Science.gov

Sample records for specific dna hybridization

  1. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions.

    PubMed Central

    Wirth, D F; Pratt, D M

    1982-01-01

    Kinetoplast DNA (kDNA) was isolated from various species of the protozoic parasite Leishmania and analyzed by nucleic acid hybridization to detect species-related heterogeneity of kDNA. Purified DNA isolated from L. mexicana and L. braziliensis displayed no homology in nucleic acid hybridization studies. These results confirmed that rapid kDNA sequence change and evolution is occurring in New World species of Leishmania and suggested that such isolated kDNA could be used as a specific hybridization probe for the rapid identification of Leishmania species by using whole organisms. This work further demonstrates that such species-specific identification is feasible on isolated Leishmania promastigotes and, more important, directly on tissue touch blots derived from the cutaneous lesion. Thus, specific hybridization of isolated kDNA provides the basis for a rapid, accurate method for the diagnosis of human leishmaniasis directly from infected tissue. Images PMID:6960359

  2. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions.

    PubMed

    Wirth, D F; Pratt, D M

    1982-11-01

    Kinetoplast DNA (kDNA) was isolated from various species of the protozoic parasite Leishmania and analyzed by nucleic acid hybridization to detect species-related heterogeneity of kDNA. Purified DNA isolated from L. mexicana and L. braziliensis displayed no homology in nucleic acid hybridization studies. These results confirmed that rapid kDNA sequence change and evolution is occurring in New World species of Leishmania and suggested that such isolated kDNA could be used as a specific hybridization probe for the rapid identification of Leishmania species by using whole organisms. This work further demonstrates that such species-specific identification is feasible on isolated Leishmania promastigotes and, more important, directly on tissue touch blots derived from the cutaneous lesion. Thus, specific hybridization of isolated kDNA provides the basis for a rapid, accurate method for the diagnosis of human leishmaniasis directly from infected tissue. PMID:6960359

  3. Isolation of Rhizobium loti Strain-Specific DNA Sequences by Subtraction Hybridization

    PubMed Central

    Bjourson, A. J.; Cooper, J. E.

    1988-01-01

    Mixed-phase (heterogeneous) and single-phase (homogeneous) DNA subtraction-hybridization methods were used to isolate specific DNA probes for closely related Rhizobium loti strains. In the heterogeneous method, DNA from the prospective probe strain was repeatedly hybridized to a mixture of DNA from cross-hybridizing strains (subtracter DNA) which was immobilized on an epoxy-activated cellulose matrix. Probe strain sequences which shared homology with the matrix-bound subtracter DNA hybridized to it, leaving unique probe strain sequences in the mobile phase. In the homogeneous method, probe strain sequences were hybridized in solution to biotinylated, mercurated subtracter DNA. Biotinylated, mercurated subtracer DNA and probe strain sequences hybridized to it were removed by two-step affinity chromatography on streptavidin-agarose and thiol-Sepharose. The specificity of the sequences remaining after subtraction hybridization by both methods was assessed and compared by colony hybridization with R. loti strains. Both methods allowed the rapid isolation of strain-specific DNA fragments which were suitable for use as probes. Images PMID:16347782

  4. DNA hybridization analysis of the nif region of two methylotrophs and molecular cloning of nif-specific DNA.

    PubMed Central

    Toukdarian, A E; Lidstrom, M E

    1984-01-01

    DNA isolated from two diazotrophic methylotrophs, the obligate methanotroph Methylosinus sp. strain 6 and the methanol autotroph Xanthobacter sp. H4-14, hybridized to DNA fragments encoding nitrogen fixation (nif) genes from Klebsiella pneumoniae. This interspecific nif homology was limited to DNA fragments encoding the nitrogenase structural proteins (nifH, nifD, and nifK) and specific methylotroph DNA sequences. The hybridization patterns obtained with the two methylotrophs were dissimilar, indicating that the nif region of methylotrophs is not physically conserved. By using the K. pneumoniae nif structural genes as a probe, a fragment of nif DNA from each methylotroph was cloned and characterized. The DNA fragment from Methylosinus sp. 6 encoded two polypeptides of 57,000 and 34,000 molecular weight. Images PMID:6321444

  5. Efficient Formation of Site-Specific Protein-DNA Hybrids Using Copper-Free Click Chemistry.

    PubMed

    Mukhortava, Ann; Schlierf, Michael

    2016-07-20

    Protein-DNA hybrids have become increasingly popular molecular building blocks in bionanotechnology and single-molecule studies to synergistically combine the programmability of DNA with the chemical diversity of proteins. The growing demand for protein-DNA hybrids requires powerful strategies for their conjugation. Here, we present an efficient two-step method for protein-DNA assembly based on copper-free click chemistry. The method allows site-specificity and high coupling efficiency, while maintaining the conservation of protein activity. We compare our method to a commonly used protocol of direct linkage of maleimide-modified oligos. We demonstrate the significantly higher yield with a protein-DNA conjugate, which is analyzed using single-molecule force spectroscopy. PMID:27322198

  6. A comparative hybridization analysis of yeast DNA with Paramecium parafusin- and different phosphoglucomutase-specific probes.

    PubMed

    Wyroba, E; Satir, B H

    2000-01-01

    Molecular probes designed for the parafusin (PFUS), the Paramecium exocytic-sensitive phosphoglycoprotein, gave distinct hybridization patterns in Saccharomyces cerevisiae genomic DNA when compared with different phosphoglucomutase specific probes. These include two probes identical to segments of yeast phosphoglucomutase (PGM) genes 1 and 2. Neither of the PGM probes revealed the 7.4 and 5.9 kb fragments in Bgl II-cut yeast DNA digest detected with the 1.6 kb cloned PFUS cDNA and oligonucleotide constructed to the PFUS region (insertion 3--I-3) not found in other species. PCR amplification with PFUS-specific primers generated yeast DNA-species of the predicted molecular size which hybridized to the I-3 probe. A search of the yeast genome database produced an unassigned nucleotide sequence that showed 55% identity to parafusin gene and 37% identity to PGM2 (the major isoform of yeast phosphoglucomutase) within the amplified region.

  7. Identification of DNA Sequences Specific for Vibrio vulnificus Biotype 2 Strains by Suppression Subtractive Hybridization

    PubMed Central

    Lee, Chung-Te; Amaro, Carmen; Sanjuán, Eva; Hor, Lien-I

    2005-01-01

    Vibrio vulnificus can be divided into three biotypes, and only biotype 2, which is further divided into serovars, contains eel-virulent strains. We compared the genomic DNA of a biotype 2 serovar E isolate (tester) with the genomic DNAs of three biotype 1 strains by suppression subtractive hybridization and then tested the distribution of the tester-specific DNA sequences in a wide collection of bacterial strains. In this way we identified three plasmid-borne DNA sequences that were specific for biotype 2 strains irrespective of the serovar and three chromosomal DNA sequences that were specific for serovar E biotype 2 strains. These sequences have potential for use in the diagnosis of eel vibriosis caused by V. vulnificus and in the detection of biotype 2 serovar E strains. PMID:16151155

  8. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    PubMed

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described. PMID:22215554

  9. Competitive Metagenomic DNA Hybridization Identifies Host-Specific Microbial Genetic Markers in Cow Fecal Samples†

    PubMed Central

    Shanks, Orin C.; Santo Domingo, Jorge W.; Lamendella, Regina; Kelty, Catherine A.; Graham, James E.

    2006-01-01

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host-specific markers. Here we describe the application of a genome fragment enrichment (GFE) method to identify host-specific genetic markers from fecal microbial community DNA. As a proof of concept, bovine fecal DNA was challenged against a porcine fecal DNA background to select for bovine-specific DNA sequences. Bioinformatic analyses of 380 bovine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode membrane-associated and secreted proteins. Oligonucleotide primers capable of annealing to select Bacteroidales-like bovine GFE sequences exhibited extremely high specificity (>99%) in PCR assays with total fecal DNAs from 279 different animal sources. These primers also demonstrated a broad distribution of corresponding genetic markers (81% positive) among 148 different bovine sources. These data demonstrate that direct metagenomic DNA analysis by the competitive solution hybridization approach described is an efficient method for identifying potentially useful fecal genetic markers and for characterizing differences between environmental microbial communities. PMID:16751515

  10. Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction

    PubMed Central

    Koltai, Hinanit; Weingarten-Baror, Carmiya

    2008-01-01

    Microarray-hybridization specificity is one of the main effectors of microarray result quality. In the present review, we suggest a definition for specificity that spans four hybridization levels, from the single probe to the microarray platform. For increased hybridization specificity, it is important to quantify the extent of the specificity at each of these levels, and correct the data accordingly. We outline possible effects of low hybridization specificity on the obtained results and list possible effectors of hybridization specificity. In addition, we discuss several studies in which theoretical approaches, empirical means or data filtration were used to identify specificity effectors, and increase the specificity of the hybridization results. However, these various approaches may not yet provide an ultimate solution; rather, further tool development is needed to enhance microarray-hybridization specificity. PMID:18299281

  11. Chromosome-Specific DNA Repeats: Rapid Identification in Silico and Validation Using Fluorescence in Situ Hybridization

    PubMed Central

    Hsu, Joanne H.; Zeng, Hui; Lemke, Kalistyn H.; Polyzos, Aris A.; Weier, Jingly F.; Wang, Mei; Lawin-O’Brien, Anna R.; Weier, Heinz-Ulrich G.; O’Brien, Benjamin

    2013-01-01

    Chromosome enumeration in interphase and metaphase cells using fluorescence in situ hybridization (FISH) is an established procedure for the rapid and accurate cytogenetic analysis of cell nuclei and polar bodies, the unambiguous gender determination, as well as the definition of tumor-specific signatures. Present bottlenecks in the procedure are a limited number of commercial, non-isotopically labeled probes that can be combined in multiplex FISH assays and the relatively high price and effort to develop additional probes. We describe a streamlined approach for rapid probe definition, synthesis and validation, which is based on the analysis of publicly available DNA sequence information, also known as “database mining”. Examples of probe preparation for the human gonosomes and chromosome 16 as a selected autosome outline the probe selection strategy, define a timeline for expedited probe production and compare this novel selection strategy to more conventional probe cloning protocols. PMID:23344021

  12. Species-specific identification of Candida krusei by hybridization with the CkF1,2 DNA probe.

    PubMed Central

    Carlotti, A; Couble, A; Domingo, J; Miroy, K; Villard, J

    1996-01-01

    The species specificity of the Candida krusei DNA fingerprinting probe CkF1,2 has been investigated. A total of 149 pathogenic and nonpathogenic fungal and bacterial DNAs were screened with CkF1,2. The probe was cold labeled with peroxidase, and its specificity was assessed by using Southern blot, dot blot, and colony blot hybridization. Its sensitivity was determined by dot blot hybridization. The CkF1,2 probe proved to be species specific. It hybridized with DNA for the 112 C. krusei strains studied, whereas it failed to hybridize under low-stringency conditions to 37 DNAs from 27 different yeast species, including Candida albicans, Candida glabrata, Candida norvegensis, Candida inconspicua, Candida tropicalis, Candida valida, Candida zeylanoides, and Yarrowia lipolytica, as well as DNAs from the filamentous fungi and bacteria tested. However, CkF1,2 hybridized strongly with DNA of the yeast species Issatchenkia orientalis, the putative ascogenous perfect state of C. krusei. Amounts as small as 60 to 120 ng of C. krusei target DNA were detected by dot blot hybridization with CkF1,2. It permitted the direct screening of colony blots for early identification. The CkF1,2 probe has potential value as a diagnostic reagent for identifying C. krusei. PMID:8784578

  13. Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD

    SciTech Connect

    Nowotny, Marcin; Cerritelli, Susana M.; Ghirlando, Rodolfo; Gaidamakov, Sergei A.; Crouch, Robert J.; Yang, Wei

    2008-07-09

    Human RNase H1 contains an N-terminal domain known as dsRHbd for binding both dsRNA and RNA/DNA hybrid. We find that dsRHbd binds preferentially to RNA/DNA hybrids by over 25-fold and rename it as hybrid binding domain (HBD). The crystal structure of HBD complexed with a 12 bp RNA/DNA hybrid reveals that the RNA strand is recognized by a protein loop, which forms hydrogen bonds with the 2'-OH groups. The DNA interface is highly specific and contains polar residues that interact with the phosphate groups and an aromatic patch that appears selective for binding deoxyriboses. HBD is unique relative to non-sequence-specific dsDNA- and dsRNA-binding domains because it does not use positive dipoles of {alpha}-helices for nucleic acid binding. Characterization of full-length enzymes with defective HBDs indicates that this domain dramatically enhances both the specific activity and processivity of RNase H1. Similar activity enhancement by small substrate-binding domains linked to the catalytic domain likely occurs in other nucleic acid enzymes.

  14. Species-Specific Detection of Vibrio anguillarum in Marine Aquaculture Environments by Selective Culture and DNA Hybridization

    PubMed Central

    Martinez-Picado, J.; Alsina, M.; Blanch, A. R.; Cerda, M.; Jofre, J.

    1996-01-01

    Methods for specific detection of Vibrio anguillarum in complex microbial communities within diverse marine aquaculture environments were evaluated. A system for the detection of culturable cells based on the combined use of a selective medium and a nonradioactively labeled oligodeoxynucleotide complementary to 16S rRNA was developed. Four hundred fourteen bacterial cultures were evaluated in order to assess the specificity of the method. When both the selective medium and the specific probe gave positive results, the cultures were always identified as V. anguillarum. The selectivity for colony hybridization was 1 V. anguillarum cell in 10,000 total bacterial cells in environmental samples. The utility of the method was also compared with detection by dot blot hybridization of either raw DNA purified from environmental samples or PCR-amplified DNA of 16S rRNA genes, using universal eubacterial primers. The post-PCR hybridization was more sensitive (8 x 10(sup2) cells) than direct hybridization of the whole purified DNA (10(sup6) cells). However, the selective medium-probe combined method was as sensitive as post-PCR hybridization, albeit more specific. PMID:16535233

  15. Insights into RNA/DNA hybrid recognition and processing by RNase H from the crystal structure of a non-specific enzyme-dsDNA complex

    SciTech Connect

    Pallan, Pradeep S.; Egli, Martin

    2009-06-17

    Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme's interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)]2. The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg{sup 2+} at the active site. A subset of amino acids engaged in contacts to RNA 2{prime}-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme's interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.

  16. Use of a species-specific DNA hybridization probe for enumerating Bacteroides vulgatus in human feces.

    PubMed Central

    Kuritza, A P; Salyers, A A

    1985-01-01

    pBV-1, a recombinant plasmid that contains a chromosomal DNA fragment from Bacteroides vulgatus, hybridized to DNA from B. vulgatus but not to DNA from other colonic Bacteroides species. This plasmid was used as a DNA probe to detect and enumerate B. vulgatus in pure culture, in mixed cultures, and in a bacterial fraction from human feces. Bacteria in a pure or mixed culture were lysed by heating the culture in NaOH. The DNA in the disrupted cell suspension was then trapped on nitrocellulose paper by vacuum filtration. If fecal samples were used instead of pure or mixed cultures, it was first necessary to partially purify the DNA by low-speed centrifugation (2,000 X g) and phenol-chloroform extraction before filtering. When 32P-labeled pBV-1 was incubated with filters containg B. vulgatus DNA, the amount of radioactivity that bound to the filters was proportional to the number of B. vulgatus filtered as long as the filtering capacity of the nitrocellulose was not exceeded. Using this procedure, we obtained a value for the concentration of B. vulgatus in human feces (2 X 10(10) to 3 X 10(10) per g of dry weight) that is similar to values obtained by other investigators using conventional bacteriological techniques (3 X 10(10) to 6 X 10(10) per g of dry weight). The advantage of the DNA hybridization method over conventional techniques is that it is not necessary to isolate pure cultures of bacteria from complex specimens such as feces. Furthermore, our method bypasses the cumbersome set of biochemical tests normally used to identify anaerobic bacteria. The major limitation of our method is its sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4083890

  17. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia

    SciTech Connect

    Arkesteijn, G.J.A.; Erpelinck, S.L.A.; Martens, A.C.M.; Hagenbeek, A.

    1995-04-01

    Flow cytometry was used to measure the fluorescence intensity of nuclei that were subjected to fluorescent in situ hybridization in suspension with chromosome specific DNA probes. Paraformaldehyde-fixed nuclei were protein digested with trypsin and hybridized simultaneously with a biotin- and DIG labeled probe specific for chromosome 8 and the biotin labeled Y chromosome probe. Y chromosome positive or negative nuclei were sorted onto microscope slides and subsequently classified as being leukemic or not by fluorescence microscopy, on the basis of the presence of a trisomy for chromosome 8. A 120-fold enrichment could be achieved when 300 Y positive nuclei were sorted from a mixture originally containing 0.5% leukemia cells. Given the specificity of the flow cytometry and FISH procedure, the combination of the two methods can reach a lower detection level of 1 per 250,000. 23 refs., 3 figs., 3 tabs.

  18. Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification

    SciTech Connect

    Wimpee, C.F.; Nadeau, T.L.; Nealson, K.H. )

    1991-05-01

    By using two highly conserved regions of the luxA gene as primers, polymerase chain reaction amplification methods were used to prepare species-specific probes against the luciferase gene from four major groups of marine luminous bacteria. Laboratory studies with test strains indicated that three of the four probes cross-reacted with themselves and with one or more of the other species at low stringencies but were specific for members of their own species at high stringencies. The fourth probe, generated from Vibrio harveyi DNA, a cross-reacted with DNAs from two closely related species, V. orientalis and V. vulnificus. When nonluminous cultures were tested with the species-specific probes, no false-positive results were observed, even at low stringencies. Two field isolates were correctly identified as Photobacterium phosphoreum by using the species-specific hybridization probes at high stringency. A mixed probe (four different hybridization probes) used at low stringency gave positive results with all of the luminous bacteria tested, including the terrestrial species Xenorhabdus luminescens, and the taxonomically distinct marine bacterial species Shewanella hanedai; minimal cross-hybridization with these species was seen at higher stringencies.

  19. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata.

    PubMed

    Hoareau, T B; Boissin, E

    2010-11-01

    Recent research has shown the usefulness of the Folmer region of the cytochrome oxidase I (COI) as a genetic barcode to assist in species delimitation of echinoderms. However, amplification of COI is often challenging in echinoderms (low success or pseudogenes). We present a method that allows the design of phylum-specific hybrid primers, and use this to develop COI primers for the Echinodermata. We aligned COI sequences from 310 echinoderm species and designed all possible primers along the consensus sequence with two methods (standard degenerate and hybrid). We found much lower degeneracy for hybrid primers (4-fold degeneracy) than for standard degenerate primers (≥48-fold degeneracy). We then designed the most conserved hybrid primers to amplify a >500-bp region within COI. These primers successfully amplified this gene region in all tested taxa (123 species across all echinoderm classes). Sequencing of 30 species among these confirmed both the quality of the sequences (>500 bp, no pseudogenes) and their utility as a DNA barcode. This method should be useful for developing primers for other mitochondrial genes and other phyla. The method will also be of interest for the development of future projects involving both community-based genetic assessments on macroorganisms and biodiversity assessment of environmental samples using high-throughput sequencing.

  20. Detection of Neospora from tissues of experimentally infected rhesus macaques by PCR and specific DNA probe hybridization.

    PubMed

    Ho, M S; Barr, B C; Tarantal, A F; Lai, L T; Hendrickx, A G; Marsh, A E; Sverlow, K W; Packham, A E; Conrad, P A

    1997-07-01

    Neospora is a newly recognized Toxoplasma-like cyst-forming coccidian parasite that causes abortion or congenital infections in naturally or experimentally infected animals. In this study, pregnant rhesus macaques were inoculated with culture-derived tachyzoites of a bovine Neospora isolate, and tissue samples from various major organs were collected from dams and fetuses for the detection of parasite DNA by using oligonucleotide primers COC-1 and COC-2 for PCR amplification of a conserved coccidial nuclear small-subunit rRNA gene sequence, and amplification products were confirmed by hybridization with a Neospora-specific DNA probe. PCR products were amplified from DNAs of different fetal monkey tissues, including brain, heart, lung, liver, spleen, skeletal muscle, skin, and placenta. In addition, Neospora DNA was amplified from the brain, heart, and lung tissues of infected rhesus macaque dams. The PCR and probe hybridization system may provide an effective method for the detection of Neospora infection in fetuses and dams from nonhuman primates and may be useful in determining the zoonotic potential of Neospora.

  1. Isolation of a Pseudomonas solanacearum-specific DNA probe by subtraction hybridization and construction of species-specific oligonucleotide primers for sensitive detection by the polymerase chain reaction.

    PubMed Central

    Seal, S E; Jackson, L A; Daniels, M J

    1992-01-01

    A subtraction hybridization technique was employed to make a library enriched for Pseudomonas solanacearum-specific sequences. One cloned fragment, PS2096, hybridized under stringent conditions to DNA of 82 P. solanacearum strains representing all subgroups of the species. Other plant-associated bacteria, including closely related species such as Pseudomonas capacia, Pseudomonas picketti, or Pseudomonas syzygii, did not hybridize to PS2096. A minimum number of between 4 x 10(5) and 4 x 10(6) P. solanacearum cells could routinely be detected with PS2096 labelled either with [32P]dCTP or with digoxigenin-11-dUTP. To improve the sensitivity of detection, PS2096 was sequenced to allow the construction of specific oligonucleotide primers to be used for polymerase chain reaction (PCR) amplification. After 50 cycles of amplification, 5 to 116 cells, depending on the strain, could reproducibly be detected by visualization of a 148-bp PCR product on an agarose gel. A preliminary field trial in Burundi with the probe and PCR primers has confirmed that they are sensitive tools for specifically detecting low-level infections of P. solanacearum in potato tubers. Images PMID:1482193

  2. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN HUMAN FECAL MICROBIAL COMMUNITIES

    EPA Science Inventory

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...

  3. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. PMID:25863384

  4. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks.

    PubMed

    Mahfouz, Magdy M; Li, Lixin; Shamimuzzaman, Md; Wibowo, Anjar; Fang, Xiaoyun; Zhu, Jian-Kang

    2011-02-01

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  5. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN CATTLE FECAL SAMPLES - ABSTRACT

    EPA Science Inventory

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...

  6. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC MICROBIAL GENETIC MARKERS IN COW FECAL SAMPLES

    EPA Science Inventory

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...

  7. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  8. Detection of virus-specific RNA in simian sarcoma-leukemia virus-infected cells in in situ hybridization to viral complementary DNA.

    PubMed Central

    Kaufman, S L; Gallo, R C; Miller, N R

    1979-01-01

    An in situ molecular hybridization system which will detect retrovirus RNA in the cytoplasm of individual virus-infected cells has been developed. The technique was applied to cells infected with simian sarcoma-leukemia virus, where the virus-specific RNA was detected by hybridization to simian sarcoma-leukemia virus 3H-labeled complementary DNA. The system is useful for detecting viral RNA-containing cells in the presence of an excess of virus-negative cells and for determining which type of cell in a heterogenous population is expressing viral RNA. Images PMID:224220

  9. DNA-based hybrid catalysis.

    PubMed

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  10. Significant enhancement of fluorescence on hybridization of a molecular beacon to a target DNA in the presence of a site-specific DNA nickase.

    PubMed

    Zheleznaya, Ludmila A; Kopein, Damir S; Rogulin, Evgeniy A; Gubanov, Sergey I; Matvienko, Nikolay I

    2006-01-01

    We have developed a simple isothermal (55 degrees C) reaction that permits detection of DNA targets using only two components: a molecular beacon and a site-specific DNA nickase without deoxyribonucleotide triphosphates and primers. The loop sequence of the molecular beacon should contain a DNA nickase recognition site. The nickase-molecular beacon (NMB) combination permits a 100-fold increase in fluorescent signal. The applications of the NMB assay for enhancement of fluorescent signal in some isothermal methods are discussed.

  11. Some properties of site-specific nickase BspD6I and the possibility of its use in hybridization analysis of DNA.

    PubMed

    Zheleznaya, L A; Perevyazova, T A; Zheleznyakova, E N; Matvienko, N I

    2002-04-01

    A new method for hybridization analysis of nucleic acids is proposed on the basis of the ability of site-specific nickases to cleave only one DNA strand. The method is based on the use of a labeled oligonucleotide with the recognition site of the nickase hybridized with the target (DNA or RNA) at an optimal temperature of the enzyme (55 degrees C). The two shorter oligonucleotides formed after the cleavage with the nickase do not complex with the target. Thus, a multiple cleavage of the labeled oligonucleotide takes place on one target molecule. The cleavage of the nucleotide is recorded either by polyacrylamide gel electrophoresis (when a radioactive labeled oligonucleotide is used) or by fluorescence measurements (if the oligonucleotide has the structure of a molecular beacon). The new method was tested on nickase BspD6I and a radioactive oligonucleotide complementary to the polylinker region of the viral DNA strand in bacteriophage M13mp19. Unfortunately, nickase BspD6I does not cleave DNA in the RNA-DNA duplexes and therefore cannot be used for detection of RNA targets.

  12. Detection of pseudorabies virus by DNA hybridization

    SciTech Connect

    McFarlane, R.G.

    1985-01-01

    A DNA hybridization technique was developed in order to detect the presence of pseudorabies virus (PRV) deoxyribonucleic acid (DNA) in swine tissue. Seven, /sup 32/P-nick translated probes of high specific activity were prepared from transformed Escherichia coli plasmids into which Bacillus amyloliquefaciens H (Bam H1) restriction fragments of PRV-DNA had been inserted. Under optimal hybridization conditions, the minimum detection level of PRV-DNA was 10/sup -11/ g, which is equivalent to 1 copy of the PRV genome/80 host cells. PRV-DNA was detected in the DNA extracted from the tissues of 10 out of 11 swine previously shown to harbor infective virus. Furthermore, PRV-DNA was present in all four seropositive swine that had recovered from pseudorabies, where no infective virus or viral products were detected at necropsy. The PRV-DNA was present in either the anterior cerebral cortex in 2 swine, or the medulla oblongata and trigeminal ganglion in 1 swine. This perhaps indicates the portal of entry of the virus into the central nervous system. This DNA hybridization assay, which utilizes restriction fragments, may be useful for studying the dynamics and molecular biologic properties of the latency of pseudorabies virus in swine.

  13. Molecular Mechanisms in Morpholino-DNA Surface Hybridization

    PubMed Central

    Gong, Ping; Wang, Kang; Liu, Yatao; Shepard, Kenneth

    2010-01-01

    Synthetic nucleic acid mimics provide opportunity for redesigning the specificity and affinity of hybridization with natural DNA or RNA. Such redesign is of great interest for diagnostic applications where it can enhance the desired signal against a background of competing interactions. This report compares hybridization of DNA analyte strands with morpholinos (MOs), which are uncharged nucleic acid mimics, to the corresponding DNA-DNA case in solution and on surfaces. In solution, MO-DNA hybridization is found to be independent of counterion concentration, in contrast to DNA-DNA hybridization. On surfaces, when immobilized MO or DNA “probe” strands hybridize with complementary DNA “targets” from solution, both the MO-DNA and DNA-DNA processes depend on ionic strength but exhibit qualitatively different behaviors. At lower ionic strengths, MO-DNA surface hybridization exhibits hallmarks of kinetic limitations when separation between hybridized probe sites becomes comparable to target dimensions, whereas extents of DNA-DNA surface hybridization are instead consistent with limits imposed by buildup of surface (Donnan) potential. The two processes also fundamentally differ at high ionic strength, under conditions when electrostatic effects are weak. Here, variations in probe coverage have a much diminished impact on MO-DNA than on DNA-DNA hybridization for similarly crowded surface conditions. These various observations agree with a structural model of MO monolayers in which MO-DNA duplexes segregate to the buffer interface while unhybridized probes localize near the solid support. A general perspective is presented on using uncharged DNA analogues, which also include compounds such as peptide nucleic acids (PNA), in surface hybridization applications. PMID:20572663

  14. Detecting hybridization using ancient DNA.

    PubMed

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2016-06-01

    It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genomewide sequence data and discuss how these innovations have revised our understanding of human evolutionary history.

  15. Control of DNA hybridization by photoswitchable molecular glue.

    PubMed

    Dohno, Chikara; Nakatani, Kazuhiko

    2011-12-01

    Hybridization of DNA is one of the most intriguing events in molecular recognition and is essential for living matter to inherit life beyond generations. In addition to the function of DNA as genetic material, DNA hybridization is a key to control the function of DNA-based materials in nanoscience. Since the hybridization of two single stranded DNAs is a thermodynamically favorable process, dissociation of the once formed DNA duplex is normally unattainable under isothermal conditions. As the progress of DNA-based nanoscience, methodology to control the DNA hybridization process has become increasingly important. Besides many reports using the chemically modified DNA for the regulation of hybridization, we focused our attention on the use of a small ligand as the molecular glue for the DNA. In 2001, we reported the first designed molecule that strongly and specifically bound to the mismatched base pairs in double stranded DNA. Further studies on the mismatch binding molecules provided us a key discovery of a novel mode of the binding of a mismatch binding ligand that induced the base flipping. With these findings we proposed the concept of molecular glue for DNA for the unidirectional control of DNA hybridization and, eventually photoswitchable molecular glue for DNA, which enabled the bidirectional control of hybridization under photoirradiation. In this tutorial review, we describe in detail how we integrated the mismatch binding ligand into photoswitchable molecular glue for DNA, and the application and perspective in DNA-based nanoscience.

  16. In situ molecular hybridization for detection of Aleutian mink disease parvovirus DNA by using strand-specific probes: identification of target cells for viral replication in cell cultures and in mink kits with virus-induced interstitial pneumonia.

    PubMed

    Alexandersen, S; Bloom, M E; Wolfinbarger, J; Race, R E

    1987-08-01

    Strand-specific hybridization probes were utilized in in situ molecular hybridization specifically to localize replicative form DNA of Aleutian mink disease parvovirus (ADV). Throughout in vitro infection, duplex replicative form DNA of ADV was located in the cell nuclei. Single-stranded virion DNA and capsid proteins were present in the nuclei early in infection, but were later translocated to the cytoplasm. In neonatal mink, ADV causes acute interstitial pneumonia, and replicative forms of viral DNA were found predominantly in alveolar type II cells of the lung. Viral DNA was also found in other organs, but strand-specific probes made it possible to show that most of this DNA represented virus sequestration. In addition, glomerular immune complexes containing intact virions were detected, suggesting that ADV virions may have a role in the genesis of ADV-induced glomerulonephritis.

  17. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  18. Automated DNA electrophoresis, hybridization and detection

    SciTech Connect

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-05-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; /sup 32/P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing.

  19. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    PubMed Central

    Flynn, Sarah MC; Carr, Steven M

    2007-01-01

    Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA) genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by more than a few percent. The

  20. Hybrid Lentivirus-phiC31-int-NLS Vector Allows Site-Specific Recombination in Murine and Human Cells but Induces DNA Damage

    PubMed Central

    Grandchamp, Nicolas; Altémir, Dorothée; Philippe, Stéphanie; Ursulet, Suzanna; Pilet, Héloïse; Serre, Marie-Claude; Lenain, Aude; Serguera, Che; Mallet, Jacques; Sarkis, Chamsy

    2014-01-01

    Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable. PMID:24956106

  1. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage.

    PubMed

    Grandchamp, Nicolas; Altémir, Dorothée; Philippe, Stéphanie; Ursulet, Suzanna; Pilet, Héloïse; Serre, Marie-Claude; Lenain, Aude; Serguera, Che; Mallet, Jacques; Sarkis, Chamsy

    2014-01-01

    Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable. PMID:24956106

  2. 1997 hybrid electric vehicle specifications

    SciTech Connect

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  3. Differentiation of Moraxella nonliquefaciens, M. lacunata, and M. bovis by using multilocus enzyme electrophoresis and hybridization with pilin-specific DNA probes.

    PubMed Central

    Tønjum, T; Caugant, D A; Bøvre, K

    1992-01-01

    Genetic relationships among strains of Moraxella nonliquefaciens, M. lacunata, and M. bovis were studied by using multilocus enzyme electrophoresis and DNA-DNA hybridization. The 74 isolates analyzed for electrophoretic variation at 12 enzyme loci were assigned to 59 multilocus genotypes. The multilocus genotypes were grouped in four major clusters, one representing strains of M. nonliquefaciens, two representing strains of M. lacunata, and one comprising strains of M. bovis and the single strain of M. equi analyzed. DNA-DNA hybridization with total genomic probes also revealed four major distinctive entities that corresponded to those identified by multilocus enzyme electrophoresis. The two distinct clusters recognized among the M. lacunata strains apparently corresponded to the species previously designated M. lacunata and M. liquefaciens. Distinction of the four entities was improved by hybridization with polymerase chain reaction products of nonconserved parts of pilin genes as DNA probes. With these polymerase chain reaction probes, new isolates of M. nonliquefaciens, M. lacunata, M. liquefaciens, and M. bovis can be identified easily by hybridization. PMID:1452691

  4. Generic specifications for hybrid microcircuits

    NASA Astrophysics Data System (ADS)

    1987-04-01

    The general requirements for circuit-type approval, procurement, lot-acceptance testing, and delivery of thick and thin film hybrid microcircuits suitable for space application are specified. It is used in conjunction with the detail specification applicable to the actual circuit type and is valid only for procurement from manufacturers whose capability is approved by ESA in accordance with specifications ESA PSS-01-605 or ESA PSS-01-606.

  5. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    PubMed

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-01

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.

  6. Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.

    PubMed

    Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang

    2016-09-01

    Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity. PMID:27533365

  7. Fluorescent in situ hybridization with specific DNA probes offers adequate detection of Enterococcus faecalis and Enterococcus faecium in clinical samples.

    PubMed

    Waar, Karola; Degener, John E; van Luyn, Marja J; Harmsen, Hermie J M

    2005-10-01

    Enterococcus faecalis and Enterococcus faecium are among the leading causes of hospital-acquired infections. Reliable and quick identification of E. faecalis and E. faecium is important for accurate treatment and understanding their role in the pathogenesis of infections. Fluorescent in situ hybridization (FISH) of whole bacterial cells with oligonucleotides targeted at the 16S rRNA molecule leads to a reduced time to identification. In clinical practice, FISH therefore can be used in situations in which quick identification is necessary for optimal treatment of the patient. Furthermore, the abundance, spatial distribution and bacterial cell morphology can be observed in situ. This report describes the design of two fluorescent-labelled oligonucleotides that, respectively, detect the 16S rRNA of E. faecalis and the 16S rRNA of E. faecium, Enterococcus hirae, Enterococcus mundtii, Enterococcus villorum and Enterococcus saccharolyticus. Different protocols for the application of these oligonucleotides with FISH in different clinical samples such as faeces or blood cultures are given. Enterococci in a biofilm attached to a biomaterial were also visualized. Embedding of the biomaterial preserved the morphology and therefore the architecture of the biofilm could be observed. The usefulness of other studies describing FISH for detection of enterococci is generally hampered by the fact that they have only focused on one material and one protocol to detect the enterococci. However, the results of this study show that the probes can be used both in the routine laboratory to detect and determine the enterococcal species in different clinical samples and in a research setting to enumerate and detect the enterococci in their physical environment.

  8. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    PubMed

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  9. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    PubMed

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach. PMID:25102381

  10. Chromosome-specific DNA Repeat Probes

    SciTech Connect

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  11. Fast-Track, One-Step E. coli Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification.

    PubMed

    Beyer, Antje; Pollok, Sibyll; Rudloff, Anne; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2016-09-01

    A timesaving and convenient method for bacterial detection based on one-step, one-tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one-pot synthesis, where N,N'-dimethylacrylamide/polyethyleneglycol(PEG1900 )-bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA-functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 10(1) Escherichia coli cells. PMID:27220309

  12. Fast-Track, One-Step E. coli Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification.

    PubMed

    Beyer, Antje; Pollok, Sibyll; Rudloff, Anne; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2016-09-01

    A timesaving and convenient method for bacterial detection based on one-step, one-tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one-pot synthesis, where N,N'-dimethylacrylamide/polyethyleneglycol(PEG1900 )-bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA-functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 10(1) Escherichia coli cells.

  13. Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode

    SciTech Connect

    Lu Wu; Wang Geng; Jin Yan; Yao Xin; Hu Jianqiang; Li Jinghong

    2006-12-25

    A new photoelectrochemical strategy for hairpin DNA hybridization was devised, in which TiO{sub 2} served as the anchor and signal transducer, and no label or redox couples were required. Once the hybridization between hairpin DNA probe and target DNA occurred, the photocurrent would decrease, utilizing which the sequence of the target DNA could be identified. The sequence specificity experiment showed that one or more mismatches of DNA bases could be discriminated. This photoelectrochemical method would be a potential tool in DNA hybridization detection due to its great advantages: label-free, high sensitivity, specific recognition, low cost, and easy fabrication.

  14. Control of DNA hybridization with photocleavable adducts.

    PubMed

    Ghosn, Bilal; Haselton, Frederick R; Gee, Kyle R; Monroe, W Todd

    2005-01-01

    Previous reports have shown that 1-(4,5-dimethoxy-2-nitrophenyl)ethyl ester (DMNPE) adducts coupled to DNA plasmids block transcription in vitro and in vivo until removed with light. In this report, we explore the use of DMNPE to control DNA hybridization. We found that DMNPE-caged oligonucleotides have changed spectrophotometric and electrophoretic properties that can be restored with light exposure. Caged oligonucleotides have slower electrophoretic mobility than noncaged oligonucleotides and caged oligonucleotides exposed to light. Effects of caging on hybridization were assessed in a fluorescence-based assay using a 20mer caged DNA oligonucleotide complementary to a 30mer molecular beacon. Fluorescence results indicate that hybridization is reduced and subsequently restored by light. Subsequent gel shift assays confirmed these results. Hybridization activity of caged oligonucleotides with an average of 14-16 DMNPE adducts per oligonucleotide was 14% of noncaged control oligonucleotides and after 365 nm photolysis, increased to nearly 80% of controls. Spectrophotometric characterization of caged oligonucleotides exposed to light and then filtered to remove the released DMNPE adducts indicates two to four attached cage groups remaining following photoactivation. These results suggest that this light-based technology can be used as a tool for the spatial and temporal regulation of hybridization-based DNA bioactivity.

  15. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA.

    PubMed Central

    Bamdad, C

    1998-01-01

    A novel method for DNA surface immobilization and a paradigm for the attachment of unmodified DNA of any length or sequence are described herein. The development of a DNA self-assembled monolayer (DNA-SAM) that incorporates a DNA-thiol into a monolayer of inert alkane thiolates is reported. This DNA-SAM specifically hybridized complementary oligonucleotides while resisting the nonspecific adsorption of noncomplementary DNA and irrelevant proteins. Duplex DNA, having a single-stranded "capture tail," specifically bound to the DNA-SAM if the sequence of the "tail" was complementary to DNA presented in the SAM. The sense strand of the hybridized duplex DNA could be covalently attached to the surface by an enzymatic ligation reaction (leaving the anti-sense strand dissociable). DNA-binding proteins specifically bound to these surfaces only if their cognate sites were present in the duplex DNA. PMID:9746541

  16. Characterization of denaturation and renaturation of DNA for DNA hybridization

    PubMed Central

    Wang, Xiaofang; Lim, Hyun Jeong; Son, Ahjeong

    2014-01-01

    Objectives The present study was designed to systematically characterize the denaturation and the renaturation of double stranded DNA (dsDNA), which is suitable for DNA hybridization. Methods A series of physical and chemical denaturation methods were implemented on well-defined 86-bp dsDNA fragment. The degree of each denaturation was measured and the most suitable denaturation method was determined. DNA renaturation tendency was also investigated for the suggested denaturation method. Results Heating, beads mill, and sonication bath did not show any denaturation for 30 minutes. However probe sonication fully denatured DNA in 5 minutes. 1 mol/L sodium hydroxide (alkaline treatment) and 60% dimethyl sulfoxide (DMSO) treatment fully denatured DNA in 2-5 minutes. Conclusions Among all the physical methods applied, the direct probe sonication was the most effective way to denature the DNA fragments. Among chemical methods, 60% DMSO was the most adequate denaturation method since it does not cause full renaturation during DNA hybridization. PMID:25234413

  17. Ten-atom silver cluster signaling and tempering DNA hybridization.

    PubMed

    Petty, Jeffrey T; Sergev, Orlin O; Kantor, Andrew G; Rankine, Ian J; Ganguly, Mainak; David, Frederic D; Wheeler, Sandra K; Wheeler, John F

    2015-05-19

    Silver clusters with ∼10 atoms are molecules, and specific species develop within DNA strands. These molecular metals have sparsely organized electronic states with distinctive visible and near-infrared spectra that vary with cluster size, oxidation, and shape. These small molecules also act as DNA adducts and coordinate with their DNA hosts. We investigated these characteristics using a specific cluster-DNA conjugate with the goal of developing a sensitive and selective biosensor. The silver cluster has a single violet absorption band (λ(max) = 400 nm), and its single-stranded DNA host has two domains that stabilize this cluster and hybridize with target oligonucleotides. These target analytes transform the weakly emissive violet cluster to a new chromophore with blue-green absorption (λ(max) = 490 nm) and strong green emission (λ(max) = 550 nm). Our studies consider the synthesis, cluster size, and DNA structure of the precursor violet cluster-DNA complex. This species preferentially forms with relatively low amounts of Ag(+), high concentrations of the oxidizing agent O2, and DNA strands with ≳20 nucleotides. The resulting aqueous and gaseous forms of this chromophore have 10 silvers that coalesce into a single cluster. This molecule is not only a chromophore but also an adduct that coordinates multiple nucleobases. Large-scale DNA conformational changes are manifested in a 20% smaller hydrodynamic radius and disrupted nucleobase stacking. Multidentate coordination also stabilizes the single-stranded DNA and thereby inhibits hybridization with target complements. These observations suggest that the silver cluster-DNA conjugate acts like a molecular beacon but is distinguished because the cluster chromophore not only sensitively signals target analytes but also stringently discriminates against analogous competing analytes.

  18. DNA-DNA hybridization evidence of the rapid rate of muroid rodent DNA evolution.

    PubMed

    Catzeflis, F M; Sheldon, F H; Ahlquist, J E; Sibley, C G

    1987-05-01

    Single-copy nuclear DNAs (scnDNAs) of eight species of arvicoline and six species of murine rodents were compared using DNA-DNA hybridization. The branching pattern derived from the DNA comparisons is congruent with the fossil evidence and supported by comparative biochemical, chromosomal, and morphological studies. The recently improved fossil record for these lineages provides seven approximate divergence dates, which were used to calibrate the DNA-hybridization data. The average rate of scnDNA divergence was estimated as 2.5%/Myr. This is approximately 10 times the rate in the hominoid primates. These results agree with previous reports of accelerated DNA evolution in muroid rodents and extend the DNA-DNA hybridization data set of Brownell.

  19. Degradation of DNA RNA Hybrids by Ribonuclease H and DNA Polymerases of Cellular and Viral Origin

    PubMed Central

    Keller, Walter; Crouch, Robert

    1972-01-01

    Ribonuclease H from human KB cells, chick embryos, calf thymus, avian myeloblastosis virus, and Rous associated virus specifically degrades the RNA of DNA·RNA hybrids, producing mono- and oligoribonucleotides terminated in 5′-phosphates. The cellular RNase H is an endonuclease, whereas the viral enzyme appears to be an exonuclease. Viral DNA polymerase and RNase H copurify through all separation steps. Therefore, RNase H activity is an intrinsic part of the viral DNA polymerase. DNA·RNA hybrids are also degraded by nucleases associated with cellular DNA polymerases and by exonuclease III. However, these nucleases differ from RNase H in their ability to degrade both strands of DNA·RNA hybrids. Images PMID:4343966

  20. Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone Sites with DRIP-Chip

    PubMed Central

    Lu, Phoebe Y. T.; Luo, Zongli; Hamza, Akil; Kobor, Michael S.; Stirling, Peter C.; Hieter, Philip

    2014-01-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  1. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip.

    PubMed

    Chan, Yujia A; Aristizabal, Maria J; Lu, Phoebe Y T; Luo, Zongli; Hamza, Akil; Kobor, Michael S; Stirling, Peter C; Hieter, Philip

    2014-04-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  2. Conformational selection and induced fit for RNA polymerase and RNA/DNA hybrid backtracked recognition

    PubMed Central

    Wu, Jian; Ye, Wei; Yang, Jingxu; Chen, Hai-Feng

    2015-01-01

    RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD) simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15, and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS) P-test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein. PMID:26594643

  3. Immunofluorescent characterization of DNA . RNA hybrids on polytene chromosomes of Trichosia pubescens (Diptera, sciaridae).

    PubMed

    Büsen, W; Amabis, J M; Leoncini, O; Stollar, B D; Lara, F J

    1982-01-01

    We have studied the distribution of DNA X RNA hybrids on polytene chromosomes with the aid of a goat antibody against DNA X RNA hybrids using the immunofluorescence technique. Fixed polytene chromosomes of the sciarid Trichosia pubescens (Diptera) show distinct, stage-specific labelling patterns throughout larval development. Controls for the staining procedure - including preincubation with hybrid-specific endoribonuclease H - prove that DNA X RNA hybrids are present on fixed chromosomes. They are revealed only under mild fixation conditions which do not efficiently immobilize all chromosomal proteins, indicating that some proteins have to be removed to make the antigens accessible to antibody. Certain fixation conditions may also cause local denaturation of chromosomal DNA, and some hybrids may possibly form during specimen preparation. After incorporation of radioactive uridine, a combination of phase contrast, fluorescent, and autoradiographic images of one and the same chromosomal preparation demonstrates that hybrid fluorescence is confined to transcriptionally active regions. Two puff classes can be distinguished. The first binds antibody and includes most RNA puffs and all DNA puffs so far studied; the second, comprising some RNA puffs, does not show bright fluorescence in spite of the fact that RNA synthesis is high as revealed by 3H-uridine incorporation. DNA X RNA hybrids are not found at DNA puff sites during the DNA amplification period; these sites contain detectable hybrids only when transcription is taking place. - Combination of the fluorescent technique with its excellent resolution and autoradiography should be helpful in studying detailed topological aspects of transcriptionally active chromosomal regions.

  4. Process of labeling specific chromosomes using recombinant repetitive DNA

    DOEpatents

    Moyzis, R.K.; Meyne, J.

    1988-02-12

    Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.

  5. How does RNase H recognize a DNA.RNA hybrid?

    PubMed

    Nakamura, H; Oda, Y; Iwai, S; Inoue, H; Ohtsuka, E; Kanaya, S; Kimura, S; Katsuda, C; Katayanagi, K; Morikawa, K

    1991-12-15

    The mechanism of RNase H substrate recognition is proposed from a model of a chemically modified DNA.RNA hybrid Escherichia coli RNase H complex. Site-directed mutagenesis of the enzyme and substrate titration observed by heteronuclear two-dimensional NMR spectra have been carried out. A model complex has been built, based on free structures of the enzyme and the substrate independently determined by x-ray crystallography and NMR distance geometry, respectively. In addition to steric and electrostatic complementarities between the molecular surfaces of the enzyme and the minor groove of the hybrid in the model, putative hydrogen bonds between the polar groups in the enzyme and 2'-oxygens of the RNA strand of the hybrid fix the hybrid close to the active site of the enzyme. The enzymatic activities of the mutant proteins and the changes in NMR spectra during the course of substrate titration are consistent with the present model. Moreover, the specific cleavage of the RNA strand in DNA.RNA hybrids can be explained as well as cleavage modes in modified heteroduplexes. A mechanism of enzymatic action is proposed.

  6. DNA Hybridization: Nonradioactive Labeling Now Available for the Laboratory.

    ERIC Educational Resources Information Center

    Freeman, Lenore Gardner

    1984-01-01

    The advantages of DNA hybridization procedures for classroom and clinical use can now be realized by the recent development of nonradioactive DNA labeling/detection procedures. These methods (which are described) can replace the use of isotopes in standard DNA hybridization procedures. (JN)

  7. Detection of sickle-cell mutation by electrophoresis of partial RNA:DNA hybrids following solution hybridization.

    PubMed

    Jones, F S; Grimberg, J I; Fischer, S G; Ford, J P

    1985-01-01

    We have developed a method in which partially single-stranded (ss) DNA molecules containing a defined region of duplex RNA:DNA are electrophoretically separated in agarose gels. The partial hybrids are formed by solution hybridization with a uniform length RNA probe complementary to part of the DNA sequence of interest. Following hybridization, the RNA/DNA mixture is fractionated by agarose gel electrophoresis at high temperature to minimize intrastrand base pairing which causes mobility heterogeneity. Not requiring the steps of DNA transfer from the gel to a solid support and subsequent probing, pre-electrophoretic hybridization allows the direct identification of single-copy fragments. Conditions for the detection of single-copy genes in human DNA digested with specific restriction endonucleases were developed and applied to the diagnosis of sickle-cell disease. This method should be applicable for the analysis of DNAs of high complexity where the presence of DNA polymorphisms and interspersed repeated DNA sequences often make impossible the creation of complete RNA:DNA hybrids.

  8. Capture Hybridization Analysis of DNA Targets.

    PubMed

    Sexton, Alec N; Machyna, Martin; Simon, Matthew D

    2016-01-01

    There are numerous recent cases where chromatin modifying complexes associate with long noncoding RNA (lncRNA), stoking interest in lncRNA genomic localization and associated proteins. Capture Hybridization Analysis of RNA Targets (CHART) uses complementary oligonucleotides to purify an RNA with its associated genomic DNA or proteins from formaldehyde cross-linked chromatin. Deep sequencing of the purified DNA fragments gives a comprehensive profile of the potential lncRNA biological targets in vivo. The combined identification of the genomic localization of RNA and its protein partners can directly inform hypotheses about RNA function, including recruitment of chromatin modifying complexes. Here, we provide a detailed protocol on how to design antisense capture oligos and perform CHART in tissue culture cells. PMID:27659977

  9. Proximity hybridization regulated DNA biogate for sensitive electrochemical immunoassay.

    PubMed

    Ren, Kewei; Wu, Jie; Zhang, Yue; Yan, Feng; Ju, Huangxian

    2014-08-01

    An electrochemical DNA biogate was designed for highly sensitive homogeneous electrochemical immunoassay by combining target-induced proximity hybridization with a mesoporous silica nanoprobe (MSN). The electroactive methylene blue (MB) was sealed in the inner pores of MSN with single-stranded DNA. In the presence of target protein and two DNA-labeled antibodies, the formed proximate complex could hybridize with the DNA strand to form a rigid double-stranded structure and thus open the biogate, which led to the release of MB entrapped in the MSN. The target protein-dependent amount of released MB could be conveniently monitored with a screen-printed carbon electrode. Moreover, the detachment process of MB could be further amplified with an in situ enzymatic recycling binding of the proximate complex with the single-stranded DNA. Using prostate-specific antigen as a model target, the proposed assay showed a wide detection range from 0.002 to 100 ng mL(-1) with a detection limit of 1.3 pg mL(-1). This strategy was simple and universal for various analytes with different affinity ligands. This method possessed great potential for convenient point-of-care testing and commercial application.

  10. Hybrid male sterility is caused by mitochondrial DNA deletion.

    PubMed

    Hayashida, Kenji; Kohno, Shigeru

    2009-07-01

    Although it is known that the hybrid male mouse is sterile just like any other animal's heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.

  11. Peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) assay for specific detection of Mycobacterium immunogenum and DNA-FISH assay for analysis of pseudomonads in metalworking fluids and sputum.

    PubMed

    Selvaraju, Suresh B; Kapoor, Renuka; Yadav, Jagjit S

    2008-01-01

    Specific and rapid detection and quantification of mycobacteria in contaminated metalworking fluid (MWF) are problematic due to complexity of the matrix and heavy background co-occurring microflora. Furthermore, cross-reactivity among neighboring species of Mycobacterium makes species differentiation difficult for this genus. Here, we report for the first time a species-specific peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) method for Mycobacterium immunogenum, a non-tuberculous Mycobacterium species prevalent in MWF and implicated in occupational lung disease hypersensitivity pneumonitis and pseudo-outbreaks. A novel species-specific 14-bp PNA probe was designed for M. immunogenum based on its 16S rRNA gene sequence and was validated for specificity, by testing against a panel of other phylogenetically closely related rapidly growing mycobacteria and representative species of gram-positive, gram-negative, and acid fast organisms. In addition, a DNA-FISH protocol was optimized for co-detection of Pseudomonas, the most predominantly co-occurring genus in contaminated MWF. Reliable quantification for both the test organisms was achieved at or above a cell density of 10(3)cellsml(-1), a recognized minimum limit for microscopic quantification. The mycobacterial PNA-FISH assay was successfully adapted to human sputum demonstrating its potential for clinical diagnostic applications in addition to industrial MWF monitoring, to assess MWF-associated exposures and pseudo-outbreaks.

  12. Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization

    NASA Astrophysics Data System (ADS)

    GuThese Authors Contributed Equally To This Study., Xuefan; Wu, Youshen; Zhang, Lingze; Liu, Yongchun; Li, Yan; Yan, Yongli; Wu, Daocheng

    2014-07-01

    To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV)-visible (vis) absorption spectra of the samples were recorded with a UV-2600 spectrophotometer. Fluorescence spectra and the MEF effect were recorded using a spectrophotofluorometer, and lifetimes were determined using a time-correlated single photon counting apparatus. The prepared HMNCs were stable in aqueous solutions and had an average diameter of 87 +/- 3.2 nm, with six to eight AuNPs around a single Fe3O4 nanoparticle. Fluorescein isothiocyanate (FITC) tagged DNA-HMNC conjugates exhibited a significant MEF effect and could accurately detect specific DNA sequences after DNA hybridization. This result indicates their various potential applications in sensors and biomedical fields.To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV

  13. Mammalian mitochondrial DNA replication intermediates are essentially duplex, but contain extensive tracts of RNA/DNA hybrid

    PubMed Central

    Pohjoismäki, Jaakko L. O.; Holmes, J. Bradley; Wood, Stuart R.; Yang, Ming-Yao; Yasukawa, Takehiro; Reyes, Aurelio; Laura, J. Bailey; Cluett, Tricia J.; Goffart, Steffi; Willcox, Smaranda; Rigby, Rachel E.; Jackson, Andrew P.; Spelbrink, Johannes N.; Griffith, Jack D.; Crouch, Robert J.; Jacobs, Howard T.

    2010-01-01

    We demonstrate, using transmission electron microscopy and immunopurification with an antibody specific for RNA/DNA hybrid, that intact mtDNA replication intermediates (mtRIs) are essentially duplex throughout their length, but contain extensive RNA tracts on one strand. However, the extent of preservation of RNA in such molecules is highly dependent on the preparative method used. These findings strongly support the strand-coupled model of mtDNA replication involving RNA incorporation throughout the lagging strand (RITOLS). PMID:20184890

  14. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    PubMed

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors.

  15. DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy.

    PubMed

    Papadopoulou, Evanthia; Bell, Steven E J

    2011-10-21

    DNA sequences attached to Au nanoparticles via thiol linkers stand up from the surface, giving preferential enhancement of the adenine ring breathing SERS band. Non-specific binding via the nucleobases reorients the DNA, reducing this effect. This change in intensity on reorientation was utilised for label-free detection of hybridization of a molecular beacon.

  16. Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization.

    PubMed

    Gu, Xuefan; Wu, Youshen; Zhang, Lingze; Liu, Yongchun; Li, Yan; Yan, Yongli; Wu, Daocheng

    2014-08-01

    To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV)-visible (vis) absorption spectra of the samples were recorded with a UV-2600 spectrophotometer. Fluorescence spectra and the MEF effect were recorded using a spectrophotofluorometer, and lifetimes were determined using a time-correlated single photon counting apparatus. The prepared HMNCs were stable in aqueous solutions and had an average diameter of 87 ± 3.2 nm, with six to eight AuNPs around a single Fe3O4 nanoparticle. Fluorescein isothiocyanate (FITC) tagged DNA-HMNC conjugates exhibited a significant MEF effect and could accurately detect specific DNA sequences after DNA hybridization. This result indicates their various potential applications in sensors and biomedical fields.

  17. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Thapa, Resham; Alur, Siddharth; Kim, Kyusang; Tong, Fei; Sharma, Yogesh; Kim, Moonil; Ahyi, Claude; Dai, Jing; Wook Hong, Jong; Bozack, Michael; Williams, John; Son, Ahjeong; Dabiran, Amir; Park, Minseo

    2012-06-01

    Label-free electrical detection of deoxyribonucleic acid (DNA) hybridization was demonstrated using an AlGaN/GaN high electron mobility transistor (HEMT) based transducer with a biofunctionalized gate. The HEMT DNA sensor employed the immobilization of amine-modified single strand DNA on the self-assembled monolayers of 11-mercaptoundecanoic acid. The sensor exhibited a substantial current drop upon introduction of complimentary DNA to the gate well, which is a clear indication of the hybridization. The application of 3 base-pair mismatched target DNA showed little change in output current characteristics of the transistor. Therefore, it can be concluded that our DNA sensor is highly specific to DNA sequences.

  18. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors

    NASA Astrophysics Data System (ADS)

    Star, Alexander; Tu, Eugene; Niemann, Joseph; Gabriel, Jean-Christophe P.; Joiner, C. Steve; Valcke, Christian

    2006-01-01

    We report carbon nanotube network field-effect transistors (NTNFETs) that function as selective detectors of DNA immobilization and hybridization. NTNFETs with immobilized synthetic oligonucleotides have been shown to specifically recognize target DNA sequences, including H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, responsible for hereditary hemochromatosis. The electronic responses of NTNFETs upon single-stranded DNA immobilization and subsequent DNA hybridization events were confirmed by using fluorescence-labeled oligonucleotides and then were further explored for label-free DNA detection at picomolar to micromolar concentrations. We have also observed a strong effect of DNA counterions on the electronic response, thus suggesting a charge-based mechanism of DNA detection using NTNFET devices. Implementation of label-free electronic detection assays using NTNFETs constitutes an important step toward low-cost, low-complexity, highly sensitive and accurate molecular diagnostics. hemochromatosis | SNP | biosensor

  19. Detection of DNA hybridizations using solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Balagurusamy, Venkat S. K.; Weinger, Paul; Ling, Xinsheng Sean

    2010-08-01

    We report an experimental study of using DNA translocation through solid-state nanopores to detect the sequential arrangement of two double-stranded 12-mer hybridization segments on a single-stranded DNA molecule. The sample DNA is a trimer molecule formed by hybridizing three single-stranded oligonucleotides. A polystyrene bead is attached to the end of the trimer DNA, providing a mechanism in slowing down the translocation and suppressing the thermal diffusion, thereby allowing the detection of short features of DNA by standard patch-clamp electronics. The electrical signature of the translocation of a trimer molecule through a nanopore has been identified successfully in the temporal traces of ionic current. The results reported here represent the first successful attempt in using a solid-state nanopore as an ionic scanning device in resolving individual hybridization segments (or 'probes') on a DNA molecule.

  20. Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization

    PubMed Central

    Wang, Jingjing; Morabito, Kenneth; Tang, Jay X.; Tripathi, Anubhav

    2013-01-01

    The separation of target nucleic acid sequences from biological samples has emerged as a significant process in today's diagnostics and detection strategies. In addition to the possible clinical applications, the fundamental understanding of target and sequence specific hybridization on surface modified magnetic beads is of high value. In this paper, we describe a novel microfluidic platform that utilizes a mobile magnetic field in static microfluidic channels, where single stranded DNA (ssDNA) molecules are isolated via nucleic acid hybridization. We first established efficient isolation of biotinylated capture probe (BP) using streptavidin-coated magnetic beads. Subsequently, we investigated the hybridization of target ssDNA with BP bound to beads and explained these hybridization kinetics using a dual-species kinetic model. The number of hybridized target ssDNA molecules was determined to be about 6.5 times less than that of BP on the bead surface, due to steric hindrance effects. The hybridization of target ssDNA with non-complementary BP bound to bead was also examined, and non-specific hybridization was found to be insignificant. Finally, we demonstrated highly efficient capture and isolation of target ssDNA in the presence of non-target ssDNA, where as low as 1% target ssDNA can be detected from mixture. The microfluidic method described in this paper is significantly relevant and is broadly applicable, especially towards point-of-care biological diagnostic platforms that require binding and separation of known target biomolecules, such as RNA, ssDNA, or protein. PMID:24404041

  1. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA

    SciTech Connect

    Zhang, Liang; Lu, Xingyu; Lu, Junyan; Liang, Haihua; Dai, Qing; Xu, Guo-Liang; Luo, Cheng; Jiang, Hualiang; He, Chuan

    2012-04-24

    Human thymine DNA glycosylase (hTDG) efficiently excises 5-carboxylcytosine (5caC), a key oxidation product of 5-methylcytosine in genomic DNA, in a recently discovered cytosine demethylation pathway. We present here the crystal structures of the hTDG catalytic domain in complex with duplex DNA containing either 5caC or a fluorinated analog. These structures, together with biochemical and computational analyses, reveal that 5caC is specifically recognized in the active site of hTDG, supporting the role of TDG in mammalian 5-methylcytosine demethylation.

  2. Discrimination of DNA hybridization using chemical force microscopy.

    PubMed Central

    Mazzola, L T; Frank, C W; Fodor, S P; Mosher, C; Lartius, R; Henderson, E

    1999-01-01

    Atomic force microscopy (AFM) can be used to probe the mechanics of molecular recognition between surfaces. In the application known as "chemical force" microscopy (CFM), a chemically modified AFM tip probes a surface through chemical recognition. When modified with a biological ligand or receptor, the AFM tip can discriminate between its biological binding partner and other molecules on a heterogeneous substrate. The strength of the interaction between the modified tip and the substrate is governed by the molecular affinity. We have used CFM to probe the interactions between short segments of single-strand DNA (oligonucleotides). First, a latex microparticle was modified with the sequence 3'-CAGTTCTACGATGGCAAGTC and epoxied to a standard AFM cantilever. This DNA-modified probe was then used to scan substrates containing the complementary sequence 5'-GTCAAGATGCTACCGTTCAG. These substrates consisted of micron-scale, patterned arrays of one or more distinct oligonucleotides. A strong friction interaction was measured between the modified tip and both elements of surface-bound DNA. Complementary oligonucleotides exhibited a stronger friction than the noncomplementary sequences within the patterned array. The friction force correlated with the measured strength of adhesion (rupture force) for the tip- and array-bound oligonucleotides. This result is consistent with the formation of a greater number of hydrogen bonds for the complementary sequence, suggesting that the friction arises from a sequence-specific interaction (hybridization) of the tip and surface DNA. PMID:10354420

  3. Detection of hemolytic Listeria monocytogenes by using DNA colony hybridization

    SciTech Connect

    Datta, A.R.; Wentz, B.A.; Hill, W.E.

    1987-09-01

    A fragment of about 500 base pairs of the beta-hemolysin gene from Listeria monocytogenes was used to screen different bacterial strains by DNA colony hybridization. The cells in the colonies were lysed by microwaves in the presence of sodium hydroxide. Of 52 different strains of Listeria species screened, only the DNA from beta-hemolytic (CAMP-positive) strains of L. monocytogenes hybridized with this probe.

  4. DNA/DNA in situ hybridization with enzyme linked probes

    SciTech Connect

    Grillo, S.; Mosher, M.; Charles, P.; Henry, S.; Taub, F.

    1987-05-01

    A non-radioactive in situ nucleic acid hybridization method which requires no antibodies, haptens, avidin or biotin intermediateries is presented. Horseradish peroxidase (HRP) labeled nucleic acid probes are hybridized in situ for 2 hours or less, followed by brief washing of hybridized cells and the direct detection of in situ hybrids with diaminobenzidine (DAB). Application of this method to the detection of Human Papilloma Virus (HPV) in human cells is shown.

  5. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9

    PubMed Central

    Rigby, Rachel E; Webb, Lauren M; Mackenzie, Karen J; Li, Yue; Leitch, Andrea; Reijns, Martin A M; Lundie, Rachel J; Revuelta, Ailsa; Davidson, Donald J; Diebold, Sandra; Modis, Yorgo; MacDonald, Andrew S; Jackson, Andrew P

    2014-01-01

    The sensing of nucleic acids by receptors of the innate immune system is a key component of antimicrobial immunity. RNA:DNA hybrids, as essential intracellular replication intermediates generated during infection, could therefore represent a class of previously uncharacterised pathogen-associated molecular patterns sensed by pattern recognition receptors. Here we establish that RNA:DNA hybrids containing viral-derived sequences efficiently induce pro-inflammatory cytokine and antiviral type I interferon production in dendritic cells. We demonstrate that MyD88-dependent signalling is essential for this cytokine response and identify TLR9 as a specific sensor of RNA:DNA hybrids. Hybrids therefore represent a novel molecular pattern sensed by the innate immune system and so could play an important role in host response to viruses and the pathogenesis of autoimmune disease. PMID:24514026

  6. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong; Maham, Aihui; Lin, Yuehe

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate due to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.

  7. Integration of rapid DNA hybridization and capillary zone electrophoresis using bidirectional isotachophoresis.

    PubMed

    Bahga, Supreet S; Han, Crystal M; Santiago, Juan G

    2013-01-01

    We present a method for rapid, sequence-specific detection of multiple DNA fragments by integrating isotachophoresis (ITP) based DNA hybridization and capillary zone electrophoresis (CZE) using bidirectional ITP. Our method leverages the high preconcentration ability of ITP to accelerate slow, second-order DNA hybridization kinetics, and the high resolving power of CZE to separate and identify reaction products. We demonstrate the speed and sensitivity of our assay by detecting 5 pM, 39 nt ssDNA target within 3 min, using a molecular beacon probe. We also demonstrate the feasibility of our assay for multiplexed detection of multiple-length ssDNA targets by simultaneously detecting 39 and 90 nt ssDNA targets.

  8. A sensitive and specific DNA probe for the oyster pathogen Haplosporidium nelsoni.

    PubMed

    Stokes, N A; Burreson, E M

    1995-01-01

    Haplosporidium nelsoni is a pathogen of the eastern oyster, Crassostrea virginica, along the middle Atlantic coast of the U.S. Genomic DNA was extracted from H. nelsoni plasmodia and small subunit (SSU) rDNA was amplified by PCR, cloned and sequenced. The sequence of H. nelsoni SSU rDNA was aligned with that of another haplosporidian, Minchinia teredinis, and with SSU rDNA data of C. virginica and various protists in GenBank. A 21-base oligonucleotide unique to H. nelsoni, designated MSX1347, was commercially synthesized and tested for sensitivity and specificity. In dot blot hybridizations the probe detected 100 pg of cloned H. nelsoni rDNA and the presence of H. nelsoni in 1 microgram of genomic DNA from an infected oyster. It did not hybridize with 1 microgram of genomic DNA from uninfected C. virginica or with cloned SSU rDNA of M. teredinis. The probe was further tested for specificity with in situ hybridizations on AFA-fixed, paraffin-embedded tissue sections. The probe hybridized well with H. nelsoni plasmodia and immature spores, but poorly with mature spores. The probe did not hybridize with oyster tissue, with other common oyster parasites such as P. marinus or Nematopsis sp., or with the haplosporidians Haplosporidium louisiana from mud crabs (Panopeus spp.), Haplosporidium costale from C. virginica or M. teredinis from shipworms (Teredo spp.).

  9. Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures.

    PubMed

    Song, Ping; Li, Min; Shen, Juwen; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Wang, Lihua; Shi, Jiye; Song, Shiping; Wang, Lianhui; Fan, Chunhai; Zuo, Xiaolei

    2016-08-16

    The fixed dynamic range of traditional biosensors limits their utility in several real applications. For example, viral load monitoring requires the dynamic range spans several orders of magnitude; whereas, monitoring of drugs requires extremely narrow dynamic range. To overcome this limitation, here, we devised tunable biosensing interface using allosteric DNA tetrahedral bioprobes to tune the dynamic range of DNA biosensors. Our strategy takes the advantage of the readily and flexible structure design and predictable geometric reconfiguration of DNA nanotechnology. We reconfigured the DNA tetrahedral bioprobes by inserting the effector sequence into the DNA tetrahedron, through which, the binding affinity of DNA tetrahedral bioprobes can be tuned. As a result, the detection limit of DNA biosensors can be programmably regulated. The dynamic range of DNA biosensors can be tuned (narrowed or extended) for up to 100-fold. Using the regulation of binding affinity, we realized the capture and release of biomolecules by tuning the binding behavior of DNA tetrahedral bioprobes. PMID:27435955

  10. Preparative in situ hybridization: Selection of chromosome region-specific libraries on mitotic chromosomes

    SciTech Connect

    Hozier, J.; Graham, R.; Westfall, T.; Davis, L. ); Siebert, P. )

    1994-02-01

    The authors have developed preparative in situ hybridization (Prep-ISH) of complex DNA populations to mitotic chromosomes as a means of generating chromosome region-specific DNA subpopulations. Prep-ISH is a combination of two cytogenetic techniques: in situ hybridization of DNA molecules to mitotic chromosomes and chromosome microdissection. Here, they present test cases demonstrating the feasibility of this approach on mouse and human genomes, using single nuclei, single chromosomes, or single chromosomal subregions to assess sensitivity, specificity, and representation of the Prep-ISH technique. Prep-ISH has a number of applications in studies of gene expression and genome organization, including efficient cytogenetic sorting of tissue-specific cDNAs and genomic DNA libraries. In addition, Prep-ISH is likely to dramatically reduce the number of candidate genes to aid in gene discovery efforts and to improve efficiency of developing transcription maps and YAC and cosmid contigs through defined cytogenetic regions. 34 refs., 4 figs.

  11. Biochemical construction and selection of hybrid plasmids containing specific segments of the Escherichia coli genome.

    PubMed Central

    Clarke, L; Carbon, J

    1975-01-01

    Using a poly(dA-dT) "connector" method, a population of annealed hybrid circular DNAs was constructed in vitro; each hybrid DNA circle containing one full-length molecule of poly(dT)-tailed DNA from E1 colicinogenic factor (Col E1) fragmented by EcoRI endonuclease annealed to any one of a collection of poly(dA)-tailed linear DNA fragments of the entire E. coli genome. This annealed, but unligated, hybrid DNA was used to transform several different auxotrophic mutants of E. coli, and by direct selection, bacterial clones were isolated which contained specific hybrid plasmids. In this manner, bacterial strains containing Col E1 hybrid plasmids carrying the entire tryptophan operon or the arabinsoe and leucine operons were isolated. The methods described should allow the molecular cloning of any portion of the E. coli genome by selection from a pool of DNA molecules containing at least several hundred different hybrids representing the entire bacterial genome. Images PMID:1105581

  12. Building a Phylogenetic Tree of the Human and Ape Superfamily Using DNA-DNA Hybridization Data

    ERIC Educational Resources Information Center

    Maier, Caroline Alexander

    2004-01-01

    The study describes the process of DNA-DNA hybridization and the history of its use by Sibley and Alquist in simple, straightforward, and interesting language that students easily understand to create their own phylogenetic tree of the hominoid superfamily. They calibrate the DNA clock and use it to estimate the divergence dates of the various…

  13. Electric-field assisted immobilization and hybridization of DNA oligomers on thin-film microchips.

    PubMed

    Fixe, F; Branz, H M; Louro, N; Chu, V; Prazeres, D M F; Conde, J P

    2005-10-01

    Single, square voltage pulses in the microsecond timescale result in selective 5'-end covalent bonding (immobilization) of thiolated single-stranded (ss) DNA probes to a modified silicon dioxide flat surface and in specific hybridization of ssDNA targets to the immobilized probe. Immobilization and hybridization rates using microsecond voltage pulses at or below 1 V are at least 10(8) times faster than in the passive control reactions performed without electric field (E), and can be achieved with at least three differently functionalized thin-film surfaces on plastic or glass substrates. The systematic study of the effect of DNA probe and target concentrations, of DNA probe and target length, and the application of asymmetric pulses on E-assisted DNA immobilization and hybridization showed that: (1) the rapidly rising edge of the pulse is most critical to the E-assisted processes, but the duration of the pulse is also important; (2) E-assisted immobilization and hybridization can be performed with micrometre-sized pixels, proving the potential for use on microelectronic length scales, and the applied voltage can be scaled down together with the electrode spacing to as low as 25 mV; and (3) longer DNA chains reduce the yield in the E-assisted immobilization and hybridization because the density of physisorbed single-stranded DNA is reduced. The results show that the E-induced reactions can be used as a general method in DNA microarrays to produce high-density DNA chips (E-immobilization) and speed the microarray-based analysis (E-hybridization). PMID:20817972

  14. The kinetics of force-dependent hybridization and strand-peeling of short DNA fragments

    NASA Astrophysics Data System (ADS)

    Yang, ZhouJie; Yuan, GuoHua; Zhai, WeiLi; Yan, Jie; Chen, Hu

    2016-08-01

    Deoxyribonucleic acid (DNA) carries the genetic information in all living organisms. It consists of two interwound single-stranded (ss) strands, forming a double-stranded (ds) DNA with a right-handed double-helical conformation. The two strands are held together by highly specific basepairing interactions and are further stabilized by stacking between adjacent basepairs. A transition from a dsDNA to two separated ssDNA is called melting and the reverse transition is called hybridization. Applying a tensile force to a dsDNA can result in a particular type of DNA melting, during which one ssDNA strand is peeled away from the other. In this work, we studied the kinetics of strand-peeling and hybridization of short DNA under tensile forces. Our results show that the force-dependent strand-peeling and hybridization can be described with a simple two-state model. Importantly, detailed analysis of the force-dependent transition rates revealed that the transition state consists of several basepairs dsDNA.

  15. DNA Polymer Brush Patterning through Photocontrollable Surface-Initiated DNA Hybridization Chain Reaction.

    PubMed

    Huang, Fujian; Zhou, Xiang; Yao, Dongbao; Xiao, Shiyan; Liang, Haojun

    2015-11-18

    The fabrication of DNA polymer brushes with spatial resolution onto a solid surface is a crucial step for biochip research and related applications, cell-free gene expression study, and even artificial cell fabrication. Here, for the first time, a DNA polymer brush patterning method is reported based on the photoactivation of an ortho-nitrobenzyl linker-embedded DNA hairpin structure and a subsequent surface-initiated DNA hybridization chain reaction (HCR). Inert DNA hairpins are exposed to ultraviolet light irradiation to generate DNA duplexes with two active sticky ends (toeholds) in a programmable manner. These activated DNA duplexes can initiate DNA HCR to generate multifunctional patterned DNA polymer brushes with complex geometrical shapes. Different multifunctional DNA polymer brush patterns can be fabricated on certain areas of the same solid surface using this method. Moreover, the patterned DNA brush surface can be used to capture target molecules in a desired manner.

  16. Simulation-Guided DNA Probe Design for Consistently Ultraspecific Hybridization

    PubMed Central

    Wang, J. Sherry; Zhang, David Yu

    2015-01-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches for analyzing nucleic acids. Thermodynamics-guided probe design and empirical optimization of reaction conditions have been used to enable discrimination of single nucleotide variants, but typically these approaches provide only an approximate 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 different target single nucleotide variants sequences showed between 200- and 3000-fold (median 890) higher binding affinity than their corresponding wildtype sequences. As a demonstration of the usefulness of this simulation-guided design approach we developed probes which, in combination with PCR amplification, we use to detect low concentrations of variant alleles (1%) in human genomic DNA. PMID:26100802

  17. Simulation-guided DNA probe design for consistently ultraspecific hybridization

    NASA Astrophysics Data System (ADS)

    Wang, Juexiao Sherry; Zhang, David Yu

    2015-07-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches to analysing nucleic acids. Thermodynamics-guided probe design and empirical optimization of the reaction conditions have been used to enable the discrimination of single-nucleotide variants, but typically these approaches provide only an approximately 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 sequences of different target single-nucleotide variants showed between a 200- and 3,000-fold (median 890) higher binding affinity than their corresponding wild-type sequences. As a demonstration of the usefulness of this simulation-guided design approach, we developed probes that, in combination with PCR amplification, detect low concentrations of variant alleles (1%) in human genomic DNA.

  18. DNA hybridization efficiency on concave surface nano-structure in hemispherical Janus nanocups.

    PubMed

    Kim, Hyonchol; Terazono, Hideyuki; Takei, Hiroyuki; Yasuda, Kenji

    2014-02-11

    We examined the effect of a concave structure on DNA hybridization efficiency using an inner surface of hemispherical Janus nanocups in the range from 140 to 800 nm. Target DNA was specifically immobilized onto the inner cup surface, hybridized with complementary DNA-attached 20 nm Au probes, and the number of the hybridized probes was counted by scanning electron microscopy. The hybridization density of the attached Au probes on 800 nm nanocups was 255 μm(-2), which was 0.57 times that on a flat surface, 449 μm(-2), and increased to 394 μm(-2) on a 140 nm cup, 0.88 times of a flat surface, as the cup size decreased. The local density of attached Au probes within the central 25% at the bottom of the 800 nm nanocups was 444 μm(-2), which was closer to that on a flat surface, and the tendency was the same for all sizes of cups, indicating that the size dependency of DNA hybridization efficiency on the concave structures were mostly affected by the lower efficiency of side wall hybridization.

  19. Cytogenetic analysis from DNA by comparative genomic hybridization.

    PubMed

    Tachdjian, G; Aboura, A; Lapierre, J M; Viguié, F

    2000-01-01

    Comparative genomic hybridization (CGH) is a modified in situ hybridization technique which allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. In CGH analysis, two differentially labelled genomic DNA (study and reference) are co-hybridized to normal metaphase spreads. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Since its development, CGH has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. CGH may also have a role in clinical cytogenetics for detection and identification of unbalanced chromosomal abnormalities.

  20. Highly improved specificity for hybridization-based microRNA detection by controlled surface dissociation.

    PubMed

    Yoon, Hye Ryeon; Lee, Jeong Min; Jung, Juyeon; Lee, Chang-Soo; Chung, Bong Hyun; Jung, Yongwon

    2014-01-01

    Poor specificity has been a lingering problem in many microRNA profiling methods, particularly surface hybridization-based methods such as microarrays. Here, we carefully investigated surface hybridization and dissociation processes of a number of sequentially similar microRNAs against nucleic acid capture probes. Single-base mismatched microRNAs were similarly hybridized to a complementary DNA capture probe and thereby poorly discriminated during conventional stringent hybridization. Interestingly, however, mismatched microRNAs showed significantly faster dissociation from the probe than the perfectly matched microRNA. Systematic analysis of various washing conditions clearly demonstrated that extremely high specificity can be obtained by releasing non-specific microRNAs from assay surfaces during a stringent and controlled dissociation step. For instance, compared with stringent hybridization, surface dissociation control provided up to 6-fold better specificity for Let-7a detection than for other Let-7 family microRNAs. In addition, a synthetically introduced single-base mismatch on miR206 was almost completely discriminated by optimized surface dissociation of captured microRNAs, while this mismatch was barely distinguished from target miR206 during stringent hybridization. Furthermore, a single dissociation condition was successfully used to simultaneously measure four different microRNAs with extremely high specificity using melting temperature-equalized capture probes. The present study on selective dissociation of surface bound microRNAs can be easily applied to various hybridization based detection methods for improved specificity.

  1. Development of a specific DNA probe and PCR for the detection of Mycoplasma bovis.

    PubMed

    Ghadersohi, A; Coelen, R J; Hirst, R G

    1997-05-01

    Mycoplasma bovis is responsible for several production diseases in cattle, including mastitis, arthritis, pneumonia, abortion and infertility. Current methodologies for detecting and identifying M. bovis are time consuming and difficult. Tests which rely on antigen or antibody detection have poor sensitivity and specificity. In this paper associated protocols for the development of a hybridization probe and PCR are described. A genomic library (SauIIIA digested) was prepared from M. bovis DNA (Colindale Reference Strain: NC10131:02) and cloned into pUC19. Colony hybridization, using a probe preparation made from purified M. bovis DNA, was used to identify colonies of interest. M. bovis DNA fragments were retrieved from recombinant plasmids by digestion with EcoRI and HindIII. This DNA was used to prepare randomly primed probes for dot blot hybridization analysis with immobilized DNA from M. bovis (two strains), M. dispar, M. agalactiae, M. bovigenitalium (two strains), M. ovipneumoniae, a Group 7 strain, M. arginini and bacteria belonging to different genera. Four probes were found to hybridize only with M. bovis and M. ovipneumoniae DNA, whereas one probe reacted with genomic DNA from only one of the two M. bovis strains. The level of sensitivity of the dot blot hybridization assay was 200 CFU (colony forming units)/mL. To enhance the sensitivity further, an M. bovis-specific PCR assay was developed. The primers were designed using sequences obtained from the probe DNA which discriminated M. bovis from all other Mycoplasma DNA tested. The minimum amount of target DNA that could be detected by the PCR assay was that isolated from 10-20 CFU/mL. The PCR assay was therefore 10 times more sensitive than dot blot hybridization.

  2. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yang, Tao; Jiang, Chen; Jiao, Kui

    2008-05-01

    This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO 2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl 2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO 2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10 -10 to 1.0 × 10 -6 mol/L, and a detection limit of 3.1 × 10 -11 mol/L.

  3. Selection of species-specific DNA probes which detect strain restriction polymorphism in four Bifidobacterium species.

    PubMed

    Mangin, I; Bourget, N; Simonet, J M; Decaris, B

    1995-01-01

    Randomly cloned fragments (in a size range 1 to 2.5 kb) of DNA from Bifidobacterium longum ATCC 15707, B. adolescentis CIP 64.59T, B. bifidum CIP 64.65 and B. animalis ATCC 25527 were used as hybridization probes to characterize strains of these species and distinguish them from closely related Bifidobacterium species. The fragments were screened for hybridization with native DNA from 41 different Bifidobacterium strains. For each species, a fragment hybridizing specifically with DNA from strains of the same species was isolated. Each fragment was then hybridized with restriction digests in order to study the genome polymorphism. In some of the tested B. longum strains including strain ATCC 15707, the species-specific fragment L6/45 hybridized with 2 fragments instead of one as expected. Sequence of the fragment revealed the presence of an ORF which had an amino acid sequence similar to the site-specific recombinases of lambda integrase family. Moreover, Southern analysis demonstrated that at least 3 copies of this fragment are present in the chromosome of B. longum ATCC 15707 and in some other B. longum strains. The species-specific fragment A6/17 of B. adolescentis hybridized with the same restriction fragment on the eight strains of this species tested. The B. bifidum-specific fragment hybridized with different DNA restriction fragments according to the strain. The restriction fragment an1 from B. animalis ATCC 25527 hybridized with the same restriction fragment from strain B. animalis ATCC 27536. However, these two strains could be differentiated by another restriction pattern. Thus, hybridization results highlight the genetic polymorphism which exists among Bifidobacterium strains of the same species.

  4. Hybridization of 2'-O-methyl and 2'-deoxy molecular beacons to RNA and DNA targets.

    PubMed

    Tsourkas, Andrew; Behlke, Mark A; Bao, Gang

    2002-12-01

    Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.

  5. Hybridization of 2'-O-methyl and 2'-deoxy molecular beacons to RNA and DNA targets.

    PubMed

    Tsourkas, Andrew; Behlke, Mark A; Bao, Gang

    2003-03-15

    Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.

  6. Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens.

    PubMed Central

    Farmer, J J; Jorgensen, J H; Grimont, P A; Akhurst, R J; Poinar, G O; Ageron, E; Pierce, G V; Smith, J A; Carter, G P; Wilson, K L

    1989-01-01

    An unusual isolate from a human leg wound was identified as Xenorhabdus luminescens. This finding led to the discovery or isolation of four additional strains, two from blood and two from wounds. Three of the five strains were from patients in San Antonio, Tex. Three strains were studied by DNA-DNA hybridization (S1 nuclease-trichloroacetic acid method) and were 77 to 100% related to each other, 34% related to the type strain of X. luminescens, 35 to 40% related to three of Grimont's other DNA hybridization groups of X. luminescens, and 9% related to the type strain of Xenorhabdus nematophilus. The new group of five strains was designated X. luminescens DNA hybridization group 5. All five strains were very inactive biochemically and fermented only D-glucose and D-mannose. The key reactions for recognizing this new organism are yellow pigment production, negative test for nitrate reduction to nitrite, weak bioluminescence (10 to 15 min of dark adaptation is required to see the weak light produced), and a unique hemolytic reaction on sheep blood agar plates incubated at 25 degrees C. Two case histories of strains from wounds are given; these suggest that X. luminescens DNA hybridization group 5 may be a new bacterial agent that causes wound infections. The two cases of wound infection, along with the two blood isolates, suggest that the new organism is clinically significant. Images PMID:2768446

  7. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  8. Kinetic mechanisms in morpholino-DNA surface hybridization.

    PubMed

    Liu, Yatao; Irving, Damion; Qiao, Wanqiong; Ge, Dongbiao; Levicky, Rastislav

    2011-08-01

    Morpholinos (MOs) are DNA analogues whose uncharged nature can bring fundamental advantages to surface hybridization technologies such as DNA microarrays, by using MOs as the immobilized, or "probe", species. Advancement of MO-based diagnostics, however, is challenged by limited understanding of the surface organization of MO molecules and of how this organization impacts hybridization kinetics and thermodynamics. The present study focuses on hybridization kinetics between monolayers of MO probes and DNA targets as a function of the instantaneous extent of hybridization (i.e., duplex coverage), total probe coverage, and ionic strength. Intriguingly, these experiments reveal distinct kinetic stages, none of which are consistent with Langmuir kinetics. The initial stage, in which duplex coverage remains relatively sparse, indicates confluence of two effects: blockage of target access to unhybridized probes by previously formed duplexes and deactivation of the solid support due to consumption of probe molecules. This interpretation is consistent with a surface organization in which unhybridized MO probes localize near the solid support, underneath a layer of MO-DNA duplexes. As duplex coverage builds, provided saturation is not reached first, the initial stage can transition to an unusual regime characterized by near independence of hybridization rate on duplex coverage, followed by a prolonged approach to equilibrium. The possible origins of these more complex latter behaviors are discussed. Comparison with published data for DNA and peptide nucleic acid (PNA) probes is carried out to look for universal trends in kinetics. This comparison reveals qualitative similarities when comparable surface organization of probes is expected. In addition, MO monolayers are found capable of a broad range of reactivities that span reported values for PNA and DNA probes. PMID:21699181

  9. Kinetic Mechanisms in Morpholino-DNA Surface Hybridization

    PubMed Central

    Liu, Yatao; Irving, Damion; Qiao, Wanqiong; Ge, Dongbiao

    2011-01-01

    Morpholinos (MOs) are DNA analogues whose uncharged nature can bring fundamental advantages to surface hybridization technologies such as DNA microarrays, by using MOs as the immobilized, or “probe”, species. Advancement of MO-based diagnostics, however, is challenged by limited understanding of the surface organization of MO molecules and of how this organization impacts hybridization kinetics and thermodynamics. The present study focuses on hybridization kinetics between monolayers of MO probes and DNA targets as a function of the instantaneous extent of hybridization (i.e. duplex coverage), total probe coverage, and ionic strength. Intriguingly, these experiments reveal distinct kinetic stages, none of which are consistent with Langmuir kinetics. The initial stage, in which duplex coverage remains relatively sparse, indicates confluence of two effects: blockage of target access to unhybridized probes by previously formed duplexes, and deactivation of the solid support due to consumption of probe molecules. This interpretation is consistent with a surface organization in which unhybridized MO probes localize near the solid support, underneath a layer of MO-DNA duplexes. As duplex coverage builds, provided saturation is not reached first, the initial stage can transition to an unusual regime characterized by near independence of hybridization rate on duplex coverage, followed by a prolonged approach to equilibrium. The possible origins of these more complex latter behaviors are discussed. Comparison with published data for DNA and peptide nucleic acid (PNA) probes is carried out to look for universal trends in kinetics. This comparison reveals qualitative similarities when comparable surface organization of probes is expected. In addition, MO monolayers are found capable of a broad range of reactivities that span reported values for PNA and DNA probes. PMID:21699181

  10. Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi–Goutières syndrome

    PubMed Central

    Lim, Yoong Wearn; Sanz, Lionel A; Xu, Xiaoqin; Hartono, Stella R; Chédin, Frédéric

    2015-01-01

    Aicardi–Goutières syndrome (AGS) is a severe childhood inflammatory disorder that shows clinical and genetic overlap with systemic lupus erythematosus (SLE). AGS is thought to arise from the accumulation of incompletely metabolized endogenous nucleic acid species owing to mutations in nucleic acid-degrading enzymes TREX1 (AGS1), RNase H2 (AGS2, 3 and 4), and SAMHD1 (AGS5). However, the identity and source of such immunogenic nucleic acid species remain undefined. Using genome-wide approaches, we show that fibroblasts from AGS patients with AGS1-5 mutations are burdened by excessive loads of RNA:DNA hybrids. Using MethylC-seq, we show that AGS fibroblasts display pronounced and global loss of DNA methylation and demonstrate that AGS-specific RNA:DNA hybrids often occur within DNA hypomethylated regions. Altogether, our data suggest that RNA:DNA hybrids may represent a common immunogenic form of nucleic acids in AGS and provide the first evidence of epigenetic perturbations in AGS, furthering the links between AGS and SLE. DOI: http://dx.doi.org/10.7554/eLife.08007.001 PMID:26182405

  11. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana

    PubMed Central

    Kawanabe, Takahiro; Ishikura, Sonoko; Miyaji, Naomi; Sasaki, Taku; Wu, Li Min; Itabashi, Etsuko; Takada, Satoko; Shimizu, Motoki; Takasaki-Yasuda, Takeshi; Osabe, Kenji; Peacock, W. James; Dennis, Elizabeth S.; Fujimoto, Ryo

    2016-01-01

    Hybrid vigor or heterosis refers to the superior performance of F1 hybrid plants over their parents. Heterosis is particularly important in the production systems of major crops. Recent studies have suggested that epigenetic regulation such as DNA methylation is involved in heterosis, but the molecular mechanism of heterosis is still unclear. To address the epigenetic contribution to heterosis in Arabidopsis thaliana, we used mutant genes that have roles in DNA methylation. Hybrids between C24 and Columbia-0 (Col) without RNA polymerase IV (Pol IV) or methyltransferase I (MET1) function did not reduce the level of biomass heterosis (as evaluated by rosette diameter). Hybrids with a mutation in decrease in dna methylation 1 (ddm1) showed a decreased heterosis level. Vegetative heterosis in the ddm1 mutant hybrid was reduced but not eliminated; a complete reduction could result if there was a change in methylation at all loci critical for generating the level of heterosis, whereas if only a proportion of the loci have methylation changes there may only be a partial reduction in heterosis. PMID:27791039

  12. Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets.

    PubMed

    Kuhn, Heiko; Demidov, Vadim V; Coull, James M; Fiandaca, Mark J; Gildea, Brian D; Frank-Kamenetskii, Maxim D

    2002-02-13

    Molecular beacons are sensitive fluorescent probes hybridizing selectively to designated DNA and RNA targets. They have recently become practical tools for quantitative real-time monitoring of single-stranded nucleic acids. Here, we comparatively study the performance of a variety of such probes, stemless and stem-containing DNA and PNA (peptide nucleic acid) beacons, in Tris-buffer solutions containing various concentrations of NaCl and MgCl(2). We demonstrate that different molecular beacons respond differently to the change of salt concentration, which could be attributed to the differences in their backbones and constructions. We have found that the stemless PNA beacon hybridizes rapidly to the complementary oligodeoxynucleotide and is less sensitive than the DNA beacons to the change of salt thus allowing effective detection of nucleic acid targets under various conditions. Though we found stemless DNA beacons improper for diagnostic purposes due to high background fluorescence, we believe that use of these DNA and similar RNA constructs in molecular-biophysical studies may be helpful for analysis of conformational flexibility of single-stranded nucleic acids. With the aid of PNA "openers", molecular beacons were employed for the detection of a chosen target sequence directly in double-stranded DNA (dsDNA). Conditions are found where the stemless PNA beacon strongly discriminates the complementary versus mismatched dsDNA targets. Together with the insensitivity of PNA beacons to the presence of salt and DNA-binding/processing proteins, the latter results demonstrate the potential of these probes as robust tools for recognition of specific sequences within dsDNA without denaturation and deproteinization of duplex DNA.

  13. ESI-MS Investigation of an Equilibrium between a Bimolecular Quadruplex DNA and a Duplex DNA/RNA Hybrid

    NASA Astrophysics Data System (ADS)

    Birrento, Monica L.; Bryan, Tracy M.; Samosorn, Siritron; Beck, Jennifer L.

    2015-07-01

    Electrospray ionization mass spectrometry (ESI-MS) conditions were optimized for simultaneous observation of a bimolecular qDNA and a Watson-Crick base-paired duplex DNA/RNA hybrid. The DNA sequence used was telomeric DNA, and the RNA contained the template for telomerase-mediated telomeric DNA synthesis. Addition of RNA to the quadruplex DNA (qDNA) resulted in formation of the duplex DNA/RNA hybrid. Melting profiles obtained using circular dichroism spectroscopy confirmed that the DNA/RNA hybrid exhibited greater thermal stability than the bimolecular qDNA in solution. Binding of a 13-substituted berberine ( 1) derivative to the bimolecular qDNA stabilized its structure as evidenced by an increase in its stability in the mass spectrometer, and an increase in its circular dichroism (CD) melting temperature of 10°C. The DNA/RNA hybrid did not bind the ligand extensively and its thermal stability was unchanged in the presence of ( 1). The qDNA-ligand complex resisted unfolding in the presence of excess RNA, limiting the formation of the DNA/RNA hybrid. Previously, it has been proposed that DNA secondary structures, such as qDNA, may be involved in the telomerase mechanism. DNA/RNA hybrid structures occur at the active site of telomerase. The results presented in the current work show that if telomeric DNA was folded into a qDNA structure, it is possible for a DNA/RNA hybrid to form as is required during template alignment. The discrimination of ligand ( 1) for binding to the bimolecular qDNA over the DNA/RNA hybrid positions it as a useful compound for probing the role(s), if any, of antiparallel qDNA in the telomerase mechanism.

  14. [Graft hybridization and the specificity of heredity in fruit trees].

    PubMed

    Liu, Yong-Sheng; Li, Bao-Yin; Li, Gui-Rong; Zhou, Xiu-Mei

    2004-09-01

    Emphatically discusses the relationship between graft hybridization and the specificity of heredity in fruit trees on the basis of introducing the recent achievements in plant graft hybridization. We propose that genetic materials in rootstock being translocated and integrated into the genome of the germ cells and embryonic cells in scion are the main reasons why the majority of the hybrid seedlings have wild properties and the heredity of fruit trees violate Mendel's laws of heredity. The potential of graft hybridization in fruit breeding are also discussed.

  15. Coarse-grained DNA modeling: Hybridization and ionic effects

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel M.

    Deoxyribonucleic acid (DNA) is a biopolymer of enormous significance in living systems. The utility of DNA in such systems is derived from the programmable nature of DNA and its unique mechanical properties. Recently, material scientists have harnessed these properties in order to create systems that spontaneous self-assemble on the nanoscale. Both biologists and material scientists are hindered by an incomplete understanding of the physical interactions that together govern DNA's behavior. Computer simulations, especially those at the coarse-grained (CG) level, can potentially complete this understanding by resolving details indiscernible with current experimental techniques. In this thesis, we advance the state-of-the-art of DNA CG simulations by first reviewing the relevant theory and the evolution of CG DNA models since their inception. Then we present 3SPN.2, an improved CG model for DNA that should provide new insights into biological and nanotechnological systems which incorporate DNA. We perform forward flux sampling simulations in order to examine the effect of sequence, oligomer length, and ionic strength on DNA oligomer hybridization. Due to the limitations inherent in continuum treatments of electrostatic interactions in biological systems, we generate a CG model of biological ions for use with 3SPN.2 and other CG models. Lastly, we illustrate the potential of 3SPN.2 and CG ions by using the models in simulations of viral capsid packaging experiments. The models and results described in this thesis will be useful in future modeling efforts that seek to identify the fundamental physics that govern behavior such as nucleosome positioning, DNA hybridization, and DNA nanoassembly.

  16. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-10-21

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.

  17. Highly sensitive electrochemical biosensor based on nonlinear hybridization chain reaction for DNA detection.

    PubMed

    Jia, Liping; Shi, Shanshan; Ma, Rongna; Jia, Wenli; Wang, Huaisheng

    2016-06-15

    In the present work we demonstrated an ultrasensitive detection platform for specific DNA based on nonlinear hybridization chain reaction (HCR) by triggering chain-branching growth of DNA dendrimers. HCR was initiated by target DNA (tDNA) and finally formed dendritic structure by self-assembly. The electrochemical signal was drastically enhanced by capturing multiple catalytic peroxidase with high-ordered growth. Electrochemical signals were obtained by measuring the reduction current of oxidized 3, 3', 5, 5'-tetramethylbenzidine sulfate (TMB), which was generated by HRP in the presence of H2O2. This method exhibited ultrahigh sensitivity to tDNA with detection limit of 0.4 fM. Furthermore, the biosensor was also capable of discriminating single-nucleotide difference among concomitant DNA sequences.

  18. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  19. Identification of Lotus rhizobia by direct DNA hybridization of crushed root nodules

    SciTech Connect

    Cooper, J.E.; Bjourson, A.J.; Thompson, J.K.

    1987-07-01

    Hybridization of crushed Lotus pedunculatus root nodules with /sup 32/P-labeled total genomic DNA probes was used to identify Rhizobium loti and Bradyrhizobium sp. (Lotus rhizobia). Probes always hybridized with homologous target DNA and frequency with DNAs of other strains from the same genus. Intergeneric hybridization did not occur. Results were comparable to those from colony hybridization.

  20. Gelatin methacrylate (GelMA) mediated electrochemical DNA biosensor for DNA hybridization.

    PubMed

    Topkaya, Seda Nur

    2015-02-15

    In this study, an electrochemical biosensor system for the detection of DNA hybridization by using gelatin methacrylate (GelMA) modified electrodes was developed. Electrochemical behavior of GelMA modified Pencil Graphite Electrode (PGE) that serve as a functional platform was investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) and compared with those of the bare PGE. Hybridization was achieved in solution phase and guanine oxidation signal changes were evaluated. The decrease in the guanine oxidation peak currents at around +1.0 V was used as an indicator for the DNA hybridization. Also, more interestingly GelMA intrinsic oxidation peaks at around +0.7 V changed substantially by immobilization of different oligonucleotides such as probe, hybrid and control sequences to the electrode surface. It is the first study of using GelMA as a part of an electrochemical biosensor system. The results are very promising in terms of using GelMA as a new DNA hybridization indicator. Additionally, GelMA modified electrodes could be useful for detecting ultra low quantity of oligonucleotides by providing mechanical support to the bio-recognition layer. The detection limit of this method is at present 10(-12)mol. Signal suppressions were increased from 50% to 93% for hybrid with using GelMA when it was compared to bare electrode which facilitates the hybridization detection.

  1. [Fluorescence in situ hybridization with DNA probes derived from individual chromosomes and chromosome regions].

    PubMed

    Bogomolov, A G; Karamysheva, T V; Rubtsov, N B

    2014-01-01

    A significant part of the eukaryotic genomes consists of repetitive DNA, which can form large clusters or distributed along euchromatic chromosome regions. Repeats located in chromosomal regions make a problem in analysis and identification of the chromosomal material with fluorescence in situ hybridization (FISH). In most cases, the identification of chromosome regions using FISH requires detection of the signal produced with unique sequences. The feasibility, advantages and disadvantages of traditional methods of suppression of repetitive DNA hybridization, methods of repeats-free probe construction and methods of chromosome-specific DNA sequences visualization using image processing of multicolor FISH results are considered in the paper. The efficiency of different techniques for DNA probe generation, different FISH protocols, and image processing of obtained microscopic images depends on the genomic size and structure of analyzing species. This problem was discussed and different approaches were considered for the analysis of the species with very large genome, rare species and species which specimens are too small in size to obtain the amount of genomic and Cot-1 DNA required for suppression of repetitive DNA hybridization.

  2. Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype.

    PubMed Central

    Martell, M; Le Gall, I; Millasseau, P; Dausset, J; Cohen, D

    1988-01-01

    Comparison of two different HLA-DQ beta gene sequences from two DR4 individuals, probably corresponding to DQw3.2 (DQR4) and DQw3.1 (DQR5) specificities, has shown several nucleotide variations. Eight oligonucleotides (24 bases long), derived from these polymorphic areas, have been synthesized. Each oligonucleotide was hybridized to BamHI-digested DNA samples from eight families with HLA-DR4 individuals. Four polymorphic BamHI fragments were detected. Two of eight oligonucleotides gave a single signal (8.9 kilobases) on DQw3.2-positive haplotypes. We used one of these oligonucleotides in a genomic DNA dot hybridization and detected a hybridization signal only in DQw3.2-positive individuals. A very simple test like this allows the screening of a large population sample within a very short period. Images PMID:2895927

  3. Hybridization of genomic DNA to microarrays: a challenge for the analysis of environmental samples.

    PubMed

    Avarre, Jean-Christophe; de Lajudie, Philippe; Béna, Gilles

    2007-05-01

    The use of DNA microarrays for detection and identification of bacteria and genes of interest from various environments (e.g. soil, sediment, water column...) is a major challenge for microbiologists working on functional diversity. So far, most of the genomic methods that have been described rely on the use of taxonomic markers (such as 16S rRNA) that can be easily amplified by PCR prior to hybridization on microarrays. However, taxonomical markers are not always informative on the functions present in these bacteria. Moreover, genes for which sequence database is limited or that lack any conserved regions will be difficult to amplify and thus to detect in unknown samples. Furthermore, PCR amplification often introduces biases that lead to inaccurate analysis of microbial communities. An alternative solution to overcome these strong limitations is to use genomic DNA (gDNA) as target for hybridisation, without prior PCR amplification. Though hybridization of gDNA is already used for comparative genome hybridization or sequencing by hybridization, yet to the high cost of tiling strategies and important data filtering, its adaptation for use in environmental research poses great challenges in terms of specificity, sensitivity and reproducibility of hybridization. Considering the very faint number of publications that have described hybridization of gDNA to microarrays for environmental applications, we confront in this review the different approaches that have been developed so far, and propose alternative strategies that may contribute to improve the development of microarrays for studying the microbial genetic structure and composition of samples of high environmental and ecological value.

  4. A strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease.

    PubMed

    Chen, Jinghua; Zhang, Jing; Yang, Huanghao; Fu, Fengfu; Chen, Guonan

    2010-09-15

    A new strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease and using quantum dots as reporter was reported in this paper. The biosensor was fabricated by immobilizing a capture hairpin probe, thiolated single strand DNA labeled with biotin group, on a gold electrode. BfuCI nuclease, which is able to specifically cleave only double strand DNA but not single strand DNA, was used to reduce background current and improve the sensitivity. We demonstrated that the capture hairpin probe can be cleaved by BfuCI nuclease in the absence of target DNA, but cannot be cleaved in the presence of target DNA. The difference before and after enzymatic cleavage was then monitored by electrochemical method after the quantum dots were dissolved from the hybrids. Our results suggested that the usage of BfuCI nuclease obviously improved the sensitivity and selectivity of the biosensor. We successfully applied this method to the sequence-selective discrimination between perfectly matched and mismatched target DNA including a single-base mismatched target DNA, and detected as low as 3.3 × 10(-14) M of complementary target DNA. Furthermore, our above strategy was also verified with fluorescent method by designing a fluorescent molecular beacon (MB), which combined the capture hairpin probe and a pair of fluorophore (TAMRA) and quencher (DABCYL). The fluorescent results are consistent with that of electroanalysis, further indicating that the proposed new strategy indeed works as we expected.

  5. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  6. The intrinsic role of nanoconfinement in chemical equilibrium: evidence from DNA hybridization.

    PubMed

    Rubinovich, Leonid; Polak, Micha

    2013-05-01

    Recently we predicted that when a reaction involving a small number of molecules occurs in a nanometric-scale domain entirely segregated from the surrounding media, the nanoconfinement can shift the position of equilibrium toward products via reactant-product reduced mixing. In this Letter, we demonstrate how most-recently reported single-molecule fluorescence measurements of partial hybridization of ssDNA confined within nanofabricated chambers provide the first experimental confirmation of this entropic nanoconfinement effect. Thus, focusing separately on each occupancy-specific equilibrium constant, quantitatively reveals extra stabilization of the product upon decreasing the chamber occupancy or size. Namely, the DNA hybridization under nanoconfined conditions is significantly favored over the identical reaction occurring in bulk media with the same reactant concentrations. This effect, now directly verified for DNA, can be relevant to actual biological processes, as well as to diverse reactions occurring within molecular capsules, nanotubes, and other functional nanospaces.

  7. Carbon nano-strings as reporters in lateral flow devices for DNA sensing by hybridization.

    PubMed

    Kalogianni, Despina P; Boutsika, Lemonia M; Kouremenou, Panagiota G; Christopoulos, Theodore K; Ioannou, Penelope C

    2011-05-01

    Presently, there is a growing interest in the development of lateral flow devices for nucleic acid analysis that enable visual detection of the target sequence (analyte) while eliminating several steps required for pipetting, incubation, and washing out the excess of reactants. In this paper, we present, for the first time, lateral flow tests exploiting oligonucleotide-functionalized and antibody-functionalized carbon nanoparticles (carbon nano-strings, CBNS) as reporters that enable confirmation of the target DNA sequence by hybridization. The CBNS reporters were applied to (a) the detection of PCR products and (b) visual genotyping of single nucleotide polymorphisms in human genomic DNA. Biotinylated PCR product was hybridized with a dA-tailed probe. In one assay configuration, the hybrid is captured at the test zone of the strip by immobilized streptavidin and detected by (dT)(30)-CBNS. In a second configuration, the hybrids are captured from immobilized (dA) strands and detected by antibiotin-CBNS. As low as 2.5 fmol of amplified DNA can be detected. For visual genotyping, allele-specific primers with a 5' oligo(dA) segment are extended by DNA polymerase with a concomitant incorporation of biotin moieties. Extension products are detected either by (dT)(30)-CBNS or by antibiotin-CBNS. Only three cycles of extension reaction are sufficient for detection. No purification of the PCR products or the extension product is required.

  8. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  9. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  10. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila.

    PubMed

    Ferree, Patrick M; Barbash, Daniel A

    2009-10-01

    Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal

  11. DNA breakage detection-fluorescence in situ hybridization in buccal cells

    PubMed Central

    Cortés-Gutiérrez, E.I.; Dávila-Rodríguez, M.I.; Fernández, J.L.; López-Fernández, C.; Gosálvez, J.

    2012-01-01

    DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) is a recently developed technique that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The present investigation was conducted to adapt the methodology of DBD-FISH to the visualization and evaluation of DNA damage in buccal epithelial cells. DBD-FISH revealed that DNA damage increased significantly according to H2O2 concentration (r2=0.91). In conclusion, the DBD-FISH technique is easy to apply in buccal cells and provides prompt results that are easy to interpret. Future studies are needed to investigate the potential applicability of a buccal cell DBD-FISH model to human biomonitoring and nutritional work. PMID:23361245

  12. Label-free detection of DNA hybridization at a liquid|liquid interface.

    PubMed

    Vagin, Mikhail Yu; Trashin, Stanislav A; Karyakin, Arkady A; Mascini, Marco

    2008-02-15

    A novel electrochemical approach for label-free detection of DNA primary sequence has been proposed. The flow of nonelectroactive ions across a liquid|liquid interface was used as an electrochemical probe for detection of DNA hybridization. Disposable graphite screen-printed electrodes shielded with a thin layer of inert polymer plasticized with water-immiscible polar organic solvent were modified by probe oligonucleotide and used as a DNA sensor. The specific DNA coupling has been detected with impedance spectroscopy by decrease of ion-transfer resistance. The detection limit was of 10-8 M of target oligonucleotide. The reported sensor was suitable for discrimination of a single mismatch oligonucleotide from the full complementary one. The reported DNA sensor was advantageous over known physicochemical approaches, providing the most significant changes in the measured parameters.

  13. Impedimetric detection for DNA hybridization within microfluidic biochips.

    PubMed

    Lingerfelt, Louise; Karlinsey, James; Landers, James; Guiseppi-Elie, Anthony

    2007-01-01

    A fully integrated biochip for the performance of microfluidic-based DNA bioassays is presented. A microlithographically fabricated circumferential interdigitated electrode array of 1- to 5-microm critical line and space dimensions, with associated large area counterelectrode (1000 x WE) and reference electrode (Ag/AgCl), has been developed as a four-electrode system for the electrochemical detection of DNA hybridization using any of the techniques of amperometry, voltammetry, potentiometry, and impedimetry. This is presented as an alternative to optical detection with an emphasis on label-free impedimetric detection of hybridization. A micro total analysis system (microTAS) is presented, using fluidic channels to connect integrated reaction domains with downstream electrochemical detection. This is accomplished by bonding a patterned poly(dimethylsiloxane) (PDMS) substrate to the biochip or by adhesive bonding of the chip to channels fabricated within glass and plastic microfluidic cards, adding increased functionality to the device.

  14. Direct immobilization and hybridization of DNA on group III nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Jindal, Vibhu; Shahedipour-Sandvik, Fatemeh; Bergkvist, Magnus; Cady, Nathaniel C.

    2009-03-01

    A key concern for group III-nitride high electron mobility transistor (HEMT) biosensors is the anchoring of specific capture molecules onto the gate surface. To this end, a direct immobilization strategy was developed to attach single-stranded DNA (ssDNA) to AlGaN surfaces using simple printing techniques without the need for cross-linking agents or complex surface pre-functionalization procedures. Immobilized DNA molecules were stably attached to the AlGaN surfaces and were able to withstand a range of pH and ionic strength conditions. The biological activity of surface-immobilized probe DNA was also retained, as demonstrated by sequence-specific hybridization experiments. Probe hybridization with target ssDNA could be detected by PicoGreen fluorescent dye labeling with a minimum detection limit of 2 nM. These experiments demonstrate a simple and effective immobilization approach for attaching nucleic acids to AlGaN surfaces which can further be used for the development of HEMT-based DNA biosensors.

  15. Antibody specific for a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-07-11

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  16. Localization of cytomegalovirus DNA in plastic-embedded sections by in situ hybridization. A methodologic study.

    PubMed Central

    Cao, M.; Beckstead, J. H.

    1989-01-01

    The use of in situ hybridization for the identification of specific nucleic acid sequences in tissue sections has the potential for broad application in pathology. Although this technique has been successfully applied to routine paraffin sections, there have been few studies of the application of in situ hybridization to plastic-embedded tissue sections. The authors adapted techniques developed for paraffin sections to take advantage of the potential for improved morphology and more precise localization inherent in the plastic sections. A commercially available biotinylated DNA probe specific for the cytomegalovirus to develop a practical method for detection of nucleic acid sequences in plastic-embedded tissues was used. Using plastic sections, cytomegalovirus DNA sequences could readily be identified with precise localization of the virus and superb histology. Images Figure 2 Figure 3 Figure 1 Figure 4 PMID:2537020

  17. Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes.

    PubMed

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-02-07

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry.

  18. Energy storage specification requirements for hybrid-electric vehicle

    SciTech Connect

    Burke, A.F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide ``primary energy`` ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W{center_dot}h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  19. Hybrid Pathogen DNA Detector:Users? Manual v1.5

    SciTech Connect

    Schikora, B; Hietala, S; Shi, L; Lee, L; Skowronski, E; Ardans, A

    2004-01-12

    The Hybrid Unit uses an advanced fluidic design to move very small reagent samples through many unit operations to complete complex molecular biology experiments. The primary use of this machine is to analyze a small liquid sample for the highly specific presence of select agents known to be used in bio-warfare. The Hybrid Unit is coupled with a Luminex bead detection unit for the multiplexing of many assays in one tube. Because of this, multiple controls can be included in each run to avoid false positives. The built-in flow through PCR unit amplifies specific DNA signatures and increases sensitivity, thereby limiting exposure of handlers to highly concentrated (and potentially hazardous, spore containing) sample volumes. The reproducible precision of the Hybrid Unit also gives confidence when a signal is given that detects an agent in a given sample.

  20. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors.

  1. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. PMID:27612755

  2. Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus

    NASA Astrophysics Data System (ADS)

    Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.

    2014-09-01

    An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.

  3. Dual enzyme electrochemical coding for detecting DNA hybridization.

    PubMed

    Wang, Joseph; Kawde, Abdel-Nasser; Musameh, Mustafa; Rivas, Gustavo

    2002-10-01

    Enzyme-based hybridization assays for the simultaneous electrochemical measurements of two DNA targets are described. Two encoding enzymes, alkaline phosphatase and beta-galactosidase, are used to differentiate the signals of two DNA targets in connection to chronopotentiometric measurements of their electroactive phenol and alpha-naphthol products. These products yield well-defined and resolved peaks at +0.31 V (alpha-naphthol) and +0.63 V (phenol) at the graphite working electrode (vs. Ag/AgCl reference). The position and size of these peaks reflect the identity and level of the corresponding target. The dual target detection capability is coupled to the amplification feature of enzyme tags (to yield fmol detection limits) and with an efficient magnetic removal of non-hybridized nucleic acids. Proper attention is given to the choice of the substrates (for attaining well resolved peaks), to the activity of the enzymes (for obtaining similar sensitivities), and to the selection of the enzymes (for minimizing cross interferences). The new bioassay is illustrated for the simultaneous detection of two DNA sequences related to the BCRA1 breast-cancer gene in a single sample in connection to magnetic beads bearing the corresponding oligonucleotide probes. Prospects for electrochemical coding of multiple DNA targets are discussed.

  4. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    PubMed

    Long, Hong; Chen, Chunli; Wang, Bing; Feng, Yanni

    2015-01-01

    The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs) in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins. PMID:25723542

  5. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    PubMed

    Long, Hong; Chen, Chunli; Wang, Bing; Feng, Yanni

    2015-01-01

    The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs) in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins.

  6. Effect of oligonucleotide probes substituted by deoxyinosines on the specificity of SNP detection on the DNA microarray.

    PubMed

    Qian, Xiaoting; Pu, Dan; Liu, Bicheng; Xiao, Pengfeng

    2015-01-01

    One of the main factors that can affect the quality of microarray results is the microarray hybridization specificity. The key factor that affects hybridization specificity is the design of the probes. In this paper, we described a novel oligonucleotide probe containing deoxyinosines aimed at improving DNA hybridization specificity. We compared different probes to determine the distance between deoxyinosine base and SNPs site and the number of deoxyinosine bases. The new probe sequences contained two set of deoxyinosines (each set had two deoxyinosines), in which the interval between SNP site and each set of deoxyinosines was two bases. The new probes could obtain the highest hybridization specificity. The experimental results showed that probes containing deoxyinosines hybridized effectively to the perfectly matched target and improved the hybridization specificity of DNA microarray. By including a simple washing step after hybridization, these probes could distinguish matched targets from single-base-mismatched sequences perfectly. For the probes containing deoxyinosines, the fluorescence intensity of a match sequence was more than eight times stronger than that of a mismatch. However, the intensity ratio was only 1.3 times or less for the probes without deoxyinosines. Finally, using hybridization of the PCR product microarrays, we successfully genotyped SNP of 140 samples using these new labeled probes. Our results show that this is a useful new strategy for modifying oligonucleotide probes for use in DNA microarray analysis.

  7. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  8. Hydroxylamine-amplified gold nanoparticles for the homogeneous detection of sequence-specific DNA.

    PubMed

    Fan, Aiping; Cai, Sheng; Cao, Zhijuan; Lau, Choiwan; Lu, Jianzhong

    2010-06-01

    Herein, we report the development of a simple, sensitive, inexpensive, and homogeneous detection method for the analysis of DNA hybridization based on the optical properties of hydroxylamine-amplified gold nanoparticles (Au NPs) in solution phase. The assay relies on a sandwich-type DNA hybridization in which DNA targets are first hybridized with capture DNA probes immobilized on the surface of magnetic beads and then sandwiched with Au NPs modified with biotinylated reporter DNA. Au NPs, after being anchored on the magnetic beads, are then dispersed in solution by the dehybridization and enlarged by using a mixture of HAuCl(4) and NH(2)OH. The Au NP growth signal which is used for the quantitative analysis of sequence-specific DNA can be easily monitored by the naked eye directly or an UV-vis spectrophotometer. Surface plasmonic signature of the enlarged Au NPs and the kinetics of the Au NP growth in the homogenous phase containing of HAuCl(4) and NH(2)OH have also been studied. As a result, such a homogeneous assay allows the detection of 30-base DNA targets down to the 100 amol level, which offers great promise for facilitating sensitive detection of other biorecognition events.

  9. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  10. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp × topmouth culter.

    PubMed

    He, Weiguo; Qin, Qinbo; Liu, Shaojun; Li, Tangluo; Wang, Jing; Xiao, Jun; Xie, Lihua; Zhang, Chun; Liu, Yun

    2012-01-01

    Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCC♀, Cyprininae, 2n = 100) × topmouth culter (Erythroculter ilishaeformis Bleeker, TC♂, Cultrinae, 2n = 48) were successfully produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent (TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence (designated class I-N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish genetics.

  11. Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density.

    PubMed

    Deka, Jashmini; Měch, Rostislav; Ianeselli, Luca; Amenitsch, Heinz; Cacho-Nerin, Fernando; Parisse, Pietro; Casalis, Loredana

    2015-04-01

    We report a novel and multifaceted approach for the quick synthesis of highly stable single-stranded DNA (ssDNA) functionalized gold nanoparticles (AuNPs). The method is based on the combined effect of surface passivation by (1-mercaptoundec-11-yl)hexa(ethylene glycol) and low pH conditions, does not require any salt pretreatment or high excess of ssDNA, and can be generalized for oligonucleotides of any length or base sequence. The synthesized ssDNA-coated AuNPs conjugates are stable at salt concentrations as high as 3.0 M, and also functional and specific toward DNA-DNA hybridization, as shown from UV-vis spectrophotometry, scanning electron microscopy, gel electrophoresis, fluorescence, and small angle X-ray scattering based analyses. The method is highly flexible and shows an additional advantage of creating ssDNA-AuNP conjugates with a predefined number of ssDNA strands per particle. Its simplicity and tenability make it widely applicable to diverse biosensing applications involving ssDNA functionalized AuNPs.

  12. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    PubMed Central

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe; Nielsen, Katrine E.; Højland, Torben; Wengel, Jesper; Petersen, Michael

    2011-01-01

    We report the synthesis of two C4′-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4′-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization to a maximum of 9°C per incorporation. Using fluorescence, ultraviolet and nuclear magnetic resonance (NMR) spectroscopy, we show that the stabilization is achieved by pyrene intercalation in the dsDNA duplex. The pyrene moiety is not restricted to one intercalation site but rather switches between multiple sites in intermediate exchange on the NMR timescale, resulting in broad lines in NMR spectra. We identified two intercalation sites with NOE data showing that the pyrene prefers to intercalate one base pair away from the modified nucleotide with its linker curled up in the minor groove. Both modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having a greater impact in the narrow and deep minor groove of a B-type dsDNA duplex than in the wide and shallow minor groove of an A-type DNA:RNA hybrid and (ii) the B-type dsDNA duplex allowing the pyrene to intercalate and bury its apolar surface. PMID:21062815

  13. Chromosomal assignment of human DNA fingerprint sequences by simultaneous hybridization to arbitrarily primed PCR products from human/rodent monochromosome cell hybrids

    SciTech Connect

    Yasuda, Jun; Sekiya, Takao; Navarro, J.M.

    1996-05-15

    We have developed a technique for the simultaneous chromosomal assignment of multiple human DNA sequences from DNA fingerprints obtained by the arbitrarily primed polymerase chain reaction (AP-PCR). Radioactively labeled human AP-PCR products are hybridized to DNA fingerprints generated with the same arbitrary primer from human/rodent monochromosome cell hybrids after electroblotting to a nylong membrane. Human-specific hybridization bands in the human/rodent fingerprints unambiguously determine their chromosome of origin. We named this method simultaneous hybridization of arbitrarily primed PCR DNA fingerprinting products (SHARP). Using this approach, we determined the chromosomal origins of most major bands of human AP-PCR fingerprints obtained with two arbitrary primers. Altogether, the chromosomal localization of near 50 DNA fragments, comprehensive of all human chromosomes except chromosomes 21 and Y, was achieved in this simple manner. Chromosome assignment of fingerprint bands is essential for molecular karyotyping of cancer by AP-PCR DNA fingerprinting. The SHARP method provides a convenient and powerful tool for this purpose. 23 refs., 3 figs., 2 tabs.

  14. Glycidol-carbohydrate hybrids: a new family of DNA alkylating agents.

    PubMed

    Toshima, Kazunobu; Okuno, Yukiko; Matsumura, Shuichi

    2003-10-01

    Novel and chiral glycidol-carbohydrate hybrids possessing an epoxy group as a DNA alkylating moiety were designed and synthesized. These artificial hybrids selectively alkylated DNA at the N-7 sites of the guanines and cleaved DNA without any additives. The binding ability of the glycidol was significantly enhanced by the attachment of the carbohydrate.

  15. Rapid Determination of RNA Accessible Sites by Surface Plasmon Resonance Detection of Hybridization to DNA arrays

    PubMed Central

    Mandir, Joshua B.; Lockett, Matthew R.; Phillips, Margaret F.; Allawi, Hatim T.; Lyamichev, Victor I.; Smith, Lloyd M.

    2009-01-01

    RNA accessible sites are the regions in an RNA molecule, which are available for hybridization with complementary DNA or RNA molecules. The identification of these accessible sites is a critical first step in identifying antisense-mediated gene suppression sites, as well as in a variety of other RNA-based analysis methods. Here, we present a rapid, hybridization-based, label-free method of identifying RNA accessible sites with surface plasmon resonance imaging (SPRi) on in situ synthesized oligonucleotide arrays prepared on carbon-on-metal substrates. The accessible sites of three pre-miRNAs, miRNA precursors of ~75 nt in length, were determined by hybridizing the RNA molecules to RNA-specific tiling arrays. An array comprised of all possible 6mer oligonucleotide sequences was also utilized in this work, offering a universal platform capable of studying RNA molecules in a high throughput manner. PMID:19874056

  16. The effects of multiple probes on the hybridization of target DNA on surfaces

    NASA Astrophysics Data System (ADS)

    Welling, Ryan C.; Knotts, Thomas A.

    2015-01-01

    DNA microarrays have disruptive potential in many fields including genetics and medicine, but the technology has yet to find widespread clinical use due to poor reliability. Microarrays work on the principle of hybridization and can only be as dependable as this process is reliable. As such, a significant amount of theoretical research has been done to understand hybridization on surfaces on the molecular level. Previous simulations of a target strand with a single, surface-tethered probe molecule have yielded valuable insights, but such is an ideal system and little is known about the effects of multiple probes—a situation that more closely approximates the real system. This work uses molecular simulation to determine the specific differences in duplex stability between one, three, six, and nine tethered probes on a surface. The results show that it is more difficult for a single target to hybridize to a probe as the number of probes on the surface increases due to crowding effects; however, once hybridized, the duplex is more stable than when fewer probes are present. The data also indicate that hybridization of a target to a probe on the face of a group of probes is more stable than hybridization to probes at the edge or center locations. Taken as a whole, the results offer new insights into the cause of the poor reproducibility exhibited by microarrays.

  17. Direct Electrical Detection of DNA Hybridization Based on Electrolyte-Gated Graphene Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Ohno, Yasuhide; Okamoto, Shogo; Maehashi, Kenzo; Matsumoto, Kazuhiko

    2013-11-01

    DNA hybridization was electrically detected by graphene field-effect transistors. Probe DNA was modified on the graphene channel by a pyrene-based linker material. The transfer characteristic was shifted by the negative charges on the probe DNA, and the drain current was changed by the full-complementary DNA while no current change was observed after adding noncomplementary DNA, indicating that the graphene field-effect transistor detected the DNA hybridization. In addition, the number of DNAs was estimated by the simple plate capacitor model. As a result, one probe DNA was attached on the graphene channel per 10×10 nm2, indicating their high density functionalization. We estimated that 30% of probe DNA on the graphene channel was hybridized with 200 nM full-complementary DNA while only 5% of probe DNA was bound to the noncomplementary DNA. These results will help to pave the way for future biosensing applications based on graphene FETs.

  18. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  19. Cloning of a short HLA-DQ beta locus-specific cDNA probe: typing for DQw specificities.

    PubMed

    Sood, S K; McCusker, C T; Singal, D P

    1989-01-01

    A short HLA-DQ beta locus-specific (141 bp) probe was cloned from the full-length pII-beta-1 cDNA. Pst 1-digested genomic DNA from homozygous typing cell lines (HTC) was hybridized with this short DQ beta locus-specific, pDQ beta 141, probe. Restriction fragment length polymorphism (RFLP) patterns generated with this DQ beta locus-specific probe were compared with those obtained with the full-length (627 bp) DQ beta, pII-beta-1, probe. The results demonstrate that the RFLP patterns with the pDQ beta 141 probe were very simple, and no crossreacting DR beta and DX beta bands were observed. DQw1, 2, 3 and 4 specificities could each be identified by a single RFLP. PMID:2467193

  20. Rotating rod renewable microcolumns for automated, solid-phase DNA hybridization studies.

    PubMed

    Bruckner-Lea, C J; Stottlemyre, M S; Holman, D A; Grate, J W; Brockman, F J; Chandler, D P

    2000-09-01

    The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid hybridization in an automated sequential injection system is described. The flow cell included a stepper motor-driven rotating rod with the working end cut to a 45 degrees angle. In one position, the end of the rod prevented passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees releases the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence-specific nucleic acid hybridization. Target nucleic acids labeled with a near-infrared fluorescent dye were detected immediately postcolumn during all column perfusion and elution steps using a flow-through fluorescence detector. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 microL, 10 nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than 1 s and a total sample perfusion time of 40 s. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated. PMID:10994975

  1. Rotating rod renewable microcolumns for automated, solid-phase DNA hybridization studies.

    PubMed

    Bruckner-Lea, C J; Stottlemyre, M S; Holman, D A; Grate, J W; Brockman, F J; Chandler, D P

    2000-09-01

    The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid hybridization in an automated sequential injection system is described. The flow cell included a stepper motor-driven rotating rod with the working end cut to a 45 degrees angle. In one position, the end of the rod prevented passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees releases the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence-specific nucleic acid hybridization. Target nucleic acids labeled with a near-infrared fluorescent dye were detected immediately postcolumn during all column perfusion and elution steps using a flow-through fluorescence detector. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 microL, 10 nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than 1 s and a total sample perfusion time of 40 s. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated.

  2. Locational diversity of alpha satellite DNA and intergeneric hybridization aspects in the Nomascus and Hylobates genera of small apes.

    PubMed

    Baicharoen, Sudarath; Miyabe-Nishiwaki, Takako; Arsaithamkul, Visit; Hirai, Yuriko; Duangsa-ard, Kwanruen; Siriaroonrat, Boripat; Domae, Hiroshi; Srikulnath, Kornsorn; Koga, Akihiko; Hirai, Hirohisa

    2014-01-01

    Recently, we discovered that alpha satellite DNA has unique and genus-specific localizations on the chromosomes of small apes. This study describes the details of alpha satellite localization in the genera Nomascus and Hylobates and explores their usefulness in distinguishing parental genome sets in hybrids between these genera. Fluorescence in situ hybridization was used to establish diagnostic criteria of alpha satellite DNA markers in discriminating small ape genomes. In particular we established the genus specificity of alpha satellite distribution in three species of light-cheeked gibbons (Nomascus leucogenys, N. siki, and N. gabriellae) in comparison to that of Hylobates lar. Then we determined the localization of alpha satellite DNA in a hybrid individual which resulted from a cross between these two genera. In Nomascus the alpha satellite DNA blocks were located at the centromere, telomere, and four interstitial regions. In Hylobates detectable amounts of alpha satellite DNA were seen only at centromeric regions. The differences in alpha satellite DNA locations between Nomascus and Hylobates allowed us to easily distinguish the parental chromosomal sets in the genome of intergeneric hybrid individuals found in Thai and Japanese zoos. Our study illustrates how molecular cytogenetic markers can serve as diagnostic tools to identify the origin of individuals. These molecular tools can aid zoos, captive breeding programs and conservation efforts in managing small apes species. Discovering more information on alpha satellite distribution is also an opportunity to examine phylogenetic and evolutionary questions that are still controversial in small apes.

  3. Modelling cross-hybridization on phylogenetic DNA microarrays increases the detection power of closely related species.

    PubMed

    Engelmann, Julia C; Rahmann, Sven; Wolf, Matthias; Schultz, Jörg; Fritzilas, Epameinondas; Kneitz, Susanne; Dandekar, Thomas; Müller, Tobias

    2009-01-01

    DNA microarrays are a popular technique for the detection of microorganisms. Several approaches using specific oligomers targeting one or a few marker genes for each species have been proposed. Data analysis is usually limited to call a species present when its oligomer exceeds a certain intensity threshold. While this strategy works reasonably well for distantly related species, it does not work well for very closely related species: Cross-hybridization of nontarget DNA prevents a simple identification based on signal intensity. The majority of species of the same genus has a sequence similarity of over 90%. For biodiversity studies down to the species level, it is therefore important to increase the detection power of closely related species. We propose a simple, cost-effective and robust approach for biodiversity studies using DNA microarray technology and demonstrate it on scenedesmacean green algae. The internal transcribed spacer 2 (ITS2) rDNA sequence was chosen as marker because it is suitable to distinguish all eukaryotic species even though parts of it are virtually identical in closely related species. We show that by modelling hybridization behaviour with a matrix algebra approach, we are able to identify closely related species that cannot be distinguished with a threshold on signal intensity. Thus this proof-of-concept study shows that by adding a simple and robust data analysis step to the evaluation of DNA microarrays, species detection can be significantly improved for closely related species with a high sequence similarity.

  4. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization.

    PubMed

    Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang

    2015-04-15

    A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant color change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays.

  5. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA

    PubMed Central

    Case, Mary E.; Schweizer, Michael; Kushner, Sidney R.; Giles, Norman H.

    1979-01-01

    An efficient transformation system has been developed for Neurospora crassa that uses spheroplasts and pVK88 plasmid DNA. pVK88 is a recombinant Escherichia coli plasmid carrying the N. crassa qa-2+ gene which encodes catabolic dehydroquinase (3-dehydroquinate hydro-lyase, EC 4.2.1.10) and is part of the qa gene cluster. The recipient strain carries a stable qa-2- mutation and an arom-9- mutation, thus lacking both catabolic and biosynthetic dehydroquinase activities. Transformants were selected as colonies able to grow in the absence of an aromatic amino acid supplement. These colonies were qa-2+ and had normal levels of catabolic dehydroquinase. DNA·DNA hybridization evidence with appropriate labeled probes indicates clearly that in some instances transformation involves the integration of bacterial plasmid sequences together with the qa-2+ gene into the N. crassa genome. On the basis of genetic, enzyme assay, and DNA hybridization data, at least three types of transformation events can be distinguished: (i) replacement of the qa-2- gene by the qa-2+ gene without any effect on the expression of the other genes in the qa cluster, (ii) linked insertion of a normal qa-2+ gene accompanied by inactivation of the adjacent qa-4+ gene, and (iii) insertion of a normal qa-2+ gene at an unlinked site in the N. crassa genome. This newly integrated qa-2+ genetic material is inherited in a typical Mendelian fashion. A low level of transformation has also been obtained by using linear total N. crassa DNA. Two such qa-2+ transformants are unlinked to the qa-2- gene of the recipient. Images PMID:159454

  6. Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals.

    PubMed

    Lai, Siok Lian; Tan, Wei Ling; Yang, Kun-Lin

    2011-09-01

    In this paper, we report a method of detecting DNA targets hybridized to a solid surface by using liquid crystals (LC). The detection principle is based on different interference colors of LC supported on surfaces decorated with single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA). However, the contrast between the ssDNA and dsDNA is not obvious, unless DNA-streptavidin complexes are introduced to the dsDNA to increase the surface mass density. Two different approaches of introducing streptavidin to the system are studied and compared. We find that by premixing the biotin-labeled DNA targets with streptavidin prior to the DNA hybridization, branched-streptavidin complexes are formed and clear LC signal can be observed. This LC-based DNA detection principle represents an important step toward the development of a simple, instrument- and fluorophore-free DNA detection method.

  7. Hybrid models of the neuromusculoskeletal system improve subject-specificity

    PubMed Central

    Higginson, Jill S; Ramsay, John W; Buchanan, Thomas S

    2013-01-01

    Muscle-actuated simulations of pathological gait have the capacity to identify muscle impairments and compensatory strategies, but the lack of subject-specific solutions prevents the prescription of personalized therapies. Conversely, electromyographic-driven models are limited to muscles for which data are available but can capture the true neural drive initiated by an individual subject. In order to improve subject-specificity and enforce physiological constraints on muscle activity, we propose a hybrid strategy for the optimization of subject-specific muscle patterns that involves forward dynamic simulation of whole body movement coupled with electromyographic-driven models of muscle subsets. In this paper we apply the hybrid approach to an example of post-stroke gait and demonstrate its unique ability to account for the unusual muscle activation patterns and muscle properties in patients with neuromuscular impairments. PMID:22468463

  8. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  9. Crowding-Induced Hybridization of Single DNA Hairpins.

    PubMed

    Baltierra-Jasso, Laura E; Morten, Michael J; Laflör, Linda; Quinn, Steven D; Magennis, Steven W

    2015-12-30

    It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems. PMID:26654490

  10. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-09-01

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide

  11. Monitoring molecular beacon DNA probe hybridization at the single-molecule level.

    PubMed

    Yao, Gang; Fang, Xiaohong; Yokota, Hiroaki; Yanagida, Toshio; Tan, Weihong

    2003-11-21

    We have monitored the reaction dynamics of the DNA hybridization process on a liquid/solid interface at the single-molecule level by using a hairpin-type molecular beacon DNA probe. Fluorescence images of single DNA probes were recorded by using total internal reflection fluorescence microscopy. The fluorescence signal of single DNA probes during the hybridization to individual complementary DNA probes was monitored over time. Among 400 molecular beacon DNA probes that we tracked, 349 molecular beacons (87.5 %) were hybridized quickly and showed an abrupt fluorescence increase, while 51 probes (12.5 %) reacted slowly, resulting in a gradual fluorescence increase. This ratio stayed about the same when varying the concentrations of cDNA in MB hybridization on the liquid/surface interface. Statistical data of the 51 single-molecule hybridization images showed that there was a multistep hybridization process. Our results also showed that photostability for the dye molecules associated with the double-stranded hybrids was better than that for those with the single-stranded molecular beacon DNA probes. Our results demonstrate the ability to obtain a better understanding of DNA hybridization processes using single-molecule techniques, which will improve biosensor and biochip development where surface-immobilized molecular beacon DNA probes provide unique advantages in signal transduction.

  12. Control of Rate-Bounded Hybrid Systems with Liveness Specifications

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Lin, Feng; Meyer, George

    1998-01-01

    In the present paper we examine the control problem for a class of composite hybrid machines (CHMs) that consist of concurrent operation (employing synchronous composition) of elementary hybrid machines (EHMs), that allows both signal sharing and event synchronization. A controller can then be coupled with the plant by means of synchronous composition. We confine our attention to controllers that interact with the system only through event synchronization. We present an initial investigation of synthesis of liveness controllers for hybrid machines. To this end we define open hybrid machines as systems that can interact with the environment through event synchronization and can be therefor be "driven" to their marked configuration by user (controller). Liveness specifications must be associated with timing constraints. We may require that for a specified time limit, every run reach a marked configuration within that time limit. Alternatively, a more relaxed specification may be that, for some (unspecified) global time bound, every run of the system reach a marked configuration within that time bound. Finally, the least restrictive liveness requirement is that every run reach a marked configuration within a finite time limit (but we do not insist on the existence of a global time bound for all runs).

  13. Detection of Salmonella by using the colorimetric DNA/rRNA sandwich hybridization in microtiter wells.

    PubMed

    Namimatsu, T; Tsuna, M; Imai, Y; Futo, S; Mitsuse, S; Sakano, T; Sato, S

    2000-06-01

    A rapid and readily available DNA probe kit was developed for the detection of Salmonella spp. This kit utilized the colorimetric DNA/rRNA sandwich hybridization method in microtiter wells. Within 3 hr Salmonella spp. in selective enrichment broth cultures were detected by the DNA probe kit. The kit effectively identified all of 187 strains of Salmonella tested and yielded no false-positive reactions in the examination of 674 pure cultures of non-salmonellae. The DNA probe kit could detect 10(5) cfu/ml in pure culture. A total of 379 naturally contaminated samples (raw chicken meat, liquid egg, animal feeds, poultry feces and frozen foods) were tested, both by the standard culture method and the DNA probe kit. The 169 of these samples were culture positive and 210 were culture negative. The sensitivity of the DNA probe kit was 98.2% (166/169) and the specificity was 99.5% (209/210). These results show that the DNA probe kit is a useful tool to examine a large number of various samples for contamination by Salmonella spp. in food and livestock industry. PMID:10907688

  14. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  15. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    SciTech Connect

    D'Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. ); Antonacci, R. )

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  16. FY02 CBNP Annual Report: Discovery of DNA Signature of Biothreat Detection Using Suppression Subtractive Hybridization

    SciTech Connect

    Andersen, G L; Radnedge, L

    2002-11-19

    Our goal is to develop robust DNA signatures for rapid and specific DNA-based detection platforms that can be employed by CBNP to detect a wide range of potential agents. Our approach has resulted in highly specific DNA signatures for Yersina pestis, Bacillus anthracis and Brucella species. Furthermore, this approach can be applied to any genome (even uncharacterized ones), which facilitates DNA signature development for detection of newly emerging pathogens. We are using suppression subtractive hybridization (SSH) as a tool to define large DNA regions specific to multiple biothreat pathogens by comparing them to genomes of the most closely related organisms. This approach has become increasingly accurate as we continue to find new, distinctive strains and ever-closer near-neighbors. With the huge costs incurred by whole genome sequencing, it is not possible to sequence each new bacterial genome. However, it is completely practical to identify genome differences in the laboratory using SSH, and becomes especially useful when comparing new strains to previously sequenced genomes.

  17. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.

    PubMed

    Moayed, Fatemeh; Mashaghi, Alireza; Tans, Sander J

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN) and the peptide StrepTag II (ST). We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST). In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP) using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV) linkage. It can be used in conjunction with Neutravidin (NTV)-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications.

  18. A Polypeptide-DNA Hybrid with Selective Linking Capability Applied to Single Molecule Nano-Mechanical Measurements Using Optical Tweezers

    PubMed Central

    Tans, Sander J.

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN) and the peptide StrepTag II (ST). We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST). In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP) using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV) linkage. It can be used in conjunction with Neutravidin (NTV)-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications. PMID:23336001

  19. Synthesis of PCR-derived, single-stranded DNA probes suitable for in situ hybridization.

    PubMed

    Hannon, K; Johnstone, E; Craft, L S; Little, S P; Smith, C K; Heiman, M L; Santerre, R F

    1993-08-01

    We report the novel synthesis of polymerase chain reaction (PCR)-derived single-stranded DNA (ssDNA) probes and their subsequent application in in situ hybridizations. Serial transverse sections of an 11.5-day postcoitum mouse embryo were hybridized to a 33P-ssDNA, 33P-RNA, or 35S-RNA probe corresponding to the same 181-bp sequence in the myogenin cDNA. Signal obtained using 33P-ssDNA was more intense than that using 33P-RNA probe, while signal/noise ratios obtained with both 33P-probes were far superior to those obtained with 35S-probe. Digoxigenin-labeled chicken growth hormone (GH) ssDNA gave slightly more intense signal than did digoxigenin-labeled chicken GH RNA when hybridized to chicken pituitary sections. 32P-ssDNA probes were found to be suitable for Northern blot hybridization. Advantages of using ssDNA probes for in situ hybridization include: (1) The ssDNA technique is rapid and simple. There was no need to clone a DNA template into a special RNA vector or order special T7-containing PCR primers. ssDNA probes can be synthesized in less than 1 day using any primers which currently exist in a laboratory (optimal probe length for in situ hybridization is between 50 and 200 bp). (2) In three separate in situ experiments, ssDNA probes yielded more intense signal than RNA probes. (3) ssDNA probes are potentially more stable than RNA probes. (4) Since the RNAse rinse is eliminated, posthybridization rinses are shortened when hybridizing with ssDNA probes. The ssDNA probes produced by this protocol can be labeled with a variety of different isotopes (both radioactive and nonradioactive), and are excellent probes for use in in situ hybridizations.

  20. In situ DNA hybridization analysis of human papillomavirus (HPV) sequences in benign oral mucosal lesions.

    PubMed

    Syrjänen, S M; Syrjänen, K J; Happonen, R P; Lamberg, M A

    1987-01-01

    A series of 144 surgically treated benign oral mucosal lesions were analysed using an in situ DNA hybridization technique with 35S-labeled human papillomavirus (HPV) DNA probes to demonstrate the DNA of HPV types 6, 11, 13, and 16, in routinely processed, paraffin-embedded biopsy specimens. These lesions and an additional 62 benign oral mucosal biopsy specimens (total, 206 specimens) were also assessed by the indirect immunoperoxidase (IP-PAP) technique to detect the expression of HPV structural proteins (viral antigens). A total of 54/206 (26.2%) lesions were observed to express HPV antigens, being found in 45/92 (48.9%) of the squamous cell papillomas/condylomas, in 1/54 fibrous hyperplasias, in 1/8 true fibromas, and in 7/8 (87.5%) of the focal epithelial hyperplasia (FEH) lesions. Of the HPV DNA-positive lesions, 15/45 (33.3%) expressed HPV antigens, the expression not being related to any particular HPV type. HPV DNA sequences were found in 45/144 (31.3%) of the lesions. HPV DNA was present with the highest frequency in FEH (83.3%), followed by the papilloma/condyloma group (33.8%), papillary hyperplasia (28.6%), fibrous hyperplasia (24.4%), and true fibromas (14.3%). The most frequent HPV type was HPV 11, representing 37.8% of the DNA-positive lesions. HPV 13 DNA, previously regarded as specific to FEH, was disclosed as a single HPV type in seven cases, and as a double infection by HPV 11 and 13 in an additional three cases, including all five morphologically distinct entities. Noteworthy is the discovery of the high-risk HPV type 16 DNA in 17.8% of the DNA-positive lesions, four papilloma/condyloma lesions, three fibrous hyperplasias, and one FEH.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  2. Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA.

    PubMed

    Brutlag, D; Fry, K; Nelson, T; Hung, P

    1977-03-01

    Hybrid plasmid molecules containing tandemly repeated Drosophila satellite DNA were constructed using a modification of the (dA)-(dT) homopolymer procedure of Lobban and Kaiser (1973). Recombinant plasmids recovered after transformation of recA bacteria contained 10% of the amount of satellite DNA present in the transforming molecules. The cloned plasmids were not homogenous in size. Recombinant plasmids isolated from a single colony contained populations of circular molecules which varied both in the length of the satellite region and in the poly(dA)-(dt) regions linking satellite and vector. While subcloning reduced the heterogeneity of these plasmid populations, continued cell growth caused further variations in the size of the repeated regions. Two different simple sequence satellites of Drosophila melanogaster (1.672 and 1.705 g/cm3) were unstable in both recA and recBC hosts and in both pSC101 and pCR1 vectors. We propose that this recA-independent instability of tandemly repeated sequences is due to unequal intramolecular recombination events in replicating DNA molecules, a mechanism analogous to sister chromatid exchange in eucaryotes. PMID:403010

  3. Microbiota of deciduous endodontic infections analyzed by MDA and Checkerboard DNA-DNA hybridization

    PubMed Central

    Tavares, WLF; de Brito, LC Neves; Teles, RP; Massara, MLA; Sobrinho, AP Ribeiro; Haffajee, AD; Socransky, SS; Teles, FR

    2011-01-01

    Aims To evaluate the microbiota of endodontic infections in deciduous teeth by checkerboard DNA-DNA hybridization after uniform amplification of DNA in samples by multiple displacement amplification (MDA). Methodology Forty samples from the root canal system of deciduous teeth exhibiting pulp necrosis with or without radiographically detectable periradicular/interadicular bone resorption were collected and 32 were analyzed, with 3 individuals contributing 2 samples; these were MDA- amplified and analyzed by Checkerboard DNA-DNA hybridization for levels of 83 bacterial taxa. Two outcome measures were used: the percentage of teeth colonized by each species; and the mean proportion of each bacterial taxon present across all samples were computed. Results The mean amount of DNA in the samples prior to amplification was 5.2 (± 4.7) ng and 6.1 (± 2.3) μg after MDA. The mean number of species detected per sample was 19 (± 4) (range: 3–66) to the nearest whole number. The most prevalent taxa were Prevotella intermedia (96.9%), Neisseria mucosa (65.6%), Prevotella nigrescens (56.2%) and Tannerella forsythia (56.2%). Aggregatibacter (Haemophilus) aphrophilus and Helicobacter pylori were not detected. P. intermedia (10%), Prevotella tannerae (7%) and Prevotella nigrescens (4.3%) presented the highest mean proportions of the target species averaged across the positive samples. Conclusion Root canals of infected deciduous teeth had a diverse bacterial population. Prevotella sp were commonly found with P. intermedia, Prevotella tannerae and Prevotella nigrescens among the most prominent species detected. PMID:21083570

  4. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA.

    PubMed

    Miao, Xiangmin; Guo, Xiaoting; Xiao, Zhiyou; Ling, Liansheng

    2014-09-15

    Direct recognition of double-stranded DNA (dsDNA) was crucial to disease diagnosis and gene therapy, because DNA in its natural state is double stranded. Here, a novel sensor for the sequence-specific recognition of dsDNA was developed based on the structure change of ferrocene (Fc) redox probe modified molecular beacon (MB). For constructing such a sensor, gold nanoparticles (AuNPs) were initially electrochemical-deposited onto glass carbon electrode (GCE) surface to immobilize thiolated MB in their folded states with Au-S bond. Hybridization of MB with target dsDNA induced the formation of parallel triplex DNA and opened the stem-loop structure of it, which resulted in the redox probe (Fc) away from the electrode and triggered the decrease of current signals. Under optimal conditions, dsDNA detection could be realized in the range from 350 pM to 25 nM, with a detection limit of 275 pM. Moreover, the proposed method has good sequence-specificity for target dsDNA compared with single base pair mismatch and two base pairs mismatches.

  5. Sequence-specific DNA detection at 10 fM by electromechanical signal transduction.

    PubMed

    Esfandiari, Leyla; Lorenzini, Michael; Kocharyan, Gayane; Monbouquette, Harold G; Schmidt, Jacob J

    2014-10-01

    Target DNA fragments at 10 fM concentration (approximately 6 × 10(5) molecules) were detected against a DNA background simulating the noncomplementary genomic DNA present in real samples using a simple, PCR-free, optics-free approach based on electromechanical signal transduction. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is highly desired for a range of diverse applications. We previously described a potentially low-cost device for sequence-specific nucleic acid detection based on conductance change measurement of a pore blocked by electrophoretically mobilized bead-(peptide nucleic acid probe) conjugates upon hybridization with target nucleic acid. Here, we demonstrate the operation of our device with longer DNA targets, and we describe the resulting improvement in the limit of detection (LOD). We investigated the detection of DNA oligomers of 110, 235, 419, and 1613 nucleotides at 1 pM to 1 fM and found that the LOD decreased as DNA length increased, with 419 and 1613 nucleotide oligomers detectable down to 10 fM. In addition, no false positive responses were obtained with noncomplementary, control DNA fragments of similar length. The 1613-base DNA oligomer is similar in size to 16S rRNA, which suggests that our device may be useful for detection of pathogenic bacteria at clinically relevant concentrations based on recognition of species-specific 16S rRNA sequences.

  6. Site-specific DNA transesterification catalyzed by a restriction enzyme

    PubMed Central

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme–DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively. PMID:17267608

  7. Rotating Rod Renewable Microcolumns for Automated, Solid-Phase DNA Hybridization

    SciTech Connect

    Bruckner-Lea, Cynthia J. ); Stottlemyre, Mark R.; Holman, David A.; Grate, Jay W. ); Brockman, Fred J. ); Chandler, Darrell P.

    1999-12-01

    The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid analysis in a sequential injection system is described. The flow cell includes a stepper motor-driven rotating rod with the working end cut to a 45 degree angle. In one position, the end of the rod prevents passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees release the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence specific nucleic acid hybridization. Target nucleic acids labeled with a near-infrared fluorescent dye were detected immediately post-column using a flow-through fluorescence detector, with a detection limit of 40 pM dye concentration at a flow rate of 5 mu l/s. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 mu l, 10nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than a second and a total sample perfusion time of 40 seconds. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated.

  8. Structure-based modeling of protein: DNA specificity

    PubMed Central

    Joyce, Adam P.; Zhang, Chi; Bradley, Philip

    2015-01-01

    Protein:DNA interactions are essential to a range of processes that maintain and express the information encoded in the genome. Structural modeling is an approach that aims to understand these interactions at the physicochemical level. It has been proposed that structural modeling can lead to deeper understanding of the mechanisms of protein:DNA interactions, and that progress in this field can not only help to rationalize the observed specificities of DNA-binding proteins but also to allow researchers to engineer novel DNA site specificities. In this review we discuss recent developments in the structural description of protein:DNA interactions and specificity, as well as the challenges facing the field in the future. PMID:25414269

  9. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use. PMID:26443210

  10. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.

  11. Molecular structure of r/GCG/d/TATACGC/ - A DNA-RNA hybrid helix joined to double helical DNA

    NASA Technical Reports Server (NTRS)

    Wang, A. H.-J.; Fujii, S.; Rich, A.; Van Boom, J. H.; Van Der Marel, G. A.; Van Boeckel, S. A. A.

    1982-01-01

    The molecule r(GCG)d(TATACGC) is self-complementary and forms two DNA-RNA hybrid segments surrounding a central region of double helical DNA; its molecular structure has been solved by X-ray analysis. All three parts of the molecule adopt a conformation which is close to that seen in the 11-fold RNA double helix. The conformation of the ribonucleotides is partly determined by water molecules bridging between the ribose O2' hydroxyl group and cytosine O2. The hybrid-DNA duplex junction contains no structural discontinuities. However, the central DNA TATA sequence has some structural irregularities.

  12. Highly specific electronic signal transduction mediated by DNA/metal self-assembly.

    SciTech Connect

    Dentinger, Paul M.; Pathak, Srikant

    2003-11-01

    Highly specific interactions between DNA could potentially be amplified if the DNA interactions were utilized to assemble large scale parts. Fluidic assembly of microsystem parts has the potential for rapid and accurate placement of otherwise difficult to handle pieces. Ideally, each part would have a different chemical interaction that allowed it to interact with the substrate only in specific areas. One easy way to obtain a multiple chemical permutations is to use synthetic DNA oligomers. Si parts were prepared using silicon-on-insulator technology microfabrication techniques. Several surface chemistry protocols were developed to react commercial oligonucleotides to the parts. However, no obvious assembly was achieved. It was thought that small defects on the surface did not allow the microparts to be in close enough proximity for DNA hybridization, and this was. in part, confirmed by interferometry. To assist in the hybridization, plastic, pliable parts were manufactured and a new chemistry was developed. However, assembly was still absent even with the application of force. It is presently thought that one of three mechanisms is preventing the assembly. The surfaces of the two solid substrates can not get in close enough proximity, the surface chemistry lacks sufficient density to keep the parts from separating, or DNA interactions in close proximity on solid substrates are forbidden. These possibilities are discussed in detail.

  13. Nonlinear dynamics of specific DNA-protein interactions

    NASA Astrophysics Data System (ADS)

    Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.

    2016-03-01

    Interactions between DNA binding protein and specific base pairs of nucleic acid is critical for biological process. We propose a new model of DNA-protein interactions to depict the dynamics of specific DNA-protein interactions. Hydrogen bonds (H-bonds) are, among the other intermolecular interactions in DNA, the most distinctive in term of specificity of molecular bonds. As H-bonds account for specificity, we only consider the dynamics affected by H-bonds between DNA base pairs and H-bonds connecting protein side chains and DNA. The H-bonds are modelled by Morse potentials and coupling terms in the Hamiltonian of coupled oscillators resembling a coupling between planar DNA chain and a protein molecule. In this paper we give a perturbative approach as an attempt for a soliton solution. The solution is in the form of nonlinear travelling wave having the amplitudes satisfying coupled nonlinear Schrodinger equations and is interpreted as the mediator for nonlocal transmittance of biological information in DNA.

  14. Global and gene specific DNA methylation changes during zebrafish development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA methylation is dynamic through the life of an organism. In this study, we measured the global and gene specific DNA methylation changes in zebrafish at different developmental stages. We found that the methylation percentage of cytosines was 11.75 ± 0.96% in 3.3 hour post fertilization (hpf) zeb...

  15. Specific suppression of anti-DNA production in vitro

    SciTech Connect

    Liebling, M.R.; Wong, C.; Radosevich, J.; Louie, J.S.

    1988-09-01

    To investigate the regulation of anti-DNA antibody production, we generated anti-DNA-specific suppressor cells by exposing normal human T cells and a small percentage of adherent cells to high concentrations of DNA. These cells suppressed the production of anti-DNA by both autologous peripheral blood mononuclear cells (PBMC) and allogeneic PBMC derived from systemic lupus erythematosus (SLE) patients. Anti-DNA production was suppressed significantly more than anti-RNA, antitetanus, or total immunoglobulin production. Specific suppression was enhanced by increasing the numbers of DNA-primed CD8+ cells and was obliterated by irradiation of the DNA-primed cells. In contrast to T cells from normal individuals, T cells obtained from two intensively studied SLE patients were unable to generate specific suppressor cells for anti-DNA production in both autologous and allogeneic test systems. Despite this defect, these patients were still capable of generating specific suppressor cells for antibody production directed against an exogenous antigen, tetanus toxoid.

  16. Electrical detection of DNA immobilization and hybridization by streaming current measurements in microchannels

    NASA Astrophysics Data System (ADS)

    Martins, D. C.; Chu, V.; Prazeres, D. M. F.; Conde, J. P.

    2011-10-01

    Label-free electrical detection of surface DNA immobilization and hybridization via streaming current measurements in a microchannel is demonstrated. Streaming currents generated by the flow of deionised water through a polydimethysiloxane microchannel sealed on glass are measured using integrated Au electrodes and are sensitive to the density and polarity of the charge on the channel surface. An in-channel DNA hybridization protocol was developed. Streaming currents were monitored after each of protocol steps. The technique was applied to label free recognition of DNA hybridization and could distinguish between assays with complementary and non-complementary DNA strands.

  17. Hybridization of cloned Rhodopseudomonas capsulata photosynthesis genes with DNA from other photosynthetic bacteria.

    PubMed Central

    Beatty, J T; Cohen, S N

    1983-01-01

    The homology of Rhodopseudomonas capsulata DNA segments carrying photosynthesis genes with sequences present in total DNA from certain other photosynthetic and non-photosynthetic bacterial species was determined by hybridization. R. capsulata DNA fragments that carry loci for production of peptide components of the photosynthetic reaction center and light-harvesting I antenna complex were found to hybridize to DNA from some photosynthetic species. However, fragments that carry carotenoid or bacteriochlorophyll biosynthesis genes showed either weak or undetectable heterospecific hybridization under the conditions employed. Images PMID:6406432

  18. Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates.

    PubMed

    Liu, Shu-Feng; Li, Yong-Fang; Li, Jin-Ru; Jiang, Long

    2005-11-15

    Gold electrodes modified by nanogold aggregates (nanogold electrode) were obtained by the electrodeposition of gold nanoparticles onto planar gold electrode. The Electrochemical response of single-stranded DNA (ssDNA) probe immobilization and hybridization with target DNA was measured by cyclic voltammograms (CV) using methylene blue (MB) as an electroactive indicator. An improving method using long sequence target DNA, which greatly enhanced the response signal during hybridization, was studied. Nanogold electrodes could largely increase the immobilization amount of ssDNA probe. The hybridization amount of target DNA could be increased several times for the manifold nanogold electrodes. The detection limit of nanogold electrode for the complementary 16-mer oligonucleotide (target DNA1) and long sequence 55-mer oligonucleotide (target DNA2) could reach the concentration of 10(-9) mol/L and 10(-11) mol/L, respectively, which are far more sensitive than that of the planar electrode.

  19. Rapid DNA hybridization analysis using a PDMS microfluidic sensor and a molecular beacon.

    PubMed

    Kim, Sungyong; Chen, Lingxin; Lee, Sangyeop; Seong, Gi Hun; Choo, Jaebum; Lee, Eun Kyu; Oh, Chil-Hwan; Lee, Sanghoon

    2007-04-01

    A rapid DNA analysis has been developed based on a fluorescence intensity change of a molecular beacon in a PDMS microfluidic channel. Recently, we reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). However, there are some limitations in its application to real DNA samples because the target DNA must be labelled with a suitable fluorescent dye. To resolve this problem, we have developed a new DNA microfluidic sensor using a molecular beacon. By monitoring the change in the restored fluorescence intensity along the channel length, it is possible to rapidly detect any hybridization of the molecular beacon to the target DNA. In this case, the target DNA does not need to be labelled. Our experimental results demonstrate that this microfluidic sensor using a molecular beacon is a promising diagnostic tool for rapid DNA hybridization analysis.

  20. Numerical modeling of DNA-chip hybridization with chaotic advection

    PubMed Central

    Raynal, Florence; Beuf, Aurélien; Carrière, Philippe

    2013-01-01

    We present numerical simulations of DNA-chip hybridization, both in the “static” and “dynamical” cases. In the static case, transport of free targets is limited by molecular diffusion; in the dynamical case, an efficient mixing is achieved by chaotic advection, with a periodic protocol using pumps in a rectangular chamber. This protocol has been shown to achieve rapid and homogeneous mixing. We suppose in our model that all free targets are identical; the chip has different spots on which the probes are fixed, also all identical, and complementary to the targets. The reaction model is an infinite sink potential of width dh, i.e., a target is captured as soon as it comes close enough to a probe, at a distance lower than dh. Our results prove that mixing with chaotic advection enables much more rapid hybridization than the static case. We show and explain why the potential width dh does not play an important role in the final results, and we discuss the role of molecular diffusion. We also recover realistic reaction rates in the static case. PMID:24404027

  1. Single-Stranded DNA Catalyzes Hybridization of PCR-Products to Microarray Capture Probes

    PubMed Central

    Dally, Simon; Rupp, Steffen; Lemuth, Karin; Hartmann, Stefan C.; Hiller, Ekkehard; Bailer, Susanne M.; Knabbe, Cornelius; Weile, Jan

    2014-01-01

    Since its development, microarray technology has evolved to a standard method in the biotechnological and medical field with a broad range of applications. Nevertheless, the underlying mechanism of the hybridization process of PCR-products to microarray capture probes is still not completely understood, and several observed phenomena cannot be explained with current models. We investigated the influence of several parameters on the hybridization reaction and identified ssDNA to play a major role in the process. An increase of the ssDNA content in a hybridization reaction strongly enhanced resulting signal intensities. A strong influence could also be observed when unlabeled ssDNA was added to the hybridization reaction. A reduction of the ssDNA content resulted in a massive decrease of the hybridization efficiency. According to these data, we developed a novel model for the hybridization mechanism. This model is based on the assumption that single stranded DNA is necessary as catalyst to induce the hybridization of dsDNA. The developed hybridization model is capable of giving explanations for several yet unresolved questions regarding the functionality of microarrays. Our findings not only deepen the understanding of the hybridization process, but also have immediate practical use in data interpretation and the development of new microarrays. PMID:25025686

  2. A simple and efficient enzymatic method for covalent attachment of DNA to cellulose. Application for hybridization-restriction analysis and for in vitro synthesis of DNA probes.

    PubMed Central

    Goldkorn, T; Prockop, D J

    1986-01-01

    Single-stranded DNAs (ssDNAs) were covalently bound by a simple and efficient enzymatic method to a solid support matrix and used to develop several new procedures for gene analysis. The novel procedure to prepare a ssDNA stably coupled to a solid support employed T4 DNA ligase to link covalently oligo (dT)-cellulose and (dA)-tailed DNA. Beginning with essentially any double stranded DNA the procedure generates a ssDNA linked by its 5' end to a cellulose matrix in a concentration of over 500 ng per mg. DNA from the plasmid pBR322 (4300 bp) and a fragment of the beta-globin gene (1800 bp) were coupled to the solid support and used for several experiments. The ssDNAs on the cellulose efficiently hybridized with as little as 5 pg of complementary double-stranded DNAs. The DNA hybrids formed on the solid support were specifically and efficiently cleaved by restriction endonucleases. These specific restriction cuts were utilized for the diagnosis of correct sequences. In addition, the ssDNA on the solid support served as an efficient template for the synthesis of complementary ssDNAs. The complementary synthesized ssDNAs were uniformly labeled, more than two kilobases in size, and largely full length. About 85% of the ssDNA linked to cellulose was available for the synthesis of complementary DNA, and after strand-separation, the preparation was reusable for the synthesis of additional complementary DNA. Images PMID:3024131

  3. DNA-sequence-specific erasers of epigenetic memory.

    PubMed

    Mozgova, Iva; Köhler, Claudia

    2016-05-27

    How epigenetic regulators find their specific targets remains a challenging question. Two parallel studies show that REF6, a plant H3K27me3 demethylase, binds a specific DNA motif via its zinc-finger domains and recruits the SWI/SNF-type ATPase BRAHMA, demonstrating a sequence-specific recruitment mechanism for a chromatin-modifying complex. PMID:27230685

  4. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  5. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-01-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing. PMID:27534818

  6. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors

    PubMed Central

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-01-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing. PMID:27534818

  7. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-10-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and

  8. DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity.

    PubMed

    Xu, Zhenning; Yin, Huanshun; Han, Yunxiang; Zhou, Yunlei; Ai, Shiyun

    2014-06-01

    In this work, a novel electrochemical protocol with signal amplification for determination of DNA methylation and methyltransferase activity using DNA-based hybridization chain reaction (HCR) was proposed. After the gold electrode was modified with dsDNA, it was treated with M.SssI MTase, HpaII endonuclease, respectively. And then the HCR was initiated by the target DNA and two hairpin helper DNAs, which lead to the formation of extended dsDNA polymers on the electrode surface. The signal was amplified by the labeled biotin on the hairpin probes. As a result, the streptavidin-alkaline phosphatase (S-ALP) conjugated on the electrode surface through the specific interaction between biotin and S-ALP. ALP could convert 1-naphthyl phosphate into 1-naphthol and the latter could be electrochemically oxidized, which was used to monitor the methylation event and MTase activity. The HCR assay presents good electrochemical responses for the determination of M.SssI MTase at a concentration as low as 0.0067 uni tmL(-1). Moreover, the effects of anti-cancer drug and environmental phenolic hormone on M.SssI MTase activity were also investigated. The results indicated that 5-fluorouracil and daunorubicin hydrochloride could inhibit the activity, and the opposite results were obtained with bisphenol A and nonylphenol. Therefore, this method can not only provide a platform to screen the inhibitors of DNA MTase and develop new anticancer drugs, but also offer a novel technique to investigate the possible carcinogenesis mechanism. PMID:24856396

  9. Detection of hepatitis A virus in seeded estuarine samples by hybridization with cDNA probes

    SciTech Connect

    Jiang, X.; Estes, M.K.; Metcalf, T.G.; Melnick, J.L

    1986-10-01

    The development and trials of a nucleic acid hybridization test for the detection of hepatitis A virus (HAV) in estuarine samples within 48 h are described. Approximately 10/sup 4/ physical particlels of HAV per dot could be detected. Test sensitivity was optimized by the consideration of hydbridization stringency, /sup 32/P energy level, probe concentration, and nucleic acid binding to filters. Test specificity was shown by a lack of cross-hybridization with other enteroviruses and unrelated nucleic acids. Potential false-positive reactions between bacterial DNA in samples and residual vector DNA contamination of purified nucleotide sequences in probes were eliminated by DNase treatment of samples. Humic acid at concentrations of up to 100 mg/liter caused only insignificant decreases in test sensitivity. Interference with hybridization by organic components of virus-containing eluates was removed by proteinase K digestion followed by phenol extraction and ethanol precipitation. The test is suitable for detecting naturally occurring HAV in samples from polluted estuarine environments.

  10. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition.

    PubMed

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-11-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.

  11. DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid.

    PubMed

    Mitchell, David L; Paniker, Lakshmi; Douki, Thierry

    2009-01-01

    Exposure to sunlight is responsible for most cutaneous malignant melanomas in the human population. It is very likely that DNA damage is an initial event in melanomagenesis, however, the role played by this damage is an open question. To this end, we used a hemipigmented F(1) hybrid of the fish genus Xiphophorus and HPLC tandem mass spectrometry to examine the effects of melanin on the induction and repair of the predominant UV-induced photoproducts formed in skin cell DNA. We found that heavily pigmented skin cells had about half the damage of nonpigmented cells and the relative induction of the major photoproducts was independent of the degree of pigmentation. The efficiency of photoenzymatic repair was the same in nonpigmented and pigmented areas of the fish. We found no evidence of residual damage at 10 days after the last exposure. Most striking was that repeated exposure to multiple doses of UVB caused a very significant photoadaptive response. Rather than an accumulation of damage after five doses of UVB we saw a significant reduction in the amount of damage induced after the final dose compared with the initial dose. The relevance of these observations is discussed in the context of melanoma susceptibility and UVB thresholds.

  12. Spatially localized generation of nucleotide sequence-specific DNA damage.

    PubMed

    Oh, D H; King, B A; Boxer, S G; Hanawalt, P C

    2001-09-25

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen-DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320-400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA-psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen-TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  13. Specific detection of unamplified mycobacterial DNA by use of fluorescent semiconductor quantum dots and magnetic beads.

    PubMed

    Gazouli, M; Liandris, E; Andreadou, M; Sechi, L A; Masala, S; Paccagnini, D; Ikonomopoulos, J

    2010-08-01

    Here we present the development of a specific DNA detection method using fluorescent semiconductor quantum dots (QDs) and magnetic beads (MBs) for fast detection of Mycobacterium spp., dispensing with the need for DNA amplification. Two biotinylated oligonucleotide probes were used to recognize and detect specific complementary mycobacterial target DNA through a sandwich hybridization reaction. Cadmium selenite QDs conjugated with streptavidin and species-specific probes were used to produce a fluorescent signal. MBs conjugated with streptavidin and a genus-specific probe were used to isolate and concentrate the DNA targets. The application of the proposed method to isolated bacteria produced the expected result in all cases. The minimum detection limit of the assay was defined as 12.5 ng of DNA diluted in a sample volume of 20 microl. In order to obtain an indication of the method's performance with clinical samples, we applied the optimized assay to the detection of Mycobacterium tuberculosis in DNA isolated from bronchoalveolar lavage specimens from patients with tuberculosis and Mycobacterium avium subsp. paratuberculosis in DNA isolated from feces and paraffin-embedded tissues in comparison with culture, Ziehl-Neelsen staining, and real-time PCR. The concordance of these methods compared to the proposed method with regard to positive and negative samples varied between 53.84% and 87.23% and between 84.61% and 100%, respectively. The overall accuracy of the QD assay compared to real-time PCR was 70 to 90% depending on the type of clinical material. The proposed diagnostic assay offers a simple, rapid, specific, and cost-effective method for direct detection and identification of mycobacterial DNA in clinical samples. PMID:20554817

  14. Hybrid specification, storage, retrieval and runtime application of clinical guidelines.

    PubMed

    Shahar, Y

    2006-06-01

    Clinical guidelines are a major tool in improving the quality of medical care. However, most guidelines are in free text, are not machine-comprehensible and are not easily accessible to clinicians at the point of care. We have designed and implemented a web-based, modular, distributed architecture, the Digital Electronic Guideline Library (DeGeL), which facilitates gradual conversion of clinical guidelines from text to a formal representation in the chosen target guideline ontology. The architecture supports guideline classification, semantic markup, context-sensitive search, browsing, run-time application and retrospective quality assessment. The DeGeL hybrid meta-ontology includes elements common to all guideline ontologies, such as semantic classification and domain knowledge; it also includes four content-representation formats: free text, semi-structured text, semi-formal representation and a formal representation. These formats support increasingly sophisticated computational tasks. Guidelines can thus be in a hybrid representation in which guidelines, and even parts of the same guideline, might exist at different formalisation levels. We have also developed and rigorously evaluated a methodology and an associated web-based tool, Uruz, for gradually structuring and semi-formalising free-text clinical guidelines. Finally, we have designed, implemented and evaluated a new approach, the hybrid runtime application model, for supporting runtime application of clinical guidelines that are not necessarily in a machine-comprehensible format; in particular, when the guideline is in a semi-formal representation and the patient's data are either in an electronic medical record or in a paper format. The tool implementing this new approach, the Spock module, is customised at this point to the Asbru guideline specification language and exploits the hybrid structure of guidelines in DeGeL. The Spock module also exploits our temporal-abstraction mediator to the patient

  15. In situ hybridization analysis of human papillomavirus DNA in oral mucosal lesions.

    PubMed

    Zeuss, M S; Miller, C S; White, D K

    1991-06-01

    Commercial biotinylated DNA probes specific for human papillomavirus (HPV) types 6 and 11; 16 and 18; and 31, 33, and 35 were used for in situ hybridization analysis of 105 oral mucosal specimens from 5 cases of verruca vulgaris, 15 cases of condyloma acuminatum, 30 cases of squamous papilloma, 20 cases of hyperkeratosis/acanthosis, 15 cases of epithelial dysplasia, 5 cases of carcinoma in situ, and 15 cases of squamous cell carcinoma. Positive hybridization signals were found in 26 specimens (24.8%). Only HPV-6/11 was detected. HPV DNA occurred significantly more often (p less than 0.005, chi-square analysis) in condyloma acuminatum (100%) and verruca vulgaris (100%) than squamous papilloma (13.3%), hyperkeratotic/acanthotic lesions (10%), and malignant and premalignant lesions (0%). The tongue (19.1%) and labial epithelium (17.1%) were infected most frequently. Nuclear reaction products indicating HPV infection were associated primarily with koilocytes. These results demonstrate the usefulness of commercial biotinylated probes for HPV DNA analysis in routine paraffin-embedded lesion specimens. They confirm HPV involvement in benign lesions of the oral mucosa but fail to associate HPV infection with oral cancer and precancer.

  16. The microwave sensing of DNA hybridization using carbon nanotubes decorated with gold nanoislands

    NASA Astrophysics Data System (ADS)

    Cismaru, Alina; Dragoman, Mircea; Radoi, Antonio; Dinescu, A.; Dragoman, Daniela

    2012-04-01

    The hybridization of the deoxyribonucleic acid (DNA) is detected with the help of electromagnetic band gap resonator. The resonance frequency of the unloaded resonator f0=16.07 GHz is shifted to the left at 11.49 GHz when the resonator is loaded with single-stranded DNA anchored to gold nanoislands decorating bamboo-shaped carbon nanotubes deposited on the resonator. Further, single stranded DNA is hybridized and the resonator frequency is shifted to 14.16 GHz for double-stranded DNA. So, the frequency span of the two DNA states are separated by a span of 2.6 GHz in the band 11.5-16.07 GHz due to the very different electrical permittivity values of single- and double-stranded DNA. Thus, the hybridization of DNA is detected unambiguously.

  17. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

  18. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. PMID:26922047

  19. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Pettitt, B. Montgomery

    2015-03-01

    DNA microarrays are analytical devices designed to determine the composition of multicomponent solutions of nucleic acids, DNA or RNA. These devices are promising technology for diverse applications, including sensing, diagnostics, and drug/gene delivery. Here, we modify a hybridization adsorption isotherm to study the effects of probe-surface distance and the external electrostatic fields, on the oligonucleotide hybridization in microarray and how these effects are varies depending on surface probe density and target concentration. This study helps in our understanding on-surface hybridization mechanisms, and from it we can observe a significant effect of the probe-surface distance, and the external electrostatic fields, on the hybridization yield. In addition we present a simple new criteria to control the oligonucleotide hybridization efficiency by providing a chart illustrating the effects of all factors on the DNA-hybridization efficiency.

  20. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    PubMed

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system. PMID:27526861

  1. Spatially localized generation of nucleotide sequence-specific DNA damage

    PubMed Central

    Oh, Dennis H.; King, Brett A.; Boxer, Steven G.; Hanawalt, Philip C.

    2001-01-01

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen–DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320–400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA–psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen–TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  2. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    SciTech Connect

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  3. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA X Fe(II).

    PubMed Central

    Dreyer, G B; Dervan, P B

    1985-01-01

    The synthesis of a DNA hybridization probe 19 nucleotides in length, equipped with the metal chelator EDTA at C-5 of thymidine in position 10 (indicated by T*) is described. DNA-EDTA 1 has the sequence 5'-T-A-A-C-G-C-A-G-T*-C-A-G-G-C-A-C-C-G-T-3', which is complementary to a 19-nucleotide sequence in the plasmid pBR322. In the presence of Fe(II), O2, and dithiothreitol, DNA-EDTA 1 affords specific cleavage (25 degrees C, pH 7.4, 60 min) at its complementary sequence in a heat-denatured 167-base-pair restriction fragment. Cleavage occurs over a range of 16 nucleotides at the site of hybridization of 1, presumably due to a diffusible reactive species. No other cleavage sites are observed in the 167-base-pair restriction fragment. The procedure used to synthesize DNA-EDTA probes is based on the incorporation of a thymidine modified at C-5 with the triethyl ester of EDTA. By using routine phosphoramidite procedures, thymidine-EDTA can be incorporated into oligodeoxynucleotides of any desired length and sequence. Because the efficiency of the DNA cleavage reaction is dependent on the addition of both Fe(II) and reducing agent (dithiothreitol), the initiation of the cleavage reaction can be controlled. These DNA-EDTA X Fe(II) probes should be useful for the sequence-specific cleavage of single-stranded DNA (and most likely RNA) under mild conditions. Images PMID:3919391

  4. Electrochemical detection of point mutation based on surface hybridization assay conjugated allele-specific polymerase chain reaction.

    PubMed

    Huang, Yong; Zhu, Jing; Li, Guiyin; Chen, Zhencheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin

    2013-04-15

    In this work, we developed an electrochemical detection method based on allele-specific polymerase chain reaction (AS-PCR) and surface hybridization assay technique for the point mutation detection. A high-fidelity Vent(R)™(exo⁻) DNA polymerase, which eliminated the 3'→5' proofreading exonuclease activity by genetical engineering, was used to discriminate and extend the detection probe that perfectly matched with mutant target DNA and generate a redox-active DNA replica which folded into a molecular beacon structure by intramolecular hybridization. After hybridized with capture probe modified on gold electrode by self-assembly reaction, the redox tags can be closed to electrode, resulting in a substantial current with the maximized sensitivity for point mutation analysis. However, when there is an allele mismatch in the wild target DNA, and so no the redox-active replica DNA can be obtained. In this case, no remarkable current signal can be trigged. The proposed approach has been successfully implemented for the identification of single base mutation at the -28 position in human β-globin gene with a detection limit of 0.5 fM, demonstrating that this method provides a highly specific, sensitive and cost-efficient approach for point mutation detection.

  5. Chemiluminescence resonance energy transfer biosensing platform for site-specific determination of DNA methylation and assay of DNA methyltransferase activity using exonuclease III-assisted target recycling amplification.

    PubMed

    Chen, Chun; Li, Baoxin

    2014-04-15

    Site-specific determination of DNA methylation and assay of MTase activity can be used for determining specific cancer types, providing insights into the mechanism of gene repression, and developing novel drugs to treat methylation-related diseases. Herein, we develop a simple and highly sensitive chemiluminescence (CL) biosensing platform for site-specific determination of DNA methylation using Exonuclease III (Exo III)-assisted target recycling signal amplification. After bisulfite treatment of mixture of methylated DNA and unmethylated DNA, methylated DNA can hybridize with fluorescein (FAM)-labeled probe DNA to form double-stranded DNA (dsDNA), removing the FAM-labeled probe DNA from the surface of grapheme oxide, and the chemiluminescence resonance energy transfer (CRET) sensing signal can be observed and then amplified using Exo III-based recycling strategy. The biosensing platform exhibits excellent high sensitivity, and it can ever distinguish as low as 0.002% methylation level from the mixture, which is superior to most currently reported methods used for DNA methylation assay. In addition, the proposed method can also be used to sensitively assay MTase activity with determination limit of 0.007 U/mL. This CL biosensing offers the advantages of being facile, sensitive, rapid and cost-effective. These features make the system promising for future use for early cancer diagnosis and discover of new anticancer drugs.

  6. Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide-Ethylene Glycol Monolayers

    SciTech Connect

    Lee,C.; Nguyen, P.; Grainger, D.; Gamble, L.; Castner, D.

    2007-01-01

    The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s {yields} {pi}* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the 'high-density' probe surface than on the 'high-efficiency' probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface.

  7. Subtractive cDNA cloning using oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells.

    PubMed Central

    Hara, E; Kato, T; Nakada, S; Sekiya, S; Oda, K

    1991-01-01

    The human embryonal carcinoma cell line NEC14 can be induced to differentiate by the addition of 10(-2)M N,N'-hexamethylene-bis-acetamide (HMBA). A subtractive cDNA library specific to undifferentiated NEC14 cells was constructed using oligo(dT)30-Latex and polymerase chain reaction (PCR). The method was designed to improve the efficiency of subtraction and the enrichment of cDNA clones corresponding to low abundance mRNAs. The single strand of cDNA was made from mRNA prepared from the HMBA-treated NEC14 cells using an oligo(dT)30 primer covalently linked to Latex particles. After removal of the mRNA template by heat-denaturation and centrifugation, the subtractive hybridization was carried out between the cDNA-oligo(dT)30-Latex and mRNA from untreated NEC14 cells. Unhybridized mRNA collected by centrifugation was hybridized repeatedly to the cDNA-oligo(dT)30-Latex and subtractive mRNA was converted to cDNA. The subtractive cDNA was then amplified by PCR and cloned into pBluescript II KS-. The cDNA library thus constructed consisted of approximately 10,000 independent clones with cDNA inserts of 1.7 Kb on average. Differential hybridization of these transformants indicated that approximately 3% of them contained cDNA inserts specific to the undifferentiated EC cells, some of which were derived from low abundance mRNAs. Images PMID:1766870

  8. Site-specific DNA Inversion by Serine Recombinases

    PubMed Central

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  9. Allosteric Regulation of DNA Cleavage and Sequence-Specificity through Run-On Oligomerization

    PubMed Central

    Lyumkis, Dmitry; Talley, Heather; Stewart, Andrew; Shah, Santosh; Park, Chad K.; Tama, Florence; Potter, Clinton S.; Carragher, Bridget; Horton, Nancy C.

    2014-01-01

    SgrAI is a sequence specific DNA endonuclease that functions through an unusual enzymatic mechanism that is allosterically activated 200-500 fold by effector DNA, with a concomitant expansion of its DNA sequence specificity. Using single-particle transmission electron microscopy to reconstruct distinct populations of SgrAI oligomers, we show that, in the presence of allosteric, activating DNA, the enzyme forms regular, repeating helical structures that are characterized by the addition of DNA-binding dimeric SgrAI subunits in a run-on manner. We also present the structure of oligomeric SgrAI at 8.6 Å resolution, demonstrating a novel conformational state of SgrAI in its activated form. Activated and oligomeric SgrAI displays key protein-protein interactions near the helix axis between its N-termini, as well as allosteric protein-DNA interactions that are required for enzymatic activation. The hybrid approach reveals an unusual mechanism of enzyme activation that explains SgrAI’s oligomerization and allosteric behavior. PMID:24055317

  10. DNA methylation-specific multiplex assays for body fluid identification.

    PubMed

    An, Ja Hyun; Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2013-01-01

    Recent advances in whole-genome epigenetic analysis indicate that chromosome segments called tissue-specific differentially methylated regions (tDMRs) show different DNA methylation profiles according to cell or tissue type. Therefore, body fluid-specific differential DNA methylation is a promising indicator for body fluid identification. However, DNA methylation patterns are susceptible to change in response to environmental factors and aging. Therefore, we investigated age-related methylation changes in semen-specific tDMRs using body fluids from young and elderly men. After confirming the stability of the body fluid-specific DNA methylation profile over time, two different multiplex PCR systems were constructed using methylation-sensitive restriction enzyme PCR and methylation SNaPshot, in order to analyze the methylation status of specific CpG sites from the USP49, DACT1, PRMT2, and PFN3 tDMRs. Both multiplex systems could successfully identify semen with spermatozoa and could differentiate menstrual blood and vaginal fluids from blood and saliva. Although including more markers for body fluid identification might be necessary, this study adds to the support that body fluid identification by DNA methylation profiles could be a valuable tool for forensic analysis of body fluids. PMID:22653424

  11. DNA methylation-specific multiplex assays for body fluid identification.

    PubMed

    An, Ja Hyun; Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2013-01-01

    Recent advances in whole-genome epigenetic analysis indicate that chromosome segments called tissue-specific differentially methylated regions (tDMRs) show different DNA methylation profiles according to cell or tissue type. Therefore, body fluid-specific differential DNA methylation is a promising indicator for body fluid identification. However, DNA methylation patterns are susceptible to change in response to environmental factors and aging. Therefore, we investigated age-related methylation changes in semen-specific tDMRs using body fluids from young and elderly men. After confirming the stability of the body fluid-specific DNA methylation profile over time, two different multiplex PCR systems were constructed using methylation-sensitive restriction enzyme PCR and methylation SNaPshot, in order to analyze the methylation status of specific CpG sites from the USP49, DACT1, PRMT2, and PFN3 tDMRs. Both multiplex systems could successfully identify semen with spermatozoa and could differentiate menstrual blood and vaginal fluids from blood and saliva. Although including more markers for body fluid identification might be necessary, this study adds to the support that body fluid identification by DNA methylation profiles could be a valuable tool for forensic analysis of body fluids.

  12. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis.

    PubMed

    Mankan, Arun K; Schmidt, Tobias; Chauhan, Dhruv; Goldeck, Marion; Höning, Klara; Gaidt, Moritz; Kubarenko, Andrew V; Andreeva, Liudmila; Hopfner, Karl-Peter; Hornung, Veit

    2014-12-17

    Intracellular recognition of non-self and also self-nucleic acids can result in the initiation of potent pro-inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2'-5'), which then binds to the endoplasmic reticulum resident protein STING. This initiates a signaling cascade that triggers the induction of an antiviral immune response. While most studies on intracellular nucleic acids have focused on dsRNA or dsDNA, it has remained unexplored whether cytosolic RNA:DNA hybrids are also sensed by the innate immune system. Studying synthetic RNA:DNA hybrids, we indeed observed a strong type I interferon response upon cytosolic delivery of this class of molecule. Studies in THP-1 knockout cells revealed that the recognition of RNA:DNA hybrids is completely attributable to the cGAS-STING pathway. Moreover, in vitro studies showed that recombinant cGAS produced cGAMP upon RNA:DNA hybrid recognition. Altogether, our results introduce RNA:DNA hybrids as a novel class of intracellular PAMP molecules and describe an alternative cGAS ligand next to dsDNA.

  13. Biological investigation using a shear horizontal surface acoustic wave sensor: small "click generated" DNA hybridization detection.

    PubMed

    Zerrouki, Chouki; Fourati, Najla; Lucas, Romain; Vergnaud, Julien; Fougnion, Jean-Marie; Zerrouki, Rachida; Pernelle, Christine

    2010-12-15

    We have used a 104 MHz lithium tantalate (LiTaO(3)) surface acoustic wave (SAW) sensor to investigate DNA probes grafting and their further hybridization with natural and click generated (Cg-DNA) oligonucleotides. Natural DNA targets of different strand lengths, tosyl-di(tri, tetra) thymidine and azido-di(tri, tetra) thymidine oligonucleotides were tested. In our case, and besides the follow-up of a 34mer DNA hybridization, we detected complementarity between natural DNA probes and azido-tetra-thymidine for the first time, whereas previous hybridization studies reported a minimal of 10-mer oligonucleotides recognition length. We also demonstrated that contrarily to natural DNA, the synthesized oligonucleotides present stable bonds with complementary DNA strands. Frequency responses of both grafting and hybridization have shown the same shape: an exponential decay with different time constants, (187±1)s and (68±19) s for grafting and hybridization respectively. We have also shown that recognition between DNA strands and tetranucleotide analogues is comparable to natural 34mer DNA bases and presents the same time constant within uncertainties.

  14. Cytosolic RNA:DNA hybrids activate the cGAS–STING axis

    PubMed Central

    Mankan, Arun K; Schmidt, Tobias; Chauhan, Dhruv; Goldeck, Marion; Höning, Klara; Gaidt, Moritz; Kubarenko, Andrew V; Andreeva, Liudmila; Hopfner, Karl-Peter; Hornung, Veit

    2014-01-01

    Intracellular recognition of non-self and also self-nucleic acids can result in the initiation of potent pro-inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2′–5′), which then binds to the endoplasmic reticulum resident protein STING. This initiates a signaling cascade that triggers the induction of an antiviral immune response. While most studies on intracellular nucleic acids have focused on dsRNA or dsDNA, it has remained unexplored whether cytosolic RNA:DNA hybrids are also sensed by the innate immune system. Studying synthetic RNA:DNA hybrids, we indeed observed a strong type I interferon response upon cytosolic delivery of this class of molecule. Studies in THP-1 knockout cells revealed that the recognition of RNA:DNA hybrids is completely attributable to the cGAS–STING pathway. Moreover, in vitro studies showed that recombinant cGAS produced cGAMP upon RNA:DNA hybrid recognition. Altogether, our results introduce RNA:DNA hybrids as a novel class of intracellular PAMP molecules and describe an alternative cGAS ligand next to dsDNA. PMID:25425575

  15. A search for specificity in DNA-drug interactions.

    PubMed

    Cruciani, G; Goodford, P J

    1994-06-01

    The GRID force field and a principal component analysis have been used in order to predict the interactions of small chemical groups with all 64 different triplet sequences of B-DNA. Factors that favor binding to guanine-cytosine base pairs have been identified, and a dictionary of ligand groups and their locations is presented as a guide to the design of specific DNA ligands. PMID:7918250

  16. A search for specificity in DNA-drug interactions.

    PubMed

    Cruciani, G; Goodford, P J

    1994-06-01

    The GRID force field and a principal component analysis have been used in order to predict the interactions of small chemical groups with all 64 different triplet sequences of B-DNA. Factors that favor binding to guanine-cytosine base pairs have been identified, and a dictionary of ligand groups and their locations is presented as a guide to the design of specific DNA ligands.

  17. Assembly of DNA-functionalized nanoparticles in alcoholic solvents reveals opposite thermodynamic and kinetic trends for DNA hybridization.

    PubMed

    Smith, Brendan D; Liu, Juewen

    2010-05-12

    DNA has been a key molecule in biotechnology and nanotechnology. To date, the majority of the experiments involving DNA have been performed in aqueous solutions, which may be related to the perception that DNA hybridization is slower and less stable in organic solvents. All studies on the effect of organic solvents have focused on thermodynamic properties such as DNA melting temperature and the B-to-A form transition for very long DNAs, but not on the hybridization kinetics of short synthetic DNAs. We employed DNA-functionalized gold nanoparticles (AuNPs) as a model system and found that if the alcohol content is less than approximately 30%, more alcohol leads to a faster DNA hybridization, although with a decreased melting temperature. The generality of this observation was independently verified with two molecular beacon systems (in the absence of AuNPs) using fluorophore and quencher-labeled DNAs. With 25% ethanol, the hybridization rates are three to four times faster than in the case with water. This discovery will extend the application of DNA bio- and nanotechnology to organic solvents with improved performance.

  18. [Evaluation of DNA-DNA hybridization method for identification of mycobacteria using a colorimetric microplate kit].

    PubMed

    Yamazaki, T; Takahashi, H; Nakamura, R M

    1993-01-01

    DNA-DNA hybridization was applied for identification of mycobacteria and developed as a kit "microplate hybridization kit" (refers to MPHD) by Kobayashi Pharmaceutical Co. We received test samples of the microplates from the company and examined them for their and reliability using 180 mycobacterial strains of 21 species kept in our laboratory. The results of identification by MPHD were 100% identical to those of biochemical identification in the type or reference strains of mycobacteria, showing good reliability of MPHD method. Among clinical isolates, there were six M. tuberculosis strains which did not show typical characteristics for M. tuberculosis, i.e., niacin test negative or nitrate reduction weak positive, but all of these were identified as M. tuberculosis complex by MPHD method. Some strains from clinical isolates showed difference in identification between MPHD and biochemical methods: M. avium complex, identified biochemically were divided into M. avium and M. intracellulare by MPHD, M. fortuitum complex by biochemical identification were distinguished as M. fortuitum and M. chelonae by MPHD. Further, M. chelonae were separated into M. chelonae subsp. chelonae and M. chelonae subsp. abscessus by MPHD. M. peregrinum has been considered as a synonym of M. fortuitum, but we could distinguish M. peregrinum from M. fortuitum clearly by MPHD method. Thus, it is suggested that M. peregrinum and M. fortuitum are different species. Keys for getting reliable results using the MPHD kit are: (1) appropriate amount of bacteria for use, (2) purification of DNA, (3) enough deproteinization, and (4) appropriate timing to read colorimetry measurement of the plate. PMID:8437424

  19. Theoretical analysis of the kinetics of DNA hybridization with gel-immobilized oligonucleotides.

    PubMed Central

    Livshits, M A; Mirzabekov, A D

    1996-01-01

    A new method of DNA sequencing by hybridization using a microchip containing a set of immobilized oligonucleotides is being developed. A theoretical analysis is presented of the kinetics of DNA hybridization with deoxynucleotide molecules chemically tethered in a polyacrylamide gel layer. The analysis has shown that long-term evolution of the spatial distribution and of the amount of DNA bound in a hybridization cell is governed by "retarded diffusion," i.e., diffusion of the DNA interrupted by repeated association and dissociation with immobile oligonucleotide molecules. Retarded diffusion determines the characteristic time of establishing a final equilibrium state in a cell, i.e., the state with the maximum quantity and a uniform distribution of bound DNA. In the case of cells with the most stable, perfect duplexes, the characteristic time of retarded diffusion (which is proportional to the equilibrium binding constant and to the concentration of binding sites) can be longer than the duration of the real hybridization procedure. This conclusion is indirectly confirmed by the observation of nonuniform fluorescence of labeled DNA in perfect-match hybridization cells (brighter at the edges). For optimal discrimination of perfect duplexes from duplexes with mismatches the hybridization process should be brought to equilibrium under low-temperature nonsaturation conditions for all cells. The kinetic differences between perfect and nonperfect duplexes in the gel allow further improvement in the discrimination through additional washing at low temperature after hybridization. Images FIGURE 1 PMID:8913616

  20. Influence of attachment strategy on the thermal stability of hybridized DNA on gold surfaces.

    PubMed

    Petty, Tyler J; Wagner, Caleb E; Opdahl, Aric

    2014-12-23

    The thermal stabilities of double-stranded DNA hybrids immobilized on gold surfaces are shown to be significantly affected by the conformation of the hybrid. To analyze this behavior, DNA probes were immobilized using attachment strategies where the nucleotides within the strand had varying levels of interactions with the gold substrate. The abilities of these probes to form double-stranded hybrids with solution DNA targets were evaluated by surface plasmon resonance (SPR) over a temperature range 25-60 °C. The measurements were used to construct thermal stability profiles for hybrids in each conformation. We observe that DNA hybrids formed with probe strands that interact extensively with the gold surface have stability profiles that are shifted lower by 5-10 °C compared to hybrids formed with end-tethered probes that have fewer interactions with the surface. The results provide an understanding of the experimental conditions in which these weaker DNA hybrids can form and show the additional complexity of evaluating denaturation profiles generated from DNA on surfaces.

  1. DNA-directed mutations. Leading and lagging strand specificity

    NASA Technical Reports Server (NTRS)

    Sinden, R. R.; Hashem, V. I.; Rosche, W. A.

    1999-01-01

    The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.

  2. Mitochondrial DNA polymorphisms specifically modify cerebral β-amyloid proteostasis.

    PubMed

    Scheffler, Katja; Krohn, Markus; Dunkelmann, Tina; Stenzel, Jan; Miroux, Bruno; Ibrahim, Saleh; von Bohlen Und Halbach, Oliver; Heinze, Hans-Jochen; Walker, Lary C; Gsponer, Jörg A; Pahnke, Jens

    2012-08-01

    Several lines of evidence link mutations and deletions in mitochondrial DNA (mtDNA) and its maternal inheritance to neurodegenerative diseases in the elderly. Age-related mutations of mtDNA modulate the tricarboxylic cycle enzyme activity, mitochondrial oxidative phosphorylation capacity and oxidative stress response. To investigate the functional relevance of specific mtDNA polymorphisms of inbred mouse strains in the proteostasis regulation of the brain, we established novel mitochondrial congenic mouse lines of Alzheimer's disease (AD). We crossed females from inbred strains (FVB/N, AKR/J, NOD/LtJ) with C57BL/6 males for at least ten generations to gain specific mitochondrial conplastic strains with pure C57BL/6 nuclear backgrounds. We show that specific mtDNA polymorphisms originating from the inbred strains differentially influence mitochondrial energy metabolism, ATP production and ATP-driven microglial activity, resulting in alterations of cerebral β-amyloid (Aβ) accumulation. Our findings demonstrate that mtDNA-related increases in ATP levels and subsequently in microglial activity are directly linked to decreased Aβ accumulation in vivo, implicating reduced mitochondrial function in microglia as a causative factor in the development of age-related cerebral proteopathies such as AD.

  3. Designing DNA interstrand lock for locus-specific methylation detection in a nanopore

    NASA Astrophysics Data System (ADS)

    Kang, Insoon; Wang, Yong; Reagan, Corbin; Fu, Yumei; Wang, Michael X.; Gu, Li-Qun

    2013-10-01

    DNA methylation is an important epigenetic regulation of gene transcription. Locus-specific DNA methylation can be used as biomarkers in various diseases including cancer. Many methods have been developed for genome-wide methylation analysis, but molecular diagnotics needs simple tools to determine methylation states at individual CpG sites in a gene fragment. In this report, we utilized the nanopore single-molecule sensor to investigate a base-pair specific metal ion/nucleic acids interaction, and explored its potential application in locus-specific DNA methylation analysis. We identified that divalent Mercury ion (Hg2+) can selectively bind a uracil-thymine mismatch (U-T) in a dsDNA. The Hg2+ binding creates a reversible interstrand lock, called MercuLock, which enhances the hybridization strength by two orders of magnitude. Such MercuLock cannot be formed in a 5-methylcytosine-thymine mismatch (mC-T). By nanopore detection of dsDNA stability, single bases of uracil and 5-methylcytosine can be distinguished. Since uracil is converted from cytosine by bisulfite treatment, cytosine and 5'-methylcytosine can be discriminated. We have demonstrated the methylation analysis of multiple CpGs in a p16 gene CpG island. This single-molecule assay may have potential in detection of epigenetic cancer biomarkers in biofluids, with an ultimate goal for early diagnosis of cancer.

  4. Isolation and characterization of a cDNA clone specific for avian vitellogenin II.

    PubMed

    Protter, A A; Wang, S Y; Shelness, G S; Ostapchuk, P; Williams, D L

    1982-08-25

    A clone for vitellogenin, a major avian, estrogen responsive egg yolk protein, was isolated from the cDNA library of estrogen-induced rooster liver. Two forms of plasma vitellogenin, vitellogenin I (VTG I) and vitellogenin II (VTG II), distinguishable on the basis of their unique partial proteolysis maps, have been characterized and their corresponding hepatic precursor forms identified. We have used this criterion to specifically characterize which vitellogenin protein had been cloned. Partial proteolysis maps of BTG I and VTG II standards, synthesized in vivo, were compared to maps of protein synthesized in vitro using RNA hybrid-selected by the vitellogenin plasmid. Eight major digest fragments were found common to the in vitro synthesized vitellogenin and the VTG II standard while no fragments were observed to correspond to the VTG I map. A restriction map of the VTG II cDNA clone permits comparison to previously described cDNA and genomic vitellogenin clones.

  5. A DNA origami nanorobot controlled by nucleic acid hybridization.

    PubMed

    Torelli, Emanuela; Marini, Monica; Palmano, Sabrina; Piantanida, Luca; Polano, Cesare; Scarpellini, Alice; Lazzarino, Marco; Firrao, Giuseppe

    2014-07-23

    A prototype for a DNA origami nanorobot is designed, produced, and tested. The cylindrical nanorobot (diameter of 14 nm and length of 48 nm) with a switchable flap, is able to respond to an external stimulus and reacts by a physical switch from a disarmed to an armed configuration able to deliver a cellular compatible message. In the tested design the robot weapon is a nucleic acid fully contained in the inner of the tube and linked to a single point of the internal face of the flap. Upon actuation the nanorobot moves the flap extracting the nucleic acid that assembles into a hemin/G-quadruplex horseradish peroxidase mimicking DNAzyme catalyzing a colorimetric reaction or chemiluminescence generation. The actuation switch is triggered by an external nucleic acid (target) that interacts with a complementary nucleic acid that is beard externally by the nanorobot (probe). Hybridization of probe and target produces a localized structural change that results in flap opening. The flap movement is studied on a two-dimensional prototype origami using Förster resonance energy transfer and is shown to be triggered by a variety of targets, including natural RNAs. The nanorobot has potential for in vivo biosensing and intelligent delivery of biological activators.

  6. Ultrasensitive electrochemical detection of DNA based on Zn²⁺ assistant DNA recycling followed with hybridization chain reaction dual amplification.

    PubMed

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2015-01-15

    A new strategy to combine Zn(2+) assistant DNA recycling followed with hybridization chain reaction dual amplification was designed for highly sensitive electrochemical detection of target DNA. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of the target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme hybridized with the MB and catalyzed its cleavage in the presence of Zn(2+) cofactor and resulting in a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles triggering the cleavage of MB, thus forming numerous MB fragments. The MB fragments triggered the HCR and formed a long double-helix DNA structure. Because both H1 and H2 were labeled by biotin, a lot of SA-ALP was captured on the electrode surface, thus catalyzing a silver deposition process for electrochemical stripping analysis. This novel cascade signal amplification strategy can detect target DNA down to the attomolar level with a dynamic range spanning 6 orders of magnitude. This highly sensitive and specific assay has a great potential to become a promising DNA quantification method in biomedical research and clinical diagnosis.

  7. Biomolecular hybrid of a conducting polymer with DNA: morphology, structure, and doping behavior.

    PubMed

    Dawn, Arnab; Nandi, Arun K

    2005-05-23

    A poly(o-methoxyaniline) (POMA)/DNA [weight fraction of DNA (W(DNA)) = 0.45] hybrid was prepared by mixing their solutions in sterilized double distilled water. The solution turned green upon aging for a longer time, and the doping of POMA by DNA was complete after about 15 d of aging. The doping was confirmed from the UV-vis spectra where the 599 nm peak of POMA(EB) disappeared and a new peak for a pi to localized polaron band-transition appeared. With increasing aging time the new peak gradually shifted from 674 nm at 3 h to 820 nm at 15 d of mixing and thereafter it remained constant. The absence of a free carrier tail in the UV-vis spectra indicated a coiled structure of POMA in the complex. Circular dichroism spectra of the hybrid solution indicated that the DNA conformation (double helical structure) remained unchanged in the hybrid. The SEM micrograph of the freeze-dried hybrid showed a needle-like morphology of the DNA dispersed in a polymer matrix and it was completely different from the fibrillar network morphology of pure DNA in the solid state. The TEM micrograph indicated a homogeneous dispersion of DNA fibrils in the POMA matrix. The melting temperature of the POMA-DNA hybrid showed an increase compared to that of pure DNA by 5 degrees C, probably caused by an electrostatic interaction between the DNA anion and the POMA radical cation generated in the doping process. WAXS investigations revealed that the DNA crystal structure remained unchanged in the hybrid whereas the POMA crystal structure might be lost. An FT-IR study suggested that interaction occurred between the phosphoric acid group of DNA and a nitrogen atom of POMA through proton transfer from the OH group of the former. A schematic model of the POMA-DNA complex randomly anchoring POMA chains with the DNA molecule was proposed. The dc conductivity of the POMA-DNA complex was found to be ca. 10(-7) S . cm(-1). Hence, this work describes a procedure for making a DNA-conducting polymer hybrid

  8. Electronic hybridization detection in microarray format and DNA genotyping

    NASA Astrophysics Data System (ADS)

    Blin, Antoine; Cissé, Ismaïl; Bockelmann, Ulrich

    2014-02-01

    We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device.

  9. [Attempts at inter-specific hybridization in Sphaeroma (Crustacea Isopoda Flabellifera)].

    PubMed

    Rezig, M

    1978-01-01

    An interspecific hybridization between five tunisian species of the genus Sphaeroma has been attempted. All the trials failed whatever the crossing attempted. The lack of natural hybrids between forms living together constitutes a fundamental criterium for specific discrimination.

  10. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms.

    PubMed

    Yamaguchi, Tsuyoshi; Kawakami, Shuji; Hatamoto, Masashi; Imachi, Hiroyuki; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi; Kubota, Kengo

    2015-07-01

    In situ detection of microorganisms by fluorescence in situ hybridization (FISH) is a powerful tool for environmental microbiology, but analyses can be hampered by low rRNA content in target organisms, especially in oligotrophic environments. Here, we present a non-enzymatic, hybridization chain reaction (HCR)-based signal amplified in situ whole-cell detection technique (in situ DNA-HCR). The components of the amplification buffer were optimized to polymerize DNA amplifier probes for in situ DNA-HCR. In situ hybridization of initiator probes followed by signal amplification via HCR produced bright signals with high specificity and probe permeation into cells. The detection rates for Bacteria in a seawater sample and Archaea in anaerobic sludge samples were comparable with or greater than those obtained by catalyzed reporter deposition (CARD)-FISH or standard FISH. Detection of multiple organisms (Bacteria, Archaea and Methanosaetaceae) in an anaerobic sludge sample was achieved by simultaneous in situ DNA-HCR. In summary, in situ DNA-HCR is a simple and easy technique for detecting single microbial cells and enhancing understanding of the ecology and behaviour of environmental microorganisms in situ.

  11. Visualization of episomal and integrated Epstein-Barr virus DNA by fiber fluorescence in situ hybridization.

    PubMed

    Reisinger, Jürgen; Rumpler, Silvia; Lion, Thomas; Ambros, Peter F

    2006-04-01

    For many Epstein-Barr virus (EBV)-associated malignancies, it is still a matter of controversy whether infected cells harbor episomal or chromosomally integrated EBV genomes or both. It is well established that the expression of EBV genes per se carries oncogenic potential, but the discrimination between episomal and integrated forms is of great relevance because integration events can contribute to the oncogenic properties of EBV, whereas host cells that exclusively harbor viral episomes may not carry the risks mediated by chromosomal integration. This notion prompted us to establish a reliable technique that not only allows to unequivocally discriminate episomal from integrated EBV DNA, but also provides detailed insights into the genomic organization of the virus. Here, we show that dynamic molecular combing of host cell DNA combined with fluorescence in situ hybridization (FISH) using EBV-specific DNA probes facilitate unambiguous discrimination of episomal from integrated viral DNA. Furthermore, the detection of highly elongated internal repeat 1 (IR1) sequences provides evidence that this method permits detection of major genomic alterations within the EBV genome. Thus, fiber FISH may also provide valuable insights into the genomic organization of viral genomes other than EBV. PMID:16217752

  12. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    PubMed

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  13. Complete mitochondrial DNA sequence analysis of Bison bison and bison-cattle hybrids: function and phylogeny.

    PubMed

    Douglas, Kory C; Halbert, Natalie D; Kolenda, Claire; Childers, Christopher; Hunter, David L; Derr, James N

    2011-01-01

    Complete mitochondrial DNA (mtDNA) genomes from 43 bison and bison-cattle hybrids were sequenced and compared with other bovids. Selected animals reflect the historical range and current taxonomic structure of bison. This study identified regions of potential nuclear-mitochondrial incompatibilities in hybrids, provided a complete mtDNA phylogenetic tree for this species, and uncovered evidence of bison population substructure. Seventeen bison haplotypes defined by 66 polymorphic sites were discovered, whereas 728 fixed differences and 86 non-synonymous mutations were identified between bison and bison-cattle hybrid sequences. The potential roles of the mtDNA genome in the function of hybrid animals and bison taxonomy are discussed.

  14. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    PubMed

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. PMID:21192988

  15. Maternal transmission of cytoplasmic DNA in interspecific hybrids of peat mosses, Sphagnum (Bryophyta).

    PubMed

    Natcheva, R; Cronberg, N

    2007-07-01

    The progeny of spontaneous interspecific hybrid sporophytes of Sphagnum were used to analyse the inheritance of cytoplasmic DNA. The analysis showed that only the female parent donated chloroplasts and mitochondria in Sphagnum hybrids. Thus, this is the first study demonstrating maternal cytoplasmic inheritance in a nonvascular land plant. This finding has important implications for phylogenetic reconstructions utilizing chloroplast and mitochondrial DNA sequences as well as for the evolution of cytoplasmic inheritance in relation to the life cycle of land plants.

  16. Specific DNA recognition mediated by a type IV pilin

    PubMed Central

    Cehovin, Ana; Simpson, Peter J.; McDowell, Melanie A.; Brown, Daniel R.; Noschese, Rossella; Pallett, Mitchell; Brady, Jacob; Baldwin, Geoffrey S.; Lea, Susan M.; Matthews, Stephen J.; Pelicic, Vladimir

    2013-01-01

    Natural transformation is a dominant force in bacterial evolution by promoting horizontal gene transfer. This process may have devastating consequences, such as the spread of antibiotic resistance or the emergence of highly virulent clones. However, uptake and recombination of foreign DNA are most often deleterious to competent species. Therefore, model naturally transformable Gram-negative bacteria, including the human pathogen Neisseria meningitidis, have evolved means to preferentially take up homotypic DNA containing short and genus-specific sequence motifs. Despite decades of intense investigations, the DNA uptake sequence receptor in Neisseria species has remained elusive. We show here, using a multidisciplinary approach combining biochemistry, molecular genetics, and structural biology, that meningococcal type IV pili bind DNA through the minor pilin ComP via an electropositive stripe that is predicted to be exposed on the filaments surface and that ComP displays an exquisite binding preference for DNA uptake sequence. Our findings illuminate the earliest step in natural transformation, reveal an unconventional mechanism for DNA binding, and suggest that selective DNA uptake is more widespread than previously thought. PMID:23386723

  17. How Proteins Search for Their Specific Sites on DNA: The Role of DNA Conformation

    NASA Astrophysics Data System (ADS)

    Hu, T.; Grosberg, A.; Shklovskii, B.

    2006-04-01

    It is known since the early days of molecular biology that proteins locate their specific targets on DNA up to two orders of magnitude faster than the Smoluchowski 3D diffusion rate. It was the idea due to Delbruck that they are non-specifically adsorbed on DNA, and sliding along DNA provides for the faster 1D search. Surprisingly, the role of DNA conformation was never considered in this context. In this article, we explicitly address the relative role of 3D diffusion and 1D sliding along coiled or globular DNA and the possibility of correlated re-adsorbtion of desorbed proteins. We have identified a wealth of new different scaling regimes. We also found the maximal possible acceleration of the reaction due to sliding, we found that the maximum on the rate-versus-ionic strength curve is asymmetric, and that sliding can lead not only to acceleration, but in some regimes to dramatic deceleration of the reaction.

  18. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  19. Development and application of a DNA microarray-based yeast two-hybrid system

    PubMed Central

    Suter, Bernhard; Fontaine, Jean-Fred; Yildirimman, Reha; Raskó, Tamás; Schaefer, Martin H.; Rasche, Axel; Porras, Pablo; Vázquez-Álvarez, Blanca M.; Russ, Jenny; Rau, Kirstin; Foulle, Raphaele; Zenkner, Martina; Saar, Kathrin; Herwig, Ralf; Andrade-Navarro, Miguel A.; Wanker, Erich E.

    2013-01-01

    The yeast two-hybrid (Y2H) system is the most widely applied methodology for systematic protein–protein interaction (PPI) screening and the generation of comprehensive interaction networks. We developed a novel Y2H interaction screening procedure using DNA microarrays for high-throughput quantitative PPI detection. Applying a global pooling and selection scheme to a large collection of human open reading frames, proof-of-principle Y2H interaction screens were performed for the human neurodegenerative disease proteins huntingtin and ataxin-1. Using systematic controls for unspecific Y2H results and quantitative benchmarking, we identified and scored a large number of known and novel partner proteins for both huntingtin and ataxin-1. Moreover, we show that this parallelized screening procedure and the global inspection of Y2H interaction data are uniquely suited to define specific PPI patterns and their alteration by disease-causing mutations in huntingtin and ataxin-1. This approach takes advantage of the specificity and flexibility of DNA microarrays and of the existence of solid-related statistical methods for the analysis of DNA microarray data, and allows a quantitative approach toward interaction screens in human and in model organisms. PMID:23275563

  20. Sequence specificity in aflatoxin B1--DNA interactions.

    PubMed Central

    Muench, K F; Misra, R P; Humayun, M Z

    1983-01-01

    The activated form of aflatoxin B1 (AFB1) causes covalent modification primarily of guanine residues, leading to alkali-labile sites in DNA. A simple extension of the Maxam-Gilbert procedure for sequence analysis permits the identification of alkali-labile sites induced by AFB1 and determination of the frequency of alkali-labile AFB1 modifications at particular sites on a DNA fragment of known sequence. Using this strategy, we have investigated the influence of flanking nucleotide sequences on AFB1 modification in a number of DNA fragments of known sequence. Our results show that certain guanine residues in double-stranded DNA are preferentially attacked by AFB1 over others in a manner predictable from a knowledge of vicinal nucleotide sequences. The observed in vitro sequence specificity is independent of a number of tested parameters and is likely to occur in vivo. Images PMID:6218504

  1. Stress response in Drosophila subobscura: DNA-RNA hybrids and transcriptional activity.

    PubMed

    Arbona, M; Cuenca, J B; de Frutos, R

    1992-01-01

    Immunofluorescent techniques have been used in the analysis of DNA-RNA hybrids occurrence and its relationship to transcriptional events on polytene chromosomes of Drosophila subobscura. We have studied the distribution of these hybrids on uninduced/induced chromosomes. Two different indirect immunofluorescence methods for the detection of DNA-RNA hybrids were used. Our data confirm the positive correlation between localization of DNA-RNA hybrids and transcriptional activity by following the Büsen et al procedure (1982). Using the other protocol, which allows chromosomal DNA-RNA to denature and renature, makes DNA-RNA hybrids detectable not exclusively in active chromosomal regions. Taking Büsen as method of choice, this technique allowed to localize the exact transcriptional active sites on puffs: hybrid fluorescence was restricted to marginal or central puff areas. Moreover, no correlation between fluorescence and puffs size was found. However, our studies on induced chromosomes indicate that: 1) the 15DE puff, previously described as t-puff, was not really a heat shock puff, since no transcriptional activity was detected; 2) hybrid fluorescence at 2C and 31CD regions was observed. No labelling was found in these loci in the autoradiography data, reported by other authors.

  2. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples.

    PubMed

    Rothrock, Michael J; Hiett, Kelli L; Gamble, John; Caudill, Andrew C; Cicconi-Hogan, Kellie M; Caporaso, J Gregory

    2014-01-01

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the "gold standard" enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939

  3. A hybrid DNA extraction method for the qualitative and quantitative assessment of bacterial communities from poultry production samples.

    PubMed

    Rothrock, Michael J; Hiett, Kelli L; Gamble, John; Caudill, Andrew C; Cicconi-Hogan, Kellie M; Caporaso, J Gregory

    2014-12-10

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the "gold standard" enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.

  4. Sequencing of megabase plus DNA by hybridization: Method development ENT. Final technical progress report

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-01-31

    Sequencing by hybridization (SBH) is the only sequencing method based on the experimental determination of the content of oligonucleotide sequences. The data acquisition relies on the natural process of base pairing. It is possible to determine the content of complementary oligosequences in the target DNA by the process of hybridization with oligonucleotide probes of known sequences.

  5. Human papillomavirus (HPV) DNA in focal epithelial hyperplasia by in situ hybridization.

    PubMed

    Padayachee, A; van Wyk, C W

    1991-05-01

    Eighteen cases of focal epithelial hyperplasia (FEH) were investigated for the presence of human papillomavirus (HPV) group specific antigen by immunocytochemistry and HPV types 1, 6, 11, 13, 16, 18 and 32 by DNA in situ hybridization employing biotinylated probes. Seven (39%) specimens demonstrated the presence of HPV group specific antigen. Fifteen (83%) specimens were positive for HPV DNA: 9 (60%) showed HPV 32, of which 6 were on non-keratinized mucosa and 3 on border of keratinized and non-keratinized mucosa; 5 (33%) showed HPV 13, 4 lesions on keratinized mucosa and 1 on non-keratinized mucosa; 1 (7%) specimen on non-keratinized mucosa showed HPV-11 related. Two specimens on different sites from one patient showed the same HPV type and one patient had, in addition to FEH, a squamous papilloma also demonstrating the same HPV type. Results show a specific HPV distribution pattern in the epithelium indicating areas of high viral concentration adjacent to areas of low or no viral concentration. This study also indicates the possibility of tissue-site specificity or a latent infection and the possibility of a yet unidentified HPV type associated with FEH. It is suggested that future monitoring of patients be carried out with special reference to HPV type and anatomical distribution pattern for FEH lesions.

  6. pH-dependent specific binding and combing of DNA.

    PubMed Central

    Allemand, J F; Bensimon, D; Jullien, L; Bensimon, A; Croquette, V

    1997-01-01

    Recent developments in the rapid sequencing, mapping, and analysis of DNA rely on the specific binding of DNA to specially treated surfaces. We show here that specific binding of DNA via its unmodified extremities can be achieved on a great variety of surfaces by a judicious choice of the pH. On hydrophobic surfaces the best binding efficiency is reached at a pH of approximately 5.5. At that pH a approximately 40-kbp DNA is 10 times more likely to bind by an extremity than by a midsegment. A model is proposed to account for the differential adsorption of the molecule extremities and midsection as a function of pH. The pH-dependent specific binding can be used to align anchored DNA molecules by a receding meniscus, a process called molecular combing. The resulting properties of the combed molecules will be discussed. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 7 PMID:9336201

  7. Fixation conditions for DNA and RNA in situ hybridization: a reassessment of molecular morphology dogma.

    PubMed Central

    Tbakhi, A.; Totos, G.; Hauser-Kronberger, C.; Pettay, J.; Baunoch, D.; Hacker, G. W.; Tubbs, R. R.

    1998-01-01

    Neutral buffered formalin (NBF) (4% neutral buffered formaldehyde) has been advocated by most investigators as the primary fixative of choice for in situ hybridization (ISH), and specific anecdotal cautions interdicting the use of precipitating fixatives, which otherwise may offer certain advantages such as superior nuclear detail, are common. Few systematic studies addressing ISH fixation conditions have been published. We reasoned that heavy metals present in some precipitating fixatives may compromise duplex formation during ISH. Cell lines containing known viral gene content (CaSki, 200 to 600 human papilloma virus 16 copies/cell, and SiHa, 1 to 2 human papilloma virus 16 copies/cell) and two negative cell lines (K562 and MOLT 4) were expanded to >10(10) and pellets fixed in NBF, zinc formalin, B5, and Bouin's and Hollande's solutions, and subjected to DNA ISH using biotinylated genomic probes. Ten tissue biopsies fixed in both Hollande's and NBF solutions were also evaluated for human papilloma virus content using DNA ISH. Additionally, 17 cases of Hodgkin's disease fixed in B5 and formalin were compared for Epstein-Barr encoded RNA detection using RNA ISH with fluorescein isothiocyanate-labeled oligonucleotides. Catalyzed reporter deposition combined with Streptavidin-Nanogold staining and silver acetate autometallography (Catalyzed reporter deposition-Ng-autometallography ISH) and a conventional indirect alkaline phosphatase method were used for detection for both DNA and RNA. Contaminating heavy metals entrapped in fixed tissues were removed by two exposures to Lugol's iodine. Results for both DNA and RNA ISH comparing B5 and NBF fixatives were virtually identical. Hollande's, Bouin's, B5, and zinc formalin fixed tissue showed results indistinguishable from NBF fixed tissue in DNA ISH. Precipitating fixatives such as B5 and Hollande's solution may be used for DNA and RNA ISH under appropriate conditions. Images Figure 1 Figure 2 Figure 3 PMID:9422521

  8. DNA topology confers sequence specificity to nonspecific architectural proteins.

    PubMed

    Wei, Juan; Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K

    2014-11-25

    Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the "wild-type" spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor-operator interactions in the context of the bacterial nucleoid. PMID:25385626

  9. DNA topology confers sequence specificity to nonspecific architectural proteins

    PubMed Central

    Wei, Juan; Czapla, Luke; Grosner, Michael A.; Swigon, David; Olson, Wilma K.

    2014-01-01

    Topological constraints placed on short fragments of DNA change the disorder found in chain molecules randomly decorated by nonspecific, architectural proteins into tightly organized 3D structures. The bacterial heat-unstable (HU) protein builds up, counter to expectations, in greater quantities and at particular sites along simulated DNA minicircles and loops. Moreover, the placement of HU along loops with the “wild-type” spacing found in the Escherichia coli lactose (lac) and galactose (gal) operons precludes access to key recognition elements on DNA. The HU protein introduces a unique spatial pathway in the DNA upon closure. The many ways in which the protein induces nearly the same closed circular configuration point to the statistical advantage of its nonspecificity. The rotational settings imposed on DNA by the repressor proteins, by contrast, introduce sequential specificity in HU placement, with the nonspecific protein accumulating at particular loci on the constrained duplex. Thus, an architectural protein with no discernible DNA sequence-recognizing features becomes site-specific and potentially assumes a functional role upon loop formation. The locations of HU on the closed DNA reflect long-range mechanical correlations. The protein responds to DNA shape and deformability—the stiff, naturally straight double-helical structure—rather than to the unique features of the constituent base pairs. The structures of the simulated loops suggest that HU architecture, like nucleosomal architecture, which modulates the ability of regulatory proteins to recognize their binding sites in the context of chromatin, may influence repressor–operator interactions in the context of the bacterial nucleoid. PMID:25385626

  10. Microwave-induced inactivation of DNA-based hybrid catalyst in asymmetric catalysis.

    PubMed

    Zhao, Hua; Shen, Kai

    2016-03-01

    DNA-based hybrid catalysts have gained strong interests in asymmetric reactions. However, to maintain the high enantioselectivity, these reactions are usually conducted at relatively low temperatures (e.g. <5 °C) for 2-3 days. Aiming to improve the reaction's turnover rate, we evaluated microwave irradiation with simultaneous cooling as potential energy source since this method has been widely used to accelerate various chemical and enzymatic reactions. However, our data indicated that microwave irradiation induced an inactivation of DNA-based hybrid catalyst even at low temperatures (such as 5 °C). Circular dichroism (CD) spectra and gel electrophoresis of DNA suggest that microwave exposure degrades DNA molecules and disrupts DNA double-stranded structures, causing changes of DNA-metal ligand binding properties and thus poor DNA catalytic performance.

  11. Species-Specific Identification from Incomplete Sampling: Applying DNA Barcodes to Monitoring Invasive Solanum Plants

    PubMed Central

    Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong

    2013-01-01

    Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling–through this, DNA barcoding will greatly benefit the current fields of its application. PMID:23409092

  12. Identification of bovine-specific DNA in feedstuffs.

    PubMed

    Krcmár, P; Rencová, E

    2001-01-01

    Considering the menace of transmission of bovine spongiform encephalopathy, feed components intended for cattle nutrition must be checked for the presence of bovine-derived materials. We have been using a method based on polymerase chain reaction for the identification of bovine-specific mitochondrial DNA sequences for this purpose. The specificity of the primers for polymerase chain reaction has been tested using samples of DNA of other vertebrate species, which may also be present in rendering plant products. The method allows the detection in concentrate mixtures of 0.125% of bovine-derived material. Bovine DNA at concentrations corresponding to less than 0.5% of bovine-derived material was detected in 3 of the 30 samples of concentrate mixtures collected from distributors' stores all over the Czech Republic. All 44 samples of fish meal collected from the same sources were free of bovine-derived material. PMID:11198432

  13. Allele-Specific DNA Methylation Detection by Pyrosequencing®.

    PubMed

    Kristensen, Lasse Sommer; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide information on the methylation status of individual alleles of genes. This information may be of importance in many situations. In particular, in cancer both alleles of tumour suppressor genes generally need to be inactivated for a phenotypic effect to be observed. Here, we present a simple and cost-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon. PMID:26103906

  14. A novel one cycle allele specific primer extension--molecular beacon displacement method for DNA point mutation detection with improved specificity.

    PubMed

    Li, Xiaomin; Huang, Yong; Guan, Yuan; Zhao, Meiping; Li, Yuanzong

    2007-02-12

    We report here a new method for the real-time detection of DNA point mutations with molecular beacon as the fluorescence tracer and 3' (exo-) Bst DNA polymerase large fragment as the polymerase. The method is based on the mechanism of allele specific primer extension-strand displacement (ASPE-SD). To improve the specificity of the method only one cycle of the allele specific polymerase chain reaction (PCR) was used that could largely eliminate the non-specific reactions between the primers and template of the "wrong" genotype. At first, the primer and molecular beacon both hybridize to the DNA template, and the molecular beacon emits intensive fluorescence. The role of 3' exonuclease excision of Bst DNA polymerase large fragment is utilized for primer extension. When 3'-termini matches its corresponding template, the primer would efficiently extend and replace the molecular beacon that would simultaneously return to its closed form leading to the quenching of the fluorescence. However, when 3'-termini of the primer mismatches its corresponding template primer extension and molecular beacon displacement would not happen and fluorescence of the hybridized molecular beacon holds the line without fluorescence quenching. This approach was fully demonstrated in synthetic template systems and applied to detect point mutation at codon 259, a possible point mutation site in exon 7 of p53 gene, obtained from human genomic DNA samples with unambiguous differentiation power.

  15. A proposed mechanism of the influence of gold nanoparticles on DNA hybridization.

    PubMed

    Sedighi, Abootaleb; Li, Paul C H; Pekcevik, Idah C; Gates, Byron D

    2014-07-22

    A combination of gold nanoparticles (AuNPs) and nucleic acids has been used in biosensing applications. However, there is a poor fundamental understanding of how gold nanoparticle surfaces influence the DNA hybridization process. Here, we measured the rate constants of the hybridization and dehybridization of DNA on gold nanoparticle surfaces to enable the determination of activation parameters using transition state theory. We show that the target bases need to be detached from the gold nanoparticle surfaces before zipping. This causes a shift of the rate-limiting step of hybridization to the mismatch-sensitive zipping step. Furthermore, our results propose that the binding of gold nanoparticles to the single-stranded DNA segments (commonly known as bubbles) in the duplex DNA stabilizes the bubbles and accelerates the dehybridization process. We employ the proposed mechanism of DNA hybridization/dehybridization to explain the ability of 5 nm diameter gold nanoparticles to help discriminate between single base-pair mismatched DNA molecules when performed in a NanoBioArray chip. The mechanistic insight into the DNA-gold nanoparticle hybridization/dehybridization process should lead to the development of new biosensors.

  16. DNA-inorganic hybrid nanovaccine for cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Zhu, Guizhi; Liu, Yijing; Yang, Xiangyu; Kim, Young-Hwa; Zhang, Huimin; Jia, Rui; Liao, Hsien-Shun; Jin, Albert; Lin, Jing; Aronova, Maria; Leapman, Richard; Nie, Zhihong; Niu, Gang; Chen, Xiaoyuan

    2016-03-01

    Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit cancer development. Unmethylated CpG dinucleotide-containing oligonucleotides (CpG), a class of potent adjuvants that activate the toll-like receptor 9 (TLR9) located in the endolysosome of many antigen-presenting cells (APCs), are promising for cancer immunotherapy. However, clinical application of synthetic CpG confronts many challenges such as suboptimal delivery into APCs, unfavorable pharmacokinetics caused by limited biostability and short in vivo half-life, and side effects associated with leaking of CpG into the systemic circulation. Here we present DNA-inorganic hybrid nanovaccines (hNVs) for efficient uptake into APCs, prolonged tumor retention, and potent immunostimulation and cancer immunotherapy. hNVs were self-assembled from concatemer CpG analogs and magnesium pyrophosphate (Mg2PPi). Mg2PPi renders hNVs resistant to nuclease degradation and thermal denaturation, both of which are demanding characteristics for effective vaccination and the storage and transportation of vaccines. Fluorophore-labeled hNVs were tracked to be efficiently internalized into the endolysosomes of APCs, where Mg2PPi was dissolved in an acidic environment and thus CpG analogs were exposed to hNVs. Internalized hNVs in APCs led to (1) elevated secretion of proinflammatory factors, and (2) elevated expression of co-stimulatory factors. Compared with molecular CpG, hNVs dramatically prolonged the tissue retention of CpG analogs and reduced splenomegaly, a common side effect of CpG. In a melanoma mouse model, two injections of hNVs significantly inhibited the tumor growth and outperformed the molecular CpG. These results suggest hNVs are promising for cancer immunotherapy.Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit

  17. rasiRNAs, DNA damage, and embryonic axis specification.

    PubMed

    Theurkauf, W E; Klattenhoff, C; Bratu, D P; McGinnis-Schultz, N; Koppetsch, B S; Cook, H A

    2006-01-01

    Drosophila repeat-associated small interfering RNAs (rasiRNAs) have been implicated in retrotransposon and stellate locus silencing. However, mutations in the rasiRNA pathway genes armitage, spindle-E, and aubergine disrupt embryonic axis specification, triggering defects in microtubule organization and localization of osk and grk mRNAs during oogenesis. We show that mutations in mei-41 and mnk, which encode ATR and Chk2 kinases that function in DNA damage signal transduction, dramatically suppress the cytoskeletal and RNA localization defects associated with rasiRNA mutations. In contrast, stellate and retrotransposon silencing are not restored in mei-41 and mnk double mutants. We also find that armitage, aubergine, and spindle-E mutations lead to germ-line-specific accumulation of gamma-H2Av foci, which form at DNA double-strand breaks, and that mutations in armi lead to Chk2-dependent phosphorylation of Vasa, an RNA helicase required for axis specification. The Drosophila rasiRNA pathway thus appears to suppress DNA damage in the germ line, and mutations in this pathway block axis specification by activating an ATR/Chk2-dependent DNA damage response that disrupts microtubule polarization and RNA localization.

  18. Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria.

    PubMed Central

    Lovell, C R; Hui, Y

    1991-01-01

    The acetogens, although phylogenetically diverse, can be characterized by their possession of the acetyl coenzyme A (acetyl-CoA) pathway for autotrophic CO2 fixation. The gene encoding formyltetrahydrofolate synthetase, a key enzyme of the acetyl-CoA pathway, was previously cloned from the thermophilic acetogen Clostridium thermoaceticum and has now been tested as a group-specific probe for acetogens. Stable hybrids were formed between the probe and single DNA fragments from eight known acetogens representing six genera. A hybrid was also formed between the probe and a DNA fragment from one sulfate reducer known to be capable of both autotrophic CO2 fixation and acetate catabolism. No such hybrid was formed between the probe and DNA from a homoacetate fermenter not known to use the acetyl-CoA pathway, with two known formyltetrahydrofolate synthetase-producing purine fermenters, or with DNA from 27 other species representing 16 genera of organisms that do not use the acetyl-CoA pathway. DNA purified from cells extracted from horse manure was also screened with the acetogen probe. Six hybrids, indicating at least six detectable acetogen "strains," were observed. Images PMID:1768134

  19. DNA-inorganic hybrid nanovaccine for cancer immunotherapy.

    PubMed

    Zhu, Guizhi; Liu, Yijing; Yang, Xiangyu; Kim, Young-Hwa; Zhang, Huimin; Jia, Rui; Liao, Hsien-Shun; Jin, Albert; Lin, Jing; Aronova, Maria; Leapman, Richard; Nie, Zhihong; Niu, Gang; Chen, Xiaoyuan

    2016-03-28

    Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit cancer development. Unmethylated CpG dinucleotide-containing oligonucleotides (CpG), a class of potent adjuvants that activate the toll-like receptor 9 (TLR9) located in the endolysosome of many antigen-presenting cells (APCs), are promising for cancer immunotherapy. However, clinical application of synthetic CpG confronts many challenges such as suboptimal delivery into APCs, unfavorable pharmacokinetics caused by limited biostability and short in vivo half-life, and side effects associated with leaking of CpG into the systemic circulation. Here we present DNA-inorganic hybrid nanovaccines (hNVs) for efficient uptake into APCs, prolonged tumor retention, and potent immunostimulation and cancer immunotherapy. hNVs were self-assembled from concatemer CpG analogs and magnesium pyrophosphate (Mg2PPi). Mg2PPi renders hNVs resistant to nuclease degradation and thermal denaturation, both of which are demanding characteristics for effective vaccination and the storage and transportation of vaccines. Fluorophore-labeled hNVs were tracked to be efficiently internalized into the endolysosomes of APCs, where Mg2PPi was dissolved in an acidic environment and thus CpG analogs were exposed to hNVs. Internalized hNVs in APCs led to (1) elevated secretion of proinflammatory factors, and (2) elevated expression of co-stimulatory factors. Compared with molecular CpG, hNVs dramatically prolonged the tissue retention of CpG analogs and reduced splenomegaly, a common side effect of CpG. In a melanoma mouse model, two injections of hNVs significantly inhibited the tumor growth and outperformed the molecular CpG. These results suggest hNVs are promising for cancer immunotherapy.

  20. DNA minicircles clarify the specific role of DNA structure on retroviral integration

    PubMed Central

    Pasi, Marco; Mornico, Damien; Volant, Stevenn; Juchet, Anna; Batisse, Julien; Bouchier, Christiane; Parissi, Vincent; Ruff, Marc; Lavery, Richard; Lavigne, Marc

    2016-01-01

    Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms. PMID:27439712

  1. DNA minicircles clarify the specific role of DNA structure on retroviral integration.

    PubMed

    Pasi, Marco; Mornico, Damien; Volant, Stevenn; Juchet, Anna; Batisse, Julien; Bouchier, Christiane; Parissi, Vincent; Ruff, Marc; Lavery, Richard; Lavigne, Marc

    2016-09-19

    Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms. PMID:27439712

  2. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  3. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement

    PubMed Central

    Hwang, Michael T.; Landon, Preston B.; Lee, Joon; Choi, Duyoung; Mo, Alexander H.; Glinsky, Gennadi; Lal, Ratnesh

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  4. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.

  5. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  6. Chimeric TALE recombinases with programmable DNA sequence specificity.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  7. Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer.

    PubMed

    Pumera, Martin; Castañeda, Maria Teresa; Pividori, Maria Isabel; Eritja, Ramon; Merkoçi, Arben; Alegret, Salvador

    2005-10-11

    A novel gold nanoparticle-based protocol for detection of DNA hybridization based on a magnetically trigged direct electrochemical detection of gold quantum dot tracers is described. It relies on binding target DNA (here called DNA1) with Au(67) quantum dot in a ratio 1:1, followed by a genomagnetic hybridization assay between Au(67)-DNA1 and complementary probe DNA (here called DNA2) marked paramagnetic beads. Differential pulse voltammetry is used for a direct voltammetric detection of resulting Au(67) quantum dot-DNA1/DNA2-paramagnetic bead conjugate on magnetic graphite-epoxy composite electrode. The characterization, optimization, and advantages of the direct electrochemical detection assay for target DNA are demonstrated. The two main highlights of presented assay are (1) the direct voltammetric detection of metal quantum dots obviates their chemical dissolution and (2) the Au(67) quantum dot-DNA1/DNA2-paramagnetic bead conjugate does not create the interconnected three-dimensional network of Au-DNA duplex-paramagnetic beads as previously developed nanoparticle DNA assays, pushing down the achievable detection limits.

  8. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  9. Combination of electron microscopic in situ hybridization and anti-DNA antibody labelling reveals a peculiar arrangement of ribosomal DNA in the fibrillar centres of the plant cell nucleolus.

    PubMed

    Yano, Hiroyuki; Sato, Seiichi

    2002-01-01

    The fibrillar centres (FCs) in the nucleoli of Allium cepa usually contained compact dense chromatin, which was always surrounded with light fibrous material (LFM). Distribution of 18S ribosomal DNA (rDNA) in the FCs was examined by in situ hybridization at the light and electron microscopic levels and the results were compared with those obtained by immunogold labelling with anti-DNA antibodies. Anti-DNA antibodies heavily labelled the dense chromatin of the FCs but scarcely labelled the LFM. However, electron microscopic in situ hybridization using the 18S rDNA probe showed that the label in the dense chromatin was extremely weak compared with that obtained by the anti-DNA antibody labelling: the specific label with anti-DNA antibodies of the dense chromatin was about 15 times as much as that of the LFM, whereas the specific label with in situ hybridization in the dense chromatin was only about 1.7 times higher than in the LFM. These results suggest that the rDNA encoding rRNA is preferentially released from the dense chromatin and that non-transcribed intergenic spacers remain in the dense chromatin as the anchoring sites of rDNA. PMID:12227553

  10. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs

    SciTech Connect

    Travis, G.H.; Sutcliffe, J.G.

    1988-03-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, the authors developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA.

  11. Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces.

    PubMed

    Zagorodko, Oleksandr; Spadavecchia, Jolanda; Serrano, Aritz Yanguas; Larroulet, Iban; Pesquera, Amaia; Zurutuza, Amaia; Boukherroub, Rabah; Szunerits, Sabine

    2014-11-18

    Strategies employed to interface biomolecules with nanomaterials have considerably advanced in recent years and found practical applications in many different research fields. The construction of nucleic acid modified interfaces together with the label-free detection of hybridization events has been one of the major research focuses in science and technology. In this paper, we demonstrate the high interest of graphene-on-metal surface plasmon resonance (SPR) interfaces for the detection of DNA hybridization events in the attomolar concentration range. The strategy consists on the noncovalent functionalization of graphene-coated SPR interfaces with gold nanostars carrying single-stranded DNA (ssDNA). Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The DNA sensor exhibits a detection limit of ≈500 aM for complementary DNA with a linear dynamic range up to 10(-8) M. This label-free DNA detection platform should spur off new interest toward the use of commercially available graphene-coated SPR interfaces. PMID:25341125

  12. A Hybrid Computer Simulation to Generate the DNA Distribution of a Cell Population.

    ERIC Educational Resources Information Center

    Griebling, John L.; Adams, William S.

    1981-01-01

    Described is a method of simulating the formation of a DNA distribution, on which statistical results and experimentally measured parameters from DNA distribution and percent-labeled mitosis studies are combined. An EAI-680 and DECSystem-10 Hybrid Computer configuration are used. (Author/CS)

  13. PCR-derived ssDNA probes for fluorescent in situ hybridization to HIV-1 RNA.

    PubMed

    Knuchel, M C; Graf, B; Schlaepfer, E; Kuster, H; Fischer, M; Weber, R; Cone, R W

    2000-02-01

    We developed a simple and rapid technique to synthesize single-stranded DNA (ssDNA) probes for fluorescent in situ hybridization (ISH) to human immunodeficiency virus 1 (HIV-1) RNA. The target HIV-1 regions were amplified by the polymerase chain reaction (PCR) and were simultaneously labeled with dUTP. This product served as template for an optimized asymmetric PCR (one-primer PCR) that incorporated digoxigenin (dig)-labeled dUTP. The input DNA was subsequently digested by uracil DNA glycosylase, leaving intact, single-stranded, digoxigenin-labeled DNA probe. A cocktail of ssDNA probes representing 55% of the HIV-1 genome was hybridized to HIV-1-infected 8E5 T-cells and uninfected H9 T-cells. For comparison, parallel hybridizations were done with a plasmid-derived RNA probe mix covering 85% of the genome and a PCR-derived RNA probe mix covering 63% of the genome. All three probe types produced bright signals, but the best signal-to-noise ratios and the highest sensitivities were obtained with the ssDNA probe. In addition, the ssDNA probe syntheses generated large amounts of probe (0.5 to 1 microg ssDNA probe per synthesis) and were easier to perform than the RNA probe syntheses. These results suggest that ssDNA probes may be preferable to RNA probes for fluorescent ISH. (J Histochem Cytochem 48:285-293, 2000)

  14. Identification of species in tribe Brassiceae by dot-blot hybridization using species-specific ITS1 probes.

    PubMed

    Tonosaki, K; Nishio, Takeshi

    2010-10-01

    Simple, reliable methods for identification of species are required for management of many species and lines in a plant gene bank. Species-specific probes were designed from published sequences of the ITS1 region in rDNA of 16 species in Brassica and its related genera, and used as probes for dot-blot hybridization with plant genomic DNA. All the probes detected species-specific signals at dot-blots of genomic DNAs of the 16 species in Brassica, Diplotaxis, Eruca, and Raphanus. Signals of the Brassica digenomic species in the U's triangle, i.e., B. napus, B. juncea, and B. carinata, were detected by the probes of their parental monogenomic species, i.e., B. rapa, B. nigra, and B. oleracea. The probe for B. oleracea showed signals of B. balearica, B. cretica, B. incana, B. insularis, and B. macrocarpa, which have the C genome as B. oleracea. Eruca vesicaria DNA was detected by the probe for E. sativa, which has been classified as a subspecies of E. vescaria. DNA of leaf tissue extracted by an alkaline solution and seed DNA prepared by the NaI method can be used directly for dot-blotting. Misidentification of species was revealed in 20 accessions in the Tohoku University Brassica Seed Bank. These results indicate dot-blot hybridization to be a simple and efficient technique for identification of plant species in a gene bank.

  15. Detection and analysis of leptospiral DNA in early Leptospirosis by polymerase chain reaction and DNA hybridization with Digoxingenin-AMPPD

    NASA Astrophysics Data System (ADS)

    Bao, Lang; Yu, Ye-Rong; Terpstra, W. J.

    1994-07-01

    Fourteen serum specimens from patients with early Leptospirosis proven by blood culture and serological test were detected by PCR with the oligonucleotide primers obtained from a genomic library of leptospira interrogans. The amplified DNA were hybridized with the homologous DNA probe labeling with Digoxingenin-AMPPD. All of the samples revealed the presence of leptospira and the strong signals were visualized with homologous DNA probes hybridization. Negative and positive controls appeared correctly. The DNA fragment generated from PCR amplification homologically hybridized with the DNA of 16 strains of leptospira. The single recognized band (about 400 bps) from 6 out of the 16 strains has come out which are representative of the principal strains in Sichuan, China. The results demonstrated that PCR is an advanced diagnostic technique for early Leptospirosis. The treatment of samples is easy and has little risk of DNA loss and contamination. This is a considerable advantage over other detective techniques and can be available especially in China and other developing countries.

  16. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    NASA Astrophysics Data System (ADS)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’Ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  17. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    PubMed Central

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  18. Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization.

    PubMed

    Hu, Po; Huang, Cheng Zhi; Li, Yuan Fang; Ling, Jian; Liu, Yu Ling; Fei, Liang Run; Xie, Jian Ping

    2008-03-01

    In this contribution, we design a visual sensor for DNA hybridization with DNA probe-modified magnetic particles (MPs) and multiwalled carbon nanotubes (MWNTs) without involving a visual recognition element such as fluorescent/chemiluminescent reagents. It was found that DNA probe-modified MWNTs, which could be dispersed in aqueous medium and have strong light scattering signals under the excitation of a light beam in the UV-vis region, could connect with DNA probe-modified MPs together in the presence of perfectly complementary target DNA and form a sandwich structure. In a magnetic field, the formed MP-MWNT species can easily be removed from the solution, resulting in a decrease of light scattering signals. Thus, a magnetic particle-based sandwich sensor could be developed to detect DNA hybridization by measuring the light scattering signals with DNA-modified MWNTs as recognition elements. Experiments showed that the DNA-modified MPs sensor could be reused at least 17 times and was stable for more than 6 months.

  19. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    SciTech Connect

    Ito, M.; Kobayashi, T.; Ito, Y.; Hayashida, T.; Nii, D.; Umemura, K.; Homma, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  20. Description of a novel HLA-B allele, B*5613, identified during HLA-typing using sequence-specific oligonucleotide hybridization and sequence-specific amplification.

    PubMed

    Hoppe, B; Heymann, G A; Schoenemann, C; Nagy, M; Kiesewetter, H; Salama, A

    2004-11-01

    Here, we report on the characterization of a novel human leukocyte antigen (HLA)-B allele, B*5613. The allele was identified in an adult male from North Africa who was suffering from sickle cell anemia. HLA-B*5613 most closely matches to B*5601 differing only by a substitution of three nucleotides of codon 180. Due to this substitution, low-resolution HLA-typing using sequence-specific oligonucleotide hybridization or amplification using sequence-specific primers gave inconclusive results. DNA sequencing confirmed a variation of codon 180 (CTG-->GAC) resulting in an amino acid substitution Leu156Asp. PMID:15496207

  1. Natural Competence and the Evolution of DNA Uptake Specificity

    PubMed Central

    Mell, Joshua Chang

    2014-01-01

    Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple “dialects,” with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought. PMID:24488316

  2. High specific surface gold electrode on polystyrene substrate: Characterization and application as DNA biosensor.

    PubMed

    Yang, Zhiliu; Liu, Yichen; Lu, Wei; Yuan, Qingpan; Wang, Wei; Pu, Qiaosheng; Yao, Bo

    2016-05-15

    In the past decades, many efforts have been made to improve the sensitivity and specificity of electrochemical DNA biosensors. However, it is still strongly required to develop disposable and reliable DNA biosensors for wide and practical application. In this article, we reported superior electrochemical properties of an integrated plastic-gold electrode (PGE) fabricated in-house by chemical plating on polystyrene substrate. PGEs were found having extremely high capacity of DNA immobilization compared with gold electrodes fabricated by standard sputtering based photolithography. Unique nano-structured surface was observed on PGEs through morphology techniques, which would to some extend give an explanation to higher capacity of DNA immobilization on PGEs. A probable mechanism of carboxylic acid produced on polystyrene substrate after exposure to UV irradiation was proposed and discussed for the first time. This biosensor was applied to detection and manipulate of DNA hybridization. Detection limit of 7.2×10(-11) M and 1-500 nM of linearity range was obtained.

  3. DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool

    PubMed Central

    Park, Jin-Young; Park, Su-Moon

    2009-01-01

    Recent advances in label free DNA hybridization sensors employing electrochemical impedance spectroscopy (EIS) as a detection tool are reviewed. These sensors are based on the modulation of the blocking ability of an electrode modified with a probe DNA by an analyte, i.e., target DNA. The probe DNA is immobilized on a self-assembled monolayer, a conducting polymer film, or a layer of nanostructures on the electrode such that desired probe DNA would selectively hybridize with target DNA. The rate of charge transfer from the electrode thus modified to a redox indicator, e.g., [Fe(CN)6]3−/4−, which is measured by EIS in the form of charge transfer resistance (Rct), is modulated by whether or not, as well as how much, the intended target DNA is selectively hybridized. Efforts made to enhance the selectivity as well as the sensitivity of DNA sensors and to reduce the EIS measurement time are briefly described along with brief future perspectives in developing DNA sensors. PMID:22303136

  4. Extensive allele-specific translational regulation in hybrid mice.

    PubMed

    Hou, Jingyi; Wang, Xi; McShane, Erik; Zauber, Henrik; Sun, Wei; Selbach, Matthias; Chen, Wei

    2015-08-07

    Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.

  5. Thymine and guanine base specificity of human myeloma proteins with anti-DNA activity.

    PubMed Central

    Zouali, M; Stollar, B D

    1986-01-01

    To further our understanding of the molecular basis of DNA-autoantibody interactions, we have characterized the specificities of three IgG human myeloma proteins that bind DNA. We measured their binding to synthetic single- and double-stranded homopolynucleotides, random and alternating copolymers, oligonucleotides, and nucleotides or nucleosides conjugated to non-nucleic acid carriers. All three antibodies bound single-stranded nucleic acids, including both polyribonucleotides and polydeoxyribonucleotides. They varied in relative affinities for polynucleotides of varying base composition. Polymers containing the purines guanine or hypoxanthine and/or the pyrimidine thymine were most reactive with all three proteins. A myeloma protein that reacted with poly(G), poly(I), or poly(dT) also bound to the corresponding nucleosides or nucleotides conjugated to bovine serum albumin. None of the antibodies reacted with base-paired double-helical polynucleotides (double-stranded RNA, RNA-DNA hybrid or double-stranded DNA). The results indicate that base specificity is prominent in their reactions and that the accessible epitopes in single-stranded polynucleotides become masked upon base pairing in double-stranded helices. These findings suggest a model in which positions N1 and O6 of guanine and hypoxanthine and N3 and O4 of thymine interact with amino acids of the antibody-combining site. PMID:3771789

  6. Fluorescent in situ hybridization of mitochondrial DNA and RNA.

    PubMed

    Alán, Lukáš; Zelenka, Jaroslav; Ježek, Jan; Dlasková, Andrea; Ježek, Petr

    2010-01-01

    To reveal nucleic acid localization in mitochondria, we designed molecular beacon fluorescent probes against: i) the light strand complementary to ND5 mitochondrial DNA (mtDNA) gene (annealing also to corresponding mRNA); ii) displacement (D) loop 7S DNA (annealing also to parallel heavy strand mtDNA and corresponding light strand transcript); iii) the proximal D-loop heavy strand displaced by the light strand promoter minor RNA. Confocal microscopy demonstrated ND5 probe spreading (less for other probes) in mitochondrial reticulum tubules but upon RNase A treatment all probes contoured mtDNA nucleoid localization. DNase I spread the signal over mitochondrial tubules. Future applications are discussed.

  7. Probing specific DNA sequences with luminescent semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Taylor, Jason R.; Nie, Shuming

    2001-06-01

    The development of new fluorescent probes has impacted many areas of research such as medical diagnostics, high-speed drug screening, and basic molecular biology. Main limitations to traditional organic fluorophores are their relatively weak intensities, short life times (eg., photobleaching), and broad emission spectra. The desire for more intense fluorescent probes with higher quality photostability and narrow emission wavelengths has led to the development and utilization of semiconductor quantum dots as a new label. In this work, we have modified semicondutor quantum dots (QD's) with synthetic oligonucleotides to probe a specific DNA target sequence both in solution as well as immobilized on a solid substrate. In the first approach, specific target sequences are detected in solution by using short oligonucleotide probes, which are covalently linked to semiconductor quantum dots. In the second approach, DNA target sequences are covalently attached to a glass substrate and detected using oligonucleotides linked to semiconductor quantum dots.

  8. Elucidation of the Mechanism of Gene Silencing using Small Interferin RNA: DNA Hybrid Molecules

    SciTech Connect

    Dugan, L

    2006-02-08

    The recent discovery that short hybrid RNA:DNA molecules (siHybrids) induce long-term silencing of gene expression in mammalian cells conflicts with the currently hypothesized mechanisms explaining the action of small, interfering RNA (siRNA). As a first step to elucidating the mechanism for this effect, we set out to quantify the delivery of siHybrids and determine their cellular localization in mammalian cells. We then tracked the segregation of the siHybrids into daughter cells after cell division. Markers for siHybrid delivery were shown to enter cells with and without the use of a transfection agent. Furthermore, delivery without transfection agent only occurred after a delay of 2-4 hours, suggesting a degradation process occurring in the cell culture media. Therefore, we studied the effects of nucleases and backbone modifications on the stability of siHybrids under cell culture conditions.

  9. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen.

    PubMed Central

    Hamer, J E; Farrall, L; Orbach, M J; Valent, B; Chumley, F G

    1989-01-01

    We have identified a family of dispersed repetitive DNA sequences in the genome of Magnaporthe grisea, the fungus that causes rice blast disease. We have named this family of DNA sequences "MGR" for M. grisea repeat. Analysis of five MGR clones demonstrates that MGR sequences are highly polymorphic. The segregation of MGR sequences in genetic crosses and hybridization of MGR probes to separated, chromosome-size DNA molecules of M. grisea shows that this family of sequences is distributed among the M. grisea chromosomes. MGR sequences also hybridize to discrete poly(A)+ RNAs. Southern blot analysis using a MGR probe can distinguish rice pathogens from various sources. However, MGR sequences are not highly conserved in the genomes of M. grisea field isolates that do not infect rice. These results suggest that host selection for a specific pathogen genotype has occurred during the breeding and cultivation of rice. Images PMID:2602385

  10. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.

    PubMed

    Martin, Willis; Zhu, Wusheng; Krilov, Goran

    2008-12-18

    Recent discovery that single-stranded DNA (ssDNA) binds to carbon nanotubes with high affinity to form soluble hybrids has received great attention as a promising approach to solving the long-standing problem of nanotube solubilization and separation. The mechanism of this process, including the nature of the DNA-nanotube interactions and the molecular structure of the hybrids is still not well understood. Here, we use all-atom replica-exchange molecular dynamics simulations to study the association of several ssDNA decamers with single-walled carbon nanotubes of different chirality in an aqueous environment. The oligonucleotides are found to readily adsorb onto the nanotube surface, after which they undergo a slow structural rearrangement. Cluster analysis of bound DNA conformations as well as population distribution maps computed as a function of several local and global order parameters show that the hybrids exhibit a complex morphology with DNA strands assuming a number of distinct backbone geometries, which depend on both DNA sequence and nanotube diameter. In contrast, the nucleotide bases are found to align parallel to the nanotube surface with a high degree of orientational order. While the binding appears to be primarily driven by energetically favorable pi-stacking of DNA bases onto the nanotube surface, equilibrium distribution of hybrid conformations is modulated by a complex interplay of forces, including the DNA conformational strain and solvent interactions. As a result, the hybrid free-energy landscapes are found to be rugged, with multiple low-lying minima separated by high barriers, several of which are significantly populated at room temperature. Qualitative differences are observed in free energy profiles of purine- and pyrimidine-based oligonucleotide sequences and are attributed to the difference in self-stacking propensity of the bases.

  11. Layered zirconium phosphonate with inorganic–organic hybrid structure: Preparation and its assembly with DNA

    SciTech Connect

    Liu, Li-Min; Lu, Guo-Yuan; Jiang, Li-Ping; Zhu, Jun-Jie

    2014-07-01

    An aminoethoxy-functionalized zirconium phosphonate (Zr(O{sub 3}POCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}·3H{sub 2}O), abbreviated as ZrRP (R=OCH{sub 2}CH{sub 2}NH{sub 2}), with layered structure has been synthesized. This layered compound possesses the characteristic of inorganic–organic hybrid, due to the covalently linked aminoethoxy in the host layer. The anion exchanged property of this zirconium phosphonate is suitable for the direct intercalation of negatively charged DNA, which is different from these reported zirconium phosphates or zirconium phosphonates. As a precursor, this prepared zirconium phosphonate was utilized to fabricate a novel DNA/ZrRP binary hybrid via a delamination-reassembly procedure. The release behavior of DNA from the DNA/ZrRP composite was investigated at different medium pH, because the combination between zirconium phosphonate sheets and DNA was pH-dependent sensitively. Moreover, the helical conformation of DNA was almost retained after the intercalation and release process. These properties of the DNA/ZrRP composite suggested the potential application of layered zirconium phosphonate as a non-viral vector in gene delivery. - Graphical abstract: The intercalation of DNA into zirconium phosphonate and the release of DNA from the interlayer of zirconium phosphonate. - Highlights: ●A layered aminoethoxy-functionalized zirconium phosphonate has been synthesized. ●DNA was intercalated directly into the prepared zirconium phosphonate. ●A novel zirconium phosphonate/DNA binary hybrid was fabricated. ●DNA can be reversibly released from the interlayer of zirconium phosphonate. ●The intercalation/release processes do not induce the denaturalization of DNA.

  12. Negative Subtraction Hybridization: An efficient method to isolate large numbers of condition-specific cDNAs

    PubMed Central

    Ray, Anamika; Macwana, Sunita; Ayoubi, Patricia; Hall, Leo T; Prade, Rolf; Mort, Andrew J

    2004-01-01

    Background The construction of cDNA libraries is a useful tool to understand gene expression in organisms under different conditions, but random sequencing of unbiased cDNA collections is laborious and can give rise to redundant EST collections. We aimed to isolate cDNAs of messages induced by switching Aspergillus nidulans from growth on glucose to growth on selected polysaccharides. Approximately 4,700 contigs from 12,320 ESTs were already available from a cDNA library representing transcripts isolated from glucose-grown A. nidulans during asexual development. Our goals were to expand the cDNA collection without repeated sequencing of previously identified ESTs and to find as many transcripts as possible that are specifically induced in complex polysaccharide metabolism. Results We have devised a Negative Subtraction Hybridization (NSH) method and tested it in A. nidulans. NSH entails screening a plasmid library made from cDNAs prepared from cells grown under a selected physiological condition with labeled cDNA probes prepared from another physiological condition. Plasmids with inserts that failed to hybridize to cDNA probes through two rounds of screening (i.e. negatives) indicate that they are transcripts present at low concentration in the labeled probe pool. Thus, these transcripts will be predominantly condition-specific, along with some rare transcripts. In a screen for transcripts induced by switching the carbon source from glucose to 12 selected polysaccharides, 3,532 negatives were isolated from approximately 100,000 surveyed colonies using this method. Negative clones were end-sequenced and assembled into 2,039 contigs, of which 1,722 were not present in the previously characterized glucose-grown cDNA library. Single-channel microarray hybridization experiments confirmed that the majority of the negatives represented genes that were differentially induced by a switch from growth in glucose to one or more of the polysaccharides. Conclusions The Negative

  13. DNA methylation status predicts cell type-specific enhancer activity

    PubMed Central

    Wiench, Malgorzata; John, Sam; Baek, Songjoon; Johnson, Thomas A; Sung, Myong-Hee; Escobar, Thelma; Simmons, Catherine A; Pearce, Kenneth H; Biddie, Simon C; Sabo, Pete J; Thurman, Robert E; Stamatoyannopoulos, John A; Hager, Gordon L

    2011-01-01

    Cell-selective glucocorticoid receptor (GR) binding to distal regulatory elements is associated with cell type-specific regions of locally accessible chromatin. These regions can either pre-exist in chromatin (pre-programmed) or be induced by the receptor (de novo). Mechanisms that create and maintain these sites are not well understood. We observe a global enrichment of CpG density for pre-programmed elements, and implicate their demethylated state in the maintenance of open chromatin in a tissue-specific manner. In contrast, sites that are actively opened by GR (de novo) are characterized by low CpG density, and form a unique class of enhancers devoid of suppressive effect of agglomerated methyl-cytosines. Furthermore, treatment with glucocorticoids induces rapid changes in methylation levels at selected CpGs within de novo sites. Finally, we identify GR-binding elements with CpGs at critical positions, and show that methylation can affect GR–DNA interactions in vitro. The findings present a unique link between tissue-specific chromatin accessibility, DNA methylation and transcription factor binding and show that DNA methylation can be an integral component of gene regulation by nuclear receptors. PMID:21701563

  14. DNA fingerprinting of Kentucky bluegrass cultivars and hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a high polyploidy, apomictic, self-incompatible, perennial grass, Kentucky bluegrass has such complex genetic architecture that conducting standard Mendelian genetic selection is currently impossible. One large hurdle is the inability to differentiate true hybrids from other apomictic progenies....

  15. Carrier-specific breakpoint-spanning DNA probes: an approach to preimplantation genetic diagnosis in interphase cells.

    PubMed

    Cassel, M J; Munné, S; Fung, J; Weier, H U

    1997-09-01

    Carriers of chromosomal inversions or other balanced rearrangements represent a significant fraction of patients in in-vitro fertilization (IVF) programmes due to recurrent reproductive problems. In most cases, chromosomal imbalance in fertilized oocytes is incompatible with embryo survival leading to increased rates of spontaneous abortions. Assuming that a fraction of the germ cells is karyotypically normal, these patients would greatly benefit from efficient procedures for generation and use of breakpoint-specific DNA hybridization probes in preconception and preimplantation genetic diagnosis (PGD). We describe the generation of such patient-specific probes to discriminate between normal and aberrant chromosomes in interphase cells. First, a large insert DNA library was screened for probes that bind adjacent to the chromosomal breakpoints or span them. Then, probe and hybridization parameters were optimized using white blood cells from the carrier to increase in hybridization signal intensity and contrast. Finally, the probes were tested on target cells (typically polar bodies or blastomeres) and a decision about the colour labelling scheme was made, before the probes can be used for preconception or preimplantation genetic analysis. Thus, it was demonstrated that cells with known structural abnormalities could be detected, based on hybridization of breakpoint spanning yeast artificial chromosome (YAC) DNA probes in interphase cells.

  16. A two-step strategy for constructing specifically self-subtracted cDNA libraries

    PubMed Central

    Laveder, Paolo; De Pittà, Cristiano; Toppo, Stefano; Valle, Giorgio; Lanfranchi, Gerolamo

    2002-01-01

    We have developed a new strategy for producing subtracted cDNA libraries that is optimized for connective and epithelial tissues, where a few exceptionally abundant (super-prevalent) RNA species account for a large fraction of the total mRNA mass. Our method consists of a two-step subtraction of the most abundant mRNAs: the first step involves a novel use of oligo-directed RNase H digestion to lower the concentration of tissue-specific, super-prevalent RNAs. In the second step, a highly specific subtraction is achieved through hybridization with probes from a 3′-end ESTs collection. By applying this technique in skeletal muscle, we have constructed subtracted cDNA libraries that are effectively enriched for genes expressed at low levels. We further report on frequent premature termination of transcription in human muscle mitochondria and discuss the importance of this phenomenon in designing subtractive approaches. The tissue-specific collections of cDNA clones generated by our method are particularly well suited for expression profiling. PMID:11972353

  17. PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis.

    PubMed

    Zhu, Dan; Song, Ping; Shen, Juwen; Su, Shao; Chao, Jie; Aldalbahi, Ali; Zhou, Ziang; Song, Shiping; Fan, Chunhai; Zuo, Xiaolei; Tian, Yang; Wang, Lianhui; Pei, Hao

    2016-05-01

    Understanding the behavior of biomolecules on nanointerface is critical in bioanalysis, which is great challenge due to the instability and the difficulty to control the orientation and loading density of biomolecules. Here, we investigated the thermodynamics and kinetics of DNA hybridization on gold nanoparticle, with the aim to improve the efficiency and speed of DNA analysis. We achieved precise and quantitative surface control by applying a recently developed poly adenines (polyA)-based assembly strategy on gold nanoparticles (DNA-AuNPs). PolyA served as an effective anchoring block based on the preferential binding with the AuNP surface and the appended recognition block adopted an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can be systematically modulated by adjusting the length of polyA block. We found the stability of duplex on AuNP was enhanced with the increasing length of polyA block. When the length of polyA block reached to 40 bases, the thermodynamic properties were more similar to that of duplex in solution. Fast hybridization rate was observed on the diblock DNA-AuNPs and was increased along with the length of polyA block. We consider the high stability and excellent hybridization performance come from the minimization of the DNA-DNA and DNA-AuNP interactions with the use of polyA block. This study provides better understanding of the behavior of biomolecules on the nanointerface and opens new opportunities to construct high-efficiency and high-speed biosensors for DNA analysis. PMID:27058116

  18. Infant sex-specific placental cadmium and DNA methylation associations

    SciTech Connect

    Mohanty, April F.; Farin, Fred M.; Bammler, Theo K.; MacDonald, James W.; Afsharinejad, Zahra; Burbacher, Thomas M.; Siscovick, David S.; and others

    2015-04-15

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  19. A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification.

    PubMed

    Luo, Caihui; Tang, Hua; Cheng, Wei; Yan, Li; Zhang, Decai; Ju, Huangxian; Ding, Shijia

    2013-10-15

    A specific and sensitive methodology was developed successfully for quantitative detection of Enterobacteriaceae bacteria by integrating Exonuclease III-assisted target recycling amplification with a simple electrochemical DNA biosensor. After target DNA hybridizes with capture DNA, Exonuclease III can selectively digest the capture DNA, which releases the target to undergo a new hybridization and cleavage cycle on sensor surface, leading to a successful target recycling. Finally, the left capture DNA is recognized by detection probe to produce the detectable signal, which decreases with the increasing target DNA concentration. Under the optimal conditions, the proposed strategy could detect target DNA down to 8.7 fM with a linear range from 0.01 pM to 1 nM, showing high sensitivity. Meanwhile, the sensing strategy was successfully used for detection of Enterobacteriaceae bacteria down to 40 CFU mL⁻¹ in milk samples. This strategy presented a simple, rapid and sensitive platform for Enterobacteriaceae bacteria detection and would become a versatile and powerful tool for food safety, biothreat detection and environmental monitoring.

  20. Identification of bovine Neospora parasites by PCR amplification and specific small-subunit rRNA sequence probe hybridization.

    PubMed

    Ho, M S; Barr, B C; Marsh, A E; Anderson, M L; Rowe, J D; Tarantal, A F; Hendrickx, A G; Sverlow, K; Dubey, J P; Conrad, P A

    1996-05-01

    Neospora is a newly recognized genus of pathogenic coccidia, closely related to Toxoplasma gondii, that can cause abortion or congenital disease in a variety of domestic animal hosts. On the basis of the small-subunit rRNA gene sequences of Neospora spp. and other apicomplexa coccidia, oligonucleotide primers COC-1 and COC-2 were used for PCR amplification of conserved sequences of approximately 300 bp in size. A Neospora-specific chemiluminescent probe hybridized to Southern blots of amplification products from Neospora DNA but not to Southern blots with amplified DNA from the other coccidian parasites tested. A Toxoplasma-specific probe whose sequence differed from that of the probe for Neospora spp. by a single base pair was used to distinguish these parasites by specific Southern blot hybridization. The PCR system detected as few as one Neospora tachyzoite in the culture medium or five tachyzoites in samples of whole blood or amniotic fluid spiked with Neospora parasites. In addition, Neospora PCR products were successfully amplified from whole blood and amniotic fluid samples of experimentally infected bovine and rhesus macaque fetuses. These results indicate that this PCR and probe hybridization system could be a valuable adjunct to serology and immunohistochemistry for the diagnosis of Neospora infections in bovine or primate fetuses.

  1. Sequence-specific DNA primer effects on telomerase polymerization activity.

    PubMed Central

    Lee, M S; Blackburn, E H

    1993-01-01

    The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo. Images PMID:8413255

  2. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    NASA Technical Reports Server (NTRS)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  3. A novel method for rapid hybridization of DNA to a solid support.

    PubMed

    Pettersson, Erik; Ahmadian, Afshin; Ståhl, Patrik L

    2013-01-01

    Here we present a novel approach entitled Magnetic Forced Hybridization (MFH) that provides the means for efficient and direct hybridization of target nucleic acids to complementary probes immobilized on a glass surface in less than 15 seconds at ambient temperature. In addition, detection is carried out instantly since the beads become visible on the surface. The concept of MFH was tested for quality control of array manufacturing, and was combined with a multiplex competitive hybridization (MUCH) approach for typing of Human Papilloma Virus (HPV). Magnetic Forced Hybridization of bead-DNA constructs to a surface achieves a significant reduction in diagnostic testing time. In addition, readout of results by visual inspection of the unassisted eye eliminates the need for additional expensive instrumentation. The method uses the same set of beads throughout the whole process of manipulating and washing DNA constructs prior to detection, as in the actual detection step itself.

  4. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex.

    PubMed

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-12-06

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel 'recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4-Met28-Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity.

  5. Application of DNA hybridization techniques in the assessment of diarrheal disease among refugess in Thailand. [Shigella; Escherichia coli; Campylobacter; Cryptosporidium

    SciTech Connect

    Taylor, D.N.; Echeverria, P.; Pitarangsi, C.; Seriwatana, J.; Sethabutr, O.; Bodhidatta, L.; Brown, C.; Herrmann, J.E.; Blacklow, N.R.

    1988-01-01

    The epidemiology and etiology of acute diarrheal disease were determined in a Hmong refugee camp on the Thai-Laotian border from April 11 to May 14, 1985. DNA hybridization techniques were used to detect Shigella species, enteroinvasive Escherichia coli, and enterotoxigenic E. coli. A monoclonal enzyme-linked immunosorbent assay was used to detect rotavirus, and standard microbiology was used to detect other enteropathogens. The age-specific diarrheal disease rates were 47 episodes per month per 1000 children less than five years old and 113 episodes per month per 1000 children less than one year old. Rotavirus, enterotoxigenic E. coli, Campylobacter, and Cryptosporidium were the predominant pathogens in children less than two years old. The DNA probe hybridized with 94% of 31 specimens identified as enterotoxigenic E. coli by the standard assays and with none of the specimens in which the standard assays were negative. The probe for Shigella and enteroinvasive E. coli hybridized in eight of 10 stools that contained Shigella and four of 314 stools from which Shigella and enteroinvasive E. coli were not isolated. The use of DNA probes allows specimens to be collected in remote areas with a minimum amount of equipment and technical expertise so that they can be easily transported to a central laboratory for further processing.

  6. Bioinformatic Tools Identify Chromosome-Specific DNA Probes and Facilitate Risk Assessment by Detecting Aneusomies in Extra-embryonic Tissues

    PubMed Central

    Zeng, Hui; Weier, Jingly F; Wang, Mei; Kassabian, Haig J; Polyzos, Aris A; Baumgartner, Adolf; O’Brien, Benjamin; Weier, Heinz-Ulli G

    2012-01-01

    Despite their non-diseased nature, healthy human tissues may show a surprisingly large fraction of aneusomic or aneuploid cells. We have shown previously that hybridization of three to six non-isotopically labeled, chromosome-specific DNA probes reveals different proportions of aneuploid cells in individual compartments of the human placenta and the uterine wall. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes. Chromosome losses in placental or uterine tissues, on the other hand, were detected infrequently. A more thorough numerical analysis of all possible aneusomies occurring in these tissues and the investigation of their spatial as well as temporal distribution would further our understanding of the underlying biology, but it is hampered by the high cost of and limited access to DNA probes. Furthermore, multiplexing assays are difficult to set up with commercially available probes due to limited choices of probe labels. Many laboratories therefore attempt to develop their own DNA probe sets, often duplicating cloning and screening efforts underway elsewhere. In this review, we discuss the conventional approaches to the preparation of chromosome-specific DNA probes followed by a description of our approach using state-of-the-art bioinformatics and molecular biology tools for probe identification and manufacture. Novel probes that target gonosomes as well as two autosomes are presented as examples of rapid and inexpensive preparation of highly specific DNA probes for applications in placenta research and perinatal diagnostics. PMID:23450259

  7. DNA hybridization assay for detection of gypsy moth nuclear polyhedrosis virus in infected gypsy moth (Lymantria dispar L. ) larvae

    SciTech Connect

    Keating, S.T.; Burand, J.P.; Elkinton, J.S. )

    1989-11-01

    Radiolabeled Lymantria dispar nuclear polyhedrosis virus DNA probes were used in a DNA hybridization assay to detect the presence of viral DNA in extracts from infected larvae. Total DNA was extracted from larvae, bound to nitrocellulose filters, and assayed for the presence of viral DNA by two methods: slot-blot vacuum filtration and whole-larval squashes. The hybridization results were closely correlated with mortality observed in reared larvae. Hybridization of squashes of larvae frozen 4 days after receiving the above virus treatments also produced accurate measures of the incidence of virus infection.

  8. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    PubMed

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics.

  9. Nanoporous niobium oxide for label-free detection of DNA hybridization events.

    PubMed

    Choi, Jinsub; Lim, Jae Hoon; Rho, Sangchul; Jahng, Deokjin; Lee, Jaeyoung; Kim, Kyung Ja

    2008-01-15

    We found that DNA probes can be immobilized on anodically prepared porous niobium oxide without a chemical modification of both the DNA probes and the substrate. By using the porous niobium oxide with a positive surface charge, DNA hybridization events are detected on the basis of the blue-shift of a maximum absorption peak in UV-vis-NIR spectroscopy. The blue-shift is ascribed to the change of surface charge upon single- or double-stranded DNA. The method does not require a label and shows high sensitivity with the detection limit of the concentration of 1nM.

  10. Hybridization of potato spindle tuber viroid to cellular DNA of normal plants.

    PubMed

    Hadidi, A; Jones, D M; Gillespie, D H; Wong-Staal, F; Diener, T O

    1976-07-01

    Molecular hybridization experiments of (125)I-labeled potato spindle tuber viroid (PSTV) with DNA from uninfected or PSTV-infected tomato plants showed that infrequent DNA sequences complementary to PSTV exist in both uninfected and infected cells. DNA titration experiments revealed that at least 60% of PSTV is represented by sequences in DNA of several normal solanaceous host species. Phylogenetically diverse plants contain sequences related to less of the PSTV. PSTV-infected tomato or Gynura aurantiaca plants did not possess new PSTV sequences at detectable levels. These results support the hypothesis that PSTV may have originated from genes in normal solanaceous plants.

  11. Quantification of DNA cleavage specificity in Hi-C experiments.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2016-01-01

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered.

  12. Principles Governing DNA Methylation during Neuronal Lineage and Subtype Specification

    PubMed Central

    Sharma, Ali; Klein, Shifra S.; Barboza, Luendreo; Lohdi, Niraj

    2016-01-01

    Although comprehensively described during early neuronal development, the role of DNA methylation/demethylation in neuronal lineage and subtype specification is not well understood. By studying two distinct neuronal progenitors as they differentiate to principal neurons in mouse hippocampus and striatum, we uncovered several principles governing neuronal DNA methylation during brain development. (1) The program consists of three stages: an initial genome-wide methylation during progenitor proliferation is followed by loss of methylation during the transition of regional progenitors to “young” hippocampal/striatal neurons, which is then reversed by gain in methylation during maturation to subtype-specific neurons. (2) At the first two stages, gain and loss of methylation are limited to CpGs, whereas during the third maturation stage, methylation also occurs at non-CpG sites in both lineages. (3) Methylation/demethylation, similar to transcription, are initially highly similar in the two lineages, whereas diversification in methylation and transcription during maturation creates subtype-specific methylation differences. (4) Initially, methylation targets all genomic locations, whereas later, during early and late differentiation, the preferred targets are intronic/intergenic sequences with enhancer-like activity. (5) Differentially methylated genes are enriched in sequential neurodevelopmental functions (such as progenitor proliferation, migration, neuritogenesis, and synaptic transmission); upregulated genes represent current and consecutive stage-specific functions, and downregulated genes represent preceding functions that are no longer required. The main conclusion of our work is that the neuronal methylation/demethylation program is predominantly developmental with minimal lineage specificity, except in the final stage of development when neuron subtype-specific differences also emerge. SIGNIFICANCE STATEMENT Our work is the first to describe a set of

  13. Computational redesign of endonuclease DNA binding and cleavage specificity

    NASA Astrophysics Data System (ADS)

    Ashworth, Justin; Havranek, James J.; Duarte, Carlos M.; Sussman, Django; Monnat, Raymond J.; Stoddard, Barry L.; Baker, David

    2006-06-01

    The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site ~10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.

  14. Genomic landscape of human allele-specific DNA methylation.

    PubMed

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J; Smith, Andrew D

    2012-05-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  15. Genomic landscape of human allele-specific DNA methylation

    PubMed Central

    Fang, Fang; Hodges, Emily; Molaro, Antoine; Dean, Matthew; Hannon, Gregory J.; Smith, Andrew D.

    2012-01-01

    DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species. PMID:22523239

  16. DNA specificity determinants associate with distinct transcription factor functions.

    PubMed

    Hollenhorst, Peter C; Chandler, Katherine J; Poulsen, Rachel L; Johnson, W Evan; Speck, Nancy A; Graves, Barbara J

    2009-12-01

    To elucidate how genomic sequences build transcriptional control networks, we need to understand the connection between DNA sequence and transcription factor binding and function. Binding predictions based solely on consensus predictions are limited, because a single factor can use degenerate sequence motifs and because related transcription factors often prefer identical sequences. The ETS family transcription factor, ETS1, exemplifies these challenges. Unexpected, redundant occupancy of ETS1 and other ETS proteins is observed at promoters of housekeeping genes in T cells due to common sequence preferences and the presence of strong consensus motifs. However, ETS1 exhibits a specific function in T cell activation; thus, unique transcriptional targets are predicted. To uncover the sequence motifs that mediate specific functions of ETS1, a genome-wide approach, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq), identified both promoter and enhancer binding events in Jurkat T cells. A comparison with DNase I sensitivity both validated the dataset and also improved accuracy. Redundant occupancy of ETS1 with the ETS protein GABPA occurred primarily in promoters of housekeeping genes, whereas ETS1 specific occupancy occurred in the enhancers of T cell-specific genes. Two routes to ETS1 specificity were identified: an intrinsic preference of ETS1 for a variant of the ETS family consensus sequence and the presence of a composite sequence that can support cooperative binding with a RUNX transcription factor. Genome-wide occupancy of RUNX factors corroborated the importance of this partnership. Furthermore, genome-wide occupancy of co-activator CBP indicated tight co-localization with ETS1 at specific enhancers, but not redundant promoters. The distinct sequences associated with redundant versus specific ETS1 occupancy were predictive of promoter or enhancer location and the ontology of nearby genes. These findings demonstrate that diversity

  17. Enhancing allele-specific PCR for specifically detecting short deletion and insertion DNA mutations.

    PubMed

    Wang, Yiran; Rollin, Joseph A; Zhang, Y-H Percival

    2010-02-01

    Allele-specific PCR (AS-PCR) has been widely used for the detection of single nucleotide polymorphism. But there are some challenges in using AS-PCR for specifically detecting DNA variations with short deletions or insertions. The challenges are associated with designing selective allele-specific primers as well as the specificity of AS-PCR in distinguishing some types of single base-pair mismatches. In order to address such problems and enhance the applicability of AS-PCR, a general primer design method was developed to create a multiple base-pair mismatch between the primer 3'-terminus and the template DNA. This approach can destabilize the primer-template complex more efficiently than does a single base-pair mismatch, and can dramatically increase the specificity of AS-PCR. As a proof-of-principle demonstration, the method of primer design was applied in colony PCR for identifying plasmid DNA deletion or insertion mutants after site-directed mutagenesis. As anticipated, multiple base-pair mismatches achieved much more specific PCR amplification than single base-pair mismatches. Therefore, with the proposed primer design method, the detection of short nucleotide deletion and insertion mutations becomes simple, accurate and more reliable.

  18. Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures.

    PubMed

    Liu, Shuopeng; Su, Wenqiong; Li, Zonglin; Ding, Xianting

    2015-09-15

    Recent reports have indicated that aberrant expression of microRNAs is highly correlated with occurrence of lung cancer. Therefore, highly sensitive detection of lung cancer specific microRNAs provides an attractive approach in lung cancer early diagnostics. Herein, we designed 3D DNA origami structure that enables electrochemical detection of lung cancer related microRNAs. The 3D DNA origami structure is constituted of a ferrocene-tagged DNA of stem-loop structure combined with a thiolated tetrahedron DNA nanostructure at the bottom. The top portion hybridized with the lung cancer correlated microRNA, while the bottom portion was self-assembled on gold disk electrode surface, which was modified with gold nanoparticles (Au NPs) and blocked with mercaptoethanol (MCH). The preparation process and the performance of the proposed electrochemical genosensor were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimal conditions, the developed genosensor had a detection limit of 10 pM and a good linearity with microRNA concentration ranging from 100 pM to 1 µM, which showed a great potential in highly sensitive clinical cancer diagnosis application.

  19. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts.

    PubMed

    Petty, Jeffrey T; Nicholson, David A; Sergev, Orlin O; Graham, Stuart K

    2014-09-16

    Silver clusters with ~10 atoms form within DNA strands, and the conjugates are chemical sensors. The DNA host hybridizes with short oligonucleotides, and the cluster moieties optically respond to these analytes. Our studies focus on how the cluster adducts perturb the structure of their DNA hosts. Our sensor is comprised of an oligonucleotide with two components: a 5'-cluster domain that complexes silver clusters and a 3'-recognition site that hybridizes with a target oligonucleotide. The single-stranded sensor encapsulates an ~11 silver atom cluster with violet absorption at 400 nm and with minimal emission. The recognition site hybridizes with complementary oligonucleotides, and the violet cluster converts to an emissive near-infrared cluster with absorption at 730 nm. Our key finding is that the near-infrared cluster coordinates two of its hybridized hosts. The resulting tertiary structure was investigated using intermolecular and intramolecular variants of the same dimer. The intermolecular dimer assembles in concentrated (~5 μM) DNA solutions. Strand stoichiometries and orientations were chromatographically determined using thymine-modified complements that increase the overall conjugate size. The intramolecular dimer develops within a DNA scaffold that is founded on three linked duplexes. The high local cluster concentrations and relative strand arrangements again favor the antiparallel dimer for the near-infrared cluster. When the two monomeric DNA/violet cluster conjugates transform to one dimeric DNA/near-infrared conjugate, the DNA strands accumulate silver. We propose that these correlated changes in DNA structure and silver stoichiometry underlie the violet to near-infrared cluster transformation.

  20. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity. PMID:27392233

  1. Using a microfluidic device for 1 μl DNA microarray hybridization in 500 s

    PubMed Central

    Wei, Cheng-Wey; Cheng, Ji-Yen; Huang, Chih-Ting; Yen, Meng-Hua; Young, Tai-Horng

    2005-01-01

    This work describes a novel and simple modification of the current microarray format. It reduces the sample/reagent volume to 1 μl and the hybridization time to 500 s. Both 20mer and 80mer oligonucleotide probes and singly labeled 20mer and 80mer targets, representative of the T-cell acute lymphocytic leukemia 1 (TAL1) gene, have been used to elucidate the performance of this hybridization approach. In this format, called shuttle hybridization, a conventional flat glass DNA microarray is integrated with a PMMA microfluidic chip to reduce the sample and reagent consumption to 1/100 of that associated with the conventional format. A serpentine microtrench is designed and fabricated on a PMMA chip using a widely available CO2 laser scriber. The trench spacing is compatible with the inter-spot distance in standard microarrays. The microtrench chip and microarray chip are easily aligned and assembled manually so that the microarray is integrated with a microfluidic channel. Discrete sample plugs are employed in the microchannel for hybridization. Flowing through the microchannel with alternating depths and widths scrambles continuous sample plug into discrete short plugs. These plugs are shuttled back and forth along the channel, sweeping over microarray probes while re-circulation mixing occurs inside the plugs. Integrating the microarrays into the microfluidic channel reduces the DNA–DNA hybridization time from 18 h to 500 s. Additionally, the enhancement of DNA hybridization reaction by the microfluidic device is investigated by determining the coefficient of variation (CV), the growth rate of the hybridization signal and the ability to discriminate single-base mismatch. Detection limit of 19 amol was obtained for shuttle hybridization. A 1 μl target was used to hybridize with an array that can hold 5000 probes. PMID:15891111

  2. Method for performing site-specific affinity fractionation for use in DNA sequencing

    DOEpatents

    Mirzabekov, Andrei Darievich; Lysov, Yuri Petrovich; Dubley, Svetlana A.

    1999-01-01

    A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between said cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting said extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to said extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from said array.

  3. Method for performing site-specific affinity fractionation for use in DNA sequencing

    DOEpatents

    Mirzabekov, A.D.; Lysov, Y.P.; Dubley, S.A.

    1999-05-18

    A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between the cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting the extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to the extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from the array. 14 figs.

  4. Prostaglandin E₂ increases fibroblast gene-specific and global DNA methylation via increased DNA methyltransferase expression.

    PubMed

    Huang, Steven K; Scruggs, Anne M; Donaghy, Jake; McEachin, Richard C; Fisher, Aaron S; Richardson, Bruce C; Peters-Golden, Marc

    2012-09-01

    Although alterations in DNA methylation patterns have been associated with specific diseases and environmental exposures, the mediators and signaling pathways that direct these changes remain understudied. The bioactive lipid mediator prostaglandin E(2) (PGE(2)) has been shown to exert a myriad of effects on cell survival, proliferation, and differentiation. Here, we report that PGE(2) also signals to increase global DNA methylation and DNA methylation machinery in fibroblasts. HumanMethylation27 BeadChip array analysis of primary fetal (IMR-90) and adult lung fibroblasts identified multiple genes that were hypermethylated in response to PGE(2). PGE(2), compared with nontreated controls, increased expression and activity (EC(50)∼10(7) M) of one specific isoform of DNA methyltransferase, DNMT3a. Silencing of DNMT3a negated the ability of PGE(2) to increase DNMT activity. The increase in DNMT3a expression was mediated by PGE(2) signaling via its E prostanoid 2 receptor and the second messenger cAMP. PGE(2), compared with the untreated control, increased the expression and activity of Sp1 and Sp3 (EC(50)∼3×10(7) M), transcription factors known to increase DNMT3a expression, and inhibition of these transcription factors abrogated the PGE(2) increase of DNMT3a expression. These findings were specific to fibroblasts, as PGE(2) decreased DNMT1 and DNMT3a expression in RAW macrophages. Taken together, these findings establish that DNA methylation is regulated by a ubiquitous bioactive endogenous mediator. Given that PGE(2) biosynthesis is modulated by environmental toxins, various disease states, and commonly used pharmacological agents, these findings uncover a novel mechanism by which alterations in DNA methylation patterns may arise in association with disease and certain environmental exposures.

  5. Trivalent lanthanide ions do not cleave RNA in DNA-RNA hybrids

    SciTech Connect

    Kolasa, K.A.; Morrow, J.R.; Sharma, A.P. )

    1993-09-15

    Lanthanide(III) complexes rapidly catalyze cleavage of single-stranded RNA. RNA cleavage by lanthanide complexes is, however, dependent on RNA structure. A DNA-RNA hybrid formed by annealing a complementary oligodeoxynucleotide to t-RNA[sup phe] is found to be inert to cleavage by a europium(III) hexadentate Schiff base complex and by Eu(CO[sub 2]CH[sub 3])[sub 3]. Because DNA-RNA hybrids are important structures in antisense oligonucleotide strategies, these results may influence the design of antisense oligonucleotides with attached metal complex cleaving agents.

  6. Contact-dependent regulation of vinculin expression in cultured fibroblasts: a study with vinculin-specific cDNA probes.

    PubMed Central

    Bendori, R; Salomon, D; Geiger, B

    1987-01-01

    Vinculin specific cDNA clones were isolated from chicken embryo fibroblast (CEF) cDNA library in lambda gt11. The clones, ranging in size from 2.8 to 5.0 kb, were initially selected by rabbit antibodies to vinculin. Their identity was further confirmed by their specific reactivities with a battery of different vinculin-specific monoclonal antibodies. Southern blot analysis of restriction enzyme digested chicken spleen DNA suggested that all the isolated cDNA clones correspond to the same gene(s). Northern blot hybridization revealed that the vinculin-specific cDNA clones react with a single 6.5 kb mRNA in total cellular RNA preparations of CEF, whole chicken embryos and chicken gizzard smooth muscle. Moreover, fractionation of CEF poly(A)+ RNA by sucrose gradient centrifugation followed by translation in cell free system indicated that the mRNA coding for vinculin has a size of about 6.0-7.0 kb. The identity of these clones was finally confirmed by selection hybridization assay. The isolated vinculin-specific cDNA probes were subsequently used in order to study the effect of substrate adhesiveness on the expression of vinculin. We show here that cells cultured on highly adhesive substrate, such as endothelial extracellular matrix (ECM), form large vinculin-rich focal contacts, while cells grown on poorly adhesive substrate poly(2-hydroxyethyl methacrylate) [poly(HEMA)] contain only small distorted vinculin spots. These morphological differences were accompanied by over 5-fold reduction in vinculin synthesis in cells growing on poly(HEMA), compared to those cultured on the ECM and over 7.5-fold decrease in the levels of vinculin-specific mRNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:3121302

  7. Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA.

    PubMed

    Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2014-01-01

    Identification of body fluids found at crime scenes provides important information that can support a link between sample donors and actual criminal acts. Previous studies have reported that DNA methylation analysis at several tissue-specific differentially methylated regions (tDMRs) enables successful identification of semen, and the detection of certain bacterial DNA can allow for identification of saliva and vaginal fluid. In the present study, a method for detecting bacterial DNA was integrated into a previously reported multiplex methylation-sensitive restriction enzyme-polymerase chain reaction. The developed multiplex PCR was modified by the addition of a new semen-specific marker and by including amplicons for the 16S ribosomal RNA gene of saliva- and vaginal fluid-specific bacteria to improve the efficacy to detect a specific type of body fluid. Using the developed multiplex system, semen was distinguishable by unmethylation at the USP49, DACT1, and PFN3 tDMRs and by hypermethylation at L81528, and saliva could be identified by detection of saliva-specific bacteria, Veillonella atypica and/or Streptococcus salivarius. Additionally, vaginal fluid and menstrual blood were differentiated from other body fluids by hypomethylation at the PFN3 tDMR and the presence of vaginal fluid-specific bacteria, Lactobacillus crispatus and/or Lactobacillus gasseri. Because the developed multiplex system uses the same biological source of DNA for individual identification profiling and simultaneously analyses various types of body fluid in one PCR reaction, this method will facilitate more efficient body fluid identification in forensic casework.

  8. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    PubMed Central

    Leach, John C.; Wang, Andrew; Ye, Kaiming; Jin, Sha

    2016-01-01

    The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox) was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells. PMID:26985893

  9. Massive parallel analysis of DNA - Hoechst 33258 binding specificity with a generic oligonucleotide microchip.

    SciTech Connect

    Drobyshev, A. L.; Zasedatelev, A. S.; Yershov, G. M.; Mirzabekov, A. D.; Biochip Technology Center

    1999-10-15

    A generic oligodeoxyribonucleotide microchip was used to determine the sequence specificity of Hoechst 33258 binding to double-stranded DNA. The generic microchip contained 4096 oxctadeoxynucleo-tides in which all possible 4(6)= 4096 hexadeoxy-nucleotide sequences are flanked on both the 3'- and 5'-ends with equimolar mixtures of four bases. The microchip was manufactured by chemical immobilization of presynthesized 8mers within polyacrylamide gel pads. A selected set of immobilized 8mers was converted to double-stranded form by hybridization with a mixture of fluorescently labeled complementary 8mers. Massive parallel measurements of melting curves were carried out for the majority of 2080 6mer duplexes, in both the absence and presence of the Hoechst dye. The sequence-specific affinity for Hoechst 33258 was calculated as the increase in melting temperature caused by ligand binding. The dye exhibited specificity for A:T but not G:C base pairs. The affinity is low for two A:T base pairs, increases significantly for three, and reaches a plateau for four A:T base pairs. The relative ligand affinity for all trinucleotide and tetranucleotide sequences (A/T)(3)and (A/T)(4)was estimated. The free energy of dye binding to several duplexes was calculated from the equilibrium melting curves of the duplexes formed on the oligonucleotide microchips. This method can be used as a general approach for massive screening of the sequence specificity of DNA-binding compounds.

  10. Electrochemical transduction of DNA hybridization at modified electrodes by using an electroactive pyridoacridone intercalator.

    PubMed

    Bouffier, Laurent; Wang, Bingquan Stuart; Roget, André; Livache, Thierry; Demeunynck, Martine; Mailley, Pascal

    2014-02-01

    A synthetic redox probe structurally related to natural pyridoacridones was designed and electrochemically characterised. These heterocycles behave as DNA intercalators due to their extended planar structure that promotes stacking in between nucleic acid base pairs. Electrochemical characterization by cyclic voltammetry revealed a quasi-reversible electrochemical behaviour occurring at a mild negative potential in aqueous solution. The study of the mechanism showed that the iminoquinone redox moiety acts similarly to quinone involving a two-electron reduction coupled with proton transfer. The easily accessible potential region with respect to aqueous electro-inactive window makes the pyridoacridone ring suitable for the indirect electrochemical detection of chemically unlabelled DNA. Its usefulness as electrochemical hybridization indicator was assessed on immobilised DNA and compared to doxorubicin. The voltamperometric response of the intercalator acts as an indicator of the presence of double-stranded DNA at the electrode surface and allows the selective transduction of immobilised oligonucleotide hybridization at both macro- and microscale electrodes.

  11. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization

    PubMed Central

    Wang, Xiaozhu; Takebayashi, Shin-ichiro; Bernardin, Evans; Gilbert, David M.; Chella, Ravindran

    2012-01-01

    We have developed a novel method for genetic characterization of single cells by integrating microfluidic stretching of chromosomal DNA and fiber fluorescence in situ hybridization (FISH). In this method, individually isolated cell nuclei were immobilized in a microchannel. Chromosomal DNA was released from the nuclei and stretched by a pressure-driven flow. We analyzed and optimized flow conditions to generate a millimeter-long band of stretched DNA from each nucleus. Telomere fiber FISH was successfully performed on the stretched chromosomal DNA. Individual telomere fiber FISH signals from single cells could be resolved and their lengths measured, demonstrating the ability of the method to quantify genetic features at the level of single cells. PMID:22231286

  12. Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides.

    PubMed

    Stimpson, D I; Hoijer, J V; Hsieh, W T; Jou, C; Gordon, J; Theriault, T; Gamble, R; Baldeschwieler, J D

    1995-07-01

    The challenge of the Human Genome Project is to increase the rate of DNA sequence acquisition by two orders of magnitude to complete sequencing of the human genome by the year 2000. The present work describes a rapid detection method using a two-dimensional optical wave guide that allows measurement of real-time binding or melting of a light-scattering label on a DNA array. A particulate label on the target DNA acts as a light-scattering source when illuminated by the evanescent wave of the wave guide and only the label bound to the surface generates a signal. Imaging/visual examination of the scattered light permits interrogation of the entire array simultaneously. Hybridization specificity is equivalent to that obtained with a conventional system using autoradiography. Wave guide melting curves are consistent with those obtained in the liquid phase and single-base discrimination is facile. Dilution experiments showed an apparent lower limit of detection at 0.4 nM oligonucleotide. This performance is comparable to the best currently known fluorescence-based systems. In addition, wave guide detection allows manipulation of hybridization stringency during detection and thereby reduces DNA chip complexity. It is anticipated that this methodology will provide a powerful tool for diagnostic applications that require rapid cost-effective detection of variations from known sequences.

  13. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases.

    PubMed Central

    McClelland, M; Nelson, M; Raschke, E

    1994-01-01

    Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes. PMID:7937074

  14. A DNA--silver nanocluster probe that fluoresces upon hybridization.

    PubMed

    Yeh, Hsin-Chih; Sharma, Jaswinder; Han, Jason J; Martinez, Jennifer S; Werner, James H

    2010-08-11

    DNA-templated silver nanoclusters (DNA/Ag NCs) are an emerging set of fluorophores that are smaller than semiconductor quantum dots and can have better photostability and brightness than commonly used organic dyes. Here we find the red fluorescence of DNA/Ag NCs can be enhanced 500-fold when placed in proximity to guanine-rich DNA sequences. On the basis of this new phenomenon, we have designed a DNA detection probe (NanoCluster Beacon, NCB) that "lights up" upon target binding. Since NCBs do not rely on Forster energy transfer for quenching, they can easily reach high (>100) signal-to-background ratios (S/B ratios) upon target binding. Here, in a separation-free assay, we demonstrate NCB detection of an influenza target with a S/B ratio of 175, a factor of 5 better than a conventional molecular beacon probe. Since the observed fluorescence enhancement is caused by intrinsic nucleobases, our detection technique is simple, inexpensive, and compatible with commercial DNA synthesizers.

  15. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.

    PubMed

    Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P

    2014-05-15

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941

  16. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures

    PubMed Central

    Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.

    2014-01-01

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941

  17. Simple and fast electrochemical detection of sequence-specific DNA via click chemistry-mediated labeling of hairpin DNA probes with ethynylferrocene.

    PubMed

    Hu, Qiong; Deng, Xianbao; Kong, Jinming; Dong, Yuanyuan; Liu, Qianrui; Zhang, Xueji

    2015-06-21

    A universal and straightforward electrochemical biosensing strategy for the detection and identification of sequence-specific DNA via click chemistry-mediated labeling of hairpin DNA probes (hairpins) with ethynylferrocene was reported. In the target-unbound form, the immobilized hairpins were kept in the folded stem-loop configuration with their azido terminals held in close proximity of the electrode surface, making them difficult to be labeled with ethynylferrocene due to the remarkable steric hindrance of the densely packed hairpins. Upon hybridization, they were unfolded and underwent a large conformational change, thus enabling the azido terminals to become available for its subsequent conjugation with ethynylferrocene via the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). After that, the quantitatively labeled ethynylferrocene could be exploited as the electroactive probes to monitor the DNA hybridization. As the unfolded hairpins were labeled in a stoichiometric ratio of 1 : 1, the electrochemical measurement based on differential pulse voltammetry enabled a reliable quantification of sequence-specific DNA. Under optimal conditions, the strategy could detect target single-stranded DNA (ssDNA) down to 0.296 pM with a good linear response over the range from 1 pM to 1 nM, and had excellent specificity in the genotyping of single-nucleotide polymorphisms. Furthermore, it also exhibited good detection reliability in serum samples and required no complicated protocols. More importantly, the simplicity of this strategy together with its compatibility with microfluidic chips makes it show great potential in clinical applications, where simple procedures are generally preferred.

  18. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers

    SciTech Connect

    Kandpal, R.P.; Kandpal, G.; Weissman, S.M. )

    1994-01-04

    The authors describe a simple and rapid method for constructing small-insert genomic libraries highly enriched for dimeric, trimeric, and tetrameric nucleotide repeat motifs. The approach involves use of DNA inserts recovered by PCR amplification of a small-insert sonicated genomic phage library or by a single-primer PCR amplification of Mbo I-digested and adaptor-ligated genomic DNA. The genomic DNA inserts are heat denatured and hybridized to a biotinylated oligonucleotde. The biotinylated hybrids are retained on a Vectrex-avidin matrix and eluted specifically. The eluate is PCR amplified and cloned. More than 90% of the clones in a library enriched for (CA)[sub n] microsatellites with this approach contained clones with inserts containing CA repeats. They have also used this protocol for enrichment of (CAG)[sub n] and (AGAT)[sub n] sequence repeats and for Not I jumping clones. They have used the enriched libraries with an adaptation of the cDNA selection method to enrich for repeat motifs encoded in yeast artificial chromosomes.

  19. DNA sequence determination by hybridization: A strategy for efficient large-scale sequencing

    SciTech Connect

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoody, J.; Crkvenjakov, R. ); Funkhouser, W.K.; Koop, B.; Hood, L. )

    1993-06-11

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project. 22 refs., 3 figs.

  20. DNA Sequence Determination by Hybridization: A Strategy for Efficient Large-Scale Sequencing

    NASA Astrophysics Data System (ADS)

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoddy, J.; Funkhouser, W. K.; Koop, B.; Hood, L.; Crkvenjakov, R.

    1993-06-01

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project.

  1. Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    PubMed Central

    Liu, Jinhuai; Liu, Jinyun; Yang, Liangbao; Chen, Xing; Zhang, Meiyun; Meng, Fanli; Luo, Tao; Li, Minqiang

    2009-01-01

    Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated. PMID:22399999

  2. Improved sandwich-hybridization assay for an electrical DNA-chip-based monitoring of bioprocess-relevant marker genes.

    PubMed

    Pioch, Daniel; Jürgen, Britta; Evers, Stefan; Maurer, Karl-Heinz; Hecker, Michael; Schweder, Thomas

    2008-03-01

    Recently, it was shown that electrical DNA-chips in connection with a magnetic bead-based sandwich-hybridization assay can be a suitable alternative for the analysis of gene expression by monitoring the respective mRNA levels. In this study, we established an improved assay which allowed for a significantly shortened but sensitive detection of specific mRNAs. These improvements include the change to a solution-based sandwich-hybridization and the rearrangement of the used oligonucleotide probes. The introduction of a second labeled detection probe further increased the hybridization signals and, in turn, leads to a substantial time reduction of the detection protocol. The presented solution-based sandwich-hybridization protocol for the electrochemical detection of specific mRNAs requires about 60 min and the whole procedure, including sampling, cell disruption, and RNA isolation, approx. 80 min. The assay of this study was verified by nutrient-limited growth experiments and the analysis of selected starvation marker genes of the industrial host Bacillus licheniformis. The expression profiles determined with the electrical chip and the optimized protocol were, in most cases, comparable with the profiles determined by real-time RT-PCR measurements.

  3. Nucleic acid spot hybridization based species-specific detection of Sclerotium rolfsii associated with collar rot disease of Amorphophallus paeoniifolius.

    PubMed

    Pravi, V; Jeeva, M L; Archana, P V

    2015-02-01

    Collar rot is one of the most destructive and prevalent disease of Amorphophallus paeoniifolius, resulting in heavy yield losses. The causative organism, Sclerotium rolfsii is a soil-borne polyphagous fungus characterized by prolific growth and ability to produce persistent sclerotia. The pathogen propagules surviving in soil and planting material are the major sources of inoculum. This study presents the suitability of DNA hybridization technique for species specific detection of S. rolfsii in soil and planting material. The detection limit of the probe was 10-15 pg of pure pathogen DNA. The developed probe was found to be highly specific and could be used for accurate identification of pathogen up to the species level. The protocol was standardized for detection of the pathogen in naturally infected field samples. PMID:25449141

  4. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    PubMed

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  5. Fast molecular beacon hybridization in organic solvents with improved target specificity.

    PubMed

    Dave, Neeshma; Liu, Juewen

    2010-12-01

    DNA hybridization is of tremendous importance in biology, bionanotechnology, and biophysics. Molecular beacons are engineered DNA hairpins with a fluorophore and a quencher labeled on each of the two ends. A target DNA can open the hairpin to give an increased fluorescence signal. To date, the majority of molecular beacon detections have been performed only in aqueous buffers. We describe herein DNA detection in nine different organic solvents, methanol, ethanol, isopropanol, acetonitrile, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene glycol, and glycerol, varying each up to 75% (v/v). In comparison with detection in water, the detection in organic solvents showed several important features. First, the molecular beacon hybridizes to its target DNA in the presence of all nine solvents up to a certain percentage. Second, the rate of this hybridization was significantly faster in most organic solvents compared with water. For example, in 56% ethanol, the beacon showed a 70-fold rate enhancement. Third, the ability of the molecular beacon to discriminate single-base mismatch is still maintained. Lastly, the DNA melting temperature in the organic solvents showed a solvent concentration-dependent decrease. This study suggests that molecular beacons can be used for applications where organic solvents must be involved or organic solvents can be intentionally added to improve the molecular beacon performance.

  6. DNA sequence similarity recognition by hybridization to short oligomers

    DOEpatents

    Milosavljevic, Aleksandar

    1999-01-01

    Methods are disclosed for the comparison of nucleic acid sequences. Data is generated by hybridizing sets of oligomers with target nucleic acids. The data thus generated is manipulated simultaneously with respect to both (i) matching between oligomers and (ii) matching between oligomers and putative reference sequences available in databases. Using data compression methods to manipulate this mutual information, sequences for the target can be constructed.

  7. Studies of Nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses V. Isolation of Additional Hybrids Which Differ in Their Simian Virus 40-Specific Biological Properties

    PubMed Central

    Lewis, Andrew M.; Levine, Arthur S.; Crumpacker, Clyde S.; Levin, Myron J.; Samaha, Richard J.; Henry, Patrick H.

    1973-01-01

    Four new nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated. Although these viruses (designated Ad2+ND2, Ad2+ND3, Ad2+ND4, and Ad2+ND5) were clonal derivatives of the same Ad2-SV40 hybrid population, they differ significantly from each other and from the previously isolated nondefective hybrid, Ad2+ND1, in their biological properties or in the amount of SV40-specific RNA induced during lytic infection. Like Ad2+ND1, Ad2+ND2, and Ad2+ND4 pass serially in both human embryonic kidney (HEK) and primary African green monkey kidney cells. In contrast, Ad2+ND3 and Ad2+ND5 pass serially only in HEK cells. Ad2+ND2 is like Ad2+ND1 in that it induces the SV40 U antigen, but not SV40 T antigen; however, in contrast to the perinuclear SV40 antigen induced by Ad2+ND1, the SV40 antigen induced by Ad2+ND2 is located peripherally in the cytoplasm as well as in the perinuclear region of infected cells. Ad2+ND4 induces both the SV40 T and U antigens. Ad2+ND3 and Ad2+ND5 do not induce serologically detectable SV40 antigens and are distinguished from each other on the basis of the relative quantities of SV40-specific RNA which they induce. The induction of different SV40-specific functions suggests the incorporation of different segments of SV40 DNA within the genomes of the respective hybrid viruses. PMID:4350710

  8. Electrostatics of DNA nucleotide-carbon nanotube hybrids evaluated from QM:MM simulations.

    PubMed

    Chehel Amirani, Morteza; Tang, Tian

    2015-12-14

    Biomolecule-functionalized carbon nanotubes (CNTs) have been studied vastly in recent years due to their potential applications for instance in cancer detection, purification and separation of CNTs, and nanoelectronics. Studying the electrostatic potential generated by a biomolecule-CNT hybrid is important in predicting its interactions with the surrounding environment such as charged particles and surfaces. In this paper, we performed atomistic simulations using a QM:MM approach to evaluate the electrostatic potential and charge transfer for a hybrid structure formed by a DNA nucleotide and a CNT in solution. Four types of DNA nucleotides and two CNTs with chiralities of (4,4) and (7,0) were considered. The types of nucleotides and CNTs were both found to play important roles in the electrostatic potential and charge transfer of the hybrid. At the same distance from the CNT axis, the electrostatic potential for the nucleotide-(4,4) CNT hybrids was found to be stronger compared with that for the nucleotide-(7,0) CNT hybrids. Higher electric charge was also shown to be transferred from the DNA nucleotides to the (7,0) CNT compared with the (4,4) CNT. These results correlate with the previous finding that the nucleotides bound more tightly to the (7,0) CNT compared with the (4,4) CNT. PMID:26542447

  9. Broken Optical Symmetry in DNA-SWNT Hybrids: Spectroscopic Signaling of the Helical Wrap

    NASA Astrophysics Data System (ADS)

    Rotkin, Slava V.

    2009-03-01

    Functionalizing single-stranded DNA on a single-wall carbon nanotube (SWNT) has allowed isolating individual tubes, making them soluble, and separating SWNTs according to their chirality. Such strong technological impact motivated our study of the optical properties of the DNA-SWNT hybrids, commonly used now for the solution-based fabrication and experiments. The helicity of the DNA wrap may interfere with the intrinsic Hamiltonian of the SWNT and result in bandstructure modulation. Our modeling predicts a symmetry lowering in the hybrid due to the Coulomb potential of the regular helical wrap of the ionized backbone of the ssDNA, followed by the qualitative changes in the cross- or circularly polarized SWNT absorption spectrum (with no or little change in the parallel polarization). In particular, we predict the appearance of a new peak in the cross-polarized absorption of the ssDNA-SWNT at a frequency lower than that of all allowed transitions in the bare tube. Such effect can be used for optical identification of the wrap at sufficient ssDNA coverage. Wrap signaling happens also via another optical effect, a strong circular dichroism even in the complex with an achiral SWNT, and even at the frequencies where ss-DNA has no absorption features at all. Symmetry of the wrap is central to determine such a circular dichroism of the hybrid. Having in mind that the exact geometry of a DNA wrap for an arbitrary tube is not precisely known yet, we put forward a general model capable of tracking optical effects, varying the parameters of the wrap and/or tube diameter. For various ssDNA backbone helical angles and for various tubes we predict different absorption spectra, though a general qualitative feature of the helical symmetry breaking, the appearance of new van Hove singularities and circular dichroism, must be present.

  10. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. PMID:27498231

  11. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application.

  12. 1-ethynylpyrene-modified guanine and cytosine as optical labels for DNA hybridization.

    PubMed

    Wagner, Clemens; Rist, Manuela; Mayer-Enthart, Elke; Wagenknecht, Hans-Achim

    2005-06-01

    1-ethynylpyrene shows remarkable absorption changes upon DNA hybridization when it is covalently attached to the 8-position of guanine. An absorption band at approximately 420 nm is only present in the duplex, exhibits thermal melting behaviour and provides the basis for a molecular beacon together with 1-ethynylpyrene-modified cytosine.

  13. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia

    PubMed Central

    Wang, Xu; Clark, Andrew G.

    2016-01-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  14. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia.

    PubMed

    Wang, Xu; Werren, John H; Clark, Andrew G

    2016-07-01

    Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. PMID

  15. Instability of chromosome number and DNA methylation variation induced by hybridization and amphidiploid formation between Raphanus sativus L. and Brassica alboglabra Bailey

    PubMed Central

    2010-01-01

    Background Distant hybridization can result genome duplication and allopolyploid formation which may play a significant role in the origin and evolution of many plant species. It is unclear how the two or more divergent genomes coordinate in one nucleus with a single parental cytoplasm within allopolyploids. We used cytological and molecular methods to investigate the genetic and epigenetic instabilities associated with the process of distant hybridization and allopolyploid formation, measuring changes in chromosome number and DNA methylation across multiple generations. Results F1 plants from intergeneric hybridization between Raphanus sativus L. (2n = 18, RR) and Brassica alboglabra Bailey (2n = 18, CC) were obtained by hand crosses and subsequent embryo rescue. Random amplification of polymorphic DNA (RAPD) markers were used to identify the F1 hybrid plants. The RAPD data indicated that the hybrids produced specific bands similar to those of parents and new bands that were not present in either parent. Chromosome number variation of somatic cells from allotetraploids in the F4 to F10 generations showed that intensive genetic changes occurred in the early generations of distant hybridization, leading to the formation of mixopolyploids with different chromosome numbers. DNA methylation variation was revealed using MSAP (methylation-sensitive amplification polymorphism), which showed that cytosine methylation patterns changed markedly in the process of hybridization and amphidiploid formation. Differences in cytosine methylation levels demonstrated an epigenetic instability of the allopolyploid of Raphanobrassica between the genetically stable and unstable generations. Conclusions Our results showed that chromosome instability occurred in the early generations of allopolyploidy and then the plants were reverted to largely euploidy in later generations. During this process, DNA methylation changed markedly. These results suggest that, epigenetic mechanisms play an

  16. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.

    PubMed

    Kavanagh, Paul; Leech, Dónal

    2006-04-15

    The detection of nucleic acids based upon recognition surfaces formed by co-immobilization of a redox polymer mediator and DNA probe sequences on gold electrodes is described. The recognition surface consists of a redox polymer, [Os(2,2'-bipyridine)2(polyvinylimidazole)(10)Cl](+/2+), and a model single DNA strand cross-linked and tethered to a gold electrode via an anchoring self-assembled monolayer (SAM) of cysteamine. Hybridization between the immobilized probe DNA of the recognition surface and a biotin-conjugated target DNA sequence (designed from the ssrA gene of Listeria monocytogenes), followed by addition of an enzyme (glucose oxidase)-avidin conjugate, results in electrical contact between the enzyme and the mediating redox polymer. In the presence of glucose, the current generated due to the catalytic oxidation of glucose to gluconolactone is measured, and a response is obtained that is binding-dependent. The tethering of the probe DNA and redox polymer to the SAM improves the stability of the surface to assay conditions of rigorous washing and high salt concentration (1 M). These conditions eliminate nonspecific interaction of both the target DNA and the enzyme-avidin conjugate with the recognition surfaces. The sensor response increases linearly with increasing concentration of target DNA in the range of 1 x 10(-9) to 2 x 10(-6) M. The detection limit is approximately 1.4 fmol, (corresponding to 0.2 nM of target DNA). Regeneration of the recognition surface is possible by treatment with 0.25 M NaOH solution. After rehybridization of the regenerated surface with the target DNA sequence, >95% of the current is recovered, indicating that the redox polymer and probe DNA are strongly bound to the surface. These results demonstrate the utility of the proposed approach. PMID:16615783

  17. [Three cases of vulvar bowenoid papulosis: the localization of HPV DNA by in situ hybridization].

    PubMed

    Kioka, H; Nagai, N; Tanioka, Y; Fujii, T; Katsube, Y; Egawa, K; Fujiwara, A

    1989-09-01

    Cytological, histological, and molecular biological studies were conducted in 3 cases of vulvar Bowenoid papulosis, using biotinylated HPV DNA probes by in situ hybridization. 1) Cytological findings showed dyskaryotic cells that revealed hyperchromatism with a coarse granular pattern, and a high N/C ratio was observed among the dyskeratotic cells. 2) In 2 cases of Bowenoid papulosis lesions, HPV 16 DNA was detected in the nucleus of the dysplastic cells. 3) In one case of Bowenoid papulosis, a complicated carcinoma in situ of the uterine cervix was observed, and the HPV 16 DNA was found to be positive in both the vulva and cervix. PMID:2550688

  18. Ultrasensitive Detection of DNA Hybridization Using Carbon Nanotube Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Maehashi, Kenzo; Matsumoto, Kazuhiko; Kerman, Kagan; Takamura, Yuzuru; Tamiya, Eiichi

    2004-12-01

    We have sensitively detected DNA hybridization using carbon nanotube field-effect transistors (CNTFETs) in real time. Amino modified peptide nucleic acid (PNA) oligonucleotides at 5' end were covalently immobilized onto the Au surface of the back gate. For 11-mer PNA oligonucletide probe, full-complementary DNA with concentration as low as 6.8 fM solution could be effectively detected. Our CNTFET-based biochip is a promising candidate for the development of an integrated, high-throughput, multiplexed DNA biosensor for medical, forensic and environmental diagnostics.

  19. Detection of bovine trichomoniasis with a specific DNA probe and PCR amplification system.

    PubMed

    Ho, M S; Conrad, P A; Conrad, P J; LeFebvre, R B; Perez, E; BonDurant, R H

    1994-01-01

    Trichomoniasis is a widespread, economically important venereal disease of cattle which causes infertility and abortion. Effective control of trichomoniasis has been impeded by the insensitivity of traditional diagnostic procedures, which require the isolation and cultivation of the parasite, Tritrichomonas foetus, from infected cattle. We developed a 0.85-kb T. foetus DNA probe by identifying conserved sequences in DNAs from T. foetus that were isolated from cattle in California, Idaho, Nevada, and Costa Rica. The probe hybridized specifically to DNAs of T. foetus isolates from different geographic areas but not to DNA preparations of Trichomonas vaginalis, bovine cells, or a variety of bacteria from cattle. The probe detected DNA from a minimum of 10(5) T. foetus organisms. To improve sensitivity, a partial sequence of the probe was used to identify oligonucleotide primers (TF1 and TF2) which could be used to amplify a 162-bp product from T. foetus DNAs by PCR. A chemiluminescent internal T. foetus sequence probe was hybridized to Southern blots of the amplification product. This system detected as few as one T. foetus organism in culture media or 10 parasites in samples containing bovine preputial smegma. Analysis of 52 clinical samples showed that 47 (90.4%) of the 52 samples were correctly identified, with no false-positive reactions. In comparison, the traditional cultivation method detected 44 (84.6%) of the 52 samples from T. foetus-infected and uninfected bulls. These results indicate that the PCR-based amplification system could be a useful alternative method for the diagnosis of bovine trichomoniasis.

  20. Cell-specific DNA methylation patterns of retina-specific genes.

    PubMed

    Merbs, Shannath L; Khan, Miriam A; Hackler, Laszlo; Oliver, Verity F; Wan, Jun; Qian, Jiang; Zack, Donald J

    2012-01-01

    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that

  1. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation.

    PubMed

    Egawa, Edgar Y; Kitamura, Narufumi; Nakai, Ryusuke; Arima, Yusuke; Iwata, Hiroo

    2015-06-01

    Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20-oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20-SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully

  2. Shape Analysis of DNA-Au Hybrid Particles by Analytical Ultracentrifugation.

    PubMed

    Urban, Maximilan J; Holder, Isabelle T; Schmid, Marius; Fernandez Espin, Vanesa; Garcia de la Torre, Jose; Hartig, Jörg S; Cölfen, Helmut

    2016-08-23

    Current developments in nanotechnology have increased the demand for nanocrystal assemblies with well-defined shapes and tunable sizes. DNA is a particularly well-suited building block in nanoscale assemblies because of its scalable sizes, conformational variability, and convenient self-assembly capabilities via base pairing. In hybrid materials, gold nanoparticles (AuNPs) can be assembled into nanoparticle structures with programmable interparticle distances by applying appropriate DNA sequences. However, the development of stoichiometrically defined DNA/NP structures is still challenging since product mixtures are frequently obtained and their purification and characterization is the rate-limiting step in the development of DNA-NP hybrid assemblies. Improvements in nanostructure fractionation and characterization techniques offer great potential for nanotechnology applications in general. This study reports the application of analytical ultracentrifugation (AUC) for the characterization of anisotropic DNA-linked metal-crystal assemblies. On the basis of transmission electron microscopy data and the DNA primary sequence, hydrodynamic bead models are set up for the interpretation of the measured frictional ratios and sedimentation coefficients. We demonstrate that the presence of single DNA strands on particle surfaces as well as the shape factors of multiparticle structures in mixtures can be quantitatively described by AUC. This study will significantly broaden the possibilities to analyze mixtures of shape-anisotropic nanoparticle assemblies. By establishing insights into the analysis of nanostructure mixtures based on fundamental principles of sedimentation, a wide range of potential applications in basic research and industry become accessible. PMID:27459174

  3. Layered zirconium phosphonate with inorganic-organic hybrid structure: Preparation and its assembly with DNA

    NASA Astrophysics Data System (ADS)

    Liu, Li-Min; Lu, Guo-Yuan; Jiang, Li-Ping; Zhu, Jun-Jie

    2014-07-01

    An aminoethoxy-functionalized zirconium phosphonate (Zr(O3POCH2CH2NH2)2·3H2O), abbreviated as ZrRP (R=OCH2CH2NH2), with layered structure has been synthesized. This layered compound possesses the characteristic of inorganic-organic hybrid, due to the covalently linked aminoethoxy in the host layer. The anion exchanged property of this zirconium phosphonate is suitable for the direct intercalation of negatively charged DNA, which is different from these reported zirconium phosphates or zirconium phosphonates. As a precursor, this prepared zirconium phosphonate was utilized to fabricate a novel DNA/ZrRP binary hybrid via a delamination-reassembly procedure. The release behavior of DNA from the DNA/ZrRP composite was investigated at different medium pH, because the combination between zirconium phosphonate sheets and DNA was pH-dependent sensitively. Moreover, the helical conformation of DNA was almost retained after the intercalation and release process. These properties of the DNA/ZrRP composite suggested the potential application of layered zirconium phosphonate as a non-viral vector in gene delivery.

  4. An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes

    NASA Astrophysics Data System (ADS)

    Ihalainen, Petri; Pettersson, Fredrik; Pesonen, Markus; Viitala, Tapani; Määttänen, Anni; Österbacka, Ronald; Peltonen, Jouko

    2014-03-01

    In this study, two different supramolecular recognition architectures for impedimetric detection of DNA hybridization have been formed on disposable paper-supported inkjet-printed gold electrodes. The gold electrodes were fabricated using a gold nanoparticle based ink. The first recognition architecture consists of subsequent layers of biotinylated self-assembly monolayer (SAM), streptavidin and biotinylated DNA probe. The other recognition architecture is constructed by immobilization of thiol-functionalized DNA probe (HS-DNA) and subsequent backfill with 11-mercapto-1-undecanol (MUOH) SAM. The binding capacity and selectivity of the recognition architectures were examined by surface plasmon resonance (SPR) measurements. SPR results showed that the HS-DNA/MUOH system had a higher binding capacity for the complementary DNA target. Electrochemical impedance spectroscopy (EIS) measurements showed that the hybridization can be detected with impedimetric spectroscopy in picomol range for both systems. EIS signal indicated a good selectivity for both recognition architectures, whereas SPR showed very high unspecific binding for the HS-DNA/MUOH system. The factors affecting the impedance signal were interpreted in terms of the complexity of the supramolecular architecture. The more complex architecture acts as a less ideal capacitive sensor and the impedance signal is dominated by the resistive elements.

  5. Inter-specific territoriality in a Canis hybrid zone: spatial segregation between wolves, coyotes, and hybrids.

    PubMed

    Benson, John F; Patterson, Brent R

    2013-12-01

    Gray wolves (Canis lupus) and coyotes (Canis latrans) generally exhibit intraspecific territoriality manifesting in spatial segregation between adjacent packs. However, previous studies have found a high degree of interspecific spatial overlap between sympatric wolves and coyotes. Eastern wolves (Canis lycaon) are the most common wolf in and around Algonquin Provincial Park (APP), Ontario, Canada and hybridize with sympatric gray wolves and coyotes. We hypothesized that all Canis types (wolves, coyotes, and hybrids) exhibit a high degree of spatial segregation due to greater genetic, morphologic, and ecological similarities between wolves and coyotes in this hybrid system compared with western North American ecosystems. We used global positioning system telemetry and probabilistic measures of spatial overlap to investigate spatial segregation between adjacent Canis packs. Our hypothesis was supported as: (1) the probability of locating wolves, coyotes, and hybrids within home ranges ([Formula: see text] = 0.05) or core areas ([Formula: see text] < 0.01) of adjacent packs was low; and (2) the amount of shared space use was negligible. Spatial segregation did not vary substantially in relation to genotypes of adjacent packs or local environmental conditions (i.e., harvest regulations or road densities). We provide the first telemetry-based demonstration of spatial segregation between wolves and coyotes, highlighting the novel relationships between Canis types in the Ontario hybrid zone relative to areas where wolves and coyotes are reproductively isolated. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs, facilitate hybridization, and could play a role in limiting expansion of the genetically distinct APP eastern wolf population.

  6. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen.

    PubMed

    Jolly, Pawan; Tamboli, Vibha; Harniman, Robert L; Estrela, Pedro; Allender, Chris J; Bowen, Jenna L

    2016-01-15

    This study reports the design and evaluation of a new synthetic receptor sensor based on the amalgamation of biomolecular recognition elements and molecular imprinting to overcome some of the challenges faced by conventional protein imprinting. A thiolated DNA aptamer with established affinity for prostate specific antigen (PSA) was complexed with PSA prior to being immobilised on the surface of a gold electrode. Controlled electropolymerisation of dopamine around the complex served to both entrap the complex, holding the aptamer in, or near to, it's binding conformation, and to localise the PSA binding sites at the sensor surface. Following removal of PSA, it was proposed that the molecularly imprinted polymer (MIP) cavity would act synergistically with the embedded aptamer to form a hybrid receptor (apta-MIP), displaying recognition properties superior to that of aptamer alone. Electrochemical impedance spectroscopy (EIS) was used to evaluate subsequent rebinding of PSA to the apta-MIP surface. The apta-MIP sensor showed high sensitivity with a linear response from 100pg/ml to 100ng/ml of PSA and a limit of detection of 1pg/ml, which was three-fold higher than aptamer alone sensor for PSA. Furthermore, the sensor demonstrated low cross-reactivity with a homologous protein (human Kallikrein 2) and low response to human serum albumin (HSA), suggesting possible resilience to the non-specific binding of serum proteins.

  7. HLA-B locus polymorphism: studies with a specific hybridization probe.

    PubMed Central

    Coppin, H L; Denny, D W; Weissman, S M; McDevitt, H O

    1985-01-01

    The large number of class I histocompatibility genes (HLA) and their extensive homology has made it difficult to assign bands on genomic Southern blots to known genes. Therefore, we have tried to obtain nucleic acid probes for class I genes that are locus specific or have restricted locus specificity. Computer sequence-homology analysis was used to compare the nucleic acid sequences of two genomic clones, one coding for the HLA-B7 antigen (JY150) and one containing a class I pseudogene (pHLA12.4). A sequence in the 3' untranslated region with very low homology was identified. This sequence from the HLA-B7 gene was subcloned into M13 phage. This fragment, JY150/C5, hybridized with two genomic bands in DNA from human HLA homozygotes--presumably the HLA-B locus gene and a closely related gene. The probe was used to assess restriction fragment polymorphism at the HLA-B locus in homozygous consanguineous cell lines. This analysis permitted the association of certain polymorphic restriction enzyme fragments with some alleles of this locus. However, many HLA-B alleles have identical restriction fragments produced by a number of restriction endonucleases. Images PMID:3001712

  8. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization.

    PubMed

    Verhaegent, Monique; Christopoulos, Theodore K

    2002-09-01

    The cDNA for Gaussia luciferase (GLuc), the enzyme responsible for the bioluminescent reaction of the marine copepod Gaussia princeps, has been cloned recently. GLuc (MW = 19 900) catalyzes the oxidative decarboxylation of coelenterazine to produce coelenteramide and light. We report the first quantitative anaytical study of GLuc and examine its potential as a new reporter for DNA hybridization. A plasmid encoding both a biotin acceptor peptide-GLuc fusion protein as well as the enzyme biotin protein ligase (BPL) is engineered by using GLuc cDNA as a starting template. BPL catalyzes the covalent attachment of a single biotin to the fusion protein in vivo. Purification of GLuc is then accomplished by affinity chromatography using immobilized monomeric avidin. Moreover, the in vivo biotinylation enables subsequent complexation of GLuc with streptavidin (SA), thereby avoiding chemical conjugation reactions that are known to inactivate luciferases. Purified GLuc can be detected down to 1 amol with a signal-to-background ratio of 2 and a linear range extending over 5 orders of magnitude. The background luminescence of coelenterazine is the main limiting factor for even higher detectability of GLuc. Furthermore, the GLuc-SA complex is used as a detection reagent in a microtiter well-based DNA hybridization assay. The analytical range extends from 1.6 to 800 pmol/L of target DNA. Biotinylated GLuc produced from 1 L of bacterial culture is sufficient for 150,000 hybridization assays.

  9. Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay.

    PubMed

    Gong, Ping; Lee, Chi-Ying; Gamble, Lara J; Castner, David G; Grainger, David W

    2006-05-15

    Nucleic acid assay from a complex biological milieu is attractive but currently difficult and far from routine. In this study, DNA hybridization from serum dilutions into mixed DNA/mercaptoundecanol (MCU) adlayers on gold was monitored by surface plasmon resonance (SPR). Immobilized DNA probe and hybridized target densities on these surfaces were quantified using 32P-radiometric assays as a function of MCU diluent exposure. SPR surface capture results correlated with radiometric analysis for hybridization performance, demonstrating a maximum DNA hybridization on DNA/MCU mixed adlayers. The maximum target surface capture produced by MCU addition to the DNA probe layer correlates with structural and conformational data on identical mixed DNA/MCU adlayers on gold derived from XPS, NEXAFS, and fluorescence intensity measurements reported in a related study (Lee, C.-Y.; Gong, P.; Harbers, G. M.; Grainger, D. W.; Castner, D. G.; Gamble, L. J. Anal. Chem. 2006, 78, 3316-3325.). MCU addition into the DNA adlayer on gold also improved surface resistance to both nonspecific DNA and serum protein adsorption. Target DNA hybridization from serum dilutions was monitored with SPR on the optimally mixed DNA/MCU adlayers. Both hybridization kinetics and efficiency were strongly affected by nonspecific protein adsorption from a complex milieu even at a minimal serum concentration (e.g., 1%). No target hybridization was detected in SPR assays from serum concentrations above 30%, indicating nonspecific protein adsorption interference of DNA capture and hybridization from complex milieu. Removal of nonsignal proteins from nucleic acid targets prior to assay represents a significant issue for direct sample-to-assay nucleic acid diagnostics from food, blood, tissue, PCR mixtures, and many other biologically complex sample formats. PMID:16689533

  10. Synthetic Polymer Hybridization with DNA and RNA Directs Nanoparticle Loading, Silencing Delivery, and Aptamer Function

    PubMed Central

    Zhou, Zhun; Xia, Xin; Bong, Dennis

    2015-01-01

    We report herein discrete triplex hybridization of DNA and RNA with polyacrylates. Length-monodisperse triazine-derivatized polymers were prepared on gram-scale by reversible addition–fragmentation chain-transfer polymerization. Despite stereoregio backbone heterogeneity, the triazine polymers bind T/U-rich DNA or RNA with nanomolar affinity upon mixing in a 1:1 ratio, as judged by thermal melts, circular dichroism, gel-shift assays, and fluorescence quenching. We call these polyacrylates “bifacial polymer nucleic acids” (bPoNAs). Nucleic acid hybridization with bPoNA enables DNA loading onto polymer nanoparticles, siRNA silencing delivery, and can further serve as an allosteric trigger of RNA aptamer function. Thus, bPoNAs can serve as tools for both non-covalent bioconjugation and structure–function nucleation. It is anticipated that bPoNAs will have utility in both bio- and nanotechnology. PMID:26138550

  11. Synthetic Polymer Hybridization with DNA and RNA Directs Nanoparticle Loading, Silencing Delivery, and Aptamer Function.

    PubMed

    Zhou, Zhun; Xia, Xin; Bong, Dennis

    2015-07-22

    We report herein discrete triplex hybridization of DNA and RNA with polyacrylates. Length-monodisperse triazine-derivatized polymers were prepared on gram-scale by reversible addition-fragmentation chain-transfer polymerization. Despite stereoregio backbone heterogeneity, the triazine polymers bind T/U-rich DNA or RNA with nanomolar affinity upon mixing in a 1:1 ratio, as judged by thermal melts, circular dichroism, gel-shift assays, and fluorescence quenching. We call these polyacrylates "bifacial polymer nucleic acids" (bPoNAs). Nucleic acid hybridization with bPoNA enables DNA loading onto polymer nanoparticles, siRNA silencing delivery, and can further serve as an allosteric trigger of RNA aptamer function. Thus, bPoNAs can serve as tools for both non-covalent bioconjugation and structure-function nucleation. It is anticipated that bPoNAs will have utility in both bio- and nanotechnology. PMID:26138550

  12. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.

    PubMed

    Hwu, Jih Ru; Kapoor, Mohit; Li, Rou-Ying; Lin, Yung-Chieh; Horng, Jia-Cherng; Tsay, Shwu-Chen

    2014-12-01

    For the first time ssDNA (25-aptamer of mixed dA, dT, dG, and dC) was wrapped around functionalized single-walled carbon nanotubes (SWCNTs), whose external surfaces were attached to multiple triazole-(ethylene glycol)-dA ligands. This method of hybridization involved the formation of hydrogen bonds between dT of ssDNA and dA of functionalized SWCNTs. It deviates from the reported π-π stacking between the nucleobases of DNA and the external sidewalls of nanotubes. The structural properties of the functionalized SWCNTs and its ssDNA complex were characterized by spectroscopic (including CD and Raman), thermogravimetric, and microscopic (TEM) methods. The results thus obtained establish a new platform of DNA delivery by use of nanotubes as a new vehicle with great potential in biomedical applications and drug development.

  13. A single residue substitution causes a switch from the dual DNA binding specificity of plant transcription factor MYB.Ph3 to the animal c-MYB specificity.

    PubMed

    Solano, R; Fuertes, A; Sánchez-Pulido, L; Valencia, A; Paz-Ares, J

    1997-01-31

    Transcription factor MYB.Ph3 from Petunia binds to two types of sequences, MBSI and MBSII, whereas murine c-MYB only binds to MBSI, and Am305 from Antirrhinum only binds to MBSII. DNA binding studies with hybrids of these proteins pointed to the N-terminal repeat (R2) as the most involved in determining binding to MBSI and/or MBSII, although some influence of the C-terminal repeat (R3) was also evident. Furthermore, a single residue substitution (Leu71 --> Glu) in MYB.Ph3 changed its specificity to that of c-MYB, and c-MYB with the reciprocal substitution (Glu132 --> Leu) essentially gained the MYB.Ph3 specificity. Molecular modeling and DNA binding studies with site-specific MYB.Ph3 mutants strongly supported the notion that the drastic changes in DNA binding specificity caused by the Leu --> Glu substitution reflect the fact that certain residues influence this property both directly, through base contacts, and indirectly, through interactions with other base-contacting residues, and that a single residue may establish alternative base contacts in different targets. Additionally, differential effects of mutations at non-base-contacting residues in MYB.Ph3 and c-MYB were observed, reflecting the importance of protein context on DNA binding properties of MYB proteins.

  14. Specific identification of human papillomavirus type in cervical smears and paraffin sections by in situ hybridization with radioactive probes: a preliminary communication

    SciTech Connect

    Gupta, J.; Gendelman, H.E.; Naghashfar, Z.; Gupta, P.; Rosenshein, N.; Sawada, E.; Woodruff, J.D.; Shah, K.

    1985-01-01

    Cervical Papanicolaou smears and paraffin sections of biopsy specimens obtained from women attending dysplasia clinics were examined for viral DNA sequences by in situ hybridization technique using TVS-labeled cloned recombinant DNA probes of human papillomavirus (HPV) types 6, 11, and 16. These and one unrelated DNA probe complementary to measles virus RNA were labeled by nick translation using either one or two TVS-labeled nucleotides. Paraffin sections and cervical smears were collected on pretreated slides, hybridized with the probes under stringent or nonstringent conditions for 50 h, and autoradiographed. Additional cervical specimens from the same women were examined for the presence of genus-specific papillomavirus capsid antigen by the immunoperoxidase technique. Preliminary results may be summarized as follows. The infecting virus could be identified in smears as well as in sections. Viral DNA sequences were detected only when there were condylomatous cells in the specimen and in only a proportion of the condylomatous cells. Even under stringent conditions, some specimens reacted with both HPV-6 and HPV-11. In some instances, the cells did not hybridize with any of the three probes even when duplicate specimens contained frankly condylomatous, capsid antigen-positive cells. In situ hybridization of Papanicolaou smears or of tissue sections is a practical method for diagnosis and follow-up of specific papillomavirus infection using routinely collected material.

  15. Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon.

    PubMed

    Wu, Sheng-Mei; Tian, Zhi-Quan; Zhang, Zhi-Ling; Huang, Bi-Hai; Jiang, Peng; Xie, Zhi-Xiong; Pang, Dai-Wen

    2010-10-15

    Quantum dots (QDs) are inorganic fluorescent nanocrystals with excellent properties such as tunable emission spectra and photo-bleaching resistance compared with organic dyes, which make them appropriate for applications in molecular beacons. In this work, quantum dot-based molecular beacons (QD-based MBs) were fabricated to specifically detect β-lactamase genes located in pUC18 which were responsible for antibiotic resistance in bacteria Escherichia coli (E. coli) DH5α. QD-based MBs were constructed by conjugating mercaptoacetic acid-quantum dots (MAA-QDs) with black hole quencher 2 (BHQ2) labeled thiol DNA vial metal-thiol bonds. Two types of molecular beacons, double-strands beacons and hairpin beacons, were observed in product characterization by gel electrophoresis. Using QD-based MBs, one-step FISH in tiny bacteria DH5α was realized for the first time. QD-based MBs retained their bioactivity when hybridizing with complementary target DNA, which showed excellent advantages of eliminating background noise caused by adsorption of non-specific bioprobes and achieving clearer focus of genes in plasmids pUC18, and capability of bacterial cell penetration and signal specificity in one-step in situ hybridization.

  16. A Microfluidic-based Electrochemical Biochip for Label-free DNA Hybridization Analysis

    PubMed Central

    Ben-Yoav, Hadar; Dykstra, Peter H.; Gordonov, Tanya; Bentley, William E.; Ghodssi, Reza

    2014-01-01

    Miniaturization of analytical benchtop procedures into the micro-scale provides significant advantages in regards to reaction time, cost, and integration of pre-processing steps. Utilizing these devices towards the analysis of DNA hybridization events is important because it offers a technology for real time assessment of biomarkers at the point-of-care for various diseases. However, when the device footprint decreases the dominance of various physical phenomena increases. These phenomena influence the fabrication precision and operation reliability of the device. Therefore, there is a great need to accurately fabricate and operate these devices in a reproducible manner in order to improve the overall performance. Here, we describe the protocols and the methods used for the fabrication and the operation of a microfluidic-based electrochemical biochip for accurate analysis of DNA hybridization events. The biochip is composed of two parts: a microfluidic chip with three parallel micro-channels made of polydimethylsiloxane (PDMS), and a 3 x 3 arrayed electrochemical micro-chip. The DNA hybridization events are detected using electrochemical impedance spectroscopy (EIS) analysis. The EIS analysis enables monitoring variations of the properties of the electrochemical system that are dominant at these length scales. With the ability to monitor changes of both charge transfer and diffusional resistance with the biosensor, we demonstrate the selectivity to complementary ssDNA targets, a calculated detection limit of 3.8 nM, and a 13% cross-reactivity with other non-complementary ssDNA following 20 min of incubation. This methodology can improve the performance of miniaturized devices by elucidating on the behavior of diffusion at the micro-scale regime and by enabling the study of DNA hybridization events. PMID:25285529

  17. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus.

    PubMed

    Matyášek, Roman; Dobešová, Eva; Húska, Dalibor; Ježková, Ivana; Soltis, Pamela S; Soltis, Douglas E; Kovařík, Aleš

    2016-02-01

    Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d-rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p-rDNA dominant progenitor were meiotically unstable, frequently switching to co-dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d-rDNA dominance, indicating immediate suppression of p-homeologs in F1 hybrids. Original p-rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p-rDNA and d-rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co-dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids. PMID:26711705

  18. Human chromosome-specific DNA libraries: construction and availability

    SciTech Connect

    Van Dilla, M.A.; Deaven, L.L.; Albright, K.L.; Allen, N.A.; Aubuchon, M.R.; Bartholdi, M.F.; Brown, N.C.; Campbell, E.W.; Carrano, A.V.; Clark, L.M.; Cram, L.S.

    1986-06-01

    The goal of the National Laboratory Gene Library Project at the Los Alamos and Lawrence Livermore National Laboratories is the production of chromosome-specific human gene libraries and their distribution to the scientific community for studies of the molecular biology of genes and chromosomes, and for the study and diagnosis of genetic disease. The specific aim of Phase I of the project is the production of complete digest (4 kb average insert size) libraries from each of the 24 human chromosomal types purified by flow sorting. The bacteriophage vector is Charon 21A, which has both Eco R1 and Hind III insertion sites accommodating human DNA fragments up to 9.1 kb in size. Each laboratory has undertaken production of a complete set of chromosome-specific libraries, Los Alamos with Eco R1 and Livermore with Hind III; most of this task has now been accomplished. Close to 1200 library aliquots have been sent to about 300 laboratories world-wide through February 1986, at which time repository and distribution functions were transferred to the American Type Culture Collection, Rockville, MD. Following Phase I, libraries will be constructed with large inserts in a more advanced, recently developed bacteriophage vector (about 20 kb inserts) or in a cosmid vector (about 40 kb inserts), and with characteristics better suited to basic studies of gene structure and function.

  19. Quantitation of parvovirus B19 DNA sequences by competitive PCR: differential hybridization of the amplicons and immunoenzymatic detection on microplate.

    PubMed

    Gallinella, G; Zerbini, M; Musiani, M; Venturoli, S; Gentilomi, G; Manaresi, E

    1997-04-01

    A competitive PCR assay was developed to quantify B19 DNA sequences. Target and internal standard sequences were co-amplified by the same set of primers. The internal standard competitor was constructed by recombinant PCR and differed from the original genome sequence in a 21-bp mutagenized fragment, internal to the region amplified by the same set of primers. The internal standard competitor was cloned in a plasmid vector and the cloned fragment used in all the experiments. Target and internal standard sequences were labelled with digoxigenin during the co-amplification reaction and the different amplicons were detected in two separate hybridization reactions by biotinylated probes specific for the original 21-bp sequence or the mutagenized one. Hybridized amplicons were captured onto streptavidin-oated microtitre wells and detected by anti-digoxigenin antibodies conjugated to peroxidase. The chromogenic reaction for peroxidase was quantitatively evaluated by optical density determination. The titration curve subsequently developed showed a linear relationship over the range 10(2) to 10(5) genome copies, thus obtaining an exact quantitative evaluation over a wide range together with good sensitivity. Nine reference serum samples positive for B19 DNA and eight negative serum samples were tested by the competitive PCR assay for the quantitation of B19 DNA sequences.

  20. The minimal amount of starting DNA for Agilent’s hybrid capture-based targeted massively parallel sequencing

    PubMed Central

    Chung, Jongsuk; Son, Dae-Soon; Jeon, Hyo-Jeong; Kim, Kyoung-Mee; Park, Gahee; Ryu, Gyu Ha; Park, Woong-Yang; Park, Donghyun

    2016-01-01

    Targeted capture massively parallel sequencing is increasingly being used in clinical settings, and as costs continue to decline, use of this technology may become routine in health care. However, a limited amount of tissue has often been a challenge in meeting quality requirements. To offer a practical guideline for the minimum amount of input DNA for targeted sequencing, we optimized and evaluated the performance of targeted sequencing depending on the input DNA amount. First, using various amounts of input DNA, we compared commercially available library construction kits and selected Agilent’s SureSelect-XT and KAPA Biosystems’ Hyper Prep kits as the kits most compatible with targeted deep sequencing using Agilent’s SureSelect custom capture. Then, we optimized the adapter ligation conditions of the Hyper Prep kit to improve library construction efficiency and adapted multiplexed hybrid selection to reduce the cost of sequencing. In this study, we systematically evaluated the performance of the optimized protocol depending on the amount of input DNA, ranging from 6.25 to 200 ng, suggesting the minimal input DNA amounts based on coverage depths required for specific applications. PMID:27220682

  1. Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes.

    PubMed Central

    Randolph, J B; Waggoner, A S

    1997-01-01

    In this work, we studied the fluorescence and hybridization of multiply-labeled DNA probes which have the hydrophilic fluorophore 1-(straightepsilon-carboxypentynyl)-1'-ethyl- 3,3,3', 3'-tetramethylindocarbocyanine-5,5'-disulfonate (Cy3) attached via either a short or long linker at the C-5 position of deoxyuridine. We describe the effects of labeling density, fluorophore charge and linker length upon five properties of the probe: fluorescence intensity, the change in fluorescence upon duplex formation, the quantum yield of fluorescence (Phif), probe-target stability and specificity. For the hydrophilic dye Cy3, we have demonstrated that the fluorescence intensity andPhifare maximized when labeling every 6th base using the long linker. With a less hydrophilic dye, a labeling density this high could not be achieved without serious quenching of the fluorescence. The target specificity of multiply-labeled DNA probes was just as high as compared to the unmodified control probe, however, a less stable probe-target duplex is formed that exhibits a lower melting temperature. A mechanism that accounts for this destabilization is proposed which is consistent with our data. It involves dye-dye and dye-nucleotide interactions which appear to stabilize a single-stranded conformation of the probe. PMID:9207044

  2. Crystal Structure of Human Thymine DNA Glycosylase Bound to DNA Elucidates Sequence-Specific Mismatch Recognition

    SciTech Connect

    Maiti, A.; Morgan, M.T.; Pozharski, E.; Drohat, A.C.

    2009-05-19

    Cytosine methylation at CpG dinucleotides produces m{sup 5}CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m{sup 5}C deamination yields mutagenic G{center_dot}T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G{center_dot}T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G{center_dot}C pair. hTDG is inactive against normal A{center_dot}T pairs, and is most effective for G{center_dot}T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG{sup cat}) in complex with abasic DNA, at 2.8 {angstrom} resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG{sup cat} can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.

  3. Asymmetric hybridization and gene flow between Joshua trees (Agavaceae: Yucca) reflect differences in pollinator host specificity.

    PubMed

    Starr, Tyler N; Gadek, Katherine E; Yoder, Jeremy B; Flatz, Ramona; Smith, Christopher I

    2013-01-01

    The angiosperms are by far the largest group of terrestrial plants. Their spectacular diversity is often attributed to specialized pollination. Obligate pollination mutualisms where both a plant and its pollinator are dependent upon one another for reproduction are thought to be prone to rapid diversification through co-evolution and pollinator isolation. However, few studies have evaluated the degree to which pollinators actually mediate reproductive isolation in these systems. Here, we examine evidence for hybridization and gene flow between two subspecies of Joshua tree (Yucca brevifolia brevifolia and Yucca brevifolia jaegeriana) pollinated by two sister species of yucca moth. Previous work indicated that the pollinators differ in host specificity, and DNA sequence data suggested asymmetric introgression between the tree subspecies. Through intensive sampling in a zone of sympatry, a large number of morphologically intermediate trees were identified. These included trees with floral characters typical of Y. b. jaegeriana, but vegetative features typical of Y. b. brevifolia. The opposite combination-Y. b. brevifolia flowers with Y. b. jaegeriana vegetative morphology-never occurred. Microsatellite genotyping revealed a high frequency of genetically admixed, hybrid trees. Coalescent-based estimates of migration indicated significant gene flow between the subspecies and that the direction of gene flow matches differences in pollinator host fidelity. The data suggest that pollinator behaviour determines the magnitude and direction of gene flow between the two subspecies, but that specialized pollination alone is not sufficient to maintain species boundaries. Natural selection may be required to maintain phenotypic differences in the face of ongoing gene flow.

  4. Use of Randomly Amplified Polymorphic DNA as a Means of Developing Genus- and Strain-Specific Streptomyces DNA Probes

    PubMed Central

    Roberts, Mark A.; Crawford, Don L.

    2000-01-01

    We have analyzed 20 randomly amplified polymorphic DNA (RAPD) primers against 36 Streptomyces strains, including 17 taxonomically undefined strains, 25 nonstreptomycete actinomycetes, and 12 outgroups consisting of gram-positive and -negative species. Most of the primers were useful in identifying unique DNA polymorphisms of all strains tested. We have used RAPD techniques to develop a genus-specific probe, one not necessarily targeting the ribosomal gene, for Streptomyces, and a strain-specific probe for the biological control agent Streptomyces lydicus WYEC108. In the course of these investigations, small-scale DNA isolations were also developed for efficiently isolating actinomycete DNA. Various modifications of isolation procedures for soil DNA were compared, and the reliability and specificity of the RAPD methodology were tested by specifically detecting the S. lydicus WYEC108 in DNA isolated from soil. PMID:10831438

  5. The first determination of DNA sequence of a specific gene.

    PubMed

    Inouye, Masayori

    2016-05-10

    How and when the first DNA sequence of a gene was determined? In 1977, F. Sanger came up with an innovative technology to sequence DNA by using chain terminators, and determined the entire DNA sequence of the 5375-base genome of bacteriophage φX 174 (Sanger et al., 1977). While this Sanger's achievement has been recognized as the first DNA sequencing of genes, we had determined DNA sequence of a gene, albeit a partial sequence, 11 years before the Sanger's DNA sequence (Okada et al., 1966).

  6. Small subunit ribosomal RNA gene sequence of Minchinia teredinis (Haplosporidia: Haplosporidiidae) and a specific DNA probe and PCR primers for its detection.

    PubMed

    Stokes, N A; Siddall, M E; Burreson, E M

    1995-05-01

    Minchinia teredinis is a pathogen of wood-boring molluscs (shipworms), Teredo spp., along the middle Atlantic coast of the U.S. Genomic DNA was extracted from M. teredinis spores and small subunit (SSU) rDNA was amplified by PCR, cloned, and sequenced. The sequence of M. teredinis SSU rDNA was aligned with that of Haplosporidium nelsoni and various protists in GenBank. A 22-base oligonucleotide probe unique to M. teredinis, designated MIN702, was commercially synthesized and tested for sensitivity and specificity. In dot-blot hybridizations the probe detected 500 pg of cloned M. teredinis rDNA. The probe did not hybridize with cloned SSU rDNA of Teredo spp. or H. nelsoni. The probe was further tested for specificity with in situ hybridizations on AFA-fixed, paraffin-embedded tissue sections. The probe hybridized well with M. teredinis plasmodia and immature spores, but poorly with mature spores. The probe did not hybridize with shipworm tissue or with the haplosporidians Haplosporidium louisiana from mud crabs (Panopeus spp.) or H. nelsoni and H. costale from Crassostrea virginica. The probe and a second 18-base oligonucleotide, when used as PCR primers, amplified a 536-bp fragment of the M. teredinis SSU rRNA gene. The PCR assay was able to detect 10 fg of the cloned gene and also detected the presence of M. teredinis DNA in shipworms in which infections were observed microscopically. The 536-bp amplification product was not obtained in one Teredo sp. or in one Bankia gouldi, both categorized as uninfected after microscopic inspection. The DNA probe and PCR primers appear to be specific for M. teredinis and should be useful as diagnostic tools and for life cycle investigations.

  7. Dual fluorophore PNA FIT-probes--extremely responsive and bright hybridization probes for the sensitive detection of DNA and RNA.

    PubMed

    Socher, Elke; Knoll, Andrea; Seitz, Oliver

    2012-09-28

    Fluorescently labeled oligonucleotides are commonly employed as probes to detect specific DNA or RNA sequences in homogeneous solution. Useful probes should experience strong increases in fluorescent emission upon hybridization with the target. We developed dual labeled peptide nucleic acid probes, which signal the presence of complementary DNA or RNA by up to 450-fold enhancements of fluorescence intensity. This enabled the very sensitive detection of a DNA target (40 pM LOD), which was detectable at less than 0.1% of the beacon concentration. In contrast to existing DNA-based molecular beacons, this PNA-based method does not require a stem sequence to enforce dye-dye communication. Rather, the method relies on the energy transfer between a "smart" thiazole orange (TO) nucleotide, which requires formation of the probe-target complex in order to become fluorescent, and terminally appended acceptor dyes. To improve upon fluorescence responsiveness the energy pathways were dissected. Hydrophobic, spectrally mismatched dye combinations allowed significant (99.97%) decreases of background emission in the absence of a target. By contrast, spectral overlap between TO donor emission and acceptor excitation enabled extremely bright FRET signals. This and the large apparent Stokes shift (82 nm) suggests potential applications in the detection of specific RNA targets in biogenic matrices without the need of sample pre-processing prior to detection.

  8. Human cDNA mapping using fluorescence in situ hybridization

    SciTech Connect

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  9. DNA Hybridization-Mediated Liposome Fusion at the Aqueous Liquid Crystal Interface

    PubMed Central

    Noonan, Patrick S.; Mohan, Praveena; Goodwin, Andrew P.

    2014-01-01

    The prominence of receptor-mediated bilayer fusion in cellular biology motivates development of biomimetic strategies for studying fusogenic mechanisms. An approach is reported here for monitoring receptor-mediated fusion that exploits the unique physical and optical properties of liquid crystals (LC). PEG-functionalized lipids are used to create an interfacial environment capable of inhibiting spontaneous liposome fusion with an aqueous/LC interface. Then, DNA hybridization between oligonucleotides within bulk phase liposomes and a PEG-lipid monolayer at an aqueous/LC interface is exploited to induce receptor-mediated liposome fusion. These hybridization events induce strain within the liposome bilayer, promote lipid mixing with the LC interface, and consequently create an interfacial environment favoring re-orientation of the LC to a homeotropic (perpendicular) state. Furthermore, the bi-functionality of aptamers is exploited to modulate DNA hybridization-mediated liposome fusion by regulating the availability of the appropriate ligand (i.e., thrombin). Here, a LC-based approach for monitoring receptor (i.e., DNA hybridization)-mediated liposome fusion is demonstrated, liposome properties that dictate fusion dynamics are explored, and an example of how this approach may be used in a biosensing scheme is provided. PMID:25506314

  10. Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection.

    PubMed

    Silvestrini, Morena; Fruk, Ljiljana; Ugo, Paolo

    2013-02-15

    A novel electrochemical biosensor for DNA hybridization detection based on nanoelectrode ensembles (NEEs) is presented. NEEs are prepared by electroless deposition of gold into the pores of a templating track-etched polycarbonate (PC) membrane. The wide surface of the templating membrane surrounding the nanoelectrodes is exploited to bind the capture DNA probes via amide coupling with the carboxylic groups present on the PC surface. The probes are then hybridized with the complementary target labelled with glucose oxidase (GO(x)). The occurrence of the hybridization event is detected by adding, to the supporting electrolyte, excess glucose as the substrate and the (ferrocenylmethyl) trimethylammonium cation (FA(+)) as suitable redox mediator. In the case of positive hybridization, an electrocatalytic current is detected. In the proposed sensor, the biorecognition event and signal transduction occur in different but neighbouring sites, i.e., the PC surface and the nanoelectrodes, respectively; these sites are separated albeit in close proximity on a nanometer scale. Finally, the possibility to activate the PC surface by treatment with permanganate is demonstrated and the analytical performances of biosensors prepared with KMnO(4)-treated NEEs and native NEEs are compared and critically evaluated. The proposed biosensor displays high selectivity and sensitivity, with the capability to detect few picomoles of target DNA.

  11. DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization.

    PubMed

    Horváthová, Eva; Dusinská, Mária; Shaposhnikov, Sergey; Collins, Andrew R

    2004-07-01

    The comet assay is a sensitive method for measuring DNA strand breaks in eukaryotic cells. After embedding in agarose, cells are lysed and electrophoresed at high pH. DNA loops containing breaks (in which supercoiling is relaxed) escape from the nucleoid comet head to form a tail. Oligonucleotide probes were designed for 5' and 3' regions of the genes for dihydrofolate reductase (DHFR) and O6-methylguanine DNA methyltransferase (MGMT), both from the Chinese hamster, and the human tumour suppressor p53 gene. Alternate ends were labelled with either biotin or fluorescein. These probes were hybridized to the DNA of comets from Chinese hamster ovary (CHO) cells or human lymphocytes treated with H2O2 or photosensitizer plus light to induce oxidative damage. Amplification with Texas red- and fluorescein-tagged antibodies led, in the case of p53 in human cells, to red and green signals located in the comet tail (as well as in the head), indicating the presence of breaks in the vicinity of the gene. However, only one end of the MGMT gene appeared in the tail and almost no signals from the DHFR gene, either red or green, were in the tail of comets from CHO cells. Restriction on movement from the head to tail may result from the presence of a 'matrix-associated region' in the gene. The kinetics of repair of oxidative damage were followed; strand breaks in the p53 gene were repaired more rapidly than total DNA. Thus, fluorescent in situ hybridization in combination with the comet assay provides a powerful method for studying repair of specific genes in relation to chromatin structure. PMID:15215325

  12. Ensembles of nanoelectrodes modified with gold nanoparticles: characterization and application to DNA-hybridization detection.

    PubMed

    Silvestrini, Morena; Ugo, Paolo

    2013-01-01

    A new method to increase the active area (A(act)) of nanoelectrode ensembles (NEEs) is described. To this aim, gold nanoparticles (AuNPs) are immobilized onto the surface of NEEs using cysteamine as a cross-linker able to bind the AuNPs to the heads of the nanoelectrodes to obtain the so-called AuNPs-NEEs. The analysis of the cyclic voltammograms recorded in pure supporting electrolyte showed that the presence of the nanoparticles reflects in an, approximately, ten-times increase in the electrochemically active area of the ensemble. The measurement of the amount of electroactive polyoxometalates, which can be adsorbed on the gold surface of NEEs vs. AuNPs-NEEs, confirmed a significant increase of active area for the latter. These evidences indicate that there is a good electronic connection between the AuNPs and the underlying nanoelectrodes. The possibility to exploit AuNPs-NEEs for biosensing application was tested for the case of DNA-hybridization detection. After immobilization on the gold surface of AuNPs-NEEs of a thiolated single-stranded DNA, the hybridization with complementary sequences labeled with glucose oxidase (GOx) was performed. The detection of the hybridization was achieved by adding to the electrolyte solution the GOx substrate (i.e., glucose) and a suitable redox mediator, namely the (ferrocenylmethyl) trimethylammonium (FA(+)) cation; when the hybridization occurs, an electrocatalytic increase of the oxidation current of FA(+) is recorded. Comparison of electrocatalytic current recorded at DNA modified NEEs and AuNPs-NEEs indicate, for the latter, a significant increase in sensitivity in the detection of the DNA-hybridization event.

  13. Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers.

    PubMed

    Alvarez, M; Carrascosa, L G; Moreno, M; Calle, A; Zaballos, A; Lechuga, L M; Martínez-A, C; Tamayo, J

    2004-10-26

    Biomolecular interactions over the surface of a microcantilever can produce its bending motion via changes of the surface stress, which is referred to nanomechanical response. Here, we have studied the interaction forces responsible for the bending motion during the formation of a self-assembled monolayer of thiolated 27-mer single-stranded DNA on the gold-coated side of a microcantilever and during the subsequent hybridization with the complementary nucleic acid. The immobilization of the single-stranded DNA probe gives a mean surface stress of 25 mN/m and a mean bending of 23 nm for microcantilevers with a length and thickness of about 200 microm and 0.8 microm, respectively. The hybridization with the complementary sequence could not be inferred from the nanomechanical response. The nanomechanical response was compared with data from well-established techniques such as surface plasmon resonance and radiolabeling, to determine the surface coverage and study the intermolecular forces between neighboring DNA molecules anchored to the microcantilever surface. From both techniques, an immobilization surface density of 3 x 10(12) molecules/cm(2) and a hybridization efficiency of 40% were determined. More importantly, label-free hybridization was clearly detected in the same conditions with a conventional sensor based on surface plasmon resonance. The results imply that the nanomechanical signal during the immobilization process arises mainly from the covalent attachment to the gold surface, and the interchain interactions between neighboring DNA molecules are weak, producing an undetectable surface stress. We conclude that detection of nucleic acid hybridization with nanomechanical sensors requires reference cantilevers to remove nonspecific signals, more sensitive microcantilever geometries, and immobilization chemistries specially addressed to enhance the surface stress variations.

  14. Site-specific DNA-affinity chromatography of the lac repressor.

    PubMed Central

    Herrick, G

    1980-01-01

    To test the feasibility of site-specific DNA-affinity chromatography, E. coli lac repressor was bound to an operator-containing DNA column, and in parallel to a non-operator DNA column. Salt gradient elution shows: 1) elution from non-operator DNA was near 250mM KCl or NaCl; interpretation of this result suggests the usefulness of the procedure for studying salt-dependence of DNA-protein affinities; 2) elution from operator-containing DNA was delayed (average elution = 1000mM salt), demonstrating a feasibility of site-specific DNA-affinity chromatography, if one provides a sufficiently favorable ratio of specific to non-specific DNA binding sites; 3) repressor eluted from operator-containing DNA over a very broad salt range, which may represent chromatography-generated repressor heterogeneity. PMID:7001362

  15. Nuclear corroboration of DNA-DNA hybridization in deep phylogenies of hummingbirds, swifts, and passerines: the phylogenetic utility of ZENK (ii).

    PubMed

    Chubb, Alison L

    2004-01-01

    This paper documents the phylogenetic utility of ZENK at the avian intra-ordinal level using hummingbirds, swifts, and passerines as case studies. ZENK sequences (1.7 kb) were used to reconstruct separate gene trees containing the major lineages of each group, and the three trees were examined for congruence with existing DNA-DNA hybridization trees. The results indicate both that ZENK is an appropriate nuclear marker for resolving relationships deep in the avian tree, and that many relationships within these three particular groups are congruent among the different datasets. Specifically, within hummingbirds there was topological agreement that the major hummingbird lineages diverged in a graded manner from the "hermits," to the "mangoes," to the "coquettes," to the "emeralds," and finally to a sister relationship between the "mountain-gems" and the "bees." Concerning swifts, the deepest divergences were congruent: treeswifts (Hemiprocnidae) were sister to the typical swifts (Apodidae), and the subfamily Apodinae was monophyletic relative to Cypseloidinae. Within Apodinae, however, were short, unresolved branches among the swiftlets, spinetails, and more typical swifts; a finding which coincides with other datasets. Within passerine birds, there was congruent support for monophyly of sub-oscines and oscines, and within sub-oscines, for monophyly of New World groups relative to the Old World lineages. New World sub-oscines split into superfamilies Furnaroidea and Tyrannoidea, with the Tyrannoid relationships completely congruent among ZENK and DNA-DNA hybridization trees. Within Furnaroidea, however, there was some incongruence regarding the positions of Thamnophilidae and Formicariidae. Concerning oscine passerines, both datasets showed a split between Corvida and Passerida and confirmed the traditional membership of passerid superfamilies Muscicapoidea and Passeroidea. Monophyly of Sylvioidea, however, remained uncertain, as did the relationships among the

  16. Nuclear corroboration of DNA-DNA hybridization in deep phylogenies of hummingbirds, swifts, and passerines: the phylogenetic utility of ZENK (ii).

    PubMed

    Chubb, Alison L

    2004-01-01

    This paper documents the phylogenetic utility of ZENK at the avian intra-ordinal level using hummingbirds, swifts, and passerines as case studies. ZENK sequences (1.7 kb) were used to reconstruct separate gene trees containing the major lineages of each group, and the three trees were examined for congruence with existing DNA-DNA hybridization trees. The results indicate both that ZENK is an appropriate nuclear marker for resolving relationships deep in the avian tree, and that many relationships within these three particular groups are congruent among the different datasets. Specifically, within hummingbirds there was topological agreement that the major hummingbird lineages diverged in a graded manner from the "hermits," to the "mangoes," to the "coquettes," to the "emeralds," and finally to a sister relationship between the "mountain-gems" and the "bees." Concerning swifts, the deepest divergences were congruent: treeswifts (Hemiprocnidae) were sister to the typical swifts (Apodidae), and the subfamily Apodinae was monophyletic relative to Cypseloidinae. Within Apodinae, however, were short, unresolved branches among the swiftlets, spinetails, and more typical swifts; a finding which coincides with other datasets. Within passerine birds, there was congruent support for monophyly of sub-oscines and oscines, and within sub-oscines, for monophyly of New World groups relative to the Old World lineages. New World sub-oscines split into superfamilies Furnaroidea and Tyrannoidea, with the Tyrannoid relationships completely congruent among ZENK and DNA-DNA hybridization trees. Within Furnaroidea, however, there was some incongruence regarding the positions of Thamnophilidae and Formicariidae. Concerning oscine passerines, both datasets showed a split between Corvida and Passerida and confirmed the traditional membership of passerid superfamilies Muscicapoidea and Passeroidea. Monophyly of Sylvioidea, however, remained uncertain, as did the relationships among the

  17. Characterization of the 5-hydroxymethylcytosine-specific DNA restriction endonucleases.

    PubMed

    Borgaro, Janine G; Zhu, Zhenyu

    2013-04-01

    In T4 bacteriophage, 5-hydroxymethylcytosine (5hmC) is incorporated into DNA during replication. In response, bacteria may have developed modification-dependent type IV restriction enzymes to defend the cell from T4-like infection. PvuRts1I was the first identified restriction enzyme to exhibit specificity toward hmC over 5-methylcytosine (5mC) and cytosine. By using PvuRts1I as the original member, we identified and characterized a number of homologous proteins. Most enzymes exhibited similar cutting properties to PvuRts1I, creating a double-stranded cleavage on the 3' side of the modified cytosine. In addition, for efficient cutting, the enzymes require two cytosines 21-22-nt apart and on opposite strands where one cytosine must be modified. Interestingly, the specificity determination unveiled a new layer of complexity where the enzymes not only have specificity for 5-β-glucosylated hmC (5βghmC) but also 5-α-glucosylated hmC (5αghmC). In some cases, the enzymes are inhibited by 5βghmC, whereas in others they are inhibited by 5αghmC. These observations indicate that the position of the sugar ring relative to the base is a determining factor in the substrate specificity of the PvuRts1I homologues. Lastly, we envision that the unique properties of select PvuRts1I homologues will permit their use as an additive or alternative tool to map the hydroxymethylome.

  18. Characterization of the 5-hydroxymethylcytosine-specific DNA restriction endonucleases

    PubMed Central

    Borgaro, Janine G.; Zhu, Zhenyu

    2013-01-01

    In T4 bacteriophage, 5-hydroxymethylcytosine (5hmC) is incorporated into DNA during replication. In response, bacteria may have developed modification-dependent type IV restriction enzymes to defend the cell from T4-like infection. PvuRts1I was the first identified restriction enzyme to exhibit specificity toward hmC over 5-methylcytosine (5mC) and cytosine. By using PvuRts1I as the original member, we identified and characterized a number of homologous proteins. Most enzymes exhibited similar cutting properties to PvuRts1I, creating a double-stranded cleavage on the 3′ side of the modified cytosine. In addition, for efficient cutting, the enzymes require two cytosines 21–22-nt apart and on opposite strands where one cytosine must be modified. Interestingly, the specificity determination unveiled a new layer of complexity where the enzymes not only have specificity for 5-β-glucosylated hmC (5βghmC) but also 5-α-glucosylated hmC (5αghmC). In some cases, the enzymes are inhibited by 5βghmC, whereas in others they are inhibited by 5αghmC. These observations indicate that the position of the sugar ring relative to the base is a determining factor in the substrate specificity of the PvuRts1I homologues. Lastly, we envision that the unique properties of select PvuRts1I homologues will permit their use as an additive or alternative tool to map the hydroxymethylome. PMID:23482393

  19. Sex-specific age association with primary DNA transfer.

    PubMed

    Manoli, Panayiotis; Antoniou, Antonis; Bashiardes, Evy; Xenophontos, Stavroulla; Photiades, Marinos; Stribley, Vaso; Mylona, Michalis; Demetriou, Christiana; Cariolou, Marios A

    2016-01-01

    Practicing forensic scientists who are called to provide expert witness testimony are often asked to explain both the presence and the absence of DNA on objects that have been handled by perpetrators with bare hands. Unwashed hands, depending on what they have come in contact with previously, may become the vehicle of both primary and secondary transfer of DNA. In this study, we investigated the propensity of primary and secondary transfer of DNA from unwashed bare hands of 128 individuals onto plastic tubes. Our experiments, carried out in triplicate, have shown that DNA was not detected on all the touched tubes, secondary transfer of DNA, through unwashed hands, was small, and in the majority of cases primary DNA transfer could be distinguished from secondary DNA transfer. A statistically significant association was demonstrated between percent DNA profile deposited on plastic tubes, through unwashed hands, and the age of male individuals. PMID:26582043

  20. Sex-specific age association with primary DNA transfer.

    PubMed

    Manoli, Panayiotis; Antoniou, Antonis; Bashiardes, Evy; Xenophontos, Stavroulla; Photiades, Marinos; Stribley, Vaso; Mylona, Michalis; Demetriou, Christiana; Cariolou, Marios A

    2016-01-01

    Practicing forensic scientists who are called to provide expert witness testimony are often asked to explain both the presence and the absence of DNA on objects that have been handled by perpetrators with bare hands. Unwashed hands, depending on what they have come in contact with previously, may become the vehicle of both primary and secondary transfer of DNA. In this study, we investigated the propensity of primary and secondary transfer of DNA from unwashed bare hands of 128 individuals onto plastic tubes. Our experiments, carried out in triplicate, have shown that DNA was not detected on all the touched tubes, secondary transfer of DNA, through unwashed hands, was small, and in the majority of cases primary DNA transfer could be distinguished from secondary DNA transfer. A statistically significant association was demonstrated between percent DNA profile deposited on plastic tubes, through unwashed hands, and the age of male individuals.

  1. Nonlinear Model of the Specificity of DNA-Protein Interactions and Its Stability

    NASA Astrophysics Data System (ADS)

    Dwiputra, D.; Hidayat, W.; Khairani, R.; Zen, F. P.

    2016-08-01

    Specific DNA-protein interactions are fundamental processes of living cells. We propose a new model of DNA-protein interactions to explain the site specificity of the interactions. The hydrogen bonds between DNA base pairs and between DNA-protein peptide groups play a significant role in determination of the specific binding site. We adopt the Morse potential with coupling terms to construct the Hamiltonian of coupled oscillators representing the hydrogen bonds in which the depth of the potentials vary in the DNA chain. In this paper we investigate the stability of the model to determine the conditions satisfying the biological circumstances of the DNA-protein interactions.

  2. Ultrasensitive Multiplexed Immunoassay for Tumor Biomarkers Based on DNA Hybridization Chain Reaction Amplifying Signal.

    PubMed

    Guo, Jinjin; Wang, Junchun; Zhao, Junqing; Guo, Zilin; Zhang, Yuzhong

    2016-03-23

    In this work, a novel electrochemical immunoassay protocol has been reported for simultaneous determination of multiple tumor biomarkers based on DNA hybridization chain reaction (HCR) for signal amplification. Alpha-fetoprotein (AFP) and prostate specific antigen (PSA) were selected as model biomarkers. The immunoassay protocol contained primary antibodies immobilized on gold nanoparticles (Au NPs), secondary antibodies conjugated with DNA concatemer from HCR of primer, auxiliary probe, and signal probe labeled with signal molecules (methyleneblue (MB) and ferrocene (Fc)). In the presence of target biomarkers, the sandwich immunocomplex was formed between the primary antibodies and secondary antibodies bioconjugates carrying numerous signal molecules. As a result, two well-resolved reduction peaks, one was at -0.35 V (corresponding to MB) and other was at 0.33 V (corresponding to Fc; both vs SCE), were obtained in differential pulse voltammetry, and peak currents changed were related to the level of biomarkers. Under optimal conditions, the electrochemical immunoassay exhibited a wide linear response range (0.5 pg mL(-1) to 50 ng mL(-1)) and low detection limits (PSA, 0.17 pg mL(-1); AFP, 0.25 pg mL(-1)) (at S/N = 3). In addition, the immunoassay was evaluated by analyzing simulate human serum sample, and the recoveries obtained were within 99.4-107.6% for PSA and 97.9-108.2% for AFP, indicating the immnuoassay could be applied to the simultaneous detection of AFP and PSA in human serum samples. PMID:26937717

  3. Random amplified polymorphic DNA analysis, genome size, and genomic in situ hybridization of triploid viviparous onions

    PubMed

    Puizina; Javornik; Bohanec; Schweizer; Maluszynska; Papes

    1999-12-01

    Triploid viviparous onions (Allium cepa L. var. viviparum Metzg. (ALEF.), auct.), (2n = 3x = 24), are known in some countries only as a rare relic crop, while in other parts of the world they are still traditionally or even commercially cultivated. Results indicating an identical random amplified polymorphic DNA (RAPD) banding pattern and the same DNA content (2C = 43.4 pg) establish the high genetic similarity and the unique origin of the Croatian clone Ljutika and the Indian clone Pran. In order to determine the parental Allium species of these natural triploid hybrids, genomic fluorescent in situ hybridization (GISH) was applied. Biotinylated genomic DNAs from six diploid Allium species (A. cepa L., A. fistulosum L., A. roylei Stearn, A. vavilovii M. Pop. et Vved., A. galanthum Kar. et Kir., A. oschaninii O. Fedtsch.) were used as probes in this study. While probes obtained from genomic DNA of A. cepa, A. vavilovii, and A. roylei hybridized to somatic chromosomes of Ljutika probes from A. fistulosum, A. galanthum, and A. oschaninii did not. The DNA probes of A. cepa and A. roylei each completely or predominantly labelled one genome (eight chromosomes). A few chromosomes, the markers of the triploid karyotype, were not completely labelled by any probe applied. Our GISH results indicate that triploid viviparous onions might possess a complex triparental genome organization. PMID:10659789

  4. Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation.

    PubMed

    Chu, Te-Wei; Feng, Jiayue; Yang, Jiyuan; Kopeček, Jindřich

    2015-12-28

    This work presents a new concept in hybrid hydrogel design. Synthetic water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) polymers grafted with multiple peptide nucleic acids (PNAs) are crosslinked upon addition of the linker DNA. The self-assembly is mediated by the PNA-DNA complexation, which results in the formation of hydrophilic polymer networks. We show that the hydrogels can be produced through two different types of complexations. Type I hydrogel is formed via the PNA/DNA double-helix hybridization. Type II hydrogel utilizes a unique "P-form" oligonucleotide triple-helix that comprises two PNA sequences and one DNA. Microrheology studies confirm the respective gelation processes and disclose a higher critical gelation concentration for the type I gel when compared to the type II design. Scanning electron microscopy reveals the interconnected microporous structure of both types of hydrogels. Type I double-helix hydrogel exhibits larger pore sizes than type II triple-helix gel. The latter apparently contains denser structure and displays greater elasticity as well. The designed hybrid hydrogels have potential as novel biomaterials for pharmaceutical and biomedical applications.

  5. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy.

    PubMed

    Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  6. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models.

    PubMed

    Ando, Tadashi; Skolnick, Jeffrey

    2014-12-01

    DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.

  7. Conversion of a helix-turn-helix motif sequence-specific DNA binding protein into a site-specific DNA cleavage agent.

    PubMed Central

    Ebright, R H; Ebright, Y W; Pendergrast, P S; Gunasekera, A

    1990-01-01

    Escherichia coli catabolite gene activator protein (CAP) is a helix-turn-helix motif sequence-specific DNA binding protein [de Crombrugghe, B., Busby, S. & Buc, H. (1984) Science 224, 831-838; and Pabo, C. & Sauer, R. (1984) Annu. Rev. Biochem. 53, 293-321]. In this work, CAP has been converted into a site-specific DNA cleavage agent by incorporation of the chelator 1,10-phenanthroline at amino acid 10 of the helix-turn-helix motif. [(N-Acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP binds to a 22-base-pair DNA recognition site with Kobs = 1 x 10(8) M-1. In the presence of Cu(II) and reducing agent, [(N-acetyl-5-amino-1,10-phenanthroline)-Cys178]CAP cleaves DNA at four adjacent nucleotides on each DNA strand within the DNA recognition site. The DNA cleavage reaction has been demonstrated using 40-base-pair and 7164-base-pair DNA substrates. The DNA cleavage reaction is not inhibited by dam methylation of the DNA substrate. Such semisynthetic site-specific DNA cleavage agents have potential applications in chromosome mapping, cloning, and sequencing. Images PMID:2158096

  8. Quantitative High-Resolution Sensing of DNA Hybridization Using Magnetic Tweezers with Evanescent Illumination

    PubMed Central

    Oliver, Piercen M.; Park, Jin Seon; Vezenov, Dmitri

    2012-01-01

    We applied the combined approach of evanescent nanometry and force spectroscopy using magnetic tweezers to quantify the degree of hybridization of a single synthetic single-stranded DNA oligomer to a resolution approaching a single-base. In this setup, the 200 nucleotide long DNA was covalently attached to the surface of an optically transparent solid support at one end and to the surface of a superparamagnetic fluorescent microsphere (force probe) at the other end. The force was applied to the probes using an electromagnet. The end-to-end molecular distance (i.e. out-of-image-plane position of the force probe) was determined from the intensity of the probe fluorescent image observed with total-internal reflectance microscopy. An equation of state for single stranded DNA molecules under tension (extensible freely jointed chain) was used to derive the penetration depth of the evanescent field and to calibrate the magnetic properties of the force probes. The parameters of the magnetic response of the force probes obtained from the equation of state remained constant when changing the penetration depth, indicating a robust calibration procedure. The results of such a calibration were also confirmed using independently measured probe-surface distances for probes mounted onto cantilevers of an atomic force microscope. Upon hybridization of the complementary 50 nucleotide-long oligomer to the surface-bound 200-mer, the changes in the force-distance curves were consistent with the quantitative conversion of 25% of the original single-stranded DNA to its double-stranded form, which was modeled as an elastic rod. The method presented here for quantifying the hybridization state of the single DNA molecules has potential for determining the degree of hybridization of individual molecules in a single molecule array with high accuracy. PMID:21103547

  9. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    PubMed

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  10. Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis.

    PubMed

    Seta, K A; Kim, R; Kim, H W; Millhorn, D E; Beitner-Johnson, D

    2001-11-30

    Subtractive suppression hybridization was used to generate a cDNA library enriched in cDNA sequences corresponding to mRNA species that are specifically up-regulated by hypoxia (6 h, 1% O(2)) in the oxygen-responsive pheochromocytoma cell line. The dual specificity protein-tyrosine phosphatase MAPK phosphatase-1 (MKP-1) was highly represented in this library. Clones were arrayed on glass slides to create a hypoxia-specific cDNA microarray chip. Microarray, northern blot, and western blot analyses confirmed that MKP-1 mRNA and protein levels were up-regulated by hypoxia by approximately 8-fold. The magnitude of the effect of hypoxia on MKP-1 was approximately equal to that induced by KCl depolarization and much larger than the effects of either epidermal growth factor or nerve growth factor on MKP-1 mRNA levels. In contrast to the calcium-dependent induction of MKP-1 by KCl depolarization, the effect of hypoxia on MKP-1 persisted under calcium-free conditions. Cobalt and deferoxamine also increased MKP-1 mRNA levels, suggesting that hypoxia-inducible factor proteins may play a role in the regulation of MKP-1 by hypoxia. Pretreatment of cells with SB203580, which inhibits p38 kinase activity, significantly reduced the hypoxia-induced increase in MKP-1 RNA levels. Thus, hypoxia robustly increases MKP-1 levels, at least in part through a p38 kinase-mediated mechanism. PMID:11577072

  11. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    PubMed

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence.

  12. An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection.

    PubMed

    Zhu, Hao; Lu, Feng; Wu, Xing-Cai; Zhu, Jun-Jie

    2015-11-21

    A novel fluorescent resonant energy transfer (FRET) biosensor was fabricated for the detection of hepatitis B virus (HBV) DNA using poly(ethylenimine) (PEI) modified upconversion nanoparticles (NH2-UCNPs) as energy donor and gold nanoparticles (Au NPs) as acceptor. The PEI modified upconversion nanoparticles were prepared directly with a simple one-pot hydrothermal method, which provides high quality amino-group functionalized UCNPs with uniform morphology and strong upconversion luminescence. Two single-stranded DNA strands, which were partially complementary to each other, were then conjugated with NH2-UCNPs and Au NPs. When DNA conjugated NH2-UCNPs and Au NPs are mixed together, the hybridization between complementary DNA sequences on UCNPs and Au NPs will lead to the quenching of the upconversion luminescence due to the FRET process. Meanwhile, upon the addition of target DNA, Au NPs will leave the surface of the UCNPs and the upconversion luminescence can be restored because of the formation of the more stable double-stranded DNA on the UCNPs. The sensor we fabricated here for target DNA detection shows good sensitivity and high selectivity, which has the potential for clinical applications in the analysis of HBV and other DNA sequences. PMID:26421323

  13. A label-free colorimetric platform for DNA via target-catalyzed hairpin assembly and the peroxidase-like catalytic of graphene/Au-NPs hybrids.

    PubMed

    Chen, Chaohui; Li, Ningxing; Lan, Jingwen; Ji, Xinghu; He, Zhike

    2016-01-01

    A target-catalyzed hairpin assembly (CHA) and graphene/Au-NPs hybrids-based platform has been developed for the determination of DNA. This new sensor not only avoided any labeling but also reduced the background signal. In the absence of target, the assembly of H1 and H2 couldn't be triggered. The catalytic activity of graphene/Au-NPs hybrids was inhibited by adsorption of H1 and H2, leading to the "inactive" hybrids unable to catalyze the oxidation reaction of 3,3',5,5'-tetramethylbenzidine (TMB). However, with the addition of target DNA, the target-catalyzed hairpin assembly was initiated and produced plenty of H1-H2 duplex, which had a weak binding affinity with the graphene/Au-NPs. Thus, the protected interface of graphene/Au-NPs hybrids became active and catalyzed the oxidation reaction of TMB accompanied with a colorless to-blue color change. This approach exhibited good sensitivity and specificity for target DNA with a detection limit of 5.74 × 10(-11) M, and realized the assay of target DNA in human serum samples. Besides, this sensor could be further expanded to detect viruses or proteins by adapting the corresponding aptamers, showing great potential in biochemical detections.

  14. The effect of the shape of single, sub-ms voltage pulses on the rates of surface immobilization and hybridization of DNA.

    PubMed

    Cabeça, R; Rodrigues, M; Prazeres, D M F; Chu, V; Conde, J P

    2009-01-01

    Electric fields generated by single square and sinusoidal voltage pulses with amplitudes below 2 V were used to assist the covalent immobilization of single-stranded, thiolated DNA probes, onto a chemically functionalized SiO2 surface and to assist the specific hybridization of single-stranded DNA targets with immobilized complementary probes. The single-stranded immobilized DNA probes were either covalently immobilized (chemisorption) or electrostatically adsorbed (physisorption) to a chemically functionalized surface. Comparing the speed of electric field assisted immobilization and hybridization with the corresponding control reactions (without electric field), an increase of several orders of magnitude is observed, with the reaction timescaled down from 1 to 2 h to a range between 100 ns and 1 ms. The influence of the shape of the voltage pulse (square versus sinusoidal) and its duration were studied for both immobilization and hybridization reactions. The results show that pulsed electric fields are a useful tool to achieve temporal and spatial control of surface immobilization and hybridization reactions of DNA. PMID:19417254

  15. Development of SCAR markers and UP-PCR cross-hybridization method for specific detection of four major subgroups of Rhizoctonia from infected turfgrasses.

    PubMed

    Amaradasa, Bimal S; Lakshman, Dilip; Horvath, Brandon J; Amundsen, Keenan L

    2014-01-01

    A rapid identification assay for Waitea circinata (anamorph: Rhizoctonia spp.) varieties zeae and circinata causing patch diseases on turfgrasses was developed based on the universally primed PCR (UP-PCR) products cross-blot hybridization. Tester isolates belonging to the two varieties of W. circinata were amplified with a single UP primer L21, which generated multiple DNA fragments for each variety. Probes were prepared with UP-PCR products of each tester isolate by labeling with digoxigenin. Fieldcollected W. circinata isolates and representative isolates of different R. solani anastomosis groups (AG) and AG subgroups were amplified with L21, immobilized on nylon membrane and cross hybridized with the two probes. Isolates within a W. circinata variety cross-hybridized strongly, while non-homologous isolates did not cross-hybridize or did so weakly. Closely related W. circinata varieties zeae and circinata were clearly distinguished with this assay. Sequence-characterized amplified region (SCAR) markers also were developed from UP-PCR products to identify isolates of Thanatephorus cucumeris (anamorph: R. solani) AG 1-IB and AG 2-2IIIB. These two AGs are commonly isolated from diseased, cool-season turfgrasses. The specific SCAR markers that were developed could differentiate isolates of AG 1-IB or AG 2-2IIIB groups. These SCAR markers did not amplify a product from genomic DNA of nontarget isolates of Rhizoctonia. The specificities and sensitivities of the SCAR primers were tested on total DNA extracted from several field-grown, cool-season turf species having severe brown-patch symptoms. First, the leaf samples from diseased turf species were tested for the anastomosis groups of the causal pathogen, and thereafter the total DNA was amplified with the specific primers. The specific primers were sensitive and unique enough to produce a band from total DNA of diseased turfgrasses infected with either AG 1-IB or AG 2-2IIIB.

  16. Nuclear Ribosomal DNA Variation and Pathogenic Specialization in Alternaria Fungi Known To Produce Host-Specific Toxins †

    PubMed Central

    Kusaba, Motoaki; Tsuge, Takashi

    1994-01-01

    A total of 99 strains of 11 Alternaria species, including 68 strains of seven fungi known to produce host-specific toxins, were subjected to analysis of restriction fragment length polymorphism (RFLP) in nuclear ribosomal DNA (rDNA). Total DNA was digested with XbaI, and the Southern blots were probed with a nuclear rDNA clone of Alternaria kikuchiana. The hybridization gave 17 different RFLPs from the 99 strains. On the basis of these RFLPs, populations of host-specific toxin-producing fungi could not be differentiated from one another nor from nonpathogenic A. alternata. Each population of the toxin-producing fungi carried rDNA variants. Nine different types, named A1 to A6 and B1 to B3, were detected among the toxin-producing fungi and nonpathogenic A. alternata. All of the populations contained the type A4 variant, and the other rDNA types were also shared by different toxin-producing fungi and A. alternata. In contrast, Alternaria species that are morphologically distinguishable from A. alternata could be differentiated from A. alternata on the basis of the rDNA RFLPs. Polymorphisms in rDNA digested with HaeIII and MspI were also evaluated in 61 Alternaria strains. These restriction enzymes produced 31 variations among all of the samples. The seven toxin-producing fungi and nonpathogenic A. alternata could not be resolved by phylogenetic analysis based on the RFLPs, although they could be differentiated from the other Alternaria species studied. These results provide support for the hypothesis that Alternaria fungi known to produce host-specific toxins are intraspecific variants of A. alternata specialized in pathogenicity. Images PMID:16349367

  17. Hybridization studies with a DNA probe derived from the virulence region of the 60 Mdal plasmid of Salmonella typhimurium.

    PubMed Central

    Poppe, C; Curtiss, R; Gulig, P A; Gyles, C L

    1989-01-01

    Plasmid DNA of 68 strains of Salmonella that belonged to 18 serovars and exhibited 48 different plasmid profiles was examined for hybridization with a 32P-labelled DNA probe which consisted of a 3750 base pairs (bp) HindIII-HindIII fragment derived from the virulence region of the 60 megadalton (Mdal) plasmid of Salmonella typhimurium. The 32 Mdal plasmid of S. cholerae-suis, the 50 Mdal plasmid of S. dublin, the 36 Mdal plasmid of S. enteritidis, the 60 Mdal plasmid of S. gallinarum, the 60 Mdal plasmid of S. pullorum, and the 60 Mdal plasmid of S. typhimurium, plasmids that have been associated with virulence, all hybridized with the probe. Digestion of plasmid DNA of these strains with PvuII and hybridization with the probe revealed that the plasmids of strains of all six serovars contained fragments of approximately 2520 and 1520 bp that hybridized with the probe. Similarly, hybridization with BglI digests of DNA of the virulence-associated plasmids of strains of these six serovars showed that all six plasmids contained a fragment of approximately 3690 bp that hybridized with the probe. No other plasmids of these strains nor any plasmids of 12 other Salmonella serovars hybridized with the probe. Chromosomal DNA did not hybridize with the probe. The 60 Mdal plasmids of S. gallinarum and S. pullorum showed similar digestion patterns with restriction endonucleases BglI, BglII and PvuII. Images Fig. 2. Fig. 3. Fig. 4. PMID:2686827

  18. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate.

    PubMed Central

    Wahl, G M; Stern, M; Stark, G R

    1979-01-01

    We describe a technique for transferring electrophoretically separated bands of double-stranded DNA from agarose gels to diazobenzyloxymethyl-paper. Controlled cleavage of the DNA in situ by sequential treatment with dilute acid, which causes partial depurination, and dilute alkali, which causes cleavage and separation of the strands, allows the DNA to leave the gel rapidly and completely, with an efficiency independent of its size. Covalent attachment of DNA to paper prevents losses during subsequent hybridization and washing steps and allows a single paper to be reused many times. Ten percent dextran sulfate, originally found to accelerate DNA hybridization in solution by about 10-fold [J.G. Wetmur (1975) Biopolymers 14, 2517-2524], accelerates the rate of hybridization of randomly cleaved double-stranded DNA probes to immobilized nucleic acids by as much as 100-fold, without increasing the background significantly. Images PMID:291033

  19. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression.

    PubMed

    Langbein, L; Heid, H W; Moll, I; Franke, W W

    1993-12-01

    Differentiation of human plantar and palmar epidermis is characterized by the suprabasal synthesis of a major special intermediate-sized filament (IF) protein, the type I (acidic) cytokeratin 9 (CK 9). Using partial amino acid (aa) sequence information obtained by direct Edman sequencing of peptides resulting from proteolytic digestion of purified CK 9, we synthesized several redundant primers by 'back-translation'. Amplification by polymerase chain reaction (PCR) of cDNAs obtained by reverse transcription of mRNAs from human foot sole epidermis, including 5'-primer extension, resulted in multiple overlapping cDNA clones, from which the complete cDNA (2353 bp) could be constructed. This cDNA encoded the CK 9 polypeptide with a calculated molecular weight of 61,987 and an isoelectric point at about pH 5.0. The aa sequence deduced from cDNA was verified in several parts by comparison with the peptide sequences and showed the typical structure of type I CKs, with a head (153 aa), and alpha-helical coiled-coil-forming rod (306 aa), and a tail (163 aa) domain. The protein displayed the highest homology to human CK 10, not only in the highly conserved rod domain but also in large parts of the head and the tail domains. On the other hand, the aa sequence revealed some remarkable differences from CK 10 and other CKs, even in the most conserved segments of the rod domain. The nuclease digestion pattern seen on Southern blot analysis of human genomic DNA indicated the existence of a unique CK 9 gene. Using CK 9-specific riboprobes for hybridization on Northern blots of RNAs from various epithelia, a mRNA of about 2.4 kb in length could be identified only in foot sole epidermis, and a weaker cross-hybridization signal was seen in RNA from bovine heel pad epidermis at about 2.0 kb. A large number of tissues and cell cultures were examined by PCR of mRNA-derived cDNAs, using CK 9-specific primers. But even with this very sensitive signal amplification, only palmar

  20. Electrostatics of DNA nucleotide-carbon nanotube hybrids evaluated from QM:MM simulations

    NASA Astrophysics Data System (ADS)

    Chehel Amirani, Morteza; Tang, Tian

    2015-11-01

    Biomolecule-functionalized carbon nanotubes (CNTs) have been studied vastly in recent years due to their potential applications for instance in cancer detection, purification and separation of CNTs, and nanoelectronics. Studying the electrostatic potential generated by a biomolecule-CNT hybrid is important in predicting its interactions with the surrounding environment such as charged particles and surfaces. In this paper, we performed atomistic simulations using a QM:MM approach to evaluate the electrostatic potential and charge transfer for a hybrid structure formed by a DNA nucleotide and a CNT in solution. Four types of DNA nucleotides and two CNTs with chiralities of (4,4) and (7,0) were considered. The types of nucleotides and CNTs were both found to play important roles in the electrostatic potential and charge transfer of the hybrid. At the same distance from the CNT axis, the electrostatic potential for the nucleotide-(4,4) CNT hybrids was found to be stronger compared with that for the nucleotide-(7,0) CNT hybrids. Higher electric charge was also shown to be transferred from the DNA nucleotides to the (7,0) CNT compared with the (4,4) CNT. These results correlate with the previous finding that the nucleotides bound more tightly to the (7,0) CNT compared with the (4,4) CNT.Biomolecule-functionalized carbon nanotubes (CNTs) have been studied vastly in recent years due to their potential applications for instance in cancer detection, purification and separation of CNTs, and nanoelectronics. Studying the electrostatic potential generated by a biomolecule-CNT hybrid is important in predicting its interactions with the surrounding environment such as charged particles and surfaces. In this paper, we performed atomistic simulations using a QM:MM approach to evaluate the electrostatic potential and charge transfer for a hybrid structure formed by a DNA nucleotide and a CNT in solution. Four types of DNA nucleotides and two CNTs with chiralities of (4,4) and (7

  1. Identification of human DNA in forensic evidence by loop-mediated isothermal amplification combined with a colorimetric gold nanoparticle hybridization probe.

    PubMed

    Watthanapanpituck, Khanistha; Kiatpathomchai, Wansika; Chu, Eric; Panvisavas, Nathinee

    2014-11-01

    A DNA test based on loop-mediated isothermal amplification (LAMP) and colorimetric gold nanoparticle (AuNP) hybridization probe to detect the presence of human DNA in forensic evidence was developed. The LAMP primer set targeted eight regions of the human cytochrome b, and its specificity was verified against the DNA of 11 animal species, which included animals closely related to humans, such as chimpanzee and orangutan. By using the AuNP probe, sequence-specific LAMP product could be detected and the test result could be visualized through the change in color. The limit of detection was demonstrated with reproducibility to be as low as 718 fg of genomic DNA, which is equivalent to approximately 100 plasmid DNA copies containing the cytochrome b DNA target region. A simple DNA extraction method for the commonly found forensic biological samples was also devised to streamline the test process. This LAMP-AuNP human DNA test showed to be a robust, specific, and cost-effective tool for the forensic identification of human specimens without requiring sophisticated laboratory instruments.

  2. Helicoidal Fields and Spin Polarized Currents in Carbon Nanotube-DNA Hybrids

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Latgé, A.; Ulloa, S. E.

    2012-03-01

    We report on theoretical studies of electronic transport in the archetypical molecular hybrid formed by DNA wrapped around single-walled carbon nanotubes (CNTs). Using a Green’s function formalism in a π-orbital tight-binding representation, we investigate the role that spin-orbit interactions play on the CNT in the case of the helicoidal electric field induced by the polar nature of the adsorbed DNA molecule. We find that spin polarization of the current can take place in the absence of magnetic fields, depending strongly on the direction of the wrapping and length of the helicoidal field. These findings open new routes for using CNTs in spintronic devices.

  3. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.

    PubMed Central

    Esposito, D; Craigie, R

    1998-01-01

    HIV-1 integrase specifically recognizes and cleaves viral end DNA during the initial step of retroviral integration. The protein and DNA determinants of the specificity of viral end DNA binding have not been clearly identified. We have used mutational analysis of the viral end LTR sequence, in vitro selection of optimal viral end sequences, and specific photocrosslinking to identify regions of integrase that interact with specific bases in the LTR termini. The results highlight the involvement of the disordered loop of the integrase core domain, specifically residues Q148 and Y143, in binding to the terminal portion of the viral DNA ends. Additionally, we have identified positions upstream in the LTR termini which interact with the C-terminal domain of integrase, providing evidence for the role of that domain in stabilization of viral DNA binding. Finally, we have located a region centered 12 bases from the viral DNA terminus which appears essential for viral end DNA binding in the presence of magnesium, but not in the presence of manganese, suggesting a differential effect of divalent cations on sequence-specific binding. These results help to define important regions of contact between integrase and viral DNA, and assist in the formulation of a molecular model of this vital interaction. PMID:9755183

  4. Protein−DNA binding in the absence of specific base-pair recognition

    PubMed Central

    Afek, Ariel; Schipper, Joshua L.; Horton, John; Gordân, Raluca; Lukatsky, David B.

    2014-01-01

    Until now, it has been reasonably assumed that specific base-pair recognition is the only mechanism controlling the specificity of transcription factor (TF)−DNA binding. Contrary to this assumption, here we show that nonspecific DNA sequences possessing certain repeat symmetries, when present outside of specific TF binding sites (TFBSs), statistically control TF−DNA binding preferences. We used high-throughput protein−DNA binding assays to measure the binding levels and free energies of binding for several human TFs to tens of thousands of short DNA sequences with varying repeat symmetries. Based on statistical mechanics modeling, we identify a new protein−DNA binding mechanism induced by DNA sequence symmetry in the absence of specific base-pair recognition, and experimentally demonstrate that this mechanism indeed governs protein−DNA binding preferences. PMID:25313048

  5. Nucleotide sequences derived from pheasant DNA in the genome of recombinant avian leukosis viruses with subgroup F specificity.

    PubMed

    Keshet, E; Temin, H M

    1977-11-01

    Recombination between viral and cellular genes can give rise to new strains of retroviruses. For example, Rous-associated virus 61 (RAV-61) is a recombinant between the Bryan high-titer strain of Rous sarcoma virus (RSV) and normal pheasant DNA. Nucleic acid hybridization techniques were used to study the genome of RAV-61 and another RAV with subgroup F specificity (RAV-F) obtained by passage of RSV-RAV-0 in cells from a ring-necked pheasant embryo. The nucleotide sequences acquired by these two independent isolates of RAV-F that were not shared with the parental virus comprised 20 to 25% of the RAV-F genomes and were indistinguishable by nucleic acid hybridization. (In addition, RAV-F genomes had another set of nucleotide sequences that were homologous to some pheasant nucleotide sequences and also were present in the parental viruses.) A specific complementary DNA, containing only nucleotide sequences complementary to those acquired by RAV-61 through recombination, was prepared. These nucleotide sequences were pheasant derived and were not present in the genomes of reticuloendotheliosis viruses, pheasant viruses, and avian leukosis-sarcoma viruses of subgroups A, B, C, D, and E. They were partially endogenous, however, to avian DNA other than pheasant. The fraction of these nucleotide sequences present in other avian DNAs generally paralleled the genetic relatedness of these avian species to pheasants. However, there was a high degree of homology between these pheasant nucleotide sequences and related nucleotide sequences in the DNA of normal chickens as indicated by the identical melting profiles of the respective hybrids.

  6. A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.

    PubMed

    Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry

    2008-11-01

    A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.

  7. DNA-binding specificity and in vivo targets of Caenorhabditis elegans nuclear factor I

    PubMed Central

    Whittle, Christina M.; Lazakovitch, Elena; Gronostajski, Richard M.; Lieb, Jason D.

    2009-01-01

    The conserved nuclear factor I (NFI) family of transcription factors is unique to animals and essential for mammalian development. The Caenorhabditis elegans genome encodes a single NFI family member, whereas vertebrate genomes encode 4 distinct NFI protein subtypes (A, B, C, and X). NFI-1-deficient worms exhibit abnormalities, including reduced lifespan, defects in movement and pharyngeal pumping, and delayed egg-laying. To explore the functional basis of these phenotypes, we sought to comprehensively identify NFI-1-bound loci in C. elegans. We first established NFI-1 DNA-binding specificity using an in vitro DNA-selection strategy. Analysis yielded a consensus motif of TTGGCA(N)3TGCCAA, which occurs 586 times in the genome, a 100-fold higher frequency than expected. We next asked which sites were occupied by NFI-1 in vivo by performing chromatin immunoprecipitation of NFI-1 followed by microarray hybridization. Only 55 genomic locations were identified, an unexpectedly small target set. In vivo NFI-1 binding sites tend to be upstream of genes involved in core cellular processes, such as chromatin remodeling, mRNA splicing, and translation. Remarkably, 59 out of 70 (84%) of the C. briggsae orthologs of the identified targets contain conserved NFI binding sites in their promoters. These experiments provide a foundation for understanding how NFI-1 is recruited to unexpectedly few in vivo sites to perform its developmental functions, despite a vast over-representation of its binding motif. PMID:19584245

  8. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature.

    PubMed

    Facciponte, John G; Ugel, Stefano; De Sanctis, Francesco; Li, Chunsheng; Wang, Liping; Nair, Gautham; Sehgal, Sandy; Raj, Arjun; Matthaiou, Efthymia; Coukos, George; Facciabene, Andrea

    2014-04-01

    Tumor endothelial marker 1 (TEM1; also known as endosialin or CD248) is a protein found on tumor vasculature and in tumor stroma. Here, we tested whether TEM1 has potential as a therapeutic target for cancer immunotherapy by immunizing immunocompetent mice with Tem1 cDNA fused to the minimal domain of the C fragment of tetanus toxoid (referred to herein as Tem1-TT vaccine). Tem1-TT vaccination elicited CD8+ and/or CD4+ T cell responses against immunodominant TEM1 protein sequences. Prophylactic immunization of animals with Tem1-TT prevented or delayed tumor formation in several murine tumor models. Therapeutic vaccination of tumor-bearing mice reduced tumor vascularity, increased infiltration of CD3+ T cells into the tumor, and controlled progression of established tumors. Tem1-TT vaccination also elicited CD8+ cytotoxic T cell responses against murine tumor-specific antigens. Effective Tem1-TT vaccination did not affect angiogenesis-dependent physiological processes, including wound healing and reproduction. Based on these data and the widespread expression of TEM1 on the vasculature of different tumor types, we conclude that targeting TEM1 has therapeutic potential in cancer immunotherapy.

  9. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  10. Simultaneous in situ hybridization for DNA and RNA reveals the presence of HPV in the majority of cervical cancer cells.

    PubMed

    D'Amato, L; Pilotti, S; Longoni, A; Donghi, R; Rilke, F

    1992-02-01

    Thirteen cases of invasive squamous cell carcinoma of the uterine cervix containing HPV types 16 or 18 DNA sequences, as detected by Southern blot analysis, were investigated by in situ hybridization on routine paraffin sections, using 35S nick-translated DNA probes. Simultaneous in situ hybridization for DNA and RNA showed that in ten out of 13 cases (77%) the percentage of tumor cells containing HPV 16 or 18 varied from 75 to 100%. In one case, harboring both in situ and invasive carcinoma, the same type of HPV DNA was detected in both components. This finding suggests that neoplastic cells retained the viral genome during progression to invasiveness.

  11. Method for isolating chromosomal DNA in preparation for hybridization in suspension

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.

  12. Development of cDNA probes for typing group A bovine rotaviruses on the basis of VP4 specificity.

    PubMed Central

    Parwani, A V; Rosen, B I; McCrae, M A; Saif, L J

    1992-01-01

    Dot and Northern (RNA) blot hybridization assays were developed for the P typing of group A bovine rotaviruses (BRV) by using cDNA probes prepared from gene segment 4. The probes were prepared by polymerase chain reaction amplification of hyperdivergent regions (nucleotides 211 to 686) of BRV strain UK, IND, NCDV, and Cr VP4 cDNA by using specific oligonucleotide primers. The probes were P type specific (VP4) and exhibited little or no cross-reactivity with double-stranded RNA from heterologous rotavirus P types. Our studies indicate that at least three P types, as defined by polymerase chain reaction-derived VP4 gene probes from the UK, NCDV, and Cr strains, exist among the seven BRV isolates tested. Images PMID:1383267

  13. Characterization of honeybee (Apis mellifera L.) chromosomes using repetitive DNA probes and fluorescence in situ hybridization.

    PubMed

    Beye, M; Moritz, R F

    1995-01-01

    Two different repetitive DNA probes of Apis mellifera and ribosomal DNA from Drosophila melanogaster were used to characterize the chromosomal set of the honeybee (n = 16). The probes were hybridized to chromosome preparations of haploid testis tissue from drone larvae using fluorescence in situ hybridization (FISH). The honeybee probes hybridized to the telomeric (Alu I family) and centromeric region (Ava I family) of most chromosomes. The rDNA probe labeled two chromosomes only. Combination of the three probes yielded labeled patterns allowing us to identify each chromosome of the honeybee individually. This is the first report of an unambiguous identification of the chromosomal set of the honeybee, since classical banding techniques failed to yield clear patterns for identification. The consensus sequence of the centromeric reiterated probe (Ava I family) has a length of about 550 nucleotides and shows no homology to other known sequences. However, the structural organization of a 130-nucleotides long motif forming the unusually homogeneous 550 nucleotides repeat is similar to those found in mammals' repetitive DNAs.

  14. Lattice model of oligonucleotide hybridization in solution. II. Specificity and cooperativity

    NASA Astrophysics Data System (ADS)

    Araque, J. C.; Robert, M. A.

    2016-03-01

    Because oligonucleotides are short sequences of nucleic acid bases, their association in solution with complementary strands (hybridization) is often seen to conform to a simple two-state model. However, experimental evidence suggests that, despite their short length, oligonucleotides may hybridize through multiple states involving intermediates. We investigate whether these apparently contradictory scenarios are possible by imposing different levels of sequence specificity on a lattice model of oligonucleotides in solution, which we introduced in Part I [J. C. Araque et al., J. Chem. Phys. 134, 165103 (2011)]. We find that both multiple-intermediate (weakly cooperative) and two-state (strongly cooperative) transitions are possible and that these are directly linked to the level of sequence specificity. Sequences with low specificity hybridize (base-by-base) by way of multiple stable intermediates with increasing number of paired bases. Such intermediate states are weakly cooperative because the energetic gain from adding an additional base pair is outweighed by the conformational entropy loss. Instead, sequences with high specificity hybridize through multiple metastable intermediates which easily bridge the configurational and energetic gaps between single- and double-stranded states. These metastable intermediates interconvert with minimal loss of conformational entropy leading to a strongly cooperative hybridization. The possibility of both scenarios, multiple- and two-states, is therefore encoded in the specificity of the sequence which in turn defines the level of cooperativity.

  15. Tricolour fluorescence detection of sequence-specific DNA with a new molecular beacon and a nucleic acid dye TOTO-3.

    PubMed

    Xiang, Dongshan; Zhang, Cuiling; Chen, Lu; Ji, Xinghu; He, Zhike

    2012-12-21

    We have developed a tricolor fluorescence quantitative method for sequence-specific DNA detection using a new molecular beacon (MB) and a nucleic acid dye TOTO-3. This new MB is designed with two fluorophores of FAM and TAMRA instead of one fluorophore and one quencher of traditional MB, and a nucleotide with guanine base is attached directly to FAM as a quencher. In the absence of target DNA, MBs are in the stem-loop state. The fluorescence of FAM is absorbed by TAMRA, and the fluorescence of TAMRA is quenched by guanine base. Meanwhile, the interaction between TOTO-3 and MBs is very weak. In the presence of target DNA, MBs hybridize with target DNA to form a double-stranded structure. TAMRA is separated from FAM and guanine base, and the fluorescence of FAM and TAMRA recovers simultaneously. At the same time TOTO-3 binds to double-stranded DNA, the fluorescence of TOTO-3 significantly enhances. In this strategy, the false-positive signals of MBs caused by non-specific interactions can be distinguished by the change of the ratio of the total fluorescence intensities of FAM and TAMRA to that of TOTO-3 at different concentrations of target DNA. In the simple sample, the detection of target DNA can be achieved with the total fluorescence intensity of three dyes, which results in a significant improvement of the detection sensitivity. In the complex sample, the detection of target DNA can be achieved with the fluorescence intensity of TOTO-3 which can overcome the false-positive signals of MBs and improve the detection accuracy.

  16. Accurate detection of male subclinical genital tract infection via cervical culture and DNA hybridization assay of the female partner.

    PubMed

    Trum, J W; Pannekoek, Y; Spanjaard, L; Bleker, O P; Van Der Veen, F

    2000-02-01

    The accuracy of the PACE2 DNA hybridization assay of the cervix and cervical culture in female partners for the diagnosis of male subclinical genital tract infection were assessed in a male infertility population. A total of 184 men were screened for the presence of Chlamydia trachomatis, Ureaplasma urealyticum and Mycoplasma hominis. Seventy-one men were identified with a positive test for one or more of the above mentioned micro-organisms. The overall prevalence of bacterial infection was 39%. Female partners of all men were tested with the PACE2 DNA hybridization assay to detect a C. trachomatis infection. Sensitivity was 100% and specificity was 100%. In 67 female partners (94%) of men who tested positive for U. urealyticum and/or M. hominis, a cervical swab culture was performed. The sensitivity of the cervical swab culture was 100%. In view of the high prevalence of U. urealyticum and M. hominis in the male genital tract and the role these sexually transmitted pathogens may play in infertility, one might question whether all couples should be screened for the presence of these pathogens. Transurethral swab culture after digital prostatic massage is disincentive to men. The cervical culture in their female partner, performed as part of the routine fertility work-up, is a suitable alternative to detect the presence of these micro-organisms in the male genital tract.

  17. Sub-femtomolar electrochemical detection of DNA hybridization based on latex/gold nanoparticle-assisted signal amplification.

    PubMed

    Pinijsuwan, Suttiporn; Rijiravanich, Patsamon; Somasundrum, Mithran; Surareungchai, Werasak

    2008-09-01

    We report a relatively simple electrostatic method for modifying submicrometer-size latex spheres with gold nanoparticles (AuNPs) based on layer-by-layer modification of the latex by polyelectrolytes. The AuNP coverages for 343- and 501-nm-diameter spheres were 4.0 x 10 (10) +/- 1.3 x 10 (10) and 8.2 x 10 (10) +/- 2.7 x 10 (10) particles cm (-2), respectively, which is an increase of 1 order of magnitude on the previously reported coverage at latex-AuNPs using streptavidin-biotin binding (Kawde, A.N.; Wang, J. Electroanalysis 2004, 16, 101-107). Due to the fact that the AuNPs used here are also of a larger size (mean diameter 15.5 +/- 1.6 nm, cf. 5 nm), this represents an increase of 2 orders of magnitude in the number of Au atoms delivered per sphere. The spheres were attached to DNA probes specific to E. coli and used to detect probe hybridization by dissolution of the AuNPs, followed by measurement of Au (3+) ions by anodic stripping voltammetry (ASV). Use of differential pulse voltammetry for the stripping step, along with optimization of the ASV conditions, enabled a detection limit of 0.5 fM, which is, to the best of our knowledge, equal or lower than previous voltammetric nanoparticle methods for detection of DNA hybridization.

  18. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    PubMed

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  19. Sequence-specific fluorescence detection of DNA by polyamide-thiazole orange conjugates.

    PubMed

    Fechter, Eric J; Olenyuk, Bogdan; Dervan, Peter B

    2005-11-30

    Fluorescent methods to detect specific double-stranded DNA sequences without the need for denaturation may be useful in the field of genetics. Three hairpin pyrrole-imidazole polyamides 2-4 that target their respective sequences 5'-WGGGWW-3', 5'-WGGCCW-3', and 5'-WGWWCW-3' (W = A or T) were conjugated to thiazole orange dye at the C-termini to examine their fluorescence properties in the presence and absence of match duplex DNA. The conjugates fluoresce weakly in the absence of DNA but showed significant enhancement (>1000-fold) upon the addition of 1 equiv of match DNA and only slight enhancement with the addition of mismatch DNA. The polyamide-dye conjugates bound specific DNA sequences with high affinity (Ka > 10(8) M(-1)) and unwound the DNA duplex through intercalation (unwinding angle, phi, approximately 8 degrees). This new class of polyamides provides a method to specifically detect DNA sequences without denaturation.

  20. Ion-Channel Genosensor for the Detection of Specific DNA Sequences Derived from Plum Pox Virus in Plant Extracts

    PubMed Central

    Malecka, Kamila; Michalczuk, Lech; Radecka, Hanna; Radecki, Jerzy

    2014-01-01

    A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3−/4− as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1–8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10–50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal. PMID:25302809

  1. Molecular dynamics of spermine-DNA interactions: sequence specificity and DNA bending for a simple ligand.

    PubMed Central

    Feuerstein, B G; Pattabiraman, N; Marton, L J

    1989-01-01

    We used molecular dynamics to model interactions between the physiologically important polyamine spermine and two B-DNA oligomers, the homopolymer (dG)10-(dC)10 and the heteropolymer (dGdC)5-(dGdC)5. Water and counterions were included in the simulation. Starting coordinates for spermine-DNA complexes were structures obtained by molecular mechanics modeling of spermine with the two oligomers; in these models, spermine binding induced a bend in the heteropolymer but not in the homopolymer. During approximately 40 psec of molecular dynamics simulation, spermine moves away from the floor of the major groove and interacts nospecifically with d(G)10-d(C)10. In contrast, a spermine-induced bend in the helix of (dGdC)5-(dGdC)5 is maintained throughout the simulation and spermine remains closely associated with the major groove. These results provide further evidence that the binding of spermine to nucleic acids can be sequence specific and that bending of alternating purine-pyrimidine sequences may be a physiologically important result of spermine binding. PMID:2780313

  2. A novel method for sensitive and specific detection of DNA methylation biomarkers based on DNA restriction during PCR cycling.

    PubMed

    Kneip, Christoph; Schmidt, Bernd; Fleischhacker, Michael; Seegebarth, Anke; Lewin, Jörn; Flemming, Nadja; Seemann, Stefanie; Schlegel, Thomas; Witt, Christian; Liebenberg, Volker; Dietrich, Dimo

    2009-09-01

    DNA methylation is an important epigenetic mechanism involved in fundamental biological processes such as development, imprinting, and carcino-genesis. For these reasons, DNA methylation represents a valuable source for cancer biomarkers. Methods for the sensitive and specific detection of methylated DNA are a prerequisite for the implementation of DNA biomarkers into clinical routine when early detection based on the analysis of body fluids is desired. Here, a novel technique is presented for the detection of DNA methylation biomarkers, based on real-time PCR of bisulfite-treated template with enzymatic digestion of background DNA during amplification using the heat-stable enzyme Tsp509I. An assay for the lung cancer methylation biomarker BARHL2 was used to show clinical and analytical performance of the method in comparison with methylation-specific PCR technology. Both technologies showed comparable performance when analyzing technical DNA mixtures and bronchial lavage samples from 75 patients suspected of having lung cancer. The results demonstrate that the approach is useful for sensitive and specific detection of a few copies of methylated DNA in samples with a high background of unmethylated DNA, such as in clinical samples from body fluids.

  3. Antimicrobials targeted to the replication-specific DNA polymerases of gram-positive bacteria: target potential of dnaE.

    PubMed

    Barnes, Marjorie H; Butler, Michelle M; Wright, George E; Brown, Neal C

    2012-10-01

    DNA polymerases pol IIIC and dnaE [i.e. pol IIIE] are essential for replicative DNA synthesis in low G:C Gram-positive eubacteria. Therefore, they have strong potential as targets for development of Gram-positive-selective antibacterial agents. This work has sought to extend to dnaE the recent discovery of antimicrobial agents based on pol IIIC-specific dGTP analogs. Compound 324C, a member of the same dGTP analog family, was found to be a potent and selective inhibitor of isolated dnaE in vitro. Surprisingly, 324C had no inhibitory effect in either intact Bacillus subtilis cells or in permeabilized cell preparations used to assess replicative DNA synthesis directly. It is proposed that the failure of 324C in the intact cell is a consequence of two major factors: (i) its template-dependent base pairing mechanism, and (ii) a specific subordinate role which dnaE apparently plays to pol IIIC. To generate an effective dnaE-selective inhibitor of replicative DNA synthesis in Gram-positive bacteria, it will likely be necessary to develop a molecule that attacks the enzyme's active site directly, without binding to template DNA.

  4. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    PubMed

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations. PMID:24223802

  5. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation.

    PubMed

    Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang

    2016-07-19

    DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183

  6. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers.

    PubMed

    Yan, Zhongdan; Gan, Ning; Zhang, Huairong; Wang, De; Qiao, Li; Cao, Yuting; Li, Tianhua; Hu, Futao

    2015-09-15

    A novel sandwich-hybridization assay for simultaneous electrochemical detection of multiple DNA targets related to human immune deficiency virus (HIV) and tuberculosis (TB) was developed based on the different quantum dots-PowerVision(TM) polymer nanotracers. The polymer nanotracers were respectively fabricated by immobilizing SH-labeled oligonucleotides (s-HIV or s-TB), which can partially hybrid with virus DNA (HIV or TB), on gold nanoparticles (Au NPs) and then modified with PowerVision(TM) (PV) polymer-encapsulated quantum dots (CdS or PbS) as signal tags. PV is a dendrimer enzyme linked polymer, which can immobilize abundant QDs to amplify the stripping voltammetry signals from the metal ions (Pb or Cd). The capture probes were prepared through the immobilization of SH-labeled oligonucleotides, which can complementary with HIV and TB DNA, on the magnetic Fe3O4@Au (GMPs) beads. After sandwich-hybridization, the polymer nanotracers together with HIV and TB DNA targets were simultaneously introduced onto the surface of GMPs. Then the two encoding metal ions (Cd(2+) and Pb(2+)) were used to differentiate two viruses DNA due to the different subsequent anodic stripping voltammetric peaks at -0.84 V (Cd) and -0.61 V (Pb). Because of the excellent signal amplification of the polymer nanotracers and the great specificity of DNA targets, this assay could detect targets DNA as low as 0.2 femtomolar and exhibited excellent selectivity with the dynamitic range from 0.5 fM to 500 pM. Those results demonstrated that this electrochemical coding assay has great potential in applications for screening more viruses DNA while changing the probes.

  7. Development of an electrochemical biosensor methods based on acrylic microsphere for the determination of Arowana DNA hybridization

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh

    2015-09-01

    An electrochemical method of Arowana DNA determination based of N-acrylosuccinimide (NAS) modified acrylic microsphere was fabricated. Hydrophobic succinimide functional group containing poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized with a simple one-step photopolymerization pocedure. Aminated DNA probe was covalently bonded to the succinimde functional group of the acrylic microspheres. The hybridization of the immobilized DNA probe with the complementary DNA was determined by the differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a wide linear response range to target DNA is 1.0 × 10-16 and 1.0 × 10-8 M with a lower limit of detection (LOD) of 9.46 × 10-17 M (R2 = 0.99) were calculated. This biosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.

  8. Comparison of pp65 antigenemia, quantitative PCR and DNA hybrid capture for detection of cytomegalovirus in transplant recipients and AIDS patients.

    PubMed

    Mhiri, Leila; Kaabi, Belhassen; Houimel, Mehdi; Arrouji, Zakia; Slim, Amine

    2007-07-01

    The cytomegalovirus (CMV) antigenemia assay has been used frequently for rapid diagnosis of CMV infection, and antigenemia threshold values are recommended for triggering preemptive therapy. Hybrid capture of CMV's DNA and quantitative polymerase chain reaction (qPCR) are increasingly being adopted for early detection of CMV. The performance of the antigenemia assay, qPCR in plasma and hybrid capture in leukocytes were compared in 110 immunocompromised patients (38 bone-marrow transplants, 50 renal transplants and 22 AIDS patients). The most sensitive test was hybrid capture for transplants, while antigenemia and the qPCR showed similar performance for patients with AIDS. QPCR and hybrid capture thresholds requiring antiviral therapy were calculated using a receiver-operating-characteristic curve for antigenemia values corresponding to 2 positive cells for bone-marrow transplants and to 10 positive cells for renal transplants and AIDS patients. These threshold values varied with the group of patients considered, with corresponding sensitivities higher than 86% and specificities higher than 76% for hybrid capture, and sensitivities higher than 61% and specificities higher than 75% for qPCR in plasma. Hybrid capture in leukocytes can substitute for antigenemia in the case of transplants, and qPCR in plasma can substitute for it in the case of AIDS patients.

  9. Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins.

    PubMed

    Yang, F; Mao, J; He, X W; Chen, L X; Zhang, Y K

    2013-06-01

    A novel strategy for preparation of a boronate affinity hybrid monolith was developed using a Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reaction of an alkyne-boronate ligand with an azide-functionalized monolithic intermediate. An azide-functionalized hybrid monolith was first synthesized via a single-step procedure to provide reactive sites for click chemistry; then the alkyne-boronate ligands were covalently immobilized on the azide-functionalized hybrid monolith via an in-column CuAAC reaction to form a boronate affinity hybrid monolith under mild conditions. The boronate affinity monolith was characterized and evaluated by means of elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The boronate affinity hybrid monolith exhibited excellent specificity toward nucleosides and glycoproteins, which were chosen as test cis-diol-containing compounds under neutral conditions. The binding capacity of the monolith for the glycoprotein ovalbumin was 2.36 mg · g(-1) at pH 7.0. The practicability of the boronate affinity hybrid monolithic material was demonstrated by specific capture of the glycoproteins ovalbumin and ovotransferrin from an egg sample.

  10. Thiazole Orange Dimers in DNA: Fluorescent Base Substitutions with Hybridization Readout.

    PubMed

    Berndl, Sina; Dimitrov, Stoichko D; Menacher, Florian; Fiebig, Torsten; Wagenknecht, Hans-Achim

    2016-02-12

    By using (S)-2-amino-1,3-propanediol as a linker, thiazole orange (TO) was incorporated in a dimeric form into DNA. The green fluorescence (λ=530 nm) of the intrastrand TO dimer is quenched, whereas the interstrand TO dimer shows a characteristic redshifted orange emission (λ=585 nm). Steady-state optical spectroscopic methods reveal that the TO dimer fluorescence is independent of the sequential base contexts. Time-resolved pump-probe measurements and excitation spectra reveal the coexistence of conformations, including mainly stacked TO dimers and partially unstacked ones, which yield exciton and excimer contributions to the fluorescence, respectively. The helicity of the DNA framework distorts the excitonic coupling. In particular, the interstrand TO dimer could be regarded as an excitonically interacting base pair with fluorescence readout for DNA hybridization. Finally, the use of this fluorescent readout was representatively demonstrated in molecular beacons.

  11. Genetic relatedness of artichoke (Cynara scolymus L.) hybrids using random amplified polymorphic DNA (RAPD) fingerprinting.

    PubMed

    Sharaf-Eldin, M A; Al-Tamimi, A; Alam, P; Elkholy, S F; Jordan, J R

    2015-12-28

    The artichoke (Cynara scolymus L.) is an important food and medicinal crop that is cultivated in Mediterranean countries. Morphological characteristics, such as head shape and diameter, leaf shape, and bract shape, are mainly affected by environmental conditions. A molecular marker approach was used to analyze the degree of polymorphism between artichoke hybrid lines. The degree of genetic difference among three artichoke hybrids was evaluated using random amplified polymorphic DNA-PCR (RAPD-PCR). In this study, the DNA fingerprints of three artichoke lines (A13-010, A11-018, and A12-179) were generated, and a total of 10 decamer primers were applied for RAPD-PCR analyses. Polymorphism  (16.66 to 62.50%) was identified using eight arbitrary decamers and total genomic DNA extracted from the hybrids. Of the 59 loci detected, there were 25 polymorphic and 34 monomorphic loci. Jaccard's similarity index (JSI) ranged between 1.0 and 0.84. Based on the unweighted pair group method with arithmetic mean (UPGMA) similarity matrix and dendrogram, the results indicated that two hybrids (A13-010 and A11-018) were closely related to each other, and the A12-179 line showed more divergence. When identifying correct accessions, consideration of the genetic variation and genetic relationships among the genotypes are required. The RAPD-PCR fingerprinting of artichoke lines clearly showed that it is possible to analyze the RAPD patterns for correlation between genetic means and differences or resemblance between close accessions (A13-010 and A11- 018) at the genomic level.

  12. Genetic relatedness of artichoke (Cynara scolymus L.) hybrids using random amplified polymorphic DNA (RAPD) fingerprinting.