRNA expression pattern of the core clock genes Per1, Per2, and Bmal1 in the male rat PFC and suprachiasmatic nucleus (SCN) under different diurnal CORT conditions. In experiment 1, rats were left adrenal-intact (sham) or were adrenalectomized (ADX) followed by 10 daily antiphasic (opposite time of day of the endogenous CORT peak) ip injections of either vehicle or 2.5 mg/kg CORT. In experiment 2, all rats received ADX surgery followed by 13 daily injections of vehicle or CORT either antiphasic or in-phase with the endogenous CORT peak. In sham rats clock gene mRNA levels displayed a diurnal pattern of expression in the PFC and the SCN, but the phase differed between the 2 structures. ADX substantially altered clock gene expression patterns in the PFC. This alteration was normalized by in-phase CORT treatment, whereas antiphasic CORT treatment appears to have eliminated a diurnal pattern (Per1 and Bmal1) or dampened/inverted its phase (Per2). There was very little effect of CORT condition on clock gene expression in the SCN. These experiments suggest that an important component of glucocorticoid circadian physiology entails CORT regulation of the molecular clock in the PFC. Consequently, they also point to a possible mechanism that contributes to PFC disrupted function in disorders associated with abnormal CORT circulation. PMID:26901093
Moriya, Shunpei; Tahara, Yu; Sasaki, Hiroyuki; Ishigooka, Jun; Shibata, Shigenobu
2015-11-01
A number of animal studies have implicated circadian clock genes in the regulation of mood, anxiety, and reward. However, the effect of misalignment of the environmental light-dark and internal circadian clock on the monoamine system is not fully understood. In the present study, we examined whether an abnormal light-dark schedule would affect behavior-, circadian clock-, and monoamine-related gene expressions, along with monoamine contents in the amygdala and hippocampus of mice. Mice were subjected to an 8-hour phase delay in the light-dark cycle (Shift) every two days for four weeks, and locomotor activity was continuously measured. We examined the circadian expression of clock genes (Per1, Per2, and Bmal1) and genes of the NE/5HT uptake transporters (Net and Sert). In addition, the levels of NE/5HT and their metabolites MHPG/5HIAA were analyzed in the amygdala and hippocampus. Locomotor activity showed a free-running phenotype with a longer period (>24 hours) and showed misalignment between the light-dark and inactive-active cycles. The amplitude of the day-night fluctuation of Bmal1 expression was reduced in the amygdala and hippocampus of light-dark-shifted mice. Net gene expression in the Shift group showed different profiles compared with the Control group. In addition, NE and 5HT levels in the amygdala of the Shift group increased during the active period. The present results suggest that misalignment of the internal and external clocks by continuous shifting of the light-dark cycle affects the circadian clocks and monoamine metabolism in the amygdala and hippocampus of mice. Copyright © 2015 Elsevier B.V. All rights reserved.
Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro
2015-10-01
The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil. Copyright © 2015 Elsevier Inc. All rights reserved.
Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Feussner, Ivo; Havaux, Michel; Riefler, Michael; Schmülling, Thomas
2016-07-01
The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. © 2016 American Society of Plant Biologists. All rights reserved.
Nakamura, Koh-ichi; Inoue, Ikuo; Takahashi, Seiichiro; Komoda, Tsugikazu; Katayama, Shigehiro
2008-01-01
Feeding and the circadian system regulate lipid absorption and metabolism, and the expression of enzymes involved in lipid metabolism is believed to be directly controlled by the clock system. To investigate the interaction between the lipid metabolism system and the circadian system, we analyzed the effect of a CLOCK/BMAL1 heterodimer on the transcriptional regulation of PPAR-controlled genes through PPAR response elements (PPREs). Transcription of acyl-CoA oxidase, cellular retinol binding protein II (CRBPII), and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was altered by CLOCK/BMAL1, and transcriptional activity via PPRE by PPARs/RXRα was enhanced by CLOCK/BMAL1 and/or by PPARs ligand/activators. We also found that CLOCK/BMAL1-mediated transcription of period (PER) and cryptochrome (CRY) was modulated by PPARα/RXRα. These results suggest that there may be crosstalk between the PPARs/RXRα-regulated system and the CLOCK/BMAL1-regulated system. PMID:18317514
Riestra, Pia; Gebreab, Samson Y; Xu, Ruihua; Khan, Rumana J; Gaye, Amadou; Correa, Adolfo; Min, Nancy; Sims, Mario; Davis, Sharon K
2017-06-23
Circadian rhythms regulate key biological processes and the dysregulation of the intrinsic clock mechanism affects sleep patterns and obesity onset. The CLOCK (circadian locomotor output cycles protein kaput) gene encodes a core transcription factor of the molecular circadian clock influencing diverse metabolic pathways, including glucose and lipid homeostasis. The primary objective of this study was to evaluate the associations between CLOCK single nucleotide polymorphisms (SNPs) and body mass index (BMI). We also evaluated the association of SNPs with BMI related factors such as sleep duration and quality, adiponectin and leptin, in 2962 participants (1116 men and 1810 women) from the Jackson Heart Study. Genotype data for the selected 23 CLOCK gene SNPS was obtained by imputation with IMPUTE2 software and reference phase data from the 1000 genome project. Genetic analyses were conducted with PLINK RESULTS: We found a significant association between the CLOCK SNP rs2070062 and sleep duration, participants carriers of the T allele showed significantly shorter sleep duration compared to non-carriers after the adjustment for individual proportions of European ancestry (PEA), socio economic status (SES), body mass index (BMI), alcohol consumption and smoking status that reach the significance threshold after multiple testing correction. In addition, we found nominal associations of the CLOCK SNP rs6853192 with longer sleep duration and the rs6820823, rs3792603 and rs11726609 with BMI. However, these associations did not reach the significance threshold after correction for multiple testing. In this work, CLOCK gene variants were associated with sleep duration and BMI suggesting that the effects of these polymorphisms on circadian rhythmicity may affect sleep duration and body weight regulation in Africans Americans.
Takeda, Yukimasa; Kang, Hong Soon; Freudenberg, Johannes; DeGraff, Laura M.; Jothi, Raja; Jetten, Anton M.
2014-01-01
The hepatic circadian clock plays a key role in the daily regulation of glucose metabolism, but the precise molecular mechanisms that coordinate these two biological processes are not fully understood. In this study, we identify a novel connection between the regulation of RORγ by the clock machinery and the diurnal regulation of glucose metabolic networks. We demonstrate that particularly at daytime, mice deficient in RORγ exhibit improved insulin sensitivity and glucose tolerance due to reduced hepatic gluconeogenesis. This is associated with a reduced peak expression of several glucose metabolic genes critical in the control of gluconeogenesis and glycolysis. Genome-wide cistromic profiling, promoter and mutation analysis support the concept that RORγ regulates the transcription of several glucose metabolic genes directly by binding ROREs in their promoter regulatory region. Similar observations were made in liver-specific RORγ-deficient mice suggesting that the changes in glucose homeostasis were directly related to the loss of hepatic RORγ expression. Altogether, our study shows that RORγ regulates several glucose metabolic genes downstream of the hepatic clock and identifies a novel metabolic function for RORγ in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. The inhibition of the activation of several metabolic gene promoters by an RORγ antagonist suggests that antagonists may provide a novel strategy in the management of metabolic diseases, including type 2 diabetes. PMID:24831725
The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility
Lefta, Mellani; Zhang, Xiping; Bartos, Daniel; Feng, Han-Zhong; Zhao, Yihua; Patwardhan, Abhijit; Jin, Jian-Ping; Esser, Karyn A.; Delisle, Brian P.
2013-01-01
The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop. Bmal1 encodes a core molecular clock transcription factor. Germline Bmal1 knockout mice show a loss of circadian variation in heart rate and blood pressure, and they develop dilated cardiomyopathy. We tested the role of the molecular clock in adult cardiomyocytes by generating mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1). ECG telemetry showed that cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1−/−) in adult mice slowed heart rate, prolonged RR and QRS intervals, and increased episodes of arrhythmia. Moreover, isolated iCSΔBmal1−/− hearts were more susceptible to arrhythmia during electromechanical stimulation. Examination of candidate cardiac ion channel genes showed that Scn5a, which encodes the principle cardiac voltage-gated Na+ channel (NaV1.5), was circadianly expressed in control mouse and rat hearts but not in iCSΔBmal1−/− hearts. In vitro studies confirmed circadian expression of a human Scn5a promoter-luciferase reporter construct and determined that overexpression of clock factors transactivated the Scn5a promoter. Loss of Scn5a circadian expression in iCSΔBmal1−/− hearts was associated with decreased levels of NaV1.5 and Na+ current in ventricular myocytes. We conclude that disruption of the molecular clock in the adult heart slows heart rate, increases arrhythmias, and decreases the functional expression of Scn5a. These findings suggest a potential link between environmental factors that alter the cardiomyocyte molecular clock and factors that influence arrhythmia susceptibility in humans. PMID:23364267
Bartok, Osnat; Teesalu, Mari; Ashwall-Fluss, Reut; Pandey, Varun; Hanan, Mor; Rovenko, Bohdana M; Poukkula, Minna; Havula, Essi; Moussaieff, Arieh; Vodala, Sadanand; Nahmias, Yaakov; Kadener, Sebastian; Hietakangas, Ville
2015-01-01
Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns. PMID:25916830
Genetic variation in the CLOCK gene is associated with idiopathic recurrent spontaneous abortion.
Hodžić, Alenka; Lavtar, Polona; Ristanović, Momčilo; Novaković, Ivana; Dotlić, Jelena; Peterlin, Borut
2018-01-01
Physiological studies in animals and human support an important role of circadian system in reproduction. The aim of this study was to investigate the potential association of CLOCK gene polymorphisms with idiopathic recurrent spontaneous abortion (IRSA). We performed a case-control study. The study group consisted of 268 women with a history of three or more idiopathic recurrent spontaneous abortions and 284 women with at least two live births and no history of pathologic pregnancies all from Slovenia and Serbia. Two SNPs in the CLOCK gene were chosen and genotyped. The results showed a statistically significant difference in genotype distribution between the two groups in the CLOCK gene for rs6850524 and rs11932595. Our analysis showed that G allele under dominant model (GG+GC/CC) for rs6850524 (p = 2∙10-4, OR = 2.28, 95%CI = 1.46-3.56) as well as G allele under dominant model (GA+AA/AA) for rs11932595 (p = 0.04, OR = 1.47, 95%CI = 1.01-2.04) might be risk factors against IRSA. Our data suggest that genetic variability in the CLOCK gene is associated with IRSA warranting further confirmation and mechanistic investigations.
Genetic variation in the CLOCK gene is associated with idiopathic recurrent spontaneous abortion
Hodžić, Alenka; Lavtar, Polona; Ristanović, Momčilo; Novaković, Ivana; Dotlić, Jelena; Peterlin, Borut
2018-01-01
Physiological studies in animals and human support an important role of circadian system in reproduction. The aim of this study was to investigate the potential association of CLOCK gene polymorphisms with idiopathic recurrent spontaneous abortion (IRSA). We performed a case-control study. The study group consisted of 268 women with a history of three or more idiopathic recurrent spontaneous abortions and 284 women with at least two live births and no history of pathologic pregnancies all from Slovenia and Serbia. Two SNPs in the CLOCK gene were chosen and genotyped. The results showed a statistically significant difference in genotype distribution between the two groups in the CLOCK gene for rs6850524 and rs11932595. Our analysis showed that G allele under dominant model (GG+GC/CC) for rs6850524 (p = 2∙10−4, OR = 2.28, 95%CI = 1.46–3.56) as well as G allele under dominant model (GA+AA/AA) for rs11932595 (p = 0.04, OR = 1.47, 95%CI = 1.01–2.04) might be risk factors against IRSA. Our data suggest that genetic variability in the CLOCK gene is associated with IRSA warranting further confirmation and mechanistic investigations. PMID:29768442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakoyama, Y.; Hong, K.J.; Byun, S.M.
To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: themore » mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.« less
Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders
Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie
2017-01-01
In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders. PMID:28468274
Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.
Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie
2017-04-29
In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.
Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.
2017-01-01
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). PMID:28264977
Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie
2010-07-01
*Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.
2013-01-01
Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vector mosquito. Results In time courses from An. gambiae head and body collected under light:dark cycle (LD) and constant dark (DD) conditions, we applied three algorithms that detect sinusoidal patterns and an algorithm that detects spikes in expression. This revealed across four experimental conditions 393 probes newly scored as rhythmic. These genes correspond to functions such as metabolic detoxification, immunity and nutrient sensing. This includes glutathione S-transferase GSTE5, whose expression pattern and chromosomal location are shared with other genes, suggesting shared chromosomal regulation; and pulsatile expression of the gene encoding CYP6M2, a cytochrome P450 that metabolizes pyrethroid insecticides. We explored the interaction of light and the circadian clock and highlight the regulation of odorant binding proteins (OBPs), important components of the olfactory system. We reveal that OBPs have unique expression patterns as mosquitoes make the transition from LD to DD conditions. We compared rhythmic expression between An. gambiae and Ae. aegypti heads collected under LD conditions using a single cosine fitting algorithm, and report distinct similarities and differences in the temporal regulation of genes involved in tRNA priming, the vesicular-type ATPase, olfaction and vision between the two species. Conclusions These data build on our previous analyses of time-of-day specific regulation of the An. gambiae transcriptome to reveal additional rhythmic genes, an improved understanding of the co-regulation of rhythms in gene expression by the circadian clock and by light, and an understanding of the time-of-day specific regulation of some of these rhythmic processes in comparison with a different species of mosquito. Improved understanding of biological timing at the molecular level that underlies key physiological aspects of mosquito vectors may prove to be important to successful implementation of established and novel insect control methods. PMID:23552056
Circadian oscillatory transcriptional programs in grapevine ripening fruits
2014-01-01
Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control of circadian clock components. Certain cultivar and berry tissue features could rely on specific circadian oscillatory expression profiles. These findings may help to a better understanding of the progress of berry ripening in short term time scales. PMID:24666982
Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.
Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf
2015-01-01
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Bellanti, Francesco; Iannelli, Giuseppina; Blonda, Maria; Tamborra, Rosanna; Villani, Rosanna; Romano, Adele; Calcagnini, Silvio; Mazzoccoli, Gianluigi; Vinciguerra, Manlio; Gaetani, Silvana; Giudetti, Anna Maria; Vendemiale, Gianluigi; Cassano, Tommaso; Serviddio, Gaetano
2017-01-01
A disruption to circadian rhythmicity and the sleep/wake cycle constitutes a major feature of Alzheimer’s disease (AD). The maintenance of circadian rhythmicity is regulated by endogenous clock genes and a number of external Zeitgebers, including light. This study investigated the light induced changes in the expression of clock genes in a triple transgenic model of AD (3×Tg-AD) and their wild type littermates (Non-Tg). Changes in gene expression were evaluated in four brain areas¾suprachiasmatic nucleus (SCN), hippocampus, frontal cortex and brainstem¾of 6- and 18-month-old Non-Tg and 3×Tg-AD mice after 12 h exposure to light or darkness. Light exposure exerted significant effects on clock gene expression in the SCN, the site of the major circadian pacemaker. These patterns of expression were disrupted in 3×Tg-AD and in 18-month-old compared with 6-month-old Non-Tg mice. In other brain areas, age rather than genotype affected gene expression; the effect of genotype was observed on hippocampal Sirt1 expression, while it modified the expression of genes regulating the negative feedback loop as well as Rorα, Csnk1ɛ and Sirt1 in the brainstem. In conclusion, during the early development of AD, there is a disruption to the normal expression of genes regulating circadian function after exposure to light, particularly in the SCN but also in extra-hypothalamic brain areas supporting circadian regulation, suggesting a severe impairment of functioning of the clock gene pathway. Even though this study did not demonstrate a direct association between these alterations in clock gene expression among brain areas with the cognitive impairments and chrono-disruption that characterize the early onset of AD, our novel results encourage further investigation aimed at testing this hypothesis. PMID:28671110
Yeang, Hoong-Yeet
2015-07-01
An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shen, Yingfang; Wu, Xiaopei; Liu, Demei; Song, Shengjing; Liu, Dengcai; Wang, Haiqing
2016-05-27
Histone methylation is an epigenetic modification mechanism that regulates gene expression in eukaryotic cells. Jumonji C domain-containing demethylases are involved in removal of methyl groups at lysine or arginine residues. The JmjC domain-only member, JMJ30/JMJD5 of Arabidopsis, is a component of the plant circadian clock. Although some plant circadian clock genes undergo alternative splicing in response to external cues, there is no evidence that JMJ30/JMJD5 is regulated by alternative splicing. In this study, the expression of an Arabidopsis JMJ30/JMJD5 ortholog in Medicago truncatula, MtJMJC5, in response to circadian clock and abiotic stresses were characterized. The results showed that MtJMJC5 oscillates with a circadian rhythm, and undergoes cold specifically induced alternative splicing. The cold-induced alternative splicing could be reversed after ambient temperature returning to the normal. Sequencing results revealed four alternative splicing RNA isoforms including a full-length authentic protein encoding variant, and three premature termination condon-containing variants due to alternative 3' splice sites at the first and second intron. Under cold treatment, the variants that share a common 3' alternative splicing site at the second intron were intensively up-regulated while the authentic protein encoding variant and the premature termination condon-containing variant only undergoing a 3' alternative splicing at the first intron were down regulated. Although all the premature termination condon-harboring alternative splicing variants were sensitive to nonsense-mediated decay, the premature termination codon-harboring alternative splicing variants sharing the 3' alternative splicing site at the second intron showed less sensitivity than the one only containing the 3' alternative slicing site at the first intron under cold treatment. These results suggest that the cold-dependent alternative splicing of MtJMJC5 is likely a species or genus-specific mechanism of gene expression regulation on RNA levels, and might play a role in epigenetic regulation of the link between the circadian clock and ambient temperature fluctuation in Medicago. Copyright © 2016 Elsevier Inc. All rights reserved.
Corella, Dolores; Asensio, Eva M; Coltell, Oscar; Sorlí, José V; Estruch, Ramón; Martínez-González, Miguel Ángel; Salas-Salvadó, Jordi; Castañer, Olga; Arós, Fernando; Lapetra, José; Serra-Majem, Lluís; Gómez-Gracia, Enrique; Ortega-Azorín, Carolina; Fiol, Miquel; Espino, Javier Díez; Díaz-López, Andrés; Fitó, Montserrat; Ros, Emilio; Ordovás, José M
2016-01-07
Circadian rhythms regulate key biological processes influencing metabolic pathways. Disregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK (circadian locomotor output cycles protein kaput), one of those core genes, is known to regulate glucose metabolism in rodent models. Cross-sectional studies in humans have reported associations between this locus and obesity, plasma glucose, hypertension and T2D prevalence, supporting its role in cardiovascular risk. However, no longitudinal study has investigated the association between CLOCK gene variation and T2D or CVD incidence. Moreover, although in a previous work we detected a gene-diet interaction between the CLOCK-rs4580704 (C > G) single nucleotide polymorphism (SNP) and monounsaturated (MUFA) intake on insulin resistance, no interventional study has analyzed gene-diet interactions on T2D or CVD outcomes. We analyzed the association between the CLOCK-rs4580704 SNP and incidence of T2D and CVD longitudinally in 7098 PREDIMED trial (ISRCTN35739639) participants after a median 4.8-year follow-up. We also examined modulation by Mediterranean diet (MedDiet) intervention (high in MUFA) on these associations. We observed a significant association between the CLOCK-rs4580704 SNP and T2D incidence in n = 3671 non-T2D PREDIMED participants, with variant allele (G) carriers showing decreased incidence (dominant model) compared with CC homozygotes (HR: 0.69; 95 % CI 0.54-0.87; P = 0.002). This protection was more significant in the MedDiet intervention group (HR: 0.58; 95 % CI 0.43-0.78; P < 0.001) than in the control group (HR: 0.95; 95 % CI 0.63-1.44; P = 0.818). Moreover, we detected a statistically significant interaction (P = 0.018) between CLOCK-rs4580704 SNP and T2D status on stroke. Thus, only in T2D subjects was CLOCK-rs4580704 SNP associated with stroke risk, G-carriers having decreased risk (HR: 0.61; 95 % CI 0.40-0.94; P = 0.024 versus CC) in the multivariable-adjusted model. In agreement with our previous results showing a protective effect of the G-allele against hyperglycemia, we extended our findings by reporting a novel association with lower T2D incidence and also suggesting a dietary modulation. Moreover, we report for the first time an association between a CLOCK polymorphism and stroke in T2D subjects, suggesting that core clock genes may significantly contribute to increased CVD risk in T2D.
Guo, Yichen; Shen, Ouxi; Han, Jingjing; Duan, Hongyu; Yang, Siyuan; Zhu, Zhenghong; Tong, Jian; Zhang, Jie
2017-01-01
Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca 2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca 2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.
Oscillator networks with tissue-specific circadian clocks in plants.
Inoue, Keisuke; Araki, Takashi; Endo, Motomu
2017-09-08
Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.
Does the Clock Make the Poison? Circadian Variation in Response to Pesticides
Hooven, Louisa A.; Sherman, Katherine A.; Butcher, Shawn; Giebultowicz, Jadwiga M.
2009-01-01
Background Circadian clocks govern daily physiological and molecular rhythms, and putative rhythms in expression of xenobiotic metabolizing (XM) genes have been described in both insects and mammals. Such rhythms could have important consequences for outcomes of chemical exposures at different times of day. To determine whether reported XM gene expression rhythms result in functional rhythms, we examined daily profiles of enzyme activity and dose responses to the pesticides propoxur, deltamethrin, fipronil, and malathion. Methodology/Principal Findings Published microarray expression data were examined for temporal patterns. Male Drosophila were collected for ethoxycoumarin-O-deethylase (ECOD), esterase, glutathione-S-transferase (GST), and, and uridine 5′-diphosphoglucosyltransferase (UGT) enzyme activity assays, or subjected to dose-response tests at four hour intervals throughout the day in both light/dark and constant light conditions. Peak expression of several XM genes cluster in late afternoon. Significant diurnal variation was observed in ECOD and UGT enzyme activity, however, no significant daily variation was observed in esterase or GST activity. Daily profiles of susceptibility to lethality after acute exposure to propoxur and fipronil showed significantly increased resistance in midday, while susceptibility to deltamethrin and malathion varied little. In constant light, which interferes with clock function, the daily variation in susceptibility to propoxur and in ECOD and UGT enzyme activity was depressed. Conclusions/Significance Expression and activities of specific XM enzymes fluctuate during the day, and for specific insecticides, the concentration resulting in 50% mortality varies significantly during the day. Time of day of chemical exposure should be an important consideration in experimental design, use of pesticides, and human risk assessment. PMID:19649249
The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size1[OPEN
Gray, Jennifer A.; Chu, Dalena Nhu
2017-01-01
The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis (Arabidopsis thaliana), the clock is composed of numerous regulatory feedback loops in which REVEILLE8 (RVE8) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5, play only minor roles in the regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in the modulation of light input to the clock and the control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a daylength- and sucrose-dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild-type plants, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to the misregulation of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 expression. Our results show that even small changes in PIF gene expression caused by the perturbation of clock gene function can have large effects on the growth of adult plants. PMID:28254761
NASA Astrophysics Data System (ADS)
Lv, Ke; Qu, Lina
Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19˜22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection were consecutively performed. Blood samples and liver tissues were collected from tail-suspended and control mice under LD 12:12h and DD conditions during the 12th, 13th and 14th testing days at 4h intervals. Melatonin and corticosterone in mice plasma at different time points were assayed. NIH-3T3 cells were plated in culture dish for 22h before the experiment. For ground-based simulation of weightlessness, the medium was exchanged with DMEM containing 50% horse serum to synchronization, after 2 h, this medium was replaced with DMEM and 10% FBS. Then, at various time point (0, 6, 12, 18, 24, 30, 36, 42, 48h), cells were cultured on the roating clinostat at 30r/min. Total RNA was extracted from liver and NIH-3T3 cells and subsequently reverse-transcribed. The SYBR green I real-time quantitative PCR system was conducted to examine the mRNA expression level of clock, bmal1, per1, per2, cry1 and cry2 in mice and NIH-3T3 cells, respectively. Paired comparisons of the circadian genes expression between period, peak values, amplitude and mesor (midline estimating statistic of rhythm) were examined for evidence of circadian variation using Chronos-Fit software in mice and Cosine analyses in NIH-3T3 cells. Statistical analysis: All numerical data were expressed as the mean ± standard deviation (SD). Statistical differences among groups were analyzed by one-way analysis of variance (ANOVA) to determine time points differences in the study parameters. Statistical differences between two groups were determined by the Student's t test. Results: (1) Circadian rhythm of clock and bmal1 mRNA expression was found in each testing day with similar peak phase in both tail suspension group and control group. Compared with control group, tail suspension group showed that the peak phase of clock gene mRNA level advanced approximately 4 hours and the amplitude of bmal1 gene mRNA level significantly reduced at ZT2 and ZT6. (2) The expression of circadian genes in NIH-3T3 cells demonstrated that the maximum and minimum value of mRNA relative expression levels of clock and bmal1 during clinorotation were both found approximately at the time points 6h and 18h, respectively. The period length of experimental group was about 16h longer than control group. The peak phase and peak time of clock and bmal1 with simulated weightlessness group were ahead of control group. (3) At the Zeitgeber time 2 (ZT2), we found that 23 miRNAs in the SCN and 60 miRNAs in liver were significantly altered on the basis of an adjusted FC>2 among 611 miRNAs. At the ZT14, 23 miRNAs in the SCN and 57 miRNAs in liver were altered compared with the control group (FC>2). (a) Effects of clock knock out altered expression of miRNA. We analyzed the miRNA profile in SCN and liver of clock knonck out and WT mouse at two different time points using miRNA microarray. Of these, miR-122,miR-144, miR-210 and miR-669b at ZT2, miR-200a, miR-200b, miR-429, miR-455, miR-669d and miR-96 at ZT14 were both changed in SCN and liver, respectively. Interestingly, the miR-122, a tissue specific miRNA of liver was also changed in SCN at ZT2. (b) Effects of light altered expression of miRNA: Light is an important environmental factors to regulate circadian genes expression. In clock mutant mice, all altered miRNAs except miR-144 were down-regulated in SCN while up-regulated in liver at ZT14 compared to ZT2. Interestingly, the miRNAs expression profiling in SCN and liver were opposite of WT mice at ZT14 compared to ZT2. (c) Effects of clock mutant on mRNA expression: To test whether the alteration in expression of miRNAs correlates with the gene expression pattern, cDNA microarray of SCN were assayed. The results revealed that the expression of nearly 1285 genes was altered substantially with at least 1 fold change absolute in the absence of clock. Among these altered genes, we chose the mRNAs with at least 4 fold changes to further study. Only 23 genes were altered in clock knockout compared with WT at ZT2, but 67 genes at ZT14. (d) Effects of light on mRNA expression. To evaluate the light effecting on genes expression in SCN, the cDNA microarrays in SCN at ZT2 and ZT14 were tested. 21 genes were over expression and 12 genes were down regulation ZT14 compared with ZT2 in WT. The number of altered genes in clock-/- mice was 67. (e) Direct interaction between altered miRNAs and mRNAs. To identify the interaction between regulatory miRNAs and altered mRNAs in the absence of clock, we predicted the target genes of miRNAs by TargetScan. The genes both the target genes of miRNAs and altered in cDNA microarray were unravelled. The exploration of functional interaction between miRNAs and clock genes mRNA is ongoing. Conclusion: Taken together, these results indicate that ground-based simulated weightlessness could alter the molecular biological rhythm patterns, which may preliminarily present the biological regulatory mechanism of circadian rhythm systems under spaceflight-related gravity. The potential underlying functional miRNAs could serve as targets to interfere with for interaction between central and peripheral circadian organs under simulated microgravity. This preliminary study may facilitate the exploration of circadian rhythm characteristics in space and the detailed process of signal transduction and circadian gene regulation. Key words: circadian rhythms, tail-suspension, simulated microgravity, clock genes, miRNAs Acknowledgments: This study was supported by the National Basic Research Program of China (Grant NO. 2011CB707704) and the Foundation of State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (Grant NO. SMFA13B02, SMFA09A06 and SMFA12B05).
Filichkin, Sergei A.; Breton, Ghislain; Priest, Henry D.; Dharmawardhana, Palitha; Jaiswal, Pankaj; Fox, Samuel E.; Michael, Todd P.; Chory, Joanne; Kay, Steve A.; Mockler, Todd C.
2011-01-01
Background Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants. Methodology/Principal Findings Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice. Conclusions/Significance Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species. PMID:21694767
Development of the Astyanax mexicanus circadian clock and non-visual light responses.
Frøland Steindal, Inga A; Beale, Andrew D; Yamamoto, Yoshiyuki; Whitmore, David
2018-06-23
Most animals and plants live on the planet exposed to periods of rhythmic light and dark. As such, they have evolved endogenous circadian clocks to regulate their physiology rhythmically, and non-visual light detection mechanisms to set the clock to the environmental light-dark cycle. In the case of fish, circadian pacemakers are not only present in the majority of tissues and cells, but these tissues are themselves directly light-sensitive, expressing a wide range of opsin photopigments. This broad non-visual light sensitivity exists to set the clock, but also impacts a wide range of fundamental cell biological processes, such as DNA repair regulation. In this context, Astyanax mexicanus is a very intriguing model system with which to explore non-visual light detection and circadian clock function. Previous work has shown that surface fish possess the same directly light entrainable circadian clocks, described above. The same is true for cave strains of Astyanax in the laboratory, though no daily rhythms have been observed under natural dark conditions in Mexico. There are, however, clear alterations in the cave strain light response and changes to the circadian clock, with a difference in phase of peak gene expression and a reduction in amplitude. In this study, we expand these early observations by exploring the development of non-visual light sensitivity and clock function between surface and cave populations. When does the circadian pacemaker begin to oscillate during development, and are there differences between the various strains? Is the difference in acute light sensitivity, seen in adults, apparent from the earliest stages of development? Our results show that both cave and surface populations must experience daily light exposure to establish a larval gene expression rhythm. These oscillations begin early, around the third day of development in all strains, but gene expression rhythms show a significantly higher amplitude in surface fish larvae. In addition, the light induction of clock genes is developmentally delayed in cave populations. Zebrafish embryonic light sensitivity has been shown to be critical not only for clock entrainment, but also for transcriptional activation of DNA repair processes. Similar downstream transcriptional responses to light also occur in Astyanax. Interestingly, the establishment of the adult timing profile of clock gene expression takes several days to become apparent. This fact may provide mechanistic insight into the key differences between the cave and surface fish clock mechanisms. Copyright © 2018. Published by Elsevier Inc.
Sbragaglia, Valerio; Lamanna, Francesco; M. Mat, Audrey; Rotllant, Guiomar; Joly, Silvia; Ketmaier, Valerio; de la Iglesia, Horacio O.; Aguzzi, Jacopo
2015-01-01
The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. PMID:26524198
Circadian Rhythms, the Molecular Clock, and Skeletal Muscle
Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.
2015-01-01
Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073
Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice.
Mereness, Amanda L; Murphy, Zachary C; Forrestel, Andrew C; Butler, Susan; Ko, CheMyong; Richards, JoAnne S; Sellix, Michael T
2016-02-01
Rhythmic events in female reproductive physiology, including ovulation, are tightly controlled by the circadian timing system. The molecular clock, a feedback loop oscillator of clock gene transcription factors, dictates rhythms of gene expression in the hypothalamo-pituitary-ovarian axis. Circadian disruption due to environmental factors (eg, shift work) or genetic manipulation of the clock has negative impacts on fertility. Although the central pacemaker in the suprachiasmatic nucleus classically regulates the timing of ovulation, we have shown that this rhythm also depends on phasic sensitivity to LH. We hypothesized that this rhythm relies on clock function in a specific cellular compartment of the ovarian follicle. To test this hypothesis we generated mice with deletion of the Bmal1 locus in ovarian granulosa cells (GCs) (Granulosa Cell Bmal1 KO; GCKO) or theca cells (TCs) (Theca Cell Bmal1 KO; TCKO). Reproductive cycles, preovulatory LH secretion, ovarian morphology and behavior were not grossly altered in GCKO or TCKO mice. We detected phasic sensitivity to LH in wild-type littermate control (LC) and GCKO mice but not TCKO mice. This decline in sensitivity to LH is coincident with impaired fertility and altered patterns of LH receptor (Lhcgr) mRNA abundance in the ovary of TCKO mice. These data suggest that the TC is a pacemaker that contributes to the timing and amplitude of ovulation by modulating phasic sensitivity to LH. The TC clock may play a critical role in circadian disruption-mediated reproductive pathology and could be a target for chronobiotic management of infertility due to environmental circadian disruption and/or hormone-dependent reprogramming in women.
Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H
2018-09-01
The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.
Ay, Ahmet; Holland, Jack; Sperlea, Adriana; Devakanmalai, Gnanapackiam Sheela; Knierer, Stephan; Sangervasi, Sebastian; Stevenson, Angel; Özbudak, Ertuğrul M.
2014-01-01
The vertebrate segmentation clock is a gene expression oscillator controlling rhythmic segmentation of the vertebral column during embryonic development. The period of oscillations becomes longer as cells are displaced along the posterior to anterior axis, which results in traveling waves of clock gene expression sweeping in the unsegmented tissue. Although various hypotheses necessitating the inclusion of additional regulatory genes into the core clock network at different spatial locations have been proposed, the mechanism underlying traveling waves has remained elusive. Here, we combined molecular-level computational modeling and quantitative experimentation to solve this puzzle. Our model predicts the existence of an increasing gradient of gene expression time delays along the posterior to anterior direction to recapitulate spatiotemporal profiles of the traveling segmentation clock waves in different genetic backgrounds in zebrafish. We validated this prediction by measuring an increased time delay of oscillatory Her1 protein production along the unsegmented tissue. Our results refuted the need for spatial expansion of the core feedback loop to explain the occurrence of traveling waves. Spatial regulation of gene expression time delays is a novel way of creating dynamic patterns; this is the first report demonstrating such a control mechanism in any tissue and future investigations will explore the presence of analogous examples in other biological systems. PMID:25336742
Nozue, Kazunari; Harmer, Stacey L.; Maloof, Julin N.
2011-01-01
Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway. PMID:21430186
Coque, Laurent; Mukherjee, Shibani; Cao, Jun-Li; Spencer, Sade; Marvin, Marian; Falcon, Edgardo; Sidor, Michelle M; Birnbaum, Shari G; Graham, Ami; Neve, Rachael L; Gordon, Elizabeth; Ozburn, Angela R; Goldberg, Matthew S; Han, Ming-Hu; Cooper, Donald C; McClung, Colleen A
2011-06-01
Lithium has been used extensively for mood stabilization, and it is particularly efficacious in the treatment of bipolar mania. Like other drugs used in the treatment of psychiatric diseases, it has little effect on the mood of healthy individuals. Our previous studies found that mice with a mutation in the Clock gene (ClockΔ19) have a complete behavioral profile that is very similar to human mania, which can be reversed with chronic lithium treatment. However, the cellular and physiological effects that underlie its targeted therapeutic efficacy remain unknown. Here we find that ClockΔ19 mice have an increase in dopaminergic activity in the ventral tegmental area (VTA), and that lithium treatment selectively reduces the firing rate in the mutant mice with no effect on activity in wild-type mice. Furthermore, lithium treatment reduces nucleus accumbens (NAc) dopamine levels selectively in the mutant mice. The increased dopaminergic activity in the Clock mutants is associated with cell volume changes in dopamine neurons, which are also rescued by lithium treatment. To determine the role of dopaminergic activity and morphological changes in dopamine neurons in manic-like behavior, we manipulated the excitability of these neurons by overexpressing an inwardly rectifying potassium channel subunit (Kir2.1) selectively in the VTA of ClockΔ19 mice and wild-type mice using viral-mediated gene transfer. Introduction of this channel mimics the effects of lithium treatment on the firing rate of dopamine neurons in ClockΔ19 mice and leads to a similar change in dopamine cell volume. Furthermore, reduction of dopaminergic firing rates in ClockΔ19 animals results in a normalization of locomotor- and anxiety-related behavior that is very similar to lithium treatment; however, it is not sufficient to reverse depression-related behavior. These results suggest that abnormalities in dopamine cell firing and associated morphology underlie alterations in anxiety-related behavior in bipolar mania, and that the therapeutic effects of lithium come from a reversal of these abnormal phenotypes.
Hirota, Tsuyoshi; Lewis, Warren G; Liu, Andrew C; Lee, Jae Wook; Schultz, Peter G; Kay, Steve A
2008-12-30
The circadian clock controls daily oscillations of gene expression at the cellular level. We report the development of a high-throughput circadian functional assay system that consists of luminescent reporter cells, screening automation, and a data analysis pipeline. We applied this system to further dissect the molecular mechanisms underlying the mammalian circadian clock using a chemical biology approach. We analyzed the effect of 1,280 pharmacologically active compounds with diverse structures on the circadian period length that is indicative of the core clock mechanism. Our screening paradigm identified many compounds previously known to change the circadian period or phase, demonstrating the validity of the assay system. Furthermore, we found that small molecule inhibitors of glycogen synthase kinase 3 (GSK-3) consistently caused a strong short period phenotype in contrast to the well-known period lengthening by lithium, another presumed GSK-3 inhibitor. siRNA-mediated knockdown of GSK-3beta also caused a short period, confirming the phenotype obtained with the small molecule inhibitors. These results clarify the role of GSK-3beta in the period regulation of the mammalian clockworks and highlight the effectiveness of chemical biology in exploring unidentified mechanisms of the circadian clock.
NASA Astrophysics Data System (ADS)
Pourquié, Olivier
2008-03-01
The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead to scoliosis in humans. Finally, the subsequent regional differentiation of the precursors of the vertebrae is controlled by Hox genes, whose collinear expression controls both gastrulation of somite precursors and their subsequent patterning into region-specific types of structures. Therefore somite development provides an outstanding paradigm to study patterning and differentiation in vertebrate embryos.
Role of cardiomyocyte circadian clock in myocardial metabolic adaptation
USDA-ARS?s Scientific Manuscript database
Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...
Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.
2015-01-01
The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263
Glial Cells in the Genesis and Regulation of Circadian Rhythms
Chi-Castañeda, Donají; Ortega, Arturo
2018-01-01
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called “clock genes.” A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis. PMID:29483880
Altered Stra13 and Dec2 circadian gene expression in hypoxic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine
2008-05-16
The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled genemore » Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.« less
Epigenetic regulation of the circadian clock: role of 5-aza-2′-deoxycytidine
Tomita, Tatsunosuke; Kurita, Ryoji
2017-01-01
We have been investigating transcriptional regulation of the BMAL1 gene, a critical component of the mammalian clock system including DNA methylation. Here, a more detailed analysis of the regulation of DNA methylation of BMAL1 proceeded in RPMI8402 lymphoma cells. We found that CpG islands in the BMAL1 and the PER2 promoters were hyper- and hypomethylated, respectively and that 5-aza-2′-deoxycytidine (aza-dC) not only enhanced PER2 gene expression but also PER2 oscillation within 24 h in RPMI8402 cells. That is, such hypermethylation of CpG islands in the BMAL1 promoter restricted PER2 expression which was recovered by aza-dC within 1 day in these cells. These results suggest that the circadian clock system can be recovered through BMAL1 expression induced by aza-dC within a day. The RPIB9 promoter of RPMI8402 cells, which is a methylation hotspot in lymphoblastic leukemia, was also hypermethylated and aza-dC gradually recovered RPIB9 expression in 3 days. In addition, methylation-specific PCR revealed a different degree of aza-dC-induced methylation release between BMAL1 and RPIB9. These results suggest that the aza-dC-induced recovery of gene expression from DNA methylation is dependent on a gene, for example the rapid response to demethylation by the circadian system, and thus, is of importance to clinical strategies for treating cancer. PMID:28487473
Obesity Disrupts Rhythmic Clock Gene Expression in Maternal Adipose Tissue during Rat Pregnancy.
Crew, Rachael C; Mark, Peter J; Waddell, Brendan J
2018-06-01
Obesity during pregnancy causes numerous maternal and fetal health complications, but the underlying mechanisms remain unclear. Adipose tissue dysfunction in obesity has previously been linked to disruption of the intrinsic adipose clock gene network that is crucial for normal metabolic function. This adipose clock also undergoes major change as part of the maternal metabolic adaptation to pregnancy, but whether this is affected by maternal obesity is unknown. Consequently, in this study we tested the hypothesis that obesity disturbs rhythmic gene expression in maternal adipose tissue across pregnancy. A rat model of maternal obesity was established by cafeteria (CAF) feeding, and adipose expression of clock genes and associated nuclear receptors ( Ppars and Pgc1α) was measured across days 15-16 and 21-22 of gestation (term = 23 days). CAF feeding suppressed the mesor and/or amplitude of adipose tissue clock genes (most notably Bmal1, Per2, and Rev-erbα) relative to chow-fed controls (CON) across both days of gestation. On day 15, the CAF diet also induced adipose Pparα, Pparδ, and Pgc1α rhythmicity but repressed that of Pparγ, while expression of Pparα, Pparδ, and Pgc1α was reduced at select time points. CAF mothers were hyperleptinemic at both stages of gestation, and at day 21 this effect was time-of-day dependent. Fetal plasma leptin exhibited clear rhythmicity, albeit with low amplitude, but interestingly these levels were unaffected by CAF feeding. Our data show that maternal obesity disrupts rhythmic expression of clock and metabolic genes in maternal adipose tissue and leads to maternal but not fetal hyperleptinemia.
Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng
2012-01-01
Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380
Molecular cogs of the insect circadian clock.
Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki
2003-08-01
During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.
The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size.
Gray, Jennifer A; Shalit-Kaneh, Akiva; Chu, Dalena Nhu; Hsu, Polly Yingshan; Harmer, Stacey L
2017-04-01
The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis ( Arabidopsis thaliana ), the clock is composed of numerous regulatory feedback loops in which REVEILLE8 ( RVE8 ) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5 , play only minor roles in the regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in the modulation of light input to the clock and the control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a daylength- and sucrose-dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild-type plants, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to the misregulation of PHYTOCHROME INTERACTING FACTOR4 ( PIF4 ) and PIF5 expression. Our results show that even small changes in PIF gene expression caused by the perturbation of clock gene function can have large effects on the growth of adult plants. © 2017 American Society of Plant Biologists. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Takashi, E-mail: shimizut@obihiro.ac.jp; Hirai, Yuko; Murayama, Chiaki
2011-08-19
Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number ofmore » granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.« less
Suicide attempts in children and adolescents: The place of clock genes and early rhythm dysfunction.
Olliac, Bertrand; Ouss, Lisa; Charrier, Annaëlle
2016-11-01
Suicide remains one of the leading causes of death among young people, and suicidal ideation and behavior are relatively common in healthy and clinical populations. Suicide risk in childhood and adolescence is often approached from the perspective of nosographic categories to which predictive variables for suicidal acts are often linked. The cascading effects resulting from altered clock genes in a pediatric population could participate in biological rhythm abnormalities and the emergence of suicide attempts through impaired regulation of circadian rhythms and emotional states with neurodevelopmental effects. Also, early trauma and stressful life events can alter the expression of clock genes and contribute to the emergence of suicide attempts. Alteration of clock genes might lead to desynchronized and abnormal circadian rhythms impairing in turn the synchronization between external and internal rhythms and therefore the adaptation of the individual to his/her internal and external environment with the development of psychiatric disorders associated with increased risk for suicide attempts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis.
Benna, Clara; Helfrich-Förster, Charlotte; Rajendran, Senthilkumar; Monticelli, Halenya; Pilati, Pierluigi; Nitti, Donato; Mocellin, Simone
2017-04-04
The number of studies on the association between clock genes' polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1).We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. We conducted a systematic review and meta-analysis of the evidence on the association between clock genes' germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.
Manipulating the circadian and sleep cycles to protect against metabolic disease.
Nohara, Kazunari; Yoo, Seung-Hee; Chen, Zheng Jake
2015-01-01
Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.
Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD
Sundar, Isaac K.; Ahmad, Tanveer; Yao, Hongwei; Hwang, Jae-woong; Gerloff, Janice; Lawrence, B. Paige; Sellix, Michael T.; Rahman, Irfan
2015-01-01
Daily oscillations of pulmonary function depend on the rhythmic activity of the circadian timing system. Environmental tobacco/cigarette smoke (CS) disrupts circadian clock leading to enhanced inflammatory responses. Infection with influenza A virus (IAV) increases hospitalization rates and death in susceptible individuals, including patients with Chronic Obstructive Pulmonary Disease (COPD). We hypothesized that molecular clock disruption is enhanced by IAV infection, altering cellular and lung function, leading to severity in airway disease phenotypes. C57BL/6J mice exposed to chronic CS, BMAL1 knockout (KO) mice and wild-type littermates were infected with IAV. Following infection, we measured diurnal rhythms of clock gene expression in the lung, locomotor activity, pulmonary function, inflammatory, pro-fibrotic and emphysematous responses. Chronic CS exposure combined with IAV infection altered the timing of clock gene expression and reduced locomotor activity in parallel with increased lung inflammation, disrupted rhythms of pulmonary function, and emphysema. BMAL1 KO mice infected with IAV showed pronounced detriments in behavior and survival, and increased lung inflammatory and pro-fibrotic responses. This suggests that remodeling of lung clock function following IAV infection alters clock-dependent gene expression and normal rhythms of lung function, enhanced emphysematous and injurious responses. This may have implications for the pathobiology of respiratory virus-induced airway disease severity and exacerbations. PMID:25923474
Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster.
Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M; Giebultowicz, Jadwiga M
2013-11-01
Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge. © 2013.
Sujino, Mitsugu; Asakawa, Takeshi; Nagano, Mamoru; Koinuma, Satoshi; Masumoto, Koh-Hei; Shigeyoshi, Yasufumi
2018-01-16
In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.
Stuber, Erica F.; Baumgartner, Christine; Dingemanse, Niels J.; Kempenaers, Bart; Mueller, Jakob C.
2016-01-01
Within populations, free-living birds display considerable variation in observable sleep behaviors, reflecting dynamic interactions between individuals and their environment. Genes are expected to contribute to repeatable between-individual differences in sleep behaviors, which may be associated with individual fitness. We identified and genotyped polymorphisms in nine candidate genes for sleep, and measured five repeatable sleep behaviors in free-living great tits (Parus major), partly replicating a previous study in blue tits (Cyanistes caeruleus). Microsatellites in the CLOCK and NPAS2 clock genes exhibited an association with sleep duration relative to night length, and morning latency to exit the nest box, respectively. Furthermore, microsatellites in the NPSR1 and PCSK2 genes associated with relative sleep duration and proportion of time spent awake at night, respectively. Given the detection rate of associations in the same models run with random markers instead of candidate genes, we expected two associations to arise by chance. The detection of four associations between candidate genes and sleep, however, suggests that clock genes, a clock-related gene, or a gene involved in the melanocortin system, could play key roles in maintaining phenotypic variation in sleep behavior in avian populations. Knowledge of the genetic architecture underlying sleep behavior in the wild is important because it will enable ecologists to assess the evolution of sleep in response to selection. PMID:26739645
Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta
2016-07-01
In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm. Copyright © 2016 Elsevier Inc. All rights reserved.
Butyrate Infusions in the Ovine Fetus Delay the Biologic Clock for Globin Gene Switching
NASA Astrophysics Data System (ADS)
Perrine, Susan P.; Rudolph, Abraham; Faller, Douglas V.; Roman, Christine; Cohen, Ruth A.; Chen, Shao-Jing; Kan, Yuet Wai
1988-11-01
The switch from fetal to adult hemoglobin expression is regulated in many mammalian species by a developmental clock-like mechanism and determined by the gestational age of the fetus. Prolonging fetal globin gene expression is of considerable interest for therapeutic potential in diseases caused by abnormal β -globin genes. Butyric acid, which is found in increased plasma concentrations in infants of diabetic mothers who have delayed globin gene switching, was infused into catheterized fetal lambs in utero during the time of the normal globin gene switch period. The globin gene switch was significantly delayed in three of four butyrate-treated fetuses compared with controls and was entirely prevented in one fetus in whom the infusion was begun before the globin switch was under way. These data provide a model for investigating and arresting the biologic clock of hemoglobin switching.
The circadian clock stops ticking during deep hibernation in the European hamster
Revel, Florent G.; Herwig, Annika; Garidou, Marie-Laure; Dardente, Hugues; Menet, Jérôme S.; Masson-Pévet, Mireille; Simonneaux, Valérie; Saboureau, Michel; Pévet, Paul
2007-01-01
Hibernation is a fascinating, yet enigmatic, physiological phenomenon during which body temperature and metabolism are reduced to save energy. During the harsh season, this strategy allows substantial energy saving by reducing body temperature and metabolism. Accordingly, biological processes are considerably slowed down and reduced to a minimum. However, the persistence of a temperature-compensated, functional biological clock in hibernating mammals has long been debated. Here, we show that the master circadian clock no longer displays 24-h molecular oscillations in hibernating European hamsters. The clock genes Per1, Per2, and Bmal1 and the clock-controlled gene arginine vasopressin were constantly expressed in the suprachiasmatic nucleus during deep torpor, as assessed by radioactive in situ hybridization. Finally, the melatonin rhythm-generating enzyme, arylalkylamine N-acetyltransferase, whose rhythmic expression in the pineal gland is controlled by the master circadian clock, no longer exhibits day/night changes of expression but constantly elevated mRNA levels over 24 h. Overall, these data provide strong evidence that in the European hamster the molecular circadian clock is arrested during hibernation and stops delivering rhythmic output signals. PMID:17715068
A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock.
Pruneda-Paz, Jose L; Breton, Ghislain; Para, Alessia; Kay, Steve A
2009-03-13
Transcriptional feedback loops constitute the molecular circuitry of the plant circadian clock. In Arabidopsis, a core loop is established between CCA1 and TOC1. Although CCA1 directly represses TOC1, the TOC1 protein has no DNA binding domains, which suggests that it cannot directly regulate CCA1. We established a functional genomic strategy that led to the identification of CHE, a TCP transcription factor that binds specifically to the CCA1 promoter. CHE is a clock component partially redundant with LHY in the repression of CCA1. The expression of CHE is regulated by CCA1, thus adding a CCA1/CHE feedback loop to the Arabidopsis circadian network. Because CHE and TOC1 interact, and CHE binds to the CCA1 promoter, a molecular linkage between TOC1 and CCA1 gene regulation is established.
Metabolism and the Circadian Clock Converge
Eckel-Mahan, Kristin
2013-01-01
Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis. PMID:23303907
Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.
Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua
2016-01-01
Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.
Chronobiology of bipolar disorder: therapeutic implication.
Dallaspezia, Sara; Benedetti, Francesco
2015-08-01
Multiple lines of evidence suggest that psychopathological symptoms of bipolar disorder arise in part from a malfunction of the circadian system, linking the disease with an abnormal internal timing. Alterations in circadian rhythms and sleep are core elements in the disorders, characterizing both mania and depression and having recently been shown during euthymia. Several human genetic studies have implicated specific genes that make up the genesis of circadian rhythms in the manifestation of mood disorders with polymorphisms in molecular clock genes not only showing an association with the disorder but having also been linked to its phenotypic particularities. Many medications used to treat the disorder, such as antidepressant and mood stabilizers, affect the circadian clock. Finally, circadian rhythms and sleep researches have been the starting point of the developing of chronobiological therapies. These interventions are safe, rapid and effective and they should be considered first-line strategies for bipolar depression.
Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François
2016-11-01
Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Biological Rhythms in the Skin
Matsui, Mary S.; Pelle, Edward; Dong, Kelly; Pernodet, Nadine
2016-01-01
Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin. PMID:27231897
NONO couples the circadian clock to the cell cycle.
Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A
2013-01-29
Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.
2017-01-01
The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light. PMID:29239721
Fujihara, Yuko; Kondo, Hisataka; Noguchi, Toshihide; Togari, Akifumi
2014-04-01
Circadian rhythms are prevalent in bone metabolism. However, the molecular mechanisms involved are poorly understood. Recently, we suggested that output signals from the suprachiasmatic nucleus (SCN) are transmitted from the master circadian rhythm to peripheral osteoblasts through β-adrenergic and glucocorticoid signaling. In this study, we examined how the master circadian rhythm is transmitted to peripheral osteoclasts and the role of clock gene in osteoclast. Mice were maintained under 12-hour light/dark periods and sacrificed at Zeitgeber times 0, 4, 8, 12, 16 and 20. mRNA was extracted from femur (cancellous bone) and analyzed for the expression of osteoclast-related genes and clock genes. Osteoclast-related genes such as cathepsin K (CTSK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) showed circadian rhythmicity like clock genes such as period 1 (PER1), PER2 and brain and muscle Arnt-like protein 1 (BMAL1). In an in vitro study, not β-agonist but glucocorticoid treatment remarkably synchronized clock and osteoclast-related genes in cultured osteoclasts. Chromatin immunoprecipitation (ChIP) assay showed the interaction between BMAL1 proteins and promoter region of CTSK and NFATc1. To examine whether endogenous glucocorticoids influence the osteoclast circadian rhythms, mice were adrenalectomized (ADX) and maintained under 12-hour light/dark periods at least two weeks before glucocorticoid injection. A glucocorticoid injection restarted the circadian expression of CTSK and NFATc1 in ADX mice. These results suggest that glucocorticoids mediate circadian timing to peripheral osteoclasts and osteoclast clock contributes to the circadian expression of osteoclast-related genes such as CTSK and NFATc1. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variatio...
Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation.
Zhao, Xuan; Hirota, Tsuyoshi; Han, Xuemei; Cho, Han; Chong, Ling-Wa; Lamia, Katja; Liu, Sihao; Atkins, Annette R; Banayo, Ester; Liddle, Christopher; Yu, Ruth T; Yates, John R; Kay, Steve A; Downes, Michael; Evans, Ronald M
2016-06-16
Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.
FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.
Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J
2017-04-11
The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Sexual dimorphism in clock genes expression in human adipose tissue
USDA-ARS?s Scientific Manuscript database
This study was carried out to investigate whether sex-related differences exist in the adipocyte expression of clock genes from subcutaneous abdominal and visceral fat depots in severely obese patients. METHODS: We investigated 16 morbidly obese patients, eight men and eight women (mean age 45 +/- 2...
Shimba, Shigeki; Ogawa, Tomohiro; Hitosugi, Shunsuke; Ichihashi, Yuya; Nakadaira, Yuki; Kobayashi, Munehiro; Tezuka, Masakatsu; Kosuge, Yasuhiro; Ishige, Kumiko; Ito, Yoshihisa; Komiyama, Kazuo; Okamatsu-Ogura, Yuko; Kimura, Kazuhiro; Saito, Masayuki
2011-01-01
A link between circadian rhythm and metabolism has long been discussed. Circadian rhythm is controlled by positive and negative transcriptional and translational feedback loops composed of several clock genes. Among clock genes, the brain and muscle Arnt-like protein-1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) play important roles in the regulation of the positive rhythmic transcription. In addition to control of circadian rhythm, we have previously shown that BMAL1 regulates adipogenesis. In metabolic syndrome patients, the function of BMAL1 is dysregulated in visceral adipose tissue. In addition, analysis of SNPs has revealed that BMAL1 is associated with susceptibility to hypertension and type II diabetes. Furthermore, the significant roles of BMAL1 in pancreatic β cells proliferation and maturation were recently reported. These results suggest that BMAL1 regulates energy homeostasis. Therefore, in this study, we examined whether loss of BMAL1 function is capable of inducing metabolic syndrome. Deficient of the Bmal1 gene in mice resulted in elevation of the respiratory quotient value, indicating that BMAL1 is involved in the utilization of fat as an energy source. Indeed, lack of Bmal1 reduced the capacity of fat storage in adipose tissue, resulting in an increase in the levels of circulating fatty acids, including triglycerides, free fatty acids, and cholesterol. Elevation of the circulating fatty acids level induced the formation of ectopic fat in the liver and skeletal muscle in Bmal1 -/- mice. Interestingly, ectopic fat formation was not observed in tissue-specific (liver or skeletal muscle) Bmal1 -/- mice even under high fat diet feeding condition. Therefore, we were led to conclude that BMAL1 is a crucial factor in the regulation of energy homeostasis, and disorders of the functions of BMAL1 lead to the development of metabolic syndrome.
Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri
2016-10-01
The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1 lox/lox /Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD + -to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.
Developmental programming by androgen affects the circadian timing system in female mice.
Mereness, Amanda L; Murphy, Zachary C; Sellix, Michael T
2015-04-01
Circadian clocks play essential roles in the timing of events in the mammalian hypothalamo-pituitary-ovarian (HPO) axis. The molecular oscillator driving these rhythms has been localized to tissues of the HPO axis. It has been suggested that synchrony among these oscillators is a feature of normal reproductive function. The impact of fertility disorders on clock function and the role of the clock in the etiology of endocrine pathology remain unknown. Polycystic ovarian syndrome (PCOS) is a particularly devastating fertility disorder, affecting 5%-10% of women at childbearing age with features including a polycystic ovary, anovulation, and elevated serum androgen. Approximately 40% of these women have metabolic syndrome, marked by hyperinsulinemia, dyslipidemia, and insulin resistance. It has been suggested that developmental exposure to excess androgen contributes to the etiology of fertility disorders, including PCOS. To better define the role of the timing system in these disorders, we determined the effects of androgen-dependent developmental programming on clock gene expression in tissues of the metabolic and HPO axes. Female PERIOD2::luciferase (PER2::LUC) mice were exposed to androgen (dihydrotestosterone [DHT]) in utero (Days 16-18 of gestation) or for 9-10 wk (DHT pellet) beginning at weaning (pubertal androgen excess [PAE]). As expected, both groups of androgen-treated mice had disrupted estrous cycles. Analysis of PER2::LUC expression in tissue explants revealed that excess androgen produced circadian misalignment via tissue-dependent effects on phase distribution. In vitro treatment with DHT differentially affected the period of PER2::LUC expression in tissue explants and granulosa cells, indicating that androgen has direct and tissue-specific effects on clock gene expression that may account for the effects of developmental programming on the timing system. © 2015 by the Society for the Study of Reproduction, Inc.
Chen, Minghui; Xu, Yanwen; Miao, Benyu; Zhao, Hui; Luo, Lu; Shi, Huijuan; Zhou, Canquan
2016-09-10
Previous studies have shown that circadian genes might be involved in the development of polycystic ovarian syndrome (PCOS). Hyperandrogenism is a hallmark feature of PCOS. However, the effect of hyperandrogenism on circadian gene expression in human granulosa cells is unknown, and the general expression pattern of circadian genes in the human ovary is unclear. Expression of the circadian proteins CLOCK and PER2 in human ovaries was observed by immunohistochemistry. The mRNA expression patterns of the circadian genes CLOCK, PER2, and BMAL1, and the steroidogenesis-related genes STAR, CYP11A1, HSD3B2, and CYP19A1 in cultured human luteinized granulosa cells were analyzed over the course of 48 h after testosterone treatment by quantitative polymerase chain reaction. Immunostaining of CLOCK and PER2 protein was detected in the granulosa cells of dominant antral follicles but was absent in the primordial, primary, or preantral follicles of human ovaries. After testosterone stimulation, expression of PER2 showed an oscillating pattern, with two peaks occurring at the 24th and 44th hours; expression of CLOCK increased significantly to the peak at the 24th hour, whereas expression of BMAL1 did not change significantly over time in human luteinized granulosa cells. Among the four steroidogenesis-related genes evaluated, only STAR displayed an oscillating expression pattern with two peaks occurring at the 24th and 40th hours after testosterone stimulation. Circadian genes are expressed in the dominant antral follicles of the human ovary. Oscillating expression of the circadian gene PER2 can be induced by testosterone in human granulosa cells in vitro. Expression of STAR also displayed an oscillating pattern after testosterone stimulation. Our results indicate a potential relationship between the circadian clock and steroidogenesis in the human ovary, and demonstrate the effect of testosterone on circadian gene expression in granulosa cells.
Ras-mediated deregulation of the circadian clock in cancer.
Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine
2014-01-01
Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.
Staiger, Dorothee; Allenbach, Laure; Salathia, Neeraj; Fiechter, Vincent; Davis, Seth J.; Millar, Andrew J.; Chory, Joanne; Fankhauser, Christian
2003-01-01
Plants possess several photoreceptors to sense the light environment. In Arabidopsis cryptochromes and phytochromes play roles in photomorphogenesis and in the light input pathways that synchronize the circadian clock with the external world. We have identified SRR1 (sensitivity to red light reduced), a gene that plays an important role in phytochrome B (phyB)-mediated light signaling. The recessive srr1 null allele and phyB mutants display a number of similar phenotypes indicating that SRR1 is required for normal phyB signaling. Genetic analysis suggests that SRR1 works both in the phyB pathway but also independently of phyB. srr1 mutants are affected in multiple outputs of the circadian clock in continuous light conditions, including leaf movement and expression of the clock components, CCA1 and TOC1. Clock-regulated gene expression is also impaired during day–night cycles and in constant darkness. The circadian phenotypes of srr1 mutants in all three conditions suggest that SRR1 activity is required for normal oscillator function. The SRR1 gene was identified and shown to code for a protein conserved in numerous eukaryotes including mammals and flies, implicating a conserved role for this protein in both the animal and plant kingdoms. PMID:12533513
USDA-ARS?s Scientific Manuscript database
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that circadian clock within the cardiomyocyte plays a role in regulating myocardia...
USDA-ARS?s Scientific Manuscript database
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology remains unknown. We hypothesized that the circadian clock within the cardiomyocyte plays a role in regulating myo...
Tormey, Duncan; Colbourne, John K; Mockaitis, Keithanne; Choi, Jeong-Hyeon; Lopez, Jacqueline; Burkhart, Joshua; Bradshaw, William; Holzapfel, Christina
2015-10-06
Internal circadian (circa, about; dies, day) clocks enable organisms to maintain adaptive timing of their daily behavioral activities and physiological functions. Eukaryotic clocks consist of core transcription-translation feedback loops that generate a cycle and post-translational modifiers that maintain that cycle at about 24 h. We use the pitcher-plant mosquito, Wyeomyia smithii (subfamily Culicini, tribe Sabethini), to test whether evolutionary divergence of the circadian clock genes in this species, relative to other insects, has involved primarily genes in the core feedback loops or the post-translational modifiers. Heretofore, there is no reference transcriptome or genome sequence for any mosquito in the tribe Sabethini, which includes over 375 mainly circumtropical species. We sequenced, assembled and annotated the transcriptome of W. smithii containing nearly 95 % of conserved single-copy orthologs in animal genomes. We used the translated contigs and singletons to determine the average rates of circadian clock-gene divergence in W. smithii relative to three other mosquito genera, to Drosophila, to the butterfly, Danaus, and to the wasp, Nasonia. Over 1.08 million cDNA sequence reads were obtained consisting of 432.5 million nucleotides. Their assembly produced 25,904 contigs and 54,418 singletons of which 62 % and 28 % are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. The W. smithii transcriptome includes all nine circadian transcription-translation feedback-loop genes and all eight post-translational modifier genes we sought to identify (Fig. 1). After aligning translated W. smithii contigs and singletons from this transcriptome with other insects, we determined that there was no significant difference in the average divergence of W. smithii from the six other taxa between the core feedback-loop genes and post-translational modifiers. The characterized transcriptome is sufficiently complete and of sufficient quality to have uncovered all of the insect circadian clock genes we sought to identify (Fig. 1). Relative divergence does not differ between core feedback-loop genes and post-translational modifiers of those genes in a Sabethine species (W. smithii) that has experienced a continual northward dispersal into temperate regions of progressively longer summer day lengths as compared with six other insect taxa. An associated microarray platform derived from this work will enable the investigation of functional genomics of circadian rhythmicity, photoperiodic time measurement, and diapause along a photic and seasonal geographic gradient.
Altered Sleep Homeostasis in Rev-erbα Knockout Mice.
Mang, Géraldine M; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul
2016-03-01
The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. © 2016 Associated Professional Sleep Societies, LLC.
Cockrell, Allison L.; Pirlo, Russell K.; Babson, David M.; Cusick, Kathleen D.; Soto, Carissa M.; Petersen, Emily R.; Davis, Miah J.; Hong, Christian I.; Lee, Kwangwon; Fitzgerald, Lisa A.; Biffinger, Justin C.
2015-01-01
Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator. PMID:26031221
Impaired light detection of the circadian clock in a zebrafish melanoma model
Hamilton, Noémie; Diaz-de-Cerio, Natalia; Whitmore, David
2015-01-01
The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development. PMID:25832911
Impaired light detection of the circadian clock in a zebrafish melanoma model.
Hamilton, Noémie; Diaz-de-Cerio, Natalia; Whitmore, David
2015-01-01
The circadian clock controls the timing of the cell cycle in healthy tissues and clock disruption is known to increase tumourigenesis. Melanoma is one of the most rapidly increasing forms of cancer and the precise molecular circadian changes that occur in a melanoma tumor are unknown. Using a melanoma zebrafish model, we have explored the molecular changes that occur to the circadian clock within tumors. We have found disruptions in melanoma clock gene expression due to a major impairment to the light input pathway, with a parallel loss of light-dependent activation of DNA repair genes. Furthermore, the timing of mitosis in tumors is perturbed, as well as the regulation of certain key cell cycle regulators, such that cells divide arhythmically. The inability to co-ordinate DNA damage repair and cell division is likely to promote further tumourigenesis and accelerate melanoma development.
Analysis of Circadian Leaf Movements.
Müller, Niels A; Jiménez-Gómez, José M
2016-01-01
The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato.
Bertolucci, Cristiano; Cavallari, Nicola; Colognesi, Ilaria; Aguzzi, Jacopo; Chen, Zheng; Caruso, Pierpaolo; Foá, Augusto; Tosini, Gianluca; Bernardi, Francesco; Pinotti, Mirko
2008-01-01
The mechanisms underlying the circadian control of gene expression in peripheral tissues and influencing many biological pathways are poorly defined. Factor VII (FVII), the protease triggering blood coagulation, represents a valuable model to address this issue in liver since its plasma levels oscillate in a circadian manner and its promoter contains E-boxes, which are putative DNA-binding sites for CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers and hallmarks of circadian regulation. The peaks of FVII mRNA levels in livers of wild-type mice preceded those in plasma, indicating a transcriptional regulation, and were abolished in Clock−/−; Npas2−/− mice, thus demonstrating a role for CLOCK and NPAS2 circadian transcription factors. The investigation of Npas2−/− and ClockΔ19/Δ19 mice, which express functionally defective heterodimers, revealed robust rhythms of FVII expression in both animal models, suggesting a redundant role for NPAS2 and CLOCK. The molecular bases of these observations were established through reporter gene assays. FVII transactivation activities of the NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers were (i) comparable (a fourfold increase), (ii) dampened by the negative circadian regulators PER2 and CRY1, and (iii) abolished upon E-box mutagenesis. Our data provide the first evidence in peripheral oscillators for an overlapping role of CLOCK and NPAS2 in the regulation of circadianly controlled genes. PMID:18316400
Circadian Clock Regulates Response to Pesticides in Drosophila via Conserved Pdp1 Pathway
Beaver, Laura Michelle; Hooven, Louisa Ada; Butcher, Shawn Michael; Krishnan, Natraj; Sherman, Katherine Alice; Chow, Eileen Shin-Yeu; Giebultowicz, Jadwiga Maria
2010-01-01
Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The ϵ-isoform of the PAR-domain protein 1 (Pdp1ε) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1ε increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and α-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity. PMID:20348229
USDA-ARS?s Scientific Manuscript database
The intracellular circadian clock consists of a series of transcriptional modulators that together allow the cell to perceive the time of day. Circadian clocks have been identified within various components of the cardiovascular system (e.g., cardiomyocytes, vascular smooth muscle cells) and possess...
Roa, Silvia Liliana Ruiz; Martinez, Edson Zangiacomi; Martins, Clarissa Silva; Antonini, Sonir Rauber; de Castro, Margaret; Moreira, Ayrton Custódio
2017-05-01
The postnatal synchronization of the circadian variation of the adrenal clock genes in mammals remains unknown. We evaluated the postnatal ontogeny of daily variation of clock genes (Clock/Bmal1/Per1/Per2/Per3/Cry1/Cry2/Rorα/Rev-Erbα) and steroidogenesis-related genes (Star and Mc2r) in rat adrenals and its relationship with the emergence of plasma corticosterone rhythm using cosinor analysis. Plasma corticosterone circadian rhythm was detected from postnatal day (P)1, with morning acrophase, between zeitgeber time (ZT)0 and ZT2. From P14, there was a nocturnal acrophase of corticosterone at ZT20, which was associated with pups' eye opening. From P3 there was a circadian variation of the mRNA expression of Bmal1, Per2, Per3, and Cry1 genes with morning acrophase, whereas Rev-Erbα had nocturnal acrophase. From P14, Bmal1, Per2, Per3, and Cry1 acrophases advanced by approximately 10 hours, as compared with early neonatal days, becoming vespertine-nocturnal. In all postnatal ages, Per2 and Cry1 circadian profiles were synchronized in phase with the circadian rhythm of plasma corticosterone, whereas Bmal1 was in antiphase. An adult-like Star circadian rhythm profile was observed only from P21. In conclusion, our original data demonstrated a progressive postnatal maturation of the circadian variation of the adrenal clock genes in synchrony with the development of the corticosterone circadian rhythm in rats. Copyright © 2017 Endocrine Society.
Johnston, Jonathan D; Ebling, Francis J P; Hazlerigg, David G
2005-06-01
Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.
Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.
Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred
2016-02-01
The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).
de Assis, Leonardo Vinícius Monteiro; Moraes, Maria Nathália; Magalhães-Marques, Keila Karoline; Kinker, Gabriela Sarti; da Silveira Cruz-Machado, Sanseray; Castrucci, Ana Maria de Lauro
2018-04-03
The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.
Durgan, David J.; Tsai, Ju-Yun; Grenett, Maximiliano H.; Pat, Betty M.; Ratcliffe, William F.; Villegas-Montoya, Carolina; Garvey, Merissa E.; Nagendran, Jeevan; Dyck, Jason R.B.; Bray, Molly S.; Gamble, Karen L.; Gimble, Jeffrey M.; Young, Martin E.
2011-01-01
Circadian dyssynchrony of an organism (at the whole body level) with its environment, either through light/dark cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism, to contractile function. We therefore reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment would precipitate myocardial maladaptation to a circadian challenge (simulated shift work; SSW). To test this hypothesis, 2 and 20 month old wild-type and CCM (Cardiomyocyte Clock Mutant; a model with genetic temporal suspension of the cardiomyocyte circadian clock at the active-to-sleep phase transition) mice were subjected to chronic (16-wks) bi-weekly 12-hr phase shifts in the light/dark cycle (i.e., SSW). Assessment of adaptation/maladaptation at whole body homeostatic, gravimetric, humoral, histological, transcriptional, and cardiac contractile function levels revealed essentially identical responses between wild-type and CCM littermates. However, CCM hearts exhibit increased bi-ventricular weight, cardiomyocyte size, and molecular markers of hypertrophy (anf, mcip1) independent of aging and/or SSW. Similarly, a second genetic model of selective temporal suspension of the cardiomyocyte circadian clock (Cardiomyocyte-specific BMAL1 Knockout [CBK] mice) exhibits increased bi-ventricular weight and mcip1 expression. Wild-type mice exhibit 5-fold greater cardiac hypertrophic growth (and 6-fold greater anf mRNA induction) when challenged with the hypertrophic agonist isoproterenol at the active-to-sleep phase transition, relative to isoproterenol administration at the sleep-to-active phase transition. This diurnal variation was absent in CCM mice. Collectively, these data suggest that the cardiomyocyte circadian clock likely influences responsiveness of the heart to hypertrophic stimuli. PMID:21452915
Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.
Hampp, Gabriele; Ripperger, Jürgen A; Houben, Thijs; Schmutz, Isabelle; Blex, Christian; Perreau-Lenz, Stéphanie; Brunk, Irene; Spanagel, Rainer; Ahnert-Hilger, Gudrun; Meijer, Johanna H; Albrecht, Urs
2008-05-06
The circadian clock has been implicated in addiction and several forms of depression [1, 2], indicating interactions between the circadian and the reward systems in the brain [3-5]. Rewards such as food, sex, and drugs influence this system in part by modulating dopamine neurotransmission in the mesolimbic dopamine reward circuit, including the ventral tegmental area (VTA) and the ventral striatum (NAc). Hence, changes in dopamine levels in these brain areas are proposed to influence mood in humans and mice [6-10]. To establish a molecular link between the circadian-clock mechanism and dopamine metabolism, we analyzed the murine promoters of genes encoding key enzymes important in dopamine metabolism. We find that transcription of the monoamine oxidase A (Maoa) promoter is regulated by the clock components BMAL1, NPAS2, and PER2. A mutation in the clock gene Per2 in mice leads to reduced expression and activity of MAOA in the mesolimbic dopaminergic system. Furthermore, we observe increased levels of dopamine and altered neuronal activity in the striatum, and these results probably lead to behavioral alterations observed in Per2 mutant mice in despair-based tests. These findings suggest a role of circadian-clock components in dopamine metabolism highlighting a role of the clock in regulating mood-related behaviors.
USDA-ARS?s Scientific Manuscript database
Menopausal women exhibit a loss of circadian coordination, a process that runs parallel with a redistribution of adipose tissue. However, the specific genetic mechanisms underlying these alterations have not been studied. Thus, the aim of the present study was to determine whether the development of...
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.
2012-01-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001
Sex Difference in Daily Rhythms of Clock Gene Expression in the Aged Human Cerebral Cortex
Lim, Andrew S.P.; Myers, Amanda J.; Yu, Lei; Buchman, Aron S.; Duffy, Jeanne F.; De Jager, Philip L.; Bennett, David A.
2013-01-01
Background Studies using self-report and physiological markers of circadian rhythmicity have demonstrated sex differences in a number of circadian attributes including morningness-eveningness, entrained phase, and intrinsic period. However, these sex differences have not been examined at the level of the molecular clock, and not in human cerebral cortex. We tested the hypothesis that there are detectable daily rhythms of clock gene expression in human cerebral cortex, and that there are significant sex differences in the timing of these rhythms. Methods We quantified the expression levels of three clock genes – PER2, PER3, and ARNTL1 in samples of dorsolateral prefrontal cortex from 490 deceased individuals in two cohort studies of older individuals, the Religious Orders Study and the Rush Memory and Aging Project, using mRNA microarray data. We parameterized clock gene expression at death as a function of time of death using cosine curves, and examined for sex differences in the phase of these curves. Findings Significant daily variation was seen in the expression of PER2 (p=0.004), PER3 (p=0.003) and ARNTL1 (p=0.0005). PER2/3 expression peaked at 10:38 [95%CI 9:20–11:56] and 10:44 [95%CI 9:29–11:59] respectively, and ARNTL1 expression peaked in antiphase to this at 21:23 [95%CI 20:16–22:30]. The timing of the expression of all three genes was significantly earlier in women than in men (PER2 6.8 hours p=0.002; PER3 5.5 hours p=0.001; ARNTL1 4.7 hours p=0.007). Interpretation Daily rhythms of clock gene expression are present in human cerebral cortex and can be inferred from postmortem samples. Moreover, these rhythms are relatively delayed in men compared to women. PMID:23606611
Chun, Lauren E; Christensen, Jenny; Woodruff, Elizabeth R; Morton, Sarah J; Hinds, Laura R; Spencer, Robert L
2018-01-01
Oscillating clock gene expression gives rise to a molecular clock that is present not only in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), but also in extra-SCN brain regions. These extra-SCN molecular clocks depend on the SCN for entrainment to a light:dark cycle. The SCN has limited neural efferents, so it may entrain extra-SCN molecular clocks through its well-established circadian control of glucocorticoid hormone secretion. Glucocorticoids can regulate the normal rhythmic expression of clock genes in some extra-SCN tissues. Untimely stress-induced glucocorticoid secretion may compromise extra-SCN molecular clock function. We examined whether acute restraint stress during the rat's inactive phase can rapidly (within 30 min) alter clock gene (Per1, Per2, Bmal1) and cFos mRNA (in situ hybridization) in the SCN, hypothalamic paraventricular nucleus (PVN), and prefrontal cortex (PFC) of male and female rats (6 rats per treatment group). Restraint stress increased Per1 and cFos mRNA in the PVN and PFC of both sexes. Stress also increased cFos mRNA in the SCN of male rats, but not when subsequently tested during their active phase. We also examined in male rats whether endogenous glucocorticoids are necessary for stress-induced Per1 mRNA (6-7 rats per treatment group). Adrenalectomy attenuated stress-induced Per1 mRNA in the PVN and ventral orbital cortex, but not in the medial PFC. These data indicate that increased Per1 mRNA may be a means by which extra-SCN molecular clocks adapt to environmental stimuli (e.g. stress), and in the PFC this effect is largely independent of glucocorticoids.
Ben-Moshe, Zohar; Alon, Shahar; Mracek, Philipp; Faigenbloom, Lior; Tovin, Adi; Vatine, Gad D.; Eisenberg, Eli; Foulkes, Nicholas S.; Gothilf, Yoav
2014-01-01
Light constitutes a primary signal whereby endogenous circadian clocks are synchronized (‘entrained’) with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3′UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light. PMID:24423866
Peripheral Circadian Clock Rhythmicity Is Retained in the Absence of Adrenergic Signaling
Reilly, Dermot F.; Curtis, Anne M.; Cheng, Yan; Westgate, Elizabeth J.; Rudic, Radu D.; Paschos, Georgios; Morris, Jacqueline; Ouyang, Ming; Thomas, Steven A.; FitzGerald, Garret A.
2009-01-01
Objective The incidence of heart attack and stroke undergo diurnal variation. Molecular clocks have been described in the heart and the vasculature; however it is largely unknown how the suprachiasmatic nucleus (SCN) entrains these peripheral oscillators. Methods and Results Norepinephrine and epinephrine, added to aortic smooth muscle cells (ASMCs) in vitro, altered Per1, E4bp4, and dbp expression and altered the observed oscillations in clock gene expression. However, oscillations of Per1, E4bp4, dbp, and Per2 were preserved ex vivo in the aorta, heart, and liver harvested from dopamine β-hydroxylase knockout mice (Dbh−/−) that cannot synthesize either norepinephrine or epinephrine. Furthermore, clock gene oscillations in heart, liver, and white adipose tissue phase shifted identically in Dbh−/− mice and in Dbh+/− controls in response to daytime restriction of feeding. Oscillation of clock genes was similarly preserved ex vivo in tissues from Dbh+/− and Dbh−/− chronically treated with both propranolol and terazosin, thus excluding compensation by dopamine in Dbh−/− mice. Conclusions Although adrenergic signaling can influence circadian timing in vitro, peripheral circadian rhythmicity is retained despite its ablation in vivo. PMID:17975121
Clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint?
Krabbenhoft, Trevor J; Turner, Thomas F
2014-01-01
Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.
USDA-ARS?s Scientific Manuscript database
Introduction: The success of obesity therapy is dependent on the genetic background of the patient. Circadian Locomotor Output Cycles Kaput (CLOCK), one of the transcription factors from the positive limb of the molecular clock, is involved in metabolic alterations. Objective: To investigate whethe...
Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures
USDA-ARS?s Scientific Manuscript database
To examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock ...
Bazzi, Gaia; Ambrosini, Roberto; Caprioli, Manuela; Costanzo, Alessandra; Liechti, Felix; Gatti, Emanuele; Gianfranceschi, Luca; Podofillini, Stefano; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Saino, Nicola; Rubolini, Diego
2015-01-01
Circannual rhythms often rely on endogenous seasonal photoperiodic timers involving ‘clock’ genes, and Clock gene polymorphism has been associated to variation in phenology in some bird species. In the long-distance migratory barn swallow Hirundo rustica, individuals bearing the rare Clock allele with the largest number of C-terminal polyglutamine repeats found in this species (Q8) show a delayed reproduction and moult later. We explored the association between Clock polymorphism and migration scheduling, as gauged by light-level geolocators, in two barn swallow populations (Switzerland; Po Plain, Italy). Genetic polymorphism was low: 91% of the 64 individuals tracked year-round were Q7/Q7 homozygotes. We compared the phenology of the rare genotypes with the phenotypic distribution of Q7/Q7 homozygotes within each population. In Switzerland, compared to Q7/Q7, two Q6/Q7 males departed earlier from the wintering grounds and arrived earlier to their colony in spring, while a single Q7/Q8 female was delayed for both phenophases. On the other hand, in the Po Plain, three Q6/Q7 individuals had a similar phenology compared to Q7/Q7. The Swiss data are suggestive for a role of genetic polymorphism at a candidate phenological gene in shaping migration traits, and support the idea that Clock polymorphism underlies phenological variation in birds. PMID:26197782
Circadian rhythms, food timing and obesity.
Lopez-Minguez, J; Gómez-Abellán, P; Garaulet, M
2016-11-01
It is known that our physiology changes throughout the day and that several physiological hormones display circadian rhythmicity. The alteration of this normal pattern is called chronodisruption (CD). In recent years, it has been demonstrated that CD is related to obesity. Although several factors may be causing CD, one important aspect to consider is the failure in our internal clock. Indeed, studies performed in mutant animals have demonstrated that mutations in clock genes are related to obesity. In human subjects, mutations are rare (<1 % of the population). Nevertheless, it is rather common to have genetic variations in one SNP, which underlie differences in our vulnerability to disease. Several SNP in clock genes are related to obesity and weight loss. Taking into account that genetics is behind CD, as has already been demonstrated in twins' models, the question is: Are we predestinated? We will see along these lines that nutrigenetics and epigenetics answer: 'No, we are not predestinated'. Through nutrigenetics we know that our behaviours may interact with our genes and may decrease the deleterious effect of one specific risk variant. From epigenetics the message is even more positive: it is demonstrated that by changing our behaviours we can change our genome. Herein, we propose modifying 'what, how, and when we eat' as an effective tool to decrease our genetic risk, and as a consequence to diminish CD and decrease obesity. This is a novel and very promising area in obesity prevention and treatment.
Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World.
Mermet, Jérôme; Yeung, Jake; Naef, Felix
2017-03-01
Mammals have evolved an internal timing system, the circadian clock, which synchronizes physiology and behavior to the daily light and dark cycles of the Earth. The master clock, located in the suprachiasmatic nucleus (SCN) of the brain, takes fluctuating light input from the retina and synchronizes other tissues to the same internal rhythm. The molecular clocks that drive these circadian rhythms are ticking in nearly all cells in the body. Efforts in systems chronobiology are now being directed at understanding, on a comprehensive scale, how the circadian clock controls different layers of gene regulation to provide robust timing cues at the cellular and tissue level. In this review, we introduce some basic concepts underlying periodicity of gene regulation, and then highlight recent genome-wide investigations on the propagation of rhythms across multiple regulatory layers in mammals, all the way from chromatin conformation to protein accumulation. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Circadian Rhythms in Diet-Induced Obesity.
Engin, Atilla
2017-01-01
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker
Triqueneaux, Gérard; Thenot, Sandrine; Kakizawa, Tomoko; Antoch, Marina P; Safi, Rachid; Takahashi, Joseph S; Delaunay, Franck; Laudet, Vincent
2013-01-01
Rev-erbα is a ubiquitously expressed orphan nuclear receptor which functions as a constitutive transcriptional repressor and is expressed in vertebrates according to a robust circadian rhythm. We report here that two Rev-erbα mRNA isoforms, namely Rev-erbα1 and Rev-erbα2, are generated through alternative promoter usage and that both show a circadian expression pattern in an in vitro system using serum-shocked fibroblasts. Both promoter regions P1 (Rev-erbα1) and P2 (Rev-erbα2) contain several E-box DNA sequences, which function as response elements for the core circadian-clock components: CLOCK and BMAL1. The CLOCK–BMAL1 heterodimer stimulates the activity of both P1 and P2 promoters in transient transfection assay by 3–6-fold. This activation was inhibited by the overexpression of CRY1, a component of the negative limb of the circadian transcriptional loop. Critical E-box elements were mapped within both promoters. This regulation is conserved in vertebrates since we found that the CLOCK–BMAL1 heterodimer also regulates the zebrafish Rev-erbα gene. In line with these data Rev-erbα circadian expression was strongly impaired in the livers of Clock mutant mice and in the pineal glands of zebrafish embryos treated with Clock and Bmal1 antisense oligonucleotides. Together these data demonstrate that CLOCK is a critical regulator of Rev-erbα circadian gene expression in evolutionarily distant vertebrates and suggest a role for Rev-erbα in the circadian clock output. PMID:15591021
Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna
2017-06-01
To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we have cloned the circadian clock gene cycle (Sncyc) in the corn stalk borer, Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among insects for this gene. SnCYC consists of 667 amino acids and structural analysis showed that it contains a BCTR domain in its C-terminal in addition to the common domains found in Drosophila CYC, i.e. bHLH, PAS-A, PAS-B domains. The results revealed that the sequence of Sncyc showed a similarity to that of its mammalian orthologue, Bmal1. We also investigated the expression patterns of Sncyc in the brain of larvae growing under long-day 16L: 8D (LD), constant darkness (DD) and short-day 10L: 14D (SD) conditions using qRT-PCR assays. The mRNAs of Sncyc expression was rhythmic in LD, DD and SD cycles. Also, it is remarkable that the photoperiodic conditions affect the expression patterns and/or amplitudes of circadian clock gene Sncyc. This gene is associated with diapause in S. nonagrioides, because under SD (diapause conditions) the photoperiodic signal altered mRNA accumulation. Sequence and expression analysis of cyc in S. nonagrioides shows interesting differences compared to Drosophila where this gene does not oscillate or change in expression patterns in response to photoperiod, suggesting that this species is an interesting new model to study the molecular control of insect circadian and photoperiodic clocks. Copyright © 2017 Elsevier Inc. All rights reserved.
Ando, Hironori; Shahjahan, Md; Kitahashi, Takashi
2018-04-03
The seasonal, daily and lunar control of reproduction involves photoperiodic, circadian and lunar changes in the activity of kisspeptin, gonadotropin-inhibitory hormone (GnIH) and gonadotropin-releasing hormone (GnRH) neurons. These changes are brought through complex networks of light-, time- and non-photic signal-dependent control mechanisms, which are mostly unknown at present. The grass puffer, Takifugu alboplumbeus, a semilunar spawner, provides a unique and excellent animal model to assess this question because its spawning is synchronized with seasonal, daily and lunar cycles. In the diencephalon, the genes for kisspeptin, GnIH and their receptors showed similar expression patterns with clear seasonal and daily oscillations, suggesting that they are regulated by common mechanisms involving melatonin, circadian clock and water temperature. For implications in semilunar-synchronized spawning rhythm, melatonin receptor genes showed ultradian oscillations in expression with the period of 14.0-15.4 h in the pineal gland. This unique ultradian rhythm might be driven by circatidal clock. The possible circatidal clock and circadian clock in the pineal gland may cooperate to drive circasemilunar rhythm to regulate the expression of the kisspeptin, GnIH and their receptor genes. On the other hand, high temperature (over 28 °C) conditions, under which the expression of the kisspeptin and its receptor genes is markedly suppressed, may provide an environmental signal that terminates reproduction at the end of breeding period. Taken together, the periodic regulation of the kisspeptin, GnIH and their receptor genes by melatonin, circadian clock and water temperature may be important in the precisely-timed spawning of the grass puffer. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of bright light exposure during daytime on peripheral clock gene expression in humans.
Sato, Maki; Wakamura, Tomoko; Morita, Takeshi; Okamoto, Akihiko; Akashi, Makoto; Matsui, Takuya; Sato, Motohiko
2017-06-01
Light is the strongest synchronizer controlling circadian rhythms. The intensity and duration of light change throughout the year, thereby influencing body weight, food preferences, and melatonin secretion in humans and animals. Although the expression of clock genes has been examined using human samples, it currently remains unknown whether bright light during the daytime affects the expression of these genes in humans. Therefore, we herein investigated the effects of bright light exposure during the daytime on clock gene expression in the hair follicular and root cells of the human scalp. Seven healthy men (20.4 ± 2.2 years old; 172.3 ± 5.8 cm; 64.3 ± 8.5 kg; BMI 21.7 ± 3.1 kg/m 2 , mean ± SD) participated in this study. Subjects completed 3-day experimental sessions twice in 1 month during which they were exposed to bright and dim light conditions. The mRNA expression of Per1-3, Cry1-2, Rev-erb-α (Nr1d1), Rev-erb-β (Nr1d2), and Dec1 was analyzed using branched DNA probes. No significant changes were observed in the expression of Per1, Per2, Per3, Cry1, Cry2, Rev-erb-α (Nr1d1), or Dec1 following exposure to bright light conditions. However, the expression of Rev-erb-β (Nr1d2) tended to be stronger under bright light than dim light conditions. These results suggest that the bright light stimulus did not influence the expression of clock genes in humans. Long-lasting bright light exposure during the daytime may be required to change the expression of clock genes in humans.
Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period
Kim, Min-Ho; Rao, Neethi Varadaraja; Bonilla, Gloribel; Wijnen, Herman
2011-01-01
Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LNvs) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LNvs resulted in abnormal peptidergic small-LNv dorsal projections, and (2) PER expression rhythms in the adult LNvs appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex. PMID:21750685
Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A.; Vernieri, Paolo; Ferrante, Antonio
2016-01-01
Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. PMID:27591432
Kwok, Rosanna S.; Li, Ying H.; Lei, Anna J.; Edery, Isaac; Chiu, Joanna C.
2015-01-01
Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. PMID:26132408
Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work.
Cuesta, Marc; Boudreau, Philippe; Cermakian, Nicolas; Boivin, Diane B
2017-11-24
A majority of night shift workers have their circadian rhythms misaligned to their atypical schedule. While bright light exposure at night is known to reset the human central circadian clock, the behavior of peripheral clocks under conditions of shift work is more elusive. The aim of the present study was to quantify the resetting effects of bright light exposure on both central (plasma cortisol and melatonin) and peripheral clocks markers (clock gene expression in peripheral blood mononuclear cells, PBMCs) in subjects living at night. Eighteen healthy subjects were enrolled to either a control (dim light) or a bright light group. Blood was sampled at baseline and on the 4 th day of simulated night shift. In response to a night-oriented schedule, the phase of PER1 and BMAL1 rhythms in PBMCs was delayed by ~2.5-3 h (P < 0.05), while no shift was observed for the other clock genes and the central markers. Three cycles of 8-h bright light induced significant phase delays (P < 0.05) of ~7-9 h for central and peripheral markers, except BMAL1 (advanced by +5h29; P < 0.05). Here, we demonstrate in humans a lack of peripheral clock adaptation under a night-oriented schedule and a rapid resetting effect of nocturnal bright light exposure on peripheral clocks.
Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.
Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William
2014-12-01
Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Lee, Euna; Cho, Eunjoo; Kang, Doo Hyun; Jeong, Eun Hee; Chen, Zheng; Yoo, Seung-Hee; Kim, Eun Young
2016-01-01
Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657–707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box–dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657–707 deletion in the Clock (Clkout) genetic background (p{dClk-Δ};Clkout), oscillation of core clock genes’ mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657–707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clkout flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clkout flies showed pacemaker-neuron–dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clkout flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657–707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions. PMID:27489346
Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication.
Müller, Niels A; Zhang, Lei; Koornneef, Maarten; Jiménez-Gómez, José M
2018-05-22
Circadian period and phase of cultivated tomato ( Solanum lycopersicum ) were changed during domestication, likely adapting the species to its new agricultural environments. Whereas the delayed circadian phase is mainly caused by allelic variation of EID1 , the genetic basis of the long circadian period has remained elusive. Here we show that a partial deletion of the clock gene LNK2 is responsible for the period lengthening in cultivated tomatoes. We use resequencing data to phylogenetically classify hundreds of tomato accessions and investigate the evolution of the eid1 and lnk2 mutations along successive domestication steps. We reveal signatures of selection across the genomic region of LNK2 and different patterns of fixation of the mutant alleles. Strikingly, LNK2 and EID1 are both involved in light input to the circadian clock, indicating that domestication specifically targeted this input pathway. In line with this, we show that the clock deceleration in the cultivated tomato is light-dependent and requires the phytochrome B1 photoreceptor. Such conditional variation in circadian rhythms may be key for latitudinal adaptation in a variety of species, including crop plants and livestock.
Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis
Benna, Clara; Helfrich-Förster, Charlotte; Rajendran, Senthilkumar; Monticelli, Halenya; Pilati, Pierluigi; Nitti, Donato; Mocellin, Simone
2017-01-01
BACKGROUND The number of studies on the association between clock genes’ polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1). We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between clock genes’ germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies. PMID:28177907
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M
2012-03-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.
Mieda, Michihiro; Okamoto, Hitoshi; Sakurai, Takeshi
2016-09-26
As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network. Copyright © 2016 Elsevier Ltd. All rights reserved.
The clock gene Period1 regulates innate routine behaviour in mice
Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik
2014-01-01
Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour. PMID:24598427
The clock gene Period1 regulates innate routine behaviour in mice.
Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik
2014-04-22
Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.
Huang, W; Pérez-García, P; Pokhilko, A; Millar, A J; Antoshechkin, I; Riechmann, J L; Mas, P
2012-04-06
In many organisms, the circadian clock is composed of functionally coupled morning and evening oscillators. In Arabidopsis, oscillator coupling relies on a core loop in which the evening oscillator component TIMING OF CAB EXPRESSION 1 (TOC1) was proposed to activate a subset of morning-expressed oscillator genes. Here, we show that TOC1 does not function as an activator but rather as a general repressor of oscillator gene expression. Repression occurs through TOC1 rhythmic association to the promoters of the oscillator genes. Hormone-dependent induction of TOC1 and analysis of RNA interference plants show that TOC1 prevents the activation of morning-expressed genes at night. Our study overturns the prevailing model of the Arabidopsis circadian clock, showing that the morning and evening oscillator loops are connected through the repressing activity of TOC1.
Gatto, Cheryl L.; Broadie, Kendal
2009-01-01
Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity. PMID:19738924
Dim light at night disrupts the short-day response in Siberian hamsters.
Ikeno, Tomoko; Weil, Zachary M; Nelson, Randy J
2014-02-01
Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response. Copyright © 2013 Elsevier Inc. All rights reserved.
Boyd, Joseph S; Cheng, Ryan R; Paddock, Mark L; Sancar, Cigdem; Morcos, Faruck; Golden, Susan S
2016-09-15
Two-component systems (TCS) that employ histidine kinases (HK) and response regulators (RR) are critical mediators of cellular signaling in bacteria. In the model cyanobacterium Synechococcus elongatus PCC 7942, TCSs control global rhythms of transcription that reflect an integration of time information from the circadian clock with a variety of cellular and environmental inputs. The HK CikA and the SasA/RpaA TCS transduce time information from the circadian oscillator to modulate downstream cellular processes. Despite immense progress in understanding of the circadian clock itself, many of the connections between the clock and other cellular signaling systems have remained enigmatic. To narrow the search for additional TCS components that connect to the clock, we utilized direct-coupling analysis (DCA), a statistical analysis of covariant residues among related amino acid sequences, to infer coevolution of new and known clock TCS components. DCA revealed a high degree of interaction specificity between SasA and CikA with RpaA, as expected, but also with the phosphate-responsive response regulator SphR. Coevolutionary analysis also predicted strong specificity between RpaA and a previously undescribed kinase, HK0480 (herein CikB). A knockout of the gene for CikB (cikB) in a sasA cikA null background eliminated the RpaA phosphorylation and RpaA-controlled transcription that is otherwise present in that background and suppressed cell elongation, supporting the notion that CikB is an interactor with RpaA and the clock network. This study demonstrates the power of DCA to identify subnetworks and key interactions in signaling pathways and of combinatorial mutagenesis to explore the phenotypic consequences. Such a combined strategy is broadly applicable to other prokaryotic systems. Signaling networks are complex and extensive, comprising multiple integrated pathways that respond to cellular and environmental cues. A TCS interaction model, based on DCA, independently confirmed known interactions and revealed a core set of subnetworks within the larger HK-RR set. We validated high-scoring candidate proteins via combinatorial genetics, demonstrating that DCA can be utilized to reduce the search space of complex protein networks and to infer undiscovered specific interactions for signaling proteins in vivo Significantly, new interactions that link circadian response to cell division and fitness in a light/dark cycle were uncovered. The combined analysis also uncovered a more basic core clock, illustrating the synergy and applicability of a combined computational and genetic approach for investigating prokaryotic signaling networks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
The Pea Photoperiod Response Gene STERILE NODES Is an Ortholog of LUX ARRHYTHMO1[W][OPEN
Liew, Lim Chee; Hecht, Valérie; Sussmilch, Frances C.; Weller, James L.
2014-01-01
The STERILE NODES (SN) locus in pea (Pisum sativum) was one of the first photoperiod response genes to be described and provided early evidence for the genetic control of long-distance signaling in flowering-time regulation. Lines homozygous for recessive sn mutations are early flowering and photoperiod insensitive, with an increased ability to promote flowering across a graft union in short-day conditions. Here, we show that SN controls developmental regulation of genes in the FT family and rhythmic regulation of genes related to circadian clock function. Using a positional and functional candidate approach, we identify SN as the pea ortholog of LUX ARRHYTHMO, a GARP transcription factor from Arabidopsis (Arabidopsis thaliana) with an important role in circadian clock function. In addition to induced mutants, sequence analysis demonstrates the presence of at least three other independent, naturally occurring loss-of-function mutations among known sn cultivars. Examination of genetic and regulatory interactions between SN and two other circadian clock genes, HIGH RESPONSE TO PHOTOPERIOD (HR) and DIE NEUTRALIS (DNE), suggests a complex relationship in which HR regulates expression of SN and the role of DNE and HR in control of flowering is dependent on SN. These results extend previous work to show that pea orthologs of all three Arabidopsis evening complex genes regulate clock function and photoperiod-responsive flowering and suggest that the function of these genes may be widely conserved. PMID:24706549
Petrenko, Volodymyr; Saini, Camille; Perrin, Laurent; Dibner, Charna
2016-11-11
Circadian clocks are functional in all light-sensitive organisms, allowing for an adaptation to the external world by anticipating daily environmental changes. Considerable progress in our understanding of the tight connection between the circadian clock and most aspects of physiology has been made in the field over the last decade. However, unraveling the molecular basis that underlies the function of the circadian oscillator in humans stays of highest technical challenge. Here, we provide a detailed description of an experimental approach for long-term (2-5 days) bioluminescence recording and outflow medium collection in cultured human primary cells. For this purpose, we have transduced primary cells with a lentiviral luciferase reporter that is under control of a core clock gene promoter, which allows for the parallel assessment of hormone secretion and circadian bioluminescence. Furthermore, we describe the conditions for disrupting the circadian clock in primary human cells by transfecting siRNA targeting CLOCK. Our results on the circadian regulation of insulin secretion by human pancreatic islets, and myokine secretion by human skeletal muscle cells, are presented here to illustrate the application of this methodology. These settings can be used to study the molecular makeup of human peripheral clocks and to analyze their functional impact on primary cells under physiological or pathophysiological conditions.
Kaiser, Tobias S.; Heckel, David G.
2012-01-01
Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167–193 centimorgans based on a linkage map using 344 markers, and a physical size of 95–140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock. PMID:22384150
Kaiser, Tobias S; Heckel, David G
2012-01-01
Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167-193 centimorgans based on a linkage map using 344 markers, and a physical size of 95-140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock.
Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.
Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Hindersson, Peter; Gräs, Søren
2006-08-01
Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.
Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter
2014-01-01
From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.
Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter
2014-01-01
From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues – mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep – wake rhythms in IH. PMID:24454829
Dashti, Hassan S; Aslibekyan, Stella; Scheer, Frank A J L; Smith, Caren E; Lamon-Fava, Stefania; Jacques, Paul; Lai, Chao-Qiang; Tucker, Katherine L; Arnett, Donna K; Ordovás, José M
2016-01-01
Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. We examined whether environmental temperature on the day of participants' assessment was associated with BP, using adjusted linear regression models in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) (n = 819) and the Boston Puerto Rican Health Study (BPRHS) (n = 1,248) cohorts. We estimated phenotypic variance in BP by 18 clock genes and examined individual single-nucleotide polymorphism (SNP) associations with BP using an additive genetic model, with further consideration of environmental temperature. In GOLDN, each additional 1 °C increase in environmental temperature was associated with 0.18 mm Hg lower systolic BP [SBP; β ± SE = -0.18 ± 0.05 mm Hg; P = 0.0001] and 0.10mm Hg lower diastolic BP [DBP; -0.10 ± 0.03 mm Hg; P = 0.001]. Similar results were seen in the BPRHS for SBP only. Clock genes explained a statistically significant proportion of the variance in SBP [V G/V P ± SE = 0.071 ± 0.03; P = 0.001] in GOLDN, but not in the BPRHS, and we did not observe associations between individual SNPs and BP. Environmental temperature did not influence the identified genetic associations. We identified clock genes that explained a statistically significant proportion of the phenotypic variance in SBP, supporting the importance of the circadian pathway underlying cardiac physiology. Although temperature was associated with BP, it did not affect results with genetic markers in either study. Therefore, it does not appear that temperature measures are necessary for interpreting associations between clock genes and BP. Trials related to this study were registered at clinicaltrials.gov as NCT00083369 (Genetic and Environmental Determinants of Triglycerides) and NCT01231958 (Boston Puerto Rican Health Study). © Published by Oxford University Press on behalf of American Journal of Hypertension Ltd 2015. This work is written by (a) US Government employees(s) and is in the public domain in the US.
Dueck, Alexander; Berger, Christoph; Wunsch, Katharina; Thome, Johannes; Cohrs, Stefan; Reis, Olaf; Haessler, Frank
2017-02-01
A more recent branch of research describes the importance of sleep problems in the development and treatment of mental disorders in children and adolescents, such as attention-deficit hyperactivity disorder (ADHD) and mood disorders (MD). Research about clock genes has continued since 2012 with a focus on metabolic processes within all parts of the mammalian body, but particularly within different cerebral regions. Research has focused on complex regulatory circuits involving clock genes themselves and their influence on circadian rhythms of diverse body functions. Current publications on basic research in human and animal models indicate directions for the treatment of mental disorders targeting circadian rhythms and mechanisms. The most significant lines of research are described in this paper.
Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.
Sato, Shogo; Solanas, Guiomar; Peixoto, Francisca Oliveira; Bee, Leonardo; Symeonidi, Aikaterini; Schmidt, Mark S; Brenner, Charles; Masri, Selma; Benitah, Salvador Aznar; Sassone-Corsi, Paolo
2017-08-10
The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD + -related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Ghrelin, Sleep Reduction and Evening Preference: Relationships to CLOCK 3111 T/C SNP and Weight Loss
Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E.; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M.
2011-01-01
Background Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. Methodology/Principal Findings We recruited 1495 overweight/obese subjects (BMI: 25–40 kg/m2) of 20–65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12–14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Conclusions/Significance Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors. PMID:21386998
Garaulet, Marta; Sánchez-Moreno, Carmen; Smith, Caren E; Lee, Yu-Chi; Nicolás, Francisco; Ordovás, Jose M
2011-02-28
Circadian Locomotor Output Cycles Kaput (CLOCK), an essential element of the positive regulatory arm in the human biological clock, is involved in metabolic regulation. The aim was to investigate the behavioral (sleep duration, eating patterns and chronobiological characteristics) and hormonal (plasma ghrelin and leptin concentrations) factors which could explain the previously reported association between the CLOCK 3111T/C SNP and weight loss. We recruited 1495 overweight/obese subjects (BMI: 25-40 kg/m(2)) of 20-65 y. who attended outpatient obesity clinics in Murcia, in southeastern Spain. We detected an association between the CLOCK 3111T/C SNP and weight loss, which was particularly evident after 12-14 weeks of treatment (P = 0.038). Specifically, carriers of the minor C allele were more resistant to weight loss than TT individuals (Mean±SEM) (8.71±0.59 kg vs 10.4±0.57 kg) C and TT respectively. In addition, our data show that minor C allele carriers had: 1. shorter sleep duration Mean ± SEM (7.0±0.05 vs 7.3±0.05) C and TT respectively (P = 0.039), 2. higher plasma ghrelin concentrations Mean ± SEM (pg/ml) (1108±49 vs 976±47)(P = 0.034); 3. delayed breakfast time; 4. evening preference and 5. less compliance with a Mediterranean Diet pattern, as compared with TT homozygotes. Sleep reduction, changes in ghrelin values, alterations of eating behaviors and evening preference that characterized CLOCK 3111C carriers could be affecting weight loss. Our results support the hypothesis that the influence of the CLOCK gene may extend to a broad range of variables linked with human behaviors.
The circadian coordination of cell biology.
Chaix, Amandine; Zarrinpar, Amir; Panda, Satchidananda
2016-10-10
Circadian clocks are cell-autonomous timing mechanisms that organize cell functions in a 24-h periodicity. In mammals, the main circadian oscillator consists of transcription-translation feedback loops composed of transcriptional regulators, enzymes, and scaffolds that generate and sustain daily oscillations of their own transcript and protein levels. The clock components and their targets impart rhythmic functions to many gene products through transcriptional, posttranscriptional, translational, and posttranslational mechanisms. This, in turn, temporally coordinates many signaling pathways, metabolic activity, organelles' structure and functions, as well as the cell cycle and the tissue-specific functions of differentiated cells. When the functions of these circadian oscillators are disrupted by age, environment, or genetic mutation, the temporal coordination of cellular functions is lost, reducing organismal health and fitness. © 2016 Chaix et al.
The Circadian Clock Coordinates Ribosome Biogenesis
Symul, Laura; Martin, Eva; Atger, Florian; Naef, Felix; Gachon, Frédéric
2013-01-01
Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. PMID:23300384
The "fourth dimension" of gene transcription.
O'Malley, Bert W
2009-05-01
The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.
The “Fourth Dimension” of Gene Transcription
O'Malley, Bert W.
2009-01-01
The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators. PMID:19221049
Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say?
Zordan, Mauro Agostino; Sandrelli, Federica
2015-01-01
There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease. PMID:25941512
Body weight, metabolism and clock genes
2010-01-01
Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity. PMID:20712885
Goh, Grace H; Mark, Peter J; Maloney, Shane K
2016-01-01
Circadian rhythms in mammals are driven by a central clock in the suprachiasmatic nucleus (SCN). In vitro, temperature cycles within the physiological range can act as potent entraining cues for biological clocks. We altered the body temperature (Tc) rhythm in rats by manipulating energy intake (EI) to determine whether EI-induced changes in Tc oscillations are associated with changes in SCN clock gene rhythms in vivo. Male Wistar rats (n = 16 per diet) were maintained on either an ad libitum diet (CON), a high energy cafeteria diet (CAF), or a calorie restricted diet (CR), and Tc was recorded every 30 min for 6-7 weeks. SCN tissue was harvested from rats at zeitgeber time (ZT) 0, ZT6, ZT12, or ZT18. Expression of the clock genes Bmal1, Per2, Cry1, and Rev-erbα, the heat shock transcription factor Hsf1, and the heat shock protein Hsp90aa1, were determined using qPCR. The circadian profile of gene expression for each gene was characterized using cosinor analysis. Compared to the CON rats, the amplitude of Tc was decreased in CAF rats by 0.1 °C (p < 0.001), and increased in CR rats by 0.3 °C (p < 0.001). The amplitude of Hsp90aa1 expression was lowest in CAF rats and highest in CR rats (p = 0.045), but the amplitude of all of the clock genes and Hsf1 were unaffected by diet (p > 0.25). Compared to CON, phase advances of the Tc, Bmal1, and Per2 rhythms were observed with CR feeding (p < 0.05), but CAF feeding elicited no significant changes in phase. The present results indicate that in vivo, the SCN is largely resistant to entrainment by EI-induced changes in the Tc rhythm, although some phase entrainment may occur.
NASA Astrophysics Data System (ADS)
Minchenko, D. O.; Yavorovsky, O. P.; Zinchenko, T. O.; Komisarenko, S. V.; Minchenko, O. H.
2012-09-01
Circadian factors PER1, PER2, ARNTL and CLOCK are important molecular components of biological clock system and play a fundamental role in the metabolism at both the behavioral and molecular levels and potentially have great importance for understanding metabolic health and disease, because disturbance the circadian processes lead to developing of different pathology. The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronics, home products, and for water disinfection, but little is yet known about their toxicity. These nanoparticles induce blood-brain barrier destruction, astrocyte swelling, cause degeneration of neurons and impair neurodevelopment as well as embryonic development. We studied the expression of genes encoded the key molecular components of circadian clock system in different rat organs after intratracheally instilled silver nanoparticles which quite rapidly translocate from the lungs into the blood stream and accumulate in different tissues. We have shown that silver nanoparticles significantly affect the expression levels of PER1, PER2, ARNTL and CLOCK mRNA in different rat tissues in time-dependent and tissue-specific manner. High level of PER1, ARNTL and CLOCK mRNA expression was observed in the lung on the 1st 3rd and 14th day after treatment of rats with silver nanoparticles. At the same time, the expression level of PER1 mRNA in the brain and liver increases predominantly on the 1st and 14th day but decreases in the testis. Significant increase of the expression level of PER2 and ARNTL mRNA was detected only in the brain of treated by silver nanoparticles rats. Besides that, intratracheally instilled silver nanoparticles significantly reduced the expression levels of CLOCK mRNA in the brain, heart and kidney. No significant changes in the expression level of PER2 mRNA were found in the lung, liver, heart and testis, except kidney where this mRNA expression decreases on the 3rd and 14th day after treatment of rats with silver nanoparticles. It was also shown that expression level of PFKFB4, a key enzyme of glycolysis regulation, gradually reduces in the brain from 1st to 14th day being up to 4 fold less on 14th day after treatment of animals with silver nanoparticles. Thus, the intratracheally instilled silver nanoparticles significantly affect the expression of PER1, PER2, ARNTL, and CLOCK genes which are an important molecular component of circadian clock system. This is because a disruption of the circadian processes leads to a development of various pathologic processes. The results of this study clearly demonstrate that circadian genes could be a sensitive test for detection of silver nanoparticles toxic action and suggest that more caution is needed in biomedical applications of silver nanoparticles as well as higher level of safety in silver nanoparticles production industry.
Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine
Bridge, Eli S.; Ross, Jeremy D.; Shipley, J. Ryan; Kelly, Jeffrey F.
2018-01-01
Complex behavioral traits, such as those making up a migratory phenotype, are regulated by multiple environmental factors and multiple genes. We investigated possible relationships between microsatellite variation at two candidate genes implicated in the control of migratory behavior, Clock and Adcyap1, and several aspects of migratory life-history and evolutionary divergence in the Painted Bunting (Passerina ciris), a species that shows wide variation in migratory and molting strategies across a disjunct distribution. We focused on Clock and Adcyap1 microsatellite variation across three Painted Bunting populations in Oklahoma, Louisiana, and North Carolina, and for the Oklahoma breeding population we used published migration tracking data on adult males to explore phenotypic variation in individual migratory behavior. We found no correlation between microsatellite allele size within either Clock and Adcyap1 relative to the initiation or duration of fall migration in adult males breeding in Oklahoma. We also show the lack of significant correlations with aspects of the migratory phenotype for the Louisiana population. Our research highlights the limitations of studying microsatellite allelic mutations that are of undetermined functional influence relative to complex behavioral phenotypes. PMID:29324772
Huang, Guodong; Zhang, Fanmiao; Ye, Qiang; Wang, Han
2016-08-02
Autophagy is a highly conserved intracellular degradation system, and recently was shown to display circadian rhythms in mice. The mechanisms underlying circadian regulation of autophagy, however, are still unclear. Here, we observed that numbers of autophagosomes and autolysosomes exhibit daily rhythms in the zebrafish liver, and cebpb/(c/ebpβ) and various autophagy genes are rhythmically expressed in zebrafish larvae but significantly upregulated in per1b and TALEN-generated nr1d1/rev-erbα mutant fish, indicating that both Per1b and Nr1d1 play critical roles in autophagy rhythms. Luciferase reporter and ChIP assays show that the circadian clock directly regulates autophagy genes through Nr1d1, and also regulates transcription of cebpb through Per1b. We also found that fasting leads to altered expression of both circadian clock genes and autophagy genes in zebrafish adult peripheral organs. Further, transcriptome analysis reveals multiple functions of Nr1d1 in zebrafish. Taken together, these findings provide evidence for how the circadian clock regulates autophagy, imply that nutritional signaling affects both circadian regulation and autophagy activities in peripheral organs, and shed light on how circadian gene mutations act through autophagy to contribute to common metabolic diseases such as obesity.
Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A; Vernieri, Paolo; Ferrante, Antonio
2016-10-01
Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Oxyntomodulin regulates resetting of the liver circadian clock by food
Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik
2015-01-01
Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 PMID:25821984
Golini, Rebeca S.; Delgado, Silvia M.; Navigatore Fonzo, Lorena S.; Ponce, Ivana T.; Lacoste, María G.; Anzulovich, Ana C.
2012-01-01
The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area. PMID:22434687
Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral.
Oldach, Matthew J; Workentine, Matthew; Matz, Mikhail V; Fan, Tung-Yung; Vize, Peter D
2017-05-01
On one night per year, at a specific point in the lunar cycle, one of the most extraordinary reproductive events on the planet unfolds as hundreds of millions of broadcast spawning corals release their trillions of gametes into the waters of the tropical seas. Each species spawns on a specific night within the lunar cycle, typically from full moon to third quarter moon, and in a specific time window after sunset. This accuracy is essential to achieve efficient fertilization in the vastness of the oceans. In this report, we use transcriptome sequencing at noon and midnight across an entire lunar cycle to explore how acroporid corals interpret lunar signals. The data were interrogated by both time-of-day-dependent and time-of-day-independent methods to identify different types of lunar cycles. Time-of-day methods found that genes associated with biological clocks and circadian processes change their diurnal cycles over the course of a synodic lunar cycle. Some genes have large differences between day and night at some lunar phases, but little or no diurnal differences at other phases. Many clock genes display an oscillation pattern indicative of phase shifts linked to the lunar cycle. Time-independent methods found that signal transduction, protein secretion and modification, cell cycle and ion transport change over the lunar timescale and peak at various phases of the moon. Together these data provide unique insights into how the moon impinges on coral transcription cycles and how lunar light may regulate circalunar timing systems and coral biology. © 2017 John Wiley & Sons Ltd.
Dittmar, Manuela
2014-01-01
This article reviews the research at the Department of Human Biology at the Christian-Albrechts-University in Kiel since 2006. The research focuses on the investigation of recent human populations with respect to aging, chronobiology, and adaptation to high altitude. The research areas are outlined presenting findings, ongoing projects and future directions. Aging research examines biological changes in humans considering that aging is a multidimensional process. Changes in body composition, resting energy metabolism, oxidative stress, and sleep have been examined. The applicability of specific research methods to older people has been tested. Chronobiological research concentrates on investigating circadian rhythms of humans. The emphasis lies on the sleep-wake rhythm, body temperature rhythms, hormonal rhythms (cortisol and melatonin) and the circadian expression of so-called clock genes which are involved in the generation of circadian rhythms. Association studies examine the relationship between defined chronobiological phenotypes and clock gene polymorphisms. Genetic aspects are as well investigated within the third research area on the adaptation of native populations to life at high altitude in the South American Andes. Both candidate gene analysis and epigenetic parameters are investigated. Future research will concentrate on the aging of the circadian system.
Influence of temperature on the liver circadian clock in the ruin lizard Podarcis sicula.
Malatesta, Manuela; Frigato, Elena; Baldelli, Beatrice; Battistelli, Serafina; Foà, Augusto; Bertolucci, Cristiano
2007-07-01
Reptiles represent an interesting animal model to investigate the influence of temperature on molecular circadian clocks. The ruin lizard Podarcis sicula lives in a continental climate and it is subjected to wide range of environmental temperatures during the course of the year. As consequence, ruin lizard daily activity pattern includes either the hibernation or periods of inactivity determined by hypothermia. Here we showed the rhythmic expression of two clock genes, lPer2 and lClock, in the liver of active lizards exposed to summer photo-thermoperiodic conditions. Interestingly, the exposition of lizards to hypothermic conditions, typical of winter season, induced a strong dampening of clock genes mRNA rhythmicity with a coincident decrease of levels. We also examined the qualitative and quantitative distribution of lPER2 and lCLOCK protein in different cellular compartments during the 24-h cycle. In the liver of active lizards both proteins showed a rhythmic expression profile in all cellular compartments. After 3 days at 6 degrees C, some temporal fluctuations of the lCLOCK and lPER2 are still detectable, although, with some marked modifications in respect to the values detected in the liver of active lizards. Besides demonstrating the influence of low temperature on the lizard liver circadian oscillators, present results could provide new essential information for comparative studies on the influence of temperature on the circadian system across vertebrate classes.
Hericium erinaceus extracts alter behavioral rhythm in mice.
Furuta, Shoko; Kuwahara, Rika; Hiraki, Eri; Ohnuki, Koichiro; Yasuo, Shinobu; Shimizu, Kuniyoshi
2016-01-01
Hericium erinaceus (HE), an edible mushroom, has been used as a herbal medicine in several Asian countries since ancient times. HE has potential as a medicine for the treatment and prevention of dementia, a disorder closely linked with circadian rhythm. This study investigated the effects of the intake of HE extracts on behavioral rhythm, photosensitivity of the circadian clock, and clock gene mRNA expression in the suprachiasmatic nucleus (SCN), a central clock, in mice. Although the HE ethanol extract only affected the offset time of activity, the HE water extract advanced the sleep-wake cycle without affecting the free-running period, photosensitivity, or the clock gene mRNA expression in SCN. In addition, both extracts decreased wakefulness around end of active phase. The findings of the present study suggest that HE may serve as a functional food in the prevention and treatment of Alzheimer's disease and delayed sleep phase syndrome.
Savard, L; Li, P; Strauss, S H; Chase, M W; Michaud, M; Bousquet, J
1994-01-01
We have estimated the time for the last common ancestor of extant seed plants by using molecular clocks constructed from the sequences of the chloroplastic gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the nuclear gene coding for the small subunit of rRNA (Rrn18). Phylogenetic analyses of nucleotide sequences indicated that the earliest divergence of extant seed plants is likely represented by a split between conifer-cycad and angiosperm lineages. Relative-rate tests were used to assess homogeneity of substitution rates among lineages, and annual angiosperms were found to evolve at a faster rate than other taxa for rbcL and, thus, these sequences were excluded from construction of molecular clocks. Five distinct molecular clocks were calibrated using substitution rates for the two genes and four divergence times based on fossil and published molecular clock estimates. The five estimated times for the last common ancestor of extant seed plants were in agreement with one another, with an average of 285 million years and a range of 275-290 million years. This implies a substantially more recent ancestor of all extant seed plants than suggested by some theories of plant evolution. PMID:8197201
Kiessling, Silke; Sollars, Patricia J.; Pickard, Gary E.
2014-01-01
The brain's master circadian pacemaker resides within the hypothalamic suprachiasmatic nucleus (SCN). SCN clock neurons are entrained to the day/night cycle via the retinohypothalamic tract and the SCN provides temporal information to the central nervous system and to peripheral organs that function as secondary oscillators. The SCN clock-cell network is thought to be the hypothalamic link between the retina and descending autonomic circuits to peripheral organs such as the adrenal gland, thereby entraining those organs to the day/night cycle. However, there are at least three different routes or mechanisms by which retinal signals transmitted to the hypothalamus may be conveyed to peripheral organs: 1) via retinal input to SCN clock neurons; 2) via retinal input to non-clock neurons in the SCN; or 3) via retinal input to hypothalamic regions neighboring the SCN. It is very well documented that light-induced responses of the SCN clock (i.e., clock gene expression, neural activity, and behavioral phase shifts) occur primarily during the subjective night. Thus to determine the role of the SCN clock in transmitting photic signals to descending autonomic circuits, we compared the phase dependency of light-evoked responses in the SCN and a peripheral oscillator, the adrenal gland. We observed light-evoked clock gene expression in the mouse adrenal throughout the subjective day and subjective night. Light also induced adrenal corticosterone secretion during both the subjective day and subjective night. The irradiance threshold for light-evoked adrenal responses was greater during the subjective day compared to the subjective night. These results suggest that retinohypothalamic signals may be relayed to the adrenal clock during the subjective day by a retinal pathway or cellular mechanism that is independent of an effect of light on the SCN neural clock network and thus may be important for the temporal integration of physiology and metabolism. PMID:24658072
Altered Sleep Homeostasis in Rev-erbα Knockout Mice
Mang, Géraldine M.; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A.; Albrecht, Urs; Franken, Paul
2016-01-01
Study Objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. Methods: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Results: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1–4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Conclusions: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. Citation: Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P. Altered sleep homeostasis in Rev-erbα knockout mice. SLEEP 2016;39(3):589–601. PMID:26564124
The mammalian retina as a clock
NASA Technical Reports Server (NTRS)
Tosini, Gianluca; Fukuhara, Chiaki
2002-01-01
Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.
Pankin, Artem; Campoli, Chiara; Dong, Xue; Kilian, Benjamin; Sharma, Rajiv; Himmelbach, Axel; Saini, Reena; Davis, Seth J; Stein, Nils; Schneeberger, Korbinian; von Korff, Maria
2014-01-01
Phytochromes play an important role in light signaling and photoperiodic control of flowering time in plants. Here we propose that the red/far-red light photoreceptor HvPHYTOCHROME C (HvPHYC), carrying a mutation in a conserved region of the GAF domain, is a candidate underlying the early maturity 5 locus in barley (Hordeum vulgare L.). We fine mapped the gene using a mapping-by-sequencing approach applied on the whole-exome capture data from bulked early flowering segregants derived from a backcross of the Bowman(eam5) introgression line. We demonstrate that eam5 disrupts circadian expression of clock genes. Moreover, it interacts with the major photoperiod response gene Ppd-H1 to accelerate flowering under noninductive short days. Our results suggest that HvPHYC participates in transmission of light signals to the circadian clock and thus modulates light-dependent processes such as photoperiodic regulation of flowering. PMID:24996910
Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary
Liu, Liang; Zhang, Jin; Rheindt, Frank E.; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V.; Meng, Jin; Wu, Shaoyuan
2017-01-01
The timing of the diversification of placental mammals relative to the Cretaceous–Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms. PMID:28808022
Matsumura, Ritsuko; Akashi, Makoto
2017-09-29
Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary.
Liu, Liang; Zhang, Jin; Rheindt, Frank E; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V; Meng, Jin; Wu, Shaoyuan
2017-08-29
The timing of the diversification of placental mammals relative to the Cretaceous-Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms.
Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun
2018-06-26
A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.
Temperature-dependent resetting of the molecular circadian oscillator in Drosophila
Goda, Tadahiro; Sharp, Brandi; Wijnen, Herman
2014-01-01
Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein. Early phase adjustment specific to per transcript rhythms was explained by clock-independent temperature-driven transcription of per. The cold-induced expression of Drosophila per contrasts with the previously reported heat-induced regulation of mammalian Period 2. An altered and more readily re-entrainable temperature-synchronized circadian oscillator that featured temperature-driven per transcript rhythms and phase-shifted TIM and PER protein rhythms was found for flies of the ‘Tim 4’ genotype, which lacked daily tim transcript oscillations but maintained post-transcriptional temperature entrainment of tim expression. The accelerated molecular and behavioural temperature entrainment observed for Tim 4 flies indicates that clock-controlled tim expression constrains the rate of temperature cycle-mediated circadian resetting. PMID:25165772
O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A
2013-01-01
Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800
Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle
Perrin, Laurent; Hulo, Nicolas; Isenegger, Laura; Weger, Benjamin D; Migliavacca, Eugenia; Charpagne, Aline; Betts, James A; Walhin, Jean-Philippe; Templeman, Iain; Stokes, Keith; Thompson, Dylan; Tsintzas, Kostas; Robert, Maud; Howald, Cedric; Riezman, Howard; Feige, Jerome N; Karagounis, Leonidas G; Johnston, Jonathan D; Dermitzakis, Emmanouil T
2018-01-01
Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans. PMID:29658882
Maiese, Kenneth
2017-01-01
The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kiełbowicz-Matuk, Agnieszka; Czarnecka, Jagoda; Banachowicz, Ewa; Rey, Pascal; Rorat, Tadeusz
2017-03-01
ZPR1 proteins belong to the C4-type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif 'CAACAGCATC', named CIRC and present in the promoter of the clock-controlled double B-box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock-associated protein in plants necessary for the accurate rhythmic expression of specific circadian-regulated genes. © 2016 John Wiley & Sons Ltd.
A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer.
El-Athman, Rukeia; Fuhr, Luise; Relógio, Angela
2018-06-20
Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Belle, Mino D C; Diekman, Casey O
2018-02-03
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
O'Brien, C; Unruh, L; Zimmerman, C; Bradshaw, W E; Holzapfel, C M; Cresko, W A
2013-03-01
Controlled laboratory experiments were used to show that Oregon and Alaskan three-spined stickleback Gasterosteus aculeatus, collected from locations differing by 18° of latitude, exhibited no significant variation in length of the polyglutamine domain of the clock protein or in photoperiodic response within or between latitudes despite the fact that male and female G. aculeatus are photoperiodic at both latitudes. Hence, caution is urged when interpreting variation in the polyglutamine repeat (PolyQ) domain of the gene clock in the context of seasonal activities or in relationship to photoperiodism along geographical gradients. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
The clock and wavefront model revisited.
Murray, Philip J; Maini, Philip K; Baker, Ruth E
2011-08-21
The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior-posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Molecular approaches towards the isolation of sleep-related genes.
Schibler, U; Tafti, M
1999-06-01
Behavioural genetics is one of the most enticing fields in modern biology. Owing to straightforward and semiautomated techniques that can be used to measure locomotor activity, circadian rhythmicity is perhaps the best studied behaviour in animals. Thus, during the past decade, five essential circadian clock genes have been isolated in Drosophila, and homologous counterparts for all of these genes have also been found in mammals. As the sleep-wake cycle is under the control of the circadian clock, these circadian master genes are expected to influence sleeping behaviour. However, different vigilance states are regulated by additional mechanisms that also have a genetic basis. In this article we discuss molecular approaches that may prove useful in the search for sleep-related genes.
Robilliard, Donna L; Archer, Simon N; Arendt, Josephine; Lockley, Steven W; Hack, Lisa M; English, Judie; Leger, Damien; Smits, Marcel G; Williams, Adrian; Skene, Debra J; Von Schantz, Malcolm
2002-12-01
Mutations in clock genes are associated with abnormal circadian parameters, including sleep. An association has been reported previously between a polymorphism (3111C), situated in the 3'-untranslated region (3'-UTR) of the circadian gene Clock and evening preference. In the present study, this polymorphism was assessed in: (1) 105 control subjects with defined diurnal preference, (2) 26 blind subjects with free-running circadian rhythms and characterized with regard to circadian period (tau) and (3) 16 delayed sleep phase syndrome patients. The control group was chosen from a larger population (n = 484) by Horne-Ostberg questionnaire analysis, from which three subgroups were selected (evening, intermediate and morning preference). Data from sleep diaries completed by 90% of these subjects showed a strong correlation between preferred and estimated timings of sleep and wake. The mean timings of activities for the evening group were at least 2 h later than the morning group. Genetic analysis showed that, in contrast with the previously published finding, there was no association between 3111C and eveningness. Neither was there an association between 3111C and tau, nor a significant difference in 3111C frequency between the normal and delayed sleep phase syndrome groups. To assess the effect of this polymorphism on messenger RNA (mRNA) translatability, luciferase reporter gene constructs containing the two Clock polymorphic variants in their 3'-UTR were transfected into COS-1 cells and luciferase activity measured. No significant difference was observed between the two variants. These results do not support Clock 3111C as a marker for diurnal preference, tau, or delayed sleep phase syndrome in humans.
Associations of polymorphisms in circadian genes with abdominal obesity in Chinese adult population.
Ye, Ding; Cai, Shaofang; Jiang, Xiyi; Ding, Ye; Chen, Kun; Fan, Chunhong; Jin, Mingjuan
2016-09-01
Circadian rhythm, which is controlled by circadian genes, regulates metabolic balance including the circulating levels of glucose, fatty acids, triglycerides, various hormones and so on. The study aimed to investigate the impact of potential polymorphisms in circadian genes on abdominal obesity among Chinese Han adults. A total of 260 cases with abdominal obesity and 260 controls were recruited by individual matching. Demographic characteristics and lifestyle information were collected by a validated questionnaire, and anthropometric parameters was measured by physical examination. Twenty-three single nucleotide polymorphisms (SNPs) in three circadian genes, CLOCK, CRY1 and CRY2, were genotyped by MassArray technique. Five SNPs significantly deviated from Hardy-Weinberg equilibrium (HWE) among controls, so eighteen SNPs were taken into logistic regression analysis. Independently, CLOCK rs10002541 (CC genotype vs. TT genotype: OR: 0.45, 95% CI: 0.23-0.86), CLOCK rs6850524 (CC genotype vs. GG genotype: OR: 0.50, 95% CI: 0.25-0.99) and CRY1 rs10861688 (TT genotype vs. CC genotype: OR: 0.50, 95% CI: 0.25-0.97) were negatively associated with the risk of abdominal obesity. Haplotype analysis showed that the haplotypes of CG and TG for CLOCK rs10002541 and rs4864546 had significant associations with abdominal obesity. Compared with the carriers of TA, those of CG were observed to have a lower risk (OR: 0.74, 95% CI: 0.56-0.99) of abdominal obesity, and those of TG presented a higher risk (OR: 1.70, 95% CI: 1.03-2.81). Our findings suggest that CLOCK and CRY1 polymorphisms might be involved in individual susceptibility to abdominal obesity in Chinese Han population. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Barber, Annika F; Erion, Renske; Holmes, Todd C; Sehgal, Amita
2016-12-01
Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology. © 2016 Barber et al.; Published by Cold Spring Harbor Laboratory Press.
Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage.
Wang, Hong; van Spyk, Elyse; Liu, Qiang; Geyfman, Mikhail; Salmans, Michael L; Kumar, Vivek; Ihler, Alexander; Li, Ning; Takahashi, Joseph S; Andersen, Bogi
2017-08-01
The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Chronobiology of micturition: putative role of the circadian clock.
Negoro, Hiromitsu; Kanematsu, Akihiro; Yoshimura, Koji; Ogawa, Osamu
2013-09-01
Mammals urinate less frequently during the sleep period than the awake period. This is modulated by a triad of factors, including decreased arousal in the brain, a decreased urine production rate in the kidneys and increased functional bladder capacity during sleep. The circadian clock is genetic transcription-translation feedback machinery. It exists in most organs and cells, termed the peripheral clock, which is orchestrated by the central clock in the suprachiasmatic nucleus of the brain. We discuss the linkage between the day and night change in micturition frequency and the genetic rhythm maintained by the circadian clock system, focusing on the brain, kidney and bladder. We performed an inclusive review of the literature on the diurnal change in micturition frequency, urine volume, functional bladder capacity and urodynamics in humans and rodents, relating this to recent basic biological findings about the circadian clock. In humans various behavioral studies demonstrated a diurnal functional change in the kidney and bladder. Conversely, patients with nocturnal enuresis and nocturia showed impairment in this triad of factors. Rats and mice, which are nocturnal animals, also have a micturition frequency rhythm that is decreased during the day, which is the sleep phase for them. Mice with a genetically defective circadian clock system show impaired physiological rhythms in the triad of factors. The existence of the circadian clock has been proven in the brain, kidney and bladder, in which thousands of circadian oscillating genes exist. In the kidney they include genes involved in the regulation of water and major electrolytes. In the bladder they include connexin 43, a gene associated with the regulation of bladder capacity. Recent progress in molecular biology about the circadian clock provides an opportunity to investigate the genetic basis of the micturition rhythm or impairment of the rhythm in nocturnal enuresis and nocturia. If this approach is to be translated clinically, a strategy is to analyze and treat the triad of micturition factors as separate parts of 1 problem. The other way could be to cope with this triad of problems simultaneously, if possible, by treating the circadian physiological rhythm itself. The discoveries reviewed point toward further investigation of the micturition rhythm by basic and translational chronobiology. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Effects of Different PER Translational Kinetics on the Dynamics of a Core Circadian Clock Model
Nieto, Paula S.; Revelli, Jorge A.; Garbarino-Pico, Eduardo; Condat, Carlos A.; Guido, Mario E.; Tamarit, Francisco A.
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis. PMID:25607544
Effects of different per translational kinetics on the dynamics of a core circadian clock model.
Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.
Curie, Thomas; Maret, Stephanie; Emmenegger, Yann; Franken, Paul
2015-09-01
That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. Mouse sleep-recording facility. Per2::Luciferase knock-in mice. N/A. Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health. © 2015 Associated Professional Sleep Societies, LLC.
Ma, Lingling; Ma, Jun; Xu, Kanyan
2015-01-01
Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.
Xu, Kanyan
2015-01-01
Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China’s Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight. PMID:25798821
Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L
2015-04-01
The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).
LWD-TCP complex activates the morning gene CCA1 in Arabidopsis.
Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing
2016-10-13
A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock.
LWD–TCP complex activates the morning gene CCA1 in Arabidopsis
Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing
2016-01-01
A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock. PMID:27734958
Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H.; Chen, Wenbiao
2015-01-01
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder. PMID:25673850
Christie, Andrew E; Yu, Andy; Pascual, Micah G; Roncalli, Vittoria; Cieslak, Matthew C; Warner, Amanda N; Lameyer, Tess J; Stanhope, Meredith E; Dickinson, Patsy S; Joe Hull, J
2018-04-11
Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators. Copyright © 2018 Elsevier B.V. All rights reserved.
Palombo, Philipp; Moreno-Villanueva, Maria; Mangerich, Aswin
2015-04-01
In mammals, biological rhythms synchronize physiological and behavioral processes to the 24-h light-dark (LD) cycle. At the molecular level, self-sustaining processes, such as oscillations of transcription-translation feedback loops, control the circadian clock, which in turn regulates a wide variety of cellular processes, including gene expression and cell cycle progression. Furthermore, previous studies reported circadian oscillations in the repair capacity of DNA lesions specifically repaired by nucleotide excision repair (NER). However, it is so far only poorly understood if DNA repair pathways other than NER are under circadian control, in particular base excision and DNA strand break repair. In the present study, we analyzed potential day and night variations in the repair of DNA lesions induced by ionizing radiation (i.e., mainly oxidative damage and DNA strand breaks) in living mouse splenocytes using a modified protocol of the automated FADU assay. Our results reveal that splenocytes isolated from mice during the light phase (ZT06) displayed higher DNA repair activity than those of the dark phase (ZT18). As analyzed by highly sensitive and accurate qPCR arrays, these alterations were accompanied by significant differences in expression profiles of genes involved in the circadian clock and DNA repair. Notably, the majority of the DNA repair genes were expressed at higher levels during the light phase (ZT06). This included genes of all major DNA repair pathways with the strongest differences observed for genes of base excision and DNA double strand break repair. In conclusion, here we provide novel evidence that mouse splenocytes exhibit significant differences in the repair of IR-induced DNA damage during the LD cycle, both on a functional and on a gene expression level. It will be interesting to test if these findings could be exploited for therapeutic purposes, e.g. time-of-the-day-specific application of DNA-damaging treatments used against blood malignancies. Copyright © 2015 Elsevier B.V. All rights reserved.
Clayton, Zoe E.; Vickers, Mark H.; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M.
2015-01-01
Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may point to impaired immune sensing. PMID:26562417
CLOCK regulates mammary epithelial cell growth and differentiation
Crodian, Jennifer; Suárez-Trujillo, Aridany; Erickson, Emily; Weldon, Bethany; Crow, Kristi; Cummings, Shelby; Chen, Yulu; Shamay, Avi; Mabjeesh, Sameer J.; Plaut, Karen
2016-01-01
Circadian clocks influence virtually all physiological processes, including lactation. Here, we investigate the role of the CLOCK gene in regulation of mammary epithelial cell growth and differentiation. Comparison of mammary morphology in late-pregnant wild-type and ClockΔ19 mice, showed that gland development was negatively impacted by genetic loss of a functional timing system. To understand whether these effects were due, in part, to loss of CLOCK function in the gland, the mouse mammary epithelial cell line, HC11, was transfected with short hairpin RNA that targeted Clock (shClock). Cells transfected with shClock expressed 70% less Clock mRNA than wild-type (WT) HC11 cultures, which resulted in significantly depressed levels of CLOCK protein (P < 0.05). HC11 lines carrying shClock had four-fold higher growth rates (P < 0.05), and the percentage of cells in G1 phase was significantly higher (90.1 ± 1.1% of shClock vs. 71.3 ± 3.6% of WT-HC11) following serum starvation. Quantitative-PCR (qPCR) analysis showed shClock had significant effects (P < 0.0001) on relative expression levels of Ccnd1, Wee1, and Tp63. qPCR analysis of the effect of shClock on Fasn and Cdh1 expression in undifferentiated cultures and cultures treated 96 h with dexamethasone, insulin, and prolactin (differentiated) found levels were reduced by twofold and threefold, respectively (P < 0.05), in shClock line relative to WT cultures. Abundance of CDH1 and TP63 proteins were significantly reduced in cultures transfected with shClock. These data support how CLOCK plays a role in regulation of epithelial cell growth and differentiation in the mammary gland. PMID:27707717
Vieira, Elaine; Marroquí, Laura; Figueroa, Ana Lucia C.; Merino, Beatriz; Fernandez-Ruiz, Rebeca; Nadal, Angel; Burris, Thomas P.; Gomis, Ramon; Quesada, Ivan
2013-01-01
Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60–70% inhibition) in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05) and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold) and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001). High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05). AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01) and glucagon release (p<0.05). These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway. PMID:23936124
Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S
2004-08-01
An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.
Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi
2017-07-20
Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.
Physiological links of circadian clock and biological clock of aging.
Liu, Fang; Chang, Hung-Chun
2017-07-01
Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less
Crosstalk between the Circadian Clock and Innate Immunity in Arabidopsis
Zhang, Chong; Xie, Qiguang; Anderson, Ryan G.; Ng, Gina; Seitz, Nicholas C.; Peterson, Thomas; McClung, C. Robertson; McDowell, John M.; Kong, Dongdong; Kwak, June M.; Lu, Hua
2013-01-01
The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity. PMID:23754942
Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; ...
2017-01-31
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less
Tales around the clock: Poly(A) tails in circadian gene expression.
Beta, Rafailia A A; Balatsos, Nikolaos A A
2018-06-17
Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light. Additional cues include feeding patterns, humidity, and social rhythms. At the molecular level, a master oscillator orchestrates circadian rhythms and organizes molecular clocks located in most cells. The generation of the 24 hr molecular clock is based on transcriptional regulation, as it drives intrinsic rhythmic changes based on interlocked transcription/translation feedback loops that synchronize expression of genes. Thus, processes and factors that determine rhythmic gene expression are important to understand circadian rhythms. Among these, the poly(A) tails of RNAs play key roles in their stability, translational efficiency and degradation. In this article, we summarize current knowledge and discuss perspectives on the role and significance of poly(A) tails and associating factors in the context of the circadian clock. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > 3' End Processing. © 2018 Wiley Periodicals, Inc.
Hong, Yunkyung; Kim, Hyunsoo; Lee, Seunghoon; Jin, Yunho; Choi, Jeonghyun; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun
2017-11-14
Here, we show the role of melatonin combined with or without exercise as a determinant of multicellular behavior in osteoarthritis. We address the relationship between the molecular components governing local circadian clock and changes in the osteoarthritic musculoskeletal axis. Melatonin was injected subcutaneously in animals with advanced knee osteoarthritis (OA) for 4 weeks. Concurrently, moderate treadmill exercise was applied for 30 min/day. Morphometric, histological, and gene/protein-level analyses were performed in the cartilage, synovium, bone, and gastrocnemius muscle. Primary cultured chondrocytes repeatedly exposed to TNF-α were used in an in vitro study. The symptoms of OA include gait disturbance, osteophyte formation, and abnormal metabolism of the extracellular matrix (ECM) of the cartilage. Low-level expression of clock genes was accompanied by aberrant changes in cartilage specimens. Nanomolar doses of melatonin restored the expression of clock-controlled genes and corrected the abnormal chondrocyte phenotype. Melatonin combined with or without exercise prevented periarticular muscle damage as well as cartilage degeneration. But prolonged melatonin administration promoted the proteolytic cleavage of RANKL protein in the synovium, leading to severe subchondral bone erosion. These musculoskeletal changes apparently occurred via the regulation of molecular clock components, suggesting a role of melatonin as a switch-like regulator for the OA phenotype.
Saino, Nicola; Ambrosini, Roberto; Albetti, Benedetta; Caprioli, Manuela; De Giorgio, Barbara; Gatti, Emanuele; Liechti, Felix; Parolini, Marco; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Gianfranceschi, Luca; Bollati, Valentina; Rubolini, Diego
2017-01-01
Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5′-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change. PMID:28361883
Wirth, Michael; Burch, James; Violanti, John; Burchfiel, Cecil; Fekedulegn, Desta; Andrew, Michael; Zhang, Hongmei; Miller, Diane B.; Youngstedt, Shawn D.; Hébert, James R.; Vena, John E.
2013-01-01
OBJECTIVE This study evaluated whether measures of waking or diurnal cortisol secretion, or self-reported psychological disturbances differed among police officers with a Period3 (PER3) clock gene length polymorphism. METHODS The cortisol awakening response was characterized via the area under the salivary cortisol curve with respect to the increase (AUCI) or total waking cortisol (AUCG). Diurnal cortisol measures included the slope of diurnal cortisol and the diurnal AUCG. Psychological disturbances were characterized using the Center for Epidemiologic Studies Depression Scale, Impact of Events Scale, and Life Events Scale. RESULTS Officers with a 4/5 or 5/5 genotype had higher awakening AUCG and greater diurnal cortisol AUCG levels compared to officers with the 4/4 genotype. Among those working more afternoon or night shifts, waking AUCI and AUCG were greater among officers with a 4/5 or 5/5 genotype compared to the 4/4 referents. CONCLUSION Cortisol secretion was modified among police officers with different PER3 VNTR clock gene variants. PMID:23524621
Saino, Nicola; Ambrosini, Roberto; Albetti, Benedetta; Caprioli, Manuela; De Giorgio, Barbara; Gatti, Emanuele; Liechti, Felix; Parolini, Marco; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Gianfranceschi, Luca; Bollati, Valentina; Rubolini, Diego
2017-03-31
Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5'-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change.
Conserved Daily Transcriptional Programs in Carica papaya
Zdepski, Anna; Wang, Wenqin; Priest, Henry D.; Ali, Faraz; Alam, Maqsudul; Mockler, Todd C.
2008-01-01
Most organisms have internal circadian clocks that mediate responses to daily environmental changes in order to synchronize biological functions to the correct times of the day. Previous studies have focused on plants found in temperate and sub-tropical climates, and little is known about the circadian transcriptional networks of plants that typically grow under conditions with relatively constant day lengths and temperatures over the year. In this study we conducted a genomic and computational analysis of the circadian biology of Carica papaya, a tropical tree. We found that predicted papaya circadian clock genes cycle with the same phase as Arabidopsis genes. The patterns of time-of-day overrepresentation of circadian-associated promoter elements were nearly identical across papaya, Arabidopsis, rice, and poplar. Evolution of promoter structure predicts the observed morning- and evening-specific expression profiles of the papaya PRR5 paralogs. The strong conservation of previously identified circadian transcriptional networks in papaya, despite its tropical habitat and distinct life-style, suggest that circadian timing has played a major role in the evolution of plant genomes, consistent with the selective pressure of anticipating daily environmental changes. Further studies could exploit this conservation to elucidate general design principles that will facilitate engineering plant growth pathways for specific environments. Electronic supplementary material The online version of this article (doi:10.1007/s12042-008-9020-3) contains supplementary material, which is available to authorized users. PMID:20671772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi
2013-05-03
Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expressionmore » have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the Arnt promoter in MIN6 cells. These results suggest that in mouse pancreatic islets mRNA expression of Arnt fluctuates significantly in a circadian manner and that the down-regulation of Dbp and up-regulation E4bp4 contribute to direct suppression of Arnt expression in diabetes.« less
A fluorescence spotlight on the clockwork development and metabolism of bone.
Iimura, Tadahiro; Nakane, Ayako; Sugiyama, Mayu; Sato, Hiroki; Makino, Yuji; Watanabe, Takashi; Takagi, Yuzo; Numano, Rika; Yamaguchi, Akira
2012-05-01
Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.
The peripheral clock regulates human pigmentation.
Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf
2015-04-01
Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.
PPARalpha is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders.
Shirai, Hidenori; Oishi, Katsutaka; Kudo, Takashi; Shibata, Shigenobu; Ishida, Norio
2007-06-08
Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPARalpha ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate also advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erbalpha was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPARalpha is involved in circadian clock control independently of the SCN and that PPARalpha could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.
ERIC Educational Resources Information Center
Britton, Richard Aquinas
1981-01-01
An approach to teaching time telling to learning disabled children begins with the child drawing a clock, then designating 5-minute marks, using old alarm or play clocks to manipulate the hands, and drawing clock hands to represent specific times. (CL)
Making the clock tick: the transcriptional landscape of the plant circadian clock.
Ronald, James; Davis, Seth J
2017-01-01
Circadian clocks are molecular timekeepers that synchronise internal physiological processes with the external environment by integrating light and temperature stimuli. As in other eukaryotic organisms, circadian rhythms in plants are largely generated by an array of nuclear transcriptional regulators and associated co-regulators that are arranged into a series of interconnected molecular loops. These transcriptional regulators recruit chromatin-modifying enzymes that adjust the structure of the nucleosome to promote or inhibit DNA accessibility and thus guide transcription rates. In this review, we discuss the recent advances made in understanding the architecture of the Arabidopsis oscillator and the chromatin dynamics that regulate the generation of rhythmic patterns of gene expression within the circadian clock.
Shin, Jieun; Heidrich, Katharina; Sanchez-Villarreal, Alfredo; Parker, Jane E.; Davis, Seth J.
2012-01-01
Plants are confronted with predictable daily biotic and abiotic stresses that result from the day–night cycle. The circadian clock provides an anticipation mechanism to respond to these daily stress signals to increase fitness. Jasmonate (JA) is a phytohormone that mediates various growth and stress responses. Here, we found that the circadian-clock component TIME FOR COFFEE (TIC) acts as a negative factor in the JA-signaling pathway. We showed that the tic mutant is hypersensitive to growth-repressive effects of JA and displays altered JA-regulated gene expression. TIC was found to interact with MYC2, a key transcription factor of JA signaling. From this, we discovered that the circadian clock rhythmically regulates JA signaling. TIC is a key determinant in this circadian-gated process, and as a result, the tic mutant is defective in rhythmic JA responses to pathogen infection. TIC acts here by inhibiting MYC2 protein accumulation and by controlling the transcriptional repression of CORONATINE INSENSITIVE1 in an evening-phase–specific manner. Taken together, we propose that TIC acts as an output component of the circadian oscillator to influence JA signaling directly. PMID:22693280
Mazzoccoli, G; Sothern, R B; Greco, A; Pazienza, V; Vinciguerra, M; Liu, S; Cai, Y
2011-01-01
Immune parameters show rhythmic changes with a 24-h periodicity driven by an internal circadian timing system that relies on clock genes (CGs). CGs form interlocked transcription-translation feedback loops to generate and maintain 24-h mRNA and protein oscillations. In this study we evaluate and compare the profiles and the dynamics of variation of CG expression in peripheral blood, and two lymphoid tissues of mice. Expression levels of seven recognized key CGs (mBmal1, mClock, mPer1, mPer2, mCry1, mCry2, and Rev-erbalpha) were evaluated by quantitative RT- PCR in spleen, thymus and peripheral blood of C57BL/6 male mice housed on a 12-h light (L)-dark (D) cycle and sacrificed every 4 h for 24 h (3-4 mice/time point). We found a statistically significant time-effect in spleen (S), thymus (T) and blood (B) for the original values of expression level of mBmal1 (S), mClock (T, B), mPer1 (S, B), mPer2 (S), mCry1 (S), mCry2 (B) and mRev-Erbalpha (S, T, B) and for the fractional variation calculated between single time-point expression value of mBmal1 (B), mPer2 (T), mCry2 (B) and mRev-Erbalpha (S). A significant 24-h rhythm was validated for five CGs in blood (mClock, mPer1, mPer2, mCry2, mRev-Erbalpha), for four CGs in the spleen (mBmal1, mPer1, mPer2, mRev-Erbalpha), and for three CGs in the thymus (mClock, mPer2, mRev-Erbalpha). The original values of acrophases for mBmal1, mClock, mPer1, mPer2, mCry1 and mCry2 were very similar for spleen and thymus and advanced by several hours for peripheral blood compared to the lymphoid tissues, whereas the phases of mRev-Erbalpha were coincident for all three tissues. In conclusion, central and peripheral lymphoid tissues in the mouse show different sequences of activation of clock gene expression compared to peripheral blood. These differences may underlie the compartmental pattern of web functioning in the immune system.
The association of circadian clock candidate genes to increased adiposity in the TIGER study
USDA-ARS?s Scientific Manuscript database
Obesity is a highly prevalent disease that has become a major health crisis in the United States. A number of studies have suggested a link between the altered sleep/wake patterns associated with our "24 hour" lifestyle and obesity. We hypothesize that disruption of the circadian clock intrinsic t...
Campoli, Chiara; Pankin, Artem; Drosse, Benedikt; Casao, Cristina M; Davis, Seth J; von Korff, Maria
2013-01-01
Photoperiodic flowering is a major factor determining crop performance and is controlled by interactions between environmental signals and the circadian clock. We proposed Hvlux1, an ortholog of the Arabidopsis circadian gene LUX ARRHYTHMO, as a candidate underlying the early maturity 10 (eam10) locus in barley (Hordeum vulgare L.). The link between eam10 and Hvlux1 was discovered using high-throughput sequencing of enriched libraries and segregation analysis. We conducted functional, phylogenetic, and diversity studies of eam10 and HvLUX1 to understand the genetic control of photoperiod response in barley and to characterize the evolution of LUX-like genes within barley and across monocots and eudicots. We demonstrate that eam10 causes circadian defects and interacts with the photoperiod response gene Ppd-H1 to accelerate flowering under long and short days. The results of phylogenetic and diversity analyses indicate that HvLUX1 was under purifying selection, duplicated at the base of the grass clade, and diverged independently of LUX-like genes in other plant lineages. Taken together, these findings contribute to improved understanding of the barley circadian clock, its interaction with the photoperiod pathway, and evolution of circadian systems in barley and across monocots and eudicots. PMID:23731278
Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.
2014-01-01
Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047
Djouani-Tahri, El Batoul; Sanchez, Frédéric; Lozano, Jean-Claude; Bouget, François-Yves
2011-01-01
The green picoalga Ostreococcus tauri (Prasinophyceae), which has been described as the smallest free-living eukaryotic organism, has minimal cellular ultra-structure and a very small genome. In recent years, O. tauri has emerged as a novel model organism for systems biology approaches that combine functional genomics and mathematical modeling, with a strong emphasis on light regulated processes and circadian clock. These approaches were made possible through the implementation of a minimal molecular toolbox for gene functional analysis including overexpression and knockdown strategies. We have previously shown that the promoter of the High Affinity Phosphate Transporter (HAPT) gene drives the expression of a luciferase reporter at high and constitutive levels under constant light. Here we report, using a luciferase reporter construct, that the HAPT promoter can be finely and reversibly tuned by modulating the level and nature of phosphate in culture medium. This HAPT regulation was additionally used to analyze the circadian clock gene Time of Cab expression 1 (TOC1). The phenotype of a TOC1ox/CCA1:Luc line was reverted from arrhythmic to rhythmic simply by adding phosphate to the culture medium. Furthermore, since the time of phosphate injection had no effect on the phase of CCA1:Luc expression, this study suggests further that TOC1 is a central clock gene in Ostreococcus. We have developed a phosphate-regulated expression system that allows fine gene function analysis in Ostreococcus. Recently, there has been a growing interest in microalgae as cell factories. This non-toxic phosphate-regulated system may prove useful in tuning protein expression levels quantitatively and temporally for biotechnological applications.
Circadian clock-related genetic risk scores and risk of placental abruption.
Qiu, Chunfang; Gelaye, Bizu; Denis, Marie; Tadesse, Mahlet G; Luque Fernandez, Miguel Angel; Enquobahrie, Daniel A; Ananth, Cande V; Sanchez, Sixto E; Williams, Michelle A
2015-12-01
The circadian clock plays an important role in several aspects of female reproductive biology. Evidence linking circadian clock-related genes to pregnancy outcomes has been inconsistent. We sought to examine whether variations in single nucleotide polymorphisms (SNPs) of circadian clock genes are associated with PA risk. Maternal blood samples were collected from 470 PA case and 473 controls. Genotyping was performed using the Illumina Cardio-MetaboChip platform. We examined 119 SNPs in 13 candidate genes known to control circadian rhythms (e.g., CRY2, ARNTL, and RORA). Univariate and penalized logistic regression models were fit to estimate odds ratios (ORs); and the combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score (wGRS). A common SNP in the RORA gene (rs2899663) was associated with a 21% reduced odds of PA (P < 0.05). The odds of PA increased with increasing wGRS (Ptrend < 0.001). The corresponding ORs were 1.00, 1.83, 2.81 and 5.13 across wGRS quartiles. Participants in the highest wGRS quartile had a 5.13-fold (95% confidence interval: 3.21-8.21) higher odds of PA compared to those in the lowest quartile. Although the test for interaction was not significant, the odds of PA was substantially elevated for preeclamptics with the highest wGRS quartile (OR = 14.44, 95%CI: 6.62-31.53) compared to normotensive women in the lowest wGRS quartile. Genetic variants in circadian rhythm genes may be associated with PA risk. Larger studies are needed to corroborate these findings and to further elucidate the pathogenesis of this important obstetrical complication. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nakamichi, Norihito; Takao, Saori; Kudo, Toru; Kiba, Takatoshi; Wang, Yin; Kinoshita, Toshinori; Sakakibara, Hitoshi
2016-05-01
Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sorek, Michal; Schnytzer, Yisrael; Ben-Asher, Hiba Waldman; Caspi, Vered Chalifa; Chen, Chii-Shiarng; Miller, David J; Levy, Oren
2018-05-09
All organisms employ biological clocks to anticipate physical changes in the environment; however, the integration of biological clocks in symbiotic systems has received limited attention. In corals, the interpretation of rhythmic behaviours is complicated by the daily oscillations in tissue oxygen tension resulting from the photosynthetic and respiratory activities of the associated algal endosymbiont Symbiodinium. In order to better understand the integration of biological clocks in cnidarian hosts of Symbiodinium, daily rhythms of behaviour and gene expression were studied in symbiotic and aposymbiotic morphs of the sea-anemone Aiptasia diaphana. The results showed that whereas circatidal (approx. 12-h) cycles of activity and gene expression predominated in aposymbiotic morphs, circadian (approx. 24-h) patterns were the more common in symbiotic morphs, where the expression of a significant number of genes shifted from a 12- to 24-h rhythm. The behavioural experiments on symbiotic A. diaphana displayed diel (24-h) rhythmicity in body and tentacle contraction under the light/dark cycles, whereas aposymbiotic morphs showed approximately 12-h (circatidal) rhythmicity. Reinfection experiments represent an important step in understanding the hierarchy of endogenous clocks in symbiotic associations, where the aposymbiotic Aiptasia morphs returned to a 24-h behavioural rhythm after repopulation with algae. Whilst some modification of host metabolism is to be expected, the extent to which the presence of the algae modified host endogenous behavioural and transcriptional rhythms implies that it is the symbionts that influence the pace. Our results clearly demonstrate the importance of the endosymbiotic algae in determining the timing and the duration of the extension and contraction of the body and tentacles and temporal gene expression.
Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra
O’Neill, John Stuart; Lee, Kate D.; Zhang, Lin; Feeney, Kevin; Webster, Simon George; Blades, Matthew James; Kyriacou, Charalambos Panayiotis; Hastings, Michael Harvey; Wilcockson, David Charles
2015-01-01
Summary In contrast to the well mapped molecular orchestration of circadian timekeeping in terrestrial organisms, the mechanisms that direct tidal and lunar rhythms in marine species are entirely unknown. Using a combination of biochemical and molecular approaches we have identified a series of metabolic markers of the tidal clock of the intertidal isopod Eurydice pulchra. Specifically, we show that the overoxidation of peroxiredoxin (PRX), a conserved marker of circadian timekeeping in terrestrial eukaryotes [1], follows a circatidal (approximately 12.4 hours) pattern in E. pulchra, in register with the tidal pattern of swimming. In parallel, we show that mitochondrially encoded genes are expressed with a circatidal rhythm. Together, these findings demonstrate that PRX overoxidation rhythms are not intrinsically circadian; rather they appear to resonate with the dominant metabolic cycle of an organism, regardless of its frequency. Moreover, they provide the first molecular leads for dissecting the tidal clockwork. PMID:25898100
Sleeping sickness is a circadian disorder.
Rijo-Ferreira, Filipa; Carvalho, Tânia; Afonso, Cristina; Sanches-Vaz, Margarida; Costa, Rui M; Figueiredo, Luísa M; Takahashi, Joseph S
2018-01-04
Sleeping sickness is a fatal disease caused by Trypanosoma brucei, a unicellular parasite that lives in the bloodstream and interstitial spaces of peripheral tissues and the brain. Patients have altered sleep/wake cycles, body temperature, and endocrine profiles, but the underlying causes are unknown. Here, we show that the robust circadian rhythms of mice become phase advanced upon infection, with abnormal activity occurring during the rest phase. This advanced phase is caused by shortening of the circadian period both at the behavioral level as well as at the tissue and cell level. Period shortening is T. brucei specific and independent of the host immune response, as co-culturing parasites with explants or fibroblasts also shortens the clock period, whereas malaria infection does not. We propose that T. brucei causes an advanced circadian rhythm disorder, previously associated only with mutations in clock genes, which leads to changes in the timing of sleep.
Uryu, Outa; Karpova, Svetlana G; Tomioka, Kenji
2013-07-01
To dissect the molecular oscillatory mechanism of the circadian clock in the cricket Gryllus bimaculatus, we have cloned a cDNA of the clock gene cycle (Gb'cyc) and analyzed its structure and function. Gb'cyc contains four functional domains, i.e. bHLH, PAS-A, PAS-B and BCTR domains, and is expressed rhythmically in light dark cycles, peaking at mid night. The RNA interference (RNAi) of Clock (Gb'Clk) and period (Gb'per) reduced the Gb'cyc mRNA levels and abolished the rhythmic expression, suggesting that the rhythmic expression of Gb'cyc is regulated by a mechanism including Gb'Clk and Gb'per. These features are more similar to those of mammalian orthologue of cyc (Bmal1) than those of Drosophila cyc. A single treatment with double-stranded RNA (dsRNA) of Gb'cyc effectively knocked down the Gb'cyc mRNA level and abolished its rhythmic expression. The cyc RNAi failed to disrupt the locomotor rhythm, but lengthened its free-running period in constant darkness (DD). It is thus likely that Gb'cyc is involved in the circadian clock machinery of the cricket. The cyc RNAi crickets showed a rhythmic expression of Gb'per and timeless (Gb'tim) in the optic lobe in DD, explaining the persistence of the locomotor rhythm. Surprisingly, cyc RNAi revealed a rhythmic expression of Gb'Clk in DD which is otherwise rather constitutively expressed in the optic lobe. These facts suggest that the cricket might have a unique clock oscillatory mechanism in which both Gb'cyc and Gb'Clk are rhythmically controlled and that under abundant expression of Gb'cyc the rhythmic expression of Gb'Clk may be concealed. Copyright © 2013 Elsevier Ltd. All rights reserved.
PDF and cAMP enhance PER stability in Drosophila clock neurons
Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael
2014-01-01
The neuropeptide PDF is important for Drosophila circadian rhythms: pdf01 (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light–dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene perS ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the perS protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf01 circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF. PMID:24707054
PDF and cAMP enhance PER stability in Drosophila clock neurons.
Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael
2014-04-01
The neuropeptide PDF is important for Drosophila circadian rhythms: pdf(01) (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light-dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene per(S) ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the per(S) protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf(01) circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF.
Torres-Farfan, C; Abarzua-Catalan, L; Valenzuela, F J; Mendez, N; Richter, H G; Valenzuela, G J; Serón-Ferré, M
2009-06-01
Timely production of glucocorticoid hormones in response to ACTH is essential for survival by coordinating energy intake and expenditure and acting as homeostatic regulators against stress. Adrenal cortisol response to ACTH is clock time dependent, suggesting that an intrinsic circadian oscillator in the adrenal cortex contributes to modulate the response to ACTH. Circadian clock gene expression has been reported in the adrenal cortex of several species. However, there are no reports accounting for potential involvement of adrenal clock proteins on cortisol response to ACTH. Here we explored whether the clock protein cryptochrome 2 (CRY2) knockdown modifies the adrenal response to ACTH in a primate. Adrenal gland explants from adult capuchin monkey (n = 5) were preincubated for 6 h with transfection vehicle (control) or with two different Cry2 antisense and sense probes followed by 48 h incubation in medium alone (no ACTH) or with 100 nm ACTH. Under control and sense conditions, ACTH increased cortisol production, whereas CRY2 suppression inhibited ACTH-stimulated cortisol production. Expression of the steroidogenic enzymes steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase at 48 h of incubation was increased by ACTH in control explants and suppressed by Cry2 knockdown. Additionally, we found that Cry2 knockdown decreased the expression of the clock gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal1) at the mRNA and protein levels. Altogether these results strongly support that the clock protein CRY2 is involved in the mechanism by which ACTH increases the expression of steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase. Thus, adequate expression levels of components of the adrenal circadian clock are required for an appropriate cortisol response to ACTH.
Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M
2008-03-25
Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.
Temperature compensation and temperature sensation in the circadian clock
Kidd, Philip B.; Young, Michael W.; Siggia, Eric D.
2015-01-01
All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway. PMID:26578788
Functional Development of the Circadian Clock in the Zebrafish Pineal Gland
Ben-Moshe, Zohar; Foulkes, Nicholas S.
2014-01-01
The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model. PMID:24839600
CK1/Doubletime activity delays transcription activation in the circadian clock
O'Neil, Jenna L; Merz, Gregory E; Dusad, Kritika; Crane, Brian R; Young, Michael W
2018-01-01
In the Drosophila circadian clock, Period (PER) and Timeless (TIM) proteins inhibit Clock-mediated transcription of per and tim genes until PER is degraded by Doubletime/CK1 (DBT)-mediated phosphorylation, establishing a negative feedback loop. Multiple regulatory delays within this feedback loop ensure ~24 hr periodicity. Of these delays, the mechanisms that regulate delayed PER degradation (and Clock reactivation) remain unclear. Here we show that phosphorylation of certain DBT target sites within a central region of PER affect PER inhibition of Clock and the stability of the PER/TIM complex. Our results indicate that phosphorylation of PER residue S589 stabilizes and activates PER inhibitory function in the presence of TIM, but promotes PER degradation in its absence. The role of DBT in regulating PER activity, stabilization and degradation ensures that these events are chronologically and biochemically linked, and contributes to the timing of an essential delay that influences the period of the circadian clock. PMID:29611807
Circadian clock-deficient mice as a tool for exploring disease etiology.
Doi, Masao
2012-01-01
One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. This adrenal disorder occurs as a result of increased expression of Hsd3b6, a newly identified steroidogenic enzyme that regulates aldosterone production within the adrenal zona glomerular cells. Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.
Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao
2015-01-01
Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function. PMID:26348211
Molecular Mechanisms of Circadian Regulation During Spaceflight
NASA Technical Reports Server (NTRS)
Zanello, S. B.; Boyle, R.
2012-01-01
The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight.
Self-stabilizing byzantine-fault-tolerant clock synchronization system and method
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R. (Inventor)
2012-01-01
Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.
Circadian molecular clock in lung pathophysiology
Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.
2015-01-01
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874
Curie, Thomas; Maret, Stephanie; Emmenegger, Yann; Franken, Paul
2015-01-01
Study Objectives: That sleep deprivation increases the brain expression of various clock genes has been well documented. Based on these and other findings we hypothesized that clock genes not only underlie circadian rhythm generation but are also implicated in sleep homeostasis. However, long time lags have been reported between the changes in the clock gene messenger RNA levels and their encoded proteins. It is therefore crucial to establish whether also protein levels increase within the time frame known to activate a homeostatic sleep response. We report on the central and peripheral effects of sleep deprivation on PERIOD-2 (PER2) protein both in intact and suprachiasmatic nuclei-lesioned mice. Design: In vivo and in situ PER2 imaging during baseline, sleep deprivation, and recovery. Settings: Mouse sleep-recording facility. Participants: Per2::Luciferase knock-in mice. Interventions: N/A. Measurements and Results: Six-hour sleep deprivation increased PER2 not only in the brain but also in liver and kidney. Remarkably, the effects in the liver outlasted those observed in the brain. Within the brain the increase in PER2 concerned the cerebral cortex mainly, while leaving suprachiasmatic nuclei (SCN) levels unaffected. Against expectation, sleep deprivation did not increase PER2 in the brain of arrhythmic SCN-lesioned mice because of higher PER2 levels in baseline. In contrast, liver PER2 levels did increase in these mice similar to the sham and partially lesioned controls. Conclusions: Our results stress the importance of considering both sleep-wake dependent and circadian processes when quantifying clock-gene levels. Because sleep deprivation alters PERIOD-2 in the brain as well as in the periphery, it is tempting to speculate that clock genes constitute a common pathway mediating the shared and well-known adverse effects of both chronic sleep loss and disrupted circadian rhythmicity on metabolic health. Citation: Curie T, Maret S, Emmenegger Y, Franken P. In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice. SLEEP 2015;38(9):1381–1394. PMID:25581923
Shift Work in Nurses: Contribution of Phenotypes and Genotypes to Adaptation
Gamble, Karen L.; Motsinger-Reif, Alison A.; Hida, Akiko; Borsetti, Hugo M.; Servick, Stein V.; Ciarleglio, Christopher M.; Robbins, Sam; Hicks, Jennifer; Carver, Krista; Hamilton, Nalo; Wells, Nancy; Summar, Marshall L.; McMahon, Douglas G.; Johnson, Carl Hirschie
2011-01-01
Background Daily cycles of sleep/wake, hormones, and physiological processes are often misaligned with behavioral patterns during shift work, leading to an increased risk of developing cardiovascular/metabolic/gastrointestinal disorders, some types of cancer, and mental disorders including depression and anxiety. It is unclear how sleep timing, chronotype, and circadian clock gene variation contribute to adaptation to shift work. Methods Newly defined sleep strategies, chronotype, and genotype for polymorphisms in circadian clock genes were assessed in 388 hospital day- and night-shift nurses. Results Night-shift nurses who used sleep deprivation as a means to switch to and from diurnal sleep on work days (∼25%) were the most poorly adapted to their work schedule. Chronotype also influenced efficacy of adaptation. In addition, polymorphisms in CLOCK, NPAS2, PER2, and PER3 were significantly associated with outcomes such as alcohol/caffeine consumption and sleepiness, as well as sleep phase, inertia and duration in both single- and multi-locus models. Many of these results were specific to shift type suggesting an interaction between genotype and environment (in this case, shift work). Conclusions Sleep strategy, chronotype, and genotype contribute to the adaptation of the circadian system to an environment that switches frequently and/or irregularly between different schedules of the light-dark cycle and social/workplace time. This study of shift work nurses illustrates how an environmental “stress” to the temporal organization of physiology and metabolism can have behavioral and health-related consequences. Because nurses are a key component of health care, these findings could have important implications for health-care policy. PMID:21533241
A circannual clock drives expression of genes central for seasonal reproduction.
Sáenz de Miera, Cristina; Monecke, Stefanie; Bartzen-Sprauer, Julien; Laran-Chich, Marie-Pierre; Pévet, Paul; Hazlerigg, David G; Simonneaux, Valérie
2014-07-07
Animals living in temperate zones anticipate seasonal environmental changes to adapt their biological functions, especially reproduction and metabolism. Two main physiological mechanisms have evolved for this adaptation: intrinsic long-term timing mechanisms with an oscillating period of approximately 1 year, driven by a circannual clock [1], and synchronization of biological rhythms to the sidereal year using day length (photoperiod) [2]. In mammals, the pineal hormone melatonin relays photoperiodic information to the hypothalamus to control seasonal physiology through well-defined mechanisms [3-6]. In contrast, little is known about how the circannual clock drives endogenous changes in seasonal functions. The aim of this study was to determine whether genes involved in photoperiodic time measurement (TSHβ and Dio2) and central control of reproduction (Rfrp and Kiss1) display circannual rhythms in expression under constant conditions. Male European hamsters, deprived of seasonal time cues by pinealectomy and maintenance in constant photoperiod, were selected when expressing a subjective summer or subjective winter state in their circannual cycle of body weight, temperature, and testicular size. TSHβ expression in the pars tuberalis (PT) displayed a robust circannual variation with highest level in the subjective summer state, which was positively correlated with hypothalamic Dio2 and Rfrp expression. The negative sex steroid feedback was found to act specifically on arcuate Kiss1 expression. Our findings reveal TSH as a circannual output of the PT, which in turn regulates hypothalamic neurons controlling reproductive activity. Therefore, both the circannual and the melatonin signals converge on PT TSHβ expression to synchronize seasonal biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D
2018-01-01
Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.
Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.
2018-01-01
Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html PMID:29456555
Entanglement of quantum clocks through gravity
NASA Astrophysics Data System (ADS)
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-03-01
In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.
Entanglement of quantum clocks through gravity.
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-03-21
In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.
Entanglement of quantum clocks through gravity
Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2017-01-01
In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623
Expanding the view of Clock and cycle gene evolution in Diptera.
Chahad-Ehlers, S; Arthur, L P; Lima, A L A; Gesto, J S M; Torres, F R; Peixoto, A A; de Brito, R A
2017-06-01
We expanded the view of Clock (Clk) and cycle (cyc) gene evolution in Diptera by studying the fruit fly Anastrepha fraterculus (Afra), a Brachycera. Despite the high conservation of clock genes amongst insect groups, striking structural and functional differences of some clocks have appeared throughout evolution. Clk and cyc nucleotide sequences and corresponding proteins were characterized, along with their mRNA expression data, to provide an evolutionary overview in the two major groups of Diptera: Lower Diptera and Higher Brachycera. We found that AfraCYC lacks the BMAL (Brain and muscle ARNT-like) C-terminus region (BCTR) domain and is constitutively expressed, suggesting that AfraCLK has the main transactivation function, which is corroborated by the presence of poly-Q repeats and an oscillatory pattern. Our analysis suggests that the loss of BCTR in CYC is not exclusive of drosophilids, as it also occurs in other Acalyptratae flies such as tephritids and drosophilids, however, but it is also present in some Calyptratae, such as Muscidae, Calliphoridae and Sarcophagidae. This indicates that BCTR is missing from CYC of all higher-level Brachycera and that it was lost during the evolution of Lower Brachycera. Thus, we can infer that CLK protein may play the main role in the CLK\\CYC transcription complex in these flies, like in its Drosophila orthologues. © 2017 The Royal Entomological Society.
The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity.
Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P D; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P; Meng, Qing-Jun
2016-01-01
Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA.
The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity
Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P.D.; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P.; Meng, Qing-Jun
2015-01-01
Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA. PMID:26657859
Segregation of Clock and Non-Clock Regulatory Functions of REV-ERB.
Butler, Andrew A; Burris, Thomas P
2015-08-04
The molecular clock is a master controller of circadian cellular processes that affect growth, metabolic homeostasis, and behavior. A report in Science by Zhang et al. (2015) redefines our understanding of how Rev-erba acts as an internal feedback inhibitor that modulates activity of the core clock while simultaneously regulating tissue-specific metabolic processes. Copyright © 2015 Elsevier Inc. All rights reserved.
Bracci, M; Copertaro, A; Manzella, N; Staffolani, S; Strafella, E; Nocchi, L; Barbaresi, M; Copertaro, B; Rapisarda, V; Valentino, M; Santarelli, L
2013-01-01
Night-workers experience disruption of the sleep-wake cycle and light at night which may increase breast cancer risk by suppressing the nocturnal melatonin surge, resulting in higher levels of circulating estrogens. Night-work may also deregulate peripheral clock genes which have been found to be altered in breast cancer. This study investigated urinary 6-sulfatoxymelatonin (aMT6s), serum 17-beta-estradiol levels in premenopausal shift nurses at the end of the night-shift compared to a control group of daytime nurses. Peripheral clock gene expression in lymphocytes were also investigated. All participants were sampled in the follicular phase of the menstrual cycle. The effect of nurses ability to take a short nap during the night-shift was also explored. The shift-work group had significantly lower aMT6s levels than daytime nurses independently of a nap. Night-shift napping significantly influences 17-beta-estradiol levels resulting in higher outcomes in nurses who do not take a nap compared to napping group and daytime workers. Peripheral clock genes expression investigated was not significantly different among the groups. Our findings suggest that shift nurses experience changes in aMT6s levels after a night-shift. Napping habits influence 17-beta-estradiol levels at the end of a night-shift. These findings might be related to the increased cancer risk reported in night-shift workers and suggest that a short nap during night-shifts may exert a positive effect.
Circadian-relevant genes are highly polymorphic in autism spectrum disorder patients.
Yang, Zhiliang; Matsumoto, Ayumi; Nakayama, Kazuhiro; Jimbo, Eriko F; Kojima, Karin; Nagata, Koh-ichi; Iwamoto, Sadahiko; Yamagata, Takanori
2016-01-01
The genetic background of autism spectrum disorder (ASD) is considered a multi-genetic disorder with high heritability. Autistic children present with a higher prevalence of sleep disorders than has been observed in children with normal development. Some circadian-relevant genes have been associated with ASD (e.g., PER1, PER2, NPAS2, MTNR1A, and MTNR1B). We analyzed 28 ASD patients (14 with sleep disorders and 14 without) and 23 control subjects of Japanese descent. The coding regions of 18 canonical clock genes and clock-controlled genes were sequenced. Detected mutations were verified by direct sequencing analysis, and additional control individuals were screened. Thirty-six base changes with amino acid changes were detected in 11 genes. Six missense changes were detected only in individuals with ASD with sleep disturbance: p.F498S in TIMELESS, p.S20R in NR1D1, p.R493C in PER3, p.H542R in CLOCK, p.L473S in ARNTL2, and p.A325V in MTNR1B. Six missense changes were detected only in individuals with ASD without sleep disturbance: p.S1241N in PER1, p.A325T in TIMELESS, p.S13T in ARNTL, p.G24E in MTNR1B, p.G24E in PER2, and p.T1177A in PER3. The p.R493C mutation in PER3 was detected in both groups. One missense change, p.P932L in PER2, was detected only in the control group. Mutations in NR1D1, CLOCK, and ARNTL2 were detected only in individuals with ASD with sleep disorder. The prevalence of the mutations detected only single time differed significantly among all ASD patients and controls (p=0.003). Two kinds of mutations detected only in individuals with ASD with sleep disorder, p.F498S in TIMELESS and p.R366Q in PER3, were considered to affect gene function by three different methods: PolyPhen-2, scale-invariant feature transform (SIFT) prediction, and Mutation Taster (www.mutationtaster.org). The mutations p.S20R in NR1D1, p.H542R in CLOCK, p.L473S in ARNTL2, p.A325T in TIMELESS, p.S13T in ARNTL, and p.G24E in PER2 were diagnosed to negatively affect gene function by more than one of these methods. Mutations in circadian-relevant genes affecting gene function are more frequent in patients with ASD than in controls. Circadian-relevant genes may be involved in the psychopathology of ASD. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Flowering is an important trait in major crops like soybean due to its direct relation to grain production. The circadian clock mediates the perception of seasonal changes in day length and temperature to modulate flowering time. The circadian clock gene EARLY FLOWERING 4 (ELF4) was identified in Ar...
Synthesizing genetic sequential logic circuit with clock pulse generator.
Chuang, Chia-Hua; Lin, Chun-Liang
2014-05-28
Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.
Welsh, David K.
2016-01-01
Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195
THE mPER2 CLOCK GENE MODULATES COCAINE ACTIONS IN THE MOUSE CIRCADIAN SYSTEM
Brager, Allison J.; Stowie, Adam C.; Prosser, Rebecca A.; Glass, J. David
2014-01-01
Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (~3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine’s actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN. PMID:23333842
The daily timing of gene expression and physiology in mammals
Schibler, Ueli
2007-01-01
Mammalian behavior and physiology undergo daily rhythms that are coordinated by an endogenous circadian timing system. This system has a hierarchical structure, in that a master pacemaker, residing in the suprachiasmatic nucleus of the ventral hypothalamus, synchronizes peripheral oscillators in virtually all body cells. While the basic molecular mechanisms generating the daily rhythms are similar in aIl cells, most clock out-puts are cell-specific. This conclusion is based on genomewide transcriptome profiling studies in several tissues that have revealed hundreds of rhythmically expressed genes. Cyclic gene expression in the various organs governs overt rhythms in behavior and physiology, encompassing sleep-wake cycles, metabolism, xenobiotic detoxification, and cellularproliferation. As a consequence, chronic perturbation of this temporal organization may lead to increased morbidity and reduced lifespan. PMID:17969863
A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.
Mikkelsen, Michael D; Thomashow, Michael F
2009-10-01
The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.
Murakami, Mari; Tognini, Paola; Liu, Yu; Eckel-Mahan, Kristin L; Baldi, Pierre; Sassone-Corsi, Paolo
2016-09-01
The liver circadian clock is reprogrammed by nutritional challenge through the rewiring of specific transcriptional pathways. As the gut microbiota is tightly connected to host metabolism, whose coordination is governed by the circadian clock, we explored whether gut microbes influence circadian homeostasis and how they distally control the peripheral clock in the liver. Using fecal transplant procedures we reveal that, in response to high-fat diet, the gut microbiota drives PPARγ-mediated activation of newly oscillatory transcriptional programs in the liver. Moreover, antibiotics treatment prevents PPARγ-driven transcription in the liver, underscoring the essential role of gut microbes in clock reprogramming and hepatic circadian homeostasis. Thus, a specific molecular signature characterizes the influence of the gut microbiome in the liver, leading to the transcriptional rewiring of hepatic metabolism. © 2016 The Authors.
Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan
2018-01-01
Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.
PPAR{alpha} is a potential therapeutic target of drugs to treat circadian rhythm sleep disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirai, Hidenori; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8502; Oishi, Katsutaka
Recent progress at the molecular level has revealed that nuclear receptors play an important role in the generation of mammalian circadian rhythms. To examine whether peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is involved in the regulation of circadian behavioral rhythms in mammals, we evaluated the locomotor activity of mice administered with the hypolipidemic PPAR{alpha} ligand, bezafibrate. Circadian locomotor activity was phase-advanced about 3 h in mice given bezafibrate under light-dark (LD) conditions. Transfer from LD to constant darkness did not change the onset of activity in these mice, suggesting that bezafibrate advanced the phase of the endogenous clock. Surprisingly, bezafibrate alsomore » advanced the phase in mice with lesions of the suprachiasmatic nucleus (SCN; the central clock in mammals). The circadian expression of clock genes such as period2, BMAL1, and Rev-erb{alpha} was also phase-advanced in various tissues (cortex, liver, and fat) without affecting the SCN. Bezafibrate also phase-advanced the activity phase that is delayed in model mice with delayed sleep phase syndrome (DSPS) due to a Clock gene mutation. Our results indicated that PPAR{alpha} is involved in circadian clock control independently of the SCN and that PPAR{alpha} could be a potent target of drugs to treat circadian rhythm sleep disorders including DSPS.« less
Mamoshina, Polina; Kochetov, Kirill; Putin, Evgeny; Cortese, Franco; Aliper, Alexander; Lee, Won-Suk; Ahn, Sung-Min; Uhn, Lee; Skjodt, Neil; Kovalchuk, Olga; Scheibye-Knudsen, Morten; Zhavoronkov, Alex
2018-01-11
Accurate and physiologically meaningful biomarkers for human aging are key to assessing anti-aging therapies. Given ethnic differences in health, diet, lifestyle, behaviour, environmental exposures and even average rate of biological aging, it stands to reason that aging clocks trained on datasets obtained from specific ethnic populations are more likely to account for these potential confounding factors, resulting in an enhanced capacity to predict chronological age and quantify biological age. Here we present a deep learning-based hematological aging clock modeled using the large combined dataset of Canadian, South Korean and Eastern European population blood samples that show increased predictive accuracy in individual populations compared to population-specific hematologic aging clocks. The performance of models was also evaluated on publicly-available samples of the American population from the National Health and Nutrition Examination Survey (NHANES). In addition, we explored the association between age predicted by both population-specific and combined hematological clocks and all-cause mortality. Overall, this study suggests a) the population-specificity of aging patterns and b) hematologic clocks predicts all-cause mortality. Proposed models added to the freely available Aging.AI system allowing improved ability to assess human aging. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America.
New experiments on the effect of clock shifts on homing in pigeons
NASA Technical Reports Server (NTRS)
Schmidt-Koenig, K.
1972-01-01
The effect of clock shifts as an experimental tool for predictably interfering with the homing ability of birds is discussed. Clock shifts introduce specific errors in the birds' sun azimuth compass, resulting in corresponding errors during initial orientation and possibly during orientation enroute. The effects of 6 hour and 12 hour clock shifts resulted in a 90 degree deviation and a 180 degree deviation from the initial orientation, respectively. The method for conducting the clock shift experiments and results obtained from previous experiments are described.
Xenobiotic metabolism in the fourth dimension: PARtners in time.
Green, Carla B; Takahashi, Joseph S
2006-07-01
A significant portion of the transcriptome in mammals, including the PAR bZIP transcription factors DBP, HLF, and TEF, is under circadian clock control. In this issue of Cell Metabolism, Gachon and colleagues (Gachon et al., 2006) show that disruption of these three genes in mice alters gene expression patterns of many proteins involved in drug metabolism and in liver and kidney responses to xenobiotic agents. Triple mutant mice have severe physiological deficits, including increased hypersensitivity to xenobiotic agents and premature aging, highlighting the profound effect the circadian clock has on this important response system.
Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol
NASA Technical Reports Server (NTRS)
Huang, Xiaowan; Singh, Anu; Smolka, Scott A.
2010-01-01
We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution
Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity
Shih, Nathan P.; François, Paul; Delaune, Emilie A.; Amacher, Sharon L.
2015-01-01
The formation of reiterated somites along the vertebrate body axis is controlled by the segmentation clock, a molecular oscillator expressed within presomitic mesoderm (PSM) cells. Although PSM cells oscillate autonomously, they coordinate with neighboring cells to generate a sweeping wave of cyclic gene expression through the PSM that has a periodicity equal to that of somite formation. The velocity of each wave slows as it moves anteriorly through the PSM, although the dynamics of clock slowing have not been well characterized. Here, we investigate segmentation clock dynamics in the anterior PSM in developing zebrafish embryos using an in vivo clock reporter, her1:her1-venus. The her1:her1-venus reporter has single-cell resolution, allowing us to follow segmentation clock oscillations in individual cells in real-time. By retrospectively tracking oscillations of future somite boundary cells, we find that clock reporter signal increases in anterior PSM cells and that the periodicity of reporter oscillations slows to about ∼1.5 times the periodicity in posterior PSM cells. This gradual slowing of the clock in the anterior PSM creates peaks of clock expression that are separated at a two-segment periodicity both spatially and temporally, a phenomenon we observe in single cells and in tissue-wide analyses. These results differ from previous predictions that clock oscillations stop or are stabilized in the anterior PSM. Instead, PSM cells oscillate until they incorporate into somites. Our findings suggest that the segmentation clock may signal somite formation using a phase gradient with a two-somite periodicity. PMID:25968314
Chronobiology of crickets: a review.
Tomioka, Kenji
2014-10-01
Crickets provide a good model for the study of mechanisms underlying circadian rhythms and photoperiodic responses. They show clear circadian rhythms in their overt behavior and the sensitivity of the visual system. Classical neurobiological studies revealed that a pair of optic lobes is the locus of the circadian clock controlling these rhythms and that the compound eye is the major photoreceptor necessary for synchronization to environmental light cycles. The two optic lobe clocks are mutually coupled through a neural pathway and the coupling regulates an output circadian waveform and a free-running period. Recent molecular studies revealed that the cricket's clock consists of cyclic expression of so-called clock genes and that the clock mechanism is featured by both Drosophila-like and mammalian-like traits. Molecular oscillation is also observed in some extra-optic lobe tissues and depends on the optic lobe clock in a tissue dependent manner. Interestingly, the clock is also involved in adaptation to seasonally changing environment. It fits its waveform to a given photoperiod and may be an indispensable part of a photoperiodic time-measurement mechanism. With adoption of modern molecular technologies, the cricket becomes a much more important and promising model animal for the study of circadian and photoperiodic biology.
Identification of the Molecular Clockwork of the Oyster Crassostrea gigas
Perrigault, Mickael; Tran, Damien
2017-01-01
Molecular clock system constitutes the origin of biological rhythms that allow organisms to anticipate cyclic environmental changes and adapt their behavior and physiology. Components of the molecular clock are largely conserved across a broad range of species but appreciable diversity in clock structure and function is also present especially in invertebrates. The present work aimed at identify and characterize molecular clockwork components in relationship with the monitoring of valve activity behavior in the oyster Crassostrea gigas. Results provided the characterization of most of canonical clock gene including clock, bmal/cycle, period, timeless, vertebrate-type cry, rev-erb, ror as well as other members of the cryptochrome/photolyase family (plant-like cry, 6–4 photolyase). Analyses of transcriptional variations of clock candidates in oysters exposed to light / dark regime and to constant darkness led to the generation of a putative and original clockwork model in C. gigas, intermediate of described systems in vertebrates and insects. This study is the first characterization of a mollusk clockwork. It constitutes essential bases to understand interactions of the different components of the molecular clock in C. gigas as well as the global mechanisms associated to the generation and the synchronization of biological rhythms in oysters. PMID:28072861
Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.
Mai, Uyen; Sayyari, Erfan; Mirarab, Siavash
2017-01-01
Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.
Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction
Sayyari, Erfan; Mirarab, Siavash
2017-01-01
Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods. PMID:28800608
Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E
2018-01-01
Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.
Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A.; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E.
2018-01-01
Under normal light–dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day–night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day–night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day–night differences in NAc Per2 gene expression were not accompanied by altered day–night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day–night pattern of food intake. PMID:29686649
Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia
2011-08-01
The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional levels.
USDA-ARS?s Scientific Manuscript database
Genetic variation at the Circadian Locomotor Output Cycles Kaput (CLOCK) locus has been associated with lifestyle-related conditions such as obesity, metabolic syndrome (MetS) and cardiovascular diseases. In fact, it has been suggested that the disruption of the circadian system may play a causal ro...
Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi
2017-01-30
Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.
Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi
2017-01-01
Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit. PMID:28134281
Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullulans.
Franco, Diana L; Canessa, Paulo; Bellora, Nicolás; Risau-Gusman, Sebastián; Olivares-Yañez, Consuelo; Pérez-Lara, Rodrigo; Libkind, Diego; Larrondo, Luis F; Marpegan, Luciano
2017-10-23
Circadian systems enable organisms to synchronize their physiology to daily and seasonal environmental changes relying on endogenous pacemakers that oscillate with a period close to 24 h even in the absence of external timing cues. The oscillations are achieved by intracellular transcriptional/translational feedback loops thoroughly characterized for many organisms, but still little is known about the presence and characteristics of circadian clocks in fungi other than Neurospora crassa. We sought to characterize the circadian system of a natural isolate of Aureobasidium pullulans, a cold-adapted yeast bearing great biotechnological potential. A. pullulans formed daily concentric rings that were synchronized by light/dark cycles and were also formed in constant darkness with a period of 24.5 h. Moreover, these rhythms were temperature compensated, as evidenced by experiments conducted at temperatures as low as 10 °C. Finally, the expression of clock-essential genes, frequency, white collar-1, white collar-2 and vivid was confirmed. In summary, our results indicate the existence of a functional circadian clock in A. pullulans, capable of sustaining rhythms at very low temperatures and, based on the presence of conserved clock-gene homologues, suggest a molecular and functional relationship to well-described circadian systems.
PFKFB3 Control of Cancer Growth by Responding to Circadian Clock Outputs
Chen, Lili; Zhao, Jiajia; Tang, Qingming; Li, Honggui; Zhang, Chenguang; Yu, Ran; Zhao, Yan; Huo, Yuqing; Wu, Chaodong
2016-01-01
Circadian clock dysregulation promotes cancer growth. Here we show that PFKFB3, the gene that encodes for inducible 6-phosphofructo-2-kinase as an essential supporting enzyme of cancer cell survival through stimulating glycolysis, mediates circadian control of carcinogenesis. In patients with tongue cancers, PFKFB3 expression in both cancers and its surrounding tissues was increased significantly compared with that in the control, and was accompanied with dys-regulated expression of core circadian genes. In the in vitro systems, SCC9 tongue cancer cells displayed rhythmic expression of PFKFB3 and CLOCK that was distinct from control KC cells. Furthermore, PFKFB3 expression in SCC9 cells was stimulated by CLOCK through binding and enhancing the transcription activity of PFKFB3 promoter. Inhibition of PFKFB3 at zeitgeber time 7 (ZT7), but not at ZT19 caused significant decreases in lactate production and in cell proliferation. Consistently, PFKFB3 inhibition in mice at circadian time (CT) 7, but not CT19 significantly reduced the growth of implanted neoplasms. Taken together, these findings demonstrate PFKFB3 as a mediator of circadian control of cancer growth, thereby highlighting the importance of time-based PFKFB3 inhibition in cancer treatment. PMID:27079271
Modelling Delta-Notch perturbations during zebrafish somitogenesis.
Murray, Philip J; Maini, Philip K; Baker, Ruth E
2013-01-15
The discovery over the last 15 years of molecular clocks and gradients in the pre-somitic mesoderm of numerous vertebrate species has added significant weight to Cooke and Zeeman's 'clock and wavefront' model of somitogenesis, in which a travelling wavefront determines the spatial position of somite formation and the somitogenesis clock controls periodicity (Cooke and Zeeman, 1976). However, recent high-throughput measurements of spatiotemporal patterns of gene expression in different zebrafish mutant backgrounds allow further quantitative evaluation of the clock and wavefront hypothesis. In this study we describe how our recently proposed model, in which oscillator coupling drives the propagation of an emergent wavefront, can be used to provide mechanistic and testable explanations for the following observed phenomena in zebrafish embryos: (a) the variation in somite measurements across a number of zebrafish mutants; (b) the delayed formation of somites and the formation of 'salt and pepper' patterns of gene expression upon disruption of oscillator coupling; and (c) spatial correlations in the 'salt and pepper' patterns in Delta-Notch mutants. In light of our results, we propose a number of plausible experiments that could be used to further test the model. Copyright © 2012 Elsevier Inc. All rights reserved.
2015-05-18
4 , as well as increases the risk of obesity 5-7 , diabetes 8, 9 , heart disease 10 , and cancer 11, 12 . Our lab studies the circadian clock of a...2013) Two Antagonistic Clock-Regulated Histidine Kinases Time the Activation of Circadian Gene Expression. Mol. Cell 50, 288-294. 10.1016/j.molcel...Circadian Clock-associated Histidine Kinase SasA. J. Mol. Biol. 342, 9-17. 10.1016/j.jmb.2004.07.010. 19. Smith R. M., Williams S. B. (2006) Circadian
De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A
2016-11-01
The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.
Synthesizing genetic sequential logic circuit with clock pulse generator
2014-01-01
Background Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. Results This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. Conclusions A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal. PMID:24884665
Xue, Tuo; Song, Chunnian; Wang, Qing; Wang, Yan; Chen, Guangju
2016-01-01
The circadian locomotor output cycles kaput (CLOCK), and brain and muscle ARNT-like 1 (BMAL1) proteins are important transcriptional factors of the endogenous circadian clock. The CLOCK and BMAL1 proteins can regulate the transcription-translation activities of the clock-related genes through the DNA binding. The hetero-/homo-dimerization and DNA combination of the CLOCK and BMAL1 proteins play a key role in the positive and negative transcriptional feedback processes. In the present work, we constructed a series of binary and ternary models for the bHLH/bHLH-PAS domains of the CLOCK and BMAL1 proteins, and the DNA molecule, and carried out molecular dynamics simulations, free energy calculations and conformational analysis to explore the interaction properties of the CLOCK and BMAL1 proteins with DNA. The results show that the bHLH domains of CLOCK and BMAL1 can favorably form the heterodimer of the bHLH domains of CLOCK and BMAL1 and the homodimer of the bHLH domains of BMAL1. And both dimers could respectively bind to DNA at its H1-H1 interface. The DNA bindings of the H1 helices in the hetero- and homo-bHLH dimers present the rectangular and diagonal binding modes, respectively. Due to the function of the α-helical forceps in these dimers, the tight gripping of the H1 helices to the major groove of DNA would cause the decrease of interactions at the H1-H2 interfaces in the CLOCK and BMAL1 proteins. The additional PAS domains in the CLOCK and BMAL1 proteins affect insignificantly the interactions of the CLOCK and BMAL1 proteins with the DNA molecule due to the flexible and long loop linkers located at the middle of the PAS and bHLH domains. The present work theoretically explains the interaction mechanisms of the bHLH domains of the CLOCK and BMAL1 proteins with DNA.
Gene transfers can date the tree of life.
Davín, Adrián A; Tannier, Eric; Williams, Tom A; Boussau, Bastien; Daubin, Vincent; Szöllősi, Gergely J
2018-05-01
Biodiversity has always been predominantly microbial, and the scarcity of fossils from bacteria, archaea and microbial eukaryotes has prevented a comprehensive dating of the tree of life. Here, we show that patterns of lateral gene transfer deduced from an analysis of modern genomes encode a novel and abundant source of information about the temporal coexistence of lineages throughout the history of life. We use state-of-the-art species tree-aware phylogenetic methods to reconstruct the history of thousands of gene families and demonstrate that dates implied by gene transfers are consistent with estimates from relaxed molecular clocks in Bacteria, Archaea and Eukarya. We present the order of speciations according to lateral gene transfer data calibrated to geological time for three datasets comprising 40 genomes for Cyanobacteria, 60 genomes for Archaea and 60 genomes for Fungi. An inspection of discrepancies between transfers and clocks and a comparison with mammalian fossils show that gene transfer in microbes is potentially as informative for dating the tree of life as the geological record in macroorganisms.
The pineapple genome and the evolution of CAM photosynthesis.
Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C; Bowers, John E; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; Zhang, Jisen; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Zhang, Jian; Ye, Zhangyao; Miao, Chenyong; Lin, Zhicong; Wang, Hao; Zhou, Hongye; Yim, Won C; Priest, Henry D; Zheng, Chunfang; Woodhouse, Margaret; Edger, Patrick P; Guyot, Romain; Guo, Hao-Bo; Guo, Hong; Zheng, Guangyong; Singh, Ratnesh; Sharma, Anupma; Min, Xiangjia; Zheng, Yun; Lee, Hayan; Gurtowski, James; Sedlazeck, Fritz J; Harkess, Alex; McKain, Michael R; Liao, Zhenyang; Fang, Jingping; Liu, Juan; Zhang, Xiaodan; Zhang, Qing; Hu, Weichang; Qin, Yuan; Wang, Kai; Chen, Li-Yu; Shirley, Neil; Lin, Yann-Rong; Liu, Li-Yu; Hernandez, Alvaro G; Wright, Chris L; Bulone, Vincent; Tuskan, Gerald A; Heath, Katy; Zee, Francis; Moore, Paul H; Sunkar, Ramanjulu; Leebens-Mack, James H; Mockler, Todd; Bennetzen, Jeffrey L; Freeling, Michael; Sankoff, David; Paterson, Andrew H; Zhu, Xinguang; Yang, Xiaohan; Smith, J Andrew C; Cushman, John C; Paull, Robert E; Yu, Qingyi
2015-12-01
Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.
Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Zhiqiang; Su, Lijing; Pei, Jimin
In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices,more » are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.« less
Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield.
Preuss, Sasha B; Meister, Robert; Xu, Qingzhang; Urwin, Carl P; Tripodi, Federico A; Screen, Steven E; Anil, Veena S; Zhu, Shuquan; Morrell, James A; Liu, Grace; Ratcliffe, Oliver J; Reuber, T Lynne; Khanna, Rajnish; Goldman, Barry S; Bell, Erin; Ziegler, Todd E; McClerren, Amanda L; Ruff, Thomas G; Petracek, Marie E
2012-01-01
Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity.
The Space Optical Clock project: status and perspectives
NASA Astrophysics Data System (ADS)
Schiller, Stephan; Tino, Guglielmo M.; Sterr, Uwe; Lemonde, Pierre; Görlitz, Axel; Salomon, Christophe
The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of funda-mental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007-10), funded partially by ESA and DLR, includes the implementa-tion of several optical lattice clock systems using Strontium and Ytterbium as atomic systems and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques that are suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and are being validated. The talk will give a brief overview over the achieved results and outline future developments.
Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.
2012-01-01
Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855
Low Temperature Induction of Arabidopsis CBF1, 2, and 3 Is Gated by the Circadian Clock1
Fowler, Sarah G.; Cook, Daniel; Thomashow, Michael F.
2005-01-01
Exposing Arabidopsis (Arabidopsis thaliana) plants to low temperature results in rapid induction of CBF1, 2, and 3 (CBF1-3; also known as DREB1B, C, and A, respectively), which encode transcriptional activators that induce expression of a battery of genes that increase plant freezing and chilling tolerance. Recently, it has been shown that basal levels of CBF3 transcripts and those of certain CBF-regulated genes exhibit circadian cycling. Here, we further explored the regulation of CBF1-3 by the circadian clock. The results indicated that the extent to which CBF1-3 transcripts accumulated in response to low temperature was dependent on the time of day that the plants were exposed to low temperature and that this was regulated by the circadian clock. The highest and lowest levels of cold-induced CBF1-3 transcript accumulation occurred at 4 and 16 h after subjective dawn, respectively. An analysis of CBF2 promoter-reporter gene fusions indicated that this control included transcriptional regulation. In addition, the cold responsiveness of RAV1 and ZAT12, genes that are cold induced in parallel with CBF1-3, was also subject to circadian regulation. However, whereas the maximum level of cold-induced RAV1 transcript accumulation occurred at the same time of day as did CBF1-3 transcripts, that of ZAT12 was in reverse phase, i.e. the highest level of cold-induced ZAT12 transcript accumulation occurred 16 h after subjective dawn. These results indicate that cold-induced expression of CBF1-3, RAV1, and ZAT12 is gated by the circadian clock and suggest that this regulation likely occurs through at least two nonidentical (though potentially overlapping) signaling pathways. PMID:15728337
Footitt, Steven; Ölçer-Footitt, Hülya; Hambidge, Angela J; Finch-Savage, William E
2017-08-01
Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?
NASA Astrophysics Data System (ADS)
Erker, Paul; Mitchison, Mark T.; Silva, Ralph; Woods, Mischa P.; Brunner, Nicolas; Huber, Marcus
2017-07-01
Time remains one of the least well-understood concepts in physics, most notably in quantum mechanics. A central goal is to find the fundamental limits of measuring time. One of the main obstacles is the fact that time is not an observable and thus has to be measured indirectly. Here, we explore these questions by introducing a model of time measurements that is complete and autonomous. Specifically, our autonomous quantum clock consists of a system out of thermal equilibrium—a prerequisite for any system to function as a clock—powered by minimal resources, namely, two thermal baths at different temperatures. Through a detailed analysis of this specific clock model, we find that the laws of thermodynamics dictate a trade-off between the amount of dissipated heat and the clock's performance in terms of its accuracy and resolution. Our results furthermore imply that a fundamental entropy production is associated with the operation of any autonomous quantum clock, assuming that quantum machines cannot achieve perfect efficiency at finite power. More generally, autonomous clocks provide a natural framework for the exploration of fundamental questions about time in quantum theory and beyond.
Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes
Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.
2017-01-01
From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network. PMID:28076377
Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang
2015-06-01
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.
Gene-environment interactions of circadian-related genes for cardiometabolic traits
USDA-ARS?s Scientific Manuscript database
Objective: Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153,...
Rubínová, Eva; Nikolai, Tomáš; Marková, Hana; Siffelová, Kamila; Laczó, Jan; Hort, Jakub; Vyhnálek, Martin
2014-01-01
The Clock Drawing Test is a frequently used cognitive screening test with several scoring systems in elderly populations. We compare simple and complex scoring systems and evaluate the usefulness of the combination of the Clock Drawing Test with the Mini-Mental State Examination to detect patients with mild cognitive impairment. Patients with amnestic mild cognitive impairment (n = 48) and age- and education-matched controls (n = 48) underwent neuropsychological examinations, including the Clock Drawing Test and the Mini-Mental State Examination. Clock drawings were scored by three blinded raters using one simple (6-point scale) and two complex (17- and 18-point scales) systems. The sensitivity and specificity of these scoring systems used alone and in combination with the Mini-Mental State Examination were determined. Complex scoring systems, but not the simple scoring system, were significant predictors of the amnestic mild cognitive impairment diagnosis in logistic regression analysis. At equal levels of sensitivity (87.5%), the Mini-Mental State Examination showed higher specificity (31.3%, compared with 12.5% for the 17-point Clock Drawing Test scoring scale). The combination of Clock Drawing Test and Mini-Mental State Examination scores increased the area under the curve (0.72; p < .001) and increased specificity (43.8%), but did not increase sensitivity, which remained high (85.4%). A simple 6-point scoring system for the Clock Drawing Test did not differentiate between healthy elderly and patients with amnestic mild cognitive impairment in our sample. Complex scoring systems were slightly more efficient, yet still were characterized by high rates of false-positive results. We found psychometric improvement using combined scores from the Mini-Mental State Examination and the Clock Drawing Test when complex scoring systems were used. The results of this study support the benefit of using combined scores from simple methods.
Mated Drosophila melanogaster females consume more amino acids during the dark phase
Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.
2017-01-01
To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073
Mated Drosophila melanogaster females consume more amino acids during the dark phase.
Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q
2017-01-01
To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.
Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology.
Leliavski, Alexei; Dumbell, Rebecca; Ott, Volker; Oster, Henrik
2015-02-01
The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders. © 2014 The Author(s).
Mouse genotypes drive the liver and adrenal gland clocks
NASA Astrophysics Data System (ADS)
Košir, Rok; Prosenc Zmrzljak, Uršula; Korenčič, Anja; Juvan, Peter; Ačimovič, Jure; Rozman, Damjana
2016-08-01
Circadian rhythms regulate a plethora of physiological processes. Perturbations of the rhythm can result in pathologies which are frequently studied in inbred mouse strains. We show that the genotype of mouse lines defines the circadian gene expression patterns. Expression of majority of core clock and output metabolic genes are phase delayed in the C56BL/6J line compared to 129S2 in the adrenal glands and the liver. Circadian amplitudes are generally higher in the 129S2 line. Experiments in dark - dark (DD) and light - dark conditions (LD), exome sequencing and data mining proposed that mouse lines differ in single nucleotide variants in the binding regions of clock related transcription factors in open chromatin regions. A possible mechanisms of differential circadian expression could be the entrainment and transmission of the light signal to peripheral organs. This is supported by the genotype effect in adrenal glands that is largest under LD, and by the high number of single nucleotide variants in the Receptor, Kinase and G-protein coupled receptor Panther molecular function categories. Different phenotypes of the two mouse lines and changed amino acid sequence of the Period 2 protein possibly contribute further to the observed differences in circadian gene expression.
The possible interplay of synaptic and clock genes in autism spectrum disorders.
Bourgeron, T
2007-01-01
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by deficits in social communication, absence or delay in language, and stereotyped and repetitive behaviors. Results from genetic studies reveal one pathway associated with susceptibility to ASD, which includes the synaptic cell adhesion molecules NLGN3, NLGN4, and NRXN1 and a postsynaptic scaffolding protein SHANK3. This protein complex is crucial for the maintenance of functional synapses as well as the adequate balance between neuronal excitation and inhibition. Among the factors that could modulate this pathway are the genes controlling circadian rhythms. Indeed, sleep disorders and low melatonin levels are frequently observed in ASD. In this context, an alteration of both this synaptic pathway and the setting of the clock would greatly increase the risk of ASD. In this chapter, I report genetic and neurobiological findings that highlight the major role of synaptic and clock genes in the susceptibility to ASD. On the basis of these lines of evidence, I propose that future studies of ASD should investigate the circadian modulation of synaptic function as a focus for functional analyses and the development of new therapeutic strategies.
Evolution and dispersal of St. Louis encephalitis virus in the Americas.
Auguste, Albert J; Pybus, Oliver G; Carrington, Christine V F
2009-07-01
Using a Bayesian coalescent approach on a dataset of 73 envelope gene sequences we estimated substitution rates and dates of divergence for St. Louis encephalitis virus (SLEV) in the Americas. We found significant rate heterogeneity among lineages, such that "relaxed" molecular clock models were much better supported than a strict molecular clock. The mean substitution rate estimated for all SLEV was 4.1x10(-4)substitutions/site/year (95% HPD 2.5-5.7)-higher than previous estimates that relied on the less well-suited strict clock. Mean substitution rates for individual lineages varied from 3.7x10(-4) to 7.2x10(-4)substitutions/site/year. For the first time we also assessed the magnitude and direction of viral gene flow within the Americas. The overall direction of gene flow during the period represented by the phylogeny is from South to North, and the region between 15 degrees N and 30 degrees N latitude appears to be the major source of virus for the rest of North America, which is consistent with migratory birds returning to their northern breeding grounds having acquired infection while wintering in the region of the Gulf of Mexico.
Phenotypic effects induced by knock-down of the period clock gene in Bombyx mori.
Sandrelli, Federica; Cappellozza, Silvia; Benna, Clara; Saviane, Alessio; Mastella, Antonio; Mazzotta, Gabriella M; Moreau, Stephane; Pegoraro, Mirko; Piccin, Alberto; Zordan, Mauro A; Cappellozza, Luciano; Kyriacou, Charalambos P; Costa, Rodolfo
2007-04-01
The lepidopteran Bombyx mori is an insect of considerable scientific and economic importance. Recently, the B. mori circadian clock gene period has been molecularly characterized. We have transformed a B. mori strain with a construct encoding a period double-strand RNA in order to knock-down period gene expression. We observe that this post-transcriptional silencing produces a small but detectable disruption in the egg-hatching rhythm, as well as a reduction in egg-to-adult developmental time, without altering silk production parameters. Thus we show that both circadian and non-circadian phenotypes can be altered by changing per expression, and, at a practical level, these results suggest that per knock-down may provide a suitable strategy for improving the efficiency of rearing, without affecting silk productivity.
A remark on the GNSS single difference model with common clock scheme for attitude determination
NASA Astrophysics Data System (ADS)
Chen, Wantong
2016-09-01
GNSS-based attitude determination technique is an important field of study, in which two schemes can be used to construct the actual system: the common clock scheme and the non-common clock scheme. Compared with the non-common clock scheme, the common clock scheme can strongly improve both the reliability and the accuracy. However, in order to gain these advantages, specific care must be taken in the implementation. The cares are thus discussed, based on the generating technique of carrier phase measurement in GNSS receivers. A qualitative assessment of potential phase bias contributes is also carried out. Possible technical difficulties are pointed out for the development of single-board multi-antenna GNSS attitude systems with a common clock.
Gene-environment interactions of circadian-related genes for cardiometabolic traits
USDA-ARS?s Scientific Manuscript database
Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs1...
Baird, Alison L; Coogan, Andrew N; Kaufling, Jennifer; Barrot, Michel; Thome, Johannes
2013-06-04
Circadian rhythms are repeating patterns of physiological and other parameters that recur with periods of approximately 24h, and are generated by an endogenous circadian timekeeping mechanism. Such circadian rhythms, and their underlying molecular mechanisms, are known to be altered by a number of central nervous system acting pharmacological compounds, as well as becoming perturbed in a number of common psychiatric and neurological conditions. The psychostimulant methylphenidate and the non-stimulant atomoxetine are used in the pharmacotherapy of attention deficit hyperactivity disorder, a common condition in which circadian rhythms have been reported to be altered. In the present study we have examined the effects of daily methylphenidate or atomoxetine treatment across 7 days on circadian clock gene product expression across numerous brain regions in the male mouse to test the potential impact of such compounds on circadian timing. We report drug, brain region and molecular specific effects of such treatments, including alterations in expression profiles in the suprachiasmatic nucleus, the master circadian pacemaker. These results indicate that drugs used in the clinical management of attention deficit hyperactivity disorder can alter molecular factors that are believed to underpin circadian timekeeping, and such effects may be of importance in both the therapeutic and side effect profiles of such drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Dancing in the dark: darkness as a signal in plants.
Seluzicki, Adam; Burko, Yogev; Chory, Joanne
2017-11-01
Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface. © 2017 John Wiley & Sons Ltd.
Gene tree rooting methods give distributions that mimic the coalescent process.
Tian, Yuan; Kubatko, Laura S
2014-01-01
Multi-locus phylogenetic inference is commonly carried out via models that incorporate the coalescent process to model the possibility that incomplete lineage sorting leads to incongruence between gene trees and the species tree. An interesting question that arises in this context is whether data "fit" the coalescent model. Previous work (Rosenfeld et al., 2012) has suggested that rooting of gene trees may account for variation in empirical data that has been previously attributed to the coalescent process. We examine this possibility using simulated data. We show that, in the case of four taxa, the distribution of gene trees observed from rooting estimated gene trees with either the molecular clock or with outgroup rooting can be closely matched by the distribution predicted by the coalescent model with specific choices of species tree branch lengths. We apply commonly-used coalescent-based methods of species tree inference to assess their performance in these situations. Copyright © 2013 Elsevier Inc. All rights reserved.
Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior.
Ben-Moshe Livne, Zohar; Alon, Shahar; Vallone, Daniela; Bayleyen, Yared; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C; Burgess, Harold A; Foulkes, Nicholas S; Gothilf, Yoav
2016-11-01
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.
Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior
Alon, Shahar; Vallone, Daniela; Tovin, Adi; Shainer, Inbal; Nisembaum, Laura G.; Aviram, Idit; Smadja-Storz, Sima; Fuentes, Michael; Falcón, Jack; Eisenberg, Eli; Klein, David C.; Burgess, Harold A.; Foulkes, Nicholas S.; Gothilf, Yoav
2016-01-01
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior. PMID:27870848
Reitzel, Adam M; Tarrant, Ann M; Levy, Oren
2013-07-01
The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior.
Molecular targets for small-molecule modulators of circadian clocks
He, Baokun; Chen, Zheng
2016-01-01
Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111
Nuclear receptors and metabolism: from feast to famine.
Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M
2014-05-01
The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.
Aoshima, Yoshiki; Sakakibara, Hiroyuki; Suzuki, Taka-aki; Yamazaki, Shunsuke; Shimoi, Kayoko
2014-01-01
Recent studies have suggested the possibility that nocturnal light exposure affects many biological processes in rodents, especially the circadian rhythm, an endogenous oscillation of approximately 24 h. However, there is still insufficient information about the physiological effects of nocturnal light exposure. In this study, we examined the changes in gene expression and serum levels of plasminogen activator inhibitor-1 (PAI-1), a major component of the fibrinolytic system that shows typical circadian rhythmicity, in C3H/He mice. Zeitgeber time (ZT) was assessed with reference to the onset of light period (ZT0). Exposure to fluorescent light (70 lux) for 1 h in the dark period (ZT14) caused a significant increase in hepatic Pai-1 gene expression at ZT16. Serum PAI-1 levels also tended to increase, albeit not significantly. Expression levels of the typical clock genes Bmal1, Clock, and Per1 were significantly increased at ZT21, ZT16, and ZT18, respectively. Exposure to nocturnal light significantly increased plasma adrenalin levels. The effects of nocturnal light exposure on Pai-1 expression disappeared in adrenalectomized mice, although the changes in clock genes were still apparent. In conclusion, our results suggest that nocturnal light exposure, even for 1 h, alters hepatic Pai-1 gene expression by stimulating the adrenal pathway. Adrenalin secreted from the adrenal gland may be an important signaling mediator of the change in Pai-1 expression in response to nocturnal light exposure. PMID:25077763
Cleal, Jane K; Shepherd, James N; Shearer, Jasmine L; Bruce, Kimberley D; Cagampang, Felino R
2014-08-05
The endogenous timing system within the suprachiasmatic nuclei (SCN) of the hypothalamus drives the cyclic expression of the clock molecules across the 24h day-night cycle controlling downstream molecular pathways and physiological processes. The developing fetal clock system is sensitive to the environment and physiology of the pregnant mother and as such disruption of this system could lead to altered physiology in the offspring. Characterizing the gene profiles of the endogenous molecular clock system by quantitative reverse transcription polymerase chain reaction is dependent on normalization by appropriate housekeeping genes (HKGs). However, many HKGs commonly used as internal controls, although stably expressed under control conditions, can vary significantly in their expression under certain experimental conditions. Here we analyzed the expression of 10 classic HKG across the 24h light-dark cycle in the SCN of mouse offspring exposed to normal chow or a high fat diet during early development and in postnatal life. We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and adenosine triphosphate synthase subunit to be the most stably expressed genes in the SCN regardless of diet or time within the 24h light-dark cycle, and are therefore suitable to be used as internal controls. However SCN samples collected during the light and dark periods did show differences in expression and as such the timing of collection should be considered when carrying out gene expression studies. Copyright © 2014 Elsevier B.V. All rights reserved.