Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method
NASA Astrophysics Data System (ADS)
Potenza, M.; Cataldo, A.; Bovesecchi, G.; Corasaniti, S.; Coppa, P.; Bellucci, S.
2017-07-01
The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg.m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.
Mokany, Karel; McMurtrie, Ross E; Atwell, Brian J; Keith, Heather
2003-10-01
In native stands of Eucalyptus delegatensis R. T. Baker, sapwood area (As) to foliage area (Af) ratios (As:Af) decreased as tree height increased, contradicting the common interpretation of the Pipe Model Theory as well as the generally observed trend of increasing As:Af ratios with tree height. To clarify this relationship, we estimated sapwood hydraulic conductivity theoretically based on measurements of sapwood vessel diameters and Poiseuille's law for fluid flow through pipes. Despite the observed decrease in As:Af ratios with tree height, leaf specific conductivity increased with total tree height, largely as a result of an increase in the specific conductivity of sapwood. This observation supports the proposition that the stem's ability to supply foliage with water must increase as trees grow taller, to compensate for the increased hydraulic path length. The results presented here highlight the importance of measuring sapwood hydraulic conductivity in analyses of sapwood-foliage interactions, and suggest that measurements of sapwood hydraulic conductivity may help to resolve conflicting observations of how As:Af ratios change as trees grow taller.
Sade, Nir; Gallé, Alexander; Flexas, Jaume; Lerner, Stephen; Peleg, Gadi; Yaaran, Adi; Moshelion, Menachem
2014-02-01
The regulation of plant hydraulic conductance and gas conductance involves a number of different morphological, physiological and molecular mechanisms working in harmony. At the molecular level, aquaporins play a key role in the transport of water, as well as CO₂, through cell membranes. Yet, their tissue-related function, which controls whole-plant gas exchange and water relations, is less understood. In this study, we examined the tissue-specific effects of the stress-induced tobacco Aquaporin1 (NtAQP1), which functions as both a water and CO₂ channel, on whole-plant behavior. In tobacco and tomato plants, constitutive overexpression of NtAQP1 increased net photosynthesis (A(N)), mesophyll CO₂ conductance (g(m)) and stomatal conductance (g(s)) and, under stress, increased root hydraulic conductivity (L(pr)) as well. Our results revealed that NtAQP1 that is specifically expressed in the mesophyll tissue plays an important role in increasing both A(N) and g(m). Moreover, targeting NtAQP1 expression to the cells of the vascular envelope significantly improved the plants' stress response. Surprisingly, NtAQP1 expression in the guard cells did not have a significant effect under any of the tested conditions. The tissue-specific involvement of NtAQP1 in hydraulic and gas conductance via the interaction between the vasculature and the stomata is discussed.
Jagels, Richard; Visscher, George E
2006-02-01
The dual function provided by longitudinal tracheids in conifers has led to a generally held trade-off concept that increasing wall thickness and/or volume of latewood tracheids improves mechanical support, while increasing cell diameter and/or volume of earlywood tracheids enhances conductive potential. Yet, some conifers have either uniform cell structure across the growth ring or, at most, a small amount of latewood. How do these trees accomplish the needs for increasing support and conduction with height growth? We examined Metasequoia glyptostroboides, a species that we previously demonstrated improves its mechanical properties with increasing age without a change in specific gravity or secondary wall microfibril angle. In this paper, we showed that lignin and extractive contents are not contributing factors, and through composite structure analysis, we eliminated a role for tracheid length. Using micromorphometric analysis, we demonstrated that as cell diameter increases, total primary wall decreases, secondary wall increases, and strength and conductive capacity increase with no change in specific gravity. Meta-analysis using other species of Cupressaceae, Podocarpaceae, and Araucariaceae provided strong corroborative evidence for this design strategy.
Thermal transport properties of polycrystalline Pb2FeMoO6
NASA Astrophysics Data System (ADS)
Yuan, Xueping; Xu, Mingxiang
2018-06-01
Thermoelectric properties and specific heat of polycrystalline Pb2FeMoO6 have been systematically studied. The thermal conductivity increases monotonically with increasing of temperature, and reaches the maximum value 1.50 W m‑1 K‑1 at 350 K. The relatively low thermal conductivity is mainly attributed to the strong scattering effect of phonons at Fe/Mo sites. The negative Seebeck coefficient indicates the n-type conduction of the sample. The absolute value of S increases up to 20 μV K‑1 at 350 K. Due to the inhomogeneity resulting from Fe/Mo ions disorder, no distinct λ-type specific heat peak or anomaly typical for second-order transitions are observed.
Schalk, Charles W.; Stasulis, Nicholas W.
2012-01-01
Data on groundwater-level, specific conductance (a surrogate for chloride), and temperature were collected continuously from 2007 through 2009 at four bedrock wells known to be affected by road salts in an effort to determine the effects of road salting and fractures in bedrock that intersect the well at a depth below the casing on the presence of chloride in groundwater. Dissolved-oxygen data collected periodically also were used to make inferences about the interaction of fractures and groundwater flow. Borehole geophysical tools were used to determine the depths of fractures in each well that were actively contributing flow to the well, under both static and pumped conditions; sample- and measurement-depths were selected to correspond to the depths of these active fractures. Samples of water from the wells, collected at depths corresponding to active bedrock fractures, were analyzed for chloride concentration and specific conductance; from these analyses, a linear relation between chloride concentration and specific conductance was established, and continuous and periodic measurements of specific conductance were assumed to represent chloride concentration of the well water at the depth of measurement. To varying degrees, specific conductance increased in at least two of the wells during winter and spring thaws; the shallowest well, which also was closest to the road receiving salt treatment during the winter, exhibited the largest changes in specific conductance during thaws. Recharge events during summer months, long after application of road salt had ceased for the year, also produced increases in specific conductance in some of the wells, indicating that chloride which had accumulated or sequestered in the overburden was transported to the wells throughout the year. Geophysical data and periodic profiles of water quality along the length of each well’s borehole indicated that the greatest changes in water quality were associated with active fractures; in one case, high concentration of dissolved oxygen at the bottom of the well indicated the presence of a highly transmissive fracture that was in good connection with a surficial feature (stream or atmosphere). Data indicated that fractures have a substantial influence on the transport of chlorides to the subsurface; that elevated specific conductance occurred throughout the year, not just when road salts were applied; and that chloride contamination, as indicated by elevated specific conductance, may persist for years.
Medeiros, Juliana S.; Ward, Joy K.
2013-01-01
Summary Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water trade-offs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood.We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris.Elevated [CO2] decreased vessel implosion strength, reduced conduit specific hydraulic conductance, and compromised leaf specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit specific and leaf specific hydraulic conductance in association with increased vessel implosion strength.Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that under glacial conditions changes in leaf and xylem properties could increase drought tolerance, while under future conditions greater productivity may only occur when higher water use can be accommodated. PMID:23668237
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
Johnsson, P.A.; Reddy, M.M.
1990-01-01
This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.
USDA-ARS?s Scientific Manuscript database
Site-specific crop management utilizes site-specific management units (SSMUs) to apply inputs when, where, and in the amount needed to increase food productivity, optimize resource utilization, increase profitability, and reduce detrimental environmental impacts. It is the objective of this study to...
Burgess, Stephen S O; Pittermann, Jarmila; Dawson, Todd E
2006-02-01
The hydraulic limitation hypothesis of Ryan & Yoder (1997, Bioscience 47, 235-242) suggests that water supply to leaves becomes increasingly difficult with increasing tree height. Within the bounds of this hypothesis, we conjectured that the vertical hydrostatic gradient which gravity generates on the water column in tall trees would cause a progressive increase in xylem 'safety' (increased resistance to embolism and implosion) and a concomitant decrease in xylem 'efficiency' (decreased hydraulic conductivity). We based this idea on the historically recognized concept of a safety-efficiency trade-off in xylem function, and tested it by measuring xylem conductivity and vulnerability to embolism of Sequoia sempervirens branches collected at a range of heights. Measurements of resistance of branch xylem to embolism did indeed show an increase in 'safety' with height. However, the expected decrease in xylem 'efficiency' was not observed. Instead, sapwood-specific hydraulic conductivities (Ks) of branches increased slightly, while leaf-specific hydraulic conductivities increased dramatically, with height. The latter could be largely explained by strong vertical gradients in specific leaf area. The increase in Ks with height corresponded to a decrease in xylem wall fraction (a measure of wall thickness), an increase in percentage of earlywood and slight increases in conduit diameter. These changes are probably adaptive responses to the increased transport requirements of leaves growing in the upper canopy where evaporative demand is greater. The lack of a safety-efficiency tradeoff may be explained by opposing height trends in the pit aperture and conduit diameter of tracheids and the major and semi-independent roles these play in determining xylem safety and efficiency, respectively.
Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar
2016-01-01
Background and Aims Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Methods Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. Key Results There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below −1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Conclusions Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions combined with high temperatures in the early stages of growth. PMID:27052343
Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar
2016-05-01
Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions combined with high temperatures in the early stages of growth. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.
2014-12-01
This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.
Specific heat and thermal conductivity of nanomaterials
NASA Astrophysics Data System (ADS)
Bhatt, Sandhya; Kumar, Raghuvesh; Kumar, Munish
2017-01-01
A model is proposed to study the size and shape effects on specific heat and thermal conductivity of nanomaterials. The formulation developed for specific heat is based on the basic concept of cohesive energy and melting temperature. The specific heat of Ag and Au nanoparticles is reported and the effect of size and shape has been studied. We observed that specific heat increases with the reduction of particle size having maximum shape effect for spherical nanoparticle. To provide a more critical test, we extended our model to study the thermal conductivity and used it for the study of Si, diamond, Cu, Ni, Ar, ZrO2, BaTiO3 and SrTiO3 nanomaterials. A significant reduction is found in the thermal conductivity for nanomaterials by decreasing the size. The model predictions are consistent with the available experimental and simulation results. This demonstrates the suitability of the model proposed in this paper.
Voichick, Nicholas
2008-01-01
The construction of Glen Canyon Dam, completed in 1963, resulted in substantial physical and biological changes to downstream Colorado River environments between Lake Powell and Lake Mead - an area almost entirely within Grand Canyon National Park, Ariz. In an effort to understand these changes, data have been collected to assess the condition of a number of downstream resources. In terms of measuring water quality, the collection of specific-conductance data is a cost-effective method for estimating salinity. Data-collection activities were initially undertaken by the Bureau of Reclamation's Glen Canyon Environmental Studies (1982-96); these efforts were subsequently transferred to the U.S. Geological Survey's Grand Canyon Monitoring and Research Center (1996 to the present). This report describes the specific-conductance dataset collected for the Colorado River between Glen Canyon Dam and Diamond Creek from 1988 to 2007. Data-collection and processing methods used during the study period are described, and time-series plots of the data are presented. The report also includes plots showing the relation between specific conductance and total dissolved solids. Examples of the use of specific conductance as a natural tracer of parcels of water are presented. Analysis of the data indicates that short-duration spikes and troughs in specific-conductance values lasting from hours to days are primarily the result of flooding in the Paria and Little Colorado Rivers, Colorado River tributaries below Glen Canyon Dam. Specific conductance also exhibits seasonal variations owing to changes in the position of density layers within the reservoir; these changes are driven by inflow hydrology, meteorological conditions, and background stratification. Longer term trends in Colorado River specific conductance are reflective of climatological conditions in the upper Colorado River Basin. For example, drought conditions generally result in an increase in specific conductance in Lake Powell. Therefore, the average annual specific conductance below Glen Canyon Dam is inversely related to the volume of water in Lake Powell.
Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki
2016-08-01
Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stanton, Gregory P.
1997-01-01
The Sparta and Memphis aquifers in eastern and south-central Arkansas are a major source of water for industrial, public supply, and agricultural uses. An estimated 240 million gallons per day was withdrawn from the Sparta and Memphis aquifers in 1995, an increase of about 17 million gallons per day from 1990. During the spring and early summer of 1995, the water level in the Sparta and Memphis aquifers was measured in 145 wells, the specific conductance of 101 ground-water samples collected from those aquifers was measured. Maps of areal distribution of potentiometric surface and specific conductance generated from these data reveal spatial trends in these parameters across the eastern and south-central Arkansas study area. The altitude of the potentiometric surface ranged from about 206 feet below sea level in Union County to about 307 feet above sea level in Saline County. The potentiometric surface of the Sparta and Memphis aquifers contains cones of depression descending below sea level in the central and southern portions of the study area, and a potentiometric high along the western study area boundary. Major recharge areas exhibit potentiometric highs greater than 200 feet above sea level and specific conductance values less than 200 microsiemens per centimeter, and generally are located in the outcrop/subcrop areas on the southern one-third of the western boundary and the northern portion of the study area. The regional direction of ground-water flow is from the north and west to the south and east, away from the outcrop and subcrop and northern regions, except near areas affected by intense ground-water withdrawals; such areas are manifested by large cones of depression centered in Columbia, Jefferson, and Union Counties. The cones of depression in adjoining Columbia and Union Counties are coalescing at or near sea level. The lowest water level measured was about 206 feet below sea level in Union County. Increased specific conductance values were measured in the areas of the cones of depression in Columbia and Union Counties. The cones of depression centered in Jefferson County coincides with an elongate area where ground water in the aquifer has low specific conductance. This area extends eastward from the outcrop/subcrop region of recharge. This extension of ground water with low specific conductance possibly indicates increased ground-water movement to the east-southeast from the outcrop/subcrop area induced by ground- water withdrawals in Jefferson County. Specific conductance increases markedly to the northeast and gradually to the south of this area. Long-term hydrographs of eight wells in the study areas, during the period 1970-1995, reveal water-level declines ranging from less than 0.5 foot per year in Phillips County to more than 2.0 feet per year in Union County. Water-level declines of greater than 1.5 feet per year generally are associated with the cones of depression centered in Columbia, Jefferson, and Union Counties.
Oh, Dahyun; Dang, Xiangnan; Yi, Hyunjung; Allen, Mark A; Xu, Kang; Lee, Yun Jung; Belcher, Angela M
2012-04-10
Utilization of the material-specific peptide-substrate interactions of M13 virus broadens colloidal stability window of graphene. The homogeneous distribution of graphene is maintained in weak acids and increased ionic strengths by complexing with virus. This graphene/virus conducting template is utilized in the synthesis of energy-storage materials to increase the conductivity of the composite electrode. Successful formation of the hybrid biological template is demonstrated by the mineralization of bismuth oxyfluoride as a cathode material for lithium-ion batteries, with increased loading and improved electronic conductivity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veley, Ronald J.; Moran, Michael J.
2012-01-01
The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.
Clark, Melanie L.; Davidson, Seth L.
2009-01-01
Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy Creek reflect the different basin characteristics. Relations between specific conductance and dissolved-solids concentrations were statistically significant for the Green River (p-value less than 0.001) and Muddy Creek (p-value less than 0.001); therefore, specific conductance can be used to estimate dissolved-solids concentrations. Using continuous specific conductance values to estimate dissolved solids in real-time on the World Wide Web increases the amount and improves the timeliness of data available to water managers for assessing dissolved-solids concentrations in the Colorado River Basin.
Stanley, D.L.; Boozer, T.M.; Schroder, L.J.
1998-01-01
Since the inception of the U.S. Geological Survey National Field Quality Assurance Program, over 85,000 proficiency samples have been analyzed by water-quality analysts. This includes more than 10,000 alkalinity samples, more than 15,000 pH samples, and more than 16,000 specific conductance samples, which were analyzed from 1990 through 1997, and a total of more than 43,000 proficiency samples analyzed from 1979 through 1989. The analyte values were evaluated to determine the fourth-spread, a measure of the width of the middle half of the data, and the F-pseudosigma, a robust replacement for the standard deviation, for each of the different measurement ranges. The result of the statistical evaluation showed that the vast majority of reference sample measurements made by water-quality analysts were within acceptable ranges. From 1990 to 1997, the measurement of pH had the highest level of acceptable results, 98.4 percent, followed by specific conductance with 95.2 percent acceptable results, and alkalinity with 88.6 percent acceptable results. The statistical summary of pH indicates the calculated fourth-spread values for the entire tested range is +0.06 pH units. For specific conductance, the magnitude of the fourth-spread increases as the magnitude of the specific conductance ranges increases. The average relative fourth-spread percent for all reported specific conductance values is +1.8 percent. From 1990 through 1997, the evaluation of the results for alkalinity measurement for the average fourth-spread was determined to be + 3.3 milligrams per liter as calcium carbonate.
Gerschenfeld, H. M.; Tritsch, Danièle Paupardin
1974-01-01
1. Molluscan neurones have been found to show six different types of response (three excitatory and three inhibitory) to the iontophoretic application of 5-hydroxytryptamine (5-HT). The pharmacological properties of the receptors and the ionic mechanisms associated with these responses have been analysed. 2. Four of the responses to 5-HT (named A, A′, B and C) are consequent upon an increase in membrane conductance whereas the other two (named α and β) are caused by a decrease in membrane conductance. 3. The A-response to 5-HT consists of a `fast' depolarization due to an increase mainly in Na+-conductance; the A′-response is a `slow' depolarization also associated with a Na+-conductance increase. Receptors mediating the A- and A′-depolarizations have different pharmacological properties and may exist side by side on the same neurone. 4. Both the B- and C-responses are inhibitory. The B-response is a `slow' hyperpolarization due to an increase in K+-conductance, the C-response is a fast hyperpolarization associated with an increase in Cl--conductance. 5. The α-response to 5-HT is a depolarization which becomes reduced in amplitude with cell hyperpolarization and reverses at -75 mV; it is caused by a decrease in K+-conductance. The β-response is an hyperpolarization which increases in amplitude with cell hyperpolarization and reverses at -20/-30 mV. It results from a decrease in conductance to both Na+ and K+ ions. 6. The receptors involved in the 5-HT responses associated with a conductance increase may be recognized by the action of specific antagonists: 7-methyltryptamine blocks only the A-receptors, 5-methoxygramine only the B-receptors and neostigmine only the C-receptors. Curare blocks the A- and C-receptors and bufotenine, the A-, A′- and B-receptors. No specific antagonists have yet been found for the 5-HT responses caused by a conductance decrease. 7. The significance of the multiplicity of receptors is discussed. Their functional significance at synapses is analysed in the following paper. PMID:4155767
Unethical battlefield conduct reported by soldiers serving in the Iraq war.
Wilk, Joshua E; Bliese, Paul D; Thomas, Jeffrey L; Wood, Michael D; McGurk, Dennis; Castro, Carl A; Hoge, Charles W
2013-04-01
Research involving military service members has shown a strong relationship between combat experiences and increased risk for posttraumatic stress disorder (PTSD) and other mental health problems. Comparatively little research has examined the relationship between combat experiences, PTSD, aggression, and unethical conduct on the battlefield, although news stories sometimes suggest links between unethical conduct and disorders such as PTSD. This study systematically examined whether unethical conduct is a proxy for aggression and whether specific combat experiences and PTSD are independently associated with unethical behavior. The results of this study indicate that aggression (β = 0.30) and specific combat experiences (particularly, witnessing war atrocities [β = 0.14] and fighting [β = 0.13]) are much more strongly associated with unethical conduct than is PTSD (β = 0.04).
NASA Astrophysics Data System (ADS)
Sadeghzadeh, Sadegh; Rezapour, Navid
2016-12-01
In this paper, the effect of the presence of cavities resulting from the fabrication process and the effect of common metal impurities added during the synthesis process on the thermal conductivity of single-layer graphene sheets, diodes and transistors have been investigated by using the Reverse Non Equilibrium Molecular Dynamics (RNEMD) method. The obtained results show that thermal conductivity generally diminishes by increasing the concentration of nanoparticles and increases when porosities and impurities are at the edges of sheets. Regarding a better thermal management in graphene with the addition of nanoparticles, and considering its existing porosity, a lower thermal conductivity is achieved by adding more nanoparticles. By increasing the diameter of pores from 0.5 nm to 4.4 nm in a specific single-layer graphene sheet, thermal conductivity diminishes from 67 W/mk to 1.43 W/mk; while it diminishes from 45 to 1.0 W/mk for the same structure containing both the defects and nanoparticles over the defects. In evaluating the influences of cavities and metallic nanoparticles on thermal conductivity, it was observed that changing the share of cavities or nanoparticles has a significant effect on the thermal conductivity of graphene diodes and transistors. The rectification efficiency of diodes diminished from about 100% for the defect-free diode to about 19% for the diode containing 2 nm cavities and then increased to 75% for the diode with 5 nm cavities. While, with the increase in the concentration of iron nanoparticles, the rectification efficiency increased from about 100% for the diode with no iron particles to about 255% for the diode containing 13 wt % of iron particles. Final results demonstrate that the metallic nanoparticles and also defects with specific diameters can be effectively exploited to increase or decrease the efficiency of nanodiodes and nanotransistors. This leads to engineered design of nanodiodes and nanotransistors for various applications.
Jousset, Florian; Maguy, Ange; Rohr, Stephan; Kucera, Jan P.
2016-01-01
Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5–30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium. PMID:27833567
Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion
GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO
2005-01-01
• Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful in managing cropping practices for integrated plant protection. PMID:15655107
McCulloh, Katherine A; Petitmermet, Joshua; Stefanski, Artur; Rice, Karen E; Rich, Roy L; Montgomery, Rebecca A; Reich, Peter B
2016-12-01
Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architecture of six species growing in ambient T and ambient +3.4 °C T plots in two experimentally warmed forest sites in Minnesota. These sites are at the temperate-boreal ecotone, and we measured three species from each forest type. We hypothesized that relative to boreal species, temperate species near their northern range border would increase xylem conduit diameters when grown under elevated T. We also predicted a continuum of responses among wood types, with conduit diameter increases correlating with increases in the complexity of wood structure. Finally, we predicted that increases in conduit diameter and specific hydraulic conductivity would positively affect photosynthetic rates and growth. Our results generally supported our hypotheses, and conduit diameter increased under elevated T across all species, although this pattern was driven predominantly by three species. Two of these species were temperate angiosperms, but one was a boreal conifer, contrary to predictions. We observed positive relationships between the change in specific hydraulic conductivity and both photosynthetic rate (P = 0.080) and growth (P = 0.012). Our results indicate that species differ in their ability to adjust hydraulically to increases in T. Specifically, species with more complex xylem anatomy, particularly those individuals growing near the cooler edge of their range, appeared to be better able to increase conduit diameters and specific hydraulic conductivity, which permitted increases in photosynthesis and growth. Our data support results that indicate individual's ability to physiologically adjust is related to their location within their species range, and highlight that some wood types may adjust more easily than others. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Peng, P.; Zhu, L.; Guo, Y.; Wang, J.; Fürstenberg, S.; Ju, J.; Wang, Y.; Frenzel, P.
2016-12-01
Ostracod, was used as a sensitive monitor in palaeo-environmental change research. Ostracod transfer function was developing as a quantitate indicator in palaeo-limnology research. Plenty of lakes scattered on the Tibetan Plateau supplied sediments for analyzing indexes of environment in past climate change research. This application was research on samples of sub-fossil ostracod and its habitat condition, including water sample and water parameters, to produce a database for a forward transfer function based on gradient analyses. This transfer function was used for environment reconstruction of Tibetan lakes to preview past climate changes. In our research, twelve species belonging to ten genus were documented from 114 studied samples in 34 lakes. This research illustrated a specific conductivity gradient gradually increased by L.sinensis-L.dorsotuberosa-C.xizangensis, L.dorsotuberosa-L.inopinata and L.inopinata to indicate fresh-lightly brackish, brackish, brine water condition, respectively. Gradient analysis revealed that specific conductivity was the most important variable drove the distribution of sub-fossil Ostracods. A specific conductivity transfer function using a weighted averaging partial least squares (WA-PLS) model was set up to reconstruct palaeo-specific conductivity. The model presented a good correlation of measured and estimated specific conductivity (R2=0.67), a relative low root mean squared error of prediction (RMSEP=0.47). Multi-proxies, including ostracod assemblages, ostracod-inferred lake level and specific conductivity, mean grain size, total organic carbon and total inorganic carbon of sediment from core of Tibetan Lakes, inferred the palaeo-climate change history of the research area. The environmental change probably was an adaption to the weakening activities of India monsoon since mid-Holocene inferred from the comparable climatic change records from the Tibetan Plateau and relative monsoonal areas.
Suski, Jamie G.; Salice, Christopher J.; Patino, Reynaldo
2012-01-01
Freshwater salinization is a global concern partly attributable to anthropogenic salt contamination. The authors examined the effects of increased salinity (as NaCl, 250-4,000 µS/cm, specific conductance) on two sympatric freshwater gastropods (Helisoma trivolvis and Physa pomillia). Life stage sensitivities were determined by exposing naive eggs or naive juveniles (through adulthood and reproduction). Additionally, progeny eggs from the juvenile-adult exposures were maintained at their respective parental salinities to examine transgenerational effects. Naive H. trivolvis eggs experienced delayed development at specific conductance > 250 µS/cm; reduced survivorship and reproduction were also seen in juvenile H. trivolvis at 4,000 µS/cm. Survival and growth of P. pomilia were not affected by increased salinity following egg or juvenile exposures. Interestingly, the progeny of H. trivolvis exposed to higher salinity may have gained tolerance to increased salinity whereas P. pomilia progeny may have experienced negative transgenerational effects. The present study demonstrates that freshwater snail species vary in their tolerance to salinization and also highlights the importance of multigenerational studies, as stressor impacts may not be readily apparent from shorter term exposures.
Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors.
Bissett, Mark A; Kinloch, Ian A; Dryfe, Robert A W
2015-08-12
Two-dimensional materials, such as graphene and molybdenum disulfide (MoS2), can greatly increase the performance of electrochemical energy storage devices because of the combination of high surface area and electrical conductivity. Here, we have investigated the performance of solution exfoliated MoS2 thin flexible membranes as supercapacitor electrodes in a symmetrical coin cell arrangement using an aqueous electrolyte (Na2SO4). By adding highly conductive graphene to form nanocomposite membranes, it was possible to increase the specific capacitance by reducing the resistivity of the electrode and altering the morphology of the membrane. With continued charge/discharge cycles the performance of the membranes was found to increase significantly (up to 800%), because of partial re-exfoliation of the layered material with continued ion intercalation, as well as increasing the specific capacitance through intercalation pseudocapacitance. These results demonstrate a simple and scalable application of layered 2D materials toward electrochemical energy storage.
Do xylem fibers affect vessel cavitation resistance?
Jacobsen, Anna L; Ewers, Frank W; Pratt, R Brandon; Paddock, William A; Davis, Stephen D
2005-09-01
Possible mechanical and hydraulic costs to increased cavitation resistance were examined among six co-occurring species of chaparral shrubs in southern California. We measured cavitation resistance (xylem pressure at 50% loss of hydraulic conductivity), seasonal low pressure potential (P(min)), xylem conductive efficiency (specific conductivity), mechanical strength of stems (modulus of elasticity and modulus of rupture), and xylem density. At the cellular level, we measured vessel and fiber wall thickness and lumen diameter, transverse fiber wall and total lumen area, and estimated vessel implosion resistance using (t/b)(h)(2), where t is the thickness of adjoining vessel walls and b is the vessel lumen diameter. Increased cavitation resistance was correlated with increased mechanical strength (r(2) = 0.74 and 0.76 for modulus of elasticity and modulus of rupture, respectively), xylem density (r(2) = 0.88), and P(min) (r(2) = 0.96). In contrast, cavitation resistance and P(min) were not correlated with decreased specific conductivity, suggesting no tradeoff between these traits. At the cellular level, increased cavitation resistance was correlated with increased (t/b)(h)(2) (r(2) = 0.95), increased transverse fiber wall area (r(2) = 0.89), and decreased fiber lumen area (r(2) = 0.76). To our knowledge, the correlation between cavitation resistance and fiber wall area has not been shown previously and suggests a mechanical role for fibers in cavitation resistance. Fiber efficacy in prevention of vessel implosion, defined as inward bending or collapse of vessels, is discussed.
Thermal Properties of Consolidated Granular Salt as a Backfill Material
NASA Astrophysics Data System (ADS)
Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.
2018-03-01
Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity compared to hydrostatically consolidated salt.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender
2016-01-01
This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.
Changes in membrane conductances and areas associated with bicarbonate secretion in turtle bladder.
Rich, A; Dixon, T E; Clausen, C
1990-02-01
Transepithelial impedance-analysis studies were performed in turtle bladder epithelium in order to measure changes in the different epithelial membranes resulting from stimulation of electrogenic bicarbonate secretion. Changes in membrane conductance relate to changes in ionic permeability, whereas changes in membrane capacitance relate to changes in membrane area, since most biological membranes exhibit a specific capacitance of approximately 1 muF/cm2. The results of this investigation are summarized as follows: (i) cAMP and carbachol, agents which have been shown previously to stimulate electrogenic bicarbonate secretion, result in increases in apical-membrane conductance and capacitance; (ii) these changes occur concomitantly with the observed change in transport (measured using the short-circuit-current technique), thereby suggesting that bicarbonate secretion may be regulated in part by changes in the chloride conductance of the apical membrane; (iii) the increase in conductance does not reflect an increase in the membrane's specific conductance, thereby indicating that it results from the addition of membrane possessing similar ionic permeability as the existing apical membrane; (iv) the magnitude of the changes in capacitance indicate that a minor cell population (beta-type carbonic-anhydrase-rich cells) increase their apical-membrane area by several-fold; (v) a lack of transport-associated changes in the basolateral-membrane parameters suggest that transport is not regulated by alterations in basolateral-membrane ionic conductance or area; (vi) a lack of colchicine sensitivity, coupled with the magnitude of the changes in apical-membrane capacitance, indicate that the membrane remodeling processes are different from those involved in the regulation of proton secretion in a different cell population (alpha-type carbonic-anhydrase-rich cells).
Wicklein, S.M.; Gain, W.S.
1999-01-01
The St. Sebastian River lies in the southern part of the Indian River basin on the east coast of Florida. Increases in freshwater discharge due to urbanization and changes in land use have reduced salinity in the St. Sebastian River and, consequently, salinity in the Indian River, affecting the commercial fishing industry. Wind, water temperature, tidal flux, freshwater discharge, and downstream salinity all affect salinity in the St. Sebastian River estuary, but freshwater discharge is the only one of these hydrologic factors which might be affected by water-management practices. A probability analysis of salinity conditions in the St. Sebastian River estuary, taking into account the effects of freshwater discharge over a period from May 1992 to March 1996, was used to determine the likelihood (probability) that salinities, as represented by daily mean specific- conductance values, will fall below a given threshold. The effects of freshwater discharge on salinities were evaluated with a simple volumetric model fitted to time series of measured specific conductance, by using nonlinear optimization techniques. Specific-conductance values for two depths at monitored sites represent stratified flow which results from differences in salt concentration between freshwater and saltwater. Layering of freshwater and saltwater is assumed, and the model is applied independently to each layer with the assumption that the water within the layer is well mixed. The model of specific conductance as a function of discharge (a salinity response model) was combined with a model of residual variation to produce a total probability model. Flow distributions and model residuals were integrated to produce a salinity distribution and determine differences in salinity probabilities as a result of changes in water-management practices. Two possible management alternatives were analyzed: stormwater detention (reducing the peak rate of discharge but not reducing the overall flow volume) and stormwater retention (reducing peak discharges without later release). Detention of freshwater discharges increased the probability of specific- conductance values falling below a given limit (20,000 microsiemens per centimeter) for all sites but one. The retention of freshwater input to the system decreased the likelihood of falling below a selected limit of specific conductance at all sites. For limits of specific conductance (1,000 microsiemens per centimeter or 20,000 microsiemens per centimeter, depending on the site), the predicted days of occurrence below a limit decreased ranging from 17 to 68 percent of the predicted days of occurrence for unregulated flow. The primary finding to be drawn from the discharge-salinity analysis is that an empirical-response model alone does not provide adequate information to assess the response of the system to changes in flow regime. Whether a given level of discharge can produce a given response on a given day is not as important as the probability of that response on a given day and over a period of many days. A deterministic model of the St. Sebastian River estuary based only on discharge would predict that retention of discharge peaks should increase the average salinity conditions in the St. Sebastian River estuary. The probabilistic model produces a very different response indicating that salinity can decrease by a power of three as discharges increase, and that random factors can predominate and control salinity until discharges increase sufficiently to flush the entire system of saltwater.
NASA Astrophysics Data System (ADS)
Suntako, R.
2018-01-01
Zinc oxide (ZnO) is widely used in rubber industry as a cure activator for rubber vulcanization. In this work, comparison of cure characteristic, mechanical properties, thermal conductivity and volume swell testing in oil no.1 and oil no.3 between natural rubber (NR) filled synthesized ZnO nanoparticles (sZnO) by precipitation method and NR filled conventional ZnO (cZnO). The particle size of sZnO is 41.50 nm and specific area of 27.92 m2/g, the particle size of cZnO is 312.92 nm and specific surface area of 1.35 m2/g. It has been found that NR filled sZnO not only improves rubber mechanical properties, volume swell testing but also improves thermal conductivity and better than NR filled cZnO. Thermal conductivity of NR filled sZnO increases by 10.34%, 12.90% and 20.00%, respectively when compared with NR filled cZnO in same loading content (various concentrations of ZnO at 5, 8 and 10 parts per hundred parts of rubber). This is due to small particle size and large specific surface area of sZnO which lead to an increase in crosslinking in rubber chain and enhance heat transfer performance.
Holste, Ellen K; Jerke, Megan J; Matzner, Steven L
2006-05-01
Phaseolus vulgaris grown under various environmental conditions was used to assess long-term acclimatization of xylem structural characteristics and hydraulic properties. Conduit diameter tended to be reduced and 'wood' density (of 'woody' stems) increased under low moisture ('dry'), increased soil porosity ('porous soil') and low phosphorus ('low P') treatments. Dry and low P had the largest percentage of small vessels. Dry, low light ('shade') and porous soil treatments decreased P50 (50% loss in conductivity) by 0.15-0.25 MPa (greater cavitation resistance) compared with 'controls'. By contrast, low P increased P50 by 0.30 MPa (less cavitation resistance) compared with porous soil (the control for low P). Changes in cavitation resistance were independent of conduit diameter. By contrast, changes in cavitation resistance were correlated with wood density for the control, dry and porous soil treatments, but did not appear to be a function of wood density for the shade and low P treatments. In a separate experiment comparing control and porous soil plants, stem hydraulic conductivity (kh), specific conductivity (ks), leaf specific conductivity (LSC), total pot water loss, plant biomass and leaf area were all greater for control plants compared to porous soil plants. Porous soil plants, however, demonstrated higher midday stomatal conductance to water vapour (gs), apparently because they experienced proportionally less midday xylem cavitation.
Encoding Specificity in the Recall of Pictures and Words in Children and Adults.
ERIC Educational Resources Information Center
Ackerman, Brian P.
1981-01-01
Two experiments, using pictorial or verbal stimuli, were designed to test encoding among young children and adults. In both experiments, results indicated progressively smaller encoding specificity effects with increasing age. Comparisons of recall patterns were conducted to ensure that encoding differences accounted for results. (Author/DB)
The role of anisotropic thermal conduction in a collisionless magnetized hot accretion flow
NASA Astrophysics Data System (ADS)
Ghasemnezhad, Maryam
2018-06-01
We study the importance and the effects of anisotropic thermal conduction in a collisionless magnetized advection dominated accretion flow in the presence of discontinuity of mass, angular momentum and energy between inflow and outflow. In this paper, we have considered that the thermal conduction is a heating mechanism like viscosity and leads to an increase in the temperature of the gas. A set of self similar solutions are used for steady state and axisymmetric structure of such hot accretion disc to solve the MHD equations in our model. Based on these solutions, we have found that increasing the level of two parts of anisotropic thermal conduction (parallel & transverse) results in increasing the mass accretion rate or radial velocity but decreasing the rotational velocity. Also both radial and rotational velocities are sub-Keplerian. Also we have shown that the anisotropic thermal conduction can be effective in the parameter space of specific energy of outflow, toroidal and vertical components of magnetic field according to a physical constraint tinfall ≥ t⊥, conduction.
Several anthropogenic activities cause excess total dissolved solids (TDS) content and its correlate, specific conductivity, in surface waters due to increases in the major geochemical ions (e.g., Na, Ca, Cl, SO4). However, the relative concentrations of major ions varies with t...
Summary of Aquifer Test Data for Arkansas - 1940-2006
Pugh, Aaron L.
2008-01-01
As demands on Arkansas's ground water continue to increase, decision-makers need all available information to ensure the sustainability of this important natural resource. From 1940 through 2006, the U.S. Geological Survey has conducted over 300 aquifer tests in Arkansas. Much of these data never have been published. This report presents the results from 206 of these aquifer tests from 21 different hydrogeologic units spread across 51 Arkansas counties. Ten of the hydrogeologic units are within the Atlantic Plain of Arkansas and consist mostly of unconsolidated and semi-consolidated deposits. The remaining 11 units are within the Interior Highlands consisting mainly of consolidated rock. Descriptive statistics are reported for each hydrologic unit with two or more tests, including the mean, minimum, median, maximum and standard deviation values for specific capacity, transmissivity, hydraulic conductivity, and storage coefficient. Hydraulic conductivity values for the major water-bearing hydrogeologic units are estimated because few conductivity values are recorded in the original records. Nearly all estimated hydraulic conductivity values agree with published hydraulic conductivity values based on the hydrogeologic unit material types. Similarly, because few specific capacity values were available in the original aquifer test records, specific capacity values are estimated for individual wells.
Crum, Kathleen I; Waschbusch, Daniel A; Bagner, Daniel M; Coxe, Stefany
2015-12-01
The current study investigated whether and how callous-unemotional traits (CU) moderated the association between specific parenting practices and child conduct problems (CP) with a special consideration of informant patterns. Associations between CU, ODD and CD symptom severity, and the parenting practices of deficient monitoring, positive involvement, and negative/ineffective discipline were examined across parent and teacher reports on 851 elementary-school students. Relative to children with low CU, in children with high CU: (1) positive parenting was associated with lower CD, but increased ODD; (2) negative/ineffective discipline was associated with increased ODD; (3) deficient monitoring was associated with increased CD. Results were not robust across informants. These findings suggest that in the context of CU, the associations between parenting and CP differ based on parenting characteristics, CP dimensions, and informant, and that families may benefit from treatment targeting specific parenting practices based on CP symptom profiles.
Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri
Berkas, Wayne R.
1982-01-01
A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.
Jean-Christophe Domec; Barbara Lachenbruch; Michele L. Pruyn; Rachel Spicer
2012-01-01
Introduction: Knowledge of vertical variation in hydraulic parameters would improve our understanding of individual trunk functioning and likely have important implications for modeling water movement to the leaves. Specifically, understanding how foliage area (Al), sapwood area (As), and hydraulic specific...
Potgieter, Danielle; Simmers, Dale; Ryan, Lisa; Biccard, Bruce M; Lurati-Buse, Giovanna A; Cardinale, Daniela M; Chong, Carol P W; Cnotliwy, Miloslaw; Farzi, Sylvia I; Jankovic, Radmilo J; Lim, Wen Kwang; Mahla, Elisabeth; Manikandan, Ramaswamy; Oscarsson, Anna; Phy, Michael P; Rajagopalan, Sriram; Van Gaal, William J; Waliszek, Marek; Rodseth, Reitze N
2015-08-01
N-terminal fragment B-type natriuretic peptide (NT-proBNP) prognostic utility is commonly determined post hoc by identifying a single optimal discrimination threshold tailored to the individual study population. The authors aimed to determine how using these study-specific post hoc thresholds impacts meta-analysis results. The authors conducted a systematic review of studies reporting the ability of preoperative NT-proBNP measurements to predict the composite outcome of all-cause mortality and nonfatal myocardial infarction at 30 days after noncardiac surgery. Individual patient-level data NT-proBNP thresholds were determined using two different methodologies. First, a single combined NT-proBNP threshold was determined for the entire cohort of patients, and a meta-analysis conducted using this single threshold. Second, study-specific thresholds were determined for each individual study, with meta-analysis being conducted using these study-specific thresholds. The authors obtained individual patient data from 14 studies (n = 2,196). Using a single NT-proBNP cohort threshold, the odds ratio (OR) associated with an increased NT-proBNP measurement was 3.43 (95% CI, 2.08 to 5.64). Using individual study-specific thresholds, the OR associated with an increased NT-proBNP measurement was 6.45 (95% CI, 3.98 to 10.46). In smaller studies (<100 patients) a single cohort threshold was associated with an OR of 5.4 (95% CI, 2.27 to 12.84) as compared with an OR of 14.38 (95% CI, 6.08 to 34.01) for study-specific thresholds. Post hoc identification of study-specific prognostic biomarker thresholds artificially maximizes biomarker predictive power, resulting in an amplification or overestimation during meta-analysis of these results. This effect is accentuated in small studies.
Key Tasks of Science in Improving Effectiveness of Hard Coal Production in Poland
NASA Astrophysics Data System (ADS)
Dubiński, Józef; Prusek, Stanisław; Turek, Marian
2017-09-01
The article presents an array of specific issues regarding the employed technology and operational efficiency of mining activities, which could and should become the subject of conducted scientific research. Given the circumstances of strong market competition and increasing requirements concerning environmental conditions, both in terms of conducted mining activities and produced coal quality parameters, it is imperative to develop and implement innovative solutions regarding the employed production technology, the safety of work conducted under the conditions of increasing natural hazards, as well as the mining enterprise management systems that enable its effective functioning. The article content pertains to the last group of issues in the most detailed way, particularly in terms of the possibility for rational conducted operation cost reduction.
NASA Astrophysics Data System (ADS)
Shi, HaoTian Harvey; Naguib, Hani E.
2016-04-01
Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.
Impact of Exposure to Pressure of 50 MPa on the Specific Surface Area of Clay
NASA Astrophysics Data System (ADS)
Koszela-Marek, Ewa
2017-12-01
The paper presents results of laboratory tests conducted to determine the impact of pressure of 50 MPa on specific surface area of clay. These tests were carried out in an original, high-pressure test stand. The specific surface area of clay extracted directly from an open pit mine was compared with the specific surface area of the same clay subjected to the pressure of 50 MPa in a high-pressure chamber. The study found that the specific surface area of the clay subjected to the pressure of 50 MPa increased distinctly by over 35 %. The increase in specific surface can be a result of changes in the microstructure of clay particles and microstructural alteration in the soil skeleton, caused by the pressure.
NASA Astrophysics Data System (ADS)
Wei, Yanni; Luo, Yongguang; Qu, Hongtao; Zou, Juntao; Liang, Shuhua
2017-12-01
In this paper, microstructure evolution and failure analysis of the aluminum-copper interface of cathode conductive heads during their use were studied. The interface morphologies, compositions, conductivity and mechanical properties were investigated and analyzed. Obvious corrosion was found on the surface of the contact interface, which was more prevalent on an Al matrix. The crack increased sharply in the local metallurgical bonding areas on the interface, with the compound volume having no significant change. The phase transformation occurred on the interface during use, which was investigated using the elemental composition and x-ray diffraction pattern. The microhardness near the interface increased accordingly. An obvious electrical conductivity decrease appeared on the Al/Cu interface of the cathode conductive head after use over a specific time interval. Therefore, the deterioration of the microstructures and corrosion are the primary factors that affect the electrical conductivity and effective bonding, which will lead to eventual failure.
DOT National Transportation Integrated Search
2008-09-01
In recent years, several research projects have been conducted to study the feasibility of increasing the allowable : compressive stress in concrete at prestress transfer, currently defined as 0.60f'ci in the AASHTO LRFD Bridge : Design Specification...
Uhlig, Annemarie; Strauss, Arne; Seif Amir Hosseini, Ali; Lotz, Joachim; Trojan, Lutz; Schmid, Marianne; Uhlig, Johannes
2017-09-06
The incidence of urothelial carcinoma of the bladder (UCB) is lower in women; however, women tend to present with more advanced disease. To date, there is no quantitative synthesis of studies reporting gender-specific outcomes in non-muscle-invasive UCB. To conduct a meta-analysis evaluating gender-specific differences in recurrence of non-muscle-invasive urinary bladder cancer (NMIBC). An unrestricted systematic literature search of the MEDLINE, EMBASE, and Cochrane libraries was conducted. Studies evaluating the impact of gender on disease recurrence after local treatment of NMIBC using multivariable Cox proportional hazard models were included. Random effect meta-analysis, subgroup analyses, meta-influence, and cumulative meta-analyses were conducted. Publication bias was assessed via a funnel plot and Eggeŕs test. Of 609 studies screened, 27 comprising 23 754 patients were included. Random effect meta-analyses indicated women at increased risk for UCB recurrence compared with men (hazard ratio [HR]=1.11, 95% confidence interval [CI]: 1.01-1.23, p=0.03). Subgroup analyses yielded estimates between HR=0.99 and HR=1.68. Gender-specific differences in UCB recurrence were most pronounced in studies administering exclusively bacillus Calmette-Guerin (BCG; HR=1.64, 95% CI: 1.13-2.39, p=0.01), especially in a long-term treatment regimen (HR=1.68, 95% CI: 1.32-2.15, p<0.001). Sensitivity analyses confirmed female patients at increased risk for UCB recurrence. Women are at increased risk for disease recurrence after local treatment of NMIBC compared with male patients. Reduced effectiveness of BCG treatment might underlie this observation. Gender-specific differences were evident across various subgroups and proved robust upon sensitivity analyses. In this report, we combined several studies on gender-specific differences in relapse of superficial bladder cancer. Women were more likely to experience cancer relapse than men. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Determination of specific gravity of municipal solid waste.
Yesiller, Nazli; Hanson, James L; Cox, Jason T; Noce, Danielle E
2014-05-01
This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100-350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sugiyama, Atsushi; Takahara, Akira; Yatomi, Yutaka; Satoh, Yoshioki; Nakamura, Yuji; Hashimoto, Keitaro
2003-06-01
Given the limited information, physiological roles of Rho-kinase in the cardiac conduction system and ventricular repolarization process were assessed in comparison with those in the coronary vascular tone. A specific Rho-kinase inhibitor Y-27632 was administered to the nutrient coronary artery of the canine isolated, blood-perfused atrioventricular node preparation under the monitoring of the ventricular monophasic action potentials. Administration of Y-27632 moderately suppressed the atrioventricular nodal conduction, slightly but significantly accelerated the repolarization process, and potently increased the coronary blood flow, whereas it hardly affected the intraventricular conduction. The estimated concentrations of Y-27632 causing the currently observed effects were enough to inhibit Rho-kinase. These results suggest that constitutional Rho-kinase functions to moderately facilitate the atrioventricular nodal conduction, slightly delay ventricular repolarization process, and significantly increase the coronary vascular tone.
Kelleher, Alyson Dare; Moorer, Amanda; Makic, MaryBeth Flynn
2012-01-01
We conducted a quality improvement project in order to evaluate the effect of nurse-to-nurse bedside "rounding" as a strategy to decrease hospital-acquired pressure ulcers (HAPU) in a surgical intensive care unit. We instituted weekly peer-to-peer bedside skin rounds in a 17-bed surgical intensive care unit. Two nurses were identified as skin champions and trained by the hospital's certified WOC nurse to conduct skin rounds. The skin champion nurses conducted weekly peer-to-peer rounds that included discussions about key elements of our patients' skin status including current Braden Scale for Pressure Sore Risk score, and implementation of specific interventions related to subscale risk assessment. If a pressure ulcer was present, the current action plan was reevaluated for effectiveness. Quarterly HAPU prevalence studies were conducted from January 2008 to December 2010. Nineteen patients experienced a HAPU: 17 were located on the coccyx and 2 on the heel. Ten ulcers were classified as stage II, 3 PU were stage IV, 5 were deemed unstageable, and 1 was classified as a deep tissue injury. The frequency of preventive interventions rose during our quality improvement project. Specifically, the use of prevention surfaces increased 92%, repositioning increased 30%, nutrition interventions increased 77%, and moisture management increased 100%. Prior to focused nursing rounds, the highest HAPU prevalence rate was 27%. After implementing focused nursing rounds, HAPU rates trended down and were 0% for 3 consecutive quarters.
Below- and above-ground controls on tree water use in lowland tropical forests
NASA Astrophysics Data System (ADS)
Meinzer, F. C.; Woodruff, D.; McCulloh, K.; Domec, J.
2012-12-01
Even in moist tropical forests, fluctuations in soil water availability and atmospheric evaporative demand can constrain tree water use. Our research in three lowland tropical forest sites in Panama over the past two decades has identified a series of tree biophysical and functional traits related to daily and seasonal patterns of uptake, transport and loss of water. Studies combining measurements of sap flow and natural abundance of hydrogen isotopes in soil and xylem water during the dry season show considerable variation in depth of soil water uptake among co-occurring species. Trees able to exploit progressively deeper sources of soil water during the dry season, as indicated by increasingly negative xylem water hydrogen isotope ratios, were also able to maintain constant or even increased rates of water use. Injections of a stable isotope tracer (deuterated water) into tree trunks revealed a considerable range of water transit and residence times among co-occurring, similarly-sized trees. Components of tree hydraulic architecture were also strong determinants of patterns of water use. Sapwood hydraulic capacitance, the amount of water released per unit change in tissue water potential, was a strong predictor of several tree water use and water relations traits, including sap velocity, water residence time, daily maximum branch xylem tension, and the time of day at which stomata began to increasingly restrict transpiration. Among early and late successional species, hydraulic traits such as trunk-to-branch tapering of xylem vessels, branch sap flux, branch sapwood specific conductivity and whole-tree leaf area-specific hydraulic conductance scaled uniformly with branch wood density. Consistent with differences in trunk-to-branch tapering of vessels between early and late successional species, the ratio of branch to trunk sap flux was substantially greater in early successional species. Among species, stomatal conductance and transpiration per unit leaf area scaled uniformly with branch leaf-specific conductivity and with the branch leaf area to sapwood area ratio; a tree architecture-based proxy for leaf-specific conductivity. At the canopy-atmosphere interface, a combination of high stomatal conductance and relatively large leaf size enhanced the role of the boundary layer over stomata in controlling transpiration (increased decoupling coefficient; omega). Uniform scaling of tree water use characteristics with simple biophysical, hydraulic and architectural traits across species may facilitate predictions of changes in tropical forest water use with shifts in species composition associated with climate change and changing land-use.
Cary, L.E.
1989-01-01
Selected water-quality data from two streamflow-gaging stations on the Powder River, Montana and Wyoming, were statistically analyzed for trends using the seasonal Kendall test. Data for water years 1952-63 and 1975-85 from the Powder River near Locate, Montana, and water years 1967-68 and 1976-85 from the Powder River at Sussex, Wyoming, were analyzed. Data for the earlier period near Locate were discharge-weighted monthly mean values, whereas data for the late period near Locate and at Sussex were from periodic samples. For data from water years 1952-63 near Locate, increasing trends were detected in sodium and sodium-adsorption ratio; no trends were detected in specific conductance, hardness, non-carbonate hardness, alkalinity, dissolved solids, or sulfate. For data from water years 1975-85 near Locate, increasing trends were detected in specific conductance, sodium, sodium-adsorption ratio, and chloride; no trends were detected in hardness, noncarbonate hardness, alkalinity, dissolved solids, calcium, magnesium, potassium, or sulfate. At Sussex (water years 1967-68 and 1976-85), increasing trends were detected in sodium, sodium-adsorption ratio, and chloride, and a decreasing trend was detected in sulfate. No trends were detected in specific conductance, alkalinity, or dissolved solids. When the 1967-68 data were deleted and the analysis repeated for the 1976-85 data, only sodium-adsorption ratio displayed a significant (increasing) trend. Because the study was exploratory, causes and effects were not considered. The results might have been affected by sample size, number of seasons, heterogeneity, significance level, serial correlation, and data adjustment for changes in discharge. (USGS)
Bussey, K.W.; Walter, D.A.
1996-01-01
Spatial and temporal distributions of specific conductance, boron, and phosphorus were determined in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts. The source of contamination is secondarily treated sewage that has been discharged onto rapid- infiltration sand beds at the Massachusetts Military Reservation since 1936. Contaminated ground water containing as much as 2 milligrams per liter of dissolved phosphorus is discharging into Ashumet Pond, and there is concern that the continued discharge of phosphorus into the pond will accelerate eutrophication of the pond. Water-quality data collected from observation wells and multilevel samplers from June through July 1995 were used to delineate the spatial distributions of specific conductance, boron, and phosphorus. Temporal distributions were determined using sample-interval-weighted average concen- trations calculated from data collected in 1993, 1994, and 1995. Specific conductances were greater than 400 microsiemens per centimeter at 25C as far as 1,200 feet downgradient from the infiltration beds. Boron concentrations were greater than 400 micrograms per liter as far as 1,800 feet down- gradient from the beds and phosphorus concen- trations were greater than 3.0 milligrams per liter as far as 1,200 feet from the beds. Variability in distributions of specific conductance and boron concentrations is attributed to the history and distribution of sewage disposal onto the infiltration beds. The distribution of phosphorus concentrations also is related to the history and distribution of sewage disposal onto the beds but additional variability is caused by chemical interactions with the aquifer materials. Temporal changes in specific conductance and boron from 1993 to 1995 were negligible, except in the lower part of the plume (below an altitude of about 5 feet above sea level), where changes in weighted-average specific conductance were greater than 100 microsiemens per centimeter at 25C. Temporal changes in phosphorus generally were small except in the lower part of the plume, where weighted-average phosphorus concentrations decreased more than 1.3 milligrams per liter from 1993 to 1994. This decrease was accompanied by an increase in specific conductance. High concen- trations of phosphorus associated with low and moderate specific conductances possibly are the result of rapid phosphorus desorption in response to an influx of uncontaminated ground water. As a result of the cessation of sewage disposal in December 1995, clean, oxygenated water moving into contaminated parts of the aquifer may cause rapid desorption of sorbed phosphorus and temporarily result in high dissolved phosphorus concentrations in the aquifer.
ERIC Educational Resources Information Center
Thornton, Amanda; McKissick, Bethany R.; Spooner, Fred; Lo, Ya-yu; Anderson, Adrienne L.
2015-01-01
Investigating the effectiveness of inclusive practices in science instruction and determining how to best support high school students with specific learning disabilities (SLD) in the general education classroom is a topic of increasing research attention in the field. In this study, the researchers conducted a single-subject multiple probe across…
Effect of Temperature and Nutrient Manipulations on eelgrass ...
Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur
Microwave-induced increase of water and conductivity in submaxillary salivary gland of rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikolajczyk, H.
Hypersalivation is an important mechanism for heat dissipation by animals without sweat glands. The water content and conductivity (at 20 kHz) in submaxillary salivary glands (SSG) and in other tissues were investigated in adult male rats exposed to microwaves (2880 MHz, 1.5 microsecond pulses at 1000 Hz) or to conventional heat at 40 degrees C. Eighty rats in one series were exposed, one at a time, for 30 min to microwaves producing a specific absorption rate (SAR) of 4.2, 6.3, 6.8, 8.4, 10.8 or 12.6 W/kg. Fifty rats were sham-exposed under similar environmental conditions. In the second series, ten ratsmore » were sham-exposed, 33 rats were exposed one at time, for 15, 30 or 60 min to microwaves at a SAR of 9.5 W/kg, and 32 rats were exposed for similar periods to conventional heat at 40 degrees C. In rats of the first series colonic temperatures were elevated significantly at a SAR of 4.2 W/kg, while SSG water content and conductivity increased significantly at SAR values of 6.3 W/kg and higher. In the second series of experiments increases in colonic temperature and SSG water content were greater after 15 and 30 min of microwave exposure than after exposure to heat. Also, SSG conductivity was significantly depressed by heat and significantly increased by microwaves after exposure for 15 or 30 min. The results support the hypothesis that water content and conductivity of SSG of rats can be used as a sensitive specific test of a microwave induced thermal response.« less
Influence of particle velocity on the conductivity of dusty plasma
NASA Astrophysics Data System (ADS)
Xu, C. M.; Chen, Y. Y.; Yu, R. J.; Zhang, Y. Y.
2018-06-01
Conductivity is a popular branch of dusty plasma research. In this paper, on the basis of considering the influence of charged particles' (electrons and ions) flow velocity, the conductivity of dusty plasma is derived and studied. Firstly, the charging currents are deduced on considering the influence of flow velocity, and the theoretical results manifest that it increases with the increase of flow velocity. Secondly, both the real and imaginary parts of the conductivity are derived, based on which, the dependence of conductivity on the flow velocity is discussed. In further, it is found that both the real and imaginary parts have a turning point. Finally, a ratio defined as charged particles' flow velocity to thermal velocity is proposed to analyze the dependence of the conductivity on the velocities. The involved results reveal that both the real and imaginary parts of the conductivity have a turning point in their dependence on the ratio, but the specific ratio value is different.
Landmeyer, J.E.; Belval, D.L.
1996-01-01
Withdrawal of water from the Upper Floridan aquifer south of Port Royal Sound in Beaufort and Jasper Counties, South Carolina, has lowered water levels and reversed the hydraulic gradient beneath Hilton Head Island, South Carolina. Ground water that had previously discharged at the Sound is now being deflected southwest, toward withdrawals located near the city of Savannah, Georgia, and the island of Hilton Head. The reversal of this hydraulic gradient and the decline of water levels have caused saltwater in the Upper Floridan aquifer north of Port Royal Sound to begin moving southwest, toward water-supply wells for the town of Hilton Head and toward industries pumping ground water near Savannah. Analytical results from ground-water samples collected from wells in the Upper Floridan aquifer beneath and adjacent to Port Royal Sound show two plumes in the aquifer with chloride concentrations above the drinking- water standard. One plume of high chloride concentration extends slightly south of the theoretical predevelopment location of the steady- state freshwater-saltwater interface as indicated by numerical modeling. The other plume is present beneath the town of Port Royal, where the upper confining unit above the Upper Floridan aquifer is thin or absent. In these areas, the decline in water levels caused by ground-water withdrawals may have made it possible for water from tidal creeks to enter the Upper Floridan aquifer. Many wells completed in the upper permeable zone of the Upper Floridan aquifer show a distinct specific- conductance profile. One non-producing, monitoring well on Hilton Head Island (BFT-1810) was selected to depict a worst-case scenario to examine the short- and long-term water-chemistry and chloride fluctuations in the aquifer. Specific conductance was monitored at depths of 170, 190, and 200 feet below the top of the well casing. The specific conductance measured in 1987 ranged from approximately 450 microsiemens per centimeter near the top of the Upper Floridan aquifer to 1,500 microsiemens per centimeter near the lower, less permeable zone. Short-term fluctuations in conductance were measured at each probe and were found to be related to water-level fluctuations in the well caused by tidal cycles. The conductance varied regularly up to 100 microsiemens per centimeter, with an increasing time lag between high and low tides and low and high specific conductance for progressively shallower depths. Well BFT-1810 was monitored for specific conductance and water levels from October 1987 through September 1993. Specific conductance at the 170-foot probe showed little long-term change, while the 190- and the 200-foot probes showed long-term increases to approximately 4,000 and 10,000 microsiemens per centimeter, respectively. This well is located closest to one of the two plumes of saltwater delineated in the Upper Floridan aquifer, and the long-term chloride increases are a result of the movement of saltwater in the Upper Floridan aquifer toward Hilton Head Island under the influence of regional ground-water withdrawals.
Water-quality variations in Antelope Creek and Deadmans Run, Lincoln, Nebraska
Pettijohn, R.A.; Engberg, R.A.
1985-01-01
Eleven sets of samples from five sites on Antelope Creek and Dead Man 's Run in Lincoln, Nebraska, were collected from December 1982 through June 1983 to study water-quality variations. Specific-conductance values generally were similar for Antelope Creek at 52nd Street and 27th Street, but during a low-flow survey of December 1 they increased from 974 to 8,700 microsiemens per centimeter at 25 C from 27th Street to Court Street. Seepage of saline water from underlying bedrock to the stream occurs in this reach. Specific-conductance values were less variable for Dead Man 's Run, increasing an average of only 47 percent from 66th Street to U.S. Highway 6. Specific-conductance values were less at high flows in Antelope Creek, except in samples collected on January 6, 1983, which contained runoff from salted streets. Sodium and chloride concentrations in these samples were from 5 to 10 times greater than those measured in any other samples. Stray-current corrosion occurs when current flows between dissimilar metals. Zinc-coated wire of channel-stabilization structures (gabions) may be an anode and material within the stream banks may be a cathode. Dissolution of the zinc coating by this type of corrosion may be a cause for gabion deterioration in both streams. (USGS)
Wu, Johnny; Witkiewitz, Katie; McMahon, Robert J; Dodge, Kenneth A
2010-10-01
Conduct problems, substance use, and risky sexual behavior have been shown to coexist among adolescents, which may lead to significant health problems. The current study was designed to examine relations among these problem behaviors in a community sample of children at high risk for conduct disorder. A latent growth model of childhood conduct problems showed a decreasing trend from grades K to 5. During adolescence, four concurrent conduct problem and substance use trajectory classes were identified (high conduct problems and high substance use, increasing conduct problems and increasing substance use, minimal conduct problems and increasing substance use, and minimal conduct problems and minimal substance use) using a parallel process growth mixture model. Across all substances (tobacco, binge drinking, and marijuana use), higher levels of childhood conduct problems during kindergarten predicted a greater probability of classification into more problematic adolescent trajectory classes relative to less problematic classes. For tobacco and binge drinking models, increases in childhood conduct problems over time also predicted a greater probability of classification into more problematic classes. For all models, individuals classified into more problematic classes showed higher proportions of early sexual intercourse, infrequent condom use, receiving money for sexual services, and ever contracting an STD. Specifically, tobacco use and binge drinking during early adolescence predicted higher levels of sexual risk taking into late adolescence. Results highlight the importance of studying the conjoint relations among conduct problems, substance use, and risky sexual behavior in a unified model. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Seasonal thermoregulatory responses in mammals.
Lovegrove, Barry G
2005-05-01
This study examined the proportional seasonal winter adjustments of total and mass-specific basal power (watts and watts g-1, respectively), thermal conductance (watts g-1 degrees C-1), non-shivering thermogenesis capacity (ratio of NST/basal power), body temperature ( degrees C), and body mass (g) of mammals. The responses are best summarized for three different body size classes; small mammals (<100 g), intermediate-sized mammals (0.1-10 kg), and large mammals (>10 kg). The principal adjustments of the small mammals center on energy conservation, especially the Dehnel Effect, the winter reduction in body size of as much as 50%, accompanied by reductions in mass-specific basal power. On average, these reductions reduce the total basal power approximately in direct proportion to the mass reductions. Reductions in mass-specific basal power are matched by concomitant reductions in conductance to maintain the setpoint body temperature during winter. The overall thermoregulatory adjustments in small mammals serve to (a) lower overall winter power consumption, (b) maintain the setpoint body temperature, and (c) lower the lower critical limit of thermoneutrality and hence thermoregulatory costs. In intermediate-size mammals, the seasonal response is centered more on increasing thermogenic capacity by increasing basal power and NST capacity, accompanied by predictable and large reductions in conductance. The Dehnel effect is negligible. Very large mammals undergo the largest reductions in total and mass-specific basal power and conductance. However, there are too few data to resolve whether the reductions in total basal power can be attributed to the Dehnel effect, because the moderate decreases in body mass may also be caused by nutritional stress. Apart from the seasonal changes in basal power, these observations are consistent with the predictions of Heldmaier's seasonal acclimatization model.
Viscosity, density, and thermal conductivity of aluminum oxide and zinc oxide nanolubricants
Kedzierski, M.A.; Brignoli, R.; Quine, K.T.; Brown, J.S.
2017-01-01
This paper presents liquid kinematic viscosity, density, and thermal conductivity measurements of eleven different synthetic polyolester-based nanoparticle nanolubricants (dispersions) at atmospheric pressure over the temperature range 288 K to 318 K. Aluminum oxide (Al2O3) and zinc oxide (ZnO) nanoparticles with nominal diameters of 127 nm and 135 nm, respectively, were investigated. A good dispersion of the spherical and non-spherical nanoparticles in the lubricant was maintained with a surfactant. Viscosity, density, and thermal conductivity measurements were made for the neat lubricant along with eleven nanolubricants with differing nanoparticle and surfactant mass fractions. Existing models were used to predict kinematic viscosity (±20%), thermal conductivity (±1%), and specific volume (±6%) of the nanolubricant as a function of temperature, nanoparticle mass fraction, surfactant mass fraction, and nanoparticle diameter. The liquid viscosity, density and thermal conductivity were shown to increase with respect to increasing nanoparticle mass fraction. PMID:28736463
Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites
NASA Technical Reports Server (NTRS)
Ellis, David L.; Mcdanels, David L.
1991-01-01
The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.
Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites
NASA Technical Reports Server (NTRS)
Ellis, David L.; Mcdanels, David L.
1993-01-01
The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.
Nanotube antibody biosensor arrays for the detection of circulating breast cancer cells
NASA Astrophysics Data System (ADS)
Shao, Ning; Wickstrom, Eric; Panchapakesan, Balaji
2008-11-01
Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report for the first time a single nanotube field effect transistor array, functionalized with IGF1R-specific and Her2-specific antibodies, which exhibits highly sensitive and selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. Those two cell lines both overexpress IGF1R and Her2, at different levels. Single or small bundle of nanotube devices that were functionalized with IGF1R-specific or Her2-specific antibodies showed 60% decreases in conductivity upon interaction with BT474 or MCF7 breast cancer cells in two µl drops of blood. Control experiments with non-specific antibodies or with MCF10A control breast cells produced a less than 5% decrease in electrical conductivity, illustrating the high sensitivity for whole cell binding by these single nanotube-antibody devices. We postulate that the free energy change due to multiple simultaneous cell-antibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigen-antibody interaction; these properties might be used as a fingerprint for the molecular sensing of circulating cancer cells. From optical microscopy observations during sensing, it appears that the binding of a single cell to a single nanotube field effect transistor produced the change in electrical conductivity. Thus we report a nanoscale oncometer with single cell sensitivity with a diameter 1000 times smaller than a cancer cell that functions in a drop of fresh blood.
Manjunatha, S S; Raju, P S; Bawa, A S
2014-11-01
Thermophysical properties of enzyme clarified lime (Citrus aurantifolia L.) juice were evaluated at different moisture contents ranging from 30.37 % to 89.30 % (wet basis) corresponding to a water activity range of 0.835 to 0.979. The thermophysical properties evaluated were density, Newtonian viscosity, thermal conductivity, specific heat and thermal diffusivity. The investigation showed that density and Newtonian viscosity of enzyme clarified lime juice decreased significantly (p < 0.05) with increase in moisture content and water activity, whereas thermal conductivity and specific heat increased significantly (p < 0.05) with increase in moisture content and water activity and the thermal diffusivity increased marginally. Empirical mathematical models were established relating to thermophysical properties of enzyme clarified lime juice with moisture content/water activity employing regression analysis by the method of least square approximation. Results indicated the existence of strong correlation between thermophysical properties and moisture content/water activity of enzyme clarified lime juice, a significant (p < 0.0001) negative correlation between physical and thermal properties was observed.
Armstead, Mindy Yeager; Bitzer-Creathers, Leah; Wilson, Mandee
2016-01-01
Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities. PMID:27814378
Size-dependent enhancement of water relations during post-fire resprouting.
Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A
2014-04-01
In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.
Increasing Cold Weather Masonry Construction Productivity
DOT National Transportation Integrated Search
1997-08-01
The thermal protection requirements for cold weather masonry, as established in current industry specifications, were evaluated. Experiments were conducted to define the most relevant factors in the process of freezing of newly placed mortar. The eff...
Carbon nanotube dispersed conductive network for microbial fuel cells
NASA Astrophysics Data System (ADS)
Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.
2014-08-01
Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.
Barnwal, P; Singh, K K; Sharma, Alka; Choudhary, A K; Saxena, S N
2015-12-01
In present study, influence of grinding (hammer and pin mills) and moisture content (range: 6.4-13.6 % dry basis) on the quality traits of coriander powder were investigated. These include grinding parameters, colour parameters, specific heat, thermal conductivity, thermal diffusivity, glass transition temperature, essential oil, total phenolic content, total flavonoid content and DPPH scavenging (%) of coriander powder. For coriander seed, the geometric properties such as major, medium, minor dimensions, geometric mean diameter, arithmetic mean diameter, sphericity, surface area and volume of coriander seeds increased significantly with increasing moisture (6.4-13.6 % db). For coriander powder, the grinding parameters such as average particle size, volume surface mean diameter and volume mean diameter increased significantly with increasing moisture (6.4-13.6 % db). With the grinding method, the colour attributes of coriander powder such as L-value, a-value, b-value, hue angle and browning index varied significantly. It was observed that the specific heat followed second order polynomial relationship with temperature and moisture whereas thermal conductivity varied linearly with temperature and moisture content. The variation of glass transition temperature with moisture can be best represented in quadratic manner. Total flavonoid content (mg QE/g crude seed extract) and DPPH scavenging % activity of coriander powder is significantly affected by grinding methods. A lower value of specific heat was observed for hammer ground coriander powder as compared to pin mill ground coriander powder. The thermal conductivity of hammer mill ground coriander powder was higher as compared to pin mill ground coriander. It was observed that hammer mill yields more fine coriander powder in comparison to pin mill. The browning index was more in hammer mill ground coriander powder.
Chen, Jiansheng; Xu, Peizhi; Tang, Shuanhu; Zhang, Fabao; Xie, Chunsheng
2005-10-01
A series of pot and field experiments and field demonstrations showed that in comparing with the commonly used specific-fertilizers containing same amounts of nutrients, single basal application of rice-specific controlled release fertilizer could increase the use efficiency of N and P by 12.2% - 22.7% and 7.0% - 35.0%, respectively in pot experiment, and the use efficiency of N by 17.1% in field experiment. In 167 field demonstrations successively conducted for 3 years in various rice production areas of Guangdong Province, single basal application of the fertilizer saved the application rate of N and P by 22.1% and 21.8%, respectively, and increased the yield by 8.2%, compared with normal split fertilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.; Urquhart, Alexander
Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature upmore » to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.« less
Simpson, Jory S; Briggs, Kaleigh; George, Ralph
2015-06-01
As one migrates from an area of low to high incidence of breast cancer their personal risk of developing breast cancer increases. This is however not equally distributed across all races and ethnicities. This paper specifically examines Filipino migrants. A literature review was conducted to summarize breast cancer incidence, screening practices and trends in treatment amongst Filipino migrants. In addition, a retrospective cohort study was conducted specifically examining the age in which Filipino women were diagnosed with breast cancer compared to Asian and Caucasian counterparts. Filipino women are diagnosed with breast cancer at a statistically significant younger age (53.2) compared to their Asian (55.1) and Caucasian (58.4) counterparts. In addition, they are at an increased risk of developing more aggressive breast cancer with noteworthy disparities in the care they are receiving. The evidence suggest this group is worthy of special focus when diagnosing and treating breast cancer.
Granato, Gregory E.; Smith, Kirk P.
1999-01-01
Discrete or composite samples of highway runoff may not adequately represent in-storm water-quality fluctuations because continuous records of water stage, specific conductance, pH, and temperature of the runoff indicate that these properties fluctuate substantially during a storm. Continuous records of water-quality properties can be used to maximize the information obtained about the stormwater runoff system being studied and can provide the context needed to interpret analyses of water samples. Concentrations of the road-salt constituents calcium, sodium, and chloride in highway runoff were estimated from theoretical and empirical relations between specific conductance and the concentrations of these ions. These relations were examined using the analysis of 233 highwayrunoff samples collected from August 1988 through March 1995 at four highway-drainage monitoring stations along State Route 25 in southeastern Massachusetts. Theoretically, the specific conductance of a water sample is the sum of the individual conductances attributed to each ionic species in solution-the product of the concentrations of each ion in milliequivalents per liter (meq/L) multiplied by the equivalent ionic conductance at infinite dilution-thereby establishing the principle of superposition. Superposition provides an estimate of actual specific conductance that is within measurement error throughout the conductance range of many natural waters, with errors of less than ?5 percent below 1,000 microsiemens per centimeter (?S/cm) and ?10 percent between 1,000 and 4,000 ?S/cm if all major ionic constituents are accounted for. A semi-empirical method (adjusted superposition) was used to adjust for concentration effects-superposition-method prediction errors at high and low concentrations-and to relate measured specific conductance to that calculated using superposition. The adjusted superposition method, which was developed to interpret the State Route 25 highway-runoff records, accounts for contributions of constituents other than calcium, sodium, and chloride in dilute waters. The adjusted superposition method also accounts for the attenuation of each constituent's contribution to conductance as ionic strength increases. Use of the adjusted superposition method generally reduced predictive error to within measurement error throughout the range of specific conductance (from 37 to 51,500 ?S/cm) in the highway runoff samples. The effects of pH, temperature, and organic constituents on the relation between concentrations of dissolved constituents and measured specific conductance were examined but these properties did not substantially affect interpretation of the Route 25 data set. Predictive abilities of the adjusted superposition method were similar to results obtained by standard regression techniques, but the adjusted superposition method has several advantages. Adjusted superposition can be applied using available published data about the constituents in precipitation, highway runoff, and the deicing chemicals applied to a highway. This semi-empirical method can be used as a predictive and diagnostic tool before a substantial number of samples are collected, but the power of the regression method is based upon a large number of water-quality analyses that may be affected by a bias in the data.
NASA Astrophysics Data System (ADS)
Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.
2014-07-01
The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.
Gohdes, Dorothy; Fogle, Crystelle C.; Tadios, Fawn; Doore, Velva; Bell, Doreen S.; Harwell, Todd S.; Helgerson, Steven D.
2013-01-01
Introduction National initiatives to improve the recognition of heart attack and stroke warning signs have encouraged symptomatic people to seek early treatment, but few have shown significant effects in rural American Indian (AI) communities. Methods During 2009 and 2010, the Montana Cardiovascular Health Program, in collaboration with 2 tribal health departments, developed and conducted culturally specific public awareness campaigns for signs and symptoms of heart attack and stroke via local media. Telephone surveys were conducted before and after each campaign to evaluate the effectiveness of the campaigns. Results Knowledge of 3 or more heart attack warning signs and symptoms increased significantly on 1 reservation from 35% at baseline to 47% postcampaign. On the second reservation, recognition of 2 or more stroke signs and symptoms increased from 62% at baseline to 75% postcampaign, and the level of awareness remained at 73% approximately 4 months after the high-intensity campaign advertisements ended. Intent to call 9-1-1 did not increase in the heart attack campaign but did improve in the stroke campaign for specific symptoms. Recall of media campaigns on both reservations increased significantly from baseline to postcampaign for both media outlets (ie, radio and newspaper). Conclusion Carefully designed, culturally specific campaigns may help eliminate disparities in the recognition of heart attack and stroke warning signs in AI communities. PMID:23680509
Oser, Carrie S; Gohdes, Dorothy; Fogle, Crystelle C; Tadios, Fawn; Doore, Velva; Bell, Doreen S; Harwell, Todd S; Helgerson, Steven D
2013-05-16
National initiatives to improve the recognition of heart attack and stroke warning signs have encouraged symptomatic people to seek early treatment, but few have shown significant effects in rural American Indian (AI) communities. During 2009 and 2010, the Montana Cardiovascular Health Program, in collaboration with 2 tribal health departments, developed and conducted culturally specific public awareness campaigns for signs and symptoms of heart attack and stroke via local media. Telephone surveys were conducted before and after each campaign to evaluate the effectiveness of the campaigns. Knowledge of 3 or more heart attack warning signs and symptoms increased significantly on 1 reservation from 35% at baseline to 47% postcampaign. On the second reservation, recognition of 2 or more stroke signs and symptoms increased from 62% at baseline to 75% postcampaign, and the level of awareness remained at 73% approximately 4 months after the high-intensity campaign advertisements ended. Intent to call 9-1-1 did not increase in the heart attack campaign but did improve in the stroke campaign for specific symptoms. Recall of media campaigns on both reservations increased significantly from baseline to postcampaign for both media outlets (ie, radio and newspaper). Carefully designed, culturally specific campaigns may help eliminate disparities in the recognition of heart attack and stroke warning signs in AI communities.
de Silva, Nayana Dilini Gardiyehewa; Cholewa, Ewa; Ryser, Peter
2012-10-01
The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.
Carter Leno, Virginia; Chandler, Susie; White, Pippa; Pickles, Andrew; Baird, Gillian; Hobson, Chris; Smith, Anna B; Charman, Tony; Rubia, Katya; Simonoff, Emily
2017-12-09
Current diagnostic systems conceptualise attention deficit hyperactivity disorder (ADHD), oppositional defiant/conduct disorder (ODD/CD) and autism spectrum disorder (ASD) as separate diagnoses. However, all three demonstrate executive functioning (EF) impairments. Whether these impairments are trans-diagnostic or disorder-specific remains relatively unexplored. Four groups of 10-16 year-olds [typically developing (TD; N = 43), individuals clinically diagnosed with ADHD (N = 21), ODD/CD (N = 26) and ASD (N = 41)] completed Go/NoGo and Switch tasks. Group differences were tested using analysis of co-variance (ANCOVA) including age, IQ, sex, conduct problems and ADHD symptoms as co-variates. Results indicated some disorder-specificity as only the ASD group demonstrated decreased probability of inhibition in the Go/NoGo task compared to all other groups. However, shared impairments were also found; all three diagnostic groups demonstrated increased reaction time variability (RTV) compared to the TD group, and both the ODD/CD and the ASD group demonstrated increased premature responses. When controlling for ADHD symptoms and conduct problems, group differences in RTV were no longer significant; however, the ASD group continued to demonstrate increased premature responses. No group differences were found in cognitive flexibility in the Switch task. A more varied response style was present across all clinical groups, although this appeared to be accounted for by sub-threshold ODD/CD and ADHD symptoms. Only the ASD group was impaired in response inhibition and premature responsiveness relative to TD adolescents. The findings suggest that some EF impairments typically associated with ADHD may also be found in individuals with ASD.
Radin, J W; Lu, Z; Percy, R G; Zeiger, E
1994-01-01
Responses of stomata to environment have been intensively studied, but little is known of genetic effects on stomatal conductance or their consequences. In Pima cotton (Gossypium barbadense L.), a crop that is bred for irrigated production in very hot environments, stomatal conductance varies genetically over a wide range and has increased with each release of new higher-yielding cultivars. A cross between heat-adapted (high-yielding) and unadapted genotypes produced F2 progeny cosegregating for stomatal conductance and leaf temperature. Within segregating populations in the field, conductance was negatively correlated with foliar temperature because of evaporative cooling. Plants were selected from the F2 generation specifically and solely for differing stomatal conductance. Among F3 and F4 populations derived from these selections, conductance and leaf cooling were significantly correlated with fruiting prolificacy during the hottest period of the year and with yield. Conductance was not associated with other factors that might have affected yield potential (single-leaf photosynthetic rate, leaf water potential). As breeders have increased the yield of this crop, genetic variability for conductance has allowed inadvertent selection for "heat avoidance" (evaporative cooling) in a hot environment. PMID:11607487
The impact of obesity on specific airway resistance and conductance among schoolchildren.
Parraguez Arévalo, Andrea; Rojas Navarro, Francisco; Ruz Céspedes, Macarena; Medina González, Paul; Escobar Cabello, Máximo; Muñoz Cofré, Rodrigo
2018-04-01
Child and adolescent obesity is an epidemiological problem in developing countries. Its prevalence among preschoolers and schoolchildren is over 30%. It has been associated with a wide range of health complications, including rapid loss of lung function leading to changes in physiology and ventilatory mechanics. The objective of this study was to analyze the association between obesity and the increase in specific airway resistance (sRaw) in a sample of obese children and adolescents from the district of Talca. In a sample of 36 subjects with an average age of 9.38 ± 1.99 years, divided into 2 groups (normal weight and obese), the tricipital, subscapular, and abdominal skinfolds and lung volumes were measured. For the statistical analysis, data normality was determined and then the Student's t test or the Mann-Whitney U test and Pearson's or Spearman's correlations were used, as applicable. A value of p < 0.05 was considered statistically significant. When comparing normal weight and obese subjects, a significant increase in sRaw and a significant reduction in specific airway conductance (sGaw) were observed in obese subjects. In addition, an adequate and significant correlation was observed between sRaw and fat percentage. Obese subjects showed an increased sRaw and a reduced sGaw. Sociedad Argentina de Pediatría.
Miller, Ronald L.; McPherson, Benjamin F.
2008-01-01
Water quality in the interior marsh of the Arthur R. Marshall Loxahatchee National Wildlife Refuge is characterized by low concentrations of major ions, principally sodium and chloride, and is affected primarily by natural seasonal processes, such as evapotranspiration, rainfall, and biological activity. During the dry season, evapotranspiration exceeds precipitation, and specific conductance and conservative ion concentrations at marsh background sites typically increase by 40-70 percent between the end of the rainy season in September and the end of the dry season in May. Water enters the Refuge mainly from rainfall and perimeter canals. Water is pumped into the perimeter canals from large pumping stations, such as S-5A and S-6. In recent years, much of the water pumped into the Refuge passes through Stormwater Treatment Areas (STAs) before being released into the perimeter canals that surround the Refuge. Since 2001, water at S-6 has been diverted south toward STA-2, away from the Refuge perimeter canals. Water from S-5A and S-6 flows through agricultural lands with intense agricultural activity and typically contains relatively high concentrations of major ions, nutrients, and pesticides. Specific conductance, major-ion concentrations, and nutrient concentrations are an order of magnitude higher at S-5A and S-6 canal sites than at interior marsh sites. Water quality in the marsh bordering the canals can be affected substantially by the canal water, and these effects can extend several miles or more into the marsh depending on location in the Refuge and on the water level in the canals. As canal water flows into the marsh, processes such as uptake by periphyton and rooted vegetation and settling of particulate matter reduce the concentrations of nutrients to a greater extent than conservative ions such as chloride. Long- and short-term trends for specific conductance, chloride ion, sulfate ion, total phosphorus, and total nitrogen at five sites were evaluated primarily using an uncensored seasonal Kendall test with a water-level adjustment to reduce the effects of long wet or dry periods. Significant long-term trends (1974-2003) for specific conductance, chloride, total phosphorus, and total nitrogen at canal sites S-5A and S-6 were generally downward. Of the five sites, S-5A had the most pronounced decline for specific conductance at about -340 microsiemens per centimeter (?S/cm), followed by S-6 with a decline of about -280 ?S/cm. The two internal marsh sites, LOX8 and LOX13, had significant long-term trends in specific conductance of about +37 and -36 ?S/cm, respectively. Long-term trends for other constituents at the two internal marsh sites were generally small in magnitude or not measurable between 1978 and 2003. Marsh site LOX15 near the Hillsboro Canal showed no long-term trends, although specific conductance and sulfate concentration increased about 560 ?S/cm and 30 milligrams per liter, respectively, from 1998 to 2002. Site LOX15 is influenced strongly by intrusions of canal water, and increases in specific conductance and sulfate at this site coincided with increased canal-water inflows from STA-1W between 2001 and 2003. Median concentrations at LOX13 and S-5A were used to represent background and canal concentrations, respectively. Based on these values, the median chloride concentration at LOX15 indicates that the water is typically about 31 percent canal water and 69 percent ?natural? background water. Using median sulfate concentrations, similarly to chloride, the fraction of water at LOX15 was estimated to be 17 percent from canals and 83 percent from ?natural? background water. This finding suggests that in the low sulfate environment of the Refuge, sulfate is not conservative and only about half of the sulfate from canal water typically reaches LOX15; the rest presumably is removed by marsh plants, algae, and bottom sediments. Concentrations of pesticides and other organic compounds were measured
Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C
2016-02-15
Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.
Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery
NASA Astrophysics Data System (ADS)
Feng, Caimei; Chen, Yongchong; Liu, Dandan; Zhang, Ping
2017-06-01
Lithium slurry battery is a new type of energy storage technique which uses the slurry of solid active materials, conductive additions and liquid electrolyte as the electrode. The proportion of conductive addition and the active material has significant influence on the conductivity and electrochemical performance of the slurry electrode. In the present work, slurries with different volume ratios of LiFePO4 (LFP) and Ketjenblack (KB) were investigated by the electrochemical workstation and charge-discharge testing system (vs. Li/Li+). Results show that the conductivity of the slurry increases linearly with the addition of KB, and the measured specific capacity of the slurry reaches its theoretical value when the volume ratio of KB to LFP is around 0.2. Based on this ratio, a slurry battery with higher loading of LFP (19.1 wt.% in the slurry) was tested, and a specific capacity of 165 mAh/g at 0.2 mA/cm2 and 102 mAh/g at 5 mA/cm2 was obtained for LFP.
Mulpuru, Siva K; Cha, Yong-Mei; Asirvatham, Samuel J
2016-11-01
Right ventricular apical pacing is associated with an increased incidence of heart failure, atrial fibrillation, and overall mortality. As a result, pacing the ventricles in a manner that closely mimics normal AV conduction with an intact His-Purkinje system has been explored. Recently, the sustainable benefits of selective His-bundle stimulation have been demonstrated and proposed as the preferred method of ventricular stimulation for appropriate patients. Ideally, conduction system pacing should be selective without myocardial capture, overcome distal bundle branch block when present, and not compromise tricuspid valve function. Contemporary literature on conduction system pacing is confusing largely because of inconsistent terminology and, at times, anatomically inaccurate terms used interchangeably for nonsynonymous anatomic sites. In this review, we discuss the functional anatomy of AV conduction access with specific emphasis on terminology, relationship to the membranous septum, tricuspid valve tissue, and proximity to atrial or ventricular myocardium. The potential benefits of each specific site as well as associated unique difficulties with those sites are described. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Electronic transport in armchair graphene nanoribbon under double magnetic barrier modulation
NASA Astrophysics Data System (ADS)
Wang, Haiyan; Wu, Chao; Xie, Fang; Zhang, Xiaojiao; Zhou, Guanghui
2018-03-01
We present a theoretical investigation of the transport properties and the magnetoresistance effect in armchair graphene nanoribbons (AGNRs) under modulation by two magnetic barriers. The energy levels are found to be degenerate for a metallic AGNR but are not degenerate for a semiconducting AGNR. However, the conductance characteristics show quantized plateaus in both the metallic and semiconducting cases. When the magnetization directions of the barriers change from parallel to antiparallel, the conductance plateau in the metallic AGNR shows a degenerate feature due to matching between the transport modes in different regions. As the barrier height increases, the conductance shows more oscillatory behavior with sharp peaks and troughs. Specifically, the initial position of nonzero conductance for the metallic AGNR system moves towards a higher energy regime, which indicates that an energy gap has been opened. In addition, the magnetoresistance ratio also shows plateau structures in certain specific energy regions. These results may be useful in the design of electron devices based on AGNR nanostructures.
Electrical conductivity of aluminum hydride AlH3 at high pressure and temperature
NASA Astrophysics Data System (ADS)
Shakhray, Denis; Molodets, Alexander; Fortov, Vladimir; Khrapak, Aleksei
2009-06-01
A study of electrophysical and thermodynamic properties of alane AlH3 under multi shock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa have been measured. High pressures and temperatures were obtained with explosive device, which accelerates the stainless impactor up to 3 km/sec. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30 1/Ohm*cm. In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500 1/Ohm*cm at 80-90 GPa. In this region conductivity is interpreted in frames of the conception of the ``dielectric catastrophe'', taking into consideration significant difference between electronic states of isolated AlH3 molecule and condensed alane.
Complex conductivity of oil-contaminated clayey soils
NASA Astrophysics Data System (ADS)
Deng, Yaping; Shi, Xiaoqing; Revil, André; Wu, Jichun; Ghorbani, A.
2018-06-01
Spectral induced polarization (SIP) is considered as a promising tool in environmental investigations. However, few works have done regarding the electrical signature of oil contamination of clayey soils upon induced polarization. Laboratory column experiments plus one sandbox experiment are conducted in this study to investigate the performances of the SIP method in oil-contaminated soils. First, a total of 12 soils are investigated to reveal the influences of water and soil properties on the saturation dependence of the complex conductivity below 100 Hz. Results show that the magnitude of the complex conductivity consistently decreases with decreasing water saturation for all soils samples. The saturation n and quadrature conductivity p exponents tend to increase slightly with increasing water salinity when using a linear conductivity model. The saturation exponent increases marginally with the cation exchange capacity (CEC) and the specific surface area (Ssp) while the quadrature conductivity exponent exhibits a relatively stronger dependence on both CEC and Ssp. For the low CEC soil samples (normally ≤10 meq/100 g), the quadrature conductivity exponent p correlates well with the saturation exponent n using the relationship p = n-1. SIP method is further applied in a sandbox experiment to estimate the saturation distribution and total volume of the oil. Results demonstrate that the SIP method has a great potential for mapping the organic contaminant plume and quantifying the oil volume.
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.
2001-01-01
The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.
NASA Astrophysics Data System (ADS)
Vasheghani, Mohammadhassan; Marzbanrad, Ehsan; Zamani, Cyrus; Aminy, Mohamed; Raissi, Babak; Ebadzadeh, Toraj; Barzegar-Bafrooei, Hadi
2011-11-01
Thermal conductivity of α-Al2O3 was measured using hot wire method. α-Al2O3 (20 nm in size) was synthesized by microwave method for which, the results were compared with commercially available γ-Al2O3. Thermal conductivity of nanofluids was investigated considering, it is dependency on Al2O3 phase. It was observed that by adding 3 wt% of nano γ-Al2O3 and α-Al2O3 to the engine oil, thermal conductivity increases by 37 and 31%, respectively. The corresponding viscosity increase for the same amount of nano γ-Al2O3 and α-Al2O3 were 36 and 38%, respectively. It was concluded that the differences in thermal conductivity originate from higher specific surface area of γ-Al2O3 compared to the α-Al2O3 which is the result of porosity difference, obtained during the synthesis process.
An evaluation of soluble cations and anions on the conductivity and rate of flocculation of kaolins
NASA Astrophysics Data System (ADS)
Fulton, Deborah Lee
1998-10-01
The focus of this project was to learn how ionic concentrations and their contributions to electric conductivity influence the flocculation behavior of kaolin/water suspensions. Sodium silicate, calcium chloride, and magnesium sulfate were used as chemical additives. The specific surface areas, particle size distributions, and methylene blue indices for two kaolins were measured. The SSA and MBI for these kaolins indicated that they possessed inherent differences in SSA and flocculation behaviors. Rheological studies were also performed. Testing included simultaneous gelation, deflocculation, and pH tests. Viscosity, pH, temperature, and chemical additive concentrations were monitored at each point. Testing was performed at 45/55 wt% solids. Effects of additions of various levels of deflocculant and flocculant to each of the kaolin/water suspensions were studied by making several suspensions from each kaolin. The concentrations of dispersant, and flocculant levels and types were varied to produce suspensions with different chemical additive "histories," but all with similar final apparent viscosities. Slurry filtrates were analyzed for conductivity, pH, temperature, and ion concentrations of (Al3+, Fe2+,3+, Ca 2+, Mg+, Na+, SO4 2--, and Cl--). Plastic properties were calculated to determine how variations in suspension histories affected conductivities, pH, and detectable ion contents of the suspensions. These analyses were performed on starting slurries which were under-, completely-, and over-deflocculated before further additions of flocculants and deflocculant were added to tune the slurries to the final, constant, target viscosity. Results showed that rates of flocculation and conductivities increased as concentrations of ions increased. By increasing conductivity correlations with increases in flocculation occurs, which yields higher rates of buildup, or RBU [1]. This is the single most important slip control property in the whitewares industry. Shear-thinning behavior of the bodies also increased with increases in ion concentrations and conductivities. Bingham viscosities decreased as ionic concentrations increased. Brookfield buildup (BBU), plasticity index, yield stress, and pseudoplastic index generally increased as chemical additions increased. Softness and plastic behavior of the bodies increased with increasing concentrations of additive chemicals and with increasing conductivity. Calcium, sodium, and sulfate ions were primarily responsible for increasing conductivity. Calcium chloride was a more effective flocculant than magnesium sulfate.
Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle
NASA Technical Reports Server (NTRS)
Jansen, Emmert T; Thorman, H Carl
1950-01-01
An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.
Parametric evaluation of ball milling of SiC in water
NASA Technical Reports Server (NTRS)
Kiser, J. D.; Herbell, T. P.; Freedman, M. R.
1985-01-01
A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.
USDA-ARS?s Scientific Manuscript database
Background: Number of functional teats is an important trait in commercial swine production. As litter size increases, the number of teats must also increase to supply nutrition to all piglets. Therefore, a genome-wide association analysis was conducted to identify genomic regions that affect this ...
ERIC Educational Resources Information Center
Morales, Erik E.
2014-01-01
Utilizing resilience theory and original research conducted on fifty academically resilient low socioeconomic status students of color, this article presents specific objectives and values institutions of higher learning can adopt and emphasize to increase the retention and graduation of their most statistically at-risk students. Major findings…
Serum uric acid and cancer mortality and incidence: a systematic review and meta-analysis.
Dovell, Frances; Boffetta, Paolo
2018-07-01
Elevated serum uric acid (SUA) is a marker of chronic inflammation and has been suggested to be associated with increased risk of cancer, but its antioxidant capacity would justify an anticancer effect. Previous meta-analyses did not include all available results. We conducted a systematic review of prospective studies on SUA level and risk of all cancers and specific cancers, a conducted a meta-analysis based on random-effects models for high versus low SUA level as well as for an increase in 1 mg/dl SUA. The relative risk of all cancers for high versus low SUA level was 1.11 (95% confidence interval: 0.94-1.27; 11 risk estimates); that for a mg/dl increase in SUA level was 1.03 (95% confidence interval: 0.99-1.07). Similar results were obtained for lung cancer (six risk estimates) and colon cancer (four risk estimates). Results for other cancers were sparse. Elevated SUA levels appear to be associated with a modest increase in overall cancer risk, although the combined risk estimate did not reach the formal level of statistical significance. Results for specific cancers were limited and mainly negative.
Effects of torsion on the thermal conductivity of multi-layer graphene
NASA Astrophysics Data System (ADS)
Si, Chao; Lu, Gui; Cao, Bing-Yang; Wang, Xiao-Dong; Fan, Zhen; Feng, Zhi-Hai
2017-05-01
This work employs the equilibrium molecular dynamics method to study the effects of torsion on the thermal conductivity of multi-layer graphene. Thermal conductivities of twisted 10-layer 433.91 × 99.68 Å2 graphene with torsion angles of 0°, 11.25°, 22.5°, 33.75°, 45°, 67.5°, 90°, 112.5°, and 135° are calculated. The corresponding radial distribution functions and nearest atomic distances are calculated to reveal the effects of torsion on lattice structures. The spectral energy density (SED) method is utilized to analyze the phonon transport properties. It is very interesting that the thermal conductivity of multi-layer graphene decreases slightly at first and then increases with the increasing torsion angle, and the valley is located at θG = 22.5° with the lowest thermal conductivity of 4692.40 W m-1 K-1. The torsion effect can be considered as a combination of the compression effect and the dislocation effect. Further SED analysis confirms that the effect of dislocation on thermal conductivities can be negligible, while the compression effect decreases the phonon lifetimes of flexural out-of-plane acoustic (ZA) branches and increases the ZA group velocities and the phonon specific heat. The decrease becomes dominated when the torsion angle is small, whereas the increase becomes more and more dominated when the torsion angle becomes larger, which are responsible for the reported variation of thermal conductivities.
Controlled environment life support system: Growth studies with potatoes
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.; Wheeler, R. M.
1986-01-01
Results of experiments conducted to maximize the productivity of potatoes grown under controlled environmental conditions are discussed. A variety of parameters is examined which affect potato growth, specifically, photoperiod, light intensity, temperature, nitrogen nutrition, carbon dioxide concentration and culture techniques. These experiments were conducted using five different cultivars, Russet Burbank, Norchip, Superior, Kennebec and Norland. To achieve high productivity, three specific objectives were explored: (1) to develop effective cultural procedures, (2) to determine the most effective photoperiod and (3) to develop a mist culture system. It is felt that the productivity obtained in this study is below the maximum that can be obtained. High irradiance levels coupled with tuber-promoting conditions such as cooler temperatures, increased CO2 levels and lowered nitrogen concentrations should allow increases in tuber production. Tuberization appears to be accelerated by short daylengths although final yields are not increased. Mist culture techniques have not yet produced fully developed tubers. The use of supporting media and alteration of the nitrogen content of the mist solution are being explored as a way to allow tubers to develop to maturity.
Fleischmann, B K; Washabau, R J; Kotlikoff, M I
1993-01-01
1. In order to determine the physiological role of specific potassium currents in airway smooth muscle, potassium currents were measured in freshly dissociated ferret trachealis cells using the nystatin-permeabilized, whole-cell method, at 35 degrees C. 2. The magnitude of the outward currents was markedly increased as bath temperature was increased from 22 to 35 degrees C. This increase was primarily due to the increase in maximum potassium conductance (gK,max), although there was also a small leftward shift in the relationship between gK and voltage at higher temperatures. The maximum conductance and the kinetics of current activation and inactivation were also temperature dependent. At 35 degrees C, gating of the current was steeply voltage dependent between -40 and 0 mV. Current activation was well fitted by fourth-order kinetics; the mean time constants of activation (30 mV clamp step) were 1.09 +/- 0.17 and 1.96 +/- 0.27 ms at 35 and 22 degrees C, respectively. 3. Outward currents using the nystatin method were qualitatively similar to delayed rectifier currents recorded in dialysed cells with high calcium buffering capacity solutions. 4-Aminopyridine (4-AP; 2 mM), a specific blocker of delayed rectifier potassium channels in this tissue, inhibited over 80% of the outward current evoked by voltage-clamp steps to between -10 and +20 mV (n = 6). Less than 5% of the outward current was blocked over the same voltage range by charybdotoxin (100 nM; n = 15), a specific antagonist of large-conductance, calcium-activated potassium channels in this tissue. 4. The degree to which delayed rectifier and calcium-activated potassium conductances control resting membrane potential was examined in current-clamp experiments. The resting membrane potential of current clamped cells was -33.6 +/- 1.0 mV (n = 62). Application of 4-AP (2 mM) resulted in a 14.4 +/- 1.0 mV depolarization (n = 8) and an increase in input resistance. Charybdotoxin (100 nM) had no effect on resting membrane potential (n = 6). 5. Force measurements were made in isolated strips of trachealis muscle to determine the effect of pharmacological blockade of individual potassium conductances on resting tone. In the presence of tetrodotoxin (1 microM) and atropine (1 microM), 4-AP increased baseline tension in a dose-dependent manner, with an EC50 of 1.8 mM (n = 13); application of 5 mM 4-AP increased tone to 86.8 +/- 8.1% of that produced by 1 microM methacholine, and this tone was almost completely inhibited by nifedipine (1 microM).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8271220
Effect of sintering temperature on the electrolysis of TiO2
NASA Astrophysics Data System (ADS)
Li, Ze-quan; Ru, Li-yue; Bai, Cheng-guang; Zhang, Na; Wang, Hai-hua
2012-07-01
The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scanning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature increased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstructure became compact with the increase of sintering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electrolysis.
Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong
2012-01-01
To identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected. Of the identified proteins, we focused on the candidate biomarker ERM-binding phosphoprotein 50 (EBP50), the expression of which was specifically increased in response to treatment with the carcinogens. The expression level of EBP50 was determined by western analysis using polyclonal rabbit anti-EBP50 antibody. Further, the expression level of EBP50 was increased in cells treated with seven additional carcinogens, verifying that EBP50 could serve as a specific biomarker for carcinogens. PMID:22434383
Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong
2012-03-01
To identify specific biomarkers generated upon exposure of L5178Y mouse lymphoma cells to carcinogens, 2-DE and MALDI-TOF MS analysis were conducted using the cellular proteome of L5178Y cells that had been treated with the known carcinogens, 1,2-dibromoethane and O-nitrotoluene and the noncarcinogens, emodin and D-mannitol. Eight protein spots that showed a greater than 1.5-fold increase or decrease in intensity following carcinogen treatment compared with treatment with noncarcinogens were selected. Of the identified proteins, we focused on the candidate biomarker ERM-binding phosphoprotein 50 (EBP50), the expression of which was specifically increased in response to treatment with the carcinogens. The expression level of EBP50 was determined by western analysis using polyclonal rabbit anti-EBP50 antibody. Further, the expression level of EBP50 was increased in cells treated with seven additional carcinogens, verifying that EBP50 could serve as a specific biomarker for carcinogens.
Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming
Wentz, Dennis A.; Steele, Timothy Doak
1980-01-01
Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)
Turney, G.L.; Dion, N.P.; Sumioka, S.S.
1986-01-01
Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the lakes in this study appeared to be presently acidified. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Danilova-Tret'yak, S. M.; Evseeva, L. E.; Tanaeva, S. A.
2014-11-01
Experimental investigations of the thermophysical properties of traditional and modified asbestos-reinforced laminates depending on the type of their carbon nanofiller have been carried out in the range of temperatures from -150 to 150°C. It has been shown that the largest (nearly twofold) increase in the thermal-conductivity and thermal-diffusivity coefficients of the indicated materials is observed when they are modified with a small-scale fraction of a nanofiller (carbon nanotubes). The specific heats of the modified and traditional asbestos-reinforced laminates turned out to be identical, in practice, within the measurement error.
Carbon nanomaterials used as conductive additives in lithium ion batteries.
Zhang, Qingtang; Yu, Zuolong; Du, Ping; Su, Ce
2010-06-01
As the vital part of lithium ion batteries, conductive additives play important roles in the electrochemical performance of lithium ion batteries. They construct a conductive percolation network to increase and keep the electronic conductivity of electrode, enabling it charge and discharge faster. In addition, conductive additives absorb and retain electrolyte, allowing an intimate contact between the lithium ions and active materials. Carbon nanomaterials are carbon black, Super P, acetylene black, carbon nanofibers, and carbon nanotubes, which all have superior properties such as low weight, high chemical inertia and high specific surface area. They are the ideal conductive additives for lithium ion batteries. This review will discuss some registered patents and relevant papers about the carbon nanomaterials that are used as conductive additives in cathode or anode to improve the electrochemical performance of lithium ion batteries.
High specific heat superconducting composite
Steyert, Jr., William A.
1979-01-01
A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.
NASA Astrophysics Data System (ADS)
Xin, Zhaopeng; Li, Weixin; Fang, Wei; He, Xuan; Zhao, Lei; Chen, Hui; Zhang, Wanqiu; Sun, Zhimin
2017-12-01
In this work, graphene aerogel/carbon foam is prepared by in situ inducing graphene aerogels in the pores of carbon foam. This novel hierarchical porous structure possesses a higher specific surface area as the introduction of graphene aerogels in carbon foam increases the proportion of micropores thus making it a superior candidate as electrodes for supercapacitors. The characterization and comparison of various properties of carbon foam and graphene aerogels/carbon foam have been investigated systematically. The result shows that specific surface area is up to 682.8 m2/g compared with initial carbon foam which increased about 55%, and the pore distribution curve shows more pore volume at 0.3 nm for F-CF/GA. It is demonstrated that the introduction of graphene aerogels not only increases the specific surface area, but also improves the conductivity, thus resulting in the reduction of the internal resistance and the improvement of the electrochemical performance. Consequently, graphene aerogel/carbon foam shows an excellent specific capacitance of 193.1 F/g at 1 A/g which is 72% higher than that of carbon foam acted as electrodes for supercapacitors.
Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas
Playton, Stephen J.; Davis, Robert Ellis; McClaflin, Roger G.
1978-01-01
Onsite measurements of pH, specific conductance, and water temperature show that water temperatures in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total, and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less-dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.Correlation analysis showed that several chemical constituents and properties of mine-shaft water, including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium, are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted. During the course of the study - September 1975 to June 1977 - the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month. Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall.Water in the mine shafts is unsuited for most uses without treatment. The inability of current domestic water treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply.
Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida
Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.
2010-01-01
Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (<100 ??S/cm), but increased post-storm at the overwashed wetlands (x?? = 7,613 ??S/cm). Increased specific conductance was strongly correlated with increases in chloride concentrations. Amphibian species richness showed no correlation with specific conductance. One month post-storm we observed slightly fewer species in overwashed compared with non-overwashed wetlands, but this trend did not continue in 2006. More species were detected across all wetlands pre-storm, but there was no difference between overwashed and non-overwashed wetlands when considering all amphibian species or adult anurans and larval anurans separately. Amphibian species richness did not appear to be correlated with pH or presence of fish although the amphibian community composition differed between wetlands with and without fish. Our results suggest that amphibian communities in wetlands in the southeastern United States adjacent to marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.
Toward the Standardization of Biochar Analysis: The COST Action TD1107 Interlaboratory Comparison.
Bachmann, Hans Jörg; Bucheli, Thomas D; Dieguez-Alonso, Alba; Fabbri, Daniele; Knicker, Heike; Schmidt, Hans-Peter; Ulbricht, Axel; Becker, Roland; Buscaroli, Alessandro; Buerge, Diane; Cross, Andrew; Dickinson, Dane; Enders, Akio; Esteves, Valdemar I; Evangelou, Michael W H; Fellet, Guido; Friedrich, Kevin; Gasco Guerrero, Gabriel; Glaser, Bruno; Hanke, Ulrich M; Hanley, Kelly; Hilber, Isabel; Kalderis, Dimitrios; Leifeld, Jens; Masek, Ondrej; Mumme, Jan; Carmona, Marina Paneque; Calvelo Pereira, Roberto; Rees, Frederic; Rombolà, Alessandro G; de la Rosa, José Maria; Sakrabani, Ruben; Sohi, Saran; Soja, Gerhard; Valagussa, Massimo; Verheijen, Frank; Zehetner, Franz
2016-01-20
Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.
NASA Astrophysics Data System (ADS)
Lv, Zijian; Zhong, Qin; Bu, Yunfei; Wu, Junpeng
2016-10-01
The morphology and electrical conductivity are essential to electrochemical performance of electrode materials in renewable energy conversion and storage technologies such as fuel cells and supercapacitors. Here, we explored a facile method to grow Ag@nickel-cobalt layered double hydroxide (Ag@Ni/Co-LDHs) with 3D flower-like microsphere structure. The results show the morphology of Ni/Co-LDHs varies with the introduction of Ag species. The prepared Ag@Ni/Co-LDHs not only exhibits an open hierarchical structure with high specific capacitance but also shows good electrical conductivity to support fast electron transport. Benefiting from the unique structural features, these flower-like Ag@Ni/Co-LDHs microspheres have impressive specific capacitance as high as 1768 F g-1 at 1 A g-1. It can be concluded that engineering the structure of the electrode can increase the efficiency of the specific capacitance as a battery-type electrode for hybrid supercapacitors.
A nanoporous metal recuperated MnO2 anode for lithium ion batteries.
Guo, Xianwei; Han, Jiuhui; Zhang, Ling; Liu, Pan; Hirata, Akihiko; Chen, Luyang; Fujita, Takeshi; Chen, Mingwei
2015-10-07
Lithium-ion batteries (LIBs) have been intensively studied to meet the increased demands for the high energy density of portable electronics and electric vehicles. The low specific capacity of the conventional graphite based anodes is one of the key factors that limit the capacity of LIBs. Transition metal oxides, such as NiO, MnO2 and Fe3O4, are known to be promising anode materials that are expected to improve the specific capacities of LIBs for several times. However, the poor electrical conductivity of these oxides significantly restricts the lithium ion storage and charge/discharge rate. Here we report that dealloyed nanoporous metals can realize the intrinsic lithium storage performance of the oxides by forming oxide/metal composites. Without any organic binder, conductive additive and additional current collector, the hybrid electrodes can be directly used as anodes and show highly reversible specific capacity with high-rate capability and long cyclic stability.
Search strategies for identifying qualitative studies in CINAHL.
Wilczynski, Nancy L; Marks, Susan; Haynes, R Brian
2007-05-01
Nurses, allied health professionals, clinicians, and researchers increasingly use online access to evidence in the course of patient care or when conducting reviews on a particular topic. Qualitative research has an important role in evidence-based health care. Online searching for qualitative studies can be difficult, however, resulting in the need to develop search filters. The objective of this study was to develop optimal search strategies to retrieve qualitative studies in CINAHL for the 2000 publishing year. The authors conducted an analytic survey comparing hand searches of journals with retrievals from CINAHL for candidate search terms and combinations. Combinations of search terms reached peak sensitivities of 98.9% and peak specificities of 99.5%. Combining search terms optimized both sensitivity and specificity at 94.2%. Empirically derived search strategies combining indexing terms and textwords can achieve high sensitivity and high specificity for retrieving qualitative studies from CINAHL.
Electrical Conductivity of Dense Al, Ti, Fe, Ni, Cu, Mo, Ta, and W Plasmas
2011-06-01
for all but tantalum and titanium shows a minimum at approximately 0.01 times solid density, followed by an increase as the density decreases further...internal energy and specific volume. Conductivity is observed to fall as the plasma expands for fixed internal energy, and for all but tantalum and...plasmas formed from elemental metal wires heated rapidly in a water bath by the electric current from discharge of a charged capacitor . Electrical
NASA Astrophysics Data System (ADS)
Matheny, A. M.; Bohrer, G.; Fiorella, R.; Mirfenderesgi, G.
2015-12-01
Plant functional types in land surface models (LSMs) are broadly defined, and often represent species with different physiologies within the same category. For example, trees of opposing hydraulic strategies and traits are commonly grouped together, as is the case of red oak and red maple. As a result, LSMs generate typical patterns of errors in predictions of transpiration and production. We studied sap flux, stem water storage, stomatal conductance, photosynthesis, rooting depth, and bole growth of these species at disturbed and undisturbed field sites in Michigan. Species-specific differences significantly impact temporal patterns of stomatal conductance and overall transpiration responses to both drought and disturbance. During drought, maples relied heavily on stem-stored water, while oaks did not. After disturbance, oaks increased stomatal conductance while maple conductance declined. Isotopic analysis of xylem water revealed that oak roots can access a deep groundwater source, which maple roots cannot. This deep rooting strategy permits transpiration and growth to continue in oaks during periods of water limitation, even when maples cease transpiration. Using 16 years of bole growth data, we show that maple growth is strongly correlated with mean annual precipitation, yet oak growth is not. We propose a framework to incorporate these species-specific differences into LSMs using the Finite-Element Tree-Crown Hydrodynamics model version 2 (FETCH2) that resolves the fast dynamics and diurnal hysteresis of stomatal conductance at the tree level. FETCH2 uses atmospheric and biological forcings from the LSM, simulates water movement through trees as flow through a system of porous media conduits, and calculates realistic hydraulic restrictions to stomatal conductance. This model replaces the current, non-physical link which empirically connects soil moisture to stomatal conductance in LSMs. FETCH2 resolved transpiration is then easily scaled to the plot level using remote sensing data. By incorporating species-specific constraints on water flux into predictions of transpiration, growth, and mortality, we can improve simulations of the surface energy budget and global carbon and water balances.
Ferrell, Gloria M.; Strickland, A. Gerald; Spruill, Timothy B.
2007-01-01
The effects of canals and roads on hydrologic conditions and on the health of Atlantic white cedar at the Emily and Richardson Preyer Buckridge Coastal Reserve in North Carolina were evaluated by using data collected from the 1980s to 2006. Water levels were monitored along two transects established perpendicular to roads and canals in areas of healthy and unhealthy Atlantic white cedar as part of a study conducted from February 2003 through March 2006. Because of the low hydraulic gradient at the Reserve, the rate and direction of water movement are sensitive to disturbance. Canals increased drainage and contributed to lower water levels in some parts of the Reserve, whereas roads, depending on orientation, impeded drainage. Canals also appeared to facilitate movement of brackish water from the Alligator River into the interior of the Reserve during storms and wind tides. Data indicate that an influx of brackish water occurred in mid-September 2005 several days after the passage of Hurricane Ophelia. Although precipitation amounts and wind speeds associated with Hurricane Ophelia were not large, substantial changes in specific conductance occurred at the canal site on the unhealthy Atlantic white cedar transect. No corresponding increase in specific conductance was observed at the canal site on the healthy Atlantic white cedar transect. The specific conductance of water samples from canals and piezometers was highly correlated with concentrations of chloride and sodium. Ion ratios of some of the water samples, particularly samples with high specific conductance, were similar to those of seawater. Thermal and chemical stratification of water in the canals occurred during summer and winter months, and turnover and mixing occurred in the spring and fall. Upwelling of ground water as a result of excavation for roads did not appear to have a significant effect on the water quality of samples from the canals or piezometers. The specific conductance of water samples from piezometers installed in the root zone of healthy stands of Atlantic white cedar generally was lower than in water samples from unhealthy stands. This pattern also was observed in samples from piezometers installed on the transects and in other areas of the Reserve. Roads appear to have isolated some areas of the Reserve from the high-conductivity water in nearby canals. The paths by which brackish water entered the Reserve cannot be determined from the data obtained during this investigation. It appears that water can enter the Reserve from various directions, depending on wind patterns and water levels in the Alligator River.
NASA Astrophysics Data System (ADS)
Keshvari, Jafar; Keshvari, Rahim; Lang, Sakari
2006-03-01
Numerous studies have attempted to address the question of the RF energy absorption difference between children and adults using computational methods. They have assumed the same dielectric parameters for child and adult head models in SAR calculations. This has been criticized by many researchers who have stated that child organs are not fully developed, their anatomy is different and also their tissue composition is slightly different with higher water content. Higher water content would affect dielectric values, which in turn would have an effect on RF energy absorption. The objective of this study was to investigate possible variation in specific absorption rate (SAR) in the head region of children and adults by applying the finite-difference time-domain (FDTD) method and using anatomically correct child and adult head models. In the calculations, the conductivity and permittivity of all tissues were increased from 5 to 20% but using otherwise the same exposure conditions. A half-wave dipole antenna was used as an exposure source to minimize the uncertainties of the positioning of a real mobile device and making the simulations easily replicable. Common mobile telephony frequencies of 900, 1800 and 2450 MHz were used in this study. The exposures of ear and eye regions were investigated. The SARs of models with increased dielectric values were compared to the SARs of the models where dielectric values were unchanged. The analyses suggest that increasing the value of dielectric parameters does not necessarily mean that volume-averaged SAR would increase. Under many exposure conditions, specifically at higher frequencies in eye exposure, volume-averaged SAR decreases. An increase of up to 20% in dielectric conductivity or both conductivity and permittivity always caused a SAR variation of less than 20%, usually about 5%, when it was averaged over 1, 5 or 10 g of cubic mass for all models. The thickness and composition of different tissue layers in the exposed regions within the human head play a more significant role in SAR variation compared to the variations (5-20%) of the tissue dielectric parameters.
NASA Astrophysics Data System (ADS)
Wei, Xuefeng F.; Grill, Warren M.
2005-12-01
Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.
Ethics and Research with Undergraduates
ERIC Educational Resources Information Center
Richman, Kenneth A.; Alexander, Leslie B.
2006-01-01
Ethicists, researchers and policy makers have paid increasing attention to the ethical conduct of research, especially research involving human beings. Research performed with and by undergraduates poses a specific set of ethical challenges. These challenges are often overlooked by the research community because it is assumed that undergraduate…
Broad specification fuels combustion technology program
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1984-01-01
Design and development efforts to evolve promising aircraft gas turbine combustor configurations for burning broadened-properties fuels were discussed. Design and experimental evaluations of three different combustor concepts in sector combustor rig tests was conducted. The combustor concepts were a state of the art single-annular combustor, a staged double-annular combustor, and a short single-annular combustor with variable geometry to control primary zone stoichiometry. A total of 25 different configurations of the three combustor concepts were evaluated. Testing was conducted over the full range of CF6-80A engine combustor inlet conditions, using four fuels containing between 12% and 14% hydrogen by weight. Good progress was made toward meeting specific program emissions and performance goals with each of the three combustor concepts. The effects of reduced fuel hydrogen content, including increased flame radiation, liner metal temperature, smoke, and NOx emissions were documented. The most significant effect on the baseline combustor was a projected 33% life reduction, for a reduction from 14% to 13% fuel hydrogen content, due to increased liner temperatures.
NASA Astrophysics Data System (ADS)
Doty, F. D.; Hosford, Gregory S.; Spitzmesser, Jonathan B.
New developments in manufacturing automation permit the use of large, parallel arrays of very small diameter tubing for greatly increased performance in both spacecraft radiators and recuperators. Micro-tube strip (MTS) recuperators with normalized specific conductance above 1000 W/kgK (20 times the current state of the art) and pressure drops below 1 percent are shown to be realistic long-term goals. The same technology also promises an order of magnitude improvement in radiator specific mass. Some significant space power applications, including the Closed Brayton Cycle and Reverse Brayton Cycle, are discussed. A detailed analysis of the MTS recuperator is presented along with experimental results from prototypes, and some manufacturing considerations are mentioned.
Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.
2013-01-01
Potential changes in climate could alter interactions between environmental and societal systems and adversely affect the availability of water resources in many coastal communities. Changes in streamflow patterns in conjunction with sea-level rise may change the salinity-intrusion dynamics of coastal rivers. Several municipal water-supply intakes are located along the Georgia and South Carolina coast that are proximal to the present day saltwater-freshwater interface of tidal rivers. Increases in the extent of salinity intrusion resulting from climate change could threaten the availability of freshwater supplies in the vicinity of these intakes. To effectively manage these supplies, water-resource managers need estimates of potential changes in the frequency, duration, and magnitude of salinity intrusion near their water-supply intakes that may occur as a result of climate change. This study examines potential effects of climate change, including altered streamflow and sea-level rise, on the dynamics of saltwater intrusion near municipal water-supply intakes in two coastal areas. One area consists of the Atlantic Intracoastal Waterway (AIW) and the Waccamaw River near Myrtle Beach along the Grand Strand of the South Carolina Coast, and the second area is on or near the lower Savannah River near Savannah, Georgia. The study evaluated how future sea-level rise and a reduction in streamflows can potentially affect salinity intrusion and threaten municipal water supplies and the biodiversity of freshwater tidal marshes in these two areas. Salinity intrusion occurs as a result of the interaction between three principal forces—streamflow, mean coastal water levels, and tidal range. To analyze and simulate salinity dynamics at critical coastal gaging stations near four municipal water-supply intakes, various data-mining techniques, including artificial neural network (ANN) models, were used to evaluate hourly streamflow, salinity, and coastal water-level data collected over a period exceeding 10 years. The ANN models were trained (calibrated) to learn the specific interactions that cause salinity intrusions, and resulting models were able to accurately simulate historical salinity dynamics in both study areas. Changes in sea level and streamflow quantity and timing can be simulated by the salinity intrusion models to evaluate various climate-change scenarios. The salinity intrusion models for the study areas are deployed in a decision support system to facilitate the use of the models for management decisions by coastal water-resource managers. The report describes the use of the salinity-intrusion models decision support system to evaluate salinity-intrusion dynamics for various climate-change scenarios, including incremental increases in sea level in combination with incremental decreases in streamflow. Operation of municipal water-treatment plants is problematic when the specific-conductance values for source water are greater than 1,000 to 2,000 microsiemens per centimeter (µS/cm). High specific-conductance values contribute to taste problems that require treatment. Data from a gage downstream from a municipal water intake indicate specific conductance exceeded 1,000 µS/cm about 5.4 percent of the time over the 14-year period from August 1995 to August 2008. Simulations of specific conductance at this gaging station that incorporates sea-level rises resulted in a doubling of the exceedances to 11.0 percent for a 1-foot increase and 17.6 percent for a 2-foot increase. The frequency of intrusion of water with specific conductance values of 1,000 µS/cm was less sensitive to incremental reductions in streamflow than to incremental increases in sea level. Simulations of conditions associated with a 10-percent reduction in streamflow, in combination with a 1-foot rise in sea level, increased the percentage of time specific conductance exceeded 1,000 µS/cm at this site from 11.0 to 13.3 percent, and a 20-percent reduction in streamflow increased the percentage of time to 16.6 percent. Precipitation and temperature data from a global circulation model were used, after scale adjustments, as input to a watershed model of the Yadkin-Pee Dee River basin, which flows into the Waccamaw River and Atlantic Intracoastal Waterway study area in South Carolina. The simulated streamflow for historical conditions and projected climate change in the future was used as input for the ANN model in decision support system. Results of simulations incorporating climate-change projections for alterations in streamflow indicate an increase in the frequency of salinity-intrusion events and a shift in the seasonal occurrence of the intrusion events from the summer to the fall.
Evolution of Unsteady Groundwater Flow Systems
NASA Astrophysics Data System (ADS)
Liang, Xing; Jin, Menggui; Niu, Hong
2016-04-01
Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition changes frequently. This study was financially supported by National Natural Science Foundation of China (U1403282 & 41272258).
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender
2016-01-01
NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.
Water-Quality Data from Upper Klamath and Agency Lakes, Oregon, 2007-08
Kannarr, Kristofor E.; Tanner, Dwight Q.; Lindenberg, Mary K.; Wood, Tamara M.
2010-01-01
Significant Findings The U.S. Geological Survey Upper Klamath Lake water-quality monitoring program collected data from multiparameter continuous water-quality monitors, weekly water-quality samples, and meteorological stations during May-November 2007 and 2008. The results of these measurements and sample analyses are presented in this report for 29 stations on Upper Klamath Lake and 2 stations on Agency Lake, as well as quality-assurance data for the water-quality samples. Some of the significant findings from 2007 and 2008 are listed below. In 2007-08, ammonia concentrations were at or near the detection limit at all stations during the second week in June, after which they began to increase, with peak concentrations occurring from July through November. The concentration of un-ionized ammonia, which can be toxic to aquatic life, first began to increase in mid-June and peaked in July or August at most sites. Concentrations of un-ionized ammonia measured in the Upper Klamath Lake in 2007-08 did not reach concentrations that would have been potentially lethal to suckers. Samples collected for the analysis of dissolved organic carbon (DOC) late in the 2007 season showed no evidence of an increase in DOC subsequent to the breaching of the Williamson River Delta levees on October 30. In 2007-08, the lakewide daily median of dissolved oxygen concentration began to increase in early June, and peaked in mid- to late June. The lakewide daily median pH began to increase from early June and peaked in late June (2007) or early July (2008). Lakewide daily median pH slowly decreased during the rest of both seasons. The 2007 lakewide daily median specific conductance values first peaked on July 1, coincident with a peak in dissolved oxygen concentration and pH, followed by a decrease through mid-July. Specific conductance then remained relatively stable until mid-October when a sharp increase began that continued until the end of the season. Lakewide specific conductance values for 2008 steadily increased through the season to a maximum in late September. Lakewide daily median temperatures in both years began to increase during the beginning of June and peaked in July. These temperatures persisted until late August to early September when a gradual decrease occurred. In 2007-08, water-quality conditions monitored at the Agency Lake northern and southern stations were similar to those in Klamath Lake.
NASA Astrophysics Data System (ADS)
Revil, André; Soueid Ahmed, Abdellahi
2017-11-01
Umezawa et al. investigated the dependence of the electrical conductivity of rocks with respect to the saturation of the water phase. Four issues can be underlined in their work: (1) The conductivity model they used mixes bulk and surface tortuosities in the same linear equation (i.e., between the conductivity and the conductivity of the pore water). This conflicts with the fact that the conductivity is a concave down increasing function of the pore water conductivity and bulk tortuosity is defined only at high salinity while surface tortuosity is defined only at very low salinity. (2) The specific surface conductance obtained by Umezawa et al. is too low and conflicts with independent evaluations obtained with double layer models for aluminosilicates and silicates. (3) The expression given for the resistivity index conflicts with the inclusion of a surface conductivity term in the conductivity equation.
Mason, W Alex; January, Stacy-Ann A; Chmelka, Mary B; Parra, Gilbert R; Savolainen, Jukka; Miettunen, Jouko; Järvelin, Marjo-Riitta; Taanila, Anja; Moilanen, Irma
2016-07-01
Research indicates that risk factors cluster in the most vulnerable youth, increasing their susceptibility for adverse developmental outcomes. However, most studies of cumulative risk are cross-sectional or short-term longitudinal, and have been based on data from the United States or the United Kingdom. Using data from the Northern Finland Birth Cohort 1986 Study (NFBC1986), we examined cumulative contextual risk (CCR) at birth as a predictor of adolescent substance use and co-occurring conduct problems and risky sex to determine the degree to which CCR predicts specific outcomes over-and-above its effect on general problem behavior, while testing for moderation of associations by gender. Analyses of survey data from 6963 participants of the NFBC1986 followed from the prenatal/birth period into adolescence were conducted using structural equation modeling. CCR had long-term positive associations with first-order substance use, conduct problems, and risky sex factors, and, in a separate analysis, with a second-order general problem behavior factor. Further analyses showed that there was a positive specific effect of CCR on risky sex, over-and-above general problem behavior, for girls only. This study, conducted within the Finnish context, showed that CCR at birth had long-term general and specific predictive associations with substance use and co-occurring problem behaviors in adolescence; effects on risky sex were stronger for girls. Results are consistent with the hypothesis that early exposure to CCR can have lasting adverse consequences, suggesting the need for early identification and intervention efforts for vulnerable children. Copyright © 2016 Elsevier Ltd. All rights reserved.
2011-08-31
increased overlap with p-cladding, presumably due to dominant role of inter valence band absorption [7]. Details of the conduction band structure of the...absorption to total loss. In the specific structures used here the n-cladding composition resulted into material with three valleys in conduction band to...materials. The beam properties of the high power 2 μm emitting GaSb -based diode lasers was improved by utilization of the waveguide structure with
Tuo, Biguang; Wen, Guorong; Seidler, Ursula
2009-01-01
Background and purpose: Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO3− transport more than Cl− transport. Targeting the CFTR HCO3− conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO3− and Cl− secretion. Experimental approach: Murine duodenal mucosal HCO3− and Cl− secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. Key results: Genistein markedly stimulated duodenal HCO3− secretion and Isc in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTRinh-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO3− secretion and Isc in wild-type mice. Genistein induced 59% net HCO3− increase and 123% net Isc increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO3− increase and 507% net Isc increase, indicating that, compared with forskolin, genistein induced a relatively high HCO3−/Isc ratio. Further data showed that CFTR HCO3−/Cl− conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO3−/Cl− conductance ratio was 0.27. Conclusions and implications: Genistein stimulates duodenal HCO3− and Cl− secretion through CFTR, and has a relatively high selectivity for the CFTR HCO3− conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO3− conductance of the CFTR channels. PMID:19788494
Code of Federal Regulations, 2011 CFR
2011-01-01
... (including small women-owned businesses), Historically Black Colleges and Universities, and other minority... the specific branch of science or technology required for the successful conduct of the work. It is in... development work for NASA be expanded and that there be an increase in the extent of participation in such...
Monitoring and Managing Codling Moth Clearly and Precisely
USDA-ARS?s Scientific Manuscript database
Studies were conducted in two ‘Comice’ pear orchards treated with sex pheromone in southern Oregon to implement the use of site-specific management practices for codling moth. The density of monitoring traps was increased and insecticide sprays were applied based on moth catch thresholds. Only porti...
NASA Astrophysics Data System (ADS)
Bilema, Munder A.; Aman, Mohamad Y.; Hassan, Norhidayah A.; Ahmad, Kabiru A.; Elghatas, Hamza M.; Radwan, Ashraf A.; Shyaa, Ahmed S.
2018-04-01
Crumb rubber obtained from scrap tires has been incorporated with asphalt binder to improve the performance of asphalt mixtures in the past decades. Pavements containing crumb-rubber modified (CRM) binders present one major drawback: larger amounts of greenhouse gas emissions are produced as there is rise in the energy consumption at the asphalt plant due to the higher viscosity of these type of binders compared with a conventional mixture. The objective of this paper is to calculate the optimum bitumen content for each percentage and evaluate the moisture sensitivity of crumb rubber modified asphalt at two different compacting temperatures. In this study, crumb rubber modified percentages was 0%, 5%, 10% and 15% from the binder weight, with adding 1.5% warm mix asphalt additive (Sasobit) and crush granite aggregate of 9.5mm Nominal maximum size was used after assessing its properties. Ordinary Portland Cement (OPC) used by 2% from fine aggregate. The wet method was using to mix the CRM with bitumen, the CRM conducted at 177°C for 30 min with 700rpm and Sasobit conducted at 120°C for 10 min with 1000rpm. As a result, from this study the optimum bitumen content (OBC) was increased with increased crumb rubber content. For performance test, it was conducted using the AASHTO T283 (2007): Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. The result was as expected and it was within the specification of the test, the result show that the moisture damage increased with increased the crumb rubber content but it is not exceeding the limit of specification 80% for indirect tension strength ratio (ITSR). For the temperature was with lowing the temperature the moisture damage increased.
Fang, Jian; Luan, Jiangwei; Zhu, Gaohong; Qi, Chang; Wang, Dandan
2017-09-01
The purpose of this article was to investigate whether the combination of urinary beta 2 microglobulin (urinary β 2 -MG) and procalcitonin (PCT) diagnosis could enhance the localization diagnostic precision of pediatric urinary tract infection comparing with single diagnosis. A study was conducted in the Nephrology Department of Wuhan women and children's health care centre. This study incorporated 85 participants, including 35 children who were diagnosed as upper urinary tract infection (UUTI) with the symptom of fever and 50 children who conducted lower urinary tract infection (LUTI). Levels of PCT and urinary β 2 -MG in both UUTI and LUTI patients were measured and compared. The level of PCT and β 2 -MG were both significantly higher in UUTI group compared with in LUTI group. AUC of urinary β 2 -MG ROC (sensitivity of 71.4%, specificity of 90.0%) was significantly smaller than that of PCT ROC (sensitivity of 77.1%, specificity of 96.0%) in the single diagnosis. Although in the combined diagnosis, the sensitivity and specificity increased to 88.6% and 98%, respectively. Both PCT and β 2 -MG could be used to localize the UTI. Introducing urinary β 2 -MG into PCT diagnosis could increase the sensitivity and specificity of UTI lesion diagnosis in clinical practice. © 2016 The Authors Journal of Clinical Laboratory Analysis Published by Wiley Periodicals, Inc.
Effect of a gap opening on the conductance of graphene with magnetic barrier structures
NASA Astrophysics Data System (ADS)
Esmailpour, Mohammad
2018-04-01
In the present study Klein tunneling in a single-layer gapped graphene was investigated by transfer matrix method under normal magnetic field for one and two magnetic barriers. Calculations show that electron transmission through a magnetic barrier is deflected to positive angles and reduces as the magnitude of magnetic field and especially the energy gap increases. This reduction is even more significant in larger fields so that after reaching a specific value of energy gap, an effective confinement for fermions and suppression of Klein tunneling is reached particularly in normal incidence and the conductance becomes zero. Unlike one barrier, the process of tunneling through two magnetic barriers induces symmetric transmission probability versus the incident angle; even, for lower energy gaps, electron transmission probability increases which in turn reduces total conductance via proper changes in the value of the magnetic field and energy gap. In general, it is concluded that confining electrons in asymmetric transmission through one barrier is conducted better than two barriers.
NASA Astrophysics Data System (ADS)
Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.
2017-12-01
In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.
2016-07-15
Graphical abstract: Variation of AC conductivity (σ{sub AC}) as a function of natural log of angular frequency (lnω) for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4} nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectricmore » constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr{sup +3} doped Ni-Zn nanoferrite samples with composition Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2-x}Cr{sub x}O{sub 4}(x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr{sup +3} doped Ni-Zn ferrite nanoparticles, as the concentration of Cr{sup +3} increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ{sub AC}) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.« less
Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E
2010-01-15
Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.
Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke
2017-11-08
Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.
Climate-water quality relationships in Texas reservoirs
Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo
2015-01-01
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.
André, Marcel J
2013-08-01
Numerous studies focus on the measurement of conductances for CO2 transfer in plants and especially on their regulatory effects on photosynthesis. Measurement accuracy is strongly dependent on the model used and on the knowledge of the flow of photochemical energy generated by light in chloroplasts. The only accurate and precise method to quantify the linear electron flux (responsible for the production of reductive energy) is the direct measurement of O2 evolution, by (18)O2 labelling and mass spectrometry. The sharing of this energy between the carboxylation (P) and the oxygenation of photorespiration (PR) depends on the plant specificity factor (Sp) and on the corresponding atmospheric concentrations of CO2 and O2 (André, 2013). The concept of plant specificity factor simplifies the equations of the model. It gives a new expression of the effect of the conductance (g) between atmosphere and chloroplasts. Its quantitative effect on photosynthesis is easy to understand because it intervenes in the ratio of the plant specificity factor (Sp) to the specificity of Rubisco (Sr). Using this 'simple' model with the data of (18)O2 experiments, the calculation of conductance variations in response to CO2 and light was carried out. The good fitting of experimental data of O2 and CO2 exchanges confirms the validity of the simple model. The calculation of conductance variation during the increase of external CO2 concentration reveals a linear law of regulation between external and internal CO2 concentrations. During CO2 variations, the effects of g regulation tend to maintain a higher level of oxygenation (PR) in expense of a better carboxylation (P). Contrary to CO2, the variation of O2 creates a negative feedback effect compatible with a stabilization of atmospheric O2. The regulation of g amplifies this result. The effect of light in combination with CO2 is more complex. Below 800μmolquantam(-2)s(-1) the ratio PR/P is maintained unchangeable in expense of carboxylation efficiency. Above that irradiance value, PR/P increases dramatically. It appears that the saturation curves of photosynthesis under high light could be simply due to the regulation by the conductance g and not by any biochemical or biophysical limitation. In conclusion, the regulatory effect of conductance operates in a way that it preserves the rate of photorespiration. This confirms a positive and protective role of photorespiration at the biochemical, whole plant and atmosphere levels. Since the effects of photorespiration are linked to the properties of Rubisco, they add new arguments for a co-evolution of plant and atmosphere, including the evolution of CO2 conductance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Our work will yield an increased general understanding of interactions among the alteration of coastal ecosystem, species invasions, climate change, and human risk in coastal environments. In addition, we will conduct a quantitative vulnerability assessment of a specific coast...
Behavioral and Emotional Symptoms of Post-Institutionalized Children in Middle Childhood
ERIC Educational Resources Information Center
Wiik, Kristen L.; Loman, Michelle M.; Van Ryzin, Mark J.; Armstrong, Jeffrey M.; Essex, Marilyn J.; Pollak, Seth D.; Gunnar, Megan R.
2011-01-01
Background: Experience in institutional/orphanage care has been linked to increased mental health problems. Research suggests that children adopted from institutions experience specific difficulties related to inattention/overactivity. Evidence of internalizing and conduct problems relative to non-adopted peers has been found in early childhood…
Improved population exposure factors in the meta-analysis of air pollution health effects
Numerous time-series studies have reported significant associations between ambient PM2.5 levels and increased mortality and morbidity. A recent mortality study conducted by Franklin et al. 2007 in 27 U.S. cities has reported significant heterogeneity among city-specific effect e...
USDA-ARS?s Scientific Manuscript database
There is increasing evidence that stress can have a significant deleterious effect on food safety through a variety of potential mechanisms. However, there is very little research conducted to determine the potential effects of specific pre-slaughter stressors on Salmonella infection and carriage in...
The Casual Effects of Emotion on Couples' Cognition and Behavior
ERIC Educational Resources Information Center
Tashiro, Ty; Frazier, Patricia
2007-01-01
The authors conducted 2 translational studies that assessed the causal effects of emotion on maladaptive cognitions and behaviors in couples. Specifically, the authors examined whether negative emotions increased and positive emotions decreased partner attributions and demand-withdraw behaviors. Study 1 (N=164) used video clips to assess the…
Monitoring scale-specific and temporal variation in electromagnetic conductivity images
USDA-ARS?s Scientific Manuscript database
In the semi-arid and arid landscapes of southwest USA, irrigation sustains agricultural activity; however, there are increasing demands on water resources. As such spatial temporal variation of soil moisture needs to be monitored. One way to do this is to use electromagnetic (EM) induction instrumen...
Mountaintop removal and valley fill coal mining has altered the physicochemical landscape of the Central Appalachian region in the U.S. Increased specific conductance and levels of component ions downstream from valley fill sites are toxic to aquatic life and can negatively impa...
NASA Astrophysics Data System (ADS)
Spector, J.
2016-12-01
The Lower Colorado River in Austin, Texas receives nitrogen-rich runoff and treated wastewater effluent and is subject to periodic water releases from the Longhorn Dam, which cause fluctuations in groundwater stage downstream. This research examined groundwater denitrification at the Hornsby Bend riparian area (located approximately 24 km downstream of downtown Austin) and characterized how dam-induced hyporheic exchange affects denitrification rates. Conductivity, temperature, water level, and dissolved oxygen concentrations were measured continuously throughout flood pulses for six months using dataloggers installed in a transect of seven monitoring wells on the river bank. Hourly samples were collected using an autosampler in one monitoring well (MW-5) during various flood conditions during the six month monitoring period. Water samples were analyzed for total organic carbon, total nitrogen, anions (NO3- and NO2-), NH4+ concentrations, alkalinity, and specific ultraviolet absorbance (SUVA) to characterize dissolved organic matter. Following large flood events (up to 4 m of water level stage increase), average conductivity increased 300 µs/centimeter in MW-5 as the water level receded. Analysis of water samples indicated that NO3- reduction occurred as conductivity and alkalinity increased. In addition, NH4+ concentrations increased during high conductivity periods. Increased denitrification activity corresponded with high SUVA. High conductivity and alkalinity increase the availability of electron donors (HCO3- and CO32-) and enhances denitrification potential. Higher SUVA values indicate increased dissolved organic carbon aromaticity and corresponding NO3- reduction. Additionally, changes in dissolved organic matter lability indicate the residence times of possible reactive organic carbon in the riparian area. This study has implications for determining advantageous geochemical conditions for hyporheic zone denitrification following large flood events.
Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids
NASA Astrophysics Data System (ADS)
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-03-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.
The hydraulic architecture of Juniperus communis L. ssp. communis: shrubs and trees compared.
Beikircher, Barbara; Mayr, Stefan
2008-11-01
Juniperus communis ssp. communis can grow like a shrub or it can develop a tree-like habit. In this study, the hydraulic architecture of these contrasting growth forms was compared. We analysed the hydraulic efficiency (leaf-specific conductivity, k(l); specific conductivity, k(s); Huber value, HV) and the vulnerability to cavitation (the water potential corresponding to a 50% loss of conductivity, Psi(50)), as well as anatomical parameters [mean tracheid diameter, d; mean hydraulic diameter, d(h); cell wall reinforcement (t/b)(h)(2)] of shrub shoots, tree stems and tree branches. Shrub shoots were similar to tree branches (especially to lower branches) in growth form and conductivity (k(l) = 1.93 +/- 0.11 m(2) s(-1) MPa(-1) 10(-7), k(s) = 5.71 +/- 0.19 m(2) s(-1) MPa(-1) 10(-4)), but were similar to tree stems in their vulnerability to cavitation (Psi(50) = -5.81 +/- 0.08 MPa). Tree stems showed extraordinarily high k(l) and k(s) values, and HV increased from the base up. Stem xylem was more vulnerable to cavitation than branch xylem, where Psi(50) increased from lower (Psi(50) = -6.44 +/- 0.19 MPa) to upper branches (Psi(50) = -5.98 +/- 0.13 MPa). Conduit diameters were correlated with k(l) and k(s). Data indicate that differences in hydraulic architecture correspond to changes in growth form. In some aspects, the xylem hydraulics of tree-like Juniperus communis differs from that of other coniferous tree species.
Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-01-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands. PMID:29600245
de Alwis, Ruklanthi; Watson, Conall; Nikolay, Birgit; Lowry, John H; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Lau, Colleen L; Nilles, Eric J; Edmunds, W John; Kama, Mike; Baker, Stephen; Cano, Jorge
2018-02-01
Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen-specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12-1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80-0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69-0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diantoro, Markus, E-mail: markus.diantoro.fmipa@um.ac.id; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul
Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C{sub 6}-C{sub 3}-C{sub 6} carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order tomore » obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.« less
NASA Astrophysics Data System (ADS)
Diantoro, Markus; Hidayati, Nisfi Nahari Sani; Latifah, Rodatul; Fuad, Abdulloh; Nasikhudin, Sujito, Hidayat, Arif
2016-03-01
Natural polymers can be extracted from leaf or stem of plants. Pterocarpus Indicus W. (PIW) and Jatropha Multifida L. (JIL) plants are good candidate as natural polymer sources. PIW and JIW polymers contain chemical compound so-called flavonoids which has C6-C3-C6 carbons conjugated configuration. The renewable type of polymer as well as their abundancy of flavonoid provide us to explore their physical properties. A number of research have been reported related to broad synthesis method and mechanical properties. So far there is no specific report of electrical conductivity associated to PIW and JIL natural polymers. In order to obtain electrical conductivity and its crystallinity of the extracted polymer films, it was induced on them a various fraction of silver nano particles. The film has been prepared by means of spin coating method on nickel substrate. It was revealed that FTIR spectra confirm the existing of rutine flavonoid. The crystallinity of the samples increase from 0.66%, to 4.11% associated to the respective various of silver fractions of 0.1 M to 0.5 M. SEM images show that there are some grains of silver in the film. The nature of electric conductivity increases a long with the addition of silver. The electrical conductivity increase significantly from 3.22 S/cm, to 542.85 S/cm. On the other hand, PIW films also shows similar trends that increase of Ag induce the increase its crystallinity as well as its electrical conductivity at semiconducting level. This result opens a prospective research and application of the green renewable polymer as optoelectronic materials.
NASA Astrophysics Data System (ADS)
Purwanto, P.; Adi, WA; Yunasfi
2017-05-01
The Composite of Ba1,5Sr0,5Fe2O5 has been synthesized by using powder metallurgy technique. The Ba1.5Sr0.5Fe2O5 were prepared from BaCO3, SrCO3 and Fe2O3 raw materials with a specific weight ratio. The three materials were synthesized by powder metallurgy under heat treatment at 800 °C, 900 °C, and 1000 °C for 5 hours. All the three samples were characterized by using X-ray Diffraction (XRD) to determine the crystal structure and crystal size, LCR meter to determine the conductivity, and Scanning Electron Microscope (SEM) to observe the morphological of the composites. The phase analysis result showed that the composite consists of several minor phases such as BaO2, SrO2, and Fe2O3. The Crystal size of composite Ba1.5Sr0.5Fe2O5 decreased while increases the strain of crystal with increasing of sintering temperature. The crystal size of the Ba1.5Sr0.5Fe2O5 composite is 3.55 nm to 7.23 nm and value of strain is 8.47% until 3.90%. Based on the conductivity measurement, it was obtained that the conductivity of the Ba1.5Sr0.5Fe2O5 composite decreased with increasing sintering temperature. It was also noticed that the conductivity increased with increasing of frequency. The conductivity ranged from 6.619×10-7 S/cm to 65.659×10-7 S/cm. The energy dispersive spectroscopy (EDS) analysis showed that several dominant elements were a good agreement with the phase analysis.
[The Clinical Investigation Centers in France: Whatzat? What for? How does it work?].
Montagne, O; Le Corvoisier, P
2008-01-01
For the last 15 years, French university-affiliated hospitals have dramatically modified how biomedical research is conducted in France. Multidisciplinary and technically complex research projects are increasingly difficult to conduct in clinical units. To ensure quality, good clinical practice, and security, platforms dedicated to clinical research with specific staff have been implanted. These units, called Clinical Investigation Centers (CICs), are open to academic and industrial investigators working in the medical fields involving patients and healthy volunteers. The CICs' activities are always closely related to the university hospital research programs and can also serve as a tool for locally implanted clinical and fundamental research teams (INSERM). Nowadays, clinical research requires specific tools and platforms. To enhance French university hospital research efficiency and provide a more open research environment, all investigators, on-site as well as from other institutions, are invited to use these cohesive research facilities and skills to conduct protocols that are fully adapted to their needs in optimal conditions of professional clinical research.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-05-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-07-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
Lapate, Regina C; Rokers, Bas; Li, Tianyi; Davidson, Richard J
2014-02-01
Emotions can color people's attitudes toward unrelated objects in the environment. Existing evidence suggests that such emotional coloring is particularly strong when emotion-triggering information escapes conscious awareness. But is emotional reactivity stronger after nonconscious emotional provocation than after conscious emotional provocation, or does conscious processing specifically change the association between emotional reactivity and evaluations of unrelated objects? In this study, we independently indexed emotional reactivity and coloring as a function of emotional-stimulus awareness to disentangle these accounts. Specifically, we recorded skin-conductance responses to spiders and fearful faces, along with subsequent preferences for novel neutral faces during visually aware and unaware states. Fearful faces increased skin-conductance responses comparably in both stimulus-aware and stimulus-unaware conditions. Yet only when visual awareness was precluded did skin-conductance responses to fearful faces predict decreased likability of neutral faces. These findings suggest a regulatory role for conscious awareness in breaking otherwise automatic associations between physiological reactivity and evaluative emotional responses.
Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES
NASA Astrophysics Data System (ADS)
Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.
2006-06-01
In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 < 10 K. We carried out thermal analysis considering heat generation, conduction and transfer under conduction-cooling condition, and reproduced the electrical and thermal characteristics of the conduction-cooled HTS coil, taking account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.
Heat, chloride, and specific conductance as ground water tracers near streams
Cox, M.H.; Su, G.W.; Constantz, J.
2007-01-01
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.
Iqbal, Asif; Allan, Andrew; Zito, Rocco
2016-03-01
The study aims to develop an emission inventory (EI) approach and conduct an inventory for vehicular sources in Dhaka City, Bangladesh. A meso-scale modelling approach was adopted for the inventory; the factors that influence the emissions and the magnitude of emission variation were identified and reported on, which was an innovative approach to account emissions unlike the conventional inventory approaches. Two techniques for the emission inventory were applied, viz. (i) a combined top-down and bottom-up approach that considered the total vehicle population and the average diurnal on-road vehicle speed profile in the city and (ii) a bottom-up approach that accounted for road link-specific emissions of the city considering diurnal traffic volume and speed profiles of the respective roads. For the bottom-up approach, road link-specific detailed data were obtained through field survey in 2012, where mid-block traffic count of the day, vehicle speed profile, road network and congestion data were collected principally. The emission variances for the change in transport system characteristics (like change in fuel type, AC usage pattern, increased speed and reduced congestion/stopping) were predicted and analysed in this study; congestion influenced average speed of the vehicles, and fuel types in the vehicles were identified as the major stressors. The study performance was considered reasonable when comparing with the limited number of similar studies conducted earlier. Given the increasing trend of private vehicles each year coupled with increasing traffic congestion, the city is under threat of increased vehicular emissions unless a good management strategy is implemented. Although the inventory is conducted for Dhaka and the result may be important locally, the approach adopted in this research is innovative in nature to be followed for conducting research on other urban transport systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA
NASA Astrophysics Data System (ADS)
Smith, Matthew
Nonpoint source pollution (NPS) continues to be the leading cause of water quality degradation in the United States. On-site wastewater systems (OWS) contribute to NPS; however, due to the range of system designs and complexity of the subsurface, OWS contributions to groundwater pollution are not well understood. As the population of coastal North Carolina continues to increase, better methods to locate and characterize wastewater impacted groundwater are needed. Previous studies have demonstrated the ability of non-intrusive geophysical methods to provide high resolution information on various contaminants in different geologic settings. The goals of this study were to evaluate the utility of ground penetrating radar (GPR) and capacitively coupled resistivity (CCR) for detecting OWS components, delineating associated wastewater plumes, and monitoring temporal variations in groundwater quality. Cross-sectional and three dimensional (3D) geophysical surveys were conducted periodically over a one year period (February 2011--January 2012) at two schools utilizing OWS in the lower Neuse River Basin (NRB) in the North Carolina Coastal Plain (NCCP). Cores were collected at both study sites; as well as monthly groundwater depth, temperature, and specific conductivity measurements to better constrain the geophysical interpretations. Additionally, dissolved inorganic nitrogen (DIN) and Cl concentrations were monitored bi-monthly to assess nutrient transport at the sites. The 3D GPR surveys effectively located the wastewater drainage trenches at both sites, in close agreement with locations described in as-built OWS blueprints. Regression analysis of resistivity versus groundwater specific conductivity revealed an inverse relationship, suggesting resistivity ≤ 250 ohm.m was indicative of wastewater impacted groundwater at both sites. The 3D resistivity models identified regions of low resistivity beneath the drainfields relative to background values. Regression analysis of GPR signal absolute peak amplitude (APA) versus groundwater specific conductivity revealed a decrease in APA indicative of radar signal attenuation at locations where groundwater specific conductivity was elevated. The 3D GPR models identified regions of attenuated radar signal beneath the drainfields relative to background locations. Comparisons of groundwater specific conductivity, GPR, and CCR lateral wastewater plume estimates indicated similar dimensions at both sites. The sensitivity of resistivity measurements tended to decline with increased water-table depth; although, differences in resistivity associated with seasonal water-table depth changes were noticeable. Overall, results of this study suggest that GPR and CCR surveys combined with sediment, hydrologic, and water quality data may provide reliable information on the location of OWS components and extent of associated wastewater plumes. The GPR surveys successfully located the wastewater drainage trenches and helped image the uppermost surface of the wastewater plumes. The CCR surveys delineated the lateral wastewater plume dimensions and revealed temporal changes in groundwater quality associated with differences in groundwater recharge.
NASA Astrophysics Data System (ADS)
Ji, Jianying
Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of polymers, blended with poly(ethylene oxide)(PEO). The results indicated that the s-SPE with 55 wt% of SPI possesses a fully amorphous uniform structure having low Tg, in contrast with crystalline PEO-based SPE having discernable Tg and Tm. The conductivity and elasticity are both significantly improved with SPI involvement. Remarkably, this film has been elongated up to 100% without loss of ionic conductivity and 700% without mechanical damage.
Complex conductivity of oil-contaminated clayey soils
NASA Astrophysics Data System (ADS)
Deng, Y.; Revil, A.; Shi, X.
2017-12-01
Non-intrusive hydrogeophysical techniques have been wildly applied to detect organic contaminants because of the difference of electrical properties for contaminated soil. Among them, spectral induced polarization (SIP) has emerged as a promising tool for the identification of contamination due to its sensitivity to the chemistry of pore water, solid-fluid interfaces and fluid content. Previous works have investigated the influences of oil on the electrical signatures of porous media, which demonstrated the potentials of SIP in the detection of hydrocarbon contamination. However, few works have done on the SIP response of oil in clayey soils. In this study, we perform a set of SIP measurements on the clayey samples under different water saturations. These clayey soils are characterized by relatively high cation exchange capacity. The objective in this work is to test the empirical relationships between the three exponents, including the cementation exponent (m), the saturation exponent (n) and the quadrature conductivity exponent (p), which is expected to reduce the model parameters needed in geophysical and hydraulic properties predictions. Our results show that the complex conductivity are saturation dependent. The magnitude of both in-phase and quadrature conductivities generally decrease with decreasing water saturation. The shape of quadrature conductivity spectra slightly changes when water saturation decreases in some cases. The saturation exponent slightly increases with cation exchange capacity, specific surface area and clay content, with an average value around 2.05. Compared to saturation exponent, the quadrature conductivity exponent apparently increases with cation exchange capacity and specific surface area while has little to do with the clay content. Further, the results indicate that the quadrature conductivity exponent p does not strictly obey to p=n-1 as proposed by Vinegar and Waxman (1984). Instead, it mostly ranges between p=n-1.5 and p=n-0.5. The relationship between the saturation exponent n and the cementation exponent m is comprised between m=n and m=n-0.5.
Meinzer, Frederick C; Campanello, Paula I; Domec, Jean-Christophe; Genoveva Gatti, M; Goldstein, Guillermo; Villalobos-Vega, Randol; Woodruff, David R
2008-11-01
This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).
Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods.
Ambrose, Anthony R; Sillett, Stephen C; Dawson, Todd E
2009-07-01
We examined changes in branch hydraulic, leaf structure and gas exchange properties in coast redwood (Sequoia sempervirens) and giant sequoia (Sequoiadendron giganteum) trees of different sizes. Leaf-specific hydraulic conductivity (k(L)) increased with height in S. sempervirens but not in S. giganteum, while xylem cavitation resistance increased with height in both species. Despite hydraulic adjustments, leaf mass per unit area (LMA) and leaf carbon isotope ratios (delta(13)C) increased, and maximum mass-based stomatal conductance (g(mass)) and photosynthesis (A(mass)) decreased with height in both species. As a result, both A(mass) and g(mass) were negatively correlated with branch hydraulic properties in S. sempervirens and uncorrelated in S. giganteum. In addition, A(mass) and g(mass) were negatively correlated with LMA in both species, which we attributed to the effects of decreasing leaf internal CO(2) conductance (g(i)). Species-level differences in wood density, LMA and area-based gas exchange capacity constrained other structural and physiological properties, with S. sempervirens exhibiting increased branch water transport efficiency and S. giganteum exhibiting increased leaf-level water-use efficiency with increasing height. Our results reveal different adaptive strategies for the two redwoods that help them compensate for constraints associated with growing taller, and reflect contrasting environmental conditions each species faces in its native habitat.
NASA Astrophysics Data System (ADS)
Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong
2017-03-01
We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... Cooperators adhere to specific standards of ethical conduct? (a) A Cooperator shall conduct its business in...
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... specific standards of ethical conduct? (a) A Cooperator shall conduct its business in accordance with the...
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... specific standards of ethical conduct? (a) A Cooperator shall conduct its business in accordance with the...
7 CFR 1484.34 - Must Cooperators adhere to specific standards of ethical conduct?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 10 2012-01-01 2012-01-01 false Must Cooperators adhere to specific standards of ethical conduct? 1484.34 Section 1484.34 Agriculture Regulations of the Department of Agriculture... specific standards of ethical conduct? (a) A Cooperator shall conduct its business in accordance with the...
Ghaem, Haleh; Ghorbani, Mohammad; Zare Dorniani, Samira
2017-06-01
Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients' medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. The patients' mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) ( P <0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models.
Appendix 3 Summary of Field Sampling and Analytical Methods with Bibliography
Conductivity and Specific conductance are measures of the ability of water to conduct an electric current, and are a general measure of stream-water quality. Conductivity is affected by temperature, with warmer water having a greater conductivity. Specific conductance is the te...
Metal rubber sensor technology to enable in-flight icing measurement
NASA Astrophysics Data System (ADS)
Berg, Michelle; Lalli, Jennifer; Claus, Richard; Kreeger, Richard E.
2017-04-01
This paper describes the development and testing of Metal Rubber sensors for the nondestructive, normal force detection of ice accretion on aerospace structures. The buildup of ice on aircraft engine components, wings and rotorblades is a problem for both civilian and military aircraft that must operate under all weather conditions. Ice adds mass to moving components, thus changing the equations of motion that control the operation of the system as well as increasing drag and torque requirements. Ice also alters the surface geometry of leading edges, altering the airflow transition from laminar to turbulent, generating turbulence and again increasing drag. Metal Rubber is a piezoresistive material that exhibits a change in electrical resistance in response to physical deformation. It is produced as a freestanding sheet that is assembled at the molecular level using alternating layers of conductive metal nanoparticles and polymers. As the volume percentage of the conductive nanoparticle clusters within the material is increased from zero, the onset of electrical conduction occurs abruptly at the percolation threshold. Electrical conduction occurs due to electron hopping between the clusters. If a length of the material is strained, the clusters move apart so the efficiency of electron hopping decreases and electrical resistance increases. The resulting change in resistance as a function of the change in strain in the material, at a specific volume percentage of conductive clusters, can be interpreted as the transduction response of the material. We describe how sensors fabricated from these materials can be used to measure ice buildup.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang
2018-06-01
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.
Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig
2016-02-09
Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig
Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less
Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard
2016-01-01
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability. PMID:27379112
Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard
2016-01-01
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.
Compliance with OSHA's respiratory protection standard in hospitals.
Krishnan, U; Janicak, C A
1999-01-01
This study examined the incidence of violations of occupational safety and health standards for respiratory protection in hospitals. Data from Occupational Safety and Health Administration inspections that occurred in hospitals and resulted in violations of the respiratory protection standards were examined. From July 1, 1990, to June 30, 1995, the complaint rates for hazards in the workplace significantly increased. During 1990-1991, tuberculosis hazard complaint inspections rates were approximately 5 complaints per 1000 complaint inspections conducted. During 1994-1995, tuberculosis hazard complaint inspections rates were approximately 76 complaints per 1000 complaint inspections conducted, representing an increase of over 15 times. During this same period, the percentage of respiratory protection violations in relation to all violations doubled. Increased employee awareness of the hazards and current safety laws could have contributed to the increased frequency of employee complaints, leading to increases in inspections, violations, and fines. Employers must adhere to the current safety and health requirements specifically as they pertain to respiratory hazards and tuberculosis.
Analysis of pumping tests: Significance of well diameter, partial penetration, and noise
Heidari, M.; Ghiassi, K.; Mehnert, E.
1999-01-01
The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating piezometers and observation wells. Noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced a set of parameters that agrees very well with piezometer test data when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters decreased with increasing noise level.
2013-01-01
Background England’s extensive NHS patient survey programme has not fulfilled government promises of widespread improvements in patients’ experiences, and media reports of poor nursing care in NHS hospitals are increasingly common. Impediments to the surveys’ impact on the quality of nursing care may include: the fact that they are not ward-specific, so nurses claim “that doesn’t happen on my ward”; nurses’ scepticism about the relevance of patient feedback to their practice; and lack of prompt communication of results. The surveys’ impact could be increased by: conducting ward-specific surveys; returning results to ward staff more quickly; including patients’ written comments in reports; and offering nurses an opportunity to discuss the feedback. Very few randomised trials have been conducted to test the effectiveness of patient feedback on quality improvement and there have been few, if any, published trials of ward-specific patient surveys. Methods Over two years, postal surveys of recent inpatients were conducted at four-monthly intervals in 18 wards in two NHS Trusts in England. Wards were randomly allocated to Basic Feedback (ward-specific printed patient survey results including patients’ written comments sent to nurses by letter); Feedback Plus (in addition to printed results, ward meetings to discuss results and plan improvements) or Control (no active feedback of survey results). Patient survey responses to questions about nursing care were used to compute wards’ average Nursing Care Scores at each interval. Nurses’ reactions to the patient feedback were recorded. Results Conducting ward-level surveys and delivering ward-specific results was feasible. Ward meetings were effective for engaging nurses and challenging scepticism and patients’ written comments stimulated interest. 4,236 (47%) patients returned questionnaires. Nursing Care Scores improved more for Feedback Plus than Basic Feedback or Control (difference between Control and Feedback Plus = 8.28 ± 7.2 (p = 0.02)). Conclusions This study provides preliminary evidence that facilitated patient feedback can improve patients’ experiences such that a full trial is justified. These findings suggest that merely informing nurses of patient survey results in writing does not stimulate improvements, even if results are disaggregated by ward, but the addition of ward meetings had an important and significant impact. PMID:23826970
Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.; Rabenberg, Michael J.; Dahl, Charles F.; Ell, Mike J.
2013-01-01
ong Lake National Wildlife Refuge, located in south-central North Dakota, is an important habitat for numerous migratory birds and waterfowl, including several threatened or endangered species. The refuge is distinguished by Long Lake, which is approximately 65 square kilometers and consists of four primary water management units. Water levels in the Long Lake units are maintained by low-level dikes and water-control structures, which after construction during the 1930s increased the water-storage capacity of Long Lake and reduced the frequency and volume of flushing flows downstream. The altered water regime, along with the negative precipitation:evaporation ratio of the region, may be contributing to the accumulation of water-borne chemical constituents such as salts, trace metals, and other constituents, which at certain threshold concentrations may impair aquatic plant, invertebrate, and bird communities of the refuge. The refuge’s comprehensive conservation planning process identified the need for water-quality monitoring to assess current (2013) conditions, establish comparative baselines, evaluate changes over time (trends), and support adaptive management of the wetland units. In 2008, the U.S. Geological Survey, U.S. Fish and Wildlife Service, and North Dakota Department of Health began a water-quality monitoring program at Long Lake National Wildlife Refuge to address these needs. Biweekly water-quality samples were collected for ions, trace metals, and nutrients; and in situ sensors and data loggers were installed for the continuous measurement of specific conductance and water depth. Long Lake was characterized primarily by sodium, bicarbonate, and sulfate ions. Overall results for total alkalinity and hardness were 580 and 329 milligrams per liter, respectively; thus, Long Lake is considered alkaline and classified as very hard. The mean pH and sodium adsorption ratio for Long Lake were 8.8 and 10, respectively. Total dissolved solids concentrations averaged approximately 1,750 milligrams per liter, and ranged from 117 to 39,700 milligrams per liter. Twelve of the 14 trace metals detected in the water samples had established North Dakota water-quality standards for aquatic life, and only aluminum and copper consistently exceeded these criteria. Aluminum is considered harmful to aquatic biota in acidic (pH less than 5.5) systems and most of the copper standard exceedances were collected from highly concentrated waters because of evaporation and seasonally low water levels. Concentrations for various forms of nitrogen and phosphorus generally were similar to reported regional values. Specific conductance of Long Lake varied seasonally and annually both within and among management units, with values ranging from less than 500 to nearly 40,000 microsiemens per centimeter at 25 degrees Celsius. Long Lake was characterized by consistent seasonal patterns of increasing specific conductance from spring (March and April) to fall (September and October), with levels stabilizing through the end of the sampling season (November). These seasonal patterns in specific conductance were associated with decreasing water levels throughout the summer due primarily to evaporation and continuous water releases through the Unit 1 outlet structure, which resulted in the concentration of salts. Specific conductance of each unit, along with water levels, also varied among years. Overall, specific conductance levels were greatest during the drier year of 2008 when water levels were low. Specific conductance levels were lowest during the spring of 2009 following above-average volumes of fresh water from snowmelt runoff. Comparisons of specific conductance among sample sites that were spatially distributed within each management unit suggested that spatial variability within units was low except for areas associated with local inflows. Data collected during this study revealed consistent seasonal patterns and low within-unit spatial variability of specific conductance. Based on these data results, future sample collection efforts may be reduced, as well as the number of sample locations, to limit sampling costs. Water-quality samples collected monthly or seasonally during the growing season (spring, summer, and fall) from a single representative location within each water-management unit should provide sufficient data to assess seasonal changes in water-quality over time and provide information for Long Lake management decisions.
Tractenberg, Rochelle E; Russell, Andrew J; Morgan, Gregory J; FitzGerald, Kevin T; Collmann, Jeff; Vinsel, Lee; Steinmann, Michael; Dolling, Lisa M
2015-12-01
The use of Big Data--however the term is defined--involves a wide array of issues and stakeholders, thereby increasing numbers of complex decisions around issues including data acquisition, use, and sharing. Big Data is becoming a significant component of practice in an ever-increasing range of disciplines; however, since it is not a coherent "discipline" itself, specific codes of conduct for Big Data users and researchers do not exist. While many institutions have created, or will create, training opportunities (e.g., degree programs, workshops) to prepare people to work in and around Big Data, insufficient time, space, and thought have been dedicated to training these people to engage with the ethical, legal, and social issues in this new domain. Since Big Data practitioners come from, and work in, diverse contexts, neither a relevant professional code of conduct nor specific formal ethics training are likely to be readily available. This normative paper describes an approach to conceptualizing ethical reasoning and integrating it into training for Big Data use and research. Our approach is based on a published framework that emphasizes ethical reasoning rather than topical knowledge. We describe the formation of professional community norms from two key disciplines that contribute to the emergent field of Big Data: computer science and statistics. Historical analogies from these professions suggest strategies for introducing trainees and orienting practitioners both to ethical reasoning and to a code of professional conduct itself. We include two semester course syllabi to strengthen our thesis that codes of conduct (including and beyond those we describe) can be harnessed to support the development of ethical reasoning in, and a sense of professional identity among, Big Data practitioners.
Adachi, Shunsuke; Yoshikawa, Kazuaki; Yamanouchi, Utako; Tanabata, Takanari; Sun, Jian; Ookawa, Taiichiro; Yamamoto, Toshio; Sage, Rowan F.; Hirasawa, Tadashi; Yonemaru, Junichi
2017-01-01
Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops. PMID:28197156
Schwerbrock, R; Leuschner, C
2016-07-01
(1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Effects of biochar amendment on geotechnical properties of landfill cover soil.
Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz
2015-06-01
Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. © The Author(s) 2015.
The Transition to Diverse Online Teaching and Student Learning in Higher Education
ERIC Educational Resources Information Center
Miller, Melissa L.
2015-01-01
This paper addresses the concern of educating diverse university students in an increasingly digital environment. Specifically, educators question the quality of student online research skills and how to address gaps in research skills in both the virtual and physical classroom. A 2012 survey conducted by the Pew Research Center in collaboration…
Geography Department Weather Forecasting Contests in the 21st Century
ERIC Educational Resources Information Center
Skeeter, Brent R.
2006-01-01
The benefits of weather forecasting contests within geography departments are reaffirmed. The greatly increased ease of conducting such contests in the new millennium is stressed. Some of the specifics of the forecasting contest at Salisbury University are discussed. In addition, the advantages of a departmental contest over a national contest are…
Social and Individual Predictors of Substance Use for Native American Youth
ERIC Educational Resources Information Center
Galliher, Renee V.; Evans, Colette M.; Weiser, Desmond
2007-01-01
Substance abuse is a primary concern for youth worldwide and increasingly so for Native American youth. Guided by theoretical models of the socialization of substance use in children and adolescents, we conducted a preliminary examination of socialization factors specific to Native American youth. Strong, pro-social bonds with three primary…
Enhancing Survey Participation: Facebook Advertisements for Recruitment in Educational Research
ERIC Educational Resources Information Center
Forgasz, Helen; Tan, Hazel; Leder, Gilah; McLeod, Amber
2018-01-01
Surveys are commonly used to determine how people feel about a specific issue. The increasing availability of the internet and popularity of social networking sites have opened up new possibilities for conducting surveys and, with limited additional costs, enlarge the pool of volunteer respondents with the desired background, experience, or…
Association between Computer Use and Entrapment Neuropathies in the Wrist Region
ERIC Educational Resources Information Center
Colak, S.; Bamac, B.; Colak, T.; Ozbek, A.
2013-01-01
There is general consensus in the literature that computer use is often associated with an increased prevalence of hand and wrist disorders. Symptoms may be associated with specific clinical entities such as peripheral nerve entrapment. Motor and sensory nerve conduction velocity and vibration threshold in the hand of computer users have been…
Clearcutting affects stream chemistry in the White Mountains of New Hampshire
C. Wayne Martin; Robert S. Pierce; Gene E. Likens; F. Herbert Bormann; F. Herbert Bormann
1986-01-01
Commercial clearcutting of northern hardwood forests changed the chemistry of the streams that drained from them. By the second year after cutting, specific conductance doubled, nitrate increased tenfold, calcium tripled, and sodium, magnesium, and potassium doubled. Chloride and ammonium did not change; sulfate decreased. Concentrations of most ions returned to...
Khin, N A; Yang, P; Hung, H M J; Maung-U, K; Chen, Y-F; Meeker-O'Connell, A; Okwesili, P; Yasuda, S U; Ball, L K; Huang, S-M; O'Neill, R T; Temple, R
2013-08-01
Globalization of clinical research has led to an increase in clinical trials conducted outside of the United States that are submitted to the US Food and Drug Administration (FDA) in new drug applications. This article discusses the FDA's experience with these submissions in specific therapeutic areas, including the extent of this practice, differences between the effectiveness and safety outcomes of studies conducted inside and outside the United States, and the FDA's approach to acceptance of these trials.
Stretchable, porous, and conductive energy textiles.
Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi
2010-02-10
Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.
Han, S S; Weisz, J R; Weiss, B
2001-04-01
The authors examined the specificity of the relation between 3 types of control-related beliefs and internalizing and externalizing psychopathology in a sample of 290 clinic-referred children aged 7 to 17 years. Self-reported beliefs about control (the capacity to cause an intended outcome), contingency (the degree to which a desired outcome can be controlled by a relevant behavior), and competence (an individual's ability to produce the relevant behavior) across 3 domains (academic, behavioral, and social) showed more specific relations with psychopathology than have been previously reported. Among children with externalizing psychopathology, internalizing psychopathology may be specifically associated with increased self-critical awareness about their conduct; externalizing psychopathology may attenuate the specific negative relation between internalizing psychopathology and control-related beliefs in the social domain.
Properties of Nanocomposite Nickel-Carbon Films Deposited by Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Grenadyorov, A. S.; Oskomov, K. V.; Solov'ev, A. A.; Rabotkin, S. V.; Zakharov, A. N.; Semenov, V. A.; Oskirko, V. O.; Yelgin, Yu. I.; Korneva, O. S.
2017-12-01
The method of magnetron sputtering was used to produce a-C and a-C:Ni films on substrates of monocrystalline silicon and thermoelectric material of n-type ((Bi2Te3)0.94(Bi2Se3)0.06) and p-type ((Bi2Te3)0.20(Sb2Te3)0.80) conductivity. The authors studied the effect of Ni concentration on specific electric resistance, hardness and adhesion of the produced films. It was demonstrated that specific resistance of a-C films deposited by graphite target sputtering when supplying high bias voltage onto the substrate can be reduced by increasing the share of graphitized carbon. Adding Ni to such films allows additionally reducing their specific resistance. The increase in Ni content is accompanied with the decrease in hardness and adhesion of a-C:Ni films. The acquired values of specific electric resistance and adhesion of a-C:Ni films to thermoelectric materials allow using them as barrier anti-diffusion coatings of thermoelectric modules.
CNT fibers p-doped with F4TCNQ (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)
NASA Astrophysics Data System (ADS)
Lepak, Sandra; Boncel, Sławomir; Jóźwik, Iwona; Jakubowska, Małgorzata; Koziol, Krzysztof; Łekawa-Raus, Agnieszka
2017-08-01
Films and fibers made of carbon nanotubes were found to be promising materials for future electrical and electronic engineering. Despite of many advantages provided by these materials, they are not without problems. The biggest issue is that the macroscopic CNT structures, such as films or fibers, have much lower electrical conductivity values than it is for individual carbon nanotubes. And therefore researchers worldwide try to increase electrical properties of those macroscopic structures. One of the approaches scientists are currently investigating is chemical doping. Despite chemical doping has been already reported there is still a huge list of compounds that are capable to increase the conductivity values and has not been tested yet. In this work one of such compounds has been examined. It is a strong p-dopant 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). The solution of F4TCNQ in three different solvents (chloroform, acetic acid and dimethylsulfoxide) has been prepared and applied on purified CNT films. Both electrical conductivity and specific conductivity was measured. The best electrical conductivity value achieved is 5,24·106 S·m-1. Samples were also observed under SEM.
Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T
2011-10-15
Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. Published by Elsevier B.V.
Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.
2011-01-01
Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and sediment-quality degrade in relation to urban influence. ?? 2011.
NASA Astrophysics Data System (ADS)
Gillman, M. A.; Lamoureux, S. F.; Lafrenière, M. J.
2017-09-01
The Stream Temperature, Intermittency, and Conductivity (STIC) electrical conductivity (EC) logger as presented by Chapin et al. (2014) serves as an inexpensive (˜50 USD) means to assess relative EC in freshwater environments. This communication demonstrates the calibration of the STIC logger for quantifying EC, and provides examples from a month long field deployment in the High Arctic. Calibration models followed multiple nonlinear regression and produced calibration curves with high coefficient of determination values (R2 = 0.995 - 0.998; n = 5). Percent error of mean predicted specific conductance at 25°C (SpC) to known SpC ranged in magnitude from -0.6% to 13% (mean = -1.4%), and mean absolute percent error (MAPE) ranged from 2.1% to 13% (mean = 5.3%). Across all tested loggers we found good accuracy and precision, with both error metrics increasing with increasing SpC values. During 10, month-long field deployments, there were no logger failures and full data recovery was achieved. Point SpC measurements at the location of STIC loggers recorded via a more expensive commercial electrical conductivity logger followed similar trends to STIC SpC records, with 1:1.05 and 1:1.08 relationships between the STIC and commercial logger SpC values. These results demonstrate that STIC loggers calibrated to quantify EC are an economical means to increase the spatiotemporal resolution of water quality investigations.
Understanding Emerging Impacts and Requirements Related to Utility-Scale Solar Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Heidi M.; Grippo, Mark A.; Heath, Garvin A.
2016-09-01
Utility-scale solar energy plays an important role in the nation’s strategy to address climate change threats through increased deployment of renewable energy technologies, and both the federal government and individual states have established specific goals for increased solar energy development. In order to achieve these goals, much attention is paid to making utility-scale solar energy cost-competitive with other conventional energy sources, while concurrently conducting solar development in an environmentally sound manner.
Unemployment and prostate cancer mortality in the OECD, 1990–2009
Maruthappu, Mahiben; Watkins, Johnathan; Taylor, Abigail; Williams, Callum; Ali, Raghib; Zeltner, Thomas; Atun, Rifat
2015-01-01
The global economic downturn has been associated with increased unemployment in many countries. Insights into the impact of unemployment on specific health conditions remain limited. We determined the association between unemployment and prostate cancer mortality in members of the Organisation for Economic Co-operation and Development (OECD). We used multivariate regression analysis to assess the association between changes in unemployment and prostate cancer mortality in OECD member states between 1990 and 2009. Country-specific differences in healthcare infrastructure, population structure, and population size were controlled for and lag analyses conducted. Several robustness checks were also performed. Time trend analyses were used to predict the number of excess deaths from prostate cancer following the 2008 global recession. Between 1990 and 2009, a 1% rise in unemployment was associated with an increase in prostate cancer mortality. Lag analysis showed a continued increase in mortality years after unemployment rises. The association between unemployment and prostate cancer mortality remained significant in robustness checks with 46 controls. Eight of the 21 OECD countries for which a time trend analysis was conducted, exhibited an estimated excess of prostate cancer deaths in at least one of 2008, 2009, or 2010, based on 2000–2007 trends. Rises in unemployment are associated with significant increases in prostate cancer mortality. Initiatives that bolster employment may help to minimise prostate cancer mortality during times of economic hardship. PMID:26045715
Unemployment and prostate cancer mortality in the OECD, 1990-2009.
Maruthappu, Mahiben; Watkins, Johnathan; Taylor, Abigail; Williams, Callum; Ali, Raghib; Zeltner, Thomas; Atun, Rifat
2015-01-01
The global economic downturn has been associated with increased unemployment in many countries. Insights into the impact of unemployment on specific health conditions remain limited. We determined the association between unemployment and prostate cancer mortality in members of the Organisation for Economic Co-operation and Development (OECD). We used multivariate regression analysis to assess the association between changes in unemployment and prostate cancer mortality in OECD member states between 1990 and 2009. Country-specific differences in healthcare infrastructure, population structure, and population size were controlled for and lag analyses conducted. Several robustness checks were also performed. Time trend analyses were used to predict the number of excess deaths from prostate cancer following the 2008 global recession. Between 1990 and 2009, a 1% rise in unemployment was associated with an increase in prostate cancer mortality. Lag analysis showed a continued increase in mortality years after unemployment rises. The association between unemployment and prostate cancer mortality remained significant in robustness checks with 46 controls. Eight of the 21 OECD countries for which a time trend analysis was conducted, exhibited an estimated excess of prostate cancer deaths in at least one of 2008, 2009, or 2010, based on 2000-2007 trends. Rises in unemployment are associated with significant increases in prostate cancer mortality. Initiatives that bolster employment may help to minimise prostate cancer mortality during times of economic hardship.
Effect of Moisture Content on Thermal Properties of Porous Building Materials
NASA Astrophysics Data System (ADS)
Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert
2017-02-01
The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.
Ridenour, TY A.; Caldwell, Linda L.; Coatsworth, J. Douglas; Gold, Melanie A.
2011-01-01
Problem behavior theory posits that tolerance of deviance is an antecedent to antisocial behavior and substance use. In contrast, cognitive dissonance theory implies that acceptability of a behavior may increase after experiencing the behavior. Using structural equation modeling, this investigation tested whether changes in tolerance of deviance precede changes in conduct disorder criteria or substance use or vice versa, or if they change concomitantly. Two-year longitudinal data from 246 8- to 16-year-olds suggested that tolerance of deviance increases after conduct disorder criteria or substance use in 8-to-10- and 11-to-12-year-olds. These results were consistent with cognitive dissonance theory. In 13-to-16- year-olds, no directionality was suggested, consistent with neither theory. These results were replicated in boys and girls and for different types of conduct disorder criteria aggression (covert behavior), deceitfulness and vandalism (overt behavior), and serious rule-breaking (authority conflict). The age-specific directionality between tolerance of deviance and conduct disorder criteria or substance use is consistent with unique etiologies between early onset versus adolescent-onset subtypes of behavior problems. PMID:22180721
Ridenour, Ty A; Caldwell, Linda L; Coatsworth, J Douglas; Gold, Melanie A
2011-03-20
Problem behavior theory posits that tolerance of deviance is an antecedent to antisocial behavior and substance use. In contrast, cognitive dissonance theory implies that acceptability of a behavior may increase after experiencing the behavior. Using structural equation modeling, this investigation tested whether changes in tolerance of deviance precede changes in conduct disorder criteria or substance use or vice versa, or if they change concomitantly. Two-year longitudinal data from 246 8- to 16-year-olds suggested that tolerance of deviance increases after conduct disorder criteria or substance use in 8-to-10- and 11-to-12-year-olds. These results were consistent with cognitive dissonance theory. In 13-to-16- year-olds, no directionality was suggested, consistent with neither theory. These results were replicated in boys and girls and for different types of conduct disorder criteria aggression (covert behavior), deceitfulness and vandalism (overt behavior), and serious rule-breaking (authority conflict). The age-specific directionality between tolerance of deviance and conduct disorder criteria or substance use is consistent with unique etiologies between early onset versus adolescent-onset subtypes of behavior problems.
NASA Astrophysics Data System (ADS)
Halladay, Kate; Good, Peter
2017-10-01
We present a detailed analysis of mechanisms underlying the evapotranspiration response to increased CO_2 in HadGEM2-ES, focussed on western Amazonia. We use three simulations from CMIP5 in which atmospheric CO_2 increases at 1% per year reaching approximately four times pre-industrial levels after 140 years. Using 3-hourly data, we found that evapotranspiration (ET) change was dominated by decreased stomatal conductance (g_s), and to a lesser extent by decreased canopy water and increased moisture gradient (specific humidity difference between surface and near-surface). There were large, non-linear decreases in ET in the simulation in which radiative and physiological forcings could interact. This non-linearity arises from non-linearity in the conductance term (includes aerodynamic and stomatal resistance and partitioning between the two, which is determined by canopy water availability), the moisture gradient, and negative correlation between these two terms. The conductance term is non-linear because GPP responds non-linearly to temperature and GPP is the dominant control on g_s in HadGEM2-ES. In addition, canopy water declines, mainly due to increases in potential evaporation, which further decrease the conductance term. The moisture gradient responds non-linearly owing to the non-linear response of temperature to CO_2 increases, which increases the Bowen ratio. Moisture gradient increases resulting from ET decline increase ET and thus constitute a negative feedback. This analysis highlights the importance of the g_s parametrisation in determining the ET response and the potential differences between offline and online simulations owing to feedbacks on ET via the atmosphere, some of which would not occur in an offline simulation.
Incidence of First Time Stroke: A Saudi Experience.
Al-Shenqiti, Abdullah M; Ibrahim, Sameh R; Khaled, Osama A; Ali, Abdul Rahman H; Ahmed, Mostafa S
2017-01-01
Stroke is one of the major causes of morbidity and mortality throughout the world. A number of studies were conducted in Saudi Arabia. However, there were no studies conducted in Al-Madinah Al-Munawarah city. The aim of this study was to ascertain the incidence rate of first time stroke and the age-specific incidence in both genders in Al-Madinah Al-Munawarah city. A prospective hospital based study was conducted over a 1-year period (2014). The cases were included in the study when they were admitted with a diagnosis of cerebrovascular accident. A total 164 patients (91 men and 73 women) who had first time stroke were found in this study with no significant difference between them (p = 0.565). The crude incidence rate of stroke was 13.89 per 100,000 persons. The age-specific incidence rate increased with age in the current study, where the peak was in the age group of more than 75 years old for men and women. Total crude and the age-specific rates for first time stroke patients revealed in this study were markedly lower than the range reported from the developed countries. However, they were within the range that showed previously in Saudi Arabia and Arabian Peninsula countries. © 2017 S. Karger AG, Basel.
A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.
Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng
2018-02-01
Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Frenck, Georg; Leitinger, Georg; Obojes, Nikolaus; Hofmann, Magdalena; Newesely, Christian; Deutschmann, Mario; Tappeiner, Ulrike; Tasser, Erich
2018-02-01
For central Europe in addition to rising temperatures an increasing variability in precipitation is predicted. This will increase the probability of drought periods in the Alps, where water supply has been sufficient in most areas so far. For Alpine grasslands, community-specific imprints on drought responses are poorly analyzed so far due to the sufficient natural water supply. In a replicated mesocosm experiment we compared evapotranspiration (ET) and biomass productivity of two differently drought-adapted Alpine grassland communities during two artificial drought periods divided by extreme precipitation events using high-precision small lysimeters. The drought-adapted vegetation type showed a high potential to utilize even scarce water resources. This is combined with a low potential to translate atmospheric deficits into higher water conductance and a lower biomass production as those measured for the non-drought-adapted type. The non-drought-adapted type, in contrast, showed high water conductance potential and a strong increase in ET rates when environmental conditions became less constraining. With high rates even at dry conditions, this community appears not to be optimized to save water and might experience drought effects earlier and probably more strongly. As a result, the water use efficiency of the drought-adapted plant community is with 2.6 gDW kg-1 of water much higher than that of the non-drought-adapted plant community (0.16 gDW kg-1). In summary, the vegetation's reaction to two covarying gradients of potential evapotranspiration and soil water content revealed a clear difference in vegetation development and between water-saving and water-spending strategies regarding evapotranspiration.
NASA Astrophysics Data System (ADS)
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza
2018-04-01
In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.
Domec, Jean-Christophe; Pruyn, Michele L
2008-10-01
Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.
NASA Astrophysics Data System (ADS)
Otsuka, Mioko; Homma, Ryoei; Hasegawa, Yasuhiro
2017-05-01
The phonon and carrier thermal conductivities of thermoelectric materials were calculated using the Wiedemann-Franz law, Boltzmann equation, and a method we propose in this study called the Debye specific heat method. We prepared polycrystalline n-type doped bismuth telluride (BiTe) and bismuth antimony (BiSb) bulk alloy samples and measured six parameters (Seebeck coefficient, resistivity, thermal conductivity, thermal diffusivity, magneto-resistivity, and Hall coefficient). The carrier density and mobility were estimated for calculating the carrier thermal conductivity by using the Boltzmann equation. In the Debye specific heat method, the phonon thermal diffusivity, and thermal conductivity were calculated from the temperature dependence of the effective specific heat by using not only the measured thermal conductivity and Debye model, but also the measured thermal diffusivity. The carrier thermal conductivity was also evaluated from the phonon thermal conductivity by using the specific heat. The ratio of carrier thermal conductivity to thermal conductivity was evaluated for the BiTe and BiSb samples, and the values obtained using the Debye specific heat method at 300 K were 52% for BiTe and <5.5% for BiSb. These values are either considerably larger or smaller than those obtained using other methods. The Dulong-Petit law was applied to validate the Debye specific heat method at 300 K, which is significantly greater than the Debye temperature of the BiTe and BiSb samples, and it was confirmed that the phonon specific heat at 300 K has been accurately reproduced using our proposed method.
Does leptin cause an increase in blood pressure in animals and humans?
Simonds, Stephanie E; Pryor, Jack T; Cowley, Michael A
2017-01-01
Cardiovascular diseases (CVDs) are the number one cause of death globally. The risk for the development of CVDs is significantly increased in obesity. Leptin, the product of white adipose tissue, appears to contribute to the development of CVDs in obesity. Here, we discuss the premise that leptin engages the sympathetic nervous system and contributes to elevated blood pressure (BP) developing in obesity. The long-term regulation of BP is dependent on the activity of the autonomic nervous system and specifically the sympathetic nervous system. Sympathetic nerve activity is significantly increased in obese rodents and humans. Leptin increases sympathetic nerve activity in rodents and humans; however, leptin only consistently increases BP chronically in rodents. The ability of leptin to increase BP in rodents is via both hypothalamic and extrahypothalamic regions. In leptin-deficient and leptin receptor-deficient humans, leptin appears to be the key reason for decreased systolic BP. However, in other research conducted in humans, chronic administration of leptin does not elevate BP. Further research into the role of leptin in the development of CVDs, especially in humans, needs to be conducted.
Musiał, Witold; Kokol, Vanja; Voncina, Bojana
2009-01-01
The aim of the work was the evaluation of the conductivity changes in aqueous environment, consisting of chlorhexidine, and N-isopropylacrylamide derivative microgel, during increasing the temperature between 25 degrees C and 42 degrees C, as a prerequisite to develop the this microgel for controlled release of chlorhexidine, when alterations in temperature are involved. Conductivity of studied systems underwent specific alterations, when temperature increased. For the system with polymer PNM I the values of conductivity were in the range 104,47 microS/cm - 134,70 microS/ cm, for temperature range 25 degrees C and 42 degrees C. In the case of PNM II - CX system, respective values reached 91,75 microS/cm - 135,95 microS/cm. The lowest conductivity values were observed when PNM III - CX mixture was studied: 96,90 microS/cm and 117,37 microS/cm. When a complex of derivatives of N-isopropylacrylamide with chlorhexidine undergoes thermal alteration, there is a potential to obtain controlled release of chlorhexidine from the polymeric bead in the range between 25 degrees C and 42 degrees C. The affinity of chlorhexidine to the polymer may be assessed in this systems applying the conductivity measurements. The solubility of chlorhexidine in the polymeric systems should be in future evaluated, to determine role of this factor in the conductivity alterations.
Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications
NASA Technical Reports Server (NTRS)
Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.
2015-01-01
Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.
Performance of a low-power subsonic-arc-attachment arcjet thruster
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Berns, Darren H.
1993-01-01
A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.
ERIC Educational Resources Information Center
Schindler, Maike; Rott, Benjamin
2017-01-01
Giftedness is an increasingly important research topic in educational sciences and mathematics education in particular. In this paper, we contribute to further theorizing mathematical giftedness through illustrating how networking processes can be conducted and illustrating their potential benefits. The paper focuses on two theories: Renzulli's…
Gain-loss study along two streams in the upper Sabine River basin, Texas; August-September 1981
Myers, Dennis R.
1983-01-01
Dissolved solids concentrations in the Sabine River, estimated from specific conductance, increased from about 120 milligrams per liter near the upstream end of the reach to about 400 milligrams per liter near the downstream end of the reach. Water with these concentrations of dissolved solids generally is suitable for most uses.
To Be Anxious or Not: Student Teachers in the Practicum
ERIC Educational Resources Information Center
Eksi, Gonca Yangin; Yakisik, Burçak Yilmaz
2016-01-01
High levels of teaching-related anxiety may cause high levels of stress, failure and disappointment in pre-service teachers. The factors that increase anxiety and those that reduce it for student teachers might also be culture-specific. This study was conducted on 52 pre-service language teachers at a state university in Turkey during their…
ERIC Educational Resources Information Center
Justice, Laura M.; Breit-Smith, Allison; Rogers, Margaret
2010-01-01
Purpose: This clinical forum was organized to provide a means for informing the research and clinical communities of one mechanism through which research capacity might be enhanced within the field of speech-language pathology. Specifically, forum authors describe the process of conducting secondary analyses of extant databases to answer questions…
ERIC Educational Resources Information Center
Drakeford, William
2012-01-01
A multiple baseline design across two subjects was used to determine the effectiveness of cooperative learning techniques on increasing student participation. The study was conducted on two male secondary students attending the upward bound pre-college program. Each student worked in small groups with specific roles, and two observers documented…
Marketing Analysis for the Nontraditional Student at Carl Sandburg College.
ERIC Educational Resources Information Center
Sundberg, Lori
With the wide range of students community colleges must provide services for, there is an increasing need for colleges to analyze and segment their marketing efforts. As part of an effort to focus on specific market segments and take into account internal and external environments, an analysis was conducted at Illinois' Carl Sandburg College (CSC)…
USDA-ARS?s Scientific Manuscript database
Interactions between UV-B radiation and drought stress have been studied but the underlying mechanisms have not been thoroughly investigated. We hypothesized that ambient UV-B radiation would increase water use efficiency (WUE) through its effects on epidermal development, specifically reduced stoma...
Public perceptions of climate change and extreme weather events
NASA Astrophysics Data System (ADS)
Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.
2013-12-01
Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such as flooding and heavy rainfall than in ';hot' events such as heatwaves, (b) perceptions of these ';wet' weather events are more strongly associated with climate-change beliefs than were extremely ';hot' weather events, and (c) personal experiences with the negative consequences of specific extreme weather events are associated with stronger climate-change beliefs. Hence, which specific weather events people interpret as evidence of climate change may depend on their personal perceptions and experiences - which may not involve the temperature increases that are commonly the focus of climate-change communications. Overall, these findings suggest that climate experts should consider focusing their public communications on extreme weather events that are relevant to their intended audience. We will discuss strategies for designing and evaluating communications about climate change and adaptation.
Matheny, Ashley M.; Bohrer, Gil; Vogel, Christoph S.; ...
2014-12-04
Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early successional trees to simulate an accelerated age-related senescence associated with natural succession.Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However,more » species-specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during post disturbance (62.5 and 132.2%, respectively), redmaple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porousanisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, andpaper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteithmodel for LE to demonstrate that these species-specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufffcient to fully describe the effects of disturbance on transpiration.« less
Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest
NASA Astrophysics Data System (ADS)
Matheny, Ashley M.; Bohrer, Gil; Vogel, Christoph S.; Morin, Timothy H.; He, Lingli; Frasson, Renato Prata de Moraes; Mirfenderesgi, Golnazalsadat; Schäfer, Karina V. R.; Gough, Christopher M.; Ivanov, Valeriy Y.; Curtis, Peter S.
2014-12-01
Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early successional trees to simulate an accelerated age-related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal conductance. We found transpiration to be 15% lower in disturbed plots than in unmanipulated control plots. However, species-specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteith model for LE to demonstrate that these species-specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration.
Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.
1987-01-01
Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)
Watson, Conall; Nikolay, Birgit; Lowry, John H.; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Lau, Colleen L.; Nilles, Eric J.; Edmunds, W. John; Kama, Mike; Baker, Stephen; Cano, Jorge
2018-01-01
Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen–specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12–1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80–0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69–0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji. PMID:29350150
NASA Technical Reports Server (NTRS)
Cohen, W.
1973-01-01
After a review of the work of the late-Fifties on free radicals for propulsion, it is concluded that atomic hydrogen would provide a potentially large increase in specific impulse. Work conducted to find an approach for isolating atomic hydrogen is considered. Other possibilities for obtaining propellants of greatly increased capability might be connected with the technology for the generation of activated states of gases, metallic hydrogen, fuels obtained from other planets, and laser transfer of energy.
NASA Technical Reports Server (NTRS)
Guthrie, R. K.
1976-01-01
The effects of increased concentrations of PSEUDOMONAS AERUGINOSA AND STAPHYLOCOCCUS in the total bacterial flora of small animals exposed to simulated spacecraft environments were evaluated. Tests to detect changes in infectivity, effects of antibiotic treatments, immune responses to bacterial antigens, and effectiveness of immune responses in the experimental environment were conducted. The most significant results appear to be the differences in immune responses at simulated altitudes and the production of infection in the presence of a specific antibody.
1983-01-01
this project, a series of exploratory studies were conducted with 4- year and community college students to develon the Learning Activities...capabilities needed for our national security" (Bement, 1980). Three specific goals for this program in Fiscal Year 1981 are: 1. Provide real growth in the...percent compared to FY 1980; this is about the average increase for all Department of Defense research programs this year ; ( this increase is about
GHAEM, Haleh; GHORBANI, Mohammad; ZARE DORNIANI, Samira
2017-01-01
Background: Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. Methods: This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients’ medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. Results: The patients’ mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) (P<0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. Conclusion: The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models. PMID:28828325
Risk of malignancy in ankylosing spondylitis: a systematic review and meta-analysis.
Deng, Chuiwen; Li, Wenli; Fei, Yunyun; Li, Yongzhe; Zhang, Fengchun
2016-08-18
Current knowledge about the overall and site-specific risk of malignancy associated with ankylosing spondylitis (AS) is inconsistent. We conducted a systematic review and meta-analysis to address this knowledge gap. Five databases (PubMed, EMBASE, Web of Science, the Cochrane library and the virtual health library) were systematically searched. A manual search of publications within the last 2 years in key journals in the field (Annals of the Rheumatic Diseases, Rheumatology and Arthritis &rheumatology) was also performed. STATA 11.2 software was used to conduct the meta-analysis. After screening, twenty-three studies, of different designs, were eligible for meta-analysis. AS is associated with a 14% (pooled RR 1.14; 95% CI 1.03-1.25) increase in the overall risk for malignancy. Compared to controls, patients with AS are at a specific increased risk for malignancy of the digestive system (pooled RR 1.20; 95% CI 1.01 to 1.42), multiple myelomas (pooled RR 1.92; 95% CI 1.37 to 3.69) and lymphomas (pooled RR 1.32; 95% CI 1.11 to 1.57). On subgroup analysis, evidence from high quality cohort studies indicated that AS patients from Asia are at highest risk for malignancy overall. Confirmation of findings from large-scale longitudinal studies is needed to identify specific risk factors and to evaluate treatment effects.
Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems
NASA Astrophysics Data System (ADS)
Pham, Duc Chinh
2018-02-01
Variational results on the macroscopic conductivity (thermal, electrical, etc.) of the multi-coated sphere assemblage have been used to derive the explicit expression of the respective field (thermal, electrical, etc.) within the spheres in d dimensions (d=2,3). A differential substitution approach has been developed to construct various explicit expressions or determining equations for the effective spherically symmetric inclusion problems, which include those with radially variable conductivity, different radially variable transverse and normal conductivities, and those involving imperfect interfaces, in d dimensions. When the volume proportion of the outermost spherical shell increases toward 1, one obtains the respective exact results for the most important specific cases: the dilute solutions for the compound inhomogeneities suspended in a major matrix phase. Those dilute solution results are also needed for other effective medium approximation schemes.
NASA Astrophysics Data System (ADS)
Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping
2018-04-01
In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.
Hartman, Matthew E; Liu, Yonggang; Zhu, Wei-Zhong; Chien, Wei-Ming; Weldy, Chad S; Fishman, Glenn I; Laflamme, Michael A; Chin, Michael T
2014-07-01
CHF1/Hey2 is a Notch-responsive basic helix-loop-helix transcription factor involved in cardiac development. Common variants in Hey2 are associated with Brugada syndrome. We hypothesized that absence of CHF1/Hey2 would result in abnormal cellular electrical activity, altered cardiac conduction system (CCS) development, and increased arrhythmogenesis. We isolated neonatal CHF/Hey2-knockout (KO) cardiac myocytes and measured action potentials and ion channel subunit gene expression. We also crossed myocardial-specific CHF1/Hey2-KO mice with cardiac conduction system LacZ reporter mice and stained for conduction system tissue. We also performed ambulatory ECG monitoring for arrhythmias and heart rate variability. Neonatal cardiomyocytes from CHF1/Hey2-KO mice demonstrate a 50% reduction in action potential dV/dT, a 50-75% reduction in SCN5A, KCNJ2, and CACNA1C ion channel subunit gene expression, and an increase in delayed afterdepolarizations from 0/min to 12/min. CHF1/Hey2 cKO CCS-lacZ mice have a ∼3-fold increase in amount of CCS tissue. Ambulatory ECG monitoring showed no difference in cardiac conduction, arrhythmias, or heart rate variability. Wild-type cells or animals were used in all experiments. CHF1/Hey2 may contribute to Brugada syndrome by influencing the expression of SCN5A and formation of the cardiac conduction system, but its absence does not cause baseline conduction defects or arrhythmias in the adult mouse.-Hartman, M. E., Liu, Y., Zhu, W.-Z., Chien, W.-M., Weldy, C. S., Fishman, G. I., Laflamme, M. A., Chin, M. T. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias. © FASEB.
Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, G. P.; Mangal, Ravindra; Bhojak, N.
2010-06-29
Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less
Contrast enhancement in EIT imaging of the brain.
Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V
2016-01-01
We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data.
Composite Silica Aerogels Opacified with Titania
NASA Technical Reports Server (NTRS)
Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill
2009-01-01
A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.
Energy Dissipation in Ex-Vivo Porcine Liver during Electrosurgery
Karaki, Wafaa; Akyildiz, Ali; De, Suvranu
2017-01-01
This paper explores energy dissipation in ex-vivo liver tissue during radiofrequency current excitation with application in electrosurgery. Tissue surface temperature for monopolar electrode configuration is measured using infrared thermometry. The experimental results are fitted to a finite element model for transient heat transfer taking into account energy storage and conduction in order to extract information about “apparent” specific heat, which encompasses storage and phase change. The average apparent specific heat determined for low temperatures is in agreement with published data. However, at temperatures approaching the boiling point of water, apparent specific heat increases by a factor of five, indicating that vaporization plays an important role in the energy dissipation through latent heat loss. PMID:27479955
Cell-Free, De Nova Synthesis of Poliovirus
NASA Astrophysics Data System (ADS)
Molla, Akhteruzzaman; Paul, Aniko V.; Wimmer, Eckard
1991-12-01
Cell-free translation of poliovirus RNA in an extract of uninfected human (HeLa) cells yielded viral proteins through proteolysis of the polyprotein. In the extract, newly synthesized proteins catalyzed poliovirus-specific RNA synthesis, and formed infectious poliovirus de novo. Newly formed virions were neutralized by type-specific antiserum, and infection of human cells with them was prevented by poliovirus receptor-specific antibodies. Poliovirus synthesis was increased nearly 70-fold when nucleoside triphosphates were added, but it was abolished in the presence of inhibitors of translation or viral genome replication. The ability to conduct cell-free synthesis of poliovirus will aid in the study of picornavirus proliferation and in the search for the control of picornaviral disease.
Current evaluation of the tripropellant concept
NASA Technical Reports Server (NTRS)
Zurawski, R. L.
1986-01-01
An analytical study was conducted to determine the specific-impulse advantages of adding metals to conventional liquid-bipropellant systems. These tripropellant systems theoretically offer higher specific impulse and increased propellant density compared with bipropellant systems. Metals considered were Be, Li, and Al. Bipropellant systems were H2/O2, N2H4/N2O4, RP-1/O2, and H2/F2. Thermochemical calculations were performed for sea-level expansion from 6.895-MN/sq. m. (1000-psia) chamber pressure over a wide range of mixture ratios and propellant compositions. Three-dimensional plots characterize the specific impulse of each tripropellant system. Technology issues pertinent to metallized propellant systems are discussed.
Corneli, Amy L.; Bentley, Margaret E.; Sorenson, James R.; Henderson, Gail E.; van der Horst, Charles; Moses, Agnes; Nkhoma, Jacqueline; Tenthani, Lyson; Ahmed, Yusuf; Heilig, Charles M.; Jamieson, Denise J.
2009-01-01
Participant understanding is of particular concern when obtaining informed consent. Recommendations for improving understanding include disclosing information using culturally appropriate and innovative approaches. To increase the effectiveness of the consent process for a clinical trial in Malawi on interventions to prevent mother-to-child transmission of HIV during breastfeeding, formative research was conducted to explore the community’s understanding of medical research as well as how to explain research through local terms and meanings. Contextual analogies and other approaches were identified to explain consent information. Guided by theory, strategies for developing culturally appropriate interventions, and recommendations from the literature, we demonstrate how the formative data were used to develop culturally appropriate counseling cards specifically for the trial in Malawi. With appropriate contextual modifications, the steps outlined here could be applied in other clinical trials conducted elsewhere, as well as in other types of research. PMID:19385837
NASA Astrophysics Data System (ADS)
Bose, Suryasarathi; Bhattacharyya, Arup R.; Khare, Rupesh A.; Kulkarni, Ajit R.; Umasankar Patro, T.; Sivaraman, P.
2008-08-01
Melt-mixed blends of polyamide 6 and acrylonitrile-butadiene-styrene (PA6/ABS) with multiwall carbon nanotubes (MWNTs) were prepared with the intention to develop conducting composites. A generic strategy, namely specific interactions combined with reactive coupling, was adopted to facilitate and to retain the 'network-like' structure of MWNTs during melt-mixing. This was facilitated by the sodium salt of 6-amino hexanoic acid (Na-AHA) and certain phosphonium based modifiers, where it was envisaged that these modifiers would establish specific interactions (either 'cation-π' or 'π-π' ) with the 'π-electron' clouds of MWNTs, as well as restricting them in the PA6 phase of the blends via reactive coupling. This route eventually led to a remarkable increase in the electrical conductivity and dielectric constant in the blends with MWNTs. Raman, FTIR and TEM investigations further supported these observations.
Asymmetric Supercapacitor for Long-Duration Power Storage
NASA Technical Reports Server (NTRS)
Rangan, Krishnaswamy K.; Sudarshan, Tirumalai S.
2012-01-01
A document discusses a project in which a series of novel hybrid positive electrode materials was developed and tested in asymmetric capacitors with carbon negative electrodes. The electrochemical performance of the hybrid capacitors was characterized by cyclic voltammetry and a DC charge/discharge test. The hybrid capacitor exhibited ideal capacitor behavior with an extended operating voltage of 1.6 V in aqueous electrolyte, and energy density higher than activated carbon-based supercapacitors. Nanostructured MnO2 is a promising material for electrochemical capacitors (ECS) because of its low cost, environmentally friendly nature, and reasonably high specific capacitance. The charge capacity of the capacitors can be further improved by increasing the specific surface area of the MnO2 electrode material. The power density and space radiation stability of the capacitors can be enhanced by coating the MnO2 nanoparticles with conducting polymers. The conducting polymer coating also helps in radiation-hardening the ECS.
NASA Astrophysics Data System (ADS)
Bourdo, Shawn Edward
Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from Raman spectroscopy, X-ray diffraction, and thermal analysis suggesting a more crystalline graphite matrix due to intimate interactions with PANI that resulted in a charge transfer. Confirmation of charge transfer was observed through magnetic susceptibility, electron paramagnetic resonance, and temperature dependent electrical conductivity studies.
Cash, Stephanie Whisnant; Duncan, Glen E; Beresford, Shirley A A; McTiernan, Anne; Patrick, Donald L
2013-11-01
Obesity is associated with impaired quality of life (QoL), but less is known about physical activity. We investigated how decreases in body mass index (BMI) and increases in activity affect obesity-specific QoL and potential gender differences in associations. In a large worksite randomized trial of a multilevel intervention on diet and physical activity behaviors, we conducted a cohort analysis at two years of follow-up. Self-reported activity and Obesity and Weight Loss Quality of Life (OWLQOL) were analyzed for individual-level associations using linear mixed models accounting for random worksite effects. Gender modified the BMI-OWLQOL relationship, so analyses were conducted for males and females separately. Adjusting for demographic confounders, baseline OWLQOL, and several worksite-level variables including intervention arm, a 1.9 unit decrease in BMI (the interquartile range) was associated with an OWLQOL increase of 1.7 (95 % CI: 1.2, 2.2) in males and 3.6 (95 % CI: 3.2, 4.0) in females. Similarly, a 23 unit increase in physical activity score was associated with an OWLQOL increase of 0.9 (95 % CI: 0.5, 1.4) in males and 1.6 (95 % CI: 1.0, 2.3) in females. Physical activity associations were attenuated when adjusting for change in BMI, but remained significant for women (mean BMI 27.8 kg/m(2)). This is the first study to demonstrate that increasing physical activity may improve obesity-specific QoL to a greater extent in women, particularly among overweight women, independent of BMI. Results may inform the design of interventions tailored to women targeting well-being through messages of increasing physical activity.
NASA Astrophysics Data System (ADS)
domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.
2013-12-01
Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.
Joint Use Policies: Are they related to adolescent behavior?
Chriqui, Jamie; Chaloupka, Frank J.; Johnston, Lloyd
2014-01-01
Objective Joint use policies (JUP) encourage shared facility use, usually between schools and a city or private organization, for both physical activity-related and non-physical activity-related programs. Little is known about JUP’s impact on physical activity (PA). This study examined whether more specific JUPs were associated with increased PA and decreased sedentary behavior (SB) in adolescents. Methods Data on PA, sports participation, and SB were taken from annual cross-sectional nationally representative samples of 51,269 8th, 10th and 12th grade public school students nested in 461 school districts in the US from 2009–2011. JUP measures were constructed using information obtained from corresponding school district JU policies. Multivariable analyses were conducted, controlling for individual demographic and socioeconomic characteristics and clustering at the district level. Results Results showed small associations between more specific JUPs and increased PA (IRR 1.01, 95% CI: 1.00, 1.02). Closer examination of specific JUP provisions indicates that specifying what times facilities are available for use was associated with vigorous exercise and prioritizing school or affiliated organizations’ use and which spaces were available for use were associated with vigorous exercise and more frequent PA participation, which includes participation in sports or athletics. No associations were found between more specific JUPs and SB. Conclusions JUPS may have small influences on adolescent physical activity behavior. Future longitudinal studies should be conducted to examine the impact of JUPs in conjunction with other physical activity-related policies and environmental changes to determine what impact they have on overall adolescent physical activity and sedentary behavior. PMID:25199731
Effect of NaI/I 2 mediators on properties of PEO/LiAlO 2 based all-solid-state supercapacitors
NASA Astrophysics Data System (ADS)
Yin, Yijing; Zhou, Juanjuan; Mansour, Azzam N.; Zhou, Xiangyang
NaI/I 2 mediators and activated carbon were added into poly(ethylene oxide) (PEO)/lithium aluminate (LiAlO 2) electrolyte to fabricate composite electrodes. All solid-state supercapacitors were fabricated using the as prepared composite electrodes and a Nafion 117 membrane as a separator. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were conducted to evaluate the electrochemical properties of the supercapacitors. With the addition of NaI/I 2 mediators, the specific capacitance increased by 27 folds up to 150 F g -1. The specific capacitance increased with increases in the concentration of mediators in the electrodes. The addition of mediators also reduced the electrode resistance and rendered a higher electron transfer rate between mediator and mediator. The stability of the all-solid-state supercapacitor was tested over 2000 charge/discharge cycles.
NASA Astrophysics Data System (ADS)
Meng, Weijie; Zhao, Gaoling; Song, Bin; Xie, Junliang; Lu, Wangwei; Han, Gaorong
2017-12-01
In this study, kassite was synthesized by employing a simple, green hydrothermal method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy were carried out to study its crystal phases, morphologies and electrochemical performance. With the extension of reaction time, the crystallinity of the samples became higher and the specific capacitance increased correspondingly. The result shows that kassite has a promising application in electrode material for capacitors. To improve the electrical conductivity of kassite and the accessibility of the surface area, graphene nanosheet (GNS) was introduced to form composites with kassite. The capacitive performance improved with increasing weight percentage of GNS and reached an optimum with the specific capacitance of 129.8 F/g at weight percentage of 10%, then decreased with further increasing GNS, showing a synergistic effect of kassite and the GNS.
NASA Astrophysics Data System (ADS)
Adams, L. R.; Vonroos, A.
1985-04-01
An investigation being conducted by Astro Aerospace Corporation (Astro) for Jet Propulsion Laboratory in which efficient structures for geosynchronous spacecraft solar arrays are being developed is discussed. Recent developments in solar blanket technology, including the introduction of ultrathin (50 micrometer) silicon solar cells with conversion efficiencies approaching 15 percent, have resulted in a significant increase in blanket specific power. System specific power depends not only on blanket mass but also on the masses of the support structure and deployment mechanism. These masses must clearly be reduced, not only to minimize launch weight, but also to increase array natural frequency. The solar array system natural frequency should be kept high in order to reduce the demands on the attitude control system. This goal is approached by decreasing system mass, by increasing structural stiffness, and by partitioning the blanket. As a result of this work, a highly efficient structure for deploying a solar array was developed.
Zhang, Hongxia; Li, Weibin; Adams, Henry D; Wang, Anzhi; Wu, Jiabing; Jin, Changjie; Guan, Dexin; Yuan, Fenghui
2018-01-01
Atmospheric nitrogen (N) deposition has been found to significantly affect plant growth and physiological performance in terrestrial ecosystems. Many individual studies have investigated how N addition influences plant functional traits, however these investigations have usually been limited to a single species, and thereby do not allow derivation of general patterns or underlying mechanisms. We synthesized data from 56 papers and conducted a meta-analysis to assess the general responses of 15 variables related to leaf economics, gas exchange, and hydraulic traits to N addition among 61 woody plant species, primarily from temperate and subtropical regions. Results showed that under N addition, leaf area index (+10.3%), foliar N content (+7.3%), intrinsic water-use efficiency (+3.1%) and net photosynthetic rate (+16.1%) significantly increased, while specific leaf area, stomatal conductance, and transpiration rate did not change. For plant hydraulics, N addition significantly increased vessel diameter (+7.0%), hydraulic conductance in stems/shoots (+6.7%), and water potential corresponding to 50% loss of hydraulic conductivity ( P 50 , +21.5%; i.e., P 50 became less negative), while water potential in leaves (-6.7%) decreased (became more negative). N addition had little effect on vessel density, hydraulic conductance in leaves and roots, or water potential in stems/shoots. N addition had greater effects on gymnosperms than angiosperms and ammonium nitrate fertilization had larger effects than fertilization with urea, and high levels of N addition affected more traits than low levels. Our results demonstrate that N addition has coupled effects on both carbon and water dynamics of woody plants. Increased leaf N, likely fixed in photosynthetic enzymes and pigments leads to higher photosynthesis and water use efficiency, which may increase leaf growth, as reflected in LAI results. These changes appear to have downstream effects on hydraulic function through increases in vessel diameter, which leads to higher hydraulic conductance, but lower water potential and increased vulnerability to embolism. Overall, our results suggest that N addition will shift plant function along a tradeoff between C and hydraulic economies by enhancing C uptake while simultaneously increasing the risk of hydraulic dysfunction.
Effectiveness of Organ Donation Information Campaigns in Germany: A Facebook Based Online Survey.
Terbonssen, Tobias; Settmacher, Utz; Wurst, Christine; Dirsch, Olaf; Dahmen, Uta
2015-07-28
The German transplantation system is in a crisis due to a lack of donor organs. Information campaigns are one of the main approaches to increase organ donation rates. Since 2012, German health insurance funds are obliged by law to inform their members about organ donation. We raised the hypothesis: The willingness to sign a donor card rises due to the subsequent increase of specific knowledge by receiving the information material of the health insurance funds. The objective of the study was to assess the influence of information campaigns on the specific knowledge and the willingness to donate organs. We conducted an online survey based on recruitment via Facebook groups, advertisements using the snowball effect, and on mailing lists of medical faculties in Germany. Besides the demographic data, the willingness to hold an organ donor card was investigated. Specific knowledge regarding transplantation was explored using five factual questions resulting in a specific knowledge score. We recruited a total of 2484 participants, of which 32.7% (300/917) had received information material. Mean age was 29.9 (SD 11.0, median 26.0). There were 65.81% (1594/2422) of the participants that were female. The mean knowledge score was 3.28 of a possible 5.00 (SD 1.1, median 3.0). Holding a donor card was associated with specific knowledge (P<.001), but not with the general education level (P=.155). Receiving information material was related to holding a donor card (P<.001), but not to a relevant increase in specific knowledge (difference in mean knowledge score 3.20 to 3.48, P=.006). The specific knowledge score and the percentage of organ donor card holders showed a linear association (P<.001). The information campaign was not associated with a relevant increase in specific knowledge, but with an increased rate in organ donor card holders. This effect is most likely related to the feeling of being informed, together with an easy access to the organ donor card.
Pita, Pilar; Rodríguez-Calcerrada, Jesús; Medel, David; Gil, Luis
2018-02-01
Dutch elm disease (DED) is a vascular disease that has killed over 1 billion elm trees. The pathogen spreads throughout the xylem network triggering vessel blockage, which results in water stress, tissue dehydration and extensive leaf wilting in susceptible genotypes. We investigated the differences between four Ulmus minor Mill. clones of contrasting susceptibility to Ophiostoma novo-ulmi Brasier regarding morphological, anatomical and physiological traits affecting water transport, in order to gain a better understanding of the mechanisms underlying DED susceptibility. We analyzed the differential response to water shortage and increased air vapor pressure deficit (VPD) to investigate whether resistance to water stress might be related to DED tolerance. Sixteen plants per clone, aged 2 years, were grown inside a greenhouse under differential watering. Stomatal conductance was measured under ambient and increased VPD. Growth, bark water content and stem hydraulic and anatomical parameters were measured 22 days after starting differential watering. Vessel lumen area, lumen fraction and hydraulic conductance were highest in susceptible clones. Stomatal conductance was lowest under low VPD and decreased faster under increased VPD in resistant clones. We found a negative relationship between the decrease in stomatal conductance at increased VPD and specific hydraulic conductance, revealing a narrower hydraulic margin for sustaining transpiration in resistant clones. The effect of water shortage was greater on radial stem growth than on leaf area, which could be explained through an extensive use of capacitance water to buffer xylem water potential. Water shortage reduced stomatal conductance and vessel lumen area. Bark water content under conditions of water shortage only decreased in susceptible clones. Higher hydraulic constraints to sap flow in resistant clones may determine higher stomatal sensitivity to VPD and so contribute to DED resistance by limiting pathogen expansion and reducing water loss and metabolic impairment in cells involved in fighting against infection. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ion-conduction and rigidity/flexibility of glasses
NASA Astrophysics Data System (ADS)
Novita, D. I.; Boolchand, P.; Malki, M.; Micoulaut, M.
2007-03-01
The (AgI)x(AgPO3)1-x solid electrolyte glass system has been examined extensively although a consensus on the increase of electrical conductivity with x data has been elusive. Here we show that the variability of the data is likely due to water contamination. Our work is on specifically prepared dry samples which display glass transition temperatures Tg(x) that are at least 50 to 100 C higher than those reported hitherto. In Raman scattering the frequency of the P-Ot bonds in PO4 tetrahedra of long chains is found to systematically red-shift with increasing x, and to display thresholds near x= xc(1) =0.095(3)(stress-transition) and x =xc(2) = 0.379(5)(rigidity transition). Calorimetric measurements show a reversibility window in the 0.09 < x < 0.38 range. Room temperature electrical conductivity, σ(x), increases with x to display thresholds near xc(1) and xc(2), and a logarithmic increase at x> xc(2) with a power-law μ = 1.78(10) that is in good agreement with theoretical predictions^1. Properties of flexibility and rigidity of backbones commonplace in covalent systems^2 is a concept that extends to solid electrolyte glasses as well. ^1Richard Zallen, Physics of Amorphous Solids ^2 P. Boolchand et al. Phil. Mag 85, 3823 (2005)
ERIC Educational Resources Information Center
Murray, Elizabeth; Matijasevich, Alicia; Santos, Iná S.; Barros, Aluísio J. D.; Anselmi, Luciana; Barros, Fernando C.; Stein, Alan
2015-01-01
Background: Recent evidence suggests that impaired foetal growth may provide an early indication of increased risk of child attention problems. However, despite both foetal growth and child attention problems differing by sex, few studies have examined sex differences in this association. Furthermore, no studies have been conducted in low- and…
ERIC Educational Resources Information Center
Academy for Educational Development, 2009
2009-01-01
The National Migrant and Seasonal Head Start Collaboration Office conducted this small scale study to begin to expand, document and disseminate migrant-specific early learning information and to develop a long-range strategy for addressing/increasing collaboration between MSHS and state Pre-Kindergarten programs serving or having the potential to…
ERIC Educational Resources Information Center
Clagett, Craig A.
In 1992, in response to legislative mandate, Prince George's Community College (PGCC) (Maryland) conducted an evaluation of the effectiveness of the its financial plan. Specifically, the evaluation focused on cost containment measures used to maintain low tuition and moderate future increases in student charges; cost per student of each academic…
Improved Thermal-Switch Disks Protect Batteries
NASA Technical Reports Server (NTRS)
Darcy, Eric; Bragg, Bobby
1990-01-01
Improved thermal-switch disks help protect electrical batteries against high currents like those due to short circuits or high demands for power in circuits supplied by batteries. Protects batteries against excessive temperatures. Centered by insulating fiberglass washer. Contains conductive polymer that undergoes abrupt increase in electrical resistance when excessive current raises its temperature above specific point. After cooling, polymer reverts to low resistance. Disks reusable.
Chemical composition and variability of the waters of the Edwards Plateau, central Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groeger, A.W.; Gustafson, J.J.
1994-12-31
The surface waters of the karstic Edwards Plateau, southcentral Texas, are quite similar in many of their chemical characteristics. The ionic composition of the water was dominated by calcium and alkalinity (mostly bicarbonate) acquired through limestone weathering, and the ionic composition (in equivalents) was Ca>Mg>Na>K and alkalinity >Cl and SO{sub 4}. The median specific conductance and total dissolved solids ranged from 394 to 535 {mu}S cm{sup {minus}1} and 220 and 327 mg L{sup {minus}1}, respectively. The streams were always near or at supersaturation with respect to calcium carbonate, and the dynamics of calcium carbonate dissolution and precipitation tended to maintainmore » the dissolved substances at a fairly constant level. This may have been enhanced by the intimate contact of water and bedrock characteristic of karst drainages. Specific conductance, Ca, and alkalinity all decreased at higher summer temperatures. Many of the streams on the plateau maintained a constant level or actually increased concentrations of total dissolved substances at increased flow rates. These waters acquired significant quantities of solute as they flow through the confine Edwards Aquifer, including alkalinity, Ca, Mg, Na, Cl, and NO{sub 3}.« less
Ocheltree, T W; Nippert, J B; Prasad, P V V
2014-01-01
The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand. © 2013 John Wiley & Sons Ltd.
Conductance of Single Molecule Junctions: Dependence on Structure and Conformation
NASA Astrophysics Data System (ADS)
Venkataraman, Latha
2007-03-01
We recently demonstrated that the conductance of single molecule junctions formed by breaking Au point contacts in an environment of molecules with amine linkages can be measured reliably and reproducibly^1. We have now studied junctions formed by approximately 30 different amine terminated molecules, allowing systematic study of the correlation between molecular properties and single molecule junction conductance. This talk will focus on the relation between molecular conductance and molecule conformation for the simple case of a biphenyl, two benzene rings linked together by a single C-C bond. Our results from a series of seven biphenyl derivatives show that the molecular junction conductance depends on the twist angle. Specifically, we find that the planar molecule has the highest conductance, and the conductance for the series decreases with increasing twist angle, consistent with a cosine squared relation predicted theoretically^2. 1. L. Venkataraman, J.E. Klare, I.W. Tam, C. Nuckolls, M.S Hybertsen and M. Steigerwald, Nano Letters, vol. 5, pp. 458-462, 2006. 2. L. Venkataraman, J.E. Klare, C. Nuckolls, M.S Hybertsen and M. Steigerwald, Nature, vol. 442, pp. 904-907, 2006.
Three decades of disasters: a review of disaster-specific literature from 1977-2009.
Smith, Erin; Wasiak, Jason; Sen, Ayan; Archer, Frank; Burkle, Frederick M
2009-01-01
The potential for disasters exists in all communities. To mitigate the potential catastrophes that confront humanity in the new millennium, an evidence-based approach to disaster management is required urgently. This study moves toward such an evidence-based approach by identifying peer-reviewed publications following a range of disasters and events over the past three decades. Peer-reviewed, event-specific literature was identified using a comprehensive search of the electronically indexed database, MEDLINE (1956-January 2009). An extended comprehensive search was conducted for one event to compare the event-specific literature indexed in MEDLINE to other electronic databases (EMBASE, CINAHL, AMED, CENTRAL, Psych Info, Maternity and Infant Care, EBM Reviews). Following 25 individual disasters or overwhelming crises, a total of 2,098 peer-reviewed, event-specific publications were published in 789 journals (652 publications following disasters/events caused by natural hazards, 966 following human-made/technological disasters/events, and 480 following conflict/complex humanitarian events).The event with the greatest number of peer-reviewed, event-specific publications was the 11 September 2001 terrorist attacks (686 publications). Prehospital and Disaster Medicine published the greatest number of peer-reviewed, event-specific publications (54), followed by Journal of Traumatic Stress (42), Military Medicine (40), and Psychiatric Services (40). The primary topics of event-specific publications were mental health, medical health, and response. When an extended, comprehensive search was conducted for one event, 75% of all peer-reviewed, event-specific publications were indexed in MEDLINE. A broad range of multi-disciplinary journals publish peer reviewed, event-specific publications. While the majority of peer-reviewed, event-specific literature is indexed in MEDLINE, comprehensive search strategies should include EMBASE to increase yield.
Wright, Erin M; Matthai, Maude Theo; Warren, Nicole
2017-11-01
Work-related stress and exposure to traumatic birth have deleterious impacts on midwifery practice, the midwife's physiologic well-being, and the midwifery workforce. This is a global phenomenon, and the specific sources of this stress vary dependent on practice setting. This scoping review aims to determine which, if any, modalities help to reduce stress and increase resilience among a population of midwives. A scoping review of the literature published between January 2011 and September 2016 using PubMed, CINAHL, Embase, PsycINFO, and Cochrane databases was performed. Of the initial 796 reviewed records, 6 met inclusion criteria. Three of the 6 included studies were quantitative in nature, 2 were qualitative, and one used mixed methods. Countries where studies were conducted include Uganda, Iran, the United Kingdom, Israel, and Australia. Three of the studies used interventions for stress reduction and increased coping. Two of these 3 used a mindfulness-based stress reduction program resulting in improved stress levels and coping skills. In each study, midwives express a desire for work-based programs and support from colleagues and employers for increasing coping abilities. These studies focused on stress reduction and/or increasing resilience. While modalities such as mindfulness-based stress reduction show promise, further studies with a cohort of midwives should be conducted. These studies should include interventions aimed at addressing the needs of midwives to improve psychological outcomes related to employment-related stress on a global scale and specific to each health care context. © 2017 by the American College of Nurse-Midwives.
Clark, Melanie L.
2012-01-01
The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios, and major ion concentrations of the main-stem streams. Sites in the Tongue River drainage basin typically had the smallest range of specific conductance and SAR values. The water chemistry of sites in the Powder River drainage basin generally was the most variable as a result of diverse characteristics of that basin. Plains tributaries in the Powder River drainage basin had the largest range of specific conductance and SAR values, in part due to the many tributaries that receive CBNG-produced waters. Trends were analyzed using the seasonal Kendall test with flow-adjusted concentrations to determine changes to water quality through time at sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Trends were evaluated for water years 2001–10 for 17 sites, which generally were on the main-stem streams and primary tributaries. Trends were evaluated for water years 2005–10 for 26 sites to increase the spatial coverage of sites. Trends were evaluated for water years 1991–2010 for eight sites to include water-quality data collected prior to widespread CBNG development and expand the temporal context of trends. Consistent patterns were not observed in trend results for water years 2001–10 for flow-adjusted specific conductance and SAR values in the Tongue, Powder, and Belle Fourche River drainage basins. Significant (p-values less than 0.05) upward trends in flow-adjusted specific conductance values were determined for 3 sites, a downward trend was determined for 1 site, and no significant (p-value greater than 0.05) trends were determined for 13 sites. One of the sites with a significant upward trend was the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 2 sites and no significant trends were determined for 15 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. One of the sites with a significant upward trend in flow-adjusted SAR values was the Powder River at Arvada, Wyo. For water years 2005–10, significant upward trends in flow-adjusted specific conductance values were determined no significant trends were determined for 13 sites. A significant upward trend was determined for flow-adjusted specific conductance values for the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 4 sites, downward trends were determined for 5 sites, and no significant trend was determined for 17 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted specific conductance values for water years 1991–2010 indicated no significant trend for eight sites in the Tongue, Powder, and Belle Fourche River drainage basins. No significant trend in flow-adjusted specific conductance was determined for the Tongue River at the Wyoming-Montana State line or the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted SAR values for water years 1991–2010 indicated an upward trend for one site and no significant trend for four sites in the Powder and Belle Fourche River drainage basins. The significant upward trend in flow-adjusted SAR values was determined for the Powder River at Arvada, Wyo., for water years 1991–2010. Results indicate that CBNG development in the Powder River structural basin may have contributed to some trends, such as the upward trend in flow-adjusted SAR for the Powder River at Arvada, Wyo., for water years 1991–2010. An upward trend in flow-adjusted alkalinity concentrations for water years 2001–10 also was determined for the Powder River at Arvada, Wyo. Trend results are consistent with changes that can occur from the addition of sodium and bicarbonate associated with CBNG-produced waters to the Powder River. Upward trends in constituents at other sites, including the Belle Fourche River, may be the result of declining CBNG development, indicating that CBNG-produced waters may have had a dilution effect on some streams. The factors affecting other trends could not be determined because multiple factors could have been affecting the stream-water quality or because trends were observed at sites upstream from CBNG development that may have affected water-quality trends at sites downstream.
Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells
NASA Astrophysics Data System (ADS)
Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.
2016-09-01
The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.
NASA Astrophysics Data System (ADS)
Balaji Mohan, Velram; Jakisch, Lothar; Jayaraman, Krishnan; Bhattacharyya, Debes
2018-03-01
In recent years, graphene and its derivatives have become prominent subject matter due to their fascinating combination of properties and potential applications in a number application. While several fundamental studies have been progressed, there is a particular need to understand how different graphene derivatives are influenced in terms of their electrical and thermal conductivities by different functional groups they end up with through their manufacturing and functionalisation methods. This article addresses of the role of different functional groups present of different of reduced graphene oxides (rGO) concerning their electrical and thermal properties, and the results were compared with elemental analyses of functionalised reduced graphene oxide (frGO) and graphene. The results showed that electrical and thermal conductivities of the rGO samples, highly dependent on the presence of residual functional groups from oxidation, reduction and functionalisation processes. The increase in reduction of oxygen, hydroxyl, carboxylic, epoxide moieties and heterocyclic compounds increase the specific surface area of the samples through which the mean electron path has increased. This improved both electrical and thermal conductivities together in all the samples which were highly dependent on the efficiency of different reductant used in this study.
Ramirez-Campillo, Rodrigo; Alvarez, Cristian; Gentil, Paulo; Loturco, Irineu; Sanchez-Sanchez, Javier; Izquierdo, Mikel; Moran, Jason; Nakamura, Fabio Y; Chaabene, Helmi; Granacher, Urs
2018-03-22
To compare the effects of short-term (i.e., 7 week) plyometric training applied before (PJT-B) or after (PJT-A) soccer practice on components of physical fitness in young soccer players, a single-blind randomized controlled trial was conducted. Post-pubertal boys aged 17.0±0.5 years were allocated to three groups: PJT-B (n=12), PJT-A (n=14), and control (CON; n=12). The outcome measures included tests to evaluate 20-m speed, standing long jump [SLJ], squat jump [SJ], countermovement jump [CMJ], and drop jump [DJ], 20-m multistage shuttle running speed [MSSRT], and Illinois change of direction speed [ICODT]. While the CON performed soccer-specific training, the PJT-A and PJT-B groups conducted the same soccer-specific sessions but replaced ∼11% of their time with plyometric training. The PJT-B group performed plyometric exercises after a warm-up program, and the PJT-A group conducted plyometric exercises ∼10 minutes after the completion of soccer training. Analyses of variance (ANOVAs) were used to detect differences between groups in all variables for pre- and post-training tests. Main effects of time (all p<.01; d=0.19-0.79) and group x time interactions (all p<.05; d=0.17-0.76) were observed for all examined variables. Post hoc analyses revealed significant increases in the PJT-B group (SLJ: 9.4%, d=1.7; CMJ: 11.2%, d=0.75; 20-m MSSRT: 9.0%, d=0.77) and the PJT-A group (SLJ: 3.1%, d=0.7; CMJ: 4.9%, d=0.27; 20-m MSSRT: 9.0%, d=0.76). Post hoc analyses also revealed significant increases in the PJT-B group (20-m speed: -7.4%, d=0.75; 20-cm DJ reactive strength index: 19.1%, d=1.4; SJ: 6.3%, d=0.44; ICODT results: -4.2%, d=1.1). In general, our study revealed that plyometric training is effective in improving measures of physical fitness in young male soccer players when combined with regular soccer training. More specifically, larger training induced effects on physical fitness were registered if plyometric training was conducted prior to soccer specific training.
Beikircher, Barbara; Mayr, Stefan
2009-06-01
An adequate general drought tolerance and the ability to acclimate to changing hydraulic conditions are important features for long-lived woody plants. In this study, we compared hydraulic safety (water potential at 50% loss of conductivity, Psi(50)), hydraulic efficiency (specific conductivity, k(s)), xylem anatomy (mean tracheid diameter, d(mean), mean hydraulic diameter, d(h), conduit wall thickness, t, conduit wall reinforcement, (t/b)(h)(2)) and stomatal conductance, g(s), of forest plants as well as irrigated and drought-treated garden plants of Ligustrum vulgare L. and Viburnum lantana L. Forest plants of L. vulgare and V. lantana were significantly less resistant to drought-induced cavitation (Psi(50) at -2.82 +/- 0.13 MPa and -2.79 +/- 0.17 MPa) than drought-treated garden plants (- 4.58 +/- 0.26 MPa and -3.57 +/- 0.15 MPa). When previously irrigated garden plants were subjected to drought, a significant decrease in d(mean) and d(h) and an increase in t and (t/b)(h)(2) were observed in L. vulgare. In contrast, in V. lantana conduit diameters increased significantly but no change in t and (t/b)(h)(2) was found. Stomatal closure occurred at similar water potentials (Psi(sc)) in forest plants and drought-treated garden plants, leading to higher safety margins (Psi(sc) - Psi(50)) of the latter (L. vulgare 1.63 MPa and V. lantana 0.43 MPa). These plants also showed higher g(s) at moderate Psi, more abrupt stomatal closure and lower cuticular conductivity. Data indicate that the development of drought-tolerant xylem as well as stomatal regulation play an important role in drought acclimation, whereby structural and physiological responses to drought are species-specific and depend on the plant's hydraulic strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taer, E.; Awitdrus,; Farma, R.
Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance ofmore » the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.« less
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
On the mechanism of charge transport in low density polyethylene
NASA Astrophysics Data System (ADS)
Upadhyay, Avnish K.; Reddy, C. C.
2017-08-01
Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.
Water uptake, ionic conductivity and swelling properties of anion-exchange membrane
NASA Astrophysics Data System (ADS)
Duan, Qiongjuan; Ge, Shanhai; Wang, Chao-Yang
2013-12-01
Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34.
Schuldt, Bernhard; Knutzen, Florian; Delzon, Sylvain; Jansen, Steven; Müller-Haubold, Hilmar; Burlett, Régis; Clough, Yann; Leuschner, Christoph
2016-04-01
Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
H2 arcjet performance mapping program
NASA Astrophysics Data System (ADS)
1992-01-01
Work performed during the period of Mar. 1991 to Jan. 1992 is reviewed. High power H2 arcjets are being considered for electric powered orbit transfer vehicles (EOTV). Mission analyses indicate that the overall arcjet thrust efficiency is very important since increasing the efficiency increases the thrust, and thereby reduces the total trip time for the same power. For example, increasing the thrust efficiency at the same specific impulse from 30 to 40 percent will reduce the trip time by 25 percent. For a 200 day mission, this equates to 50 days, which results in lower ground costs and less time during which the payload is dormant. Arcjet performance levels of 1200 seconds specific impulse (lsp) at 35 to 40 percent efficiency with lifetimes over 1000 hours are needed to support EOTV missions. Because of the potential very high efficiency levels, the objective of this program was to evaluate the ability of a scaled Giannini-style thruster to achieve the performance levels while operating at a reduced nominal power of 10 kW. To meet this objective, a review of past literature was conducted; scaling relationships were developed and applied to establish critical dimensions; a development thruster was designed with the aid of the plasma analysis model KARNAC and finite element thermal modeling; test hardware was fabricated; and a series of performance tests were conducted in RRC's Cell 11 vacuum chamber with its null-balance thrust stand.
Thompson, Andrew J.; Andrews, John; Mulholland, Barry J.; McKee, John M.T.; Hilton, Howard W.; Horridge, Jon S.; Farquhar, Graham D.; Smeeton, Rachel C.; Smillie, Ian R.A.; Black, Colin R.; Taylor, Ian B.
2007-01-01
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in δ13C and δ18O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty. PMID:17277097
Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B
2007-04-01
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.
An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Patel, D. K.
1974-01-01
Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
Photoconductivity of Activated Carbon Fibers
DOE R&D Accomplishments Database
Kuriyama, K.; Dresselhaus, M. S.
1990-08-01
The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.
Flouri, E
2008-03-01
Studies on fathering and child mental health are now increasingly looking for specificity in children's psychological adjustment, indicating whether the impact of fathering is diagnostically specific or non-specific. Data from 435 fathers of secondary school-aged children in Britain were used to explore the association between resident biological fathers', non-resident biological fathers' and stepfathers' involvement and children's total difficulties, prosocial behaviour, emotional symptoms, conduct problems, hyperactivity and peer problems (all measured with the Strengths and Difficulties Questionnaire) in adolescence. After controlling for child-, father- and family-related factors, fathers' involvement was negatively associated with children's total difficulties and hyperactivity, was positively associated with children's prosocial behaviour, and was unrelated with children's emotional symptoms, conduct problems and peer problems. There was no non-resident biological father effect. Compared with resident biological fathers, stepfathers reported more total difficulties, conduct problems and hyperactivity in their children even after adjusting for involvement. Whether this reflects stepfathers' low tolerance levels or biological fathers' complacency, as sociobiologists would argue, or whether this is due to pre-existing predispositions of children in families which separate and restructure, to the effects of these multiple family changes or to the high exposure of children in restructured families to parental risk factors, is, given the data available and the study design, unclear. However, this study showed that, compared with their peers in biological father families, adolescents in stepfather families are perceived to be at higher risk of behaviour problems, and that father involvement is related to specific aspects of child adjustment.
Murphy, Susan L
2009-02-01
Accelerometers are being increasingly used in studies of physical activity (PA) among older adults, however the use of these monitors requires some specialized knowledge and up-to-date information on technological innovations. The purpose of this review article is to provide researchers with a guide to some commonly-used accelerometers in order to better design and conduct PA research with older adults. A literature search was conducted to obtain all available literature on commonly-used accelerometers in older adult samples with specific attention to articles discussing research design. The use of accelerometers in older adults requires a basic understanding of the type being used, rationale for their placement, and attention to calibration when needed. The updated technology in some monitors should make study conduct less difficult, however comparison studies of the newer versus the older generation models will be needed. Careful considerations for design and conduct of accelerometer research as outlined in this review should help to enhance the quality and comparability of future research studies.
NASA Astrophysics Data System (ADS)
de La Vaissière, Rémi; Armand, Gilles; Talandier, Jean
2015-02-01
The Excavation Damaged Zone (EDZ) surrounding a drift, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. A specific experiment (called CDZ) was designed and implemented in the Meuse/Haute-Marne Underground Research Laboratory (URL) in France to investigate the EDZ. This experiment is dedicated to study the evolution of the EDZ hydrogeological properties (conductivity and specific storage) of the Callovo-Oxfordian claystone under mechanical compression and artificial hydration. Firstly, a loading cycle applied on a drift wall was performed to simulate the compression effect from bentonite swelling in a repository drift (bentonite is a clay material to be used to seal drifts and shafts for repository closure purpose). Gas tests (permeability tests with nitrogen and tracer tests with helium) were conducted during the first phase of the experiment. The results showed that the fracture network within the EDZ was initially interconnected and opened for gas flow (particularly along the drift) and then progressively closed with the increasing mechanical stress applied on the drift wall. Moreover, the evolution of the EDZ after unloading indicated a self-sealing process. Secondly, the remaining fracture network was resaturated to demonstrate the ability to self-seal of the COx claystone without mechanical loading by conducting from 11 to 15 repetitive hydraulic tests with monitoring of the hydraulic parameters. During this hydration process, the EDZ effective transmissivity dropped due to the swelling of the clay materials near the fracture network. The hydraulic conductivity evolution was relatively fast during the first few days. Low conductivities ranging at 10-10 m/s were observed after four months. Conversely, the specific storage showed an erratic evolution during the first phase of hydration (up to 60 days). Some uncertainty remains on this parameter due to volumetric strain during the sealing of the fractures. The hydration was stopped after one year and cross-hole hydraulic tests were performed to determine more accurately the specific storage as well as the hydraulic conductivity at a meter-scale. All hydraulic conductivity values measured at the injection interval and at the observation intervals were all below 10-10 m/s. Moreover, the preferential inter-connectivity along the drift disappeared. Specific storage values at the observation and injection intervals were similar. Furthermore they were in agreement with the value obtained at the injection interval within the second hydration phase (60 days after starting hydration). The graphical abstract synthesizes the evolution of the hydraulic/gas conductivity for 8 intervals since the beginning of the CDZ experiment. The conductivity limit of 10-10 m/s corresponds to the lower bound hydraulic definition of the EDZ and it is demonstrated that EDZ can be sealed. This is a significant result in the demonstration of the long-term safety of a repository.
Wang, Ming-Xiao; Cuevas, Catherina A; Su, Xiao-Tong; Wu, Peng; Gao, Zhong-Xiuzi; Lin, Dao-Hong; McCormick, James A; Yang, Chao-Ling; Wang, Wen-Hui; Ellison, David H
2018-04-01
Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.
Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V
2017-05-01
This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeuchi, Takashi; Hayashi, Kyosuke; Umeo, Kazunori; Takabatake, Toshiro
2018-05-01
We report magnetic, transport, and specific-heat measurements for single crystals of the antiferromagnetic (AFM) Kondo semiconductor alloy series Ce(Ru1-xOsx)2Al10 (0 ≤ x ≤ 1), which crystallize into an orthorhombic structure. The specific-heat and resistivity data show that the isoelectronic substitution does not damage the hybridization gap or the AFM transition. The Kondo temperature TK increases linearly with x, whereas the Néel temperature TN exhibits a maximum value of 29.2 K for x = 0.71. Under increasing uniaxial pressure P || a, TN increases for x = 0 but decreases for x = 1, while TK increases in the entire range of x. Under P || b, in contrast, TN increases steadily in the whole range of x while TK remains unchanged for each x. The strongly anisotropic change in TN indicates the presence of another mechanism to enhance TN in this system in addition to the anisotropic hybridization of the 4f state with conduction bands.
Tree leaf control on low flow water quality in a small Virginia stream
Slack, K.V.; Feltz, H.R.
1968-01-01
Impaired water quality in a small stream was related to autumn leaf fall from riparian vegetation. Dissolved oxygen and pH decreased, and water color, specific conductance, iron, manganese, and bicarbonate values increased as the rate of leaf fall increased. Similar quality changes occurred in laboratory cultures of tree leaves in filtered stream water, but the five leaf species studied produced widely differing results. Stream quality improved rapidly following channel flushing by storm flow. Organic loading by tree litter can exert significant control on water composition, especially during low flow.
Loomba, Rohit S; Shah, Parinda H; Nijhawan, Karan; Aggarwal, Saurabh; Arora, Rohit
2015-03-01
Increased cardiothoracic ratio noted on chest radiographs often prompts concern and further evaluation with additional imaging. This study pools available data assessing the utility of cardiothoracic ratio in predicting left ventricular dilation. A systematic review of the literature was conducted to identify studies comparing cardiothoracic ratio by chest x-ray to left ventricular dilation by echocardiography. Electronic databases were used to identify studies which were then assessed for quality and bias, with those with adequate quality and minimal bias ultimately being included in the pooled analysis. The pooled data were used to determine the sensitivity, specificity, positive predictive value and negative predictive value of cardiomegaly in predicting left ventricular dilation. A total of six studies consisting of 466 patients were included in this analysis. Cardiothoracic ratio had 83.3% sensitivity, 45.4% specificity, 43.5% positive predictive value and 82.7% negative predictive value. When a secondary analysis was conducted with a pediatric study excluded, a total of five studies consisting of 371 patients were included. Cardiothoracic ratio had 86.2% sensitivity, 25.2% specificity, 42.5% positive predictive value and 74.0% negative predictive value. Cardiothoracic ratio as determined by chest radiograph is sensitive but not specific for identifying left ventricular dilation. Cardiothoracic ratio also has a strong negative predictive value for identifying left ventricular dilation.
NASA Astrophysics Data System (ADS)
Xu, Shixing; Cen, Dingcheng; Gao, Peibo; Tang, Huang; Bao, Zhihao
2018-03-01
Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydrothermal method to form a 3D free-standing electrode for lithium-ion batteries (LIBs). The electrode exhibited a specific capacity of 170 mA h g-1 at a specific current of 300 mA g-1. With carbon nanotube (CNT) coating, its specific capacities further increased 12-40% at the various current rates. It could retain a reversible capacity of 130 mA h g-1, 74% of the initial capacity after 300 cycles at the specific current of 300 mA g-1. It outperformed most of the mixed-valence vanadium oxides. The improved electrochemical performance was ascribed to the synergistic effect of the 3D nanostructure of V6O13 for feasible Li+ diffusion and transport and highly conductive hierarchical conductive network formed by CNT and carbon fiber in c-textile.
Girard, Lisa-Christine; Pingault, Jean-Baptiste; Doyle, Orla; Falissard, Bruno; Tremblay, Richard E
2016-08-01
Conduct problems have been associated with poor language development, however the direction of this association in early childhood remains unclear. This study examined the longitudinal directional associations between conduct problems and expressive language ability. Children enrolled in the UK Millennium Cohort Study (N = 14, 004; 50.3 % boys) were assessed at 3 and 5 years of age. Parent reports of conduct problems and standardised assessments of expressive language were analyzed using cross-lagged modeling. Conduct problems at 3 years was associated with poorer expressive language at 5 years and poorer expressive language at 3 years was associated with increased conduct problems by 5 years. The results support reciprocal associations, rather than a specific unidirectional path, which is commonly found with samples of older children. The emergence of problems in either domain can thus negatively impact upon the other over time, albeit the effects were modest. Studies examining the effects of intervention targeting conduct problems and language acquisition prior to school entry may be warranted in testing the efficacy of prevention programmes related to conduct problems and poor language ability early in childhood.
Community health workers on a college campus: Effects on influenza vaccination.
Huang, Jack J; Francesconi, Maria; Cooper, Madeline H; Covello, Allyson; Guo, Michelle; Gharib, Soheyla D
2018-01-01
To assess the impact of a campus community health worker program (HealthPALs) on student influenza vaccination. Undergraduate students at a northeastern US university (enrollment 6650), influenza seasons 2011-2012 through 2015-2016. Study design: Difference-in-differences analysis of student vaccination at campus dormitory influenza clinics during intervention vs. baseline. In the first intervention year, HealthPALs conducted in-person peer outreach at several campus dormitory flu clinics. Subsequent years, HealthPALs conducted an enhanced intervention, with the addition of a personalized, dormitory-specific social media campaign appealing to students' community identity. The initial intervention increased vaccinations by 66% (IRR = 1.66, 95%CI 1.39-1.97) at intervention clinics relative to control. The enhanced intervention increased vaccinations by 85% (IRR = 1.85, 95%CI 1.75-1.96). Community health workers can be a highly effective, low-cost strategy for increasing influenza vaccination among college students. This model could also be used to address other campus health challenges where student engagement is key.
NASA Astrophysics Data System (ADS)
Stakhira, Y. M.; Tovstyuk, N. K.; Fomenko, V. L.; Grigorchak, I. I.; Borysyuk, A. K.; Seredyuk, B. A.
2012-01-01
A solid-phase mechanochemical technology of production of polycrystalline InSе intercalated with Ni up to 1.25 at. % has been developed. The x-ray and phase analyses of the produced NixInSe samples confirm their homogeneity and demonstrate a nonmonotonic Ni-content dependence of the lattice constant along the axis normal to the layers. Analysis of the low-temperature (77 K) impedance response within the frequency region 10-3-106 Hz shows a good correlation between the change in interlayer distance and in the band conductivity observed with increasing Ni concentration. However, the Ni concentration dependence of specific magnetization demonstrates an irregular increase at x ˜ 1 and does not coincide with the former. Such behavior is explained by the proposed theoretical model, which at the same time unveiled the mechanism behind the increasing contribution of free carrier concentration to conductivity - hybridization of electron orbitals of guest nickel and the lattice layers.
USDA-ARS?s Scientific Manuscript database
Utilization of arbuscular mycorrhizal [AM] fungus inoculum has been encouraged as a way for vegetable farmers to better utilize the AM symbiosis. On-farm systems can economically produce inoculum that has been shown to increase the yield of specific crops. We conducted seven years of field studies...
What Influences Public Library Adult Patrons to Choose the Books They Borrow.
ERIC Educational Resources Information Center
Goldhor, Herbert
This study was conducted in l978/79 to test the hypothesis that the circulation of books put in a prominent display location would increase because of the tendency of adults to select books in public libraries by browsing, rather than looking for specific titles. The circulation of all copies of a sample of ll5 titles from the adult individual…
The role of benefit transfer in ecosystem service valuation
Richardson, Leslie A.; Loomis, John; Kroeger, Timm; Casey, Frank
2015-01-01
The demand for timely monetary estimates of the economic value of nonmarket ecosystem goods and services has steadily increased over the last few decades. This article describes the use of benefit transfer to generate monetary value estimates of ecosystem services specifically. The article provides guidance for conducting such benefit transfers and summarizes advancements in benefit transfer methods, databases and analysis tools designed to facilitate its application.
Accumulated state assessment of the Peace-Athabasca-Slave River system.
Dubé, Monique G; Wilson, Julie E
2013-07-01
Effects-based analysis is a fundamental component of watershed cumulative effects assessment. This study conducted an effects-based analysis for the Peace-Athabasca-Slave River System, part of the massive Mackenzie River Basin, encompassing 20% of Canada's total land mass and influenced by cumulative contributions of the W.A.C. Bennett Dam (Peace River) and industrial activities including oil sands mining (Athabasca River). This study assessed seasonal changes in 1) Peace River water quality and quantity before and after dam development, 2) Athabasca River water quality and quantity before and after oil sands developments, 3) tributary inputs from the Peace and Athabasca Rivers to the Slave River, and 4) upstream to downstream differences in water quality in the Slave River. In addition, seasonal benchmarks were calculated for each river based on pre-perturbation post-perturbation data for future cumulative effects assessments. Winter discharge (January-March) from the Peace and Slave Rivers was significantly higher than before dam construction (pre-1967) (p < 0.05), whereas summer peak flows (May-July) were significantly lower than before the dam showing that regulation has significantly altered seasonal flow regimes. During spring freshet and summer high flows, the Peace River strongly influenced the quality of the Slave River, as there were no significant differences in loadings of dissolved N, total P (TP), total organic C (TOC), total As, total Mn, total V, and turbidity and specific conductance between these rivers. In the Athabasca River, TP and specific conductance concentrations increased significantly since before oil sands developments (1967-2010), whereas dissolved N and sulfate have increased after the oil sands developments (1977-2010). Recently, the Athabasca River had significantly higher concentrations of dissolved N, TP, TOC, dissolved sulfate, specific conductance, and total Mn than either the Slave or the Peace Rivers during the winter months. The transboundary nature of the Peace, Athabasca, and Slave River basins has resulted in fragmented monitoring and reporting of the state of these rivers, and a more consistent monitoring framework is recommended. Copyright © 2012 SETAC.
Euliss, Ned H.; Mushet, David M.; Newton, Wesley E.; Otto, Clint R.V.; Nelson, Richard D.; LaBaugh, James W.; Scherff, Eric J.; Rosenberry, Donald O.
2014-01-01
We evaluated the efficacy of using chemical characteristics to rank wetland relation to surface and groundwater along a hydrologic continuum ranging from groundwater recharge to groundwater discharge. We used 27 years (1974–2002) of water chemistry data from 15 prairie pothole wetlands and known hydrologic connections of these wetlands to groundwater to evaluate spatial and temporal patterns in chemical characteristics that correspond to the unique ecosystem functions each wetland performed. Due to the mineral content and the low permeability rate of glacial till and soils, salinity of wetland waters increased along a continuum of wetland relation to groundwater recharge, flow-through or discharge. Mean inter-annual specific conductance (a proxy for salinity) increased along this continuum from wetlands that recharge groundwater being fresh to wetlands that receive groundwater discharge being the most saline, and wetlands that both recharge and discharge to groundwater (i.e., groundwater flow-through wetlands) being of intermediate salinity. The primary axis from a principal component analysis revealed that specific conductance (and major ions affecting conductance) explained 71% of the variation in wetland chemistry over the 27 years of this investigation. We found that long-term averages from this axis were useful to identify a wetland’s long-term relation to surface and groundwater. Yearly or seasonal measurements of specific conductance can be less definitive because of highly dynamic inter- and intra-annual climate cycles that affect water volumes and the interaction of groundwater and geologic materials, and thereby influence the chemical composition of wetland waters. The influence of wetland relation to surface and groundwater on water chemistry has application in many scientific disciplines and is especially needed to improve ecological understanding in wetland investigations. We suggest ways that monitoring in situ wetland conditions could be linked with evolving remote sensing technology to improve our ability to better inform decisions affecting wetland sustainability and provide periodic inventories of wetland ecosystem services to document temporal trends in wetland function and how they respond to contemporary land-use change.
Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene
NASA Astrophysics Data System (ADS)
Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei
2017-10-01
Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.
Architecture engineering of supercapacitor electrode materials
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Li, Gong; Xue, Dongfeng
2016-02-01
The biggest challenge for today’s supercapacitor systems readily possessing high power density is their low energy density. Their electrode materials with controllable structure, specific surface area, electronic conductivity, and oxidation state, have long been highlighted. Architecture engineering of functional electrode materials toward powerful supercapacitor systems is becoming a big fashion in the community. The construction of ion-accessible tunnel structures can microscopically increase the specific capacitance and materials utilization; stiff 3D structures with high specific surface area can macroscopically assure high specific capacitance. Many exciting findings in electrode materials mainly focus on the construction of ice-folded graphene paper, in situ functionalized graphene, in situ crystallizing colloidal ionic particles and polymorphic metal oxides. This feature paper highlights some recent architecture engineering strategies toward high-energy supercapacitor electrode systems, including electric double-layer capacitance (EDLC) and pseudocapacitance.
NASA Technical Reports Server (NTRS)
Lohmann, R. P.; Fear, J. S.
1982-01-01
In connection with increases in the cost of fuels and the reduced availability of high quality petroleum crude, a modification of fuel specifications has been considered to allow acceptance of poorer quality fuels. To obtain the information upon which a selection of appropriate fuels for aircraft can be based, the Broad Specification Fuels Combustion Technology program was formulated by NASA. A description is presented of program-related investigations conducted by an American aerospace company. The specific objective of Phase I of this program has been to evaluate the impact of the use of broadened properties fuels on combustor design through comprehensive combustor rig testing. Attention is given to combustor concepts, experimental evaluation, results obtained with single stage combustors, the stage combustor concept, and the capability of a variable geometry combustor.
Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel
2015-12-15
Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.
ERIC Educational Resources Information Center
Fergusson, David M.; Boden, Joseph M.; Horwood, L. John
2009-01-01
Background: There is considerable evidence suggesting that many children show conduct problems that are specific to a given context (home; school). What is less well understood is the extent to which children with situation-specific conduct problems show similar outcomes to those with generalised conduct problems. Methods: Data were gathered as…
Clark, Melanie L.; Mason, Jon P.
2006-01-01
The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.
NASA Astrophysics Data System (ADS)
Korobko, Evguenia V.; Korobko, Yulia O.
2000-04-01
Fluid disperse systems, sensitive to the external electric field-electrorheological fluids, are finding increasing use in various areas of industry and technology. Their physicomechanical, electrophysical characteristics determine the valuable specific properties of the materials with assigned structure, obtainable with everwide use of electric fields, which makes it possible to substantially enhance efficiency and productiveness of technological processes and to improve the control of operational regimes of the equipment which employ fluid disperse media. The present investigations has been undertaken with the aim of studying thermophysical properties and rheophysical behavior of low-concentration ER- fluid (diatomite in transformer oil) at different temperatures. It was shown that the electric field, which changes considerably the structure of electrorheological fluid, influences effective thermal conductivity and diffusivity coefficients. Their increase with electric field intensity and the increase of the effective viscosity with temperature are connected with the increase of the conductive component of the overall heat transfer through the contact spots between the solid particles, and with intensification of electric convection in the spaces between the dispersed particles.
Jauchem, James R
2011-01-01
Conducted energy weapons (CEWs) are used by law enforcement personnel to incapacitate individuals quickly and effectively, without intending to cause lethality. CEWs have been deployed for relatively long or repeated exposures in some cases. In laboratory animal models, central venous hematocrit has increased significantly after CEW exposure. Even limited applications (e.g., three 5-sec applications) resulted in statistically significant increases in hematocrit. Preexposure hematocrit was significantly higher in nonsurvivors versus survivors after more extreme CEW applications. The purpose of this technical note is to address specific questions that may be generated when examining these results. Comparisons among results of CEW applications, other electrical muscle stimulation, and exercise/voluntary muscle contraction are included. The anesthetized swine appears to be an acceptable animal model for studying changes in hematocrit and associated red blood cell changes. Potential detrimental effects of increased hematocrit, and considerations during law enforcement use, are discussed. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.
NASA Astrophysics Data System (ADS)
Chien, Chih-Chun; Gruss, Daniel; Di Ventra, Massimiliano; Zwolak, Michael
2013-06-01
The study of time-dependent, many-body transport phenomena is increasingly within reach of ultra-cold atom experiments. We show that the introduction of spatially inhomogeneous interactions, e.g., generated by optically controlled collisions, induce negative differential conductance in the transport of atoms in one-dimensional optical lattices. Specifically, we simulate the dynamics of interacting fermionic atoms via a micro-canonical transport formalism within both a mean-field and a higher-order approximation, as well as with a time-dependent density-matrix renormalization group (DMRG). For weakly repulsive interactions, a quasi-steady-state atomic current develops that is similar to the situation occurring for electronic systems subject to an external voltage bias. At the mean-field level, we find that this atomic current is robust against the details of how the interaction is switched on. Further, a conducting-non-conducting transition exists when the interaction imbalance exceeds some threshold from both our approximate and time-dependent DMRG simulations. This transition is preceded by the atomic equivalent of negative differential conductivity observed in transport across solid-state structures.
Izquierdo, Paulo; Astudillo, Carolina; Blair, Matthew W; Iqbal, Asif M; Raatz, Bodo; Cichy, Karen A
2018-05-11
Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.
Through-plane conductivities of membranes for nonaqueous redox flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.
In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less
Through-plane conductivities of membranes for nonaqueous redox flow batteries
Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; ...
2015-08-13
In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less
Disruptive Behavior Disorders in Children 0 to 6 Years Old.
Tandon, Mini; Giedinghagen, Andrea
2017-07-01
Disruptive behavior disorders (DBDs), specifically oppositional defiant disorder and conduct disorder, are common, serious, and treatable conditions among preschoolers. DBDs are marked by frequent aggression, deceitfulness, and defiance, and often persist through the lifespan. Exposure to harsh or inconsistent parenting, as frequently seen with parental depression and stress, increases DBD risk. Candidate genes that may increase DBD risk in the presence of childhood adversity have also been identified, but more research is needed. Neurophysiologic and structural correlates with DBD also exist. Parent management training programs, focusing on increasing parenting competence and confidence, are the gold standard treatment of preschool DBDs. Copyright © 2017 Elsevier Inc. All rights reserved.
Evaluative procedures to detect, characterize, and assess the severity of diabetic neuropathy.
Dyck, P J
1991-01-01
Minimal criteria for diabetic neuropathy need to be defined and universally applied. Standardized evaluative procedures need to be agreed and normal ranges determined from healthy volunteers. Types and stages of neuropathy should be established and assessments performed on representative populations of both Type 1 and Type 2 diabetic patients. Potential minimal criteria include absent ankle reflexes and vibratory sensation, and abnormalities of nerve conduction. However, the preferred criterion is the identification of more than two statistically defined abnormalities among symptoms and deficits, nerve conduction, quantitative sensory examination or quantitative autonomic examination. Various evaluative procedures are available. Symptoms should be assessed and scores can be assigned to neurological deficits. However, assessments of nerve conduction provide the most specific, objective, sensitive, and repeatable procedures, although these may be the least meaningful. Many techniques are available for quantitative sensory examination, but are poorly standardized and normal values are not available. For quantitative autonomic examination, tests are available for the adequacy of cardiovascular and peripheral vascular reflexes and increasingly for other autonomic functions. In any assessment of nerve function the conditions should be optimized and standardized, and stimuli defined. Specific instructions should be given and normal ranges established in healthy volunteers.
Analytical chemistry at the interface between materials science and biology
NASA Astrophysics Data System (ADS)
O'Brien, Janese Christine
This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays containing the correct recognition sequence. Chapter 5 explores more fully the microarray fabrication process described in Chapter 4. Specifically, experiments characterizing the effect of deposition conditions on oligonucleotide topography and as well as those that describe array density optimization are presented. Chapter 6 presents general conclusions from the work recorded in this dissertation and speculates on its extension.
Kemner, Allison L; Stachecki, Jessica R; Bildner, Michele E; Brennan, Laura K
2015-01-01
Local partnerships from the Healthy Kids, Healthy Communities initiative elected to participate in enhanced evaluation trainings to collect data through environmental audits and direct observations as well as to build their evaluation capacity. Environmental audit and direct observation tools and protocols were adapted for the relevant healthy eating and active living policy and environmental change approaches being conducted by the Healthy Kids, Healthy Communities partnerships. Customized trainings were conducted by the evaluation team to increase capacity and understanding for evaluation activities. A total of 87 trainings were conducted by the evaluation team in 31 Healthy Kids, Healthy Communities community partnerships. Data were collected for a total of 41 environmental audits and 17 direct observations. Community case examples illustrate how these trainings developed evaluation capacity. For instance, youth from one community presented environmental audit findings to local elected officials. The 31 partnerships participating in the community-based evaluation efforts resulted in 164 individuals trained in collecting context-specific data to assess the impact of healthy eating and active living policy and environmental strategies designed to create community change.
NASA Astrophysics Data System (ADS)
Bhaskara Rao, B. V.; Kale, Nikita; Kothavale, B. S.; Kale, S. N.
2016-06-01
Radar X-band electromagnetic interference shielding (EMS) is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT) has been homogeneously integrated (0 - 9 wt%) with polymer, poly (vinylidene fluoride, PVDF) to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE) of 17.7 dB/(g/cm3) (99.6% EMS), with maintained hardness and improved conductivity. With multilayer stacking (900 microns) of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3) (99.93% EMS). Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.
Properties of Lightning Strike Protection Coatings
NASA Astrophysics Data System (ADS)
Gagne, Martin
Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.
Chopski, Steven G; Rangus, Owen M; Moskowitz, William B; Throckmorton, Amy L
2014-09-01
A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs. All of the pump configurations led to an increase in pressure generation and flow in the Fontan circuit. The increase in IVC flow was found to augment pulmonary arterial flow, having only a small impact on the pressure and flow in the superior vena cava (SVC). Retrograde flow was neither observed nor measured from the TCPC junction into the SVC. All of the pump configurations enhanced the rate of power gain of the cavopulmonary circulation by adding energy and rotational force to the fluid flow. We measured an enhancement of forward flow into the TCPC junction, reduction in IVC pressure, and only minimally increased pulmonary arterial pressure under conditions of pump support. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Increasing transcultural awareness: the McMaster-Aga Khan-CIDA Project workshop model.
Smith, S E
1997-01-01
McMaster-Aga Khan-CIDA Project personnel at McMaster University School of Nursing over a period of four years designed and conducted eight one-day introductory workshops for nurses, faculty, staff, host families, and others involved with Pakistani nurses and Lady Health Visitors studying in Canada. The workshops (entitled Increasing Intercultural Awareness) assisted the Canadian and international participants to improve their awareness and knowledge of transcultural communication in preparation for working and socializing together. Using a participatory and active-learning approach, the workshop method introduced participants to transcultural communication; emphasized appreciation of cultural values, similarities and differences; and provided country-specific information on Pakistan. This article outlines the workshop design and rationale and describes specific examples of the transcultural nursing principles, practices, and teaching activities included in the one-day event.
NASA Technical Reports Server (NTRS)
Leach, C. S.; Vernikos-Danellis, J.; Krauhs, J. M.; Sandler, H.
1985-01-01
Space shuttle flight simulations were conducted to determine the effects of weightlessness, lower body negative pressure (LBNP), and acceleration of fluid and electrolyte excretion and the hormones that control it. Measurements were made on male and female subjects of different ages before and after bedrest. After admission to a controlled environment, groups of 6 to 14 subjects in the age ranges 25 to 35, 35 to 45, 45 to 55 to 65 years were exposed to +3 G sub z for 15 minutes (G1) and to LBNP (LBNP1) on different days. On 3 days during this prebedrest period, no tests were conducted. Six days of bedrest followed, and the G sub z (G2) and LBNP (LBNP2) tests were run again. Hormones, electrolytes, and other parameters were measured in 24-hour urine pools throughout the experiment. During bedrest, cortisol and aldosterone excretion increased. Urine volume decreased, and specific gravity and osmolality increased. Urinary electrolytes were statistically unchanged from levels during the non-stress control period. During G2, cortisol increased significantly over its control and bedrest levels. Urine volume, sodium, and chloride were significantly lower; specific gravity and osmolality were higher during the control period or bedrest. The retention of fluids and electrolytes after +G sub z may at least partially explain decreased urine volume and increased osmolality observed during bedrest in this study. There were some who indicated that space flight would not affect the fluid and electrolyte metabolism of females or older males any more severely than it has affected that of male astronauts.
Bravo, Adrian J; Pilatti, Angelina; Pearson, Matthew R; Mezquita, Laura; Ibáñez, Manuel I; Ortet, Generós
2018-01-01
Recent research suggests that ruminative thinking (specifically problem-focused thoughts) may explain why individuals engage in drinking to cope (DTC) when dealing with depressive symptoms; which in turn leads to increased negative alcohol-related consequences. Cross-cultural studies addressing these phenomena are scarce. The present study cross-culturally tested whether four rumination facets (problem-focused thoughts, counterfactual thinking, repetitive thoughts, and anticipatory thoughts) uniquely mediate the relationships between depressive symptoms and drinking motives/alcohol outcomes in a multicultural sample of college student drinkers (n=1429) from Spain, Argentina, and the U.S. Structural equation modeling was conducted to test the models, controlling for sex. Further, we conducted invariance testing to determine whether our models were culturally-specific or culturally-universal. Within both proposed models, no rumination facet uniquely mediated the relationship between depressive symptoms and drinking motives. However, an exploratory model with a second-order latent factor of ruminative thinking did significantly mediate these associations (exception was conformity motives). Further, there were two significant double-mediated associations that suggested that increased depressive symptoms is associated with increased ruminative thinking, which is associated with higher DTC motives, which in turn is associated with higher alcohol consumption and negative alcohol-related consequences. All models were found to be invariant across countries and sex, suggesting that these associations may be relatively universal. Rumination is relevant to understand the increased vulnerability of college drinkers to exhibit greater alcohol consumption and negative consequences via DTC motives when dealing with depressive symptoms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agimi, Yll; Regasa, Lemma Ebssa; Ivins, Brian; Malik, Saafan; Helmick, Katherine; Marion, Donald
2018-05-01
To examine the role of Department of Defense policies in identifying theater-sustained traumatic brain injuries (TBIs). We conducted a retrospective study of 48 172 US military service members who sustained their first lifetime TBIs between 2001 and 2016 while deployed to Afghanistan or Iraq. We used multivariable negative binomial models to examine the changes in TBI incidence rates following the introduction of Department of Defense policies. Two Army policies encouraging TBI reporting were associated with an increase of 251% and 97% in TBIs identified following their implementation, respectively. Among airmen, the introduction of TBI-specific screening questions to the Post-Deployment Health Assessment was associated with a 78% increase in reported TBIs. The 2010 Department of Defense Directive Type Memorandum 09-033 was associated with another increase of 80% in the likelihood of being identified with a TBI among soldiers, a 51% increase among sailors, and a 124% increase among Marines. Department of Defense and service-specific policies introduced between 2006 and 2013 significantly increased the number of battlefield TBIs identified, successfully improving the longstanding problem of underreporting of TBIs.
Analysis of private health insurance premium growth rates: 1985-1992.
Feldstein, P J; Wickizer, T M
1995-10-01
The rate of increase in health care expenditures has been a central policy concern for well over a decade, yet little empirical research has been conducted to examine expenditure growth rates. This study analyzed health insurance premium growth rates for a selected sample of 95 insured groups over the period 1985 to 1992. During this time, premiums increased by approximately 150% in nominal terms and by 45% in real terms. The observed rate of growth was not constant over time, however. The most rapid growth occurred during the years 1986 to 1989; thereafter, the rate of increase in premiums declined. Multivariate analysis was conducted to assess the effects on premium growth rates of selected variables representing insurance benefit design features, market competitive factors, insurance system factors, and group-specific factors. In addition to the percentage increase in benefit payments, other factors found to affect premium growth rates were health maintenance organization market penetration, deductible level, the coinsurance rate, and state insurance mandates. Further, this analysis suggests that the insurance underwriting cycle may play an important role in influencing insurance premium growth rates. These results support the belief that health maintenance organization induced competition has potential to control the rate of increase in health care costs.
Clements, Steve; Madise, Nyovani
2004-08-01
This study was conducted to identify the poorest and other vulnerable sub-groups being served least by family planning providers. The study was set in three countries in sub-Saharan Africa, namely, Ghana, Tanzania and Zimbabwe. This region generally has a low but increasing uptake of modern contraceptive methods. As the use of family planning providers increases, there is a need to understand who is not being served and why. Logistic regression analyses of demographic and health survey data were conducted to identify the characteristics and geographical areas of women who are not using modern contraceptive methods. The results show some similarities among the countries in those using modern methods the least. However, a number of groups were country specific. Identifying the poorest women with the lowest use of modern methods is best done by assessing their household amenities or their partner's status rather than theirs.
Irrational reactions to negative outcomes: evidence for two conceptual systems.
Epstein, S; Lipson, A; Holstein, C; Huh, E
1992-02-01
According to cognitive-experiential self-theory (CEST), individuals have 2 systems for processing information, a rational system and an experiential system. Research conducted under norm theory (NT) has provided impressive evidence of an if only (IO) effect associated with postoutcome processing of aversive events that are highly consistent with formulations in CEST. Two studies involving vignettes adapted from NT were conducted that tested 4 hypotheses and corollaries derived from CEST. It was demonstrated, in support of hypotheses, that the IO effect can be obtained with ratings of one's own and of a protagonist's specific behaviors, as well as with ratings of a protagonist's diffuse emotions (the usual procedure); that a rational orientation decreases the IO effect; that increasing the intensity of outcomes increases it; and that priming the experiential system reduces people's ability to subsequently think rationally. The theoretical and research implications of these findings are discussed.
Cooling of Gas Turbines. 2; Effectiveness of Rim Cooling of Blades
NASA Technical Reports Server (NTRS)
Wolfenstein, Lincoln; Meyer, Gene L.; McCarthy, John S.
1947-01-01
An analysis is presented of rim cooling of gas-turbine blades; that is, reducing the temperature at the base of the blade (wheel rim), which cools the blade by conduction alone. Formulas for temperature and stress distributions along the blade are derived and, by the use of experimental stress-rupture data for a typical blade alloy, a relation is established between blade life (time for rupture), operating speed, and amount of rim cooling for several gas temperatures. The effect of blade parameter combining the effects of blade dimensions, blade thermal conductivity, and heat-transfer coefficient is determined. The effect of radiation on the results is approximated. The gas temperatures ranged from 1300F to 1900F and the rim temperature, from 0F to 1000F below the gas temperature. This report is concerned only with blades of uniform cross section, but the conclusions drawn are generally applicable to most modern turbine blades. For a typical rim-cooled blade, gas temperature increases are limited to about 200F for 500F of cooling of the blade base below gas temperature, and additional cooling brings progressively smaller increases. In order to obtain large increases in thermal conductivity or very large decreases in heat-transfer coefficient or blade length or necessary. The increases in gas temperature allowable with rim cooling are particularly small for turbines of large dimensions and high specific mass flows. For a given effective gas temperature, substantial increases in blade life, however, are possible with relatively small amounts of rim cooling.
Thermal conductivity of hydrate-bearing sediments
Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.
2009-01-01
A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.
Kyung, Eun Jung; Kim, Hyun Bum; Hwang, Eun Sang; Lee, Seok; Choi, Bup Kyung; Lim, Sang Moo; Kwon, Oh In
2018-01-01
In oriental medicine, curcumin is used to treat inflammatory diseases, and its anti-inflammatory effect has been reported in recent research. In this feasibility study, the hepatoprotective effect of curcumin was investigated using a rat liver cirrhosis model, which was induced with dimethylnitrosamine (DMN). Together with biochemical analysis, we used a magnetic resonance-based electrical conductivity imaging method to evaluate tissue conditions associated with a protective effect. The effects of curcumin treatment and lactulose treatment on liver cirrhosis were compared. Electrical conductivity images indicated that liver tissues damaged by DMN showed decreased conductivity compared with normal liver tissues. In contrast, cirrhotic liver tissues treated with curcumin or lactulose showed increased conductivity than tissues in the DMN-only group. Specifically, conductivity of cirrhotic liver after curcumin treatment was similar to that of normal liver tissues. Histological staining and immunohistochemical examination showed significant levels of attenuated fibrosis and decreased inflammatory response after both curcumin and lactulose treatments compared with damaged liver tissues by DMN. The conductivity imaging and biochemical examination results indicate that curcumin's anti-inflammatory effect can prevent the progression of irreversible liver dysfunction. PMID:29887757
Harris, Lauren S; Luck, Joshua E; Atherton, Rachel R
2017-02-01
Poor wound healing is an important surgical complication. At-risk wounds must be identified early and monitored appropriately. Wound surveillance is frequently inadequate, leading to increased rates of surgical site infections (SSIs). Although the literature demonstrates that risk factor identification reduces SSI rates, no studies have focused on wound management at a junior level. Our study assesses documentation rates of patient-specific risk factors for poor wound healing at a large district general hospital in the UK. It critically evaluates the efficacy of interventions designed to promote surveillance of high-risk wounds. We conducted a full-cycle clinical audit examining medical records of patients undergoing elective surgery over 5 days. Interventions included education of the multidisciplinary team and addition of a Wound Healing Risk Assessment (WHRA) checklist to surgical admissions booklets. This checklist provided a simple stratification tool for at-risk wounds and recommendations for escalation. Prior to interventions, the documentation of patient-specific risk factors ranged from 0·0% to 91·7% (mean 42·6%). Following interventions, this increased to 86·4-95·5% (mean 92·5%), a statistically significant increase of 117·1% (P < 0·01). This study demonstrates that documentation of patient-specific risk factors for poor wound healing is inadequate. We have shown the benefit of introducing interventions to increase risk factor awareness. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Fine, Jason M.; Harned, Douglas A.; Oblinger, Carolyn J.
2013-01-01
Streamflow and water-quality data, including concentrations of nutrients, metals, and pesticides, were collected from October 1988 through September 2009 at six sites in the Treyburn development study area. A review of water-quality data for streams in and near a 5,400-acre planned, mixed-use development in the Falls Lake watershed in the upper Neuse River Basin of North Carolina indicated only small-scale changes in water quality since the previous assessment of data collected from 1988 to 1998. Loads and yields were estimated for sediment and nutrients, and temporal trends were assessed for specific conductance, pH, and concentrations of dissolved oxygen, suspended sediment, and nutrients. Water-quality conditions for the Little River tributary and Mountain Creek may reflect development within these basins. The nitrogen and phosphorus concentrations at the Treyburn sites are low compared to sites nationally. The herbicides atrazine, metolachlor, prometon, and simazine were detected frequently at Mountain Creek and Little River tributary but concentrations are low compared to sites nationally. Little River tributary had the lowest median suspended-sediment yield over the 1988–2009 study period, whereas Flat River tributary had the largest median yield. The yields estimated for suspended sediment and nutrients were low compared to yields estimated for other basins in the Southeastern United States. Recent increasing trends were detected in total nitrogen concentration and suspended-sediment concentrations for Mountain Creek, and an increasing trend was detected in specific conductance for Little River tributary. Decreasing trends were detected in dissolved nitrite plus nitrate nitrogen, total ammonia plus organic nitrogen, sediment, and specific conductance for Flat River tributary. Water chemical concentrations, loads, yields, and trends for the Treyburn study sites reflect some effects of upstream development. These measures of water quality are generally low, however, compared to regional and national averages.
Effect of polyaniline on MWCNTs supercapacitor properties prepared by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Razak, Rozelia Azila Abd; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla
2017-08-01
Multi-walled carbon nanotubes (MWCNTs) is widely used as supercapacitor electrode material. However, the specific capacitance of MWCNTs cannot achieve optimum value to facilitate required demand. Conducting polymers have been introduced to achieve optimum energy density and power density of supercapacitor electrode material. Previous work had demonstrated the effects of adding conducting polymer into carbon base material to get pseudocapacitance effect. Nevertheless the effects specifically of polyaniline (PANi) to MWCNTs were significantly low. This work describes the effect of PANi adding on MWCNTs film prepared by electrophoretic deposition (EPD) technique in order to increase the specific capacitance of MWCNTs. The commercial MWCNTs is dispersed in deionized water by using crystal violet. The admixtures without PANi (sample A), 5wt.% of PANi (sample B) and 10wt.% of PANi (sample C) have been prepared by ex-situ polymerization. The voltage supplied for film deposition is 8 V for 5 minutes. The morphology, functional group and electrochemical properties of MWCNTs due to the presence of PANi had been studied. From FESEM analysis, the presence of PANi can be clearly observed for sample B and sample C while FTIR analysis, proves PANi structure on MWCNTs with its functional group presence in sample B and sample C through the absorbtion band which obviously shifted to higher value compare to sample A. Cyclic voltammogram (CV) analysis shown redox activity occurred in sample B and sample C with identical anodic and cathodic peaks. Sample B hold the higher specific capacitance and higher energy density compared than sample A and sample B. From galvanostatic charge-discharge (CD) measurement, the charge and discharge process for sample B is longer than sample A and sample C which consequently lower its power density. The presence of PANi at 5wt.% is able to increase specific capacitance as well as energy density to optimum value.
Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.
Streamflow gain and loss of selected streams in northern Arkansas
Freiwald, David A.
1987-01-01
This map shows streamflow gain and loss measurements (seepage runs) on the Crooked, Osage, and Spavinaw Creeks, and Illinois, Kings, Mulberry, Spring, and Strawberry Rivers during the low-flow conditions from September 1982 to October 1984. Data indicated that streamflow gains and losses resulted from differences in lithology of the predominately carbonate rocks and from the presence of faults. The Kings and Strawberry Rivers and Osage Creek were gaining streams throughout their length, however wastewater discharges precluded an accurate determination on Osage Creek. Crooked and Spavinaw Creeks and the Illinois, Spring, and Mulberry Rivers generally were gaining streams throughout most of their lengths although short losing reaches were identified. The largest gains in streamflow generally occurred were Mississippian formation predominated near the streams. Faults that intersected the stream channels primarily were responsible for streamflow losses. The specific conductance of water increased in the stream reaches that had the most significant streamflow gains. The specific conductance of water in tributaries was generally higher than that in larger streams. (Author 's abstract)
Supercapacitors based on pillared graphene nanostructures.
Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S
2012-03-01
We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.
Microstructure and thermal conductivity of surfactant-free NiO nanostructures
NASA Astrophysics Data System (ADS)
Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P. A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F. P.
2012-06-01
High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m2/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery.
NASA Astrophysics Data System (ADS)
Gao, Jing; You, Jiang; Huang, Zhihong; Cochran, Sandy; Corner, George
2012-03-01
Tissue-mimicking phantoms, including bovine serum albumin phantoms and egg white phantoms, have been developed for, and in laboratory use for, real-time visualization of high intensity focused ultrasound-induced thermal coagulative necrosis since 2001. However, until now, very few data are available concerning their thermophysical properties. In this article, a step-wise transient plane source method has been used to determine the values of thermal conductivity, thermal diffusivity, and specific heat capacity of egg white phantoms with elevated egg white concentrations (0 v/v% to 40 v/v%, by 10 v/v% interval) at room temperature (~20 °C). The measured thermophysical properties were close to previously reported values; the thermal conductivity and thermal diffusivity were linearly proportional to the egg white concentration within the investigation range, while the specific heat capacity decreased as the egg white concentration increased. Taking account of large differences between real experiment and ideal model, data variations within 20 % were accepted.
Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes.
Fong, Kara D; Wang, Tiesheng; Kim, Hyun-Kyung; Kumar, R Vasant; Smoukov, Stoyan K
2017-09-08
Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.
Pod Mildew on Soybeans Can Mitigate the Damage to the Seed Arising from Field Mold at Harvest Time.
Liu, Jiang; Deng, Juncai; Zhang, Ke; Wu, Haijun; Yang, Caiqiong; Zhang, Xiaowen; Du, Junbo; Shu, Kai; Yang, Wenyu
2016-12-07
Seedpods are the outermost barrier of legume plants encountered by pests and pathogens, but research on this tissue, especially regarding their chemical constituents, is limited. In the present study, a mildew-index-model-based cluster analysis was used to evaluate and identify groups of soybean genotypes with different organ-specific resistance against field mold. The constituents of soybean pods, including proteins, carbohydrates, fatty acids, and isoflavones, were analyzed. Linear regression and correlation analyses were also conducted between these main pod constituents and the organ-specific mildew indexes of seed (MIS) and pod (MIP). With increases in the contents of infection constituents, such as proteins, carbohydrates, and fatty acids, the MIP increased and the MIS decreased. The MIS decreased with increases in the contents of glycitein (GLE)-type isoflavonoids, which act as antibiotic constituents. Although the infection constituents in the soybean pods caused pod mildew, they also helped mitigate the corresponding seed mildew to a certain extent.
Effect of load carriage on performance of an explosive, anaerobic military task.
Treloar, Alison K Laing; Billing, Daniel C
2011-09-01
This study examined the effects of load carriage on performance of an explosive, anaerobic military task. A task-specific assessment requiring five 30-m timed sprints was developed to address this question. Seventeen soldiers (female = 5, male = 12) volunteered to undergo the test under two experimental conditions: unloaded (combat uniform and boots) and loaded (unloaded plus 21.6 kg fighting load, comprising webbing, weapon, helmet, and combat body armor). When loaded, there was a significant increase in the mean 30-m sprint time compared to unloaded (8.2 +/- 1.4 seconds vs. 6.2 +/- 0.8 seconds; p < 0.01). Of the total increase in mean sprint time, 51.7% occurred within the first 5 m. Female sprint times were affected to a larger extent than male (36% vs. 29%, respectively) as a result of the increased load. Fighting load significantly affected soldier mobility when conducting explosive, anaerobic military tasks, particularly among females, and specific physical conditioning should be considered to minimize this effect.
Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men.
De Roos, A J; Zahm, S H; Cantor, K P; Weisenburger, D D; Holmes, F F; Burmeister, L F; Blair, A
2003-09-01
An increased rate of non-Hodgkin's lymphoma (NHL) has been repeatedly observed among farmers, but identification of specific exposures that explain this observation has proven difficult. During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (n = 3417) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable. Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these "potentially carcinogenic" pesticides suggested a positive trend of risk with exposure to increasing numbers. Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios.
Effectiveness of Organ Donation Information Campaigns in Germany: A Facebook Based Online Survey
Settmacher, Utz; Wurst, Christine; Dirsch, Olaf
2015-01-01
Background The German transplantation system is in a crisis due to a lack of donor organs. Information campaigns are one of the main approaches to increase organ donation rates. Since 2012, German health insurance funds are obliged by law to inform their members about organ donation. We raised the hypothesis: The willingness to sign a donor card rises due to the subsequent increase of specific knowledge by receiving the information material of the health insurance funds. Objective The objective of the study was to assess the influence of information campaigns on the specific knowledge and the willingness to donate organs. Methods We conducted an online survey based on recruitment via Facebook groups, advertisements using the snowball effect, and on mailing lists of medical faculties in Germany. Besides the demographic data, the willingness to hold an organ donor card was investigated. Specific knowledge regarding transplantation was explored using five factual questions resulting in a specific knowledge score. Results We recruited a total of 2484 participants, of which 32.7% (300/917) had received information material. Mean age was 29.9 (SD 11.0, median 26.0). There were 65.81% (1594/2422) of the participants that were female. The mean knowledge score was 3.28 of a possible 5.00 (SD 1.1, median 3.0). Holding a donor card was associated with specific knowledge (P<.001), but not with the general education level (P=.155). Receiving information material was related to holding a donor card (P<.001), but not to a relevant increase in specific knowledge (difference in mean knowledge score 3.20 to 3.48, P=.006). The specific knowledge score and the percentage of organ donor card holders showed a linear association (P<.001). Conclusions The information campaign was not associated with a relevant increase in specific knowledge, but with an increased rate in organ donor card holders. This effect is most likely related to the feeling of being informed, together with an easy access to the organ donor card. PMID:26220442
Determination of the thermal and physical properties of black tattoo ink using compound analysis.
Humphries, Alexander; Lister, Tom S; Wright, Philip A; Hughes, Michael P
2013-07-01
Despite the widespread use of laser therapy in the removal of tattoos, comparatively little is known about its mechanism of action. There is a need for an improved understanding of the composition and thermal properties of the tattoo ink in order that simulations of laser therapy may be better informed and treatment parameters optimised. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry identified that the relative proportions of the constituent compounds of the ink likely to exist in vivo are the following: carbon black pigment (89 %), carvacrol (5 %), eugenol (2 %), hexenol (3 %) and propylene glycol (1 %). Chemical compound property tables identify that changes in phase of these compounds lead to a considerable reduction in the density and thermal conductivity of the ink and an increase in its specific heat as temperature increases. These temperature-dependent values of density, thermal conductivity and specific heat are substantially different to the constant values, derived from water or graphite at a fixed temperature, which have been applied in the simulations of laser therapy as previously described in the literature. Accordingly, the thermal properties of black tattoo ink described in this study provide valuable information that may be used to improve simulations of tattoo laser therapy.
Shayeh, Javad Shabani; Sadeghinia, Mohammad; Siadat, Seyed Omid Ranaei; Ehsani, Ali; Rezaei, Mehran; Omidi, Meisam
2017-06-15
In this work, supercapacitive performance of polypyrrole copper chromate nano particles (Ppy/CuCr 2 O 4 NPs) was studied. CuCr 2 O 4 NPs with the average size of 20nm were synthesized simply by hydrothermal method and the composite electrodes were then electropolymerized on the surface of glassy carbon electrode. Common surface analysis techniques such as scanning electron microscopy (SEM), transmission electron microscopy(TEM) and Fourier transform infrared (FTIR) were used to study the morphology and structure of the composite. Furthermore, for electrochemical evaluation of composite electrodes, techniques including cyclic voltammetry (CV), galvanostatic charge discharge (CD) and impedance spectroscopy (EIS) were used. Using cyclic voltammetry, the specific capacitance values of Ppy and Ppy/CuCr 2 O 4 NPs were calculated to be 109 and 508 F g -1 , respectively. Results show that using CuCr 2 O 4 NPs in the structure of polymeric films led to increased specific capacitance of composite electrodes more than four times that of poly pyrrole. Increasing the conductivity and stability of composite electrodes through continuous cycles are the other advantages of using CuCr 2 O 4 NPs as active materials in a polymeric structure. Copyright © 2017 Elsevier Inc. All rights reserved.
Performance in sports--With specific emphasis on the effect of intensified training.
Bangsbo, J
2015-12-01
Performance in most sports is determined by the athlete's technical, tactical, physiological and psychological/social characteristics. In the present article, the physical aspect will be evaluated with a focus on what limits performance, and how training can be conducted to improve performance. Specifically how intensified training, i.e., increasing the amount of aerobic high-intensity and speed endurance training, affects physiological adaptations and performance of trained subjects. Periods of speed endurance training do improve performance in events lasting 30 s-4 min, and when combined with aerobic high-intensity sessions, also performance during longer events. Athletes in team sports involving intense exercise actions and endurance aspects, such as soccer and basketball, can also benefit from intensified training. Speed endurance training does reduce energy expenditure and increase expression of muscle Na(+), K(+) pump α subunits, which may preserve muscle cell excitability and delay fatigue development during intense exercise. When various types of training are conducted in the same period (concurrent training), as done in a number of sports, one type of training may blunt the effect of other types of training. It is not, however, clear how various training modalities are affecting each other, and this issue should be addressed in future studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nash, J.T.; John, D.A.; Malcolm, M.J.; Briggs, P.H.; Crock, J.G.
1986-01-01
The U.S. Geological Survey and the St. Johns River Water Management District are investigating the hydrogeology of the Floridan aquifer system. An essential element of this investigation is the design and construction of a monitor well network in the lower saline water-bearing zone which occurs at about 2,000 ft below land surface. During 1985, a well near Ponte Vedra in northeast St. Johns County was completed into the lower saline water-bearing zone at a depth of 1,980 to 2,035 ft below land surface. This well and other wells drilled under this or other programs will be used to monitor water levels and water chemistry of the lower saline zone. Chloride concentrations in water above the lower saline zone ranged from 14 to 270 mg/L and specific conductance ranged from 450 to 1,440 micromhos/cm c. In the lower zone, chloride concentrations were as much as 16,210 mg/L and specific conductance as much as 46,000 micromhos per centimeter. Aquifer head and artesian flow from the well generally increased with depth. Water temperatures also increased from 23 C in the upper part of the aquifer to more than 28 C in the lower saline zone. (USGS)
Remarks on the thermal stability of an Ohmic-heated nanowire
NASA Astrophysics Data System (ADS)
Timsit, Roland S.
2018-05-01
The rise in temperature of a wire made from specific materials, due to ohmic heating by a DC electrical current, may lead to uncontrollable thermal runaway with ensuing melting. Thermal runaway stems from a steep decrease with increasing temperature of the thermal conductivity of the conducting material and subsequent trapping of the ohmic heat in the wire, i.e., from the inability of the wire to dissipate the heat sufficiently quickly by conduction to the cooler ends of the wire. In this paper, we show that the theory used to evaluate the temperature of contacting surfaces in a bulk electrical contact may be applied to calculate the conditions for thermal runaway in a nanowire. Implications of this effect for electrical contacts are addressed. A possible implication for memory devices using ohmic-heated nanofilms or nanowires is also discussed.
Phonon wave interference in graphene and boron nitride superlattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xue-Kun; Zhou, Wu-Xing; Tang, Li-Ming
2016-07-11
The thermal transport properties of the graphene and boron nitride superlattice (CBNSL) are investigated via nonequilibrium molecular dynamics simulations. The simulation results show that a minimum lattice thermal conductivity can be achieved by changing the period length of the superlattice. Additionally, it is found that the period length at the minimum shifts to lower values at higher temperatures, and that the depth of the minimum increases with decreasing temperature. In particular, at 200 K, the thermal conductivities of CBNSLs with certain specific period lengths are nearly equal to the corresponding values at 300 K. A detailed analysis of the phonon spectra showsmore » that this anomalous thermal conductivity behavior is a result of strong phonon wave interference. These observations indicate a promising strategy for manipulation of thermal transport in superlattices.« less
A feasibility study for advanced technology integration for general aviation
NASA Technical Reports Server (NTRS)
Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.
1980-01-01
An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.
Brody, Gene H; Ge, Xiaojia; Kim, Su Yeong; Murry, Velma McBride; Simons, Ronald L; Gibbons, Frederick X; Gerrard, Meg; Conger, Rand D
2003-04-01
Data from 296 sibling pairs (mean ages 10 and 13 years), their primary caregivers, and census records were used to test the hypothesis that African American children's likelihood of developing conduct problems associated with harsh parenting, a lack of nurturant-involved parenting, and exposure to an older sibling's deviance-prone attitudes and behavior would be amplified among families residing in disadvantaged neighborhoods. A latent construct representing harsh-inconsistent parenting and low levels of nurturant-involved parenting was positively associated with younger siblings' conduct disorder symptoms, as were older siblings' problematic attitudes and behavior. These associations were strongest among families residing in the most disadvantaged neighborhoods. Future research and prevention programs should focus on the specific neighborhood processes associated with increased vulnerability for behavior problems.
Mohd-Sidik, Sherina; Arroll, Bruce; Goodyear-Smith, Felicity; Zain, Azhar M D
2011-01-01
To determine the diagnostic accuracy of the two questions with help question (TQWHQ) in the Malay language. The two questions are case-finding questions on depression, and a question on whether help is needed was added to increase the specificity of the two questions. This cross sectional validation study was conducted in a government funded primary care clinic in Malaysia. The participants included 146 consecutive women patients receiving no psychotropic drugs and who were Malay speakers. The main outcome measures were sensitivity, specificity, and likelihood ratios of the two questions and help question. The two questions showed a sensitivity of 99% (95% confidence interval 88% to 99.9%) and a specificity of 70% (62% to 78%), respectively. The likelihood ratio for a positive test was 3.3 (2.5 to 4.5) and the likelihood ratio for a negative test was 0.01 (0.00 to 0.57). The addition of the help question to the two questions increased the specificity to 95% (89% to 98%). The two qeustions on depression detected most cases of depression in this study. The questions have the advantage of brevity. The addition of the help question increased the specificity of the two questions. Based on these findings, the TQWHQ can be strongly recommended for detection of depression in government primary care clnics in Malaysia. Translation did not apear to affect the validity of the TQWHQ.
Batool, Aniqa; Taj, Samia; Rashid, Audil; Khalid, Azeem; Qadeer, Samia; Saleem, Aansa R.; Ghufran, Muhammad A.
2015-01-01
Water being an essential component for plant growth and development, its scarcity poses serious threat to crops around the world. Climate changes and global warming are increasing the temperature of earth hence becoming an ultimate cause of water scarcity. It is need of the day to use potential soil amendments that could increase the plants’ resistance under such situations. Biochar and gypsum were used in the present study to improve the water use efficiency (WUE) and growth of Abelmoschus esculentus L. Moench (Lady’s Finger). A 6 weeks experiment was conducted under greenhouse conditions. Stress treatments were applied after 30 days of sowing. Plant height, leaf area, photosynthesis, transpiration rate (Tr), stomatal conductance and WUE were determined weekly under stressed [60% field capacity (F.C.)] and non-stressed (100% F.C.) conditions. Stomatal conductance and Tr decreased and reached near to zero in stressed plants. Stressed plants also showed resistance to water stress upto 5 weeks and gradually perished at sixth week. On the other hand, WUE improved in stressed plants containing biochar and gypsum as compared to untreated plants. Biochar alone is a better strategy to promote plant growth and WUE specifically of A. esculentus, compared to its application in combination with gypsum. PMID:26442046
40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... activities conducted outside a structure. 725.239 Section 725.239 Protection of Environment ENVIRONMENTAL... MICROORGANISMS Exemptions for Research and Development Activities § 725.239 Use of specific microorganisms in activities conducted outside a structure. (a) Bradyrhizobium japonicum. To qualify for an exemption under...
40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... activities conducted outside a structure. 725.239 Section 725.239 Protection of Environment ENVIRONMENTAL... MICROORGANISMS Exemptions for Research and Development Activities § 725.239 Use of specific microorganisms in activities conducted outside a structure. (a) Bradyrhizobium japonicum. To qualify for an exemption under...
Qiu, Hong; Tian, Linwei; Ho, Kin-Fai; Pun, Vivian C; Wang, Xiaorong; Yu, Ignatius T S
2015-04-01
Short-term effects of air pollution on mortality have been well documented in the literature worldwide. Less is known about which subpopulations are more vulnerable to air pollution. We conducted a case-only study in Hong Kong to examine the potential effect modification by personal characteristics and specific causes of death. Individual information of 402,184 deaths of non-external causes and daily mean concentrations of air pollution were collected from 2001 to 2011. For a 10 μg/m(3) increase of pollution concentration, people aged ≥ ∇65 years (compared with younger ages) had a 0.9-1.8% additional increase in mortality related to PM, NO2, and SO2. People dying from cardiorespiratory diseases (compared with other non-external causes) had a 1.6-2.3% additional increase in PM and NO2 related mortality. Other subgroups that were particularly susceptible were females and those economically inactive. Lower socioeconomic status and causes of cardiorespiratory diseases would increase the likelihood of death associated with air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele; ...
2017-06-01
We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele
We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele
X-ray diffraction and molecular dynamics simulations were used to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILsmore » increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. The results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
NASA Astrophysics Data System (ADS)
Hata, T.; Yoneda, J.; Yamamoto, K.
2017-12-01
A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.
NASA Astrophysics Data System (ADS)
Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.
2016-08-01
The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.
Electric and Hydraulic Properties of Carbon Felt Immersed in Different Dielectric Liquids
Kossenko, Alexey; Lugovskoy, Svetlana
2018-01-01
Electroconductive carbon felt (CF) material, having a permeable structure and significant electroconductive surface, is widely used for electrodes in numerous electrochemical applications such as redox flow batteries, fuel cells, electrochemical desalination apparatus, etc. The internal structure of CF is composed of different lengths of carbon filaments bonded together. This structure creates a large number of stochastically oriented and stochastically linked channels that have different lengths and cross sections. Therefore, the CF hydraulic permeability is similar to that of porous media and is determined by the internal empty volume and arrangement of carbon fibers. Its electroconductivity is ensured by the conductivity of the carbon filaments and by the electrical interconnections between fibers. Both of these properties (permeability and electrical conductivity) are extremely important for the efficient functioning of electrochemical devices. However, their influences counter each other during CF compressing. Increasing the stress on a felt element provides supplementary electrical contacts of carbon filaments, which lead to improved electrical conductivity. Thus, the active surface of the felt electrode is increased, which also boosts redox chemical reactions. On the other hand, compressed felt possesses reduced hydrodynamic permeability as a result of a diminished free volume of porous media and intrinsic channels. This causes increasing hydrodynamic expenditures of electrolyte pumping through electrodes and lessened cell (battery) efficiency. The designer of specific electrochemical systems has to take into account both of these properties when selecting the optimal construction for a cell. This article presents the results of measurements and novel approximating expressions of electrical and hydraulic characteristics of a CF during its compression. Since electrical conductivity plays a determining role in providing electrochemical reactions, it was measured in dry conditions and when the CF was immersed in several non-conductive liquids. The choice of such liquids prevented side effects of electrolyte ionic conductivity impact on electrical resistivity of the CF. This gave an opportunity to determine the influences of dielectric parameters of electrolytes to increase or decrease the density of interconnectivity of carbon fibers either between themselves or between them and electrodes. The experiments showed the influence of liquid permittivity on the conductivity of CF, probably by changing the density of fiber interconnections inside the felt. PMID:29690636
Electric and Hydraulic Properties of Carbon Felt Immersed in Different Dielectric Liquids.
Kossenko, Alexey; Lugovskoy, Svetlana; Averbukh, Moshe
2018-04-23
Electroconductive carbon felt (CF) material, having a permeable structure and significant electroconductive surface, is widely used for electrodes in numerous electrochemical applications such as redox flow batteries, fuel cells, electrochemical desalination apparatus, etc. The internal structure of CF is composed of different lengths of carbon filaments bonded together. This structure creates a large number of stochastically oriented and stochastically linked channels that have different lengths and cross sections. Therefore, the CF hydraulic permeability is similar to that of porous media and is determined by the internal empty volume and arrangement of carbon fibers. Its electroconductivity is ensured by the conductivity of the carbon filaments and by the electrical interconnections between fibers. Both of these properties (permeability and electrical conductivity) are extremely important for the efficient functioning of electrochemical devices. However, their influences counter each other during CF compressing. Increasing the stress on a felt element provides supplementary electrical contacts of carbon filaments, which lead to improved electrical conductivity. Thus, the active surface of the felt electrode is increased, which also boosts redox chemical reactions. On the other hand, compressed felt possesses reduced hydrodynamic permeability as a result of a diminished free volume of porous media and intrinsic channels. This causes increasing hydrodynamic expenditures of electrolyte pumping through electrodes and lessened cell (battery) efficiency. The designer of specific electrochemical systems has to take into account both of these properties when selecting the optimal construction for a cell. This article presents the results of measurements and novel approximating expressions of electrical and hydraulic characteristics of a CF during its compression. Since electrical conductivity plays a determining role in providing electrochemical reactions, it was measured in dry conditions and when the CF was immersed in several non-conductive liquids. The choice of such liquids prevented side effects of electrolyte ionic conductivity impact on electrical resistivity of the CF. This gave an opportunity to determine the influences of dielectric parameters of electrolytes to increase or decrease the density of interconnectivity of carbon fibers either between themselves or between them and electrodes. The experiments showed the influence of liquid permittivity on the conductivity of CF, probably by changing the density of fiber interconnections inside the felt.
Simulation of specific conductance and chloride concentration in Abercorn Creek, Georgia, 2000-2009
Conrads, Paul; Roehl, Edwin A.; Davie, Steven R.
2011-01-01
The City of Savannah operates an industrial and domestic water-supply intake on Abercorn Creek approximately 2 miles from the confluence with the Savannah River upstream from the Interstate 95 bridge. Chloride concentrations are a major concern for the city because industrial customers require water with low chloride concentrations, and elevated chloride concentrations require additional water treatment in order to meet those needs. The proposed deepening of Savannah Harbor could increase chloride concentrations (the major ion in seawater) in the upper reaches of the lower Savannah River estuary, including Abercorn Creek. To address this concern, mechanistic and empirical modeling approaches were used to simulate chloride concentrations at the city's intake to evaluate potential effects from deepening the Savannah Harbor. The first approach modified the mechanistic Environmental Fluid Dynamics Code (EFDC) model developed by Tetra Tech and used for evaluating proposed harbor deepening effects for the Environmental Impact Statement. Chloride concentrations were modeled directly with the EFDC model as a conservative tracer. This effort was done by Tetra Tech under a separate funding agreement with the U.S. Army Corps of Engineers and documented in a separate report. The second approach, described in this report, was to simulate chloride concentrations by developing empirical models from the available data using artificial neural network (ANN) and linear regression models. The empirical models used daily streamflow, specific conductance (field measurement for salinity), water temperature, and water color time series for inputs. Because there are only a few data points that describe the relation between high specific conductance values at the Savannah River at Interstate 95 and the water plant intake, there was a concern that these few data points would determine the extrapolation of the empirical model and potentially underestimate the effect of deepening the harbor on chloride concentrations at the intake. To accommodate these concerns, two ANN chloride models were developed for the intake. The first model (ANN M1e) used all the data. The second model (ANN M2e) only used data when specific conductance at Interstate 95 was less than 175 microsiemens per centimeter at 25 degrees Celsius. Deleting the conductivity data greater than 175 microsiemens per centimeter removed the "plateau" effect observed in the data. The chloride simulations with the ANN M1 model have a low sensitivity to specific conductance (salinity) at Interstate 95, whereas the chloride simulations with the ANN M2 model have a high sensitivity to salinity at Interstate 95. The two modeling approaches (Tetra Tech's EFDC model and the one described in this report) were integrated into a decision support system (DSS) that combines the historical database, output from EFDC, ANN models, ANN model simulation controls, streaming graphics, and model output. The DSS was developed as a Microsoft ExcelTM/Visual Basic for Applications program, which allowed the DSS to be prototyped, easily modified, and distributed in a familiar spreadsheet format. The EFDC and ANN models were used to simulate various harbor deepening scenarios. To accommodate the geometry changes in the harbor, the ANN models used the EFDC model-simulated salinity changes for a historical condition as input. The DSS uses a graphical user interface and allows the user to interrogate the ANN models and EFDC output. Two scenarios were simulated using the Savannah Chloride Model DSS to demonstrate different input options. One scenario decreased winter streamflows to a constant streamflow for 45 days. Streamflows during the period January 1 to February 15 were set to a constant 3,600 cubic feet per second for the simulation period of October 1, 2006, to October 1, 2009. The decreased winter streamflow resulted in predictions of increased specific conductance by as much as 50 microsiemens per centimeter and chlorid
Kappel, William M.; Sinclair, Gaylen J.; Reddy, James E.; Eckhardt, David A.; deVries, M. Peter; Phillips, Margaret E.
2012-01-01
U.S. Geological Survey (USGS) Data Rescue Program funds were used to recover data from paper records for 139 streamgages across central and western New York State; 6,133 different streamflow measurement forms, collected between 1970-80, contained field water-quality measurements. The water-quality data were entered, reviewed, and uploaded into the USGS National Water Information System. In total, 4,285 unique site visits were added to the database. The new values represent baseline water quality from which to measure change and will lead to a comparison of water-quality change over the last 40 years and into the future. Specific conductance was one of the measured properties and represents a simple way to determine if ambient inorganic water quality has been altered by anthropogenic (road salt runoff, wastewater discharges, or natural gas development) or natural sources. The objective of this report is to describe ambient specific conductance characteristics of surface water across the central and western part of New York. This report presents median specific conductance of stream discharge for the period 1970-80 and a description of the relation between specific conductance and concentrations of total dissolved solids (TDS) retrieved from the USGS National Water Information System (NWIS) database from 1955 to present. The data descriptions provide a baseline of surface-water specific conductance data that can used for comparison to current and future measurements in New York streams.
General Population Knowledge about Extreme Heat: A Cross-Sectional Survey in Lisbon and Madrid.
Gil Cuesta, Julita; van Loenhout, Joris Adriaan Frank; Colaço, Maria da Conceição; Guha-Sapir, Debarati
2017-01-28
Extreme heat is associated with an increased mortality and morbidity. National heat plans have been implemented to minimize the effect of extreme heat. The population's awareness and knowledge of national heat plans and extreme heat is essential to improve the community's behavior and adaptation. A general population survey was conducted in Lisbon and in Madrid to assess this knowledge. We used a questionnaire to interview passers-by. Results were compared between Lisbon and Madrid and between locals and foreigners, using Pearson Chi-square tests and Fisher's exact test. We conducted 260 interviews in six locations of different socio-economic backgrounds in each city. The most frequently mentioned extreme heat-related risk groups were the elderly (79.2%), children (49.6%) and babies (21.5%). The most frequently reported protective measures were increased fluid intake (73.1%) and avoiding exposure to the sun (50.8%). Knowledge about the heat plan was higher in Lisbon (37.2%) than in Madrid (25.2%) ( p -value = 0.03). Foreigners had less knowledge of risk groups compared to locals. Heat plans were not widely known in Madrid and Lisbon. Nonetheless, knowledge of practical concepts to face extreme heat, such as certain risk groups and protective measures, was found. Our results were similar to comparable surveys where specific respondents' groups were identified as less knowledgeable. This highlighted the importance of addressing these groups when communicating public health messages on heat. Foreigners should be specifically targeted to increase their awareness.
Møller, Lene Ruge; Sørensen, Merete Juul; Thomsen, Per Hove
2007-01-01
The aim was to test this in a nationwide register study of diagnoses used in child and adolescents psychiatry in Denmark. A larger number of different diagnoses were expected to be applied after the introduction of the 10th version of the International Classification of Diseases (ICD-10). Reflecting the time trend, we particularly expected an increase in the number of neuropsychiatric diagnoses. From the Danish Psychiatric Central Register data were drawn on clinical discharge diagnoses. All patients aged 0-15 years examined at psychiatric hospitals from 1995-2002 were included; 22,469 children and adolescents with a first contact were registered. The most frequent discharge diagnoses were pervasive development disorders (PDD; 11.9%), adjustment disorders (10.6%), conduct disorder (9.5%), emotional and anxiety disorders (7.6%), hyperkinetic disorders (7.3%), and specific developmental disorders (7.3%). We found a significant increase in the number of neuropsychiatric and affective diagnoses and a significant decrease in the number of adjustment, conduct and anxiety diagnoses during the study period. Of the 22,469 diagnoses, 45% were only partly specified according to ICD-10. Thirty-four per cent had diagnoses unspecified on the four-character level (Fxx.9) and 11% had Z-diagnoses. A larger number of different diagnoses and an increase in the use of neuropsychiatric diagnoses were seen after the introduction of ICD-10. Many diagnoses were only partly specified; consequently, a more detailed specification of the ICD-10 is still required.
Wang, Yaqiong; Ma, Hong
2015-09-01
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Sepúlveda, Nicasio; Zack, A.L.; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.
1990-01-01
A laboratory experiment to measure the specific storage of an aquifer material was conducted. A known dead load, simulating an overburden load, was applied to a sample of completely saturated aquifer material contained inside a cylinder. After the dead load was applied, water was withdrawn from the sample, causing the hydrostatic pressure to decrease and the effective stress to increase. The resulting compression of the sample and the amount of water withdrawn were measured after equilibrium was reached. The procedure was repeated by increasing the dead load and the hydrostatic pressure followed by withdrawing water to determine new values of effective stress and compaction. The simulated dead loads are typical of those experienced by shallow artesian aquifers. The void ratio and the effective stress of the aquifer sample, as simulated by different dead loads, determine the pore volume compressibility which, in turn, determines the values of specific storage. An analytical algorithm was used to independently determine the stress dependent profile of specific storage. These values are found to be in close agreement with laboratory results. Implications for shallow artesian aquifers, with relatively small overburden stress, are also addressed.
Near real-time monitoring and mapping of specific conductivity levels across Lake Texoma, USA
Atkinson, S.F.; Mabe, J.A.
2006-01-01
A submersible sonde equipped with a specific conductivity probe, linked with a global positioning satellite receiver was developed, deployed on a small boat, and used to map spatial and temporal variations in specific conductivity in a large reservoir. 7,695 sample points were recorded during 8 sampling trips. Specific conductivity ranged from 442 uS/cm to 3,378 uS/cm over the nine-month study. The data showed five statistically different zones in the reservoir: 2 different riverine zones, 2 different riverine transition zones, and a lacustrine zone (the main lake zone). These data were imported to a geographic information system where they were spatially interpolated to generate 8 maps showing specific conductivity levels across the entire surface of the lake. The highly dynamic nature of water quality, due to the widely differing nature of the rivers that flow into the reservoir and the effect of large inflows of fresh water during winter storms is easily captured and visualized using this approach. ?? Springer Science+Business Media, Inc. 2006.
Saline contamination of soil and water on Pawnee tribal trust land, eastern Payne County, Oklahoma
Runkle, Donna L.; Abbott, Marvin M.; Lucius, Jeffrey E.
2001-01-01
The Bureau of Land Management reported evidence of saline contamination of soils and water in Payne County on Pawnee tribal trust land. Representatives of the Bureau of Land Management and U.S. Geological Survey inspected the site, in September 1997, and observed dead grass, small shrubs, and large trees near some abandoned oil production wells, a tank yard, an pit, and pipelines. Soil and bedrock slumps and large dead trees were observed near a repaired pipeline on the side of the steep slope dipping toward an unnamed tributary of Eagle Creek. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, initiated an investigation in March 1998 to examine soil conductance and water quality on 160 acres of Pawnee tribal trust land where there was evidence of saline contamination and concern about saline contamination of the Ada Group, the shallowest freshwater aquifer in the area. The proximity of high specific conductance in streams to areas containing pipeline spill, abandoned oil wells, the tank yard, and the pit indicates that surface-water quality is affected by production brines. Specific conductances measured in Eagle Creek and Eagle Creek tributary ranged from 1,187 to 10,230 microsiemens per centimeter, with the greatest specific conductance measured downgradient of a pipeline spill. Specific conductance in an unnamed tributary of Salt Creek ranged from 961 to 11,500 microsiemens per centimeter. Specific conductance in three ponds ranged from 295 to 967 microsiemens per centimeter, with the greatest specific conductance measured in a pond located downhill from the tank yard and the abandoned oil well. Specific conductance in water from two brine storage pits ranged from 9,840 to 100,000 microsiemens per centimeter, with water from the pit near a tank yard having the greater specific conductance. Bartlesville brine samples from the oil well and injection well have the greatest specific conductance, chloride concentration, and dissolved solids concentrations, and plot the furthest from meteoric water on a graph of 8 deuterium and d 18oxygen. Waterflooding of the Bartlesville sand in the study area started in 1957 and continued until 1998. Waterflooding is the process of injecting brine water under pressure to drive the remaining oil to the production wells. The high dissolved solids concentration samples from observation wells 1, 3B, 5,7, and 8 could result from mixing of the Bartlesville brine from the waterfiood with meteoric water.
Complex conductivity of volcanic rocks and the geophysical mapping of alteration in volcanoes
NASA Astrophysics Data System (ADS)
Ghorbani, A.; Revil, A.; Coperey, A.; Soueid Ahmed, A.; Roque, S.; Heap, M. J.; Grandis, H.; Viveiros, F.
2018-05-01
Induced polarization measurements can be used to image alteration at the scale of volcanic edifices to a depth of few kilometers. Such a goal cannot be achieved with electrical conductivity alone, because too many textural and environmental parameters influence the electrical conductivity of volcanic rocks. We investigate the spectral induced polarization measurements (complex conductivity) in the frequency band 10 mHz-45 kHz of 85 core samples from five volcanoes: Merapi and Papandayan in Indonesia (32 samples), Furnas in Portugal (5 samples), Yellowstone in the USA (26 samples), and Whakaari (White Island) in New Zealand (22 samples). This collection of samples covers not only different rock compositions (basaltic andesite, andesite, trachyte and rhyolite), but also various degrees of alteration. The specific surface area is found to be correlated to the cation exchange capacity (CEC) of the samples measured by the cobalthexamine method, both serving as rough proxies of the hydrothermal alteration experienced by these materials. The in-phase (real) conductivity of the samples is the sum of a bulk contribution associated with conduction in the pore network and a surface conductivity that increases with alteration. The quadrature conductivity and the normalized chargeability are two parameters related to the polarization of the electrical double layer coating the minerals of the volcanic rocks. Both parameters increase with the degree of alteration. The surface conductivity, the quadrature conductivity, and the normalized chargeability (defined as the difference between the in-phase conductivity at high and low frequencies) are linearly correlated to the CEC normalized by the bulk tortuosity of the pore space. The effects of temperature and pyrite-content are also investigated and can be understood in terms of a physics-based model. Finally, we performed a numerical study of the use of induced polarization to image the normalized chargeability of a volcanic edifice. Induced polarization tomography can be used to map alteration of volcanic edifices with applications to geohazard mapping.
Wu, Juyou; Wang, Su; Gu, Yuchun; Zhang, Shaoling; Publicover, Stephen J.; Franklin-Tong, Vernonica E.
2011-01-01
Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow “self” recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba2+ ≥ Ca2+ > Mg2+) and the monovalent ions K+ and NH4+ and is enhanced at voltages negative to −100 mV. The Ca2+ conductance is blocked by La3+ but not by verapamil; the K+ currents are tetraethylammonium chloride insensitive and do not require Ca2+. We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity. PMID:21177472
Relations between macropore network characteristics and the degree of preferential solute transport
NASA Astrophysics Data System (ADS)
Larsbo, M.; Koestel, J.; Jarvis, N.
2014-12-01
The characteristics of the soil macropore network determine the potential for fast transport of agrochemicals and contaminants through the soil. The objective of this study was to examine the relationships between macropore network characteristics, hydraulic properties and state variables and measures of preferential transport. Experiments were carried out under near-saturated conditions on undisturbed columns sampled from four agricultural topsoils of contrasting texture and structure. Macropore network characteristics were computed from 3-D X-ray tomography images of the soil pore system. Non-reactive solute transport experiments were carried out at five steady-state water flow rates from 2 to 12 mm h-1. The degree of preferential transport was evaluated by the normalised 5% solute arrival time and the apparent dispersivity calculated from the resulting breakthrough curves. Near-saturated hydraulic conductivities were measured on the same samples using a tension disc infiltrometer placed on top of the columns. Results showed that many of the macropore network characteristics were inter-correlated. For example, large macroporosities were associated with larger specific macropore surface areas and better local connectivity of the macropore network. Generally, an increased flow rate resulted in earlier solute breakthrough and a shifting of the arrival of peak concentration towards smaller drained volumes. Columns with smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities exhibited a greater degree of preferential transport. This can be explained by the fact that, with only two exceptions, global (i.e. sample scale) continuity of the macropore network was still preserved at low macroporosities. Thus, for any given flow rate, pores of larger diameter were actively conducting solute in soils of smaller near-saturated hydraulic conductivity. This was associated with larger local transport velocities and, hence, less time for equilibration between the macropores and the surrounding matrix which made the transport more preferential. Conversely, the large specific macropore surface area and well-connected macropore networks associated with columns with large macroporosities limit the degree of preferential transport because they increase the diffusive flux between macropores and the soil matrix and they increase the near-saturated hydraulic conductivity. The normalised 5% arrival times were most strongly correlated with the estimated hydraulic state variables (e.g. with the degree of saturation in the macropores R2 = 0.589), since these combine into one measure the effects of irrigation rate and the near-saturated hydraulic conductivity function, which in turn implicitly depends on the volume, size distribution, global continuity, local connectivity and tortuosity of the macropore network.
Treece, M.W.; Jaynes, M.L.
1994-01-01
November of water into and out of tidally affected canals in eastern North Carolina was documented before and after the installation of water-control structures. Water levels in five of the canals downstream from the water-control structures were controlled primarily by water-level fluctuations in estuarine receiving waters. Water-control structures also altered upstream water levels in all canals. Water levels were lowered upstream from tide gates, but increased upstream from flashboard risers. Both types of water-control structures attenuated the release of runoff following rainfall events, but in slightly different ways. Tide gates appeared to reduce peak discharge rates associated with rainfall, and flashboard risers lengthened the duration of runoff release. Tide gates had no apparent effect on pH, dissolved oxygen, suspended-sediment, or total phosphorus concentrations downstream from the structures. Specific conductance measured from composite samples collected with automatic samples increased downstream of tide gates after installation. Median concentrations of nitrite plus nitrate nitrogen were near the minimum detection level throughout the study; however, the number of observations of concentrations exceeding 0.1 milligram per liter dropped significantly after tide gates were installed. Following tide-gate installation, instantaneous loadings of nitrite plus nitrate nitrogen were significantly reduced at one test site, but this reduction was not observed at the other test site. Loadings of other nutrient species and suspended sediment did not change at the tide-gate test sites after tide-gate installation. Specific conductance was lower in the Beaufort County canals than in the Hyde County canals. Although there was a slight increase in median values at the flashboard-riser sites, the mean and maximum values declined substantially downstream from the risers following installation. This decline of specific conductance in the canals occurred despite a large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.
Kilcrease, James; Rodriguez-Uribe, Laura; Richins, Richard D; Arcos, Juan Manuel Garcia; Victorino, Jesus; O'Connell, Mary A
2015-03-01
The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ruhe, Alexander; Fejer, René; Walker, Bruce
2011-07-15
Increased center of pressure excursions are well documented in patients suffering from non-specific low back pain, whereby the altered postural sway includes both higher mean sway velocities and larger sway area. No investigation has been conducted to evaluate a relationship between pain intensity and postural sway in adults (aged 50 or less) with non-specific low back pain. Seventy-seven patients with non-specific low back pain and a matching number of healthy controls were enrolled. Center of pressure parameters were measured by three static bipedal standing tasks of 90 sec duration with eyes closed in narrow stance on a firm surface. The perceived pain intensity was assessed by a numeric rating scale (NRS-11), an equal number of patients (n = 11) was enrolled per pain score. Generally, our results confirmed increased postural instability in pain sufferers compared to healthy controls. In addition, regression analysis revealed a significant and linear increase in postural sway with higher pain ratings for all included COP parameters. Statistically significant changes in mean sway velocity in antero-posterior and medio-lateral direction and sway area were reached with an incremental change in NRS scores of two to three points. COP mean velocity and sway area are closely related to self-reported pain scores. This relationship may be of clinical use as an objective monitoring tool for patients under treatment or rehabilitation.
Non-Conventional Carbon Nanotube Skeleton Reinforced Composites for Space Applications
NASA Astrophysics Data System (ADS)
Hepp, Felicitas; Pfeiffer, E. K.; Pereira, C.; Martins, M.; Liedtke, V.; Macho, C.; Aschenbrenner, O.; Forero, S.; Linke, S.; Masouras, A.; Vavouliotis, A.; Kostopoulos, V.; Wulz, H.-G.; Pambaguian, L.
2014-06-01
Carbon Nanotubes (CNT) embedded in composite materials like CFRP, polymers or ceramics, can improve specific performance characteristics such as e.g. electrical conductivity, mechanical fatigue and crack propagation, mechanical properties, alpha/epsilon values, PIM-reduction, EMC shielding, etc.CNT skeletons, also called Bucky papers and Bucky discs, are macroscopic aggregates of Carbon Nanotubes. These skeletons are used in composites with different matrices, namely metal, ceramic or polymer or directly used in CFRP composites.The aim is to increase the performance of composite space structures by increasing the material characteristics or provide composites with additional sensing abilities like structural health monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-08-01
Since 1990, the National Renewable Energy Laboratory’s (NREL's) National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. NWTC researchers can test full-scale and subcomponent articles, conduct data analyses, and provide engineering expertise on best design practices. Structural testing of wind turbine blades enables designers, manufacturers, and owners to validate designs and assess structural performance to specific load conditions. Rigorous structural testing can reveal design and manufacturing problems at an early stage of development that can lead to overall improvements in design and increase system reliability.
Lightning strike protection of composites
NASA Astrophysics Data System (ADS)
Gagné, Martin; Therriault, Daniel
2014-01-01
Aircraft structures are being redesigned to use fiber-reinforced composites mainly due to their high specific stiffness and strength. One of the main drawbacks from changing from electrically conductive metals to insulating or semi-conducting composites is the higher vulnerability of the aircraft to lightning strike damage. The current protection approach consists of bonding a metal mesh to the surface of the composite structure, but this weight increase negatively impact the fuel efficiency. This review paper presents an overview of the lightning strike problematic, the regulations, the lightning damage to composite, the current protection solutions and other material or technology alternatives. Advanced materials such as polymer-based nanocomposites and carbon nanotube buckypapers are promising candidates for lightweight lightning strike protection technology.
FLBEIA : A simulation model to conduct Bio-Economic evaluation of fisheries management strategies
NASA Astrophysics Data System (ADS)
Garcia, Dorleta; Sánchez, Sonia; Prellezo, Raúl; Urtizberea, Agurtzane; Andrés, Marga
Fishery systems are complex systems that need to be managed in order to ensure a sustainable and efficient exploitation of marine resources. Traditionally, fisheries management has relied on biological models. However, in recent years the focus on mathematical models which incorporate economic and social aspects has increased. Here, we present FLBEIA, a flexible software to conduct bio-economic evaluation of fisheries management strategies. The model is multi-stock, multi-fleet, stochastic and seasonal. The fishery system is described as a sum of processes, which are internally assembled in a predetermined way. There are several functions available to describe the dynamic of each process and new functions can be added to satisfy specific requirements.
Characteristics of Prepared Food Sources in Low-Income Neighborhoods of Baltimore City
LEE, SEUNG HEE; ROWAN, MEGAN T.; POWELL, LISA M.; NEWMAN, SARA; KLASSEN, ANN CARROLL; FRICK, KEVIN D.; ANDERSON, JENNIFER; GITTELSOHN, JOEL
2011-01-01
The food environment is associated with obesity risk and diet-related chronic diseases. Despite extensive research conducted on retail food stores, little is known about prepared food sources (PFSs). We conducted an observational assessment of all PFSs (N = 92) in low-income neighborhoods in Baltimore. The most common PFSs were carry-outs, which had the lowest availability of healthy food choices. Only a small proportion of these carry-outs offered healthy sides, whole wheat bread, or entrée salads (21.4%, 7.1%, and 33.9%, respectively). These findings suggest that carry-out-specific interventions are necessary to increase healthy food availability in low-income urban neighborhoods. PMID:21359162
Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass
Yang, Sangmo; Okatan, Mahmut Baris; Paranthaman, Mariappan Parans; ...
2014-11-14
The first and second harmonic electromechanical responses and their cross-correlation in Ag-ion conducting glass were investigated using band-excitation electrochemical strain microscopy (ESM). Consecutive ESM images with increasing magnitudes of the applied AC voltage allowed observation of not only reversible surface displacement but also irreversible silver nanoparticle formation above a certain threshold voltage. The second harmonic ESM response was anticorrelated with the first harmonic response in many local regions. Furthermore, the nucleation sites of silver nanoparticles were closely related to the anti-correlated regions, specifically, with low second harmonic and high first harmonic ESM responses. The possible origins of the second harmonicmore » ESM response are discussed.« less
Dynamic variation in sapwood specific conductivity in six woody species.
J.C. Domec; F.C. Meinzer; B.L. Gartner; J. Housset
2007-01-01
Relationships between pressure gradients and flow rates in the xylem are incompletely understood because steady-state conductivity coefficients are inadequate for predicting and interpreting flow under the non-steady-state conditions more prevalent in intact trees. The goal of this study was to determine the magnitude of deviation of trunk sapwood specific conductivity...
Logistical Challenges and Opportunities for Conducting Peer Nomination Research in Schools.
Mayeux, Lara; Kraft, Caroline
2017-09-01
Although conducting psychological research within schools has always required effort, persistence, and the careful navigation of various interests, there is a consensus among child and adolescent researchers that, over the past 2 decades, it has become increasingly difficult to collect data within schools. In this chapter, we lay out common and consistent difficulties, frustrations, and obstacles that researchers face when attempting to conduct peer nomination research in schools. Many of these difficulties are faced not only by researchers conducting peer nominations but by any investigator attempting to do school-based research, and we discuss these issues more broadly. We also focus on the specific challenges associated with sociometric methods. We present suggestions and solutions for overcoming these issues and consider ways that researchers can give back to schools and establish long-term partnerships that benefit the students, teachers, and administrators of participating schools, as well as the researchers themselves. Such partnerships have the potential to make data collection easier and to open doors to new research opportunities. © 2017 Wiley Periodicals, Inc.
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
De Guzman, Mark E; Santiago, Louis S; Schnitzer, Stefan A; Álvarez-Cansino, Leonor
2017-10-01
In tropical forest canopies, it is critical for upper shoots to efficiently provide water to leaves for physiological function while safely preventing loss of hydraulic conductivity due to cavitation during periods of soil water deficit or high evaporative demand. We compared hydraulic physiology of upper canopy trees and lianas in a seasonally dry tropical forest to test whether trade-offs between safety and efficiency of water transport shape differences in hydraulic function between these two major tropical woody growth forms. We found that lianas showed greater maximum stem-specific hydraulic conductivity than trees, but lost hydraulic conductivity at less negative water potentials than trees, resulting in a negative correlation and trade-off between safety and efficiency of water transport. Lianas also exhibited greater diurnal changes in leaf water potential than trees. The magnitude of diurnal water potential change was negatively correlated with sapwood capacitance, indicating that lianas are highly reliant on conducting capability to maintain leaf water status, whereas trees relied more on stored water in stems to maintain leaf water status. Leaf nitrogen concentration was related to maximum leaf-specific hydraulic conductivity only for lianas suggesting that greater water transport capacity is more tied to leaf processes in lianas compared to trees. Our results are consistent with a trade-off between safety and efficiency of water transport and may have implications for increasing liana abundance in neotropical forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Qing, Rui; Liu, Li; Bohling, Christian; Sigmund, Wolfgang
2015-01-01
TiO2 is one of the most exciting anode candidates for safe application in lithium ion batteries. However, its low intrinsic electronic conductivity limits application. In this paper, a simple sol-gel based route is presented to produce nanosize TiO2 fibers with 119 ± 27 nm diameters via electrospinning. Subsequent calcination in various atmospheres was applied to achieve anatase and anatase-rutile mixed phase crystallites with and without carbon coating. The crystallite size was 5 nm for argon calcined fibers and 13-20 nm for air calcined fibers. Argon calcined TiO2 nanofibers exhibited electronic conductivity orders of magnitude higher than those of air-calcined samples. Lithium diffusivity was increased by one time and specific capacity by 26.9% due to the enhanced conductivity. It also had a different intercalation mechanism of lithium. Hydrogen post heat-treatment was found to benefit electronic conductivity (by 3-4.5 times), lithium diffusivity (1.5-2 times) and consequently the high rate performance of the TiO2 nanofibers (over 80%). The inner mechanism and structure-property relations among these parameters were also discussed.
Wang, Yongjiang; Niu, Wenjuan; Ai, Ping
2016-12-01
Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conductive tracks of 30-MeV C60 clusters in doped and undoped tetrahedral amorphous carbon
NASA Astrophysics Data System (ADS)
Krauser, J.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.
2013-07-01
In insulating tetrahedral amorphous carbon (ta-C), the irradiation with 30-MeV C60 cluster ions leads to the formation of well conducting tracks. While electrical currents through individual tracks produced with monoatomic projectiles (e.g. Au or U) often exhibit rather large track to track fluctuations, C60 clusters are shown to generate highly conducting tracks with very narrow current distributions. Additionally, all recorded current-voltage curves show linear characteristics. These findings are attributed to the large specific energy loss dE/dx of the 30-MeV C60 clusters. We also investigated C60 tracks in ta-C films which were slightly doped with B, N or Fe during film growth. Doping apparently increases the ion track conductivity. However, at the same time the insulating characteristics of the pristine ta-C film can be reduced. The present C60 results are compared with data from earlier experiments with monoatomic heavy ion beams. The investigations were performed by means of atomic force microscopy including temperature dependent conductivity measurements of single ion tracks.
Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P
2012-03-01
Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.
Phi, Xuan-Anh; Houssami, Nehmat; Hooning, Maartje J; Riedl, Christopher C; Leach, Martin O; Sardanelli, Francesco; Warner, Ellen; Trop, Isabelle; Saadatmand, Sepideh; Tilanus-Linthorst, Madeleine M A; Helbich, Thomas H; van den Heuvel, Edwin R; de Koning, Harry J; Obdeijn, Inge-Marie; de Bock, Geertruida H
2017-11-01
Women with a strong family history of breast cancer (BC) and without a known gene mutation have an increased risk of developing BC. We aimed to investigate the accuracy of screening using annual mammography with or without magnetic resonance imaging (MRI) for these women outside the general population screening program. An individual patient data (IPD) meta-analysis was conducted using IPD from six prospective screening trials that had included women at increased risk for BC: only women with a strong familial risk for BC and without a known gene mutation were included in this analysis. A generalised linear mixed model was applied to estimate and compare screening accuracy (sensitivity, specificity and predictive values) for annual mammography with or without MRI. There were 2226 women (median age: 41 years, interquartile range 35-47) with 7478 woman-years of follow-up, with a BC rate of 12 (95% confidence interval 9.3-14) in 1000 woman-years. Mammography screening had a sensitivity of 55% (standard error of mean [SE] 7.0) and a specificity of 94% (SE 1.3). Screening with MRI alone had a sensitivity of 89% (SE 4.6) and a specificity of 83% (SE 2.8). Adding MRI to mammography increased sensitivity to 98% (SE 1.8, P < 0.01 compared to mammography alone) but lowered specificity to 79% (SE 2.7, P < 0.01 compared with mammography alone). In this population of women with strong familial BC risk but without a known gene mutation, in whom BC incidence was high both before and after age 50, adding MRI to mammography substantially increased screening sensitivity but also decreased its specificity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biodesulfurization of refractory organic sulfur compounds in fossil fuels.
Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios
2007-01-01
The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naskar, Amit K.; Paranthaman, Mariappan Parans; Boota, Muhammad
A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer tomore » produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.« less
Motivators and Barriers for Older People Participating in Resistance Training: A Systematic Review.
Burton, Elissa; Farrier, Kaela; Lewin, Gill; Pettigrew, Simone; Hill, Anne-Marie; Airey, Phil; Bainbridge, Liz; Hill, Keith D
2017-04-01
Regular participation in resistance training is important for older people to maintain their health and independence, yet participation rates are low. The study aimed to identify motivators and barriers to older people participating in resistance training. A systematic review was conducted including quantitative, qualitative, and mixed-method studies. Searches generated 15,920 citations from six databases, with 14 studies (n = 1,937 participants) included. In total, 92 motivators and 24 barriers were identified. Motivators specific to participating in resistance training included preventing deterioration (disability), reducing risk of falls, building (toning) muscles, feeling more alert, and better concentration. Looking too muscular and thinking participation increased the risk of having a heart attack, stroke, or death, despite the minimal likelihood of these occurring, were barriers. The analysis indicates that increasing participation in resistance training among older people should focus on the specific benefits valued by older people and the dissemination of accurate information to counter misperceptions.
Treating ethnic minority adults with anxiety disorders: Current status and future recommendations☆
Carter, Michele M; Mitchell, Frances E.; Sbrocco, Tracy
2014-01-01
The past three decades have witnessed an increase in the number of empirical investigations examining the phenomenology of anxiety and related conditions. There has also been an increase in efforts to understand differences that may exist between ethnic groups in the expression of the anxiety disorders. In addition, there is now substantial evidence that a variety of treatment approaches (most notably behavioral and cognitive behavioral) are efficacious in remediating anxiety. However, there continues to be comparatively few treatment outcome studies investigating the efficacy of anxiety treatments among minority populations. In this paper, we review the extant treatment outcome research for African American, Hispanic/Latino[a] American, Asian American, and Native Americans suffering with one of the anxiety disorders. We discuss some of the specific problems with the research in this area, and then provide specific recommendations for conducting treatment outcome research with minority populations in the future. PMID:22417877
Audet, Mélisa; Dumas, Alex; Binette, Rachelle; Dionne, Isabelle J
2017-11-01
Socioeconomic inequalities in health persist despite major investments in illness prevention campaigns and universal healthcare systems. In this context, the increased risks of chronic diseases of specific sub-groups of vulnerable populations should be further investigated. The objective of this qualitative study is to examine the interaction between socioeconomic status (SES) and body weight in order to understand underprivileged women's increased vulnerability to chronic diseases after menopause. By drawing specifically on Pierre Bourdieu's sociocultural theory of practice, 20 semi-structured interviews were conducted from May to December of 2013 to investigate the health practices of clinically overweight, postmenopausal women living an underprivileged life in Canada. Findings emphasise that poor life conditions undermine personal investment in preventive health and weight loss, showing the importance for policy makers to bring stronger consideration on upstream determinants of health. © 2017 Foundation for the Sociology of Health & Illness.
Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio
2015-10-01
Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.
Weissberger, Gali H.; Strong, Jessica V.; Stefanidis, Kayla B.; Summers, Mathew J.; Bondi, Mark W.; Stricker, Nikki H.
2018-01-01
With an increasing focus on biomarkers in dementia research, illustrating the role of neuropsychological assessment in detecting mild cognitive impairment (MCI) and Alzheimer’s dementia (AD) is important. This systematic review and meta-analysis, conducted in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) standards, summarizes the sensitivity and specificity of memory measures in individuals with MCI and AD. Both meta-analytic and qualitative examination of AD versus healthy control (HC) studies (n = 47) revealed generally high sensitivity and specificity (≥ 80% for AD comparisons) for measures of immediate (sensitivity = 87%, specificity = 88%) and delayed memory (sensitivity = 89%, specificity = 89%), especially those involving word-list recall. Examination of MCI versus HC studies (n = 38) revealed generally lower diagnostic accuracy for both immediate (sensitivity = 72%, specificity = 81%) and delayed memory (sensitivity = 75%, specificity = 81%). Measures that differentiated AD from other conditions (n = 10 studies) yielded mixed results, with generally high sensitivity in the context of low or variable specificity. Results confirm that memory measures have high diagnostic accuracy for identification of AD, are promising but require further refinement for identification of MCI, and provide support for ongoing investigation of neuropsychological assessment as a cognitive biomarker of preclinical AD. Emphasizing diagnostic test accuracy statistics over null hypothesis testing in future studies will promote the ongoing use of neuropsychological tests as Alzheimer’s disease research and clinical criteria increasingly rely upon cerebrospinal fluid (CSF) and neuroimaging biomarkers. PMID:28940127
Bevilacqua, Lisa; Seifert, Erin L; Estey, Carmen; Gerrits, Martin F; Harper, Mary-Ellen
2010-08-01
Calorie restriction (CR), without malnutrition, consistently increases lifespan in all species tested, and reduces age-associated pathologies in mammals. Alterations in mitochondrial content and function are thought to underlie some of the effects of CR. Previously, we reported that rats subjected to variable durations of 40% CR demonstrated a rapid and sustained decrease in maximal leak-dependent respiration in skeletal muscle mitochondria. This was accompanied by decreased mitochondrial reactive oxygen species generation and increased uncoupling protein-3 protein (UCP3) expression. The aim of the present study was to determine the contribution of UCP3, as well as the adenine nucleotide translocase to these functional changes in skeletal muscle mitochondria. Consistent with previous findings in rats, short-term CR (2 weeks) in wild-type (Wt) mice resulted in a lowering of the maximal leak-dependent respiration in skeletal muscle mitochondria, without any change in proton conductance. In contrast, skeletal muscle mitochondria from Ucp3-knockout (KO) mice similarly subjected to short-term CR showed no change in maximal leak-dependent respiration, but displayed an increased proton conductance. Determination of ANT activity (by measurement of inhibitor-sensitive leak) and protein expression revealed that the increased proton conductance in mitochondria from CR Ucp3-KO mice could be entirely attributed to a greater acute activation of ANT. These observations implicate UCP3 in CR-induced mitochondrial remodeling. Specifically, they imply the potential for an interaction, or some degree of functional redundancy, between UCP3 and ANT, and also suggest that UCP3 can minimize the induction of the ANT-mediated 'energy-wasting' process during CR. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Homuth, S.; Götz, A. E.; Sass, I.
2015-06-01
The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir properties based on outcrop and drilling data demonstrates that this approach is a powerful tool for exploration and operation of geothermal reservoirs.
Multiple Strategy Bio-Detection Sensor Platforms Made From Carbon and Polymer Materials
2006-08-10
binding of antigens. Further investigations were conducted on the antibody-antigen detection scheme using known test antigens (i.e. bacteria ). While...this method worked in preliminary studies, the use of antibodies was determined not to be feasible for detecting many different types of bacteria in...solution. Also, as the number of bacteria in a solution increased, it became necessary to wash the detection surface more extensively to favor specific
Garner, Bradley D.; Mahler, Barbara J.
2007-01-01
Understanding of karst flow systems can be complicated by the presence of solution-enlarged conduits, which can transmit large volumes of water through the aquifer rapidly. If the geochemistry at a well can be related to streamflow or spring discharge (springflow), or both, the relations can indicate the presence of recent recharge in water at the well, which in turn might indicate that the well intersects a conduit (and thus a major flow path). Increasing knowledge of the occurrence and distribution of conduits in the aquifer can contribute to better understanding of aquifer framework and function. To that end, 26 wells in the Barton Springs segment of the Edwards aquifer, Austin, Texas, were investigated for potential intersection with conduits; 26 years of arbitrarily timed specific conductance measurements in the wells were compared to streamflow in five creeks that provide recharge to the aquifer and were compared to aquifer flow conditions as indicated by Barton Springs discharge. A nonparametric statistical test (Spearman's rho) was used to divide the 26 wells into four groups on the basis of correlation of specific conductance of well water to streamflow or spring discharge, or both. Potential relations between conduit intersection by wells and ground-water geochemistry were investigated through analysis of historical major ion and nitrate geochemistry for wells in each of the four groups. Specific conductance at nine wells was negatively correlated with both streamflow and spring discharge, or streamflow only. These correlations were interpreted as evidence of an influx of surface-water recharge during periods of high streamflow and the influence at the wells of water from a large, upgradient part of the aquifer; and further interpreted as indicating that four wells intersect major aquifer flow paths and five wells intersect minor aquifer flow paths (short, tributary conduits). Specific conductance at six wells was positively correlated with spring discharge, which was interpreted as not intersecting a flow path (conduit). Of the 11 wells for which specific conductance did not correlate with either streamflow or spring discharge, no interpretations regarding flow-path intersection by wells were made. In some cases, specific conductance data might not have indicated intersection with a flow path because of small sample sets. Water in the Barton Springs segment generally is a calcium-magnesium-bicarbonate type, although some water compositions deviate from this. Multiple geochemical processes were identified that might affect geochemistry at the wells, but in general the geochemical composition of ground water, except for dilution by surface-water recharge, was not related to intersection of a well with a flow path. Some samples from wells indicate inflow of water from the saline zone to the east; this inflow is associated with low streamflow and spring discharge. Other samples indicate that the aquifer at some wells might be receiving water that has been in contact with rocks of the Trinity aquifer; this mixing is most evident when spring discharge is high. Occurrence of nitrate in ground water was unrelated to intersection of flow paths by wells and appeared to be the result of localized contamination. However, most of the wells with one or more samples contaminated by nitrate are in the more densely populated parts of the study area.
A closer look at the increase in suicide rates in South Korea from 1986-2005.
Kwon, Jin-Won; Chun, Heeran; Cho, Sung-il
2009-02-27
Suicide rates have recently been decreasing on average among OECD countries, but increasing trends have been detected in South Korea, particularly since the 1997 economic crisis. There have been no detailed analyses about the changes of the suicide rates over time periods in Korea. We examined trends in both absolute and proportional suicide rates over the time period of economic development, crisis, and recovery (1986 - 2005) as well as in birth cohorts from 1924 to 1978. We used data on total mortality and suicide rates from 1986 to 2005 published online by the Korean National Statistical Office (NSO) and extracted data for individuals under 80 years old. The analyses of the trends for 1) the sex-age-specific total mortality rate, 2) the sex-age-specific suicide rate, and 3) the sex-age-specific proportional suicide rate in 1986-2005 were conducted. To demonstrate the birth cohort effect on the proportional suicide rate, the synthetic birth cohort from 1924 to 1978 from the successive cross-sectional data was constructed. Age standardized suicide rates in South Korea increased by 98% in men (from 15.3 to 30.3 per 100,000) and by 124% in women (from 5.8 to 13.0 per 100,000). In both genders, the proportional increase in suicide rates was more prominent among the younger group aged under 45, despite the absolute increase being attributed to the older group. There were distinct cohort effects underlying increasing suicide rates particularly among younger age groups. Increasing suicide rates in Korea was composed of a greater absolute increase in the older group and a greater proportional increase in the younger group.
A closer look at the increase in suicide rates in South Korea from 1986–2005
Kwon, Jin-Won; Chun, Heeran; Cho, Sung-il
2009-01-01
Background Suicide rates have recently been decreasing on average among OECD countries, but increasing trends have been detected in South Korea, particularly since the 1997 economic crisis. There have been no detailed analyses about the changes of the suicide rates over time periods in Korea. We examined trends in both absolute and proportional suicide rates over the time period of economic development, crisis, and recovery (1986 – 2005) as well as in birth cohorts from 1924 to 1978. Methods We used data on total mortality and suicide rates from 1986 to 2005 published online by the Korean National Statistical Office (NSO) and extracted data for individuals under 80 years old. The analyses of the trends for 1) the sex-age-specific total mortality rate, 2) the sex-age-specific suicide rate, and 3) the sex-age-specific proportional suicide rate in 1986–2005 were conducted. To demonstrate the birth cohort effect on the proportional suicide rate, the synthetic birth cohort from 1924 to 1978 from the successive cross-sectional data was constructed. Results Age standardized suicide rates in South Korea increased by 98% in men (from 15.3 to 30.3 per 100,000) and by 124% in women (from 5.8 to 13.0 per 100,000). In both genders, the proportional increase in suicide rates was more prominent among the younger group aged under 45, despite the absolute increase being attributed to the older group. There were distinct cohort effects underlying increasing suicide rates particularly among younger age groups. Conclusion Increasing suicide rates in Korea was composed of a greater absolute increase in the older group and a greater proportional increase in the younger group. PMID:19250535
Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko
2016-01-01
Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327
Mize, Scott V.; Demcheck, Dennis K.
2009-01-01
The Bonnet Carré Spillway, located 28 miles northwest of New Orleans, was constructed in the early 1930s as part of an integrated flood-control system for the lower Mississippi River system. From 11 April to 8 May 2008, Mississippi River water was diverted through the spillway into the 629-square-mile Lake Pontchartrain, which is hydraulically connected to the Gulf of Mexico. On 8 April, prior to the opening of the spillway, water-quality instruments were deployed and recorded hourly measurements of water temperature, dissolved oxygen, specific conductance, pH, and nitrate. Discrete water-quality and phytoplankton (algae) samples were collected in Lake Pontchartrain from 8 April to 3 October 2008 to assess the water-quality nutrient enrichment effects of the diversion on the lake. The maximum influence of river water in the southern portion of the lake was captured with continuous (hourly) monitoring of nitrate concentrations, and field measurements such as of specific conductance during the critical period in late April to early May. By late May, the deployed instruments had recorded the arrival, peak, and decline of selected constituents associated with the freshwater influx from the Mississippi River/Bonnet Carré Spillway diversion. The continuous monitoring data showed the short-term interactions of high-nitrate, low-specific conductance river water and low-nitrate, high-specific conductance lake water. The phytoplankton community composition, as an indicator of water quality, illustrated an extended response from the river water evident even after the continuous and discrete samples indicated that the lake had returned to pre-diversion conditions. The initial phytoplankton community response to nutrient increases was related to accumulations of diatoms. During periods of low nutrient concentrations, accumulations of blue-greens occurred by July and August. As blue-green algae cell densities and biovolumes increased in the summer, so did the species richness of blue-green algae, particularly the harmful algae bloom taxa. Cell densities and biovolume of the phytoplankton lake indicator taxaSkeletonema costatum, Anabaena sp., and Cylindrospermopsis raciborskii were highest and dominated the diatom and blue-green algae communities during the period of most river water influence on the lake and immediately following the freshwater inflows. The dominance and recession of these indictor taxa reflect the dramatic changes that occurred in the phytoplankton community in response to an increase in nutrient-rich freshwater from the diversion into the lake, and not normal seasonal phytoplankton compositional differences. Water-quality data indicated a gradual reversion to pre-diversion lake conditions by June to July, but shifts in the phytoplankton composition were still evident through August 2008. Observations from this study were similar to results from previous studies of Mississippi River/Bonnet Carré Spillway diversion opening in 1997.
Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals
Zhao, Yao; Wei, Jinquan; Vajtai, Robert; Ajayan, Pulickel M.; Barrera, Enrique V.
2011-01-01
Creating highly electrically conducting cables from macroscopic aggregates of carbon nanotubes, to replace metallic wires, is still a dream. Here we report the fabrication of iodine-doped, double-walled nanotube cables having electrical resistivity reaching ∼10−7 Ω.m. Due to the low density, their specific conductivity (conductivity/weight) is higher than copper and aluminum and is only just below that of the highest specific conductivity metal, sodium. The cables exhibit high current-carrying capacity of 104∼105 A/cm2 and can be joined together into arbitrary length and diameter, without degradation of their electrical properties. The application of such nanotube cables is demonstrated by partly replacing metal wires in a household light bulb circuit. The conductivity variation as a function of temperature for the cables is five times smaller than that for copper. The high conductivity nanotube cables could find a range of applications, from low dimensional interconnects to transmission lines. PMID:22355602
Promoting Influenza Vaccination to Restaurant Employees.
Graves, Meredith C; Harris, Jeffrey R; Hannon, Peggy A; Hammerback, Kristen; Parrish, Amanda T; Ahmed, Faruque; Zhou, Chuan; Allen, Claire L
2016-09-01
To evaluate an evidence-based workplace approach to increasing adult influenza vaccination levels applied in the restaurant setting We implemented an intervention and conducted a pre/post analysis to determine effect on vaccination. Eleven Seattle-area restaurants. Restaurants with 25+ employees speaking English or Spanish and over 18 years. Restaurants received influenza vaccination promotion materials, assistance arranging on-site vaccination events, and free influenza vaccinations for employees. Pre/post employee surveys of vaccination status with direct observation and employer interviews to evaluate implementation. We conducted descriptive analysis of employee survey data and performed qualitative analysis of implementation data. To assess intervention effect, we used a mixed-effects logistic regression model with a restaurant-specific random effect. Vaccination levels increased from 26% to 46% (adjusted odds ratio 2.33, 95% confidence interval 1.69, 3.22), with 428 employees surveyed preintervention, 305 surveyed postintervention, and response rates of 73% and 55%, respectively. The intervention was effective across subgroups, but there were restaurant-level differences. An access-based workplace intervention can increase influenza vaccination levels in restaurant employees, but restaurant-level factors may influence success. © 2016 by American Journal of Health Promotion, Inc.
Impact of urban sprawl on water quality in eastern Massachusetts, USA.
Tu, Jun; Xia, Zong-Guo; Clarke, Keith C; Frei, Allan
2007-08-01
A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as wellmore » as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T{sub c}, is also controlled only by disorder widening of the conduction band (density of states).« less
Physicochemical studies of mixed surfactant microemulsions with isopropyl myristate as oil.
Bardhan, Soumik; Kundu, Kaushik; Saha, Swapan K; Paul, Bidyut K
2013-07-15
The present study is focused on evaluation of interfacial compositions and thermodynamic properties of w/o mixed surfactant [(sodium dodecylsulfate, SDS/polyoxyethylene (23) lauryl ether, Brij-35)/1-pentanol (Pn)/isopropyl myristate (IPM)] microemulsions under various physicochemical conditions by the dilution method. The number of moles of Pn at the interface (n(a)(i)) and bulk oil (n(a)(o)), and various thermodynamic parameters [viz. standard Gibbs free energy (ΔG(o→i)(0)), standard enthalpy (ΔH(o→i)(0)), and standard entropy (ΔS(o→i)(0)) of the transfer of Pn from bulk oil to the interface] have been found to be dependent on the molar ratio of water to surfactant (ω), concentration of Brij-35 (X(Brij-35)), and temperature. Temperature-insensitive microemulsions with zero specific heat capacity (ΔC(p)(0))(o→i) have been formed at specific compositions. The intrinsic enthalpy change of the transfer process (ΔH(0))(o→i)* has been evaluated from linear correlation between ΔH(o→i)(0) and ΔS(o→i)(0) at different experimental temperatures. The present report also aims at a precise characterization on the basis of molecular interactions between the constituents and provides insight into the nature of the oil/water interfaces of these systems by conductivity and dynamic light scattering studies as a function of ω and X(Brij-35). Conductivity studies reveal that incorporation of Brij-35 in non-percolating water/SDS/Pn/IPM systems makes them favorable for ω-induced percolation behavior up to X(Brij-35) ≤ 0.5. But further addition of Brij-35 causes a decrease in conductivity with increasing ω. Furthermore, the hydrodynamic diameters of the microemulsion droplets increase with increase in both X(Brij-35) and ω. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted. Copyright © 2013 Elsevier Inc. All rights reserved.
Sheshah, Eman; Madanat, Amal; Al-Greesheh, Fahad; Al-Qaisi, Dalal; Al-Harbi, Mohammad; Aman, Reem; Al-Ghamdi, Abdul Aziz; Al-Madani, Khaled
2015-01-01
Sudomotor dysfunction is manifested clinically as abnormal sweating leading to dryness of feet skin and increased risk of foot ulceration. The aim of this study was to test the performance of foot electrochemical skin conductance (ESC) to detect diabetic peripheral neuropathy and the risk of foot ulceration against traditional methods in Saudi patients with diabetes mellitus. This cross-sectional study was conducted on 296 Saudi patients with diabetes mellitus. Painful neuropathic symptoms were evaluated using the neuropathy symptom score (NSS). The risk of foot ulceration and diabetic peripheral neuropathy were determined using the neuropathy disability score (NDS). Vibration perception threshold (VPT) was assessed using neurothesiometer. Neurophysiological assessment of the right and left sural, peroneal and tibial nerves was performed in 222 participants. Diabetic peripheral neuropathy was defined according to the definition of the American Academy of Neurology. ESC was measured with Sudoscan. Feet-ESC decreased as the scores of sensory and motor function tests increased. Feet-ESC decreased as the NSS, NDS and severity of diabetic peripheral neuropathy increased. Sensitivity of feet-ESC < 50μS to detect diabetic peripheral neuropathy assessed by VPT ≥ 25 V, NDS ≥ 3, NDS ≥ 6 was 90.1, 61 and 63.8 % respectively and specificity 77, 85 and 81.9 % respectively. Sensitivity of feet-ESC < 70μS to detect diabetic peripheral neuropathy assessed by VPT ≥ 25 V, NDS ≥ 3, NDS ≥ 6 was 100, 80.6 and 80.9 % respectively. Sensitivity and specificity of feet-ESC < 70μS to detect confirmed-diabetic peripheral neuropathy were 67.5 and 58.9 % respectively. Sudoscan a simple and objective tool can be used to detect diabetic peripheral neuropathy and the risk of foot ulceration among patients with diabetes mellitus. Prospective studies to confirm our results are warranted.
Goodwin, R D; Sourander, A; Duarte, C S; Niemelä, S; Multimäki, P; Nikolakaros, G; Helenius, H; Piha, J; Kumpulainen, K; Moilanen, I; Tamminen, T; Almqvist, F
2009-02-01
Previous studies have documented associations between mental and physical health problems in cross-sectional studies, yet little is known about these relationships over time or the specificity of these associations. The aim of the current study was to examine the relationship between mental health problems in childhood at age 8 years and physical disorders in adulthood at ages 18-23 years. Multiple logistic regression analyses were used to examine the relationship between childhood mental health problems, reported by child, parent and teacher, and physical disorders diagnosed by a physician in early adulthood. Significant linkages emerged between childhood mental health problems and obesity, atopic eczema, epilepsy and asthma in early adulthood. Specifically, conduct problems in childhood were associated with a significantly increased likelihood of obesity and atopic eczema; emotional problems were associated with an increased likelihood of epilepsy and asthma; and depression symptoms at age 8 were associated with an increased risk of asthma in early adulthood. Our findings provide the first evidence of an association between mental health problems during childhood and increased risk of specific physical health problems, mainly asthma and obesity, during early adulthood, in a representative sample of males over time. These data suggest that behavioral and emotional problems in childhood may signal vulnerability to chronic physical health problems during early adulthood.
Public health-specific personal disaster preparedness training: an academic-practice collaboration.
Kohn, Sivan; Semon, Natalie; Hedlin, Haley K; Thompson, Carol B; Marum, Felicity; Jenkins, Sebra; Slemp, Catherine C; Barnett, Daniel J
2014-01-01
To measure the following three relevant outcomes of a personal preparedness curriculum for public health workers: 1) the extent of change (increase) in knowledge about personal preparedness activities and knowledge about tools for conducting personal preparedness activities; 2) the extent of change (increase) in preparedness activities performed post-training and/or confidence in conducting these tasks; and 3) an understanding of how to improve levels of personal preparedness using the Extended Parallel Process Model (EPPM) framework. Cross-sectional preinterventional and postinterventional survey using a convenience sample. During 2010, three face-to-face workshops were conducted in three locations in West Virginia. One hundred thirty-one participants (baseline survey); 69 participants (1-year resurvey)-representing West Virginia local health department (LHD) and State Health Department employees. A 3-hour interactive, public health-specific, face-to-face workshop on personal disaster preparedness. Change in 1) knowledge about, and tools for, personal preparedness activities; 2) preparedness activities performed post-training and/or confidence in conducting these activities; and 3) the relationship of EPPM categories to personal preparedness activities. One year postworkshop, 77 percent of respondents reported having personal emergency kits (40 percent at baseline) and 67 percent reported having preparedness plans (38 percent at baseline) suggesting some participants assembled supply kits and plans postworkshop. Within the context of EPPM, respondents in high-threat categories agreed more often than respondents in low-threat categories that severe personal impacts were likely to result from a moderate flood. Compared to respondents categorized as low efficacy, respondents in high-efficacy categories perceived confidence in their knowledge and an impact of their response on their job success at higher rates. Personal disaster preparedness trainings for the LHD workforce can yield gains in relevant preparedness behaviors and attitudes but may require longitudinal reinforcement. The EPPM can offer a useful threat and efficacy-based lens to understand relevant perceptions surrounding personal disaster preparedness behaviors among LHD employees.
EEG biofeedback for autism spectrum disorder: a commentary on Kouijzer et al. (2013).
Coben, Robert; Ricca, Rachel
2015-03-01
Research conducted by Kouijzer et al. (Appl Psychophysiol Biofeedback 38(1):17-28, 2013) compared the effects of skin conductance biofeedback and EEG-biofeedback on patients with autistic spectrum disorders to determine their relative efficacy. While they found a difference between treatment and control groups, there was no significant difference on many variables between the two treatment groups. From this, the increase in symptom alleviation from autistic spectrum disorder was attributed to non-specific factors surrounding the study. We now offer alternative explanations for their findings and propose different options for future studies. We hypothesize that the location and type of neurofeedback used adversely impacted the findings. We speculate that had they used a form of EEG-biofeedback that can combat deficiencies in connectivity and also trained the areas of the brain most affected by autism, there may have then been a significant difference between the effectiveness of EEG-biofeedback versus skin conductance biofeedback.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.
2007-01-01
The use of enhanced vision systems in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting approach and landing operations. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved enhanced flight vision system that shows the required visual references on the pilot's Head-Up Display. An experiment was conducted to evaluate the complementary use of synthetic vision systems and enhanced vision system technologies, focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under these newly adopted rules. Experimental results specific to flight crew response to non-normal events using the fused synthetic/enhanced vision system are presented.
Dagenais, Christian
2017-01-01
Policy decisions do not always take into account research results, and there is still little research being conducted on interventions that promote their use, particularly in Africa. To promote the use of research evidence in Africa, deliberative dialogue workshops are increasingly recommended as a means to establish evidence-informed dialogue among multiple stakeholders engaged in policy decision-making. In this paper, we reflect on our experiences of conducting national workshops in six African countries, and we propose operational recommendations for those wishing to organise deliberative dialogue. Our reflective and cross-sectional analysis of six national deliberative dialogue workshops in which we participated shows there are many specific challenges that should be taken into account when organising such encounters. In conclusion, we offer operational recommendations, drawn from our experience, to guide the preparation and conduct of deliberative workshops. PMID:29259821
Bai, Bing; Sikron, Noga; Gendler, Tanya; Kazachkova, Yana; Barak, Simon; Grafi, Gideon; Khozin-Goldberg, Inna; Fait, Aaron
2012-01-01
Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid β-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.
Sadani, Mohsen; Karami, Mohammad Amin; Teimouri, Fahimeh; Amin, Mohammad Mehdi; Moosavi, Seyed Mahdi; Dehdashti, Bahare
2017-01-01
Background Cleanup of areas contaminated by explosives is a public health concern. Some explosives can be carcinogenic in humans. Pentaerythritol Tetranitrate (PETN), a powerful explosive with very low water solubility, can be easily transported to ground waters. Objective This study was conducted to determine the removal efficiencies of PETN from soil by bioremediation, and obtain kinetic parameters of biological process. Methods This experimental study was conducted at the Environmental Health Engineering Lab (Isfahan University of Medical Sciences, Isfahan, Iran) in 2015–2016. In the present work, bioremediation of the explosive-polluted soils by PETN in anaerobic-aerobic landfarming method was performed. The influence of seeding and biosurfactant addition on bioremediation was also evaluated. The data were analyzed using Microsoft Excel software. Results The results show that, as the initial concentration of PETN increased, the lag phase was increased and the specific growth rate was increased up to 0.1/day in concentration of 50 mg/kg, and then it was decreased to 0.04/day. Subsequent decreases in specific growth rate can cause substrate inhibition. Seeding causes decrease in lag phase significantly. Biosurfactant addition had little to no impact on the length of lag phase, but biosurfactant plus seeding can increase the growth rate to 0.2/day, however, inhibitory effect of the initial concentration was started in very high concentration of PETN (150 mg/kg). Conclusion Biosurfactant addition and seeding together have an impressive effect on biodegradation of PETN, furthermore seeding can enhance active microbial consortium and biosurfactant can improve the poor aqueous solubility of PETN, therefore making the substrate more accessible. PMID:29238507
2010-01-01
Background The incorporation of sex and gender-specific analysis in medical research is increasing due to pressure from public agencies, funding bodies, and the clinical and research community. However, generations of knowledge and publication trends in this discipline are currently spread over distinct specialties and are difficult to analyze comparatively. Methods Using a text-mining approach, we have analysed sex and gender aspects in research within nine clinical subspecialties - Cardiology, Pulmonology, Nephrology, Endocrinology, Gastroenterology, Haematology, Oncology, Rheumatology, Neurology - using six paradigmatic diseases in each one. Articles have been classified into five pre-determined research categories - Epidemiology, Pathophysiology, Clinical research, Management and Outcomes. Additional information has been collected on the type of study (human/animal) and the number of subjects included. Of the 8,836 articles initially retrieved, 3,466 (39%) included sex and gender-specific research and have been further analysed. Results Literature incorporating sex/gender analysis increased over time and displays a stronger trend if compared to overall publication increase. All disciplines, but cardiology (22%), demonstrated an underrepresentation of research about gender differences in management, which ranges from 3 to 14%. While the use of animal models for identification of sex differences in basic research varies greatly among disciplines, studies involving human subjects are frequently conducted in large cohorts with more than 1,000 patients (24% of all human studies). Conclusions Heterogeneity characterizes sex and gender-specific research. Although large cohorts are often analysed, sex and gender differences in clinical management are insufficiently investigated leading to potential inequalities in health provision and outcomes. PMID:21067576
Ziacchi, Matteo; Palmisano, Pietro; Biffi, Mauro; Ricci, Renato P; Landolina, Maurizio; Zoni-Berisso, Massimo; Occhetta, Eraldo; Maglia, Giampiero; Botto, Gianluca; Padeletti, Luigi; Boriani, Giuseppe
2018-04-01
: Modern pacemakers have an increasing number of programable parameters and specific algorithms designed to optimize pacing therapy in relation to the individual characteristics of patients. When choosing the most appropriate pacemaker type and programing, the following variables must be taken into account: the type of bradyarrhythmia at the time of pacemaker implantation; the cardiac chamber requiring pacing, and the percentage of pacing actually needed to correct the rhythm disorder; the possible association of multiple rhythm disturbances and conduction diseases; the evolution of conduction disorders during follow-up. The goals of device programing are to preserve or restore the heart rate response to metabolic and hemodynamic demands; to maintain physiological conduction; to maximize device longevity; to detect, prevent, and treat atrial arrhythmia. In patients with sinus node disease, the optimal pacing mode is DDDR. Based on all the available evidence, in this setting, we consider appropriate the activation of the following algorithms: rate responsive function in patients with chronotropic incompetence; algorithms to maximize intrinsic atrioventricular conduction in the absence of atrioventricular blocks; mode-switch algorithms; algorithms for autoadaptive management of the atrial pacing output; algorithms for the prevention and treatment of atrial tachyarrhythmias in the subgroup of patients with atrial tachyarrhythmias/atrial fibrillation. The purpose of this two-part consensus document is to provide specific suggestions (based on an extensive literature review) on appropriate pacemaker setting in relation to patients' clinical features.
Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons
NASA Technical Reports Server (NTRS)
Zheng, F.; Gallagher, J. P.
1992-01-01
We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.
Planning and setting objectives in field studies: Chapter 2
Fisher, Robert N.; Dodd, C. Kenneth
2016-01-01
This chapter enumerates the steps required in designing and planning field studies on the ecology and conservation of reptiles, as these involve a high level of uncertainty and risk. To this end, the chapter differentiates between goals (descriptions of what one intends to accomplish) and objectives (the measurable steps required to achieve the established goals). Thus, meeting a specific goal may require many objectives. It may not be possible to define some of them until certain experiments have been conducted; often evaluations of sampling protocols are needed to increase certainty in the biological results. And if sampling locations are fixed and sampling events are repeated over time, then both study-specific covariates and sampling-specific covariates should exist. Additionally, other critical design considerations for field study include obtaining permits, as well as researching ethics and biosecurity issues.
Is education associated with improvements in general cognitive ability, or in specific skills?
Ritchie, Stuart J; Bates, Timothy C; Deary, Ian J
2015-05-01
Previous research has indicated that education influences cognitive development, but it is unclear what, precisely, is being improved. Here, we tested whether education is associated with cognitive test score improvements via domain-general effects on general cognitive ability (g), or via domain-specific effects on particular cognitive skills. We conducted structural equation modeling on data from a large (n = 1,091), longitudinal sample, with a measure of intelligence at age 11 years and 10 tests covering a diverse range of cognitive abilities taken at age 70. Results indicated that the association of education with improved cognitive test scores is not mediated by g, but consists of direct effects on specific cognitive skills. These results suggest a decoupling of educational gains from increases in general intellectual capacity. (c) 2015 APA, all rights reserved).
Metallization of aluminum hydride AlH3 at high multiple-shock pressures
NASA Astrophysics Data System (ADS)
Molodets, A. M.; Shakhray, D. V.; Khrapak, A. G.; Fortov, V. E.
2009-05-01
A study of electrophysical and thermodynamic properties of alane AlH3 under multishock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa has been measured. High pressures and temperatures were obtained with an explosive device, which accelerates the stainless impactor up to 3 km/s. A strong shock wave is generated on impact with a holder containing alane. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. This compression loads the alane sample by a multishock manner up to pressure 80-90 GPa, heats alane to the temperature of about 1500-2000 K, and lasts 1μs . The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30(Ωcm)-1 . In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500(Ωcm)-1 at 80-90 GPa. In this region, conductivity is interpreted in frames of the conception of the “dielectric catastrophe,” taking into consideration significant differences between the electronic states of isolated molecule AlH3 and condensed alane.
Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)
NASA Astrophysics Data System (ADS)
Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent
2012-06-01
The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.
Tree-based flood damage modeling of companies: Damage processes and model performance
NASA Astrophysics Data System (ADS)
Sieg, Tobias; Vogel, Kristin; Merz, Bruno; Kreibich, Heidi
2017-07-01
Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data.
Predicting lattice thermal conductivity with help from ab initio methods
NASA Astrophysics Data System (ADS)
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa
Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan
2017-01-01
Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813
Visual ecology and potassium conductances of insect photoreceptors.
Frolov, Roman; Immonen, Esa-Ville; Weckström, Matti
2016-04-01
Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance. Copyright © 2016 the American Physiological Society.
Bright, Charlotte Lyn; Jonson-Reid, Melissa
2008-01-01
Despite increased attention to gender differences in youthful offending, no known studies have examined the relative impact of poverty, maltreatment, and their combination on gender-specific patterns of offending. This research addresses the question of the differential impact of maltreatment and poverty on the onset of status and delinquent petitions for girls compared to boys. A sample of youth born in 1982–1986 in the Midwest was examined. The independent variables were poverty, maltreatment, and both. The risks of delinquent petition and status petition were analyzed using separate Cox proportional hazards models by gender. A second set of analyses were conducted on a subset of youth reported for maltreatment. There was an increase in the likelihood of juvenile court petition based on the combination of poverty and maltreatment risk factors compared to maltreatment only. This increase in risk held true only for the boys in the maltreatment subsample. Thus, the notion of these risk factors being additive is supported with males, but only for females when a non-maltreatment comparison group exists. The gender-specific nature of these relationships supports conceptual propositions that girls’ pathways to the juvenile justice system are distinct from boys’. Implications for theory, research, and practice are discussed. PMID:19649138
The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis
Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.
2013-01-01
Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844
2013-01-01
Background A debate surrounding multiple sclerosis epidemiology has centred on time-related incidence increases and the need of monitoring. The purpose of this study is to reassess multiple sclerosis incidence in the European Economic Area. Methods We conducted a systematic review of literature from 1965 onwards and integrated elements of original research, including requested or completed data by surveys authors and specific analyses. Results The review of 5323 documents yielded ten studies for age- and sex-specific analyses, and 21 studies for time-trend analysis of single data sets. After 1985, the incidence of multiple sclerosis ranged from 1.12 to 6.96 per 100,000 population, was higher in females, tripled with latitude, and doubled with study midpoint year. The north registered increasing trends from the 1960s and 1970s, with a historic drop in the Faroe Islands, and fairly stable data in the period 1980-2000; incidence rose in Italian and French populations in the period 1970-2000, in Evros (Greece) in the 1980s, and in the French West Indies in around 2000. Conclusions We conclude that the increase in multiple sclerosis incidence is only apparent, and that it is not specific to women. Monitoring of multiple sclerosis incidence might be appropriate for the European Economic Area. PMID:23758972
Thermoregulatory responses of rats exposed to 9. 3-GHz radio-frequency radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei, M.R.; Jauchem, J.R.; Heinmets, F.
1987-10-15
Ketamine-anesthetized Sprague-Dawley rats were exposed in H orientation to far-field 9.3-GHz continuous-wave (CW) and pulsed (2 microseconds 500 pps) radiofrequency radiation (RFR) at average power densities of 30 and 60 mW/sq. cm (whole-body average specific absorption rates of 9.3 and 18.6 W/kg, respectively). Irradiation was conducted to cyclicly increase colonic temperature from 38.5 to 39.5 C. Colonic, tympanic, and subcutaneous temperatures, ECG, blood pressure, and respiratory rate were continuously recorded during experimentation. At both power densities, the subcutaneous and tympanic temperature increases significantly exceeded the colonic temperature increase. At both exposure levels, heart rate increased significantly during irradiation and returnedmore » to baseline when exposure was discontinued. Blood pressure and respiratory rate did not significantly change during irradiation. There were no significant differences between the effects of CW and pulsed RFR exposure. The levels of subcutaneous heating and heart rate change were greater, and the times required to achieve and to recover from a 1 C colonic temperature increase were longer than in previous studies conducted at 2.8 GHz. Results of these studies indicate that the carrier frequency used during irradiation markedly affects the pattern of heat distribution and the physiological responses of RF-irradiated animals.« less
Silberg, Judy L; Maes, Hermine; Eaves, Lindon J
2010-06-01
Despite the increased risk of depression and conduct problems in children of depressed parents, the mechanism by which parental depression affects their children's behavioral and emotional functioning is not well understood. The present study was undertaken to determine whether parental depression represents a genuine environmental risk factor in children's psychopathology, or whether children's depression/conduct can be explained as a secondary consequence of the genetic liability transmitted from parents to their offspring. Children of Twins (COT) data collected on 2,674 adult female and male twins, their spouses, and 2,940 of their children were used to address whether genetic and/or family environmental factors best account for the association between depression in parents and depression and conduct problems in their children. Data collected on juvenile twins from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) were also included to estimate child-specific genetic and environmental influences apart from those effects arising from the transmission of the parental depression itself. The fit of alternative Children of Twin models were evaluated using the statistical program Mx. The most compelling model for the association between parental and juvenile depression was a model of direct environmental risk. Both family environmental and genetic factors accounted for the association between parental depression and child conduct disturbance. These findings illustrate how a genetically mediated behavior such as parental depression can have both an environmental and genetic impact on children's behavior. We find developmentally specific genetic factors underlying risk to juvenile and adult depression. A shared genetic liability influences both parental depression and juvenile conduct disturbance, implicating child conduct disturbance (CD) as an early indicator of genetic risk for depression in adulthood. In summary, our analyses demonstrate differences in the impact of parental depression on different forms of child psychopathology, and at various stages of development.
Nielsen, M.G.; Stone, J.R.; Hansen, B.P.; Nielsen, J.P.
1995-01-01
A geohydrologic study of the Saco Municipal Landfill in Saco, Maine, was done during 1993-94 to provide a preliminary interpretation of the geology and hydrology needed to guide additional studies at the landfill as part of the Superfund Program. The Saco Landfill, which was active from the early 1960's until 1986, includes three disposal areas on a-90-acre parcel. Sandy Brook, a small perennial stream, flows from north to south through the land- fill between the disposal areas. Discharge of leachate from the disposal areas to aquifers and streams has been documented since 1974. The landfill was declared a Superfund site in 1990 by the U.S. Environmental Protection Agency. Multiple lines of evidence are used in this study to indicate areas of ground-water contamination and sources of water flow in Sandy Brook. The geohydrologic system on the east side of Sandy Brook consists of an upper water-table aquifer and a lower aquifer, separated by a thick sequence of glaciomarine silt and clay. Depths to bedrock range from 60 to more than 200 ft (feet), on the basis of data from seismic-refraction studies and drilling. The upper aquifer, which is generally less than 15 ft thick, consists of fine- to medium-grained sand deposited in a shallow postglacial marine environment. The lower aquifer, which was deposited as a series of glaciomarine fans, contains two sediment types: well-sorted sand *and gravel and unsorted sediments called diamict sediments. East of Sandy Brook, the thickness of the lower aquifer ranges from 25 to 100 ft, based on drilling at the landfill. The glaciomarine silts and clays (known as the presumpscot Formation) range from 50 to more than 100 ft thick. West of Sandy Brook, the glaciomarine silt and clay is largely absent, and fractured bedrock is very close to land surface under one of the disposal areas in the northwestern part of the property. The lower aquifer is unconfined in the southwestern side of the study area; bedrock slopes towards the south, and the aquifer thickens to 100 ft at the southwestern end of the study area. Preliminary estimates of mean annual streamflow in Sandy Brook, based on a partial year of continuous record, indicate that runoff increases from approximately 2.1 ft3/s (cubic feet per second) upstream from the landfill to 2.7 ft3/s downstream from the landfill, although the drainage area down- stream is only 11 percent greater than the drainage area upstream. A water-budget estimate based on available streamflow and climatic data indicates that Sandy Brook below the landfill gains about 80 million gallons per year from sources outside the drainage-basin boundary. Possible sources include the lower aquifer north or west of the landfill area and the fractured bedrock northwest of Sandy Brook. Specific conductance of water in Sandy Brook increases downstream from the landfill. In September 1993, specific conductance was 184 liS/cm (microsiemens per centimeter at 25 degrees Celsius) upstream from the landfill and 496 uS/cm downstream from the landfill. Continuous monitoring of specific conductance in Sandy Brook shows that the downstream increase is less during periods of stormflow because of dilution. Electromagnetic terrain-conductivity surveys, results of ground-water chemical analyses, and changes in streamwater quality have been used to identify areas of likely ground-water contamination. The specific conductance of ground water exceeds 2,000 uS/cm in some areas near the landfills. This compares to specific conductances of less than 200 uS/cm in water from most shallow wells that are considered to represent background water quality. Ground water in the upper aquifer east of Sandy Brook and in the lower aquifer west of Sandy Brook has been affected by leachate flowing from the landfill areas. The extent of contamination in bedrock, if any, is unknown. Water levels measured in 16 wells were used to help determine the direction of ground-water flow. The electromagnetic terrain-conduct
NASA Astrophysics Data System (ADS)
Nishigori, Shijo; Seida, Osamu
2018-05-01
We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.
Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen
2014-01-01
Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259
Bastille-Rousseau, Guillaume; Schaefer, James A; Lewis, Keith P; Mumma, Matthew A; Ellington, E Hance; Rayl, Nathaniel D; Mahoney, Shane P; Pouliot, Darren; Murray, Dennis L
2016-03-01
Climate can have direct and indirect effects on population dynamics via changes in resource competition or predation risk, but this influence may be modulated by density- or phase-dependent processes. We hypothesized that for ungulates, climatic conditions close to parturition have a greater influence on the predation risk of neonates during population declines, when females are already under nutritional stress triggered by food limitation. We examined the presence of phase-dependent climate-predator (PDCP) interactions on neonatal ungulate survival by comparing spatial and temporal fluctuations in climatic conditions, cause-specific mortality and per capita resource limitation. We determined cause-specific fates of 1384 caribou (Rangifer tarandus) from 10 herds in Newfoundland, spanning more than 30 years during periods of numerical increase and decline, while exposed to predation from black bears (Ursus americanus) and coyotes (Canis latrans). We conducted Cox proportional hazards analysis for competing risks, fit as a function of weather metrics, to assess pre- and post-partum climatic influences on survival on herds in population increase and decline phases. We used cumulative incidence functions to compare temporal changes in risk from predators. Our results support our main hypothesis; when caribou populations increased, weather conditions preceding calving were the main determinants of cause-specific mortality, but when populations declined, weather conditions during calving also influenced predator-driven mortality. Cause-specific analysis showed that weather conditions can differentially affect predation risk between black bears and coyotes with specific variables increasing the risk from one species and decreasing the risk from the other. For caribou, nutritional stress appears to increase predation risk on neonates, an interaction which is exacerbated by susceptibility to climatic events. These findings support the PDCP interactions framework, where maternal body condition influences susceptibility to climate-related events and, subsequently, risk from predation. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Occupational exposures to leaded and unleaded gasoline engine emissions and lung cancer risk.
Xu, Mengting; Siemiatycki, Jack; Lavoué, Jérôme; Pasquet, Romain; Pintos, Javier; Rousseau, Marie-Claude; Richardson, Lesley; Ho, Vikki
2018-04-01
To determine whether occupational exposure to gasoline engine emissions (GEE) increased the risk of lung cancer and more specifically whether leaded or unleaded GEE increased the risk. Two population-based case-control studies were conducted in Montreal, Canada. The first was conducted in the early 1980s and included many types of cancer including lung cancer. The second was conducted in the late 1990s and focused on lung cancer. Population controls were used in both studies. Altogether, there were 1595 cases and 1432 population controls. A comprehensive expert-based exposure assessment procedure was implemented and exposure was assessed for 294 agents, including unleaded GEE, leaded GEE and diesel engine emissions (DEE). Logistic regression analyses were conducted to estimate ORs between various metrics of GEE exposure and lung cancer, adjusting for smoking, DEE and other potential confounders. About half of all controls were occupationally exposed to GEE. Irrespective of the metrics of exposure (any exposure, duration of exposure and cumulative exposure) and the type of lung cancer, and the covariates included in models, none of the point estimates of the ORs between occupational exposure to leaded or unleaded GEE and lung cancer were above 1.0. Pooling two studies, the OR for any exposure to leaded GEE was 0.82 (0.68-1.00). Our results do not support the hypothesis that occupational exposure to GEE increases the risk of lung cancer. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Vuralhan-Eckert, Jasmin; Lautner, Silke; Fromm, Jörg
2018-04-01
Electrical signalling in response to environmental stimuli is a well-known phenomenon in higher plants. For example, in maize, different stimuli, such as wounding or re-irrigation after drought, incite characteristic electrical signals which have quite particular effects on gas exchange. What is less well understood is how plants (specifically maize) respond when two different environmental stimuli are applied simultaneously. To explore this, a three-stage experiment was designed. In the first stage, drought conditions were simulated by decreasing the soil water content to 30-40 % of field capacity. In these conditions, and in contrast to well-watered plants, the maize exhibited only 60-70% of the original level of stomatal conductance and 50-60 % of the original photosynthesis rate. In the second stage of the experiment the plants were re-irrigated and heat stimulated separately. Re-irrigation led to specific electrical signals followed by a gradual increase of gas exchange. In contrast, after heat stimulation of a leaf an electrical signal was evoked that reduced the net CO 2 -uptake rate as well as stomatal conductance. In the third stage, to elucidate how plants process simultaneous re-irrigation and heat stimulation, the drought-stressed maize plants were re-watered and heat-stimulated at the same time. Results showed a two phase response. In the first phase there was a rapid decrease in both the CO 2 uptake rate and the stomatal conductance, while in the second phase each of these parameters increased gradually. Thus, the results strongly support the view that the responses from both stimuli were combined, indicating that maize plants can process simultaneously applied stimuli. Copyright © 2018 Elsevier GmbH. All rights reserved.
Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa
2008-01-01
We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105
Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa
2008-05-01
We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.
Sensitivity and specificity of diagnostic ultrasound in the diagnosis of phrenic neuropathy.
Boon, Andrea J; Sekiguchi, Hiroshi; Harper, Caitlin J; Strommen, Jeffrey A; Ghahfarokhi, Leili S; Watson, James C; Sorenson, Eric J
2014-09-30
To determine the sensitivity and specificity of B-mode ultrasound in the diagnosis of neuromuscular diaphragmatic dysfunction, including phrenic neuropathy. A prospective study of patients with dyspnea referred to the EMG laboratory over a 2-year time frame for evaluation of neuromuscular respiratory failure who were recruited consecutively and examined with ultrasound for possible diaphragm dysfunction. Sonographic outcome measures were absolute thickness of the diaphragm and degree of increased thickness with maximal inspiration. The comparison standard for diagnosis of diaphragm dysfunction was the final clinical diagnosis of clinicians blinded to the diaphragm ultrasound results, but taking into account other diagnostic workup, including chest radiographs, fluoroscopy, phrenic nerve conduction studies, diaphragm EMG, and/or pulmonary function tests. Of 82 patients recruited over a 2-year period, 66 were enrolled in the study. Sixteen patients were excluded because of inconclusive or insufficient reference testing. One hemidiaphragm could not be adequately visualized; therefore, hemidiaphragm assessment was conducted in a total of 131 hemidiaphragms in 66 patients. Of the 82 abnormal hemidiaphragms, 76 had abnormal sonographic findings (atrophy or decreased contractility). Of the 49 normal hemidiaphragms, none had a false-positive ultrasound. Diaphragmatic ultrasound was 93% sensitive and 100% specific for the diagnosis of neuromuscular diaphragmatic dysfunction. B-mode ultrasound imaging of the diaphragm is a highly sensitive and specific tool for diagnosis of neuromuscular diaphragm dysfunction. This study provides Class II evidence that diaphragmatic ultrasound performed by well-trained individuals accurately identifies patients with neuromuscular diaphragmatic respiratory failure (sensitivity 93%; specificity 100%). © 2014 American Academy of Neurology.
System and method for suppressing sublimation using opacified aerogel
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Snyder, G. Jeffrey (Inventor); Calliat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Jones, Steven M. (Inventor); Palk, Jong-Ah (Inventor)
2008-01-01
The present invention relates to a castable, aerogel-based, ultra-low thermal conductivity opacified insulation to suppress sublimation. More specifically, the present invention relates to an aerogel opacified with various opacifying or reflecting constituents to suppress sublimation and provide thermal insulation in thermoelectric modules. The opacifying constituent can be graded within the aerogel for increased sublimation suppression, and the density of the aerogel can similarly be graded to achieve optimal thermal insulation and sublimation suppression.
Physical-chemical examination of the N2O3-SO3-H2O system
NASA Technical Reports Server (NTRS)
Linstroem, C.; Malyska, G.
1977-01-01
It was found that when (NO)HSO4 is added to absolute H2SO4, specific conductivity rises sharply, possibly due to an increase in mutual interionic effects and viscosity as the (NO)HSO4 concentration rises. The addition of SO3 to the solution yielded a precipitate; a combination of analysis, IR spectroscopy and X-ray diffraction techniques indicated that this precipitate was (NO)HS2O7.
Stumm, Frederick; Chu, Anthony; Joesten, Peter K.; Noll, Michael L.; Como, Michael D.
2013-01-01
Advanced borehole-geophysical methods were used to investigate the hydrogeology of the crystalline bedrock in 36 boreholes on the northernmost part of New York County, New York, for the construction of a utilities tunnel beneath the Harlem River. The borehole-logging techniques were used to delineate bedrock fractures, foliation, and groundwater-flow zones in test boreholes at the site. Fracture indexes of the deep boreholes ranged from 0.65 to 0.76 per foot. Most of the fracture populations had either northwest to southwest or east to southeast dip azimuths with moderate dip angles. The mean foliation dip azimuth ranged from 100º to 124º southeast with dip angles of 52º to 60º. Groundwater appears to flow through an interconnected network of fractures that are affected by tidal variations from the nearby Harlem River and tunnel construction dewatering operations. The transmissivities of the 3 boreholes tested (USGS-1, USGS-3, and USGS-4), calculated from specific capacity data, were 2, 48, and 30 feet squared per day (ft2/d), respectively. The highest transmissivities were observed in wells north and west of the secant ring. Three borehole-radar velocity tomograms were collected. In the USGS-1 and USGS-4 velocity tomogram there are two areas of low radar velocity. The first is at the top of the tomogram and runs from 105 ft below land surface (BLS) at USGS-4 and extends to 125 ft BLS at USGS-1, the second area is centered at a depth of 150 ft BLS at USGS-1 and 135 to 150 ft BLS at USGS-4. Field measurements of specific conductance of 14 boreholes under ambient conditions at the site indicate an increase in conductivity toward the southwest part of the site (nearest the Harlem River). Specific conductance ranged from 107 microsiemens per centimeter (μS/cm) (borehole 63C) to 11,000 μS/cm (borehole 79B). The secant boreholes had the highest specific conductance.
NASA Astrophysics Data System (ADS)
Gan, Qingmeng; Zhao, Kuangmin; He, Zhen; Liu, Suqin; Li, Aikui
2018-04-01
We propose a new strategy to uniformly coat zeolitic imidazolate framework-8 (ZIF-8) on iron oxides containing no Zn to obtain an α-Fe2O3@ZIF-8 composite. After carbonization, the α-Fe2O3@ZIF-8 transforms into iron oxides@N-doped porous carbon (FeOx@NC). The uniform N-doped porous carbon layer gives rise to a superior electrical conductivity, highly-increased specific BET surface area (179.2 m2 g-1), and abundant mesopores for the FeOx@NC composite. When served as the LIB anode, the FeOx@NC shows a high reversible capacity (of 1064 mA h g-1 at 200 mA g-1), excellent rate performance (of 198.1 mA h g-1 at 10000 mA g-1) as well as brilliant long-term cyclability (with a capacity retention of 93.3% after 800 cycles), which are much better than those of the FeOx@C and pristine FeOx anodes. Specifically, the Li-ion intercalation pseudocapacitive behavior of the FeOx@NC anode is improved by this N-doped porous carbon coating, which is beneficial for rapid Li-ion insertion/extraction processes. The excellent electrochemical performance of FeOx@NC should be ascribed to the increased electrolyte penetration areas, improved electrical conductivity, boosted lithium storage kinetics, and shortened Li-ion transport length.
Faye, Robert E.
1980-01-01
Short-term, water-quality reconnaissances along the downstream reaches of the Pascagoula and Escatawpa Rivers in Jackson County , Miss., indicate that stream quality during the period May 1974 to July 1978 was affected by wastewater discharges as well as river discharge and the extent of tidal intrusion. Specific conductances on the Pascagoula River ranged from less than 100 to more than 40,000 micromhos per centimeter and increased downstream. Specific conductance also increased with depth at downstram sites, indicating density stratification. Dissolved-oxygen concentrations were also affected by density stratification but were generally greater than 4.0 milligrams per liter in both rivers. Analyses of 5-day biochemical oxygen demand and nutrient concentrations indicate that oxidation of both carbonaceous and nitrogenous materials significantly affected the waste assimilative capacity of the rivers. Concentrations of pesticides and most trace elements in both the water column and the bottom sediments were zero or very small. Titanium concentrations were less than 220 micrograms per liter in the water column and 6,500 micrograms per gram in bottom sediments. Small concentrations of oil and grease, PCB's, and phenols were also detected. Fecal coliform and fecal streptococcal bacteria concentrations were generally greater in the Escatawpa River and ranged from about 10 to 18,000 colonies per 100 milliliters of water. (USGS)
Hudson, P J; Limousin, J M; Krofcheck, D J; Boutz, A L; Pangle, R E; Gehres, N; McDowell, N G; Pockman, W T
2018-02-01
Hydraulic architecture imposes a fundamental control on water transport, underpinning plant productivity, and survival. The extent to which hydraulic architecture of mature trees acclimates to chronic drought is poorly understood, limiting accuracy in predictions of forest responses to future droughts. We measured seasonal shoot hydraulic performance for multiple years to assess xylem acclimation in mature piñon (Pinus edulis) and juniper (Juniperus monosperma) after 3+ years of precipitation manipulation. Our treatments consisted of water addition (+20% ambient precipitation), partial precipitation-exclusion (-45% ambient precipitation), and exclusion-structure control. Supplemental watering elevated leaf water potential, sapwood-area specific hydraulic conductivity, and leaf-area specific hydraulic conductivity relative to precipitation exclusion. Shifts in allocation of leaf area to sapwood area enhanced differences between irrigated and droughted K L in piñon but not juniper. Piñon and juniper achieved similar K L under ambient conditions, but juniper matched or outperformed piñon in all physiological measurements under both increased and decreased precipitation treatments. Embolism vulnerability and xylem anatomy were unaffected by treatments in either species. Absence of significant acclimation combined with inferior performance for both hydraulic transport and safety suggests piñon has greater risk of local extirpation if aridity increases as predicted in the southwestern USA. © 2017 John Wiley & Sons Ltd.
Sulfurized activated carbon for high energy density supercapacitors
NASA Astrophysics Data System (ADS)
Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong
2014-04-01
Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.
The knowledge of risk factors and prevention of breast cancer in Polish women.
Chmaj-Wierzchowska, K; Jurczyk, M U; Czech-Szczapa, B; Wilczak, M
2017-01-01
Currently, breast cancer is one of the most common malignancies among women and it constitutes a significant medical, economic, and social problem. The study was conducted in a group of 600 healthy women (aged 18 to 88 years) between September 2011 and February 2015 living in the region of Wielkopolska (Poland) in a private gynecological practice. A survey questionnaire designed specifically for purposes of the study was a tool used to conduct the study. With regards to risk factors for breast cancer: 93% - familial history of breast cancer, 46% - use of hormone treatment, and 40.16% - taking contraceptive pills. A significant component of breast cancer prevention should be providing information regarding prevention tests and increasing accessibility to medical services.
NASA Astrophysics Data System (ADS)
Park, Youngjun; Kim, Hyunsoo
2011-08-01
The effective barrier height and carrier transport mechanism of low resistance Ag-based contact to highly Mg-doped p-GaN were investigated. The specific contact resistance obtained was as low as 7.0×10-4 Ω cm2. The electrical resistivity of p-GaN was found to increase depending on ˜T-1/4, indicating variable-range hopping (VRH) conduction through Mg-related deep-level defects. Based on the VRH conduction model, the effective barrier height for carrier transport could be measured as 0.12 eV, which is low enough to explain the formation of excellent ohmic contact. The deep-level defects were also found to induce surface Fermi pinning.
High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2008-01-01
Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Kaji, Hiroki; Nishina, Kousuke; Kuwahara, Hideki; Nakamura, Mitsutaka; Kajimoto, Ryoichi
2016-09-01
We studied how Mn substitution affects the thermoelectric properties and thermal excitations of the electron-doped perovskite Sr1-xLaxTiO3 by measuring its electrical and thermal transport properties, magnetization, specific heat, and inelastic neutron scattering. Slight Mn substitution with the lattice defects enhanced the Seebeck coefficient, perhaps because of coupling between itinerant electrons and localized spins or between itinerant electrons and local lattice distortion around Mn3+ ions, while it enhanced anharmonic lattice vibrations, which effectively suppressed thermal conductivity in a state of high electrical conductivity. Consequently, slight Mn substitution increased the dimensionless thermoelectric figure of merit for Sr1-xLaxTiO3 near room temperature.
NASA Astrophysics Data System (ADS)
Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui
2017-09-01
Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).
Alahakoon, A U; Oey, I; Silcock, P; Bremer, P
2017-10-01
Brisket is a low value/tough meat cut that contains a large amount of connective tissue. Conversion of collagen into gelatin during heating reduces the toughness of the connective tissue however this conversion is slow at low cooking temperatures (around 60°C). The objective of this project was to determine the ability of pulsed electric field (PEF) processing to reduce the thermal stability of connective tissue. To achieve this, a novel model system was designed in which connective tissue obtained from beef deep pectotalis muscle (brisket) was exposed to PEF at combinations of electric field strength (1.0 and 1.5kV/cm) and specific energy (50 and 100kJ/kg) within an agar matrix at electrical conductivities representing the electrical conductivity found in brisket. Differential scanning calorimetry showed that PEF treatment significantly (p<0.05) decreased the denaturation temperature of connective tissue compared to untreated samples. Increasing electric field strength and the specific energy increased the Ringer soluble collagen fraction. PEF treated samples showed higher solubilization compared to the untreated samples at both 60°C and 70°C in heat solubility test. SEM examination of PEF treated (at 1.5kV/cm and 100kJ/kg) and untreated samples revealed that PEF appeared to increase the porosity of the connective tissue structure. These finding suggest that PEF processing is a technology that could be used to improve the tenderness and decrease the cooking time of collagen rich, meat cuts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonlinear Conductivities and Electrochemical Performances of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Electrodes
Su, Xin; Ha, Seonbaek; Ishwait, Manar B.; ...
2016-01-01
There is increasing research attention on optimizing the carbon black nanoparticles’ structure and loading procedure for improving conductivities and thus, electrochemical performances of cathodes in lithium-ion batteries. Recently, LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523) has been actively investigated due to its larger specific capacity and lower cost compared to conventional cathode materials. Presented here is a high energy density NCM523 cathode obtained by reducing the carbon content using the state-of-the-art carbon nanoparticles developed at Cabot Corporation. It is the first time that the nonlinear conductivity of NCM523 electrodes has been discovered, which is significantly impacted by the dispersion and surface crystalline quality of carbon black nanoparticles, especially when the loading of carbon black is only 1 wt%. The nonlinear conductivity of the cathodes can dramatically affect their electrochemical performances at high rates (more » $$\\geqq$$3C), which is close to the tunneling saturated current. In addition, there is no discernable difference in terms of the rate and cycle performance of the NCM523 electrodes, when reducing the loading of novel carbon black nanoparticles from 5 wt% to 1 wt% in the cathode. Therefore, the energy density of the electrode can be increased by 9% by using existing commercially available electrode materials.« less
Zhang, Ri-Chao; Sun, Dan; Zhang, Ruirui; Lin, Wen-Feng; Macias-Montero, Manuel; Patel, Jenish; Askari, Sadegh; McDonald, Calum; Mariotti, Davide; Maguire, Paul
2017-01-01
Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces. PMID:28436454
Cullen, D Kacy; R Patel, Ankur; Doorish, John F; Smith, Douglas H; Pfister, Bryan J
2008-12-01
Neural-electrical interface platforms are being developed to extracellularly monitor neuronal population activity. Polyaniline-based electrically conducting polymer fibers are attractive substrates for sustained functional interfaces with neurons due to their flexibility, tailored geometry and controlled electro-conductive properties. In this study, we addressed the neurobiological considerations of utilizing small diameter (<400 microm) fibers consisting of a blend of electrically conductive polyaniline and polypropylene (PA-PP) as the backbone of encapsulated tissue-engineered neural-electrical relays. We devised new approaches to promote survival, adhesion and neurite outgrowth of primary dorsal root ganglion neurons on PA-PP fibers. We attained a greater than ten-fold increase in the density of viable neurons on fiber surfaces to approximately 700 neurons mm(-2) by manipulating surrounding surface charges to bias settling neuronal suspensions toward fibers coated with cell-adhesive ligands. This stark increase in neuronal density resulted in robust neuritic extension and network formation directly along the fibers. Additionally, we encapsulated these neuronal networks on PA-PP fibers using agarose to form a protective barrier while potentially facilitating network stability. Following encapsulation, the neuronal networks maintained integrity, high viability (>85%) and intimate adhesion to PA-PP fibers. These efforts accomplished key prerequisites for the establishment of functional electrical interfaces with neuronal populations using small diameter PA-PP fibers-specifically, improved neurocompatibility, high-density neuronal adhesion and neuritic network development directly on fiber surfaces.
NASA Astrophysics Data System (ADS)
Zhang, Ri-Chao; Sun, Dan; Zhang, Ruirui; Lin, Wen-Feng; Macias-Montero, Manuel; Patel, Jenish; Askari, Sadegh; McDonald, Calum; Mariotti, Davide; Maguire, Paul
2017-04-01
Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces.
A Mentoring Program in Environmental Science for Underrepresented Groups
NASA Astrophysics Data System (ADS)
Stevens, L.; Rizzo, D. M.
2009-12-01
We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing excellent support. Looking at goals more specifically, we find: Improved student academic performance: Most students credit the program with a positive impact on their academic performance. Students’ continued study of environmental science: Students report increased or continued interest in environmental science as a result of participating in the program. Continued study at UVM: In both 2007 and 2009 there was a nearly unanimous report that students remain at UVM because of their involvement in the program. The program provides valuable opportunities, advisory support, community of peers, and financial stipend. It is has attracted and kept these students at this university. Increased interest in science careers: Students have been exposed to a range of science careers and credit the program with providing this exposure. Most of these students expect to pursue a career in science. Created a welcoming environment: One student specifically credits the program with increasing the number of students of color in the department. Other students credit the program with creating an environment in which students have established relationships with many faculty, certainly contributing to a welcoming atmosphere. Taken together, results indicate that the program is indeed achieving its goals.
Researcher Perceptions of Ethical Guidelines and Codes of Conduct
Giorgini, Vincent; Mecca, Jensen T.; Gibson, Carter; Medeiros, Kelsey; Mumford, Michael D.; Connelly, Shane; Devenport, Lynn D.
2014-01-01
Ethical codes of conduct exist in almost every profession. Field-specific codes of conduct have been around for decades, each articulating specific ethical and professional guidelines. However, there has been little empirical research on researchers’ perceptions of these codes of conduct. In the present study, we interviewed faculty members in six research disciplines and identified five themes bearing on the circumstances under which they use ethical guidelines and the underlying reasons for not adhering to such guidelines. We then identify problems with the manner in which codes of conduct in academia are constructed and offer solutions for overcoming these problems. PMID:25635845
Forslund, Tommie; Brocki, Karin C; Bohlin, Gunilla; Granqvist, Pehr; Eninger, Lilianne
2016-09-01
This study examined the contributions of several important domains of functioning to attention-deficit/hyperactivity disorder (ADHD) symptoms and conduct problems. Specifically, we investigated whether cognitive inhibition, emotion regulation, emotionality, and disorganized attachment made independent and specific contributions to these externalizing behaviour problems from a multiple pathways perspective. The study included laboratory measures of cognitive inhibition and disorganized attachment in 184 typically developing children (M age = 6 years, 10 months, SD = 1.7). Parental ratings provided measures of emotion regulation, emotionality, and externalizing behaviour problems. Results revealed that cognitive inhibition, regulation of positive emotion, and positive emotionality were independently and specifically related to ADHD symptoms. Disorganized attachment and negative emotionality formed independent and specific relations to conduct problems. Our findings support the multiple pathways perspective on ADHD, with poor regulation of positive emotion and high positive emotionality making distinct contributions to ADHD symptoms. More specifically, our results support the proposal of a temperamentally based pathway to ADHD symptoms. The findings also indicate that disorganized attachment and negative emotionality constitute pathways specific to conduct problems rather than to ADHD symptoms. © 2016 The British Psychological Society.
Gordon, John D.; Latysh, Natalie E.; Lindholm, Sandy J.
2003-01-01
Five external quality-assurance programs were operated by the U.S. Geological Survey for the National Atmospheric Deposition Program/ National Trends Network (NADP/NTN) during 1997 through 1999: the intersite-comparison program, the blind-audit program, the field- audit program, the interlaboratory-comparison program, and the collocated-sampler program. The intersite-comparison program assesses the accuracy of pH and specific-conductance determinations made by NADP/NTN site operators. In two 1997 intersite-comparison studies, 83.7 and 85.8 percent of the pH determinations met the NADP/NTN accuracy goals, whereas 97.3 and 92.4 percent of the specific-conductance determinations met the NADP/NTN accuracy goals. The percentage of pH and specific-conductance determinations that met the accuracy goals in 1998 were, for the most part, higher than in 1997. In two 1998 studies, 90.9 and 90.3 percent of the pH determinations met the accuracy goals compared to 94.7 and 96.0 percent of the specific- conductance measurements meeting the accuracy goals. In one 1999 intersite-comparison study, 89.5 percent and 99.4 percent of pH and specific- conductance determinations, respectively, met the NADP/NTN accuracy goals. The blind-audit program evaluates the effects of routine sample handling, processing, and shipping on the analytical bias and precision of weekly precipitation samples. A portion of the blind-audit sample subject to the normal onsite handling and processing of a weekly precipitation sample is referred to as the bucket portion, whereas the portion receiving only minimal handling is referred to as the bottle portion. Positive bias in regard to blind-audit results indicates that the bucket portion has a higher concentration than the bottle portion. The paired t-test for the 1997 through 1999 blind- audit data indicates that routine sample handling, processing, and shipping introduced a positive bias (a=0.05) for calcium and chloride and a negative bias (cz=0.05) for hydrogen ion. During 1997 through 1999, the median paired differences between the bucket and bottle portions ranged from 0.00 milligram per liter for nitrate and ammonium to +0.010 milligram per liter for both chloride and sulfate. The median paired difference between the bucket and bottle portions for hydrogen ion was -1.086 microequivalents per liter, whereas for specific conductance, the median paired difference between the bucket and bottle portions was -0.200 microsiemen per centimeter during 1997 through 1999. Surface-chemistry effects due to variable amounts of precipitation contacting prewashed sample-collection and shipping-container surfaces were studied in the blind-audit program by using three different sample volumes. The sample- collection and shipping containers used for the blind-audit study were obtained from the site operator's supply and could have been used for precipitation samples. Results of a Kruskal-Wallis analysis of variance test of the relation between paired blind-audit sample differences in units of concentration and sample volume were statistically significant for magnesium, chloride, sulfate, and hydrogen ion during 1997 through 1999. Before 1994, at least 5 of the 10 analytes displayed a statistically significant difference between paired blind-audit differences in units of concentration and sample volume, supporting the premise that chemical reactions between the 13-liter bucket shipping container (primarily the butadiene o-ring lid of the shipping container) and the sample, which resulted in an increasing loss of hydrogen ion with increasing volume, have been eliminated by the new l-liter bottle sample- shipping protocol. The field-audit program measures the effects of field exposure, handling, and processing on the chemistry of NADP/NTN precipitation samples. In the field-audit program, the site operator is instructed to process and submit a quality- control sample following a standard 7-day, Tuesday-to-Tuesday sampling period with no
Song, Tao Tao; Chen, Guang Shui; Shi, Shun Zeng; Guo, Run Quan; Zheng, Xin; Xiong, De Cheng; Chen, Wang Yuan; Chen, Ting Ting
2018-03-01
A field mesocosm experiment with Chinese fir (Cunninghamia lanceolata) seedlings was conducted in Chenda State-Owned Forest Farm, Sanming, Fujian Province. The effects of soil warming (ambient +5 ℃) on specific respiration rates and nonstructural carbohydrate (NSC) concentrations in fine roots were measured by the ingrowth core method, to reveal the belowground responses and the adaptability of Chinese fir to global warming. The results showed that soil warming caused significant changes of fine root NSC in the second year. The NSC and starch concentrations in 0-1 mm fine roots, and the NSC and sugar concentrations in 1-2 mm fine roots decreased signifi-cantly in January. The NSC, sugar and starch concentrations in 0-1 mm roots and the starch concentration in 1-2 mm roots increased in July. Soil warming had no significant effect on fine root NSC in the third year. The specific root respiration rate of the 0-1 mm roots significantly increased in July of the second year but significantly decreased in July of the third year in the warmed plots. Compared with the 0-1 mm roots, soil warming had no significant effect on the specific root respiration rate of the 1-2 mm roots. In conclusion, the responses of fine root respiration to soil warming depended on the duration of warming. Fine root respiration partly acclimated to soil warming with increasing duration of soil warming, which kept fine root NSC being relatively stable.
Huang, Jingya; Xu, Bin; Guo, Dan; Jiang, Ting; Huang, Wei; Liu, Guocong; Ye, Xiaohua
2018-05-14
There has been little focus on the possible association between second-hand smoke (SHS) exposure and depressive symptoms among adolescents. Thus, this study aimed to explore the dose⁻response relationships between SHS exposure and depressive symptoms among adolescents and differentiate these associations in setting-specific exposure and severity-specific outcomes. A cross-sectional study was conducted using a stratified cluster sampling method to obtain a representative sample of high school students in Guangzhou, China. Depressive symptoms were measured using the Center for Epidemiologic Studies Depression Scale. Univariable and multivariable logistic regression models were used to explore the potential associations between SHS exposure and depressive symptoms. Among 3575 nonsmoking students, 29.6% were classified as having probable depressive symptoms and 9.6% had severe depressive symptoms. There were monotonically increasing dose⁻response relationships between setting-specific (public places, homes, or indoor/outdoor campuses) SHS exposure and severity-specific (probable or severe) depressive symptoms. When examining these relations by source of exposure, we also observed similar dose⁻response relationships for SHS exposure in campuses from smoking teachers and from smoking classmates. Our findings suggest that regular SHS exposure is associated with a significant, dose-dependent increase in risk of depressive symptoms among adolescents, and highlight the need for smoke-free environments to protect the health of adolescents.
Lampe, David C.; Unthank, Michael D.
2016-12-08
The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity values from the initial air slug test during the 2015 testing period for MW–11A and MW–14A are an order of magnitude less than those derived from the final test during the 2014 testing period indicating the development of a low conductivity skin between the final test of the 2014 testing period and the beginning of the 2015 testing period that created a decrease in the connection of the monitoring well screen to the surrounding aquifer material.Repeated step drawdown and recovery testing of the extraction wells tested during this study provided results that indicate a slight increase in the development of a skin and a decrease in the connectivity of the extraction wells with the Calumet aquifer. Hydraulic conductivity values obtained from the test results were relatively similar in EW–4B and EW–14A but were substantially lower for EW–11C. This difference may be due to the presence of finer grained silt deposits in the area surrounding well nest 11. Skin factors calculated during the step drawdown and recovery analysis were lowest in EW–11C and relatively similar in EW–4B and EW–14A. Calculated skin factors increased slightly in the analysis of data collected in 2015 from that collected in 2014.Comparisons of the specific-capacity values calculated from well development data collected following extraction well installation to those calculated during the single well aquifer tests at EW–4B, EW–14A and EW–11C indicate that the productivity of extraction wells on the CDF property has diminished since 2008. Values calculated for monitoring wells MW–4A, MW–11A, and MW–14A were used to evaluate the decrease in air slug derived hydraulic conductivity for monitoring wells within the groundwater cutoff wall between testing in 2014 and 2015.Results from testing by this study indicate that implementation of an air slug testing regimen of the monitoring wells that control the gradient control system at the CDF throughout the course of a year may help sustain the connectivity between the monitoring wells and the surrounding aquifer and provide data to evaluate the need for different types of well development approaches to address chemical or biological fouling issues. Repeated step drawdown and recovery testing of the extraction wells tested during this study provided results that indicate a slight increase in the development of a skin and a decrease in the connectivity of the extraction wells with the Calumet aquifer. Implementation of a specific capacity testing regimen can provide data to record and track well condition through time for individual extraction wells. Results from aquifer testing by this study indicate that specific capacity test results, when paired with recovery testing, provide useful data to measure the development of any low conductivity wellbore skin through the skin factors derived for the individual extraction wells. An initial annual schedule of specific capacity and recovery tests would provide sufficient data to identify substantial short-term changes in the operating condition of the extraction wells.
Kröber, W; Heklau, H; Bruelheide, H
2015-03-01
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity-Ecosystem Functioning experiment at Jiangxi (BEF-China). Information-theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi-layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi-predictor models for stomatal conductance (gs ) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50 ) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Molecularly resolved protein electromechanical properties.
Axford, Daniel; Davis, Jason J; Wang, Nan; Wang, Dongxu; Zhang, Tiantian; Zhao, Jianwei; Peters, Ben
2007-08-02
Previous work has shown that protein molecules can be trapped between the conductive surfaces presented by a metal-coated AFM probe and an underlying planar substrate where their molecule-specific conductance characteristics can be assayed. Herein, we demonstrate that transport across such a derived metal-protein-electrode junction falls within three, pressure-dependent, regimes and, further, that pressure-dependent conductance can be utilized in analyzing temporal variations of protein fold. Specifically, the electronic and mechanical properties of the metalloprotein azurin have been characterized under conditions of anisotropic vertical compression through the use of a conducting atomic force microscope (CP-AFM). By utilizing the ability of azurin to chemically self-assemble on the gold surface presented either by the apex of a suitably coated AFM probe or a planar metallic surface, molecular-level transport characteristics are assayable. Under conditions of low force, typically less than 2 nN, the weak physical and electronic coupling between the protein and the conducting contacts impedes tunneling and leads to charge buildup followed by dielectric breakdown. At slightly increased force, 3-5 nN, the copper protein exhibits temporal electron occupation with observable negative differential resistance, while the redox-inactive zinc mutant does not. At imposed loads greater than 5 nN, appreciable electron tunneling can be detected even at low bias for both the redox-active and -inactive species. Dynamic current-voltage characteristics have been recorded and are well-described by a modified Simmons tunneling model. Subsequent analyses enable the electron tunneling barrier height and barrier length to be determined under conditions of quantified vertical stress. The variance observed describes, in essence, the protein's mechanical properties within the confines of the tunnel junction.
NASA Astrophysics Data System (ADS)
Popov, A.; Zolotarev, V.; Bychkov, S.
2016-11-01
This paper examines the results of experimental studies of a previously submitted combined algorithm designed to increase the reliability of information systems. The data that illustrates the organization and conduct of the studies is provided. Within the framework of a comparison of As a part of the study conducted, the comparison of the experimental data of simulation modeling and the data of the functioning of the real information system was made. The hypothesis of the homogeneity of the logical structure of the information systems was formulated, thus enabling to reconfigure the algorithm presented, - more specifically, to transform it into the model for the analysis and prediction of arbitrary information systems. The results presented can be used for further research in this direction. The data of the opportunity to predict the functioning of the information systems can be used for strategic and economic planning. The algorithm can be used as a means for providing information security.
NASA Astrophysics Data System (ADS)
Kaur, Avneet; Bakhshi, A. K.
2010-04-01
The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.
Gittelsohn, Joel; Suratkar, Sonali; Song, Hee-Jung; Sacher, Suzanne; Rajan, Radha; Rasooly, Irit R.; Bednarek, Erin; Sharma, Sangita; Anliker, Jean A.
2011-01-01
Reduced access to affordable healthy foods is linked to higher rates of chronic diseases in low-income urban settings. The authors conduct a feasibility study of an environmental intervention (Baltimore Healthy Stores) in seven corner stores owned by Korean Americans and two supermarkets in low-income East Baltimore. The goal is to increase the availability of healthy food options and to promote them at the point of purchase. The process evaluation is conducted largely by external evaluators. Participating stores stock promoted foods, and print materials are displayed with moderate to high fidelity. Interactive consumer taste tests are implemented with high reach and dose. Materials developed specifically for Korean American corner store owners are implemented with moderate to high fidelity and dose. Results indicate that small food store–based intervention programs are feasible to implement and are a viable means of increasing healthy food availability and a good location for point-of-purchase promotions in low-income urban settings. PMID:19144859
Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Kun; Guo, Limin; Marcus, Kyle
Freestanding and lightweight thin-films were rationally designed to serve as robust electrodes for renewable energy applications. A facile and scalable nanomanufacturing process was developed to fabricate these transformative thin-film electrodes (iron group mixed oxides) that exhibit a nanoporous structure and controllable composition. More specifically, electrodeposition and anodic treatments were employed to produce freestanding and lightweight metal oxides nanoporous layers (NPL). These NPL can be directly used as flexible and additive-free electrodes for renewable energy generation (water splitting) and storage (supercapacitor) applications without requiring binders and current collector and other additives. Significantly enhanced electrochemical performance was achieved due to the uniquemore » merits of the NPL: i) highly porous structure considerably increases the electrode/electrolyte interface, which facilitate electrochemical reactions; ii) NPL substantially increase the number of active sites that are favorable in electrochemical reactions; iii) residual metal network within the NPL forms a conductive framework, drastically improving electrode strength, flexibility and conductivity.« less
Cardinell, A.P.; Barnes, C.R.; Eddins, W.H.; Coble, R.W.
1989-01-01
A water-quality study was conducted during 1980-86 at four landfills in Mecklenburg County, North Carolina. Each landfill has a three-layered hydrogeologic system typical of the Piedmont, consisting of (1) the regolith; (2) a transition zone; and (3) unweathered, fractured crystalline bedrock. As much as 7.6 inches per year of rainfall enters the ground-water system and has the potential to generate leachate within landfill cells. Ground water and leachate discharge to tributaries within the landfill sites or to streams adjacent to them. Water-quality samples were collected from 53 monitoring wells and 20 surface-water sites. Samples were analyzed for selected physical and biological characteristics, major inorganic ions, nutrients, trace elements, and organic compounds. Selected indicators of water quality, including specific conductance; hardness; and concentrations of chloride, manganese, dissolved solids, total organic carbon, and specific organic compounds were analyzed to determine the effects of each landfill on ground- and surface-water quality. Increases in concentrations of inorganic constituents above background levels were detected in ground water downgradient of the landfills. The increases were generally greatest in samples from wells in close proximity to the older landfill cells. In general, the increases in concentrations in downgradient wells were greater for calcium, magnesium, and chloride than for other major ions. Manganese exhibited the largest relative increase in concentration between upgradient and downgradient wells of any constituent, and manganese concentration data were effective in defining areas with extensive anaerobic biological activity. Differences between upgradient and downgradient concentrations of total organic carbon and specific organic compounds generally were not as apparent. The most frequently identified organic contaminants were the herbicides 2,4-D and 2,4,5-T. Chlorofluoromethanes were identified in three of four ground-water samples analyzed for volatile organic compounds. Landfills affected the water quality of several smaller streams but did not noticeably affect larger ones. Apparent effects on water quality were greatest at the oldest landfill, located on Statesville Road, where waste is in cells that are partly below the water table.
Śliwczyński, Andrzej; Brzozowska, Melania; Jacyna, Andrzej; Iltchev, Petre; Iwańczuk, Tymoteusz; Wierzba, Waldemar; Marczak, Michał; Orlewska, Katarzyna; Szymański, Piotr; Orlewska, Ewa
2017-01-01
to investigate the drug-class-specific changes in the volume and cost of antidiabetic medications in Poland in 2012-2015. This retrospective analysis was conducted based on the National Health Fund database covering an entire Polish population. The volume of antidiabetic medications is reported according to ATC/DDD methodology, costs-in current international dollars, based on purchasing power parity. During a 4-year observational period the number of patients, consumption of antidiabetic drugs and costs increased by 17%, 21% and 20%, respectively. Biguanides are the basic diabetes medication with a 39% market share. The insulin market is still dominated by human insulins, new antidiabetics (incretins, thiazolidinediones) are practically absent. Insulins had the largest share in diabetes medications expenditures (67% in 2015). The increase in antidiabetic medications costs over the analysed period of time was mainly caused by the increased use of insulin analogues. The observed tendencies correspond to the evidence-based HTA recommendations. The reimbursement status, the ratio of cost to clinical outcomes and data on the long-term safety have a deciding impact on how a drug is used.
Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M
1974-03-01
Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.
Carter, Allison J; Bourgeois, Sonya; O'Brien, Nadia; Abelsohn, Kira; Tharao, Wangari; Greene, Saara; Margolese, Shari; Kaida, Angela; Sanchez, Margarite; Palmer, Alexis K; Cescon, Angela; de Pokomandy, Alexandra; Loutfy, Mona R
2013-01-11
The increasing proportion of women living with HIV has evoked calls for tailored services that respond to women's specific needs. The objective of this investigation was to explore the concept of women-specific HIV/AIDS services to identify and define what key elements underlie this approach to care. A comprehensive review was conducted using online databases (CSA Social Service Abstracts, OvidSP, Proquest, Psycinfo, PubMed, CINAHL), augmented with a search for grey literature. In total, 84 articles were retrieved and 30 were included for a full review. Of these 30, 15 were specific to HIV/AIDS, 11 for mental health and addictions and four stemmed from other disciplines. The review demonstrated the absence of a consensual definition of women-specific HIV/AIDS services in the literature. We distilled this concept into its defining features and 12 additional dimensions (1) creating an atmosphere of safety, respect and acceptance; (2) facilitating communication and interaction among peers; (3) involving women in the planning, delivery and evaluation of services; (4) providing self-determination opportunities; (5) providing tailored programming for women; (6) facilitating meaningful access to care through the provision of social and supportive services; (7) facilitating access to women-specific and culturally sensitive information; (8) considering family as the unit of intervention; (9) providing multidisciplinary integration and coordination of a comprehensive array of services; (10) meeting women "where they are"; (11) providing gender-, culture- and HIV-sensitive training to health and social care providers; and (12) conducting gendered HIV/AIDS research. This review highlights that the concept of women-specific HIV/AIDS services is a complex and multidimensional one that has been shaped by diverse theoretical perspectives. Further research is needed to better understand this emerging concept and ultimately assess the effectiveness of women-specific services on HIV-positive women's health outcomes.
Carter, Allison J; Bourgeois, Sonya; O'Brien, Nadia; Abelsohn, Kira; Tharao, Wangari; Greene, Saara; Margolese, Shari; Kaida, Angela; Sanchez, Margarite; Palmer, Alexis K; Cescon, Angela; de Pokomandy, Alexandra; Loutfy, Mona R
2013-01-01
Introduction The increasing proportion of women living with HIV has evoked calls for tailored services that respond to women's specific needs. The objective of this investigation was to explore the concept of women-specific HIV/AIDS services to identify and define what key elements underlie this approach to care. Methods A comprehensive review was conducted using online databases (CSA Social Service Abstracts, OvidSP, Proquest, Psycinfo, PubMed, CINAHL), augmented with a search for grey literature. In total, 84 articles were retrieved and 30 were included for a full review. Of these 30, 15 were specific to HIV/AIDS, 11 for mental health and addictions and four stemmed from other disciplines. Results and discussion The review demonstrated the absence of a consensual definition of women-specific HIV/AIDS services in the literature. We distilled this concept into its defining features and 12 additional dimensions (1) creating an atmosphere of safety, respect and acceptance; (2) facilitating communication and interaction among peers; (3) involving women in the planning, delivery and evaluation of services; (4) providing self-determination opportunities; (5) providing tailored programming for women; (6) facilitating meaningful access to care through the provision of social and supportive services; (7) facilitating access to women-specific and culturally sensitive information; (8) considering family as the unit of intervention; (9) providing multidisciplinary integration and coordination of a comprehensive array of services; (10) meeting women “where they are”; (11) providing gender-, culture- and HIV-sensitive training to health and social care providers; and (12) conducting gendered HIV/AIDS research. Conclusions This review highlights that the concept of women-specific HIV/AIDS services is a complex and multidimensional one that has been shaped by diverse theoretical perspectives. Further research is needed to better understand this emerging concept and ultimately assess the effectiveness of women-specific services on HIV-positive women's health outcomes. PMID:23336725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Porter, Wallace D; Bottner, Harold
2013-01-01
For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA)more » group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.« less
Bisson, Mary A.
1986-01-01
Reported inhibitors of the Characean plasmalemma proton pump were tested for their ability to inhibit the passive H+ conductance which develops in Chara corallina Klein ex Willd. at high pH. Diethylstilbestrol inhibits the proton pump and the passive H+ conductance with about the same time course, at concentrations that have no effect on cytoplasmic streaming. N-Ethylmaleimide, a sulfhydryl reagent which is small and relatively nonpolar, also inhibits both pumping and passive conductance of H+. However, it also inhibits cytoplasmic streaming with about the same time course, and therefore could not be considered a specific ATPase inhibitor. p-Chloromercuribenzene sulfonate (PCMBS), a sulfhydryl reagent which is large and charged and hence less able to penetrate the membrane, does not inhibit pumping or conductance at low concentration. At high concentration, PCMBS sometimes inhibits pumping without affecting H+ conductance, but since streaming is also inhibited, the effect on the pump cannot be said to be specific. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, a water soluble carbodiimide, weakly inhibits both pump and conductance, apparently specifically. PMID:16664807
Sörman, Karolina; Olsson, Andreas; Petrovic, Predrag
2017-01-01
Emotional mimicry and empathy are mechanisms underlying social interaction. Benzodiazepines have been proposed to inhibit empathy and promote antisocial behaviour. First, we aimed to investigate the effects of oxazepam on emotional mimicry and empathy for pain, and second, we aimed to investigate the association of personality traits to emotional mimicry and empathy. Participants (n=76) were randomized to 25 mg oxazepam or placebo. Emotional mimicry was examined using video clips with emotional expressions. Empathy was investigated by pain stimulating the participant and a confederate. We recorded self-rated experience, activity in major zygomatic and superciliary corrugator muscles, skin conductance, and heart rate. In the mimicry experiment, oxazepam inhibited corrugator activity. In the empathy experiment, oxazepam caused increased self-rated unpleasantness and skin conductance. However, oxazepam specifically inhibited neither emotional mimicry nor empathy for pain. Responses in both experiments were associated with self-rated empathic, psychopathic and alexithymic traits. The present results do not support a specific effect of 25 mg oxazepam on emotional mimicry or empathy. PMID:28405353
Guidelines for performing systematic reviews in the development of toxicity factors.
Schaefer, Heather R; Myers, Jessica L
2017-12-01
The Texas Commission on Environmental Quality (TCEQ) developed guidance on conducting systematic reviews during the development of chemical-specific toxicity factors. Using elements from publicly available frameworks, the TCEQ systematic review process was developed in order to supplement the existing TCEQ Guidelines for developing toxicity factors (TCEQ Regulatory Guidance 442). The TCEQ systematic review process includes six steps: 1) Problem Formulation; 2) Systematic Literature Review and Study Selection; 3) Data Extraction; 4) Study Quality and Risk of Bias Assessment; 5) Evidence Integration and Endpoint Determination; and 6) Confidence Rating. This document provides guidance on conducting a systematic literature review and integrating evidence from different data streams when developing chemical-specific reference values (ReVs) and unit risk factors (URFs). However, this process can also be modified or expanded to address other questions that would benefit from systematic review practices. The systematic review and evidence integration framework can improve regulatory decision-making processes, increase transparency, minimize bias, improve consistency between different risk assessments, and further improve confidence in toxicity factor development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools
NASA Astrophysics Data System (ADS)
Jagadesh, Thangavel; Samuel, G. L.
2017-02-01
The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.
Evaluation of Rehabilitation Efficiency of Clogged wells drilled in fractured bedrock and alluvium
NASA Astrophysics Data System (ADS)
Lee, C.; Hamm, S.; Lee, J.; Ok, S.; Han, S.; Choo, C.; Kim, M.
2011-12-01
In Korea, more than one million of groundwater wells have been developed since 1990s. However, the groundwater wells have not been properly managed. Moreover, the importance of well maintenance and well rehabilitation has not been well recognized. In this circumstance, groundwater wells are usually terminated in 20-year operation due to well clogging, groundwater pollution, land use change, etc. which are originated from physical, chemical, biological, and artificial changes of and around the wells. The clogged state of the wells with diminished amount down to 80-85% can be ameliorated by various rehabilitation techniques as increasing discharge amount as well as extending the durability of the wells. In European countries and the USA, rehabilitation techniques of the clogged wells have been developed with understanding the cause and prevention of well bore clogging since 1990s. In recent years, the Korean Ministry of Environment (KME) recognized the importance of well rehabilitation. Under the support of the KME, this study evaluated the efficieny of rehabilitation using air surging, high-pressure water injection, brush & air surging, and explosive charge methods as applying to seven wells installed in fractured granite of Mt. Geumjeong and one well drilled in alluvial deposit of the Jeungsan-Ri area, Gyeongnam Province in the southeastern part of Korea. Hydraulic conductivity was estimated by using slug and pumping tests before and after well rehabilitation in order to assess physical, chemical, and biological changes of the wells. Hydraulic conductivity and pumping capacity of fractured bedrock are closely related to fracture characteristics such as fracture aperture, frequency, length, orientation, dip angle, interconnectivity, plane features, and filling materials. The evolution of clogging and filling of materials on and around the well makes decrease hydraulic conductivity and pumping capacity of the well. In this study, in addition of hydraulic conductivity estimation, optical televiewer (RG HI-OPTV type) and acoustic televiewer (RG HIRAT type) logs were used to quantitatively detect clogging and filling of the wells. Explosive charge method proved about 166% increase of specific capacity after rehabilitation than before. Water quality change occurred as showing the increase of EC, turbidity, and Ca2+, Mg2+, K+, Mn2+, Zn2+, SO42-, Cl-, F-, NO3-, and SiO2 concentrations, and the decrease of temperature, pH, Eh, DO, and Na+, Fe2+, and HCO3- concentrations. On the other hand, brushing method increased about 184% of specific capacity after rehabilitation than before. Water quality change showed the increase of Eh, DO, and Fe2+, HCO3-, F-, and SiO2 concentrations, and the decrease of temperature, turbidity, pH, EC, and Ca2+, Na+, Mg2+, K+, Mn2+, Zn2+, SO42-, Cl-, and NO3- concentrations. Keywords: slug test, optical and acoustic televiewers, hydraulic conductivity, rehabilitation, clogging. Acknowledgement This work was financially supported by the Korea Ministry of Environment as "The GAIA Project".
Primary care validation of a single screening question for drinkers.
Seale, J Paul; Boltri, John M; Shellenberger, Sylvia; Velasquez, Mary M; Cornelius, Monica; Guyinn, Monique; Okosun, Ike; Sumner, Heather
2006-09-01
The aim of this study was to conduct a primary care validation study of a single screening question for alcohol misuse ("When was the last time you had more than X drinks in 1 day?," where X was four for women and X was five for men), which was previously validated in a study conducted in emergency departments. This cross-sectional study was accomplished by interviewing 625 male and female adult drinkers who presented to five southeastern primary care practices. Patients answered the single question (coded as within 3 months, within 12 months, ever, or never), Alcohol Use Disorders Identification Test (AUDIT), and AUDIT consumption questions (AUDIT-C). Alcohol misuse was defined as either at-risk drinking, identified by a 29-day Timeline Followback interview or a current (past-year) alcohol-use disorder by Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria, or both. Among 625 drinkers interviewed, 25.6% were at-risk drinkers, 21.7% had a current alcohol- use disorder, and 35.2% had either or both conditions. Considering "within the last 3 months" as positive, the sensitivity of the single question was 80% and the specificity was 74%. Chi-square analyses revealed similar sensitivity across ethnic and gender groups; however, specificity was higher in women and whites (p = .0187 and .0421, respectively). Considering "within the last 12 months" as positive increased the question's sensitivity, especially for those with alcohol-use disorders. The area under the receiver operating characteristic curve of the single alcohol screening question (0.79) was slightly lower than for the AUDIT and AUDIT-C, but sensitivity and specificity were similar. A single question about the last episode of heavy drinking is a sensitive, time-efficient screening instrument that shows promise for increasing alcohol screening in primary care practices.
Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton
Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.
2015-01-01
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408
Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters
NASA Astrophysics Data System (ADS)
Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.
2018-01-01
Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.
Weissberger, Gali H; Strong, Jessica V; Stefanidis, Kayla B; Summers, Mathew J; Bondi, Mark W; Stricker, Nikki H
2017-12-01
With an increasing focus on biomarkers in dementia research, illustrating the role of neuropsychological assessment in detecting mild cognitive impairment (MCI) and Alzheimer's dementia (AD) is important. This systematic review and meta-analysis, conducted in accordance with PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) standards, summarizes the sensitivity and specificity of memory measures in individuals with MCI and AD. Both meta-analytic and qualitative examination of AD versus healthy control (HC) studies (n = 47) revealed generally high sensitivity and specificity (≥ 80% for AD comparisons) for measures of immediate (sensitivity = 87%, specificity = 88%) and delayed memory (sensitivity = 89%, specificity = 89%), especially those involving word-list recall. Examination of MCI versus HC studies (n = 38) revealed generally lower diagnostic accuracy for both immediate (sensitivity = 72%, specificity = 81%) and delayed memory (sensitivity = 75%, specificity = 81%). Measures that differentiated AD from other conditions (n = 10 studies) yielded mixed results, with generally high sensitivity in the context of low or variable specificity. Results confirm that memory measures have high diagnostic accuracy for identification of AD, are promising but require further refinement for identification of MCI, and provide support for ongoing investigation of neuropsychological assessment as a cognitive biomarker of preclinical AD. Emphasizing diagnostic test accuracy statistics over null hypothesis testing in future studies will promote the ongoing use of neuropsychological tests as Alzheimer's disease research and clinical criteria increasingly rely upon cerebrospinal fluid (CSF) and neuroimaging biomarkers.
Barker, Edward D.; Tremblay, Richard E.; van Lier, Pol A.C.; Vitaro, Frank; Nagin, Daniel S.; Assaad, Jean-Marc; Séguin, Jean R.
2012-01-01
There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been shown to be either positively or not related to neurocognition. The specificity of these links needs further examination because attention deficit hyperactivity disorder (ADHD) links to both physical aggression and neurocognitive variation. The development of self-reported physical aggression and theft, from age 11 to 17 years, was studied in a prospective at-risk male cohort via a dual process latent growth curve model. Seven neurocognitive tests at age 20 were regressed on the growth parameters of physical aggression and theft. The links between neurocognition and the growth parameters of physical aggression and theft were adjusted for ADHD symptoms at ages 11 and 15 (parent, child and teacher reports). Results indicated that verbal abilities were negatively related to physical aggression while they were positively associated with theft. However, inductive reasoning was negatively associated with increases in theft across adolescence. Symptoms of ADHD accounted for part of the neurocognitive test links with physical aggression but did not account for the associations with theft. These differences emphasize the importance of examining specific CD behaviors to better understand their neurodevelopmental mechanisms. They also suggest that youth who engage in different levels of physical aggression or theft behaviors may require different preventive and corrective interventions. PMID:21046606
Barker, Edward D; Tremblay, Richard E; van Lier, Pol A C; Vitaro, Frank; Nagin, Daniel S; Assaad, Jean-Marc; Séguin, Jean R
2011-01-01
There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been shown to be either positively or not related to neurocognition. The specificity of these links needs further examination because attention deficit hyperactivity disorder (ADHD) links to both physical aggression and neurocognitive variation. The development of self-reported physical aggression and theft, from age 11 to 17 years, was studied in a prospective at-risk male cohort via a dual process latent growth curve model. Seven neurocognitive tests at age 20 were regressed on the growth parameters of physical aggression and theft. The links between neurocognition and the growth parameters of physical aggression and theft were adjusted for ADHD symptoms at ages 11 and 15 (parent, child and teacher reports). Results indicated that verbal abilities were negatively related to physical aggression while they were positively associated with theft. However, inductive reasoning was negatively associated with increases in theft across adolescence. Symptoms of ADHD accounted for part of the neurocognitive test links with physical aggression but did not account for the associations with theft. These differences emphasize the importance of examining specific CD behaviors to better understand their neurodevelopmental mechanisms. They also suggest that youth who engage in different levels of physical aggression or theft behaviors may require different preventive and corrective interventions. © 2010 Wiley-Liss, Inc.