Sample records for specific electronic properties

  1. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    PubMed Central

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  2. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    NASA Astrophysics Data System (ADS)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta'Ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-07-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.

  3. Specific heat, Electrical resistivity and Electronic band structure properties of noncentrosymmetric Th7Fe3 superconductor.

    PubMed

    Tran, V H; Sahakyan, M

    2017-11-17

    Noncentrosymmetric superconductor Th 7 Fe 3 has been investigated by means of specific heat, electrical resisitivity measurements and electronic properties calculations. Sudden drop in the resistivity at 2.05 ± 0.15 K and specific heat jump at 1.98 ± 0.02 K are observed, rendering the superconducting transition. A model of two BCS-type gaps appears to describe the zero-magnetic-field specific heat better than those based on the isotropic BCS theory or anisotropic functions. A positive curvature of the upper critical field H c2 (T c ) and nonlinear field dependence of the Sommerfeld coefficient at 0.4 K qualitatively support the two-gap scenario, which predicts H c2 (0) = 13 kOe. The theoretical densities of states and electronic band structures (EBS) around the Fermi energy show a mixture of Th 6d- and Fe 3d-electrons bands, being responsible for the superconductivity. Furthermore, the EBS and Fermi surfaces disclose significantly anisotropic splitting associated with asymmetric spin-orbit coupling (ASOC). The ASOC sets up also multiband structure, which presumably favours a multigap superconductivity. Electron Localization Function reveals the existence of both metallic and covalent bonds, the latter may have different strengths depending on the regions close to the Fe or Th atoms. The superconducting, electronic properties and implications of asymmetric spin-orbit coupling associated with noncentrosymmetric structure are discussed.

  4. Electronic Properties of Synthetic Shrimp Pathogens-derived DNA Schottky Diodes.

    PubMed

    Rizan, Nastaran; Yew, Chan Yen; Niknam, Maryam Rajabpour; Krishnasamy, Jegenathan; Bhassu, Subha; Hong, Goh Zee; Devadas, Sridevi; Din, Mohamed Shariff Mohd; Tajuddin, Hairul Anuar; Othman, Rofina Yasmin; Phang, Siew Moi; Iwamoto, Mitsumasa; Periasamy, Vengadesh

    2018-01-17

    The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.

  5. Hidden electronic rule in the “cluster-plus-glue-atom” model

    PubMed Central

    Du, Jinglian; Dong, Chuang; Melnik, Roderick; Kawazoe, Yoshiyuki; Wen, Bin

    2016-01-01

    Electrons and their interactions are intrinsic factors to affect the structure and properties of materials. Based on the “cluster-cluster-plus-glue-atom” model, an electron counting rule for complex metallic alloys (CMAs) has been revealed in this work (i. e. the CPGAMEC rule). Our results on the cluster structure and electron concentration of CMAs with apparent cluster features, indicate that the valence electrons’ number per unit cluster formula for these CMAs are specific constants of eight-multiples and twelve-multiples. It is thus termed as specific electrons cluster formula. This CPGAMEC rule has been demonstrated as a useful guidance to direct the design of CMAs with desired properties, while its practical applications and underlying mechanism have been illustrated on the basis of CMAs’ cluster structural features. Our investigation provides an aggregate picture with intriguing electronic rule and atomic structural features of CMAs. PMID:27642002

  6. The low temperature specific heat and electrical transport, magnetic properties of Pr0.65Ca0.35MnO3

    NASA Astrophysics Data System (ADS)

    Han, Zhiyong

    2017-02-01

    The magnetic properties, electrical transport properties, and low temperature specific heat of polycrystalline perovskite manganese oxide Pr0.65Ca0.35MnO3 have been investigated experimentally. It is found that there exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state and the Debye temperature decreases gradually. In addition, the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide and this phenomenon is related to the itinerant electrons in ferromagnetic cluster state and the disorder in Pr0.65Ca0.35MnO3.

  7. Topological properties of the electron density of solids and molecules. Recent developments in Oviedo.

    PubMed

    Luaña, Víctor; Costales, Aurora; Mori-Sánchez, Paula; Blanco, Miguel A; Martín Pendás, A

    2004-09-01

    Some of the latest advances in the analysis of electron density are reviewed, including: (a) topological indices that provide a useful characterization of the global properties of the density; (b) specific results on some prototypical metal and low heteropolarity systems; and (c) calculation of the local curvature of the interatomic surface.

  8. Density functional theory study of structural, electronic, and thermal properties of Pt, Pd, Rh, Ir, Os and PtPd X (X = Ir, Os, and Rh) alloys

    NASA Astrophysics Data System (ADS)

    Shabbir, Ahmed; Muhammad, Zafar; M, Shakil; M, A. Choudhary

    2016-03-01

    The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.

  9. The adsorption properties of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien

    2008-12-01

    The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.

  10. Excess electrons in reduced rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  11. 36 CFR § 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...

  12. 36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF REC- ORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...

  13. Effects of Mn Substitution on the Thermoelectric Properties and Thermal Excitations of the Electron-doped Perovskite Sr1-xLaxTiO3

    NASA Astrophysics Data System (ADS)

    Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Kaji, Hiroki; Nishina, Kousuke; Kuwahara, Hideki; Nakamura, Mitsutaka; Kajimoto, Ryoichi

    2016-09-01

    We studied how Mn substitution affects the thermoelectric properties and thermal excitations of the electron-doped perovskite Sr1-xLaxTiO3 by measuring its electrical and thermal transport properties, magnetization, specific heat, and inelastic neutron scattering. Slight Mn substitution with the lattice defects enhanced the Seebeck coefficient, perhaps because of coupling between itinerant electrons and localized spins or between itinerant electrons and local lattice distortion around Mn3+ ions, while it enhanced anharmonic lattice vibrations, which effectively suppressed thermal conductivity in a state of high electrical conductivity. Consequently, slight Mn substitution increased the dimensionless thermoelectric figure of merit for Sr1-xLaxTiO3 near room temperature.

  14. Adiabatic electron thermal pressure fluctuations in tokamak plasmas.

    PubMed

    Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J

    2001-08-20

    Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.

  15. Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei

    2017-10-01

    Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.

  16. Joint Services Electronics Program.

    DTIC Science & Technology

    1987-04-30

    the specific objectives and progress in each work unit are reported. The focus of the JSEP project on transport properties of 1- dimensional...path. The properties of carrier transport and storage in various regions of these ultra-small, 3- dimensionally confined structures are not well...capabilities of MBE to grow and investigate the transport in these materials. SUMMARY OF RESEARCH: 1. One Dimensional Electron Transport One of the major goals

  17. Carbon nanotubes: engineering biomedical applications.

    PubMed

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Enhanced and Facet-specific Electrocatalytic Properties of Ag/Bi2Fe4O9 Composite Nanoparticles.

    PubMed

    Wang, Kai; Xu, Xiaoguang; Lu, Liying; Wang, Haicheng; Li, Yan; Wu, Yong; Miao, Jun; Zhang, Jin Zhong; Jiang, Yong

    2018-04-18

    Ag/Bi 2 Fe 4 O 9 nanoparticles (BFO NPs) have been synthesized using a two-step approach involving glycine combustion and visible light irradiation. Their structures were characterized in detail using X-ray diffraction, transmission electron microscope, scanning electron microscopy, and scanning transmission electron microscopy techniques. Their electrocatalytic properties were studied through enzymatic glucose detection with an amperometric biosensor. The Ag deposited on selective crystal facets of BFO NPs significantly enhanced their electrocatalytic activity. To gain insights into the origin of the enhanced electrocatalytic activities, we have carried out studies of Ag + reduction and Mn 2+ oxidation reaction at the {200} and {001} facets, respectively. The results suggest effective charge separation on the BFO NP surfaces, which is likely responsible for the enhanced electrocatalytic properties. Furthermore, enhanced ferromagnetism was observed after the Ag deposition on BFO NPs, which may be related to the improved electrocatalytic properties through spin-dependent charge transport. The facet-specific electrocatalytic properties are highly interesting and desired for chemical reactions. This study demonstrates that Ag/BFO NPs are potentially useful for electrocatalytic applications including biosensing and chemical synthesis with high product selectivity.

  19. Specific features of the influence of high-energy electron beams on the luminescent properties of undoped and Nb, Fe-doped Al₂O₃ crystals.

    PubMed

    Maslyuk, V T; Megela, I G; Okunieva, T O; Pekar, J M; Pekar, V J

    2014-11-01

    The influence of 10 MeV high-current electron beams accelerated by the M-30 microtron on the luminescent properties of the α-Al₂O₃, Al₂O₃:Nb and Al₂O₃:Fe crystals has been studied. The effect of the long-term phosphorescence at room temperature has been found that can be used to monitor electron and gamma accelerator beams. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Electron-phonon coupling in superconducting β-PdBi{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com

    2015-06-24

    We have studied the electronic, transport and vibrational properties of low temperature superconductor β-PdBi{sub 2}. The band manifold clearly demonstrates the 2D-layered structure with multiple gaps. The intersection of bands at E{sub F} in the Γ-P, Γ-N directions gives rise to complicated Fermi surface topology, which contains quite complicated multiple connected sheets, as well as hole and electron-like pockets. From the low temperature specific heat, we have estimated the electron-phonon coupling constant λ{sub el-ph} which has a very high value of 3.66. The vibrational properties clearly illustrates that the strong coupling makes the lattice unstable. The calculated properties confirm thatmore » β-PdBi{sub 2} is an intermediate coupling superconductor.« less

  1. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    NASA Astrophysics Data System (ADS)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  2. First principles study on structural, lattice dynamical and thermal properties of BaCeO3

    NASA Astrophysics Data System (ADS)

    Zhang, Qingping; Ding, Jinwen; He, Min

    2017-09-01

    BaCeO3 exhibits impressive application potentials on solid oxide fuel cell electrolyte, hydrogen separation membrane and photocatalyst, owing to its unique ionic and electronic properties. In this article, the electronic structures, phonon spectra and thermal properties of BaCeO3 in orthorhombic, rhombohedral and cubic phases are investigated based on density functional theory. Comparisons with reported experimental results are also presented. The calculation shows that orthorhombic structure is both energetically and dynamically stable under ground state, which is supported by the experiment. Moreover, charge transfer between cations and anions accompanied with phase transition is observed, which is responsible for the softened phonon modes in rhombohedral and cubic phases. Besides, thermal properties are discussed. Oxygen atoms contribute most to the specific heat. The calculated entropy and specific heat at constant pressure fit well with the experimental ones within the measured temperature range.

  3. Structural, electronic and thermal properties of super hard ternary boride, WAlB

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-04-01

    A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.

  4. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications.

    PubMed

    Zhang, Yexin; Zhang, Jian; Su, Dang Sheng

    2014-05-01

    The electronic properties of carbon nanotubes (CNTs) can be tuned by substitutional doping with heteroatoms (mainly B and N) to expand the applications of CNTs. Based on the comprehensive understanding of the substitutional doping of CNTs, it should be possible to deliberately design doped CNTs for specific purposes. Thus, relevant experimental and theoretical works are reviewed herein in an attempt to correlate the synthetic methods, electronic properties, and applications of heteroatom-doped CNTs. The distribution and arrangement of heteroatoms in the graphitic lattice of CNTs can be modulated through the choice of synthetic conditions, which would further lead to different electronic properties of CNTs for their chemical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ab-initio study of thermodynamic properties of boron nanowire at atomic scale

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal D.; Gupta, Sanjeev K.; Sonvane, Y.; Gajjar, P. N.

    2018-04-01

    In the present work, we have optimized ribbon like zigzag structure of boron (B) nanowire (NW) and investigated vibrational and thermodynamic properties using quasi-harmonic approximations (QHA). All positive phonon in the phonon dispersive curve have confirmed dynamical stability of ribbon B-NW. The thermodynamic properties, like Debye temperature, internal energy and specific heat, are calculated as a function of temperature. The variation of specific heat is proportional to T3 Debye law at lower temperature for B-NW, while it becomes constant above room temperature at 1200K; obeys Dulong-Petit's law. The high Debye temperature of 1120K is observed at ambient temperature, which can be attributed to high thermal conductivity. Our study shows that B-NW with high thermal conductivity could be the next generation electron connector for nanoscale electronic devices.

  6. Conjugated Organosilicon Materials for Organic Electronics and Photonics

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Sergei A.; Kirchmeyer, Stephan

    In this chapter different types of conjugated organosilicon materials possessing luminescent and/or semiconducting properties will be described. Such macromolecules have various topologies and molecular structures: linear, branched and hyperbranched oligomers, polymers, and dendrimers. Specific synthetic approaches to access these structures will be discussed. Special attention is devoted to the role of silicon in these structures and its influence on their optical and electrical properties, leading to their potential application in the emerging areas of organic and hybrid electronics.

  7. An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams.

    PubMed

    De Angelis, C; Onori, S; Pacilio, M; Cirrone, G A P; Cuttone, G; Raffaele, L; Bucciolini, M; Mazzocchi, S

    2002-02-01

    The dosimetric properties of two PTW Riga diamond detectors type 60003 were studied in high-energy photon and electron therapy beam. Properties under study were current-voltage characteristic, polarization effect, time stability of response, dose response, dose-rate dependence, temperature stability, and beam quality dependence of the sensitivity factor. Differences were shown between the two detectors for most of the previous properties. Also, the observed behavior was, to some extent, different from what was reported in the PTW technical specifications. The necessity to characterize each diamond detector individually was addressed.

  8. Dispersion and line shape of plasmon satellites in one, two, and three dimensions

    DOE PAGES

    Vigil-Fowler, Derek; Louie, Steven G.; Lischner, Johannes

    2016-06-27

    Using state-of-the-art many-body Green's function calculations based on the GW plus cumulant approach, we analyze the properties of plasmon satellites in the electron spectral function resulting from electron-plasmon interactions in one-, two-, and three-dimensional systems. Specifically, we show how their dispersion relation, line shape, and linewidth are related to the properties of the constituent electrons and plasmons. In addition, to gain insight into the many-body processes giving rise to the formation of plasmon satellites, we connect the GW plus cumulant approach to a many-body wave-function picture of electron-plasmon interactions and introduce the coupling-strength-weighted electron-plasmon joint density states as a powerfulmore » concept for understanding plasmon satellites.« less

  9. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei

    2012-06-21

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDsmore » to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.« less

  10. State-specific transport properties of electronically excited Ar and C

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2018-05-01

    In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.

  11. Thermophysical properties of liquid rare earth metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Patel, H. P.; Jani, A. R.

    2013-06-01

    The thermodynamical properties like long wavelength limit S(0), iso-thermal compressibility (χT), thermal expansion coefficient (αV), thermal pressure coefficient (γV), specific heat at constant volume (CV) and specific heat at constant pressure (CP) are calculated for liquid rare earth metals. Our newly constructed parameter free model potential is used to describe the electron ion interaction due to Sarkar et al (S) local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermophysical properties of liquid rare earth metals.

  12. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    PubMed

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  13. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  14. Synthesis, Characterization and Applications of One-Dimensional Metal Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Santulli, Alexander

    Nanomaterials have been of keen research interest, owing to their exciting and unique properties (e.g. optical, magnetic, electronic, and mechanical). These properties allow nanomaterials to have many applications in areas of medicine, alternative energy, catalysis, and information storage. In particular, one-dimensional (1D) nanomaterials are highly advantageous, owing to the inherent anisotropic nature, which allows for effective transport and study of properties on the nanoscale. More specifically, 1D metal oxide nanomaterials are of particular interest, owing to their high thermal and chemical stability, as well as their intriguing optical, electronic, and magnetic properties. Herein, we will investigate the synthesis and characterization of vanadium oxide, lithium niobate and chromium oxide. We will explore the methodologies utilized for the synthesis of these materials, as well as the overall properties of these unique nanomaterials. Furthermore, we will explore the application of titanium dioxide nanomaterials as the electron transport layer in dye sensitized solar cells (DSSCs), with an emphasis on the effect of the nanoscale morphology on the overall device efficiency.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, C.J.

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly becausemore » of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly manage the large project team and properly address the various technical tasks, the CRADA team was organized into integrated project teams (IPT's) with each team focused on specific research areas. Early in the project, the end user partners developed ''exit criteria'', recorded in Appendix B, against which the project's success was to be judged. The project team made several important discoveries. A number of fiber coatings or treatments were developed that improved fiber-matrix adhesion by 40% or more, according to microdebond testing. The effects of dose-time and temperature-time profiles during the cure were investigated, and it was determined that fiber-matrix adhesion is relatively insensitive to the irradiation procedure, but can be elevated appreciably by thermal postcuring. Electron beam curable resin properties were improved substantially, with 80% increase in electron beam 798 resin toughness, and {approx}25% and 50% improvement, respectively, in ultimate tensile strength and ultimate tensile strain vs. earlier generation electron beam curable resins. Additionally, a new resin electron beam 800E was developed with generally good properties, and a very notable 120% improvement in transverse composite tensile strength vs. earlier generation electron beam cured carbon fiber reinforced epoxies. Chemical kinetics studies showed that reaction pathways can be affected by the irradiation parameters, although no consequential effects on material properties have been noted to date. Preliminary thermal kinetics models were developed to predict degree of cure vs. irradiation and thermal parameters. These models are continually being refined and validated. Despite the aforementioned impressive accomplishments, the project team did not fully realize the project objectives. The best methods for improving adhesion were combined with the improved electron beam 3K resin to make prepreg and uni-directional test laminates from which composite properties could be determined. Nevertheless, only minor improvements in the composite shear strength, and moderate improvements in the transverse tensile strength, were achieved. The project team was not satisfied with the laminate quality achieved, and low quality (specifically, high void fraction) laminates will compromise the composite properties. There were several problems with the prepregging and fabrication, many of them related to the use of new fiber treatments.« less

  16. Time-resolved electronic and optical properties of a thiolate-protected Au38 nanocluster

    NASA Astrophysics Data System (ADS)

    Meng, Qingguo; May, Stanley P.; Berry, Mary T.; Kilin, Dmitri S.

    2015-02-01

    Density functional theory and density matrix theory are employed to investigate the time-dependent optical and electronic properties of an Au14 nanocluster protected by six cyclic thiolate ligands, Au4(SCH3)4. The Au14[Au4(SCH3)4]6 nanocluster, i.e. Au38(SCH3)24, is equivalent to a truncated-octahedral face-centred cubic Au38 core coated by a monolayer of 24 methylthiol molecules. The electronic and optical properties, such as density of states, linear absorption spectra, nonradiative nonadiabatic dissipative electronic dynamics and radiative emission spectra were calculated and compared for the core Au14 and thiolate-protected Au38(SCH3)24 nanocluster. The main observation from computed photoluminescence for both models is a mechanism of radiative emission. Specifically, a strong contribution to light emission intensity originates from intraband transitions inside the conduction band (CB) in addition to interband LUMO → HOMO transition (HOMO: highest occupied molecular orbital and LUMO: lowest unoccupied molecular orbital). Such comparison clarifies the contributions from Au core and methylthiol ligands to the electronic and optical properties of the Au38(SCH3)24 nanocluster.

  17. Scanning electron microscope fractography in failure analysis of steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wouters, R.; Froyen, L.

    1996-04-01

    For many failure cases, macroscopic examination of the fracture surface permits discrimination of fatigue fractures from overload fractures. For clarifying fatigue fractures, the practical significance of microfractography is limited to an investigation of the crack initiation areas. Scanning electron microscopy is successfully used in tracing local material abnormalities that act as fatigue crack initiators. The task for the scanning electron microscope, however, is much more substantial in failure analysis of overload fractures, especially for steels. By revealing specific fractographic characteristics, complemented by information about the material and the loading conditions, scanning electron microscopy provides a strong indication of the probablemore » cause of failure. A complete dimple fracture is indicative of acceptable bulk material properties; overloading, by subdimensioning or excessive external loading, has to be verified. The presence of cleavage fracture makes the material properties questionable if external conditions causing embrittlement are absent. Intergranular brittle fracture requires verification of grain-boundary weakening conditions--a sensitized structure, whether or not combined with a local stress state or a specific environment. The role of scanning electron microscopy in failure analysis is illustrated by case histories of the aforementioned fracture types.« less

  18. An in-plane magnetic chiral dichroism approach for measurement of intrinsic magnetic signals using transmitted electrons

    PubMed Central

    Song, Dongsheng; Tavabi, Amir H.; Li, Zi-An; Kovács, András; Rusz, Ján; Huang, Wenting; Richter, Gunther; Dunin-Borkowski, Rafal E.; Zhu, Jing

    2017-01-01

    Electron energy-loss magnetic chiral dichroism is a powerful technique that allows the local magnetic properties of materials to be measured quantitatively with close-to-atomic spatial resolution and element specificity in the transmission electron microscope. Until now, the technique has been restricted to measurements of the magnetic circular dichroism signal in the electron beam direction. However, the intrinsic magnetization directions of thin samples are often oriented in the specimen plane, especially when they are examined in magnetic-field-free conditions in the transmission electron microscope. Here, we introduce an approach that allows in-plane magnetic signals to be measured using electron magnetic chiral dichroism by selecting a specific diffraction geometry. We compare experimental results recorded from a cobalt nanoplate with simulations to demonstrate that an electron magnetic chiral dichroism signal originating from in-plane magnetization can be detected successfully. PMID:28504267

  19. Epitaxial growth and properties of doped transition metal and complex oxide films.

    PubMed

    Chambers, Scott A

    2010-01-12

    The detailed science and technology of crystalline oxide film growth using vacuum methods is reviewed and discussed with an eye toward gaining fundamental insights into the relationships between growth process and parameters, film and interface structure and composition, and electronic, magnetic and photochemical properties. The topic is approached first from a comparative point of view based on the most widely used growth methods, and then on the basis of specific material systems that have generated very high levels of interest. Emphasis is placed on the wide diversity of structural, electronic, optical and magnetic properties exhibited by oxides, and the fascinating results that this diversity of properties can produce when combined with the degrees of freedom afforded by heteroepitaxy.

  20. Specific heat and Nernst effect of electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Balci, Hamza

    This thesis consists of two separate studies on Pr2- xCexCuO4 (PCCO), a member of the electron-doped high temperature cuprate superconductor family: specific heat and the Nernst effect. We measured the specific heat of PCCO single crystals in order to probe the symmetry of the superconducting order parameter, to study the effect of oxygen reduction (annealing) on bulk properties of the crystals, and to determine proper ties like the condensation energy and the thermodynamic critical field. The order parameter symmetry has been established to be d-wave in the hole-doped cuprates. Experiments performed on electron-doped cuprates show conflicting results. Different experiments suggest s-wave symmetry, d-wave symmetry, or a transition from d-wave to s-wave symmetry with increasing cerium doping. However, most of these experiments are surface sensitive experiments. Specific heat, as a bulk method of probing the gap symmetry is essential in order to convincingly determine the gap symmetry. Our data proposes a way to reconcile all these conflicting results regarding the gap symmetry. In addition, prior specific heat measurements attempting to determine thermodynamic properties like the condensation energy were not successful due to inefficient methods of data analysis or poor sample quality. With improvements on sample quality and data analysis, we reliably determined these properties. The second part of this thesis is a study of the Nernst effect in PCCO thin films with different cerium dopings. We probed the superconducting fluctuations, studied transport phenomena in the normal state, and accurately measured H c2 by using the Nernst effect. After the discovery of the anomalous Nernst effect in the normal state of the hole-doped cuprates, many alternative explanations have been proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM fluctuations, and preformed Cooper pairs are some of these proposals. The electron-doped cuprates, due to their significant differences from the hole-doped cuprates in terms of coherence length and the phase stiffness temperature (a measure of superfluid density) are the ideal materials to test these ideas. Our data on the electron-doped cuprates does not show any anomalous Nernst effect, and hence it supports the superconducting fluctuations picture among the various proposals.

  1. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  2. Spin localization, magnetic ordering, and electronic properties of strongly correlated Ln2O3 sesquioxides (Ln=La, Ce, Pr, Nd)

    NASA Astrophysics Data System (ADS)

    El-Kelany, Kh. E.; Ravoux, C.; Desmarais, J. K.; Cortona, P.; Pan, Y.; Tse, J. S.; Erba, A.

    2018-06-01

    Lanthanide sesquioxides are strongly correlated materials characterized by highly localized unpaired electrons in the f band. Theoretical descriptions based on standard density functional theory (DFT) formulations are known to be unable to correctly describe their peculiar electronic and magnetic features. In this study, electronic and magnetic properties of the first four lanthanide sesquioxides in the series are characterized through a reliable description of spin localization as ensured by hybrid functionals of the DFT, which include a fraction of nonlocal Fock exchange. Because of the high localization of the f electrons, multiple metastable electronic configurations are possible for their ground state depending on the specific partial occupation of the f orbitals: the most stable configuration is here found and characterized for all systems. Magnetic ordering is explicitly investigated, and the higher stability of an antiferromagnetic configuration with respect to the ferromagnetic one is predicted. The critical role of the fraction of exchange on the description of their electronic properties (notably, on spin localization and on the electronic band gap) is addressed. In particular, a recently proposed theoretical approach based on a self-consistent definition—through the material dielectric response—of the optimal fraction of exchange in hybrid functionals is applied to these strongly correlated materials.

  3. Characterization-curing-property studies of HBRF 55A resin formulations

    NASA Technical Reports Server (NTRS)

    Pearce, E. M.; Mijovic, J.

    1985-01-01

    Characterization curing property investigations on HBRF 55A resin formulations are reported. The initial studies on as received cured samples cut from a full-size FWC are reviewed. Inadequacies of as-received and aged samples are pointed out and additional electron microscopic evidence is offered. Characterization of as-received ingredients of HBRF 55A formulation is described. Specifically, Epon 826, Epon 828, EpiRez 5022, RD-2 and various amines, including Tonox and Tonox 60.40, were characterized. Cure kinetics of various formulations are investigated. Changes in physical/thermal properties (viscosity, specific heat, thermal conductivity and density) during cure are described.

  4. Theoretical studies of the electronic properties of ceramic materials

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.

    1990-11-01

    The first-principles orthogonalized linear combination of atomic orbitals (OLCAO) method for electronic structure studies has been applied to a variety of complex inorganic crystals. The theory and the practice of the OLCAO method in the local density approximation are discussed in detail. Recent progress in the study of electronic and optical properties of a large list of ceramic systems are summarized. Eight selected topics on different ceramic crystals focusing on specific points of interest are presented as examples. The materials discussed are AlN, Cu2O, beta-Si3N4, Y2O3, LiB3O5, ferroelectric crystals, Fe-B compounds, and the YBa2Cu3O7 superconductor.

  5. Effects of moiré lattice structure on electronic properties of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  6. Effects of moiré lattice structure on electronic properties of graphene

    NASA Astrophysics Data System (ADS)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; Mou, Daixiang; Schrunk, Benjamin; Tringides, Michael C.; Hupalo, Myron; Kaminski, Adam

    2017-07-01

    We study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6 √{3 }×6 √{3 } reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that is then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.

  7. Effects of moiré lattice structure on electronic properties of graphene

    DOE PAGES

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; ...

    2017-07-10

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  8. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

    PubMed

    Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L

    2013-11-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

  9. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  10. 9th Annual Science and Engineering Technology Conference

    DTIC Science & Technology

    2008-04-17

    Disks Composite Technology Titanium Aluminides Processing Microstructure Properties Curve Generator Go-Forward: Integrated Materials & Process Models...Initiatives Current DPA/T3s: Atomic Layer Deposition Hermetic Coatings: ...domestic ALD for electronic components; transition to fabrication process ...Production windows estim • Process capability fully established >Production specifications in place >Supply chain established •All necessary property

  11. DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Fulco, U. L.; Freire, V. N.; Caetano, E. W. S.; Lyra, M. L.; de Moura, F. A. B. F.

    2014-02-01

    The purpose of this review is to present a comprehensive and up-to-date account of the main physical properties of DNA-based nanobiostructured devices, stressing the role played by their quasi-periodicity arrangement and correlation effects. Although the DNA-like molecule is usually described as a short-ranged correlated random ladder, artificial segments can be grown following quasiperiodic sequences as, for instance, the Fibonacci and Rudin-Shapiro ones. They have interesting properties like a complex fractal spectra of energy, which can be considered as their indelible mark, and collective properties that are not shared by their constituents. These collective properties are due to the presence of long-range correlations, which are expected to be reflected somehow in their various spectra (electronic transmission, density of states, etc.) defining another description of disorder. Although long-range correlations are responsible for the effective electronic transport at specific resonant energies of finite DNA segments, much of the anomalous spread of an initially localized electron wave-packet can be accounted by short-range pair correlations, suggesting that an approach based on the inclusion of further short-range correlations on the nucleotide distribution leads to an adequate description of the electronic properties of DNA segments. The introduction of defects may generate states within the gap, and substantially improves the conductance, specially of finite branches. They usually become exponentially localized for any amount of disorder, and have the property to tailor the electronic transport properties of DNA-based nanoelectronic devices. In particular, symmetric and antisymmetric correlations have quite distinct influence on the nature of the electronic states, and a diluted distribution of defects lead to an anomalous diffusion of the electronic wave-packet. Nonlinear contributions, arising from the coupling between electrons and the molecular vibrations, promote an electronic self-trapping, thus opening up the possibility of controlling the spreading of the electronic density by an external field. The main features of DNA-based nanobiostructured devices presented in this review will include their electronic density of states, energy profiles, thermodynamic properties, localization, correlation effects, scale laws, fractal and multifractal analysis, and anhydrous crystals of their bases, among others. New features, like other nanobiostructured devices, as well as the future directions in this field are also presented and discussed.

  12. Interface Engineering for Nanoelectronics.

    PubMed

    Hacker, C A; Bruce, R C; Pookpanratana, S J

    2017-01-01

    Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics.

  13. Interface Engineering for Nanoelectronics

    PubMed Central

    Hacker, C. A.; Bruce, R. C.; Pookpanratana, S. J.

    2017-01-01

    Innovation in the electronics industry is tied to interface engineering as devices increasingly incorporate new materials and shrink. Molecular layers offer a versatile means of tuning interfacial electronic, chemical, physical, and magnetic properties enabled by a wide variety of molecules available. This paper will describe three instances where we manipulate molecular interfaces with a specific focus on the nanometer scale characterization and the impact on the resulting performance. The three primary themes include, 1-designer interfaces, 2-electronic junction formation, and 3-advancing metrology for nanoelectronics. We show the ability to engineer interfaces through a variety of techniques and demonstrate the impact on technologies such as molecular memory and spin injection for organic electronics. Underpinning the successful modification of interfaces is the ability to accurately characterize the chemical and electronic properties and we will highlight some measurement advances key to our understanding of the interface engineering for nanoelectronics. PMID:29276553

  14. First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe2sbnd MoS2 heterostructure

    NASA Astrophysics Data System (ADS)

    Lei, Xiang; Yu, Ke

    2018-04-01

    A purposeful modulation of physical properties of material via change external conditions has long captured people's interest and can provide many opportunities to improve the specific performance of electronic devices. In this work, a comprehensive first-principles survey was performed to elucidate that the bandgap and electronic properties of WSe2sbnd MoS2 heterostructure exhibited unusual response to exterior strain and electric field in comparison with pristine structures. It demonstrates that the WSe2sbnd MoS2 is a typical type-II heterostructure, and thus the electron-hole pairs can be effectively spatially separated. The external effects can trigger the electronic phase transition from semiconducting to metallic state, which originates from the internal electric evolution induced energy-level shift. Interestingly, the applied strain shows no direction-depended character for the modulation of bandgap of WSe2sbnd MoS2 heterostructure, while it exists in the electric field tuning processes and strongly depends on the direction of the electric field. Our findings elucidate the tunable electronic property of bilayer WSe2sbnd MoS2 heterostructure, and would provide a valuable reference to design the electronic nanodevices.

  15. Novel High Integrity Bio-Inspired Systems with On-Line Self-Test and Self-Repair Properties

    NASA Astrophysics Data System (ADS)

    Samie, Mohammad; Dragffy, Gabriel; Pipe, Tony

    2011-08-01

    Since the beginning of life nature has been developing some remarkable solutions to the problem of creating reliable systems that can operate under difficult environmental and fault conditions. Yet, no matter how sophisticated our systems are, we are still unable to match the high degree of reliability that biological organisms posses. Since the early '90s attempts have been made to adapt biological properties and processes to the design of electronic systems but the results have always been unduly complex.This paper, proposes a novel model using a radically new approach to construct highly reliable electronic systems with online fault repair properties. It uses the characteristics and behaviour of unicellular bacteria and bacterial communities to achieve this. The result is a configurable bio-inspired cellular array architecture that, with built-in self-diagnostic and self-repair properties, can implement any application specific electronic system but is particularly suited for safety critical environments, such as space.

  16. The physics and chemistry of graphene-on-surfaces.

    PubMed

    Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei

    2017-07-31

    Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.

  17. Optical transitions in two-dimensional topological insulators with point defects

    NASA Astrophysics Data System (ADS)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  18. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, W; Swann, B; Siderits, R

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carriedmore » out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.« less

  19. Effects of doping of calcium atom(s) on structural, electronic and optical properties of binary strontium chalcogenides - A theoretical investigation using DFT based FP-LAPW methodology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-09-01

    The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  20. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  2. Hybrid density functional theory band structure engineering in hematite

    NASA Astrophysics Data System (ADS)

    Pozun, Zachary D.; Henkelman, Graeme

    2011-06-01

    We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.

  3. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new theories and models. Potential applications include (1) designing of a sound scrambler/decoder for secure voice communications, (2) improving invisibility of submarine to acoustic detection signal, (3) noise and shock wave mitigation for protection of vibration sensitive devices such as head mounted vision devices, (4) drastic compression of acoustic signals into centimeter regime impulses for artificial ear implants, hearing aid and devices for ease of conversion to electronic signals and processing, and acoustic delay lines for communication applications.

  4. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  5. Quasi-bound states in strained graphene

    NASA Astrophysics Data System (ADS)

    Bahamon, Dario; Qi, Zenan; Park, Harold; Pareira, Vitor; Campbell, David

    In this work, we explore the possibility of manipulating electronic states in graphene nanostructures by mechanical means. Specifically, we use molecular dynamics and tight-binding models to access the electronic and transport properties of strained graphene nanobubbles and graphene kirigami. We establish that low energy electrons can be confined in the arms of the kirigami and within the nanobubbles; under different load conditions the coupling between confined states and continuous states is modified creating different conductance line-shapes.

  6. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  7. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  8. SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

    NASA Astrophysics Data System (ADS)

    Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.

    2017-05-01

    Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

  9. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization

    PubMed Central

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin

    2018-01-01

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639

  10. Methods of DNA methylation detection

    NASA Technical Reports Server (NTRS)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  11. Electronic and thermal properties of germanene and stanene by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Jomehpour Zaveh, S.; Roknabadi, M. R.; Morshedloo, T.; Modarresi, M.

    2016-03-01

    The electronic, vibrational and thermal properties of germanene and stanene have been investigated based on density functional theory (DFT) and density functional perturbation theory (DFPT). The electronic band structure, total and partial density of states and phonon dispersion spectrum and states are analyzed. The phonon spectrum is positive for all modes in the first Brillouin zone and there is a phonon energy band gap between acoustic and optical modes which is around 50 cm-1 for both structure. The constant-volume specific heats of two structures are calculated by using phonon spectrum and density of states. The spin-orbit coupling (SOC) opens a direct energy band gap at the Dirac point, softens phonon spectrum and decreases phonon group velocity of ZA mode.

  12. Phonon properties of lutetium pnictides

    NASA Astrophysics Data System (ADS)

    Arya, Balwant Singh; Aynyas, Mahendra; Sanyal, Sankar P.

    2018-05-01

    Phonon properties of Lutetium pnictides (LuX : X = P, As) have been studied by using breathing shell model (BSM) which includes breathing motion of electrons of the Lu atoms due to f-d hybridization to establish their predominant ionic nature. The calculated phonon dispersion curves of these compounds are presented follow the same trend as observed in ytterbium pnictides (YbP and YbAs). We also report one phonon density of states and specific heat for these compounds. We discuss the significance of this approach in predicting the phonon dispersion curves and examine the role of electron-phonon interaction.

  13. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236more » F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.« less

  14. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  15. Electronic structure, mechanical and thermodynamic properties of BaPaO3 under pressure.

    PubMed

    Khandy, Shakeel Ahmad; Islam, Ishtihadah; Gupta, Dinesh C; Laref, Amel

    2018-05-07

    Density functional theory (DFT)-based investigations have been put forward on the elastic, mechanical, and thermo-dynamical properties of BaPaO 3 . The pressure dependence of electronic band structure and other physical properties has been carefully analyzed. The increase in Bulk modulus and decrease in lattice constant is seen on going from 0 to 30 GPa. The predicted lattice constants describe this material as anisotropic and ductile in nature at ambient conditions. Post-DFT calculations using quasi-harmonic Debye model are employed to envisage the pressure-dependent thermodynamic properties like Debye temperature, specific heat capacity, Grüneisen parameter, thermal expansion, etc. Also, the computed Debye temperature and melting temperature of BaPaO 3 at 0 K are 523 K and 1764.75 K, respectively.

  16. Facile and rapid synthesis of Pd nanodendrites for electrocatalysis and surface-enhanced Raman scattering applications

    NASA Astrophysics Data System (ADS)

    Kannan, Palanisamy; Dolinska, Joanna; Maiyalagan, Thandavarayan; Opallo, Marcin

    2014-09-01

    Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively.Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02896a

  17. Vitamin C: electron emission, free radicals and biological versatility.

    PubMed

    Getoff, Nikola

    2013-01-01

    The many-sided biological role of vitamin C (ascorbate) is briefly illustrated by specific examples. It is demonstrated that in aqueous solutions, vitamin C emits solvated electrons (e(aq)(-)), when excited in single state. Vitamin C can also react with e(aq)(-) as well as transfer them to other biological systems and thereby acts as efficient electron mediator. Based on its chemical and biological properties, it is clear that vitamin C plays a very important role in various functions in the organism alongside biochemical processes.

  18. Requirements for the identification of dense-core granules.

    PubMed

    Meldolesi, Jacopo; Chieregatti, Evelina; Luisa Malosio, Maria

    2004-01-01

    Dense-core granules (DCGs), cytoplasmic organelles competent for regulated exocytosis, show considerable heterogeneity depending upon the specificity of their expressing cells--primarily neurons and neurosecretory cells. DCGs have been mainly identified by detecting their cargo molecules, often members of the granin family, and using conventional electron microscopy and immunocytochemistry. However, by a critical analysis of the various stages of DCG "life" within neurosecretory cells, we have highlighted several specific molecular and functional properties that are common to all these organelles. We propose that these properties be considered as strict requirements for the identification of DCGs.

  19. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.

    PubMed

    Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng

    2017-11-07

    A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cp[prime]M(NO)R[sub 2]: 16-electron piano-stool molecules of molybdenum and tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legzdins, P.; Veltheer, J.E.

    1993-02-01

    A long-term goal of this research program is the development of organometallic nitrosyl complexes as specific reactants or selective catalysts for organic or organometallic transformations of practical significance. To attain this goal specifically with Cp[prime]M(NO)R[sub 2] system the authors developed new methods for their synthesis, established their characteristic physical and chemical properties, and are currently endeavoring to exploit those properties which are unique to the complexes. During our investigations, the authors have discovered that the Cp[prime]M(NO)R[sub 2] complexes react with a variety of small molecules, often in an unprecedented manner. The authors have also established several unique transformations that aremore » not exhibited by all members of this group of complexes. Indeed, the authors found that the chemical properties of these systems are often dependent on the metal, the nature of the R groups, and the type of Cp[prime] ligand. In this Account the authors summarize the synthesis, characterization, comparative reactivity, and distinctive chemical properties of the 16-electron Cp[prime]M(NO)R[sub 2] complexes known to date. 35 refs., 7 figs.« less

  1. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    NASA Astrophysics Data System (ADS)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  2. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.

    PubMed

    Berche, Alexandre; Jund, Philippe

    2018-05-23

    For thermoelectric applications, ab initio methods generally fail to predict the transport properties of the materials because of their inability to predict properly the carrier concentrations that control the electronic properties. In this work, a methodology to fill in this gap is applied on the NiTiSn half Heusler phase. For that, we show that the main defects act as donor of electrons and are responsible of the electronic properties of the material. Indeed, the presence of Ni i interstitial defects explains the experimental valence band spectrum and its associated band gap reported in the literature. Moreover, combining the DOS of the solid solutions with the determination of the energy of formation of charged defects, we show that Ni i defects are also responsible of the measured carrier concentration in experimentally supposed "pure" NiTiSn compounds. Subsequently the thermoelectric properties of NiTiSn can be calculated using a fully ab initio description and an overall correct agreement with experiments is obtained. This methodology can be extended to predict the result of extrinsic doping and thus to select the most efficient dopant for specific thermoelectric applications.

  3. Successes and failures of Hubbard-corrected density functional theory. The case of Mg doped LiCoO 2

    DOE PAGES

    Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; ...

    2014-10-28

    We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO 2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO 2. We find that formation of impurity states results in changes on the valency of Co in LiCoO 2. Variation of the Co U shifts the energy of the impuritymore » state, resulting in energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO 2.« less

  4. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals.

    PubMed

    Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen

    2014-03-01

    Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-07

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.

  6. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  7. Microgravity

    NASA Image and Video Library

    1999-01-01

    August Witt, Massachusetts Institute of Technology, principal investigator for the research program designed to lead to the identification and control of gravitational effects which adversely impact, through their interference with the growth process, the achievement of critical application specific properties in opto-electronic materials.

  8. Theory of electron--photon scattering effects in metals. Progress report, December 1, 1976--November 30, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, W.E.

    1977-01-01

    The general areas in which the investigations were carried out are transport properties and quasiparticle lifetimes in normal metals and superconductors. The more specific research projects upon which progress is reported are (a) the calculation of order parameter relaxation times in aluminum, (b) transport coefficients of the noble metals (emphasizing deviations from Matthiessen's rule), (c) variational transport calculations for a superconductor, (d) some general results on quasiparticle relaxation time anisotropy in polyvalent metals, and (e) a clarification of the roles of electron-electron and electron-phonon scattering in somple metals at low temperatures.

  9. Electron mass in dilute nitrides and its anomalous dependence on hydrostatic pressure.

    PubMed

    Pettinari, G; Polimeni, A; Masia, F; Trotta, R; Felici, M; Capizzi, M; Niebling, T; Stolz, W; Klar, P J

    2007-04-06

    The dependence of the electron mass on hydrostatic pressure P in N-diluted GaAs1-xNx (x=0.10% and 0.21%) is investigated by magnetophotoluminescence. Exceedingly large fluctuations (up to 60%/kbar) in the electron mass with increasing P are found. These originate from a pressure-driven tuning of the hybridization degree between the conduction band minimum and specific nitrogen-related states. Present results suggest a hierarchy between different nitrogen complexes as regards the extent of the perturbation these complexes exert on the electronic properties of the GaAs host.

  10. Semantic Web Service Delivery in Healthcare Based on Functional and Non-Functional Properties.

    PubMed

    Schweitzer, Marco; Gorfer, Thilo; Hörbst, Alexander

    2017-01-01

    In the past decades, a lot of endeavor has been made on the trans-institutional exchange of healthcare data through electronic health records (EHR) in order to obtain a lifelong, shared accessible health record of a patient. Besides basic information exchange, there is a growing need for Information and Communication Technology (ICT) to support the use of the collected health data in an individual, case-specific workflow-based manner. This paper presents the results on how workflows can be used to process data from electronic health records, following a semantic web service approach that enables automatic discovery, composition and invocation of suitable web services. Based on this solution, the user (physician) can define its needs from a domain-specific perspective, whereas the ICT-system fulfills those needs with modular web services. By involving also non-functional properties for the service selection, this approach is even more suitable for the dynamic medical domain.

  11. Thermodynamic properties of rhodium at high temperature and pressure by using mean field potential approach

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Bhatt, Nisarg K.; Vyas, Pulastya R.; Gohel, Vinod B.

    2016-10-01

    The thermophysical properties of rhodium are studied up to melting temperature by incorporating anharmonic effects due to lattice ions and thermally excited electrons. In order to account anharmonic effects due to lattice vibrations, we have employed mean field potential (MFP) approach and for thermally excited electrons Mermin functional. The local form of the pseudopotential with only one effective adjustable parameter rc is used to construct MFP and hence vibrational free energy due to ions - Fion. We have studied equation of state at 300 K and further, to access the applicability of present conjunction scheme, we have also estimated shock-Hugoniot and temperature along principle Hugoniot. We have carried out the study of temperature variation of several thermophysical properties like thermal expansion (βP), enthalpy (EH), specific heats at constant pressure and volume (CP and CV), specific heats due to lattice ions and thermally excited electrons ( and , isothermal and adiabatic bulk moduli (BT and Bs) and thermodynamic Gruneisen parameter (γth) in order to examine the inclusion of anharmonic effects in the present study. The computed results are compared with available experimental results measured by using different methods and previously obtained theoretical results using different theoretical philosophy. Our computed results are in good agreement with experimental findings and for some physical quantities better or comparable with other theoretical results. We conclude that local form of the pseudopotential used accounts s-p-d hybridization properly and found to be transferable at extreme environment without changing the values of the parameter. Thus, even the behavior of transition metals having complexity in electronic structure can be well understood with local pseudopotential without any modification in the potential at extreme environment. Looking to the success of present scheme (MFP + pseudopotential) we would like to extend it further for the study of liquid state properties as well as thermophysical properties of d and f block metals.

  12. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin

    2016-06-01

    The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  13. Molecularly resolved protein electromechanical properties.

    PubMed

    Axford, Daniel; Davis, Jason J; Wang, Nan; Wang, Dongxu; Zhang, Tiantian; Zhao, Jianwei; Peters, Ben

    2007-08-02

    Previous work has shown that protein molecules can be trapped between the conductive surfaces presented by a metal-coated AFM probe and an underlying planar substrate where their molecule-specific conductance characteristics can be assayed. Herein, we demonstrate that transport across such a derived metal-protein-electrode junction falls within three, pressure-dependent, regimes and, further, that pressure-dependent conductance can be utilized in analyzing temporal variations of protein fold. Specifically, the electronic and mechanical properties of the metalloprotein azurin have been characterized under conditions of anisotropic vertical compression through the use of a conducting atomic force microscope (CP-AFM). By utilizing the ability of azurin to chemically self-assemble on the gold surface presented either by the apex of a suitably coated AFM probe or a planar metallic surface, molecular-level transport characteristics are assayable. Under conditions of low force, typically less than 2 nN, the weak physical and electronic coupling between the protein and the conducting contacts impedes tunneling and leads to charge buildup followed by dielectric breakdown. At slightly increased force, 3-5 nN, the copper protein exhibits temporal electron occupation with observable negative differential resistance, while the redox-inactive zinc mutant does not. At imposed loads greater than 5 nN, appreciable electron tunneling can be detected even at low bias for both the redox-active and -inactive species. Dynamic current-voltage characteristics have been recorded and are well-described by a modified Simmons tunneling model. Subsequent analyses enable the electron tunneling barrier height and barrier length to be determined under conditions of quantified vertical stress. The variance observed describes, in essence, the protein's mechanical properties within the confines of the tunnel junction.

  14. Probing optical excitations in chevron-like armchair graphene nanoribbons.

    PubMed

    Denk, Richard; Lodi-Rizzini, Alberto; Wang, Shudong; Hohage, Michael; Zeppenfeld, Peter; Cai, Jinming; Fasel, Roman; Ruffieux, Pascal; Berger, Reinhard Franz Josef; Chen, Zongping; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Biagi, Roberto; De Renzi, Valentina; Prezzi, Deborah; Ruini, Alice; Ferretti, Andrea

    2017-11-30

    The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature. The spectral fingerprints corresponding to different reaction stages in their bottom-up fabrication are also unequivocally identified, allowing us to follow the exciton build-up from the starting monomer precursor to the final GNR structure.

  15. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  16. Predictions of thermomagnetic properties of Laves phase compounds: TbAl2, GdAl2 and SmAl2 performed with ATOMIC MATTERS MFA computation system

    NASA Astrophysics Data System (ADS)

    Michalski, Rafał; Zygadło, Jakub

    2018-04-01

    Recent calculations of properties of TbAl2 GdAl2 and SmAl2 single crystals, performed with our new computation system called ATOMIC MATTERS MFA are presented. We applied localized electron approach to describe the thermal evolution of Fine Electronic Structure of Tb3+, Gd3+ and Sm3+ ions over a wide temperature range and estimate Magnetocaloric Effect (MCE). Thermomagnetic properties of TbAl2, GdAl2 and SmAl2 were calculated based on the fine electronic structure of the 4f8, 4f7 and 4f5 electronic configuration of the Tb3+ and Gd3+ and Sm3+ ions, respectively. Our calculations yielded: magnetic moment value and direction; single-crystalline magnetization curves in zero field and in external magnetic field applied in various directions m(T,Bext); the 4f-electronic components of specific heat c4f(T,Bext); and temperature dependence of the magnetic entropy and isothermal entropy change with external magnetic field - ΔS(T,Bext). The cubic universal CEF parameters values used for all CEF calculations was taken from literature and recalculated for universal cubic parameters set for the RAl2 series: A4 = +7.164 Ka04 and A6 = -1.038 Ka06. Magnetic properties were found to be anisotropic due to cubic Laves phase C15 crystal structure symmetry. These studies reveal the importance of multipolar charge interactions when describing thermomagnetic properties of real 4f electronic systems and the effectiveness of an applied self-consistent molecular field in calculations for magnetic phase transition simulation.

  17. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  18. Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties.

    PubMed

    Autschbach, Jochen; Srebro, Monika

    2014-08-19

    Kohn-Sham theory (KST) is the "workhorse" of numerical quantum chemistry. This is particularly true for first-principles calculations of ground- and excited-state properties for larger systems, including electronic spectra, electronic dynamic and static linear and higher order response properties (including nonlinear optical (NLO) properties), conformational or dynamic averaging of spectra and response properties, or properties that are affected by the coupling of electron and nuclear motion. This Account explores the sometimes dramatic impact of the delocalization error (DE) and possible benefits from the use of long-range corrections (LC) and "tuning" of functionals in KST calculations of molecular ground-state and response properties. Tuning refers to a nonempirical molecule-specific determination of adjustable parameters in functionals to satisfy known exact conditions, for instance, that the energy of the highest occupied molecular orbital (HOMO) should be equal to the negative vertical ionization potential (IP) or that the energy as a function of fractional electron numbers should afford straight-line segments. The presentation is given from the viewpoint of a chemist interested in computations of a variety of molecular optical and spectroscopic properties and of a theoretician developing methods for computing such properties with KST. In recent years, the use of LC functionals, functional tuning, and quantifying the DE explicitly have provided valuable insight regarding the performance of KST for molecular properties. We discuss a number of different molecular properties, with examples from recent studies from our laboratory and related literature. The selected properties probe different aspects of molecular electronic structure. Electric field gradients and hyperfine coupling constants can be exquisitely sensitive to the DE because it affects the ground-state electron density and spin density distributions. For π-conjugated molecules, it is shown how the DE manifests itself either in too strong or too weak delocalization of localized molecular orbitals (LMOs). Optical rotation is an electric-magnetic linear response property that is calculated in a similar fashion as the electric polarizability, but it is more sensitive to approximations and can benefit greatly from tuning and small DE. Hyperpolarizabilities of π-conjugated "push-pull" systems are examples of NLO properties that can be greatly improved by tuning of range-separated exchange (RSE) functionals, in part due to improved charge-transfer excitation energies. On-going work on band gap predictions is also mentioned. The findings may provide clues for future improvements of KST because different molecular properties exhibit varying sensitivity to approximations in the electronic structure model. The utility of analyzing molecular properties and the impact of the DE in terms of LMOs, representing "chemist's orbitals" such as individual lone pairs and bonds, is highlighted.

  19. Physicochemical and Electrophysical Properties of Metal/Semiconductor Containing Nanostructured Composites

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. N.; Gromov, V. F.; Trakhtenberg, L. I.

    2018-06-01

    The properties of nanostructured composites based on metal oxides and metal-polymer materials are analyzed, along with ways of preparing them. The effect the interaction between metal and semiconductor nanoparticles has on the conductivity, photoconductivity, catalytic activity, and magnetic, dielectric, and sensor properties of nanocomposites is discussed. It is shown that as a result of this interaction, a material can acquire properties that do not exist in systems of isolated particles. The transfer of electrons between metal particles of different sizes in polymeric matrices leads to specific dielectric losses, and to an increase in the rate and a change in the direction of chemical reactions catalyzed by these particles. The interaction between metal-oxide semiconductor particles results in the electronic and chemical sensitization of sensor effects in nanostructured composite materials. Studies on creating molecular machines (Brownian motors), devices for magnetic recording of information, and high-temperature superconductors based on nanostructured systems are reviewed.

  20. JDFTx: Software for joint density-functional theory

    DOE PAGES

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...

    2017-11-14

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  1. JDFTx: Software for joint density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  2. Chemical Sensing Applications of ZnO Nanomaterials

    PubMed Central

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  3. Design guidelines for use of adhesives in hybrid microcircuits. [for electronic equipment in space applications

    NASA Technical Reports Server (NTRS)

    Caruso, S. V.; Perkins, K. L.; Licari, J. J.

    1973-01-01

    Although it is generally accepted that the use of adhesives in the assembly of hybrid microcircuits offers advantages over other bonding methods, there currently does not exist a set of guidelines for the selection of adhesives which will insure that hybrid microcircuits assembled with them will meet the long use-life, high-reliability requirements of electronic equipment for space applications. This study was directed to the identification of the properties of electrically insulative adhesives that potentially could cause problems in such an application, and to the development of evaluation tests to quantify these properties and thus form the basis for establishing suitable guidelines and, ultimately, specifications. Bond strength, outgassing after cure, and corrosivity were selected for detailed attention since they are considered to be especially critical. Introductory discussion includes enumeration and brief comments on the properties of adhesives considered to be important for the proposed application, a general review of polymeric types of adhesives, and identification of the major types of adhesives commercially available and specifically designed for microelectronic use. The specific tests developed to evaluate bond strength, outgassing after cure, and corrosivity are discussed in detail, and comparative results obtained for selected adhesives representative of the major types are given.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmermans, F. J.; Otto, C.

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemicallymore » or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.« less

  5. Novel MnOOH–graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Jun; Zhang, Long, E-mail: zhanglongzhl@163.com

    2015-01-15

    In this paper, we report a simple and controlled synthesis of novel MnOOH–graphene nanocomposites with a one-step facile hydrothermal method. It is template-free and easy to reproduce. Electrochemical properties are investigated in different media. The values of specific capacitance achieved are 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. The assembly of multiple branched MnOOH and graphene flakes results in synergistic effects, forming new electron transfer channels to accelerate electron transfer and provide the pseudocapacitance to increase the overall capacitance. The novel composites have potential applications inmore » the fields of supercapacitors, lithium battery and so on. - Graphical abstract: The MnOOH–graphene nanocomposites shows better specific capacitance with the values achieved 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. - Highlights: • Novel MnOOH–graphene nanocomposites were prepared by a one-step hydrothermal method. • The assembly can form new electron transfer channels to accelerate electron transfer. • The capacitive and rate performances are enhanced in both neutral and alkaline medium.« less

  6. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Cowardin, H.; Engelhar, D.; Plis, Elena; Hoffman, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers and Mylar, specifically those found in multi-layered spacecraft insulation, due to electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons. Among other properties these chemical changes altered the optical reflectance as documented in laboratory analysis. This paper presents results of the initial experiment results focused on the exposure of materials to various fluences of high energy electrons, used to simulate a portion of the geosynchronous space environment. The paper illustrates how the spectral reflectance changes as a function of time on orbit with respect to GEO environmental factors and investigates the survivability of the material after multiple electron doses. These results provide a baseline for analysis of aging effects on satellite systems used for remote sensing. They also provide preliminary analysis on what materials are most likely to encompass the high area-to-mass population of space debris in the geosynchronous environment. Lastly, the paper provides the results of the initial experimentation as a proof of concept for space aging on polymers and Mylar for conducting more experiments with a larger subset of spacecraft materials.

  7. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  8. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    NASA Astrophysics Data System (ADS)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  9. Breakdown of the independent electron picture in mesoscopic samples at low temperatures: The hunt for the Unicorn

    NASA Astrophysics Data System (ADS)

    Webb, R. A.

    1998-03-01

    A variety of experiments are discussed where, at low temperatures, it appears that the non-interacting picture of electrons in a Fermi liquid description of a mesoscopic sample is breaking down. Specifically, experiments on the temperature dependence of the phase-coherence time, energy relaxation rate, spin-flip scattering time, persistent currents in normal metals and transmission through a barrier in the fractional quantum Hall regime all display low-temperature properties which can not be accounted for in the independent electron picture.

  10. Femtosecond manipulation of spins, charges, and ions in nanostructures, thin films, and surfaces

    PubMed Central

    Carbone, F.; Hengsberger, M.; Castiglioni, L.; Osterwalder, J.

    2017-01-01

    Modern ultrafast techniques provide new insights into the dynamics of ions, charges, and spins in photoexcited nanostructures. In this review, we describe the use of time-resolved electron-based methods to address specific questions such as the ordering properties of self-assembled nanoparticles supracrystals, the interplay between electronic and structural dynamics in surfaces and adsorbate layers, the light-induced control of collective electronic modes in nanowires and thin films, and the real-space/real-time evolution of the skyrmion lattice in topological magnets. PMID:29308416

  11. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less

  13. Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang

    2018-02-01

    We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.

  14. Heat flux measurements of Tb3M series (M=Co, Rh and Ru): Specific heat and magnetocaloric properties

    NASA Astrophysics Data System (ADS)

    Monteiro, J. C. B.; Lombardi, G. A.; dos Reis, R. D.; Freitas, H. E.; Cardoso, L. P.; Mansanares, A. M.; Gandra, F. G.

    2016-12-01

    We report on the magnetic properties and magnetocaloric effect (MCE) for the Tb3M series, with M=Co, Rh and Ru, obtained using a heat flux technique. The specific heat of Tb3Co and Tb3Rh are very similar, with a first order type transition occurring around 6 K below the magnetic ordering temperature without any corresponding feature on the magnetization. The slightly enhanced electronic specific heat, the Debye temperature around 150 K and the presence of the magnetic specific heat well above the ordering temperature are also characteristic of many other compounds of the R3M family (R=Rare Earth). The specific heat for Tb3Ru, however, presents two peaks at 37 K and 74 K. The magnetization shows that below the first peak the system presents an antiferromagnetic behavior and is paramagnetic above 74 K. We obtained a magnetocaloric effect for M=Co and Rh, -∆S=12 J/kg K, but for Tb3Ru it is less than 3 J/kg K (μ0∆H=5 T). We believe that the experimental results show that the MCE is directly related with the process of hybridization of the (R)5d-(M)d electrons that occurs in the R3M materials.

  15. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material

    NASA Astrophysics Data System (ADS)

    Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-04-01

    We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.

  16. Graphene electron cannon: High-current edge emission from aligned graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianlong; Li, Nannan; Guo, Jing

    2014-01-13

    High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.

  17. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  18. Thermophysical Properties of Sn-Ag-Cu Based Pb-Free Solders

    NASA Astrophysics Data System (ADS)

    Kim, Sok Won; Lee, Jaeran; Jeon, Bo-Min; Jung, Eun; Lee, Sang Hyun; Kang, Kweon Ho; Lim, Kwon Taek

    2009-06-01

    Lead-tin (Pb-Sn) alloys are the dominant solders used for electronic packaging because of their low cost and superior properties required for interconnecting electronic components. However, increasing environmental and health concerns over the toxicity of lead, combined with global legislation to limit the use of Pb in manufactured products, have led to extensive research and development studies of lead-free solders. The Sn-Ag-Cu ternary eutectic alloy is considered to be one of the promising alternatives. Except for thermal properties, much research on several properties of Sn-Ag-Cu alloy has been performed. In this study, five Sn-xAg-0.5Cu alloys with variations of Ag content x of 1.0 mass%, 2.5 mass%, 3.0 mass%, 3.5 mass%, and 4.0 mass% were prepared, and their thermal diffusivity and specific heat were measured from room temperature to 150 °C, and the thermal conductivity was calculated using the measured thermal diffusivity, specific heat, and density values. Also, the linear thermal expansion was measured from room temperature to 170 °C. The results show that Sn-3.5Ag-0.5Cu is the best candidate because it has a maximum thermal conductivity and a low thermal expansion, which are the ideal conditions to be a proper packaging alloy for effective cooling and thermostability.

  19. HSE12 implementation in libxc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moussa, Jonathan E.

    2013-05-13

    This piece of software is a new feature implemented inside an existing open-source library. Specifically, it is a new implementation of a density functional (HSE, short for Heyd-Scuseria-Ernzerhof) for a repository of density functionals, the libxc library. It fixes some numerical problems with existing implementations, as outlined in a scientific paper recently submitted for publication. Density functionals are components of electronic structure simulations, which model properties of electrons inside molecules and crystals.

  20. A general way for quantitative magnetic measurement by transmitted electrons

    NASA Astrophysics Data System (ADS)

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons.

  1. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt-ZnO nanograin Schottky barrier interfaces

    NASA Astrophysics Data System (ADS)

    Chan, Yuet Ching; Yu, Jerry; Ho, Derek

    2018-06-01

    Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.

  2. Recent advances in polyaniline based biosensors.

    PubMed

    Dhand, Chetna; Das, Maumita; Datta, Monika; Malhotra, B D

    2011-02-15

    The present paper contains a detailed overview of recent advances relating to polyaniline (PANI) as a transducer material for biosensor applications. This conducting polymer provides enormous opportunities for binding biomolecules, tuning their bio-catalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Merging the specific nature of different biomolecules (enzymes, nucleic acids, antibodies, etc.) and the key properties of this modern conducting matrix, possible biosensor designs and their biosensing characteristics have been discussed. Efforts have been made to discuss and explore various characteristics of PANI responsible for direct electron transfer leading towards fabrication of mediator-less biosensors. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Methods for selective functionalization and separation of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  4. Full-scale characterization of UVLED Al(x)Ga(1-x)N nanowires via advanced electron microscopy.

    PubMed

    Phillips, Patrick J; Carnevale, Santino D; Kumar, Rajan; Myers, Roberto C; Klie, Robert F

    2013-06-25

    III-Nitride semiconductor heterostructures continue to attract a great deal of attention due to the wide range of wavelengths at which they can emit light, and the subsequent desire to employ them in optoelectronic applications. Recently, a new type of pn-junction which relies on polarization-induced doping has shown promise for use as an ultraviolet light emitting diode (UVLED); nanowire growth of this device has been successfully demonstrated. However, as these devices are still in their infancy, in order to more fully understand their physical and electronic properties, they require a multitude of characterization techniques. Specifically, the present contribution will discuss the application of advanced scanning transmission electron microscopy (STEM) to AlxGa1-xN UVLED nanowires. In addition to structural data, chemical and electronic properties will also be probed through various spectroscopy techniques, with the focus remaining on practically applying the knowledge gained via STEM to the growth procedures in order to optimize device peformance.

  5. Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom(s) in rock-salt phase- a first principle based theoretical initiative

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.

  6. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  7. Electronic properties of epitaxial silicene: a LT-STM/STS study

    NASA Astrophysics Data System (ADS)

    Fleurence, Antoine; Lee, Chi-Cheng; Ozaki, Taisuke; Yamada-Takamura, Yukiko; Yoshida, Yasuo; Hasegawa, Yukio

    2013-03-01

    The astonishing properties of silicene, the Si-counterpart of graphene, together with pioneering experimental observations, triggered in the very recent years, an exponentially increasing interest for this atom-thick material, both at fundamental level and for applications in high-speed electronic devices. We demonstrated, that the spontaneous segregation of silicon on (0001) surface of zirconium diboride (ZrB2) thin films epitaxied on Si(111) wafers gives rise to a wide-scale uniform two-dimensional silicene sheet. The silicene nature of the honeycomb structure imaged by scanning tunneling microscopy is evidenced by the observation of gap-opened π-electronic bands. The band gap opening is primarily due the specifically imprinted buckling. Here, we present the results of a low-temperature scanning tunneling spectroscopy investigation, which evidences the n-doped nature of silicene. The mapping of the local density of states, together with density functional theory give precious insights into the microscopic origin of the electronic bands of silicene. In particular, it shows the correlation between the degree of sp2 hybridization of different Si atoms in the internal structure and the character of the electronic bands.

  8. Comparative study of nonideal beam effects in high gain harmonic generation and self-seeded free electron lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, Agostino; Pellegrini, Claudio; Giannessi, Luca; Reiche, Sven

    2010-07-01

    In this paper we investigate and compare the properties of two narrow-bandwidth free-electron laser (FEL) schemes, one using self-seeding and the other high gain harmonic generation (HGHG). The two systems have been thoroughly studied analytically and numerically in the past. The aim of this work is to compare their performances when the FEL is driven by an electron beam with nonideal properties, thus including effects such as shot-to-shot energy fluctuations and nonlinear energy chirp. In both cases nonlinearities produce a bandwidth larger than the Fourier transform limited value. However, our analysis indicates that, for approximately the same output power levels, the self-seeding scheme is less affected than the HGHG scheme by quadratic energy chirps in the electron beam longitudinal phase space. This is confirmed by a specific numerical example corresponding to SPARX parameters where the electron beam was optimized to minimize the FEL gain length. The work has been carried out with the aid of the time dependent FEL codes GENESIS 1.3 (3D) and PERSEO (1D).

  9. ESR Analysis of Polymer Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow; Gupta, Amitave

    1987-01-01

    Electron-spin resonance identifies polymer-degradation reactions and their kinetics. New technique enables derivation of kinetic model of specific chemical reactions involved in degradation of particular polymer. Detailed information provided by new method enables prediction of aging characteristics long before manifestation of macroscopic mechanical properties.

  10. Electronic Structure and Transport in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations. Additionally, the generation and transport of hot carriers is studied extensively. The distribution of hot carriers generated from the decay of plasmons is explored over a range of energy, and the transport properties, particularly the lifetimes and mean-free-paths, of the hot carriers are determined. Lastly, appendices detailing the implementation of the algorithms developed in the work is presented, along with a useful derivation of the electron-plasmon matrix elements.

  11. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams.

    PubMed

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-04-12

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.

  12. Design of transparent conductors and periodic two-dimensional electron gases without doping

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen; Zhang, Lijun; Zunger, Alex; Perkins, John; Materials by Design Team; John D. Perkins Collaboration

    The functionality of transparency plus conductivity plays an important role in renewable energy and information technologies, including applications such as solar cells, touch-screen sensors, and flat panel display. However, materials with such seemingly contraindicated properties are difficult to come by. The traditional strategy for designing bulk transparent conductors (TCs) starts from a wide-gap insulator and finds ways to make it conductive by extensive doping. We propose a different strategy for TC design--starting with a metallic conductor and designing transparency by control of intrinsic interband transitions and intraband plasmonic frequency. We identified specific design principles for prototypical intrinsic TC classes and searched computationally for materials that satisfy them. The electron gases in the 3D intrinsic TCs demonstrate intriguing properties, such as periodic 2D electron gas regions with very high carrier density. We will discuss a more extended search of these functionalities, in parallel with stability and growability calculations

  13. Inter-Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in Organic Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Bryon W.; Reid, Obadiah G.; Coffey, David C.

    2016-09-26

    Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3-hexylthiophene) and measure the PCG dynamics in 50 fs-500 ns time scales with time-resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiencymore » of PCG yield. The findings show that the molecular design of the fullerene not only determines inter-fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.« less

  14. Measurements and Diagnostics of Diamond Films and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.

    1999-01-01

    The commercial potential of chemical-vapor-deposited (CVD) diamond films has been established and a number of applications have been identified through university, industry, and government research studies. This paper discusses the methodologies used for property measurement and diagnostic of CVD diamond films and coatings. Measurement and diagnostic techniques studied include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and friction examination. Each measurement and diagnostic technique provides unique information. A combination of techniques can provide the technical information required to understand the quality and properties of CVD diamond films, which are important to their application in specific component systems and environments. In this study the combination of measurement and diagnostic techniques was successfully applied to correlate deposition parameters and resultant diamond film composition, crystallinity, grain size, surface roughness, and coefficient of friction.

  15. Oxygen in GaAs - Direct and indirect effects

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Skowronski, M.; Pawlowicz, L.; Lagowski, J.

    1984-01-01

    Oxygen has profound effects on the key electronic properties and point defects of GaAs crystals. Thus, when added in the growth system, it decreases the free electron concentration and enhances the concentration of deep donors in the resulting crystals. Both of these effects are highly beneficial for achieving semi-insulating material and have been utilized for that purpose. They have been attributed to the tendency of oxygen to getter silicon impurities during crystal growth. Only recently, it has been found that oxygen in GaAs introduces also a midgap level, ELO, with essentially the same activation energy as EL2 but with four times greater electron capture cross section. The present report reassesses the electrical and optical properties of the midgap levels in GaAs crystals grown by the horizontal Bridgman (HB) and the Czochralski-LEC techniques. Emphasis is placed on the identification of the specific effects of ELO.

  16. New two-dimensional boron nitride allotropes with attractive electronic and optical properties

    NASA Astrophysics Data System (ADS)

    Shahrokhi, Masoud; Mortazavi, Bohayra; Berdiyorov, Golibjon R.

    2017-03-01

    Using first principles calculations, structural, electronic and optical properties of five new 2D boron nitride (BN) allotropes have been studied. The results exhibit that the cohesive energy for all these five new allotrope is positive such as all these systems are stable; therefore, it is possible to synthesize these structures in experiments. It is found that the band gap of all new 2D BN allotropes is smaller than the h-BN sheet. In our calculations the dielectric tensor is derived within the random phase approximation (RPA). Specifically, the dielectric function, refraction index and the loss function, of the 2D BN allotropes are calculated for both parallel and perpendicular electric field polarizations. The results show that the optical spectra are anisotropic along these two polarizations. The results obtained from our calculations are beneficial to practical applications of these 2D BN allotropes in optoelectronics and electronics.

  17. Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Minglang; Wang, Hao; Zhang, Guangping; Wang, Yongfeng; Sanvito, Stefano; Hou, Shimin

    2018-05-01

    The relationship between the molecular structure and the electronic transport properties of molecular junctions based on thiol-terminated oligoethers, which are obtained by replacing every third methylene unit in the corresponding alkanethiols with an oxygen atom, is investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias conductance depends strongly on the conformation of the oligoethers in the junction. Specifically, in the cases of trans-extended conformation, the oxygen-dominated transmission peaks are very sharp and well below the Fermi energy, EF, thus hardly affect the transmission around EF; the Au-S interface hybrid states couple with σ-bonds in the molecular backbone forming the conduction channel at EF, resulting in a conductance decay against the molecular length close to that for alkanethiols. By contrast, for junctions with oligoethers in helical conformations, some π-type oxygen orbitals coupling with the Au-S interface hybrid states contribute to the transmission around EF. The molecule-electrode electronic coupling is also enhanced at the non-thiol side due to the specific spatial orientation introduced by the twist of the molecular backbone. This leads to a much smaller conductance decay constant. Our findings highlight the important role of the molecular conformation of oligoethers in their electronic transport properties and are also helpful for the design of molecular wires with heteroatom-substituted alkanethiols.

  18. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi

    2018-03-01

    Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.

  19. Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping

    NASA Astrophysics Data System (ADS)

    Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.

    2018-04-01

    We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.

  20. Transition metal oxides for organic electronics: energetics, device physics and applications.

    PubMed

    Meyer, Jens; Hamwi, Sami; Kröger, Michael; Kowalsky, Wolfgang; Riedl, Thomas; Kahn, Antoine

    2012-10-23

    During the last few years, transition metal oxides (TMO) such as molybdenum tri-oxide (MoO(3) ), vanadium pent-oxide (V(2) O(5) ) or tungsten tri-oxide (WO(3) ) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long-term stable p-type doping of wide band gap organic materials, charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi-transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization of pi-Conjugated Polymers for Transistor and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Paulsen, Bryan D.

    pi-Conjugated polymers represent a unique class of optoelectronic materials. Being polymers, they are solution processable and inherently "soft" materials. This makes them attractive candidates for the production of roll-to-roll printed electronic devices on flexible substrates. The optical and electronic properties of pi-conjugated polymers are synthetically tunable allowing material sets to be tailored to specific applications. Two of the most heavily researched applications are the thin film transistor, the building block of electronic circuits, and the bulk heterojunction solar cell, which holds great potential as a renewable energy source. Key to developing commercially feasible pi-conjugated polymer devices is a thorough understanding of the electronic structure and charge transport behavior of these materials in relationship with polymer structure. Here this structure property relationship has been investigated through electrical and electrochemical means in concert with a variety of other characterization techniques and device test beds. The tunability of polymer optical band gap and frontier molecular orbital energy level was investigated in systems of vinyl incorporating statistical copolymers. Energy levels and band gaps are crucial parameters in developing efficient photovoltaic devices, with control of these parameters being highly desirable. Additionally, charge transport and density of electronic states were investigated in pi-conjugated polymers at extremely high electrochemically induced charge density. Finally, the effects of molecular weight on pi-conjugated polymer optical properties, energy levels, charge transport, morphology, and photovoltaic device performance was examined.

  2. Competing pseudogap and impurity effects on the normal-state specific heat properties of cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Dzhumanov, S.; Karimboev, E. X.

    2014-07-01

    In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .

  3. Study the relation between the yarn pulling force and the bursting strength of single jersey knitted fabric

    NASA Astrophysics Data System (ADS)

    El-Tarfawy, S. Y.

    2017-10-01

    There are various methods to evaluate knitted fabric’s properties; the yarn pulling force is a suitable experimental method to investigate the properties of single jersey knitted fabric.In this study, a frame is attached to the electronic tensile strength tester to fix different single jersey knitted fabrics with different dimensional properties. A hook is connected to the upper load cell in the tensile tester to ravel the first upper course then records the values of the yarn pulling force. In addition to that, the effect of the loop length, yarn count, and raw material on yarn pulling force and specific fabric bursting strength are studied. It is concluded that yarn pulling force has a significant relation with specific fabric bursting strength.

  4. Electronic and Ionic Conductors from Ordered Microporous Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dincă, Mircea

    The proposed work aimed to establish metal-organic frameworks (MOFs) as new classes of high-surface area microporous electronic and ionic conductors. MOFs are crystalline materials with pore sizes ranging from 0.2 to ~ 2 nm (or larger for the latter) defined by inorganic or organic building blocks connected by rigid organic linkers. Myriad applications have been found or proposed for these materials, yet those that require electron transport or conductivity in combination with permanent porosity still lag behind because the vast majority of known frameworks are electrical insulators. Prior to our proposal and subsequent work, there were virtually no studies exploringmore » the possibility of electronic delocalization in these materials. Therefore, our primary goal was to understand and control, at a fundamental level, the electron and ion transport properties of this class of materials, with no specific application proposed, although myriad applications could be envisioned for high surface area conductors. Our goals directly addressed one of the DOE-identified Grand Challenges for Basic Energy Sciences: designing perfect atom- and energy-efficient syntheses of revolutionary new forms of matter with tailored properties. Indeed, the proposed work is entirely synthetic in nature; owing to the molecular nature of the building blocks in MOFs, there is the possibility of unprecedented control over the structure and properties of solid crystalline matter. The goals also tangentially addressed the Grand Challenge of controlling materials processes at the level of electrons: the scope of our program is to create new materials where charges (electrons and/or ions) move according to predefined pathways.« less

  5. Transcap: A new integrated hybrid supercapacitor and electrolyte-gated transistor device (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Santato, Clara

    2015-10-01

    The boom in multifunctional, flexible, and portable electronics and the increasing need of low-energy cost and autonomy for applications ranging from wireless sensor networks for smart environments to biomedical applications are triggering research efforts towards the development of self-powered sustainable electronic devices. Within this context, the coupling of electronic devices (e.g. sensors, transistors) with small size energy storage systems (e.g. micro-batteries or micro-supercapacitors) is actively pursued. Micro-electrochemical supercapacitors are attracting much attention in electronics for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. For their high specific pseudocapacitance, electronically conducting polymers are well known as positive materials for hybrid supercapacitors featuring high surface carbon negative electrodes. The processability of both polymer and carbon is of great relevance for the development of flexible miniaturised devices. Electronically conducting polymers are even well known to feature an electronic conductivity that depends on their oxidation (p-doped state) and that it is modulated by the polymer potential. This property and the related pseudocapacitive response make polymer very attracting channel materials for electrolyte-gated (EG) transistors. Here, we propose a novel concept of "Trans-capacitor", an integrated device that exhibits the storage properties of a polymer/carbon hybrid supercapacitor and the low-voltage operation of an electrolyte-gated transistor.

  6. Atomic and electronic structure of Mo6S9-xIx nanowires

    NASA Astrophysics Data System (ADS)

    Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.

    2005-09-01

    Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578

  7. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    PubMed

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  8. Measurement of the trapping and detrapping properties of polymers in relation with their microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallayer, B.; Hourquebie, P.; Marsacq, D.

    1996-12-31

    In the field of Space Charge Physics, the role of electrical traps on space charge behavior and therefore on the breakdown properties has been now well-established. However, the traps in polymers are very difficult to define compared to the case of ceramics for which a lot of studies have been performed. A new specific method for measuring the trapping and detrapping properties of dielectric materials has been developed. This method allows to characterize the electrostatic state of an insulating sample after irradiation by a high energy electron beam. The authors discuss the basis of the method and its general possibilitiesmore » to measure the breakdown relevant parameters as the secondary electron yield for instance. Moreover, the method has been used on several polymers as HDPE and LDPE. The difference of trapping properties between those materials can be explained by microstructure evolutions (crystallinity ratio) due to a difference of the branching rate. This difference of trapping and detrapping properties of these two polymers could be connected to the breakdown behavior of the two materials which is known to be very different.« less

  9. Tuning the acid/base properties of nanocarbons by functionalization via amination.

    PubMed

    Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng

    2010-07-21

    The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic device materials.

  10. Vertically aligned cobalt hydroxide nano-flake coated electro-etched carbon fiber cloth electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Tang, Jie; Zhang, Han; Qin, Lu-Chang

    2014-11-01

    We describe preparation and characterization of nanostructured electrodes using Co(OH)2 nano-flakes and carbon fiber cloth for supercapacitors. Nanostructured Co(OH)2 flakes are produced by electrodeposition and they are coated onto the electro-etched carbon fiber cloth. A highest specific capacitance of 3404.8 F g-1 and an area-normalized specific capacitance of 3.3 F cm-2 have been obtained from such electrodes. Morphology and structure of the nanostructured electrodes have been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties have been studied by cyclic voltammetry (CV), constant-current charge and discharge, electrochemical impedance spectroscopy (EIS), and long-time cycling.

  11. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Comfort, Everett; Lee, Ji Ung

    2016-06-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range.

  12. Multifunctional Beta Ti Alloy with Improved Specific Strength

    NASA Astrophysics Data System (ADS)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  13. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  14. Electronic and phononic modulation of MoS2 under biaxial strain

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Roknabadi, M. R.; Ghorbani, S. R.; Modarresi, M.

    2017-12-01

    Dichalcogenides of transition metals are attractive material due to its unique properties. In this work, it has been investigated the electronic band structure, phonon spectrum and heat capacity of MoS2 under the applied tensile and compressive biaxial strain using the density functional theory. The Molybdenum disulfide under compressive (tensile) strain up to 6% (10%) has stable atomic structure without any negative frequency in the phonon dispersion curves. The tensile biaxial strain reduces the energy gap in the electronic band structure and the optical-acoustic gap in phonon dispersion curves. The tensile biaxial strain also increases the specific heat capacity. On the other hand, the compressive biaxial strain in this material increases phonon gap and reduces the heat capacity and the electronic band gap. The phonon softening/hardening is reported for tensile/compressive biaxial strain in MoS2. We report phonon hardening for out of plane ZA mode in the presence of both tensile and compressive strains. Results show that the linear variation of specific heat with strain (CV ∝ε) and square dependency of specific heat with the temperature (CV ∝T2) for low temperature regime. The results demonstrate that the applied biaxial strain tunes the electronic energy gap and modifies the phonon spectrum of MoS2.

  15. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles

    NASA Astrophysics Data System (ADS)

    Mejia-Santillan, M. E.; Pariona, N.; Bravo-C., J.; Herrera-Trejo, M.; Montejo-Alvaro, F.; Zarate, A.; Perry, D. L.; Mtz-Enriquez, A. I.

    2018-04-01

    The topotactic transformation from magnetite to maghemite sub-microparticles was demonstrated by a variety of techniques that include X-ray diffraction, Raman spectroscopy, electron microscopy, Mössbauer spectroscopy, magnetic measurements, and vis-NIR diffuse reflectance. The physical, chemical, and morphological properties of the particles were correlated with their adsorptive properties in water with respect to arsenic (V). The adsorptive properties of the iron oxide are increased by changing the crystal phases involved, specifically, the transformation of magnetite to maghemite. Maghemite sub-microparticles are capable of efficiently decreasing the arsenic content in water from 100 ppb to below the World Health Organization (WHO) guideline of 10 ppb.

  16. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  17. Transmission Electron Microscopy of Minerals and Rocks

    NASA Astrophysics Data System (ADS)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  18. Novel Solar Energy Conversion Materials by Design of Mn(II) Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, S.; Peng, H.; Ndione, P.

    2013-01-01

    Solar energy conversion materials need to fulfill simultaneously a number of requirements in regard of their band-structure, optical properties, carrier transport, and doping. Despite their desirable chemical properties, e.g., for photo-electrocatalysis, transition-metal oxides usually do not have desirable semiconducting properties. Instead, oxides with open cation d-shells are typically Mott or charge-transfer insulators with notoriously poor transport properties, resulting from large effective electron/hole masses or from carrier self-trapping. Based on the notion that the electronic structure features (p-d interaction) supporting the p-type conductivity in d10 oxides like Cu2O and CuAlO2 occurs in a similar fashion also in the d5 (high-spin) oxides,more » we recently studied theoretically the band-structure and transport properties of the prototypical binary d5 oxides MnO and Fe2O3 [PRB 85, 201202(R)]. We found that MnO tends to self-trap holes by forming Mn+III, whereas Fe2O3 self-traps electrons by forming Fe+II. However, the self-trapping of holes is suppressed by when Mn is tetrahedrally coordinated, which suggests specific routes to design novel solar conversion materials by considering ternary Mn(II) oxides or oxide alloys. We are presenting theory, synthesis, and initial characterization for these novel energy materials.« less

  19. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber.

    PubMed

    Ren, Jing; Bai, Wenyu; Guan, Guozhen; Zhang, Ye; Peng, Huisheng

    2013-11-06

    A flexible and weaveable electric double-layer capacitor wire is developed by twisting two aligned carbon nanotube/ordered mesoporous carbon composite fibers with remarkable mechanical and electronic properties as electrodes. This capacitor wire exhibits high specific capacitance and long life stability. Compared with the conventional planar structure, the capacitor wire is also lightweight and can be integrated into various textile structures that are particularly promising for portable and wearable electronic devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes.

    PubMed

    Zhao, Xinne; Zhang, Panpan; Chen, Yuting; Su, Zhiqiang; Wei, Gang

    2015-03-12

    The preparation and applications of graphene (G)-based materials are attracting increasing interests due to their unique electronic, optical, magnetic, thermal, and mechanical properties. Compared to G-based hybrid and composite materials, G-based inorganic hybrid membrane (GIHM) offers enormous advantages ascribed to their facile synthesis, planar two-dimensional multilayer structure, high specific surface area, and mechanical stability, as well as their unique optical and mechanical properties. In this review, we report the recent advances in the technical fabrication and structure-specific applications of GIHMs with desirable thickness and compositions. In addition, the advantages and disadvantages of the methods utilized for creating GIHMs are discussed in detail. Finally, the potential applications and key challenges of GIHMs for future technical applications are mentioned.

  1. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    NASA Astrophysics Data System (ADS)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  2. Magnetic and interface properties of the core-shell Fe3O4/Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Baskakov, A. O.; Solov'eva, A. Yu.; Ioni, Yu. V.; Starchikov, S. S.; Lyubutin, I. S.; Khodos, I. I.; Avilov, A. S.; Gubin, S. P.

    2017-11-01

    Core-shell Fe3O4/Au nanostructures were obtained with an advanced method of two step synthesis and several complementary methodics were applied for investigation structural and magnetic properties of the samples. Along with X-ray diffraction and transmission electron microscopy, electron diffraction, optical, Raman and Mössbauer spectroscopy were used for nanoparticle characterization. It was established that the physical and structural properties Fe3O4/Au nanocomposites are specific of intrinsic properties of gold and magnetite. Mössbauer and Raman spectroscopy data indicated that magnetite was in a nonstoichiometric state with an excess of trivalent iron both in the initial Fe3O4 nanoparticles and in the Fe3O4/Au nanocomposites. As follows from the Mössbauer data, magnetic properties of iron ions in the internal area (in core) and in the surface layer of magnetite nanoparticles are different due to the rupture of exchange bonds at the particles surface. This leads to decrease in an effective magnetic moment at the surface. Gold atoms at the interface of the composites interact with dangling bonds of magnetite and stabilize the magnetic properties of the surface layers of magnetite.

  3. CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes.

    PubMed

    Calvello, Simone; Piccardo, Matteo; Rao, Shashank Vittal; Soncini, Alessandro

    2018-03-05

    We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Optical studies of current-induced magnetization switching and photonic quantum states

    NASA Astrophysics Data System (ADS)

    Lorenz, Virginia

    2017-04-01

    The ever-decreasing size of electronic components is leading to a fundamental change in the way computers operate, as at the few-nanometer scale, resistive heating and quantum mechanics prohibit efficient and stable operation. One of the most promising next-generation computing paradigms is Spintronics, which uses the spin of the electron to manipulate and store information in the form of magnetic thin films. I will present our optical studies of the fundamental mechanisms by which we can efficiently manipulate magnetization using electrical current. Although electron spin is a quantum-mechanical property, Spintronics relies on macroscopic magnetization and thus does not take advantage of quantum mechanics in the algorithms used to encode and transmit information. For the second part of my talk, I will present our work under the umbrella of new computing and communication technologies based on the quantum mechanical properties of photons. Quantum technologies often require the carriers of information, or qubits, to have specific properties. Photonic quantum states are good information carriers because they travel fast and are robust to environmental fluctuations, but characterizing and controlling photonic sources so the photons have just the right properties is still a challenge. I will describe our work towards enabling quantum-physics-based secure long-distance communication using photons.

  5. Structural, electronic, and thermodynamic properties of curium dioxide: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian

    2017-12-01

    We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .

  6. Spatial mapping of electronic states in κ-(BEDT-TTF)2X using infrared reflectivity

    PubMed Central

    Sasaki, Takahiko; Yoneyama, Naoki

    2009-01-01

    We review our recent work on spatial inhomogeneity of the electronic states in the strongly correlated molecular conductors κ-(BEDT-TTF)2X. Spatial mapping of infrared spectra (SMIS) is used for imaging the distribution of the local electronic states. In molecular materials, the infrared response of the specific molecular vibration mode with a strong electron–molecular vibration coupling can reflect the electronic states via the change in the vibration frequency. By spatially mapping the frequency shift of the molecular vibration mode, an electronic phase separation has been visualized near the first-order Mott transition in the bandwidth-controlled organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. In addition to reviewing SMIS of the phase separation, we briefly mention the electronic and optical properties of κ-(BEDT-TTF)2X. PMID:27877279

  7. Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

    PubMed Central

    Ostrowski, Anja; Nordmeyer, Daniel; Boreham, Alexander; Holzhausen, Cornelia; Mundhenk, Lars; Graf, Christina; Meinke, Martina C; Vogt, Annika; Hadam, Sabrina; Lademann, Jürgen; Rühl, Eckart; Alexiev, Ulrike

    2015-01-01

    Summary The increasing interest and recent developments in nanotechnology pose previously unparalleled challenges in understanding the effects of nanoparticles on living tissues. Despite significant progress in in vitro cell and tissue culture technologies, observations on particle distribution and tissue responses in whole organisms are still indispensable. In addition to a thorough understanding of complex tissue responses which is the domain of expert pathologists, the localization of particles at their sites of interaction with living structures is essential to complete the picture. In this review we will describe and compare different imaging techniques for localizing inorganic as well as organic nanoparticles in tissues, cells and subcellular compartments. The visualization techniques include well-established methods, such as standard light, fluorescence, transmission electron and scanning electron microscopy as well as more recent developments, such as light and electron microscopic autoradiography, fluorescence lifetime imaging, spectral imaging and linear unmixing, superresolution structured illumination, Raman microspectroscopy and X-ray microscopy. Importantly, all methodologies described allow for the simultaneous visualization of nanoparticles and evaluation of cell and tissue changes that are of prime interest for toxicopathologic studies. However, the different approaches vary in terms of applicability for specific particles, sensitivity, optical resolution, technical requirements and thus availability, and effects of labeling on particle properties. Specific bottle necks of each technology are discussed in detail. Interpretation of particle localization data from any of these techniques should therefore respect their specific merits and limitations as no single approach combines all desired properties. PMID:25671170

  8. Extremely large magnetoresistance and Kohler's rule in PdSn 4 : A complete study of thermodynamic, transport, and band-structure properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin

    The recently discovered material PtSn 4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn 4 is isostructural to PtSn 4 with the same electron count. Here, we report on the physical properties of high-quality single crystals of PdSn 4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn 4 has physical properties that are qualitatively similar to those of PtSn 4 , but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSnmore » 4 is gapped out for PdSn 4. By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn 4 and PtSn 4; based on detailed analysis of the magnetoresistivity ρ ( H , T ) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we also find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.« less

  9. Extremely large magnetoresistance and Kohler's rule in PdSn 4 : A complete study of thermodynamic, transport, and band-structure properties

    DOE PAGES

    Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin; ...

    2017-10-27

    The recently discovered material PtSn 4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn 4 is isostructural to PtSn 4 with the same electron count. Here, we report on the physical properties of high-quality single crystals of PdSn 4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn 4 has physical properties that are qualitatively similar to those of PtSn 4 , but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSnmore » 4 is gapped out for PdSn 4. By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn 4 and PtSn 4; based on detailed analysis of the magnetoresistivity ρ ( H , T ) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we also find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.« less

  10. Electronic, elastic and optical properties of divalent (R+2X) and trivalent (R+3X) rare earth monochalcogenides

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Chandra, S.; Singh, J. K.

    2017-08-01

    Based on plasma oscillations theory of solids, simple relations have been proposed for the calculation of bond length, specific gravity, homopolar energy gap, heteropolar energy gap, average energy gap, crystal ionicity, bulk modulus, electronic polarizability and dielectric constant of rare earth divalent R+2X and trivalent R+3X monochalcogenides. The specific gravity of nine R+2X, twenty R+3X, and bulk modulus of twenty R+3X monochalcogenides have been calculated for the first time. The calculated values of all parameters are compared with the available experimental and the reported values. A fairly good agreement has been obtained between them. The average percentage deviation of two parameters: bulk modulus and electronic polarizability for which experimental data are known, have also been calculated and found to be better than the earlier correlations.

  11. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    NASA Astrophysics Data System (ADS)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  12. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent on time, concentration and nanoparticle size. Additionally, the question of cell recovery once the source of AuNPs is removed was investigated in the present work. It was found that full cell functions recovery is possible after removing the source of nanoparticles.

  13. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    PubMed Central

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951

  14. Chemically exfoliated Mo S2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase

    NASA Astrophysics Data System (ADS)

    Pal, Banabir; Singh, Anjali; Sharada, G.; Mahale, Pratibha; Kumar, Abhinav; Thirupathaiah, S.; Sezen, H.; Amati, M.; Gregoratti, Luca; Waghmare, Umesh V.; Sarma, D. D.

    2017-11-01

    A metastable trigonal phase, existing only as small patches on a chemically exfoliated few-layered, thermodynamically stable 1 H phase of Mo S2 , is believed to critically influence the properties of Mo S2 -based devices. The electronic structure of this metastable phase is little understood in the absence of a direct experimental investigation of its electronic properties, complicated further by conflicting claims from theoretical investigations. We address this issue by investigating the electronic structure of this minority phase in chemically exfoliated Mo S2 few-layered systems by enhancing its contributions with the use of highly spatially resolved (≤120 nm resolution) photoemission spectroscopy and Raman spectroscopy in conjunction with state-of-the-art electronic structure calculations. Based on these results, we establish that the ground state of this phase, arrived at by the chemical exfoliation of Mo S2 using the usual Li intercalation technique, is a small gap (˜90 ±40 meV ) semiconductor in contrast to most claims in the literature; we also identify the specific trigonal structure it has among many suggested ones.

  15. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics.

    PubMed

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-10-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.

  16. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    PubMed Central

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems. PMID:26601297

  17. Pertinent parameters in photo-generation of electrons: Comparative study of anatase-based nano-TiO2 suspensions.

    PubMed

    Martel, D; Guerra, A; Turek, P; Weiss, J; Vileno, B

    2016-04-01

    In the field of solar fuel cells, the development of efficient photo-converting semiconductors remains a major challenge. A rational analysis of experimental photocatalytic results obtained with material in colloïdal suspensions is needed to access fundamental knowledge required to improve the design and properties of new materials. In this study, a simple system electron donor/nano-TiO2 is considered and examined via spin scavenging electron paramagnetic resonance as well as a panel of analytical techniques (composition, optical spectroscopy and dynamic light scattering) for selected type of nano-TiO2. Independent variables (pH, electron donor concentration and TiO2 amount) have been varied and interdependent variables (aggregate size, aggregate surface vs. volume and acid/base groups distribution) are discussed. This work shows that reliable understanding involves thoughtful combination of interdependent parameters, whereas the specific surface area seems not a pertinent parameter. The conclusion emphasizes the difficulty to identify the key features of the mechanisms governing photocatalytic properties in nano-TiO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    DOE PAGES

    Wang, Gongming; Li, Dehui; Cheng, Hung -Chieh; ...

    2015-10-02

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that themore » resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. Furthermore, the ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.« less

  19. Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.

    PubMed

    Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen

    2015-12-01

    In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).

  20. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  1. Influence of relative humidity on the properties of examined materials by means of inverse gas chromatography.

    PubMed

    Strzemiecka, Beata; Kołodziejek, Joanna; Kasperkowiak, Małgorzata; Voelkel, Adam

    2013-01-04

    Inverse gas chromatography (IGC) at infinite dilution was applied to evaluate the surface properties of sorbents and the effect of different carrier gas humidity. They were stored in different environmental humidity - 29%, 40%, and 80%. The dispersive components of the surface free energy of the zeolites and perlite were determined by Schulz-Lavielle method, whereas their tendency to undergo specific interactions was estimated basing on the electron donor-acceptor approach presented by Flour and Papirer. Surface parameters were used to monitor the changes of the properties caused by the humidity of the storage environment as well as of RH of carrier gas. The increase of humidity of storage environment caused a decrease of sorbents surface activity and increase the ability to specific interaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    NASA Astrophysics Data System (ADS)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  3. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    PubMed

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  4. Electron Emission Properties of Insulator Materials Pertinent to the International Space Station

    NASA Technical Reports Server (NTRS)

    Thomson, C. D.; Zavyalov, V.; Dennison, J. R.; Corbridge, Jodie

    2004-01-01

    We present the results of our measurements of the electron emission properties of selected insulating and conducting materials used on the International Space Station (ISS). Utah State University (USU) has performed measurements of the electron-, ion-, and photon-induced electron emission properties of conductors for a few years, and has recently extended our capabilities to measure electron yields of insulators, allowing us to significantly expand current spacecraft material charging databases. These ISS materials data are used here to illustrate our various insulator measurement techniques that include: i) Studies of electron-induced secondary and backscattered electron yield curves using pulsed, low current electron beams to minimize deleterious affects of insulator charging. ii) Comparison of several methods used to determine the insulator 1st and 2nd crossover energies. These incident electron energies induce unity total yield at the transition between yields greater than and less than one with either negative or positive charging, respectively. The crossover energies are very important in determining both the polarity and magnitude of spacecraft surface potentials. iii) Evolution of electron emission energy spectra as a function of insulator charging used to determine the surface potential of insulators. iv) Surface potential evolution as a function of pulsed-electron fluence to determine how quickly insulators charge, and how this can affect subsequent electron yields. v) Critical incident electron energies resulting in electrical breakdown of insulator materials and the effect of breakdown on subsequent emission, charging and conduction. vi) Charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials during yield measurements. Specific ISS materials being tested at USU include chromic and sulfuric anodized aluminum, RTV-silicone solar array adhesives, solar cell cover glasses, Kapton, and gold. Further details of the USU testing facilities, the instrumentation used for insulator measurements, and the NASA/SEE Charge Collector materials database are provided in other Spacecraft Charging Conference presentations (Dennison, 2003b). The work presented was supported in part by the NASA Space Environments and Effects (SEE) Program, the Boeing Corporation, and a NASA Graduate Fellowship. Samples were supplied by Boeing, the Environmental Effects Group at Marshall Space Flight Center, and Sheldahl, Inc.

  5. Electronic properties and free radical production by nitrofuran compounds.

    PubMed

    Paulino-Blumenfeld, M; Hansz, M; Hikichi, N; Stoppani, A O

    1992-01-01

    Substitution of nifurtimox tetrahydrothiazine moiety by triazol-4-yl, benzimidazol-l-yl, pyrazol-l-yl or related aromatic nitrogen heterocycles determines changes in the quantum chemistry descriptors of the molecule, namely, (a) greater negative LUMO energy; (b) lesser electron density on specific atoms, especially on the nitro group atoms, and (c) modification of individual net atomic charges at relevant atoms. These variations correlate with the greater capability of nifurtimox analogues for redox-cycling and oxygen radical production, after one-electron reduction by ascorbate or reduced flavoenzymes. Variation of the nitrofurans electronic structure can also explain the greater activity of nifurtimox analogues as inhibitors of glutathione reductase and Trypanosoma cruzi growth, although other factors, such as molecular hydrophobicity and connectivity may contribute to the latter inhibition.

  6. Reduced graphene oxide wrapped Ag nanostructures for enhanced SERS activity

    NASA Astrophysics Data System (ADS)

    Nair, Anju K.; Kala, M. S.; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    Graphene - metal nanoparticle hybrids have received great attention due to their unique electronic properties, large specific surface area, very high conductivity and more charge transfer. Thus, it is extremely advantages to develop a simple and efficient process to disperse metal nanostructures over the surface of graphene sheets. Herein, we report a hydrothermal assisted strategy for developing reduced graphene oxide /Ag nanomorphotypes (cube, wire) for surface enhanced Raman scattering (SERS) applications, considering the advantages of synergistic effect of graphene and plasmonic properties of Ag nanomorphotypes.

  7. An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    La Porta, F. A.; Nogueira, A. E.; Gracia, Lourdes; Pereira, W. S.; Botelho, G.; Mulinari, T. A.; Andrés, Juan; Longo, E.

    2017-04-01

    From the viewpoints of materials chemistry and physical chemistry, crystal structure directly determines the electronic structure and furthermore their optical and photocatalytic properties. Zinc sulfide (ZnS) nanoparticles (NPs) with tunable photoluminescence (PL) emission and high photocatalytic activity have been obtained by means of a microwave-assisted solvothermal (MAS) method using different precursors (i.e., zinc nitrate (ZN), zinc chloride (ZC), or zinc acetate (ZA)). The morphologies, optical properties, and electronic structures of the as-synthesized ZnS NPs were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) isotherms for N2 adsorption/desorption processes, diffuse reflectance spectroscopy (DRS), PL measurements and theoretical calculations. Density functional theory calculations were used to determine the geometries and electronic properties of bulk wurtzite (WZ) ZnS NPs and their (0001), (101 ̅0), (112 ̅0), (101 ̅1), and (101 ̅2) surfaces. The dependence of the PL emission behavior of ZnS NPs on the precursor was elucidated by examining the energy band structure and density of states. The method for degradation of Rhodamine B (RhB) was used as a probe reaction to investigate the photocatalytic activity of the as-Synthesised ZnS NPs under UV light irradiation. The PL behavior as well as photocatalytic activities of ZnS NPs were attributed to specific features of the structural and electronic structures. Increased photocatalytic degradation was observed for samples synthesized using different precursors in the following order: ZA

  8. Thermodynamic and transport properties of YbNi 4Cd

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.

    2018-05-01

    The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.

  9. DFT investigation on electronic, magnetic, mechanical and thermodynamic properties under pressure of some EuMO3 (M  =  Ga, In) perovskites

    NASA Astrophysics Data System (ADS)

    Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali

    2017-10-01

    The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M  =  Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.

  10. Oxygen reduction kinetics on Pt monolayer shell highly affected by the structure of bimetallic AuNi cores

    DOE PAGES

    Chen, Guangyu; Kuttiyiel, Kurian A.; Su, Dong; ...

    2016-07-12

    Here, we describe pronounced effects of structural changes of the AuNi cores on the oxygen reduction reaction (ORR) activity of a Pt monolayer shell. The study of alloyed AuNi nanoparticles compared with AuNi core–shell structured nanoparticles revealed configurations having different electronic and electrochemical properties. Controlled alloying of Au with Ni was essential to tune the electronic properties of Au interacting with the Pt monolayer shell to achieve suitable adsorption of O 2 on Pt for expediting the ORR. The alloyed AuNi nanoparticles made the Pt shell more catalytically active for the ORR than the core–shell structured AuNi nanoparticles. The Ptmore » monolayer supported on the alloyed AuNi nanoparticles showed the Pt mass and specific activities as high as 1.52 A mg –1 and 1.18 mA cm –2, respectively, with almost no loss over 5 000 cycles of stability test. This high ORR activity is ascribed to the role of nonspecific steric configuration of Ni atoms changing the electronic properties of the alloy that affect the oxygen and water interaction with the Pt shell and facilitate increased ORR kinetics.« less

  11. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS 2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearlymore » commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS 2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.« less

  12. Effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 (R =rare -earth ion ) double perovskites

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Jian; Liu, Xiao Qiang; Chen, Xiang Ming; Bellaiche, L.

    2014-11-01

    The effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 double perovskites, with R being a rare-earth ion, have been systematically studied by using specific first-principles calculations. These latter reproduce well the correlation between several properties (e.g., lattice parameters, Ni-O-Mn bond angles, magnetic Curie temperature, and electronic band gap) and the rare-earth ionic radius (i.e., the chemical pressure). They also provide novel predictions awaiting experimental confirmation, such as (i) that many physical quantities respond in dramatically different manners to chemical versus hydrostatic pressure, unlike as commonly thought for perovskites containing rare-earth ions, and (ii) a dependence of antipolar displacements on chemical and hydrostatic pressures, which would further explain why the recently predicted electrical polarization of L a2NiMn O6/R2NiMn O6 superlattices [H. J. Zhao, W. Ren, Y. Yang, J. Íñiguez, X. M. Chen, and L. Bellaiche, Nat. Commun. 5, 4021 (2014), 10.1038/ncomms5021] can be created and controlled by playing with the rare-earth element.

  13. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification.

    PubMed

    Ye, Xiaoli; Feng, Jin; Zhang, Jingxian; Yang, Xiujiang; Liao, Xiaoyan; Shi, Qingshan; Tan, Shaozao

    2017-01-01

    In order to control the long-term antibacterial property of quaternary ammonium salts, dodecyl dimethyl benzyl ammonium chloride (rGO-1227) and rGO-bromohexadecyl pyridine (rGO-CPB) were self-assembled on surfaces of reduced graphene oxide (rGO) via π-π interactions. The obtained rGO-1227 and rGO-CPB nanocompounds were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM).The antibacterial activities were evaluated on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Both rGO-CPB and rGO-1227 reduced the cytotoxicity of the pure antimicrobial agents and presented strong antimicrobial properties. Especially, CPB could be loaded efficiently on the surface of rGO via π-π conjugate effect, which resulted in a nanocomposite presenting a long-term antibacterial capability due to the more important quantity of free π electrons compared to that of 1227. When comparing the advantages of both prepared nanocomposites, rGO-CPB displayed a better specific-targeting capability and a longer-term antibacterial property. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams.

    PubMed

    Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján

    2018-03-05

    We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6-8 mrad. Irrespective of the material thickness, the magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.

  15. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams

    PubMed Central

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria. PMID:28401942

  16. Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism

    PubMed Central

    Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël

    2016-01-01

    A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures. PMID:27604551

  17. Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism

    NASA Astrophysics Data System (ADS)

    Seifitokaldani, Ali; Gheribi, Aïmen E.; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël

    2016-09-01

    A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.

  18. Important Variation in Vibrational Properties of LiFePO4 and FePO4 Induced by Magnetism.

    PubMed

    Seifitokaldani, Ali; Gheribi, Aïmen E; Phan, Anh Thu; Chartrand, Patrice; Dollé, Mickaël

    2016-09-08

    A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures.

  19. Free–free experiments: the search for dressed atom effects

    NASA Astrophysics Data System (ADS)

    Martin, N. L. S.; Weaver, C. M.; Kim, B. N.; deHarak, B. A.

    2018-07-01

    Experiments on free–free electron scattering, specifically the absorption or emission of 1.17 eV photons from a Nd:YAG laser field by an unbound electron when it is scattered by an atom or molecule, are reviewed. For large scattering angles such experiments are well described by a simple analytical theory that is independent of the properties of the target. At small scattering angles this theory breaks down for targets with a high dipole polarizability α, and an additional term needs to be incorporated in the scattering amplitude. This term is proportional to the dipole polarizability, and hence introduces the properties of the target into the free–free cross section—i.e., the laser field ‘dresses’ the atom. A progress report is given of free–free experiments designed to look for such ‘dressed atom’ effects during the electron-impact excitation of argon in the presence of a laser field; the lowest excited states of argon have α ≈ 300 atomic units.

  20. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  1. Influence of magnetism and correlation on the spectral properties of doped Mott insulators

    DOE PAGES

    Wang, Yao; Moritz, Brian; Chen, Cheng-Chien; ...

    2018-03-01

    Unraveling the nature of the doping-induced transition between a Mott insulator and a weakly correlated metal is crucial to understanding novel emergent phases in strongly correlated materials. Here, for this purpose, we study the evolution of spectral properties upon doping Mott insulating states by utilizing the cluster perturbation theory on the Hubbard and t – J -like models. Specifically, a quasifree dispersion crossing the Fermi level develops with small doping, and it eventually evolves into the most dominant feature at high doping levels. Although this dispersion is related to the free-electron hopping, our study shows that this spectral feature is,more » in fact, influenced inherently by both electron-electron correlation and spin-exchange interaction: the correlation destroys coherence, while the coupling between spin and mobile charge restores it in the photoemission spectrum. Due to the persistent impact of correlations and spin physics, the onset of gaps or the high-energy anomaly in the spectral functions can be expected in doped Mott insulators.« less

  2. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    PubMed

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  3. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  4. Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowiak, Konrad J., E-mail: kjkrak@mit.edu; Thomas, Jeffrey J., E-mail: JThomas39@slb.com; Musso, Simone, E-mail: SMusso@slb.com

    2015-01-15

    With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found betweenmore » chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.« less

  5. Excitons in scintillator materials: Optical properties and electron-energy loss spectra of NaI, LaBr 3, BaI 2, and SrI 2

    DOE PAGES

    Schleife, Andre; Zhang, Xiao; Li, Qi; ...

    2016-11-03

    In this paper, materials for scintillator radiation detectors need to fulfill a diverse set of requirements such as radiation hardness and highly specific response to incoming radiation, rendering them a target of current materials design efforts. Even though they are amenable to cutting-edge theoretical spectroscopy techniques, surprisingly many fundamental properties of scintillator materials are still unknown or not well explored. In this work, we use first-principles approaches to thoroughly study the optical properties of four scintillator materials: NaI, LaBr 3, BaI 2, and SrI 2. By solving the Bethe–Salpeter equation for the optical polarization function we study the influence ofmore » excitonic effects on dielectric and electron-energy loss functions. This work sheds light into fundamental optical properties of these four scintillator materials and lays the ground-work for future work that is geared toward accurate modeling and computational materials design of advanced radiation detectors with unprecedented energy resolution.« less

  6. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    PubMed

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  8. Effects of hydrogen on the structural and optical properties of MoSe2 grown by hot filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Zhu, M. K.; Levchenko, I.; Zheng, K.; Gao, B.; Xu, S.; Ostrikov, K.

    2017-10-01

    The role of reactive environment and hydrogen specifically in growth and structure of molybdenum selenide (MoSe2) nanomaterials is presently debated, and it is not clear whether hydrogen can promote the growth of MoSe2 sheets and alter their electronic properties. To find efficient, convenient methods for controlling the nucleation, growth and resultant properties of MoSe2 nanomaterials, MoSe2 nanoflakes were synthesized on silicon substrates by hot filament chemical vapor deposition using molybdenum trioxide and selenium powders in pure hydrogen, nitrogen gases and hydrogen-nitrogen mixtures. The structures and composition of synthesized MoSe2 nanoflakes were studied using the advanced characterization instruments including field emission scanning electron microscopy, micro-Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectrometry. The analysis of the growth process indicates that hydrogen can improve the formation of MoSe2 nanoflakes and significantly alter their properties due to the high reduction capacity of hydrogen and the creation of more nucleation centers of MoSe2 nanoflakes on the silicon surface. The study of photoluminescent (PL) properties reveals that the MoSe2 nanoflakes can generate a strong PL band at about 631 nm, differently from the plain MoSe2 nanoflakes. The major difference in the PL properties may be related to the edges of MoSe2 nanoflakes. These results can be used to control the growth and structure of MoSe2-based nanomaterials and contribute to the development of advanced MoSe2-based optoelectronic devices.

  9. Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials

    NASA Astrophysics Data System (ADS)

    Moynihan, Glenn; Sanvito, Stefano; O'Regan, David D.

    2017-12-01

    We perform comprehensive density-functional theory calculations on strained two-dimensional phosphorus (P), arsenic (As) and antimony (Sb) in the monolayer, bilayer, and bulk α-phase, from which we compute the key mechanical and electronic properties of these materials. Specifically, we compute their electronic band structures, band gaps, and charge-carrier effective masses, and identify the qualitative electronic and structural transitions that may occur. Moreover, we compute the elastic properties such as the Young’s modulus Y; shear modulus G; bulk modulus B ; and Poisson ratio ν and present their isotropic averages of as well as their dependence on the in-plane orientation, for which the relevant expressions are derived. We predict strain-induced Dirac states in the monolayers of As and Sb and the bilayers of P, As, and Sb, as well as the possible existence of Weyl states in the bulk phases of P and As. These phases are predicted to support charge velocities up to 106 m {{\\text{s}}-1} and, in some highly anisotropic cases, permit one-dimensional ballistic conductivity in the puckered direction. We also predict numerous band gap transitions for moderate in-plane stresses. Our results contribute to the mounting evidence for the utility of these materials, made possible by their broad range in tuneable properties, and facilitate the directed exploration of their potential application in next-generation electronics.

  10. Photoresponses in Gold Nanoparticle Single-Electron Transistors with Molecular Floating Gates

    NASA Astrophysics Data System (ADS)

    Noguchi, Yutaka; Yamamoto, Makoto; Ishii, Hisao; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji

    2013-11-01

    We have proposed a simple method of activating advanced functions in single-electron transistors (SETs) based on the specific properties of individual molecules. As a prototype, we fabricated a copper phthalocyanine (CuPc)-doped SET. The device consists of a gold-nanoparticle (GNP)-based SET doped with CuPc as a photoresponsive floating gate. In this paper, we report the details of the photoresponses of the CuPc-doped SET, such as conductance switching, sensitivity to the wavelength of the incident light, and multiple induced states.

  11. Positron-annihilation 2D-ACAR studies of disordered and defected alloys

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Prasad, R.; Smedskjaer, L. C.; Benedek, R.; Mijnarends, P. E.

    1987-09-01

    Theoretical and experimental progess in connection with 2D-ACAR positron annihilation studies of ordered, disordered, and defected alloys is discussed. We present, in particular, some of the recent developments concerning the electronic structure of disordered alloys, and the work in the area of annihilation from positrons trapped at vacancy-type defects in metals and alloys. The electronic structure and properties of a number of compounds are also discussed briefly; we comment specifically on high T sub c ceramic superconductors, Heusler alloys, and transition-metal aluminides.

  12. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-07

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  13. 3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.

    PubMed

    Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M; Saltzman, Daniel A; Konety, Badrinath R; Sweet, Robert M; McAlpine, Michael C

    2018-03-01

    The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured.

  14. 3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors

    PubMed Central

    Qiu, Kaiyan; Zhao, Zichen; Haghiashtiani, Ghazaleh; Guo, Shuang-Zhuang; He, Mingyu; Su, Ruitao; Zhu, Zhijie; Bhuiyan, Didarul B.; Murugan, Paari; Meng, Fanben; Park, Sung Hyun; Chu, Chih-Chang; Ogle, Brenda M.; Saltzman, Daniel A.; Konety, Badrinath R.

    2017-01-01

    The design and development of novel methodologies and customized materials to fabricate patient-specific 3D printed organ models with integrated sensing capabilities could yield advances in smart surgical aids for preoperative planning and rehearsal. Here, we demonstrate 3D printed prostate models with physical properties of tissue and integrated soft electronic sensors using custom-formulated polymeric inks. The models show high quantitative fidelity in static and dynamic mechanical properties, optical characteristics, and anatomical geometries to patient tissues and organs. The models offer tissue-mimicking tactile sensation and behavior and thus can be used for the prediction of organ physical behavior under deformation. The prediction results show good agreement with values obtained from simulations. The models also allow the application of surgical and diagnostic tools to their surface and inner channels. Finally, via the conformal integration of 3D printed soft electronic sensors, pressure applied to the models with surgical tools can be quantitatively measured. PMID:29608202

  15. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  16. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.

  17. Strain Measurements within Fibre Boards. Part II: Strain Concentrations at the Crack Tip of MDF Specimens Tested by the Wedge Splitting Method

    PubMed Central

    Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn

    2012-01-01

    This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.

  18. Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle*

    PubMed Central

    Maalcke, Wouter J.; Reimann, Joachim; de Vries, Simon; Butt, Julea N.; Dietl, Andreas; Kip, Nardy; Mersdorf, Ulrike; Barends, Thomas R. M.; Jetten, Mike S. M.; Keltjens, Jan T.; Kartal, Boran

    2016-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis. Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms. PMID:27317665

  19. Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert

    2003-01-01

    Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.

  20. Probing matter at extreme Gbar pressures at the NIF

    DOE PAGES

    Kritcher, A. L.; Doeppner, T.; Swift, D.; ...

    2013-12-04

    Here we describe a platform to measure the material properties, specifically the equation of state and electron temperature, at pressures of 100 Mbar to a Gbar at the National Ignition Facility (NIF). In our experiments we launch spherically convergent shock waves into solid CH, CD, or diamond samples using a hohlraum radiation drive, in an indirect drive laser geometry. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determination of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through probing of the electron velocitymore » distribution via Doppler broadening.« less

  1. Formation of gallium vacancies and their effects on the nanostructure of Pd/Ir/Au ohmic contact to p-type GaN.

    PubMed

    Kim, Kyong Nam; Kim, Tae Hyung; Seo, Jin Seok; Kim, Ki Seok; Bae, Jeong Woon; Yeom, Geun Young

    2013-12-01

    The properties of Pd/Ir/Au ohmic metallization on p-type GaN have been investigated. Contacts annealed at 400 degrees C in O2 atmosphere demonstrated excellent ohmic characteristics with a specific contact resistivity of 1.5 x 10(-5) Omega-cm2. This is attributed to the formation of Ga vacancies at the contact metal-semiconductor interfacial region due to the out-diffusion of Ga atoms. The out-diffusion of Ga atoms was confirmed by X-ray photoelectron spectroscopy depth profiles, high-resolution transmission electron microscopy, and electron energy loss spectroscopy using a scanning transmission electron microscope.

  2. SAMI3_ICON: Model of the Ionosphere/Plasmasphere System

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Maute, A.; Crowley, G.

    2017-10-01

    The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the F layer at NmF2 (hmF2).

  3. Specific heat and Knight shift of cuprates within the van Hove scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, S.; Das, A.N.

    1996-12-01

    The jump in the specific heat at {ital T}{sub {ital c}}, the specific heat in both the superconducting and normal states, and the Knight shift in the superconducting state are studied within the van Hove singularity scenario considering density of states for a two-dimensional tight-binding system and with an extended saddle-point singularity. The role of the electron-phonon interaction strength, band narrowing, second-nearest-neighbor hopping, and orthorhombic distortion on such properties is investigated. The experimental results on the specific heat and Knight shift of the Y-123 system are compared with the theoretical predictions. {copyright} {ital 1996 The American Physical Society.}

  4. Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar

    2014-07-01

    The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.

  5. Superconductivity in LaPd2Al2-xGax compounds

    NASA Astrophysics Data System (ADS)

    Klicpera, M.; Pásztorová, J.; Javorský, P.

    2014-08-01

    The superconductivity in LaPd2Al2-xGax compounds was studied by means of electrical resistivity and specific heat measurements. The concentration development of the superconducting properties was revealed. The measured data deviate significantly from the Bardeen-Cooper-Schrieffer theory predictions and are discussed in the context of unconventional superconductivity. The electronic specific heat below {{T}_{SC}} follows almost quadratic temperature dependence, which might indicate an axial state with line nodes in the superconducting gap structure.

  6. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    PubMed

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-09-05

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  7. Ab-initio Density Functional Theory (DFT) Studies of Electronic, Transport, and Bulk Properties of Sodium Oxide (Na2O)

    NASA Astrophysics Data System (ADS)

    Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola

    We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  8. Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Barnard, Amanda S.

    2016-07-01

    Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery.Unpassivated diamond nanoparticles (bucky-diamonds) exhibit a unique surface reconstruction involving graphitization of certain crystal facets, giving rise to hybrid core-shell particles containing both aromatic and aliphatic carbon. Considerable effort is directed toward eliminating the aromatic shell, but persistent graphitization of subsequent subsurface-layers makes perdurable purification a challenge. In this study we use some simple statistical methods, in combination with electronic structure simulations, to predict the impact of different fractions of aromatic and aliphatic carbon on the charge transfer properties of the ensembles of bucky-diamonds. By predicting quality factors for a variety of cases, we find that perfect purification is not necessary to preserve selectivity, and there is a clear motivation for purifying samples to improve the sensitivity of charge transfer reactions. This may prove useful in designing drug delivery systems where the release of (selected) drugs needs to be sensitive to specific conditions at the point of delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03068h

  9. Interfacial characterization of flexible hybrid electronics

    NASA Astrophysics Data System (ADS)

    Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott

    2018-03-01

    Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.

  10. Electronics materials research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.

  11. 41 CFR 301-2.5 - What travel arrangements require specific authorization or prior approval?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What travel arrangements... attendance at a conference; and (p) Due to an employee's medical requirements or religious beliefs, payment... electronic advance authorization. [FTR Amdt. 70, 63 FR 15955, Apr. 1, 1998, as amended by FTR Amdt. 2005-03...

  12. 41 CFR 301-2.5 - What travel arrangements require specific authorization or prior approval?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What travel arrangements... attendance at a conference; and (p) Due to an employee's medical requirements or religious beliefs, payment... electronic advance authorization. [FTR Amdt. 70, 63 FR 15955, Apr. 1, 1998, as amended by FTR Amdt. 2005-03...

  13. On the Kubo-Greenwood model for electron conductivity

    NASA Astrophysics Data System (ADS)

    Dufty, James; Wrighton, Jeffrey; Luo, Kai; Trickey, S. B.

    2018-02-01

    Currently, the most common method to calculate transport properties for materials under extreme conditions is based on the phenomenological Kubo-Greenwood method. The results of an inquiry into the justification and context of that model are summarized here. Specifically, the basis for its connection to equilibrium DFT and the assumption of static ions are discussed briefly.

  14. Investigation of Transmission Resonances with Specific Properties in Rectangular Semiconductor Quantum Wells

    ERIC Educational Resources Information Center

    Niketic, Nemanja; Milanovic, Vitomir; Radovanovic, Jelena

    2012-01-01

    In this paper we provide a detailed analysis of the energy position and type of transmission maxima in rectangular quantum wells (QWs), taking into consideration the difference of electron effective masses in the barrier and well layers. Particular attention is given to transmission maxima that are less than unity and the implications of effective…

  15. Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO 3/SrTiO 3 quantum wells by selective orbital occupancy

    DOE PAGES

    Herranz, Gervasi; Singh, Gyanendra; Bergeal, Nicolas; ...

    2015-01-13

    We find the discovery of two-dimensional electron gases (2DEGs) at oxide interfaces—involving electrons in narrow d-bands—has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells—such as 2D superconductivity and magnetism—are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in ​LaAlO 3/​SrTiO 3 wells of different crystal orientations, wemore » show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin–orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at ​LaAlO 3/​SrTiO 3 interfaces.« less

  16. Thermodynamic Properties of Heusler Fe2-x C ox M n S i

    NASA Astrophysics Data System (ADS)

    Ito, Masakazu; Furuta, Tatsuya; Kai, Keita; Taira, Atsushi; Onda, Keijiro; Shigeta, Iduru; Hiroi, Masahiko

    2017-04-01

    We investigated the thermodynamic properties of Heusler compounds Fe2-x C ox m n S i (0.00 ≤ x ≤ 2.00). The specific heats CP(T) for compounds with x ≤ 0.1 exhibit a λ-type anomaly arising from spin rearrangements at TR. With increasing x, TR decreases linearly and vanishes at x ∼ 0.169 . The magnetic entropy, STR, derived from the magnetic specific heat, Cm(T), released at TR decreases by increasing x. This means the canting angle of spins from the [111] direction decreases by the substitution of Fe atoms with Co atoms, based on the magnetic structure model of Fe2MnSi proposed by Miles et al. For compounds with 0.5 ≤ x , CP(T) in the low-T range can be reproduced by Debye T3 law. The electronic specific heat coefficient decreases monotonically with x.

  17. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  18. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  19. Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation.

    PubMed

    Kustova, E V; Puzyreva, L A

    2009-10-01

    In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is applied for the calculation of the transport coefficients in the electronically excited N/N(2) mixture. The specific heats and transport coefficients are calculated in the temperature range 50-50,000 K. Two sets of data for the collision integrals are applied for the calculations. An important contribution of the excited electronic states to the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.

  20. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Organic solvent-free sugar-based transparency nanopatterning material derived from biomass for eco-friendly optical biochips using green lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ito, Kenta; Sugahara, Kigenn; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2014-05-01

    An organic solvent-free sugar-based transparency nanopatterning material which had specific desired properties such as nanostructures of subwavelength grating and moth-eye antireflection, acceptable thermal stability of 160 °C, and low imaginary refractive index of less than 0.005 at 350-800 nm was proposed using electron beam lithography. The organic solvent-free sugar-based transparency nanopatterning material is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of tetramethylammonium hydroxide. 120 nm moth-eye antireflection nanopatterns images with exposure dose of 10 μC/cm2 were provided by specific process conditions of electron beam lithography. The developed sugar derivatives with hydroxyl groups and EB sensitive groups in the organic solvent-free sugar-based transparency nanopatterning material were applicable to future development of optical interface films of biology and electronics as a novel chemical design.

  2. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  3. Metallic-like Wilson ratio in the polyaniline hydrochloride conducting polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limelette, P.; Schmaltz, B.; Tran Van, F.

    2015-03-28

    We report on the calorimetric and magnetic properties of the polyaniline hydrochloride in order to discuss its metallicity. Both the specific heat and the magnetic susceptibility χ have been investigated as a function of temperature from 300 K down to 2 K. The measurements of the specific heat have allowed us to determine the electronic Sommerfeld coefficient γ and the temperature dependence of the susceptibility has revealed a Pauli-like component. By combining χ and γ, the dimensionless Wilson ratio R{sub W}∝χ/γ demonstrates that the universal free electrons limit is reached above 100 K as a strong check of the metallicity of this conductingmore » polymer. By removing the Pauli component from the measured susceptibility, the resulting contribution displays below 100 K a well-defined Curie-like component in agreement with a few percents of spins localized by disorder at low temperatures. These results are therefore consistent with an electronic itinerancy, namely, a metallic state even in the presence of disorder.« less

  4. Work Function Engineering of Graphene

    PubMed Central

    Garg, Rajni; Dutta, Naba K.; Roy Choudhury, Namita

    2014-01-01

    Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities. PMID:28344223

  5. Work Function Engineering of Graphene.

    PubMed

    Garg, Rajni; Dutta, Naba K; Choudhury, Namita Roy

    2014-04-03

    Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities.

  6. Investigation of the structural, electronic, elastic and thermodynamic properties of Curium Monopnictides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Baaziz, H.; Guendouz, Dj.; Charifi, Z.; Akbudak, S.; Uğur, G.; Uğur, Ş.; Boudiaf, K.

    2017-12-01

    The structural, electronic, elastic and thermodynamic properties of Curium Monopnictides CmX (X = N, P, As, Sb and Bi) are investigated using first-principles calculations based on the density functional theory (DFT) and full potential linearized augmented plane wave (FP-LAPW) method under ambient condition and high pressure. The exchange-correlation term is treated using two approximations spin-polarized local density approximation (LSDA) and spin-polarized generalized gradient approximation generalized (GGA). The structural parameters such as the equilibrium lattice parameters, bulk modulus and the total energies are calculated in two phases: namely NaCl (B1) and CsCl (B2). The obtained results are compared with the previous theoretical and experimental results. A structural phase transition from B1 phase to B2 phase for Curium pnictides has been obtained. The highest transition pressure is 122 GPa for CmN and the lowest one is 10.0 GPa for CmBi compound. The electronic properties show that these materials exhibit half-metallic behavior in both phases. The magnetic moment is found to be around 7.0 μB. The mechanical properties of CmX (X = N, P, As, Sb and Bi) are predicted from the calculated elastic constants. Our calculated results are in good agreement with the theoretical results in literature. The effect of pressure and temperature on the thermodynamic properties like the cell volume, bulk modulus and the specific heats C𝜗 and CP, the entropy 𝒮 and the Grüneisen parameter γ have been foreseen at expanded pressure and temperature ranges.

  7. A Helicene Nanoribbon with Greatly Amplified Chirality.

    PubMed

    Schuster, Nathaniel J; Hernández Sánchez, Raúl; Bukharina, Daria; Kotov, Nicholas A; Berova, Nina; Ng, Fay; Steigerwald, Michael L; Nuckolls, Colin

    2018-05-14

    We report the synthesis and characterization of a chiral, shape-persistent, perylene-diimide-based nanoribbon. Specifically, the fusion of three perylene-diimide monomers with intervening naphthalene subunits resulted in a helical superstructure with two [6]helicene subcomponents. This π-helix-of-helicenes exhibits very intense electronic circular dichroism, including one of the largest Cotton effects ever observed in the visible range. It also displays more than an order of magnitude increase in circular dichroism for select wavelengths relative to its smaller homologue. These impressive chiroptical properties underscore the potential of this new nanoribbon architecture in the context of chiral electronic materials.

  8. Patterned gallium surfaces as molecular mirrors.

    PubMed

    Bossi, Alessandra; Rivetti, Claudio; Mangiarotti, Laura; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2007-09-30

    An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.

  9. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE PAGES

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...

    2018-02-05

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  10. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  11. Relating electronic and geometric structure of atomic layer deposited BaTiO 3 to its electrical properties

    DOE PAGES

    Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; ...

    2016-03-24

    Atomic layer deposition allows the fabrication of BaTiO 3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO 2 and SiO 2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energymore » with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO 2 and its distorted growth on SiO 2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less

  12. Synthesis and Analgesic Properties of Lidocaine Derivatives with Substituted Aminobenzothiazoles.

    PubMed

    Ahmadi, Abbas; Khalili, Mohsen; Mohammadinoude, Mohammad Kazem; Nahri-Niknafs, Babak

    2016-01-01

    Local anesthetics are the most widely consumed drugs in the practice of medicine which provide a loss of sensation in a certain body part without loss of consciousness or impairment of central control of essential functions. Lidocaine (I) is the most commonly local anaesthetic drug which is widely used in all species due to its fabulous diffusing and penetrating properties as well as prompt onset of surgical analgesia. In this study, new aminobenzothiazole (with many useful biological and pharmacological properties) analogues were synthesized by changing of amine moiety of I. Both acute and chronic pain properties of new compounds (II-VI) were studied by using the tail immersion and formalin tests on mice and the outcomes were compared with control and lidocaine groups. According to the results, aminobenzothiazole derivatives are better candidates than diethylamine group for replacement on amine moiety of I. Also, derivatives with electron-withdrawing groups on this amine (V and VI) could decrease pain better than electron-donating ones (II and III) (specially on position 6 of this amine, II and V) which may be of concern for blockade of specific sodium channels by these new compounds.

  13. Dielectric Characterization of Mylar and The Effects of Doping Processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, Cami Beth

    2016-11-01

    Mylar® polymer is a bi-axially oriented polyethylene terephthalate (PET) polymer film used widely as a dielectric, specifically in capacitors. The dielectric characteristics of Mylar have been well studied and documented over the years; however, many of the mechanisms responsible for dielectric breakdown and failure are not understood for modified versions of the material. Previous studies on Mylar confirm that factors such as temperature, humidity, and voltage ramp rates can also have a significant effect on the dielectric properties and measurement of the dielectric properties. This study seeks to determine how dielectric properties, including permittivity, dielectric loss, and breakdown strength, aremore » affected by doping of the polymer. To do this, two types of Mylar films, virgin film and film doped with a small-molecule electron-acceptor, are tested. Both types of materials are tested under a variety of environmental and experimental conditions, including testing at elevated temperatures, varying relative humidity, and varying ramp rates in dielectric breakdown testing. Analysis of permittivity, dielectric loss, and breakdown strength will be presented comparing virgin and doped Mylar to gain insight into the effects of doping with electron-acceptor molecules on dielectric properties under these varying environmental and test conditions.« less

  14. Structural, electronic and magnetic properties of LaCr2Si2C: Ab initio calculation, mean field approximation and Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.

    2018-06-01

    The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc < 30 K) in LaCr2Si2C. Other parameters are also computed as: the magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.

  15. Intrinsic Properties and Structure of AB2 Laves Phase ZrW2

    NASA Astrophysics Data System (ADS)

    Wu, Junyan; Zhang, Bo; Zhan, Yongzhong

    2017-06-01

    Using the first-principle calculations along with the quasi-harmonic Debye model, we explore the structural, thermodynamic, mechanical, and electronic properties of ZrW2 intermetallic considering temperature or pressure effect. The computed equilibrium lattice parameter here is highly consistent with previous available results. The obtained formation enthalpy reveals that the ZrW2 is structurally stable in the pressure range of 0 to 100 GPa. The pressure and temperature dependences of V/ V 0 ratio, constant volume specific heat capacity, thermal expansion coefficient, and Debye temperature of ZrW2 have been obtained. The calculated minimum thermal conductivity k min of ZrW2 is fairly small and shows anisotropy, which implies that ZrW2 has promising thermal-insulating application in engineering and may be competent for the thermal barrier materials. Moreover, from the results of elastic properties, we found the ZrW2 is mechanically stable and exhibits elastic anisotropy and the extent of elastic anisotropy increases with pressure. Additionally, ZrW2 shows ductile nature and its mechanical moduli all enhance as pressure increases, which is further confirmed by the findings from the electronic properties.

  16. Effect of SiO2 grafted MWCNTs on the mechanical and dielectric properties of PEN composite films

    NASA Astrophysics Data System (ADS)

    Jin, Fei; Feng, Mengna; Huang, Xu; Long, Cheng; Jia, Kun; Liu, Xiaobo

    2015-12-01

    In this study, the functional poly (arylene ether nitrile) (PEN)/multiwall carbon nanotubes (MWCNTs)/SiO2 nanocomposite with high mechanical and good electrical properties were fabricated through a simple and effective method. Specifically, the surface modification using highly ordered and porous SiO2 not only improves the dispersion of the MWCNTs in polymer matrix, but also combines the excellent properties of SiO2 and MWCNTs. Transmission electron microscopy (TEM), Fourier transform infrared spectra (FTIR), and scanning electron microscope (SEM) were employed to confirm the surface functionalization of MWCNTs. As a result, all the composite films exhibited good dielectric properties with high dielectric constant of 7 as well as low dielectric loss of 0.04. Besides, the results of mechanical tests showed that the tensile strength and modulus reached their highest values at the 2 wt% MWCNTs-SiO2 loading content (125 MPa and 2950 MPa, respectively). The rheological results showed that MWCNTs-SiO2/PEN composites have a typical solid-like viscoelastic response as frequencies changes. Therefore, all the results revealed that surface functionalization has strong influence on the dispersion state of MWCNTs in PEN matrix.

  17. Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure.

    PubMed

    Castaneda, Nicholas; Zheng, Tianyu; Rivera-Jacquez, Hector J; Lee, Hyun-Ju; Hyun, Jaekyung; Balaeff, Alexander; Huo, Qun; Kang, Hyeran

    2018-04-12

    Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.

  18. JPL Electronic Nose: From Sniffing Brain Cancer to Trouble in Space

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.

    2011-01-01

    What Is An Electronic Nose? An array of non-specific chemical sensors, controlled and analyzed electronically, which mimics the action of the mammalian nose by recognizing patterns of response. An Enose: (1.) ENose measures background resistance in each sensor and establishes a baseline. (2.) Contaminant comes in contact with sensors on the sensing head. (3.) The sensing films, change physical properties, such as thickness or color, as air composition changes. (4.) Sensor response is recorded by a computer, the change in resistance is computed, and the distributed response pattern of the sensor array is used to identify gases and mixtures of gases. (5. Responses of the sensor array are analyzed and quantified using software developed for the task.

  19. Electron-flux infrared response to varying π-bond topology in charged aromatic monomers

    PubMed Central

    Álvaro Galué, Héctor; Oomens, Jos; Buma, Wybren Jan; Redlich, Britta

    2016-01-01

    The interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations. To this end, we probe the radical cations of picene and pentacene with benchmark armchair- and zigzag-edges using infrared multiple-photon dissociation action spectroscopy and interpret the recorded spectra via quantum-chemical calculations. We demonstrate that infrared bands preserve information on the dipolar π-electron-flux mode enhancement, which is governed by the dynamical evolution of vibronically mixed and correlated one-electron configuration states. Our results reveal that in picene a stronger charge π-flux is generated than in pentacene, which could justify the differences of electronic properties of armchair- versus zigzag-type families of technologically relevant organic molecules. PMID:27577323

  20. Nondestructive Measurement of the Evolution of Layer-Specific Mechanical Properties in Sub-10 nm Bilayer Films.

    PubMed

    Hoogeboom-Pot, Kathleen M; Turgut, Emrah; Hernandez-Charpak, Jorge N; Shaw, Justin M; Kapteyn, Henry C; Murnane, Margaret M; Nardi, Damiano

    2016-08-10

    We use short wavelength extreme ultraviolet light to independently measure the mechanical properties of disparate layers within a bilayer film for the first time, with single-monolayer sensitivity. We show that in Ni/Ta nanostructured systems, while their density ratio is not meaningfully changed from that expected in bulk, their elastic properties are significantly modified, where nickel softens while tantalum stiffens, relative to their bulk counterparts. In particular, the presence or absence of the Ta capping layer influences the mechanical properties of the Ni film. This nondestructive nanomechanical measurement technique represents the first approach to date able to distinguish the properties of composite materials well below 100 nm in thickness. This capability is critical for understanding and optimizing the strength, flexibility and reliability of materials in a host of nanostructured electronic, photovoltaic, and thermoelectric devices.

  1. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua

    2015-09-01

    Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems. Electronic supplementary information (ESI) available: Temperature dependent measurements, activation energies, particle size distributions, void density-polydispersity relation, and DLS data. See DOI: 10.1039/c5nr04460j

  2. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  3. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    NASA Astrophysics Data System (ADS)

    Alvarez, Edelio Danguillecourt; Laffita, Yodalgis Mosqueda; Montoro, Luciano Andrey; Della Santina Mohallem, Nelcy; Cabrera, Humberto; Pérez, Guillermo Mesa; Frutis, Miguel Aguilar; Cappe, Eduardo Pérez

    2017-02-01

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmett-Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m2 g-1). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysical measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10-7 m2 s-1) and conductivity (1.1 W m-1 K-1) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173-293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g-1 was reached.

  4. Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.

    2016-05-01

    The electrode material Li2MnFeSiO4 was successfully synthesized by standard sol-gel method and further modified with multiwalled carbon nano tube (MWCNT) to achieve better electrochemical properties. Our strategy helps us to improve the performance and storage capacity as compared with the bared material. This novel composite structure constructs an efficient cation (Li+) and electron channel which significantly enhance the Li+ ion diffusion coefficient and reduced charge transfer resistance. Hence leads to high conductivity and specific capacity. Characterization technique like Field emission scanning electron microscopy (FESEM) has been used to confirm its morphology, structure and particle size which comes out to be of the order of ˜20 to 30 nm. Lesser particle size reveals better electrochemical properties. Electrical conductivity (˜10-5 Scm-1) of MWCNT doped oxide cathode materials was recorded using ac impedance spectroscopy technique which reflects tenfold increment when compared with pure oxide cathode materials. Cyclic voltametery analysis has been done to calculate specific capacity and potential window of materials with and without CNTs. The results obtained from different techniques are well correlated and suitable for energy storage applications.

  5. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing.

    PubMed

    Jariwala, Deep; Sangwan, Vinod K; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2013-04-07

    In the last three decades, zero-dimensional, one-dimensional, and two-dimensional carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and graphene, respectively) have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical, and chemical properties. While early work showed that these properties could enable high performance in selected applications, issues surrounding structural inhomogeneity and imprecise assembly have impeded robust and reliable implementation of carbon nanomaterials in widespread technologies. However, with recent advances in synthesis, sorting, and assembly techniques, carbon nanomaterials are experiencing renewed interest as the basis of numerous scalable technologies. Here, we present an extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples. Specific attention is devoted to each class of carbon nanomaterial, thereby allowing comparative analysis of the suitability of fullerenes, carbon nanotubes, and graphene for each application area. In this manner, this article will provide guidance to future application developers and also articulate the remaining research challenges confronting this field.

  6. Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams

    DOE PAGES

    Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján

    2018-03-05

    We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6–8 mrad. Irrespective of the material thickness, themore » magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.« less

  7. Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján

    We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6–8 mrad. Irrespective of the material thickness, themore » magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.« less

  8. Recent Advances in Micro-/Nanostructured Metal-Organic Frameworks towards Photonic and Electronic Applications.

    PubMed

    Yang, Xiaogang; Lin, Xianqing; Zhao, Yong Sheng; Yan, Dongpeng

    2018-05-02

    Micro- and nanometer-sized metal-organic frameworks (MOFs) materials have attracted great attention due to their unique properties and various potential applications in photonics, electronics, high-density storage, chemo-, and biosensors. The study of these materials supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of inorganic-organic hybrid materials. In this Minireview article, we introduce recent breakthroughs in the controlled synthesis of MOF micro-/nanomaterials with specific structures and compositions, the tunable photonic and electronic properties of which would provide a novel platform for multifunctional applications. Firstly, the design strategies for MOFs based on self-assembly and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional MOF micro-/nanostructures. Their new applications including two-photon excited fluorescence, multi-photon pumped lasing, optical waveguides, nonlinear optical (NLO), and field-effect transistors are also outlined. Finally, we briefly discuss perspectives on the further development of these hybrid crystalline micro-/nanomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Insights into the redox components of dissolved organic matters during stabilization process.

    PubMed

    Yuan, Ying; Xi, Bei-Dou; He, Xiao-Song; Ma, Yan; Zhang, Hui; Li, Dan; Zhao, Xin-Yu

    2018-05-01

    The changes of dissolved organic matter (DOM) components during stabilization process play significant effects on its redox properties but are little reported. Composting is a stabilization process of DOM, during which both the components and electron transfer capacities (ETCs) of DOM change. The redox components within compost-derived DOM during the stabilization process are investigated in this study. The results show that compost-derived DOM contained protein-like, fulvic-like, and humic-like components. The protein-like component decreases during composting, whereas the fulvic- and humic-like components increase during the process. The electron-donating capacity (EDC), electron-accepting capacity (EAC), and ETC of compost-derived DOM all increase during composting but their correlations with the components presented significant difference. The humic-like components were the main functional component responsible for both EDC and ETC, whereas the protein- and fluvic-like components show negative effects with the EAC, EDC, and ETC, suggesting that the components within DOM have specific redox properties during the stabilization process. These findings are very meaningful for better understanding the geochemical behaviors of DOM in the environment.

  10. Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices.

    PubMed

    Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori

    2016-01-26

    Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.

  11. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog.

    PubMed

    Alvarez-Paggi, Damián; Hannibal, Luciana; Castro, María A; Oviedo-Rouco, Santiago; Demicheli, Veronica; Tórtora, Veronica; Tomasina, Florencia; Radi, Rafael; Murgida, Daniel H

    2017-11-08

    Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein.

  12. Biointerfacial Property of Plasma-Treated Single-Walled Carbon Nanotube Film Electrodes for Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Eun Jin; Min, Nam Ki

    2013-01-01

    The single-walled carbon nanotube (SWCNT)-based thin film was spray-coated on the Pt support and functionalized using O2 plasma. The effects of plasma treatment on the biointerfacial properties of the SWCNT films were analyzed by cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The plasma-functionalized (pf) SWCNT electrodes modified with Legionella pneumophila-specific probe DNA strands showed a much higher peak current and a smaller peak separation in differential pulse voltammetry and a lower charge transfer resistance, compared to the untreated samples. These results suggest that the pf-SWCNT films have a better electrocatalytic character and an electron transfer capability faster than the untreated SWCNTs, due to the fact that the oxygen-containing functional groups promote direct electron transfer in the biointerfacial region of the electrocatalytic activity of redox-active biomolecules.

  13. Monte Carlo Approach for Estimating Density and Atomic Number From Dual-Energy Computed Tomography Images of Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos

    2017-12-01

    We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.

  14. Mechanical and spectroscopic properties of metal-containing polyimides

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; St.clair, A. K.

    1983-01-01

    The incorporation of specific metal ions into polyimides is described. Detailed studies have included various compounds of copper, lithium, and palladium as dopants. Addition of the metal during polymerization or after formation of the polyamic acid precedes the thermal imidization step. With many dianhydride-diamine-dopant combinations high quality variously colored films are produced. Many metal doped films exhibit (1) improved high temperature adhesive properties, (2) increased electrical conductivity, (3) excellent thermal stability, (4) improved acid/base resistance, (5) increased modulus in flexible films and (6) excellent high temperature tensile strength. X-ray photo-electron spectroscopic study of these films suggests that many of the additives undergo chemical modification during thermal imidization. Palladium dopants appear to be partially reduced to the metallic state, while lithium and copper dopants are probably converted to their oxides. Ion etching experiments with Auger electron spectroscopy monitoring are discussed.

  15. Mechanical and spectroscopic properties of metal containing polyimides

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; St. Clair, A. K.

    1984-01-01

    The incorporation of specific metal ions into polyimides is described. Detailed studies have included various compounds of copper, lithium, and palladium as dopants. Addition of the metal during polymermzation or after formation of the polyamic acid precedes the thermal imidization step. With many dianhydride-diamine-dopant combinations high quality variously colored films are produced. Many metal doped films exhibit (1) improved high temperature adhesive properties, (2) increased electrical conductivity, (3) excellent thermal stability, (4) improved acid/base resistance, (5) increased modulus in flexible films and (6) excellent high temperature tensile strength. X-ray photo-electron spectroscopic study of these films suggests that many of the additives undergo chemical modification during thermal imidization. Palladium dopants appear to be partially reduced to the metallic state, while lithium and copper dopants are probably converted to their oxides. Ion etching experiments with Auger electron spectroscopy monitoring are discussed.

  16. Highly selective covalent organic functionalization of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Bueno, Rebeca A.; Martínez, José I.; Luccas, Roberto F.; Del Árbol, Nerea Ruiz; Munuera, Carmen; Palacio, Irene; Palomares, Francisco J.; Lauwaet, Koen; Thakur, Sangeeta; Baranowski, Jacek M.; Strupinski, Wlodek; López, María F.; Mompean, Federico; García-Hernández, Mar; Martín-Gago, José A.

    2017-05-01

    Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes. We show, by different experimental techniques and theoretical methods, that the excess of charge at carbon dangling-bonds formed on single-atomic vacancies at the graphene surface induces enhanced reactivity towards a selective oxidation of the amino group and subsequent integration of the nitrogen within the graphene network. Remarkably, functionalized surfaces retain the electronic properties of pristine graphene. This study opens the door for development of graphene-based interfaces, as nano-bio-hybrid composites, fabrication of dielectrics, plasmonics or spintronics.

  17. Ab initio calculation of electronic structure and magnetic properties of R2Fe14BNx (R = Pr,Nd)

    NASA Astrophysics Data System (ADS)

    Tian, Guang; Zha, Liang; Yang, Wenyun; Qiao, Guanyi; Wang, Changsheng; Yang, Yingchang; Yang, Jinbo

    2018-05-01

    The site preference of N atom for R2Fe14BNx (R= Pr, Nd) and the interstitial nitrogen effect on the magnetic properties have been studied by the first-principles method. It was found that the nitrogen is more likely to occupy the 4e site for Pr2Fe14BNx compound, while 4f site for Nd2Fe14BNx. When N atoms entering some specific crystal sites (such as 2a and 4f), the total magnetic moments of these compounds are not reduced, but slightly increased. Although the doping of N may reduce the total magnetic moments of some R2Fe14B compounds in the cases of optimal occupancy, the volumetric effect caused by N doping can still change the electron density distributions of Fe near the Fermi level, improving the magnetic ordering temperature of such compounds.

  18. Porphyrins at interfaces

    NASA Astrophysics Data System (ADS)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  19. Geotechnical characterization of some Indian fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curingmore » significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.« less

  20. Using the Ab Initio Molecular Dynamics Method for Simulating the Peculiarities in the Temperature Dependence of Liquid Bismuth Properties

    NASA Astrophysics Data System (ADS)

    Yuryev, A. A.; Gelchinski, B. R.; Vatolin, N. A.

    2018-03-01

    The specific features pertinent to the temperature dependence of the electronic and atomic properties of liquid bismuth that have been observed in experiments are investigated according to the ab initio molecular dynamics method using the SIESTA open software package. The density of electronic states, the radial distribution function of atoms, and the self-diffusion coefficient are calculated for the temperature range from the melting point equal to 545 K to 1500 K. The calculated data are in good agreement with the experimental data. It is found that the position of the first peak in the radial distribution function of atoms and the self-diffusion coefficient are characterized by a nonmonotonic dependence under the conditions of superheating by approximately 150 K above the melting temperature. In the authors' opinion, this dependence feature is attributed to a change in the liquid short-range order structure.

  1. On the ground-state degeneracy and entropy in a double-tetrahedral chain formed by the localized Ising spins and mobile electrons

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia

    2018-05-01

    Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.

  2. Immunomicrospheres - Reagents for cell labeling and separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Dreyer, W. J.

    1980-01-01

    Immunomicrospheres are specially designed microscopic particles that have antibodies or similar molecules chemically bound to their surfaces. The antibody-coated microspheres react in a highly specific way with target cells, viruses, or other antigenic agents. Immunomicrospheres may be synthesized so that they incorporate compounds that are highly radioactive, intensely fluorescent, magnetic, electron opaque, highly colored, or pharmacologically active. These various types of microspheres may be coated with pure, highly specific monoclonal antibodies obtained by the new hybridoma cell cloning techniques or with conventional antibody preparations. Some of the many present and potential applications for these new reagents are (1) new types of radioimmune or immunofluorescent assays, (2) improved fluorescence microscopy, (3) separation of cells on the basis of the fluorescent, electrophoretic, or magnetic properties of bound immunomicrospheres, (4) markers for use in several types of electron or standard light microscopy, and (5) delivery of lethal compouds to specific undesirable living cells. The combination of the various new types of synthetic microspheres and the newly available homogeneous antibodies offers new opportunities in research, diagnosis, and therapy.

  3. Synchrotron-based soft X-ray spectroscopic studies of the electronic structure of organic semiconducting molecules

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander

    Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be used to probe the electronic structure of individual atomic sites within a molecule. Most of the results in this thesis are accompanied by the results of electronic structure calculations determined with density functional theory (DFT). DFT is a useful aid in interpreting the results of the x-ray spectroscopies employed. The experimental results, combined with DFT calculations, provide a wealth of information regarding the electronic structures of these organic materials. v

  4. Transport mirages in single-molecule devices

    NASA Astrophysics Data System (ADS)

    Gaudenzi, R.; Misiorny, M.; Burzurí, E.; Wegewijs, M. R.; van der Zant, H. S. J.

    2017-03-01

    Molecular systems can exhibit a complex, chemically tailorable inner structure which allows for targeting of specific mechanical, electronic, and optical properties. At the single-molecule level, two major complementary ways to explore these properties are molecular quantum-dot structures and scanning probes. This article outlines comprehensive principles of electron-transport spectroscopy relevant to both these approaches and presents a new, high-resolution experiment on a high-spin single-molecule junction exemplifying these principles. Such spectroscopy plays a key role in further advancing our understanding of molecular and atomic systems, in particular, the relaxation of their spin. In this joint experimental and theoretical analysis, particular focus is put on the crossover between the resonant regime [single-electron tunneling] and the off-resonant regime [inelastic electron (co)tunneling spectroscopy (IETS)]. We show that the interplay of these two processes leads to unexpected mirages of resonances not captured by either of the two pictures alone. Although this turns out to be important in a large fraction of the possible regimes of level positions and bias voltages, it has been given little attention in molecular transport studies. Combined with nonequilibrium IETS—four-electron pump-probe excitations—these mirages provide crucial information on the relaxation of spin excitations. Our encompassing physical picture is supported by a master-equation approach that goes beyond weak coupling. The present work encourages the development of a broader connection between the fields of molecular quantum-dot and scanning probe spectroscopy.

  5. Etude, par principes premiers, des effets de la correlation entre electrons sur les proprietes electroniques et magnetiques de polymeres pontes et de supraconducteurs a haute temperature critique

    NASA Astrophysics Data System (ADS)

    Pesant, Simon

    Description of complex systems by Density functional theory is treated in this thesis. First, the Density functional theory and a few functionals used to simulate cristals are presented. Specifically, the LDA and GGA functionnals are described and their limits are exposed. Furthermore, the Hubbard model as well as the LDA+U functionnal are addressed in this chapter. These methods enable the study of highly correlated materials. Then, results obtained on polymers are summarized in two articles. The first one treats the band gap variation of ladder-type polymers compared to non ladder type ones. The second article considers small band gap polymers. In this case, it will be shown that an hybrid functional, which contains exact exchange, is required to describe the electronic properties of the polymers under study. Finally, the last chapter address the study of cuprates superconductors. The LDA+U can account for the localization of electrons in copper orbitals. Consequently, a study of the impact of this functionnal on electronic properties of cuprates is conducted. The chapter is ended by an article treating magnetic orders in doped La 2CuO4. Supplementary materials of the second article and a description of the theory of superconductivity of Bardeen, Cooper and Schrieffer are put in annex. Keywords : Electronic correlation, DFT, LDA+U, cuprates, polymers, magnetic orders

  6. Synthesis characterisation series of newly fabricated type II CdSe CdSe/CdTe nanocrystals and their optical properties

    NASA Astrophysics Data System (ADS)

    Ahmed, A. S.; Christopher, W.

    2018-03-01

    Nanocrystalline semiconductors exhibit different properties due to two basic factors. They possess high surface to volume ratio and the actual size of particle can determine the electronic and physical properties of the material. The small size results in an observable quantum confinement effect, defined by the increasing bandgap accompanied by the quantization of the energy levels to discrete values. In present work we have synthesized the series of cadmium selenide/cadmium telluride (CdSe/CdTe) core/shell and CdSe/CdTe/CdS core/shell/shell to investigate the biexciton energy through transient absorption measurements. These structures are type II nanocrystals are with a hole in the shell and the electron confined to the core. We specifically investigate the effect of nanoparticle shape on the electronic structure and ultrafast electronic dynamics in the band-edge exciton states of CdSe quantum dots, nanorods, and nanoplatelets. Particle size was chosen to enable straightforward comparisons of the effects of particle shape on the spectra and dynamics without retuning the laser source. In our results the Uv-vis showed only a mild redshift in the first excitonic an elongated tail with increasing shell thickness. High resolution Transmission Electron Microscopy (HRTEM) shows the slight agglomeration of the nanocrystals but still the size distribution was calculate able. Spherical small crystals ranging from 5.9 nm to 10 nm are observed. CdTe/CdSe structures were quasi spherical with a rough diameter 6 nm with some little agglomerated structure. . The spherical nanocrystals could be peanut shaped oriented along the c axis or the spherical only, which could explain the two peak emission. p-XRD results indicate the predominant wurtzite structure throughout.

  7. Comparison of electron beam and laser beam powder bed fusion additive manufacturing process for high temperature turbine component materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A; Ryan, Daniel

    2016-04-01

    The evolving 3D printer technology is now at the point where some turbine components could be additive manufactured (AM) for both development and production purposes. However, this will require a significant evaluation program to qualify the process and components to meet current design and quality standards. The goal of the project was to begin characterization of the microstructure and mechanical properties of Nickel Alloy X (Ni-22Cr-18Fe-9Mo) test bars fabricated by powder bed fusion (PBF) AM processes that use either an electron beam (EB) or laser beam (LB) power source. The AM materials produced with the EB and LB processes displayedmore » significant differences in microstructure and resultant mechanical properties. Accordingly, during the design analysis of AM turbine components, the specific mechanical behavior of the material produced with the selected AM process should be considered. Comparison of the mechanical properties of both the EB and LB materials to those of conventionally processed Nickel Alloy X materials indicates the subject AM materials are viable alternatives for manufacture of some turbine components.« less

  8. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Edelio Danguillecourt, E-mail: edelioalvarez42@gmail.com; Laffita, Yodalgis Mosqueda, E-mail: yodalgis@imre.uh.cu; Montoro, Luciano Andrey, E-mail: landrey.montoro@gmail.com

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m{sup 2} g{sup −1}). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysicalmore » measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10{sup −7} m{sup 2} s{sup −1}) and conductivity (1.1 W m{sup −1} K{sup −1}) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173–293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g{sup −1} was reached. - Graphical abstract: TEM image and electrochemistry behavior of a new graphene oxide-like carbon. - Highlights: • A high disordered graphene oxide-like conducting carbon is reported. • The synthesis was based on palygorskite and sugar cane molasses as precursors. • The disordered conducting carbon is composed of doped- graphene heterogeneous domains. • This material combines a large specific surface area and high electric conductivity. • The thermophysical and electrochemical properties of this material reveal adequate behavior.« less

  9. Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    NASA Astrophysics Data System (ADS)

    Zúñiga-Pérez, Jesús; Consonni, Vincent; Lymperakis, Liverios; Kong, Xiang; Trampert, Achim; Fernández-Garrido, Sergio; Brandt, Oliver; Renevier, Hubert; Keller, Stacia; Hestroffer, Karine; Wagner, Markus R.; Reparaz, Juan Sebastián; Akyol, Fatih; Rajan, Siddharth; Rennesson, Stéphanie; Palacios, Tomás; Feuillet, Guy

    2016-12-01

    The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade.

  10. Strong Evidence for Stochastic Growth of Langmuir-Like Waves in Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1999-01-01

    Bursty Langmuir-like waves driven by electron beams in Earth's foreshock have properties which are inconsistent with the standard plasma physics paradigm of uniform exponential growth saturated by nonlinear processes. Here it is demonstrated for a specific period that stochastic growth theory (SGT) quantitatively describes these waves throughout a large fraction of the foreshock. The statistical wave properties are inconsistent with nonlinear processes or self-organized criticality being important. SGT's success in explaining the foreshock waves and type III solar bursts suggests that SGT is widely applicable to wave growth in space, astrophysical, and laboratory plasmas.

  11. Designing functionality in perovskite thin films using ion implantation techniques: Assessment and insights from first-principles calculations

    DOE PAGES

    Sharma, Vinit K.; Herklotz, Andreas; Ward, Thomas Zac; ...

    2017-09-11

    Ion implantation has been widely used in the semiconductor industry for decades to selectively control electron/hole doping for device applications. Recently, experimental studies on ion implantation into more structurally and electronically complex materials have been undertaken in which defect generation has been used to control a variety of functional phenomena. Of particular interest, are recent findings demonstrating that low doses of low energy helium ions into single crystal films can be used to tailor the structural properties. These initial experimental studies have shown that crystal symmetry can be continuously controlled by applying increasingly large doses of He ions into amore » crystal. The observed changes in lattice structure were then observed to correlate with functional changes, such as metal-insulator transition temperature2 and optical bandgap3. In these preliminary experimental studies, changes to lattice expansion was proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. In this work, we focus on a SrRuO3 model system to provide a comprehensive examination of the impact of common defects on structural and electronic properties, obtain calculated defect formation energies, and define defect migration barriers. Our model indicates that, while interstitial He can modify the crystal properties, a dose significantly larger than those reported in experimental studies would be required. The true origin of the observed structural changes is likely the result of a combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials. Development of this approach would have a broad impact on both our ability to probe specific defect contributions in fundamental studies and allow a new level of control over functional properties driven by specific defect complexes.« less

  12. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes).

    PubMed

    Klein, Marie-Christin G; Gorb, Stanislav N

    2014-10-01

    Snakes are limbless tetrapods highly specialized for sliding locomotion. This locomotion leads to the skin being exposed to friction loads, especially on the ventral body side, which leads to wear. It is presumed that snakes therefore have specific optimizations for minimizing abrasion. Scales from snakes with habitat, locomotor and/or behavior specializations have specific gradients in material properties that may be due to different epidermal architecture. To approach this issue we examined the skin of Lampropeltis getula californiae (terrestrial), Epicrates cenchria cenchria (generalist), Morelia viridis (arboreal), and Gongylophis colubrinus (burrowing) with a focus on (i) the ultrastructure of the ventral epidermis and (ii) the qualitative abrasion pattern of the ventral scales. Scanning and transmission electron microscopy revealed variations in the structure, thickness, layering, and material composition of the epidermis between the species. Furthermore, SEM and white light interferometer images of the scale surface showed that the abrasion patterns differed, even when the snakes were reared on the same substrate. These data support the idea that (i) a specific gradient in material properties may be due to a variation in epidermis architecture (thickness/ultrastructure) and (ii) this variation may be an optimization of material properties for specific ways of life. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Electronic structure and properties of unsubstituted rhodamine in different electron states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artyukhov, V.Ya.

    1988-04-01

    An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S/sub 4/) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.

  14. Electronic structure and properties of unsubstituted rhodamine in different electron states

    NASA Astrophysics Data System (ADS)

    Artyukhov, V. Ya.

    1987-10-01

    An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S4) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.

  15. Space Weathering Experiments on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

  16. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  17. Rational design of metal-organic electronic devices: A computational perspective

    NASA Astrophysics Data System (ADS)

    Chilukuri, Bhaskar

    Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.

  18. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  19. Electronic Transport in Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  20. Computational evidence for stable inorganic fullerene-like structures of ceramic and semiconductor materials

    NASA Astrophysics Data System (ADS)

    Chang, Ch; Patzer, A. B. C.; Sedlmayr, E.; Steinke, T.; Sülzle, D.

    2001-12-01

    Theoretical electronic structure techniques have become an indispensible and powerful means for predicting molecular properties and designing new materials. Based on a density functional approach and guided by geometric considerations we provide evidence for some specific inorganic fullerene-like cage molecules of ceramic and semiconductor materials which exhibit high energetic stability and point group symmetry as well as nearly perfect spherical shape.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grujić-Brojčin, M., E-mail: myramyra@ipb.ac.rs; Armaković, S.; Tomić, N.

    The influence of La-doping in the range of 0.5–6.0 mol% on structural and morphological properties of TiO{sub 2} nanopowders synthesized by sol–gel routine has been investigated by XRPD, AFM, EDS and BET measurements, as well as Raman spectroscopy. The XRPD and Raman measurements have revealed the anatase phase as dominant in all nanopowders, with crystallite size decreasing from ∼ 15 nm in pure TiO{sub 2} to ∼ 12 nm in La-doped samples. The BET data suggest that all samples are fully mesoporous, with mean pore diameters in the range of ∼ 6–8 nm. The specific surface area and the complexitymore » of pore structure are greater in doped samples than in pure TiO{sub 2} sample. The spectroscopic ellipsometry has apparently shown that the band gap has been gradually increased with the increase of La content. The STM and STS techniques have been used successfully to evaluate the surface morphology and electronic properties of La-doped nanopowders. All investigated properties have been related to photocatalytic activity, tested in degradation of a metoprolol tartrate salt (0.05 mM), and induced by UV-radiation. All doped samples showed increased photocatalytic activity compared to pure TiO{sub 2}, among which the 0.65 mol% La-doped sample appeared to be the most efficient. - Highlights: • Effects of La-doping on structural, morphological and electronic properties of TiO{sub 2} nanopowders. • Surface morphology and electronic properties of La-doped nanopowders evaluated by STM/STS. • Spectroscopic ellipsometry shown gradual increase of bandgap with the increase of La content. • Photocatalytic activity of samples was tested in degradation of MET under UV light.« less

  2. Tuning the electronic and optical properties of NDT-based conjugated polymers by adopting fused heterocycles as acceptor units: a theoretical study.

    PubMed

    Cheng, Na; Zhang, Changqiao; Liu, Yongjun

    2017-08-01

    Donor-acceptor conjugated polymers have been successfully applied in bulk heterojunction solar cell devices. Tuning their donor and acceptor units allows the design of new polymers with desired electronic and optical properties. Here, to screen new candidate polymers based on a newly synthesized donor unit, dithieo[2,3-d:2',3'-d']naphtho[1,2-b:3,4-b']dithiophene (NDT), a series of model polymers with different acceptor units were designed and denoted NDT-A 0 to NDT-A 12 , and the structures and optical properties of those polymers were investigated using DFT and TDDFT calculations. The results of the calculations revealed that the electronic and optical properties of these polymers depend on the acceptor unit present; specifically, their HOMO energies ranged from -4.89 to -5.38 eV, their HOMO-LUMO gaps ranged from 1.30 to 2.80 eV, and their wavelengths of maximum absorption ranged from 538 to 1212 nm. The absorption spectra of NDT-A 1 to NDT-A 6 , NDT-A 8 , NDT-A 9 , and NDT-A 12 occur within the visible region (<900 nm), indicating that these polymers are potential candidates for use in solar cells. On the other hand, the absorption spectra of NDT-A 7 , NDT-A 10 , and NDT-A 11 extend much further into the near-infrared region, implying that they absorb near-infrared light. These polymers could meet the requirements of donor units for use in tandem and ternary solar cells. Graphical abstract Theoretical calculations by TD-DFT reveal that the optical properties of NDT-based conjugated polymers can be well tuned by adopting different acceptor units, and these ploymers are potential donor materials for tandem and ternary solar cells.

  3. Effect of HNT on the Microstructure, Thermal and Mechanical Properties of Al/FACS-HNT Composites Produced by GPI

    NASA Astrophysics Data System (ADS)

    Siewiorek, A.; Malczyk, P.; Sobczak, N.; Sobczak, J. J.; Czulak, A.; Kozera, R.; Gude, M.; Boczkowska, A.; Homa, M.

    2016-08-01

    To develop an optimised manufacturing method of fly ash-reinforced metal matrix composites, the preliminary tests were performed on the cenospheres selected from fly ash (FACS) with halloysite nanotubes (HNTs) addition. The preform made out of FACS with and without the addition of HNT (with 5 and 10 wt.%) has been infiltrated by the pure aluminium (Al) via adapted gas pressure infiltration process. This paper reveals the influence of HNT addition on the microstructure (analysis was done by computed tomography and scanning electron microscopy combined with energy-dispersive x-ray spectroscopy), thermal properties (thermal expansion coefficient, thermal conductivity and specific heat) and the mechanical properties (hardness and compression test) of manufactured composites. The analysis of structure-property relationships for Al/FACS-HNT composites produced shows that the addition of 5 wt.% of HNT to FACS preform contributes to receiving of the best mechanical and structural properties of investigated composites.

  4. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  5. Thermodynamic properties and theoretical rocket performance of hydrogen to 100,000 K and 1.01325 x 10 to the 8th power N/sq m

    NASA Technical Reports Server (NTRS)

    Patch, R. W.

    1971-01-01

    The composition and thermodynamic properties were calculated for 100 to 110,000 K and 1.01325 x 10 to the 2nd power to 1.01325 x 10 to the 8th power N/sq m for chemical equilibrium in the Debye-Huckel and ideal-gas approximations. Quantities obtained were the concentrations of hydrogen atoms, protons, free electrons, hydrogen molecules, negative hydrogen ions, hydrogen diatomic molecular ions, and hydrogen triatomic molecular ions, and the enthalpy, entropy, average molecular weight, specific heat at constant pressure, density, and isentropic exponent. Electronically excited states of H and H2 were included. Choked, isentropic, one-dimensional nozzle flow with shifting chemical equilibrium was calculated to the Debye-Huckel and ideal-gas approximations for stagnation temperatures from 2500 to 100,000 K. The mass flow per unit throat area and the sonic flow factor were obtained. The pressure ratio, temperature, velocity, and ideal and vacuum specific impulses at the throat and for pressure ratios as low as 0.000001 downstream were found. For high temperatures at pressures approaching 1.01325 x 10 to the 8th power N/sq m, the ideal-gas approximation was found to be inadequate for calculations of composition, precise thermodynamic properties, and precise nozzle flow. The greatest discrepancy in nozzle flow occurred in the exit temperature, which was as much as 21 percent higher when the Debye-Huckel approximation was used.

  6. First-principles calculations of dynamical and thermodynamic properties of cuprite doped with silver (Cu2(1‑x)Ag2xO)

    NASA Astrophysics Data System (ADS)

    Musari, A. A.; Joubert, D. P.; Adebayo, G. A.

    2018-04-01

    Cuprite (Cu2O) is a solid mineral and a compound whose simplicity of preparation, non toxic nature, low band gap and its abundance has made it a prospective candidate for the realisation of low cost photovoltaic applications. The present work successfully dopes Cuprite with Ag ({{{Cu}}}2(1-{{x})}{{{Ag}}}2{{x}}{{O}}) at different concentrations x = 0, 0.25, 0.5, 0.75 and 1, their first-principle calculations of their electronic, dynamical and thermodynamic properties have been investigated extensively within the generalised gradient approximation. Direct band gap energies at {{Γ }} are predicted for all the studied systems. A small bowing parameter for lattice constants ba and bulk modulus bB of 0.4245 \\mathring{{A}} and 0.8747 GPa were obtained when compared to Vegard’s law. The results of phonon dispersion when x = 0 and 1 indicate stability, these agree with available theoretical and experimental results while negative frequencies observed along the Brillouin zone for the doped systems when x = 0.25, 0.5 and 0.75 imply that they are dynamically unstable. The thermodynamic properties between 0 to 800 K were determined using the calculated phonon density of states within the harmonic approximation and the values of the specific heat capacity at constant volume at ambient temperature and the temperature at which lattice vibrations and thermal motion of electrons contribute to the constant volume specific heat capacity are presented for all the systems.

  7. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  8. Cherenkov sound on a surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2013-11-01

    Topological insulators are currently of considerable interest due to peculiar electronic properties originating from helical states on their surfaces. Here we demonstrate that the sound excited by helical particles on surfaces of topological insulators has several exotic properties fundamentally different from sound propagating in nonhelical or even isotropic helical systems. Specifically, the sound may have strictly forward propagation absent for isotropic helical states. Its dependence on the anisotropy of the realistic surface states is of distinguished behavior which may be used as an alternative experimental tool to measure the anisotropy strength. Fascinating from the fundamental point of view backward, or anomalous, Cherenkov sound is excited above the critical angle π/2 when the anisotropy exceeds a critical value. Strikingly, at strong anisotropy the sound localizes into a few forward and backward beams propagating along specific directions.

  9. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  10. Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

    PubMed Central

    Sysoiev, Dmytro; Huhn, Thomas; Pauly, Fabian

    2017-01-01

    Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments. PMID:29259875

  11. Imaging interfacial electrical transport in graphene–MoS{sub 2} heterostructures with electron-beam-induced-currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, E. R., E-mail: ewhite@physics.ucla.edu; Kerelsky, Alexander; Hubbard, William A.

    2015-11-30

    Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS{sub 2} heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrentmore » collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.« less

  12. Investigation of Structure and Property of Indian Cocos nucifera L. Fibre

    NASA Astrophysics Data System (ADS)

    Basu, Gautam; Mishra, Leena; Samanta, Ashis Kumar

    2017-12-01

    Structure and physico-mechanical properties of Cocos nucifera L. fibre from a specific agro-climatic region of India, was thoroughly studied. Fine structure of the fibre was examined by Fourier Transform Infra-Red (FTIR) spectroscopy, Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), component analysis, Scanning Electron Microscope (SEM) and optical microscope. SEM shows prominent longitudinal cracks and micro-pores on the surface. XRD shows a low degree of crystallinity (45%), bigger crystallite size, and even the presence of appreciable amount of non-cellulose matter. FTIR reveals presence of large quantities of hydroxyl, phenolic and aldehyde groups. Component and thermal analyses indicates presence of cellulose and lignin as major components. Physical parameters reveal that, fibres are highly variable in length (range 44-305 mm), and diameter (range 100-795 µm). Mechanical properties of the fibre viz. breaking tenacity, breaking extensibility, specific work of rupture, and coefficient of friction were measured. Microbial decomposition test under soil reveals excellent durability of coconut fibre which makes it appropriate for the application in geotextiles. Mass specific electrical resistance of 4 Ω-kg/m2 indicates its enhanced insulation as compared to the jute.

  13. Shape-dependent electronic properties of blue phosphorene nano-flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Pradeep; Swaroop, Ram; Kumar, Ashok, E-mail: ashok@cup.ac.in

    In recent year’s considerable attention has been given to the first principles method for modifying and controlling electronic properties of nano-materials. We performed DFT-based calculations on the electronic properties of zigzag-edged nano-flakes of blue phosphorene with three possible shapes namely rectangular, triangular and hexagonal. We observed that HOMO-LUMO gap of zigzag phosphorene nano-flakes with different shapes is ∼2.9 eV with H-passivations and ∼0.7 – 1.2 eV in pristine cases. Electronic properties of blue phosphorene nano-flakes show the strong dependence on their shape. We observed that distributions of molecular orbitals were strongly affected by the different shapes. Zigzag edged considered nanostructuresmore » are non-magnetic and semiconducting in nature. The shape dependent electronic properties may find applications in tunable nano-electronics.« less

  14. Electronic properties of T graphene-like C-BN sheets: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Majidi, R.

    2015-11-01

    We have used density functional theory to study the electronic properties of T graphene-like C, C-BN and BN sheets. The planar T graphene with metallic property has been considered. The results show that the presence of BN has a considerable effect on the electronic properties of T graphene. The T graphene-like C-BN and BN sheets show semiconducting properties. The energy band gap is increased by enhancing the number of BN units. The possibility of opening and controlling band gap opens the door for T graphene in switchable electronic devices.

  15. Optical properties of an elliptic quantum ring: Eccentricity and electric field effects

    NASA Astrophysics Data System (ADS)

    Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.

    2018-04-01

    We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.

  16. Properties and Applications of Varistor-Transistor Hybrid Devices

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, William A.; Sutanto, Ivan; Scantlin, Amanda A.; Lin, Sidney

    2014-05-01

    The nonlinear current-voltage characteristics of a varistor device are modified with the help of external agents, resulting in tuned varistor-transistor hybrid devices with multiple applications. The substrate used to produce these hybrid devices belongs to the modified iron titanate family with chemical formula 0.55FeTiO3·0.45Fe2O3 (IHC45), which is a prominent member of the ilmenite-hematite solid-solution series. It is a wide-bandgap magnetic oxide semiconductor. Electrical resistivity and Seebeck coefficient measurements from room temperature to about 700°C confirm that it retains its p-type nature for the entire temperature range. The direct-current (DC) and alternating-current (AC) properties of these hybrid devices are discussed and their applications identified. It is shown here that such varistor embedded ceramic transistors with many interesting properties and applications can be mass produced using incredibly simple structures. The tuned varistors by themselves can be used for current amplification and band-pass filters. The transistors on the other hand could be used to produce sensors, voltage-controlled current sources, current-controlled voltage sources, signal amplifiers, and low-band-pass filters. We believe that these devices could be suitable for a number of applications in consumer and defense electronics, high-temperature and space electronics, bioelectronics, and possibly also for electronics specific to handheld devices.

  17. Theoretical simulations of the structural stabilities, elastic, thermodynamic and electronic properties of Pt3Sc and Pt3Y compounds

    NASA Astrophysics Data System (ADS)

    Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.

    2018-05-01

    Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).

  18. Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Canali, C. M.; Pertsova, A.; Balatsky, A.; Mahatha, S. K.; Carbone, C.; Barla, A.; Kokh, K. A.; Tereshchenko, O. E.; Jiménez, E.; Brookes, N. B.; Gargiani, P.; Valvidares, M.; Schatz, S.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Jung, J.; Bathon, T.; Fauth, K.; Bode, M.; Sessi, P.

    2018-04-01

    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3 . By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-ray magnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.

  19. Nanopatterning of Group V Elements for Tailoring the Electronic Properties of Semiconductors by Monolayer Doping.

    PubMed

    Thissen, Peter; Cho, Kyeongjae; Longo, Roberto C

    2017-01-18

    Control of the electronic properties of semiconductors is primarily achieved through doping. While scaling down the device dimensions to the molecular regime presents an increasing number of difficulties, doping control at the nanoscale is still regarded as one of the major challenges of the electronic industry. Within this context, new techniques such as monolayer doping (MLD) represent a substantial improvement toward surface doping with atomic and specific doping dose control at the nanoscale. Our previous work has explained in detail the atomistic mechanism behind MLD by means of density-functional theory calculations (Chem. Mater. 2016, 28, 1975). Here, we address the key questions that will ultimately allow one to optimize the scalability of the MLD process. First, we show that dopant coverage control cannot be achieved by simultaneous reaction of several group V elements, but stepwise reactions make it possible. Second, using ab initio molecular dynamics, we investigate the thermal decomposition of the molecular precursors, together with the stability of the corresponding binary and ternary dopant oxides, prior to the dopant diffusion into the semiconductor surface. Finally, the effect of the coverage and type of dopant on the electronic properties of the semiconductor is also analyzed. Furthermore, the atomistic characterization of the MLD process raises unexpected questions regarding possible crystal damage effects by dopant exchange with the semiconductor ions or the final distribution of the doping impurities within the crystal structure. By combining all our results, optimization recipes to create ultrashallow doped junctions at the nanoscale are finally proposed.

  20. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    PubMed

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  1. High-resolution mapping of molecules in an ionic liquid via scanning transmission electron microscopy.

    PubMed

    Miyata, Tomohiro; Mizoguchi, Teruyasu

    2018-03-01

    Understanding structures and spatial distributions of molecules in liquid phases is crucial for the control of liquid properties and to develop efficient liquid-phase processes. Here, real-space mapping of molecular distributions in a liquid was performed. Specifically, the ionic liquid 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C2mimTFSI) was imaged using atomic-resolution scanning transmission electron microscopy. Simulations revealed network-like bright regions in the images that were attributed to the TFSI- anion, with minimal contributions from the C2mim+ cation. Simple visualization of the TFSI- distribution in the liquid sample was achieved by binarizing the experimental image.

  2. Ab Initio Calculations of Transport Properties of Vanadium Oxides

    NASA Astrophysics Data System (ADS)

    Lamsal, Chiranjivi; Ravindra, N. M.

    2018-04-01

    The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.

  3. Low-temperature magnetic properties of GdCoIn5

    NASA Astrophysics Data System (ADS)

    Betancourth, D.; Facio, J. I.; Pedrazzini, P.; Jesus, C. B. R.; Pagliuso, P. G.; Vildosola, V.; Cornaglia, Pablo S.; García, D. J.; Correa, V. F.

    2015-01-01

    A comprehensive experimental and theoretical study of the low temperature properties of GdCoIn5 was performed. Specific heat, thermal expansion, magnetization and electrical resistivity were measured in good quality single crystals down to 4He temperatures. All the experiments show a second-order-like phase transition at 30 K probably associated with the onset of antiferromagnetic order. The magnetic susceptibility shows a pronounced anisotropy below TN with an easy magnetic axis perpendicular to the crystallographic ĉ-axis. Total energy GGA+U calculations indicate a ground state with magnetic moments localized at the Gd ions and allowed a determination of the Gd-Gd magnetic interactions. Band structure calculations of the electron and phonon contributions to the specific heat together with Quantum Monte Carlo calculations of the magnetic contributions show a very good agreement with the experimental data. Comparison between experiment and calculations suggests a significant anharmonic contribution to the specific heat at high temperature (T ≳ 100 K).

  4. Synthesis and Supercapacitor Performance of Polyaniline/Nitrogen-Doped Ordered Mesoporous Carbon Composites

    NASA Astrophysics Data System (ADS)

    Xie, Kangjun; Zhang, Manman; Yang, Yang; Zhao, Long; Qi, Wei

    2018-05-01

    The electrochemical property of ordered mesoporous carbon (OMC) can be changed significantly due to the incorporating of electron-donating heteroatoms into OMC. Here, we demonstrate the successful fabrication of nitrogen-doped ordered mesoporous carbon (NOMC) materials to be used as carbon substrates for loading polyaniline (PANI) by in situ polymerization. Compared with NOMC, the PANI/NOMC prepared with a different mass ratio of PANI and NOMC exhibits remarkably higher electrochemical specific capacitance. In a typical three-electrode configuration, the hybrid has a specific capacitance about 276.1 F/g at 0.2 A/g with a specific energy density about 38.4 Wh/kg. What is more, the energy density decreases very slowly with power density increasing, which is a different phenomenon from other reports. PANI/NOMC materials exhibit good rate performance and long cycle stability in alkaline electrolyte ( 80% after 5000 cycles). The fabrication of PANI/NOMC with enhanced electrochemical properties provides a feasible route for promoting its applications in supercapacitors.

  5. Ab Initio Study of Electronic Excitation Effects on SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Zhang, Yanwen; Weber, William J.

    Interaction of energetic ions or lasers with solids often induces electronic excitations that may modify material properties significantly. In this study, effects of electronic excitations on strontium titanate SrTiO 3 (STO) are investigated based on first-principles calculations. The lattice structure, electronic properties, lattice vibrational frequencies, and dynamical stabilities are studied in detail. The results suggest that electronic excitation induces charge redistribution that is mainly observed in Ti–O bonds. The electronic band gap increases with increasing electronic excitation, as excitation mainly induces depopulation of Ti 3d states. Phonon analysis indicates that there is a large phonon band gap induced by electronicmore » excitation because of the changes in the vibrational properties of Ti and O atoms. In addition, a new peak appears in the phonon density of states with imaginary frequencies, an indication of lattice instability. Further dynamics simulations confirm that STO undergoes transition to an amorphous structure under strong electronic excitations. In conclusion, the optical properties of STO under electronic excitation are consistent with the evolution of atomic and electronic structures, which suggests a possibility to probe the properties of STO in nonequilibrium state using optical measurement.« less

  6. Ab Initio Study of Electronic Excitation Effects on SrTiO 3

    DOE PAGES

    Zhao, Shijun; Zhang, Yanwen; Weber, William J.

    2017-11-14

    Interaction of energetic ions or lasers with solids often induces electronic excitations that may modify material properties significantly. In this study, effects of electronic excitations on strontium titanate SrTiO 3 (STO) are investigated based on first-principles calculations. The lattice structure, electronic properties, lattice vibrational frequencies, and dynamical stabilities are studied in detail. The results suggest that electronic excitation induces charge redistribution that is mainly observed in Ti–O bonds. The electronic band gap increases with increasing electronic excitation, as excitation mainly induces depopulation of Ti 3d states. Phonon analysis indicates that there is a large phonon band gap induced by electronicmore » excitation because of the changes in the vibrational properties of Ti and O atoms. In addition, a new peak appears in the phonon density of states with imaginary frequencies, an indication of lattice instability. Further dynamics simulations confirm that STO undergoes transition to an amorphous structure under strong electronic excitations. In conclusion, the optical properties of STO under electronic excitation are consistent with the evolution of atomic and electronic structures, which suggests a possibility to probe the properties of STO in nonequilibrium state using optical measurement.« less

  7. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    PubMed

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material characterisation vary widely from one equipment type to another. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biopolymer stabilized water dispersible polyaniline for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Anbalagan, Amarnath Chellachamy; Sawant, Shilpa Nandkishor

    2018-04-01

    Polyaniline colloidal nanoparticles (PANI CNs) were synthesized, employing biopolymer pectin (Pec) as a stabilizer along with hydrochloric acid dopant and ammonium persulfate oxidant. Chemical nature and electronic structure was studied by FT-IR and UV-visible spectroscopy respectively. FE-SEM revealed spindle like morphology of PANI CNs and displayed the nearly discrete particles without aggregation, showing stabilizing capacity of the Pec. Cyclic voltammetry and galvanostatic charge-discharge measurements demonstrated the electroactivity and supercapacitive property of the PANI CNs in 1 M HCl. The specific capacitance of PANI CNs in 1 M HCl at 1.5 A/g was found to be 197 F/g, where 70% of specific capacitance was retained even after 1000 cycles. These findings establish the feasibility of using the PANI CNs as a potential material for energy storage in aqueous acidic medium. Furthermore, this colloidal dispersion can find potential application in electrodes of flexible supercapacitor device and printable electronics.

  9. Status and Perspectives of Ion Track Electronics for Advanced Biosensing

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz, H. Gerardo; Alfonta, L.; Mandabi, Y.; Dias, J. F.; de Souza, C. T.; Bacakova, L. E.; Vacík, J.; Hnatowicz, V.; Kiv, A. E.; Fuks, D.; Papaleo, R. M.

    New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell-secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.

  10. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.

    PubMed

    Gómez Pueyo, Adrián; Marques, Miguel A L; Rubio, Angel; Castro, Alberto

    2018-05-09

    We examine various integration schemes for the time-dependent Kohn-Sham equations. Contrary to the time-dependent Schrödinger's equation, this set of equations is nonlinear, due to the dependence of the Hamiltonian on the electronic density. We discuss some of their exact properties, and in particular their symplectic structure. Four different families of propagators are considered, specifically the linear multistep, Runge-Kutta, exponential Runge-Kutta, and the commutator-free Magnus schemes. These have been chosen because they have been largely ignored in the past for time-dependent electronic structure calculations. The performance is analyzed in terms of cost-versus-accuracy. The clear winner, in terms of robustness, simplicity, and efficiency is a simplified version of a fourth-order commutator-free Magnus integrator. However, in some specific cases, other propagators, such as some implicit versions of the multistep methods, may be useful.

  11. The Industrial Property Rights Education in Collaboration with the Creative Product Design Education

    NASA Astrophysics Data System (ADS)

    Tokoro, Tetsuro; Habuchi, Hitoe; Chonan, Isao

    Recently, the Advanced Courses of Electronic System Engineering and Architecture and Civil Engineering of Gifu National College of Technology have introduced a creative subject, “Creative Engineering Practice”. In this subject, students study intellectual property rights. More specifically, they learn and practice industrial proprietary rights, procedures for obtaining a patent right, how to use Industrial Property Digital Library and so forth, along with the practice of creative product design. The industrial property rights education in collaboration with the creative product design education has been carried out by the cooperation of Japan Patent Office, Japan Institute of Invention and Innovation and a patent attorney. Through the instruction of the cooperative members, great educative results have been obtained. In this paper, we will describe the contents of the subject together with its items to pursue an upward spiral of progress.

  12. Mechanical and wear properties of aluminum coating prepared by cold spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Siti Nurul Akmal, E-mail: em-leo277@yahoo.com; Manap, Abreeza, E-mail: Abreeza@uniten.edu.my; Afandi, Nurfanizan Mohd

    In this study, aluminum (Al) powders were deposited onto Al substrates using cold spray to form a coating. The main objective is to investigate and compare the microstructure, mechanical and wear properties of Al coating to that of the Al substrate. The microstructure of the coating and substrate were observed using Scanning Electron Microscope (SEM). Hardness was evaluated using the Vickers Hardness test and wear properties were investigated using a pin-on-disk wear test machine. The elemental composition of the coating and substrate was determined using Energy-dispersive X-ray spectroscopy (EDX). Results showed that the friction coefficient and specific wear rate decreasedmore » while wear rate increased linearly with increasing load. It was found that the coating exhibit slightly better mechanical and wear properties compared to the substrate.« less

  13. Visualization of Electronic Multiple Ordering and Its Dynamics in High Magnetic Field: Evidence of Electronic Multiple Ordering Crystals.

    PubMed

    Sheng, Zhigao; Feng, Qiyuan; Zhou, Haibiao; Dong, Shuai; Xu, Xueli; Cheng, Long; Liu, Caixing; Hou, Yubin; Meng, Wenjie; Sun, Yuping; Nakamura, Masao; Tokura, Yoshinori; Kawasaki, Masashi; Lu, Qingyou

    2018-06-13

    Constituent atoms and electrons determine matter properties together, and they can form long-range ordering respectively. Distinguishing and isolating the electronic ordering out from the lattice crystal is a crucial issue in contemporary materials science. However, the intrinsic structure of a long-range electronic ordering is difficult to observe because it can be easily affected by many external factors. Here, we present the observation of electronic multiple ordering (EMO) and its dynamics at the micrometer scale in a manganite thin film. The strong internal couplings among multiple electronic degrees of freedom in the EMO make its morphology robust against external factors and visible via well-defined boundaries along specific axes and cleavage planes, which behave like a multiple-ordered electronic crystal. A strong magnetic field up to 17.6 T is needed to completely melt such EMO at 7 K, and the corresponding formation, motion, and annihilation dynamics are imaged utilizing a home-built high-field magnetic force microscope. The EMO is parasitic within the lattice crystal house, but its dynamics follows its own rules of electronic correlation, therefore becoming distinguishable and isolatable as the electronic ordering. Our work provides a microscopic foundation for the understanding and control of the electronic ordering and the designs of the corresponding devices.

  14. Molecular engineering of phosphole-based conjugated materials

    NASA Astrophysics Data System (ADS)

    Ren, Yi

    The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well-organized lamellar structure at a wide range of temperatures. Importantly, its dynamic structure endows the phosphole-lipid system with intriguing external stimuli-responsive features allowing for the modification of the emission of the system without further chemical modification. Chapter Five describes how further molecular engineering allowed for access to a series of new highly fluorescent phosphole-lipid organogels. Remarkably, the external-stimuli responsive features of the system can be amplified in a donor-acceptor system accessible through changes in long distance fluorescence resonance energy transfer processes. In addition, the first fluorescent liquid phospholes could also be accessed in the context of the work on the new phosphole-lipid system.

  15. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites.

    PubMed

    Ramoraswi, Nteseng O; Ndungu, Patrick G

    2015-12-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m(2)/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  16. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ramoraswi, Nteseng O.; Ndungu, Patrick G.

    2015-10-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m2/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  17. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.

    PubMed

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J Enrique

    2014-01-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids.

  18. Increment of specific heat capacity of solar salt with SiO2 nanoparticles

    PubMed Central

    2014-01-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. PACS 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids PMID:25346648

  19. Computational screening of organic polymer dielectrics for novel accelerator technologies

    DOE PAGES

    Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...

    2018-06-18

    The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less

  20. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen.

    PubMed

    Chen, Chaoqun; Mao, Caiyun; Sun, Jian; Chen, Yi; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua

    2016-10-01

    The purpose of this study was to induce a biomimetic remineralization process by using glutaraldehyde (GA) to reconstruct the mechanical properties and biostability of demineralized collagen. Demineralized dentin disks (35% phosphoric acid, 10s) were pretreated with a 5% GA solution for 3min and then cultivated in a calcium phosphate remineralization solution. The remineralization kinetics and superstructure of the remineralization layer were evaluated by Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and nanoindentation tests. The biostability was examined by enzymatic degradation experiments. A significant difference was found in dentin remineralization process between dentin with and without GA pretreating. GA showed a specific affinity to dentin collagen resulting in the formation of a cross-linking superstructure. GA pretreating could remarkably shorten remineralization time from 7days to 2days. The GA-induced remineralized collagen fibrils were well encapsulated by newly formed hydroxyapatite mineral nanocrystals. With the nano-hydroxyapatite coating, both the mechanical properties (elastic modulus and hardness) and the biostability against enzymatic degradation of the collagen were significantly enhanced, matching those of natural dentin. The results indicated that GA cross-linking of dentin collagen could promote dentin biomimetic remineralization, resulting in an improved mechanical properties and biostability. It may provide a promising tissue-engineering technology for dentin repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The effect of thermal aging and color pigments on the Egyptian linen properties evaluated by physicochemical methods

    NASA Astrophysics Data System (ADS)

    El-Gaoudy, H.; Kourkoumelis, N.; Varella, E.; Kovala-Demertzi, D.

    2011-11-01

    Archaeologists in Egypt discovered ancient colored textiles in great quantities in comparison with the analogous uncolored ones. Furthermore, the latter are far more deteriorated. Most research investigations into archaeological linen have been concerned with manufacture, restoration, and conservation but little information is available about the properties of the fibers, and particularly their chemical and physical properties after dyeing with natural dyes or painted with pigments. The aim of this study is to evaluate the physicochemical properties of Egyptian linen textiles coloring with a variety of pigments used in painting in ancient times after thermally aged to get linen samples which are similar as possible to the ancient linen textiles. The evaluations were based on Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction and tensile strength, and elongation measurements. Results showed that beyond cosmetic reasons, colored textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration. Specifically, in the molecular level, pigments under study seem to interact to cellulose and lignin compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Electron microscopy confirms that pigment particles are deposited on and between the fibers' surfaces.

  2. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    PubMed

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  3. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Moral, Mónica; García, Gregorio; Peñas, Antonio; Garzón, Andrés; Granadino-Roldán, José M.; Melguizo, Manuel; Fernández-Gómez, Manuel

    2012-10-01

    This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph2Tz) and some oligomeric derivatives. Ph2Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  4. Computation of electron transport and relaxation properties in gases based on improved multi-term approximation of Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Cai, X. J.; Wang, X. X.; Zou, X. B.; Lu, Z. W.

    2018-01-01

    An understanding of electron kinetics is of importance in various applications of low temperature plasmas. We employ a series of model and real gases to investigate electron transport and relaxation properties based on improved multi-term approximation of the Boltzmann equation. First, a comparison of different methods to calculate the interaction integrals has been carried out; the effects of free parameters, such as vmax, lmax, and the arbitrary temperature Tb, on the convergence of electron transport coefficients are analyzed. Then, the modified attachment model of Ness et al. and SF6 are considered to investigate the effect of attachment on the electron transport properties. The deficiency of the pulsed Townsend technique to measure the electron transport and reaction coefficients in electronegative gases is highlighted when the reduced electric field is small. In order to investigate the effect of external magnetic field on the electron transport properties, Ar plasmas in high power impulse sputtering devices are considered. In the end, the electron relaxation properties of the Reid model under the influence of electric and magnetic fields are demonstrated.

  5. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  6. Fabrication of flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} and their electrochemical properties evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Ling-Bin, E-mail: konglb@lut.cn; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050; Deng, Li

    Graphical abstract: Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} nano-flakes materials, which have a flower-like structure, were successfully synthesized by a facile solvothermal method without adding any surfactant. The as-prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} possesses a maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Highlights: ► Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} materials were fabricated in a simple method. ► High specific capacitance of 2212.5 F g{sup −1} has been achieved. ► For the first time the effects of concentration andmore » temperature on its specific capacitance has been studied. -- Abstract: Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} was successfully synthesized by a facile solvothermal method. The microstructure and surface morphology of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} were physically characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electrochemical properties studies were carried out using cyclic voltammetry (CV), chronopotentiometry technology and AC impedance spectroscopy, respectively. The results indicate that the flower-like structure has a profound impact on electrode performance at high discharge capacitance. A maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA could be achieved, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Furthermore, the effects of Ni(NO{sub 3}){sub 2}·6H{sub 2}O concentration and temperature on the microstructure and specific capacitance of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} have also been systematically studied. The results show that flower-like structure can be formed when the concentration is appropriate, while the temperature has just little effect on its electrochemical properties.« less

  7. Real-Time Quantum Dynamics of Long-Range Electronic Excitation Transfer in Plasmonic Nanoantennas.

    PubMed

    Ilawe, Niranjan V; Oviedo, M Belén; Wong, Bryan M

    2017-08-08

    Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.

  8. Electronic health record meets digital library: a new environment for achieving an old goal.

    PubMed

    Humphreys, B L

    2000-01-01

    Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government encouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics.

  9. Electronic Health Record Meets Digital Library

    PubMed Central

    Humphreys, Betsy L.

    2000-01-01

    Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government envouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics. PMID:10984463

  10. Nonthermal model for ultrafast laser-induced plasma generation around a plasmonic nanorod

    NASA Astrophysics Data System (ADS)

    Labouret, Timothée; Palpant, Bruno

    2016-12-01

    The excitation of plasmonic gold nanoparticles by ultrashort laser pulses can trigger interesting electron-based effects in biological media such as production of reactive oxygen species or cell membrane optoporation. In order to better understand the optical and thermal processes at play, we modeled the interaction of a subpicosecond, near-infrared laser pulse with a gold nanorod in water. A nonthermal model is used and compared to a simple two-temperature thermal approach. For both models, the computation of the transient optical response reveals strong plasmon damping. Electron emission from the metal into the water is also calculated in a specific way for each model. The dynamics of the resulting local plasma in water is assessed by a rate equation model. While both approaches provide similar results for the transient optical properties, the simple thermal one is unable to properly describe electron emission and plasma generation. The latter is shown to mostly originate from electron-electron thermionic emission and photoemission from the metal. Taking into account the transient optical response is mandatory to properly calculate both electron emission and local plasma dynamics in water.

  11. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavor, John

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are tomore » construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.« less

  12. Microcontact Printing via a Polymer-Induced Liquid-Precursor (PILP) Process

    DTIC Science & Technology

    2002-04-01

    applications that require high performance mechanical, electrical and/or optical properties resulting from controlled nano- and microstructural design...salts. The cover-slips were examined by optical microscopy, and then gold coated for scanning electron microscopy on a SEM JEOL JSM 6400 instrument [5...applications in the realm of biomimicry . Controlled growth of crystals with specific orientation can be achieved via the functional groups on the substrate

  13. Quantum phase transition and non-Fermi liquid behavior in Fe1-x Co x Si (x ⩾ 0.7).

    PubMed

    Samatham, S Shanmukharao; Suresh, K G; Ganesan, V

    2018-04-11

    We report on the nature of electron correlations in Fe 1-x Co x Si ([Formula: see text]) using combined results of magnetization, specific heat and transport properties. Doping driven quantum critical point is observed to occur at [Formula: see text]. The magnetically unstable regime is identified to be centered around [Formula: see text] [[Formula: see text

  14. The structural, electronic and optical properties of Au-ZnO interface structure from the first-principles calculation

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping

    2018-03-01

    The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.

  15. Graphene-Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium-Selenium Secondary Battery Applications.

    PubMed

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-02

    In this study, graphene-selenium hybrid microballs (G-SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G-SeHMs thus prepared is investigated for use as cathode material in applications of lithium-selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g(-1) at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g(-1) after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g(-1) at 5 C). These electrochemical properties are attributed to the fact that the G-SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  16. Thermo-sensitively and magnetically ordered mesoporous carbon nanospheres for targeted controlled drug release and hyperthermia application.

    PubMed

    Chen, Lin; Zhang, Huan; Zheng, Jing; Yu, Shiping; Du, Jinglei; Yang, Yongzhen; Liu, Xuguang

    2018-03-01

    A multifunctional nanoplatform based on thermo-sensitively and magnetically ordered mesoporous carbon nanospheres (TMOMCNs) is developed for effective targeted controlled release of doxorubicin hydrochloride (DOX) and hyperthermia in this work. The morphology, specific surface area, porosity, thermo-stability, thermo-sensitivity, as well as magnetism properties of TMOMCNs were verified by high resolution transmission electron microscopy, field emission scanning electron microscopy, thermo-gravimetric analysis, X-ray diffraction, Brunauer-Emmeltt-Teller surface area analysis, dynamic light scattering and vibrating sample magnetometry measurement. The results indicate that TMOMCNs have an average diameter of ~146nm with a lower critical solution temperature at around 39.5°C. They are superparamagnetic with a magnetization of 10.15emu/g at 20kOe. They generate heat when inductive magnetic field is applied to them and have a normalized specific absorption rate of 30.23W/g at 230kHz and 290Oe, showing good potential for hyperthermia. The DOX loading and release results illustrate that the loading capacity is 135.10mg/g and release performance could be regulated by changing pH and temperature. The good targeting, DOX loading and release and hyperthermia properties of TMOMCNs offer new probabilities for high effectiveness and low toxicity of cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Structural, Electronic and Dynamical Properties of Curium Monopnictides: Density Functional Calculations

    NASA Astrophysics Data System (ADS)

    Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.

    2017-03-01

    The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.

  18. Electrical and Electron-Phonon Interactions in Graphene-Based Nanostructures and Aptamer-Based Electrical Sensors

    NASA Astrophysics Data System (ADS)

    Qian, Jun

    This research work contains two main parts: the theoretical study of confined phonon modes and electron states in confined graphene nanostructures; the experimental part including two topics about fabricating a graphene-FET aptamer-sensor for cocaine detection and the study of the electronic transport properties of dsDNA. In the theory part, we study the confined optical phonon modes in graphene nanoribbons (GNR) and rectangular graphene quantum dots (RGQD) by the elastic continuum model. The carrier states are studied by effective mass approximation. The phonon bottleneck effect is expected in general for RGQDs. The scattering rates are calculated for specific RGQDs with carefully chosen dimensions to fulfill the momentum and energy conservation conditions. In the experimental part, we have developed a combined technique of semiconductor processes and molecular biological protocols to fabricate a signal-off graphene-FET aptamer-sensor for cocaine. In addition, DNA transport properties were studied by STM on GNP-dsDNA-Au conjugates in atmospheric condition. The dsDNA-complexes exhibit as a slightly n-type semiconductor by simulated with a Landauer-type model. A geometrical model is proposed to explain the distinct I-V spectra.

  19. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking

    NASA Astrophysics Data System (ADS)

    Arbiol, Jordi; Estradé, Sònia; Prades, Joan D.; Cirera, Albert; Furtmayr, Florian; Stark, Christoph; Laufer, Andreas; Stutzmann, Martin; Eickhoff, Martin; Gass, Mhairi H.; Bleloch, Andrew L.; Peiró, Francesca; Morante, Joan R.

    2009-04-01

    We report on the effect of Mg doping on the properties of GaN nanowires grown by plasma assisted molecular beam epitaxy. The most significant feature is the presence of triple-twin domains, the density of which increases with increasing Mg concentration. The resulting high concentration of misplaced atoms gives rise to local changes in the crystal structure equivalent to the insertion of three non-relaxed zinc-blende (ZB) atomic cells, which result in quantum wells along the wurtzite (WZ) nanowire growth axis. High resolution electron energy loss spectra were obtained exactly on the twinned (zinc-blende) and wurtzite planes. These atomically resolved measurements, which allow us to identify modifications in the local density of states, revealed changes in the band to band electronic transition energy from 3.4 eV for wurtzite to 3.2 eV in the twinned lattice regions. These results are in good agreement with specific ab initio atomistic simulations and demonstrate that the redshift observed in previous photoluminescence analyses is directly related to the presence of these zinc-blende domains, opening up new possibilities for band-structure engineering.

  20. Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.

    PubMed

    Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki

    2018-06-19

    We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.

  1. Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells

    DOE PAGES

    Yang, Zhenhua; Moffa, Maria; Liu, Ying; ...

    2018-01-25

    Hybrid conjugated polymer/fullerene filaments based on MEH-PPV/PVP/PCBM were prepared by electrospinning, and their properties were assessed by scanning electron, atomic and lateral-force, tunneling, and confocal microscopies, as well as by attenuated-total-reflection Fourier transform infrared spectroscopy, photoluminescence quantum yield, and spatially resolved fluorescence. Highlighted features include the ribbon shape of the realized fibers and the persistence of a network serving as a template for heterogeneous active layers in solar cell devices. A set of favorable characteristics is evidenced in this way in terms of homogeneous charge-transport behavior and formation of effective interfaces for diffusion and dissociation of photogenerated excitons. The interactionmore » of the organic filaments with light, exhibiting specific light-scattering properties of the nanofibrous mat, might also contribute to spreading incident radiation across the active layers, thus potentially enhancing photovoltaic performance. Finally, this method might be applied to other electron donor–electron acceptor material systems for the fabrication of solar cell devices enhanced by nanofibrillar morphologies embedding conjugated polymers and fullerene compounds.« less

  2. Electrospun Conjugated Polymer/Fullerene Hybrid Fibers: Photoactive Blends, Conductivity through Tunneling-AFM, Light Scattering, and Perspective for Their Use in Bulk-Heterojunction Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhenhua; Moffa, Maria; Liu, Ying

    Hybrid conjugated polymer/fullerene filaments based on MEH-PPV/PVP/PCBM were prepared by electrospinning, and their properties were assessed by scanning electron, atomic and lateral-force, tunneling, and confocal microscopies, as well as by attenuated-total-reflection Fourier transform infrared spectroscopy, photoluminescence quantum yield, and spatially resolved fluorescence. Highlighted features include the ribbon shape of the realized fibers and the persistence of a network serving as a template for heterogeneous active layers in solar cell devices. A set of favorable characteristics is evidenced in this way in terms of homogeneous charge-transport behavior and formation of effective interfaces for diffusion and dissociation of photogenerated excitons. The interactionmore » of the organic filaments with light, exhibiting specific light-scattering properties of the nanofibrous mat, might also contribute to spreading incident radiation across the active layers, thus potentially enhancing photovoltaic performance. Finally, this method might be applied to other electron donor–electron acceptor material systems for the fabrication of solar cell devices enhanced by nanofibrillar morphologies embedding conjugated polymers and fullerene compounds.« less

  3. The disc-jet symbiosis emerges: modelling the emission of Sagittarius A* with electron thermodynamics

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Gammie, C. F.

    2017-05-01

    We calculate the radiative properties of Sagittarius A* - spectral energy distribution, variability and radio-infrared images - using the first 3D, physically motivated black hole accretion models that directly evolve the electron thermodynamics in general relativistic MHD simulations. These models reproduce the coupled disc-jet structure for the emission favoured by previous phenomenological analytic and numerical works. More specifically, we find that the low frequency radio emission is dominated by emission from a polar outflow while the emission above 100 GHz is dominated by the inner region of the accretion disc. The latter produces time variable near-infrared (NIR) and X-ray emission, with frequent flaring events (including IR flares without corresponding X-ray flares and IR flares with weak X-ray flares). The photon ring is clearly visible at 230 GHz and 2 μm, which is encouraging for future horizon-scale observations. We also show that anisotropic electron thermal conduction along magnetic field lines has a negligible effect on the radiative properties of our model. We conclude by noting limitations of our current generation of first-principles models, particularly that the outflow is closer to adiabatic than isothermal and thus underpredicts the low frequency radio emission.

  4. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Azam, Sikander

    2014-05-01

    The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.

  5. Quantitative Probes of Electron-Phonon Coupling in an Organic Charge-Transfer Material

    NASA Astrophysics Data System (ADS)

    Rury, Aaron; Sorenson, Shayne; Driscoll, Eric; Dawlaty, Jahan

    While organic charge transfer (CT) materials may provide alternatives to inorganic materials in electronics and photonics applications, properties central to applications remain understudied in these organic materials. Specifically, electron-phonon coupling plays a pivotal role in electronic applications yet this coupling in CT materials remains difficult to directly characterize. To better understand the suitability of organic CT materials for electronic applications, we have devised an experimental technique that can directly assess electron-phonon coupling in a model organic CT material. Upon non-resonant interaction with an ultrafast laser pulse, we show that coherent excitation of Raman-active lattice vibrations of quinhydrone, a 1:1 co-crystal of the hydroquinone and p-benzoquinone, modulates the energies of electronic transitions probed by a white light pulse. Using a well-established theoretical framework of vibrational quantum beat spectra across the probe bandwidth, we quantitatively extract the parameters describing these electronic transitions to characterize electron-phonon coupling in this material. In conjunction with temperature-dependent resonance Raman measurements, we assess the hypothesis that several sharp transitions in the near-IR correspond to previously unknown excitonic states of this material. These results and their interpretation set the foundation for further elucidation of the one of the most important parameters in the application of organic charge-transfer materials to electronics and photonics.

  6. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGES

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  7. Negative Thermal Expansion and Ferroelectric Oxides in Electronic Device Composites

    NASA Astrophysics Data System (ADS)

    Trujillo, Joy Elizabeth

    Electronic devices increasingly pervade our daily lives, driving the need to develop components which have material properties that can be designed to target a specific need. The principle motive of this thesis is to investigate the effects of particle size and composition on three oxides which possess electronic and thermal properties essential to designing improved ceramic composites for more efficient, high energy storage devices. A metal matrix composite project used the negative thermal expansion oxide, ZrW2O 8, to offset the high thermal expansion of the metal matrix without sacrificing high thermal conductivity. Composite preparation employed a powder mixing technique to achieve easy composition control and homogenous phase distribution in order to build composites which target a specific coefficient of thermal expansion (CTE). A tailorable CTE material is desirable for overcoming thermomechanical failure in heat sinks or device casings. This thesis also considers the particle size effect on dielectric properties in a common ferroelectric perovskite, Ba1-xSrxTiO 3. By varying the Ba:Sr ratio, the Curie temperature can be adjusted and by reducing the particle size, the dielectric constant can be increased and hysteresis decreased. These conditions could yield anonymously large dielectric constants near room temperature. However, the ferroelectric behavior has been observed to cease below a minimum size of a few tens of nanometers in bulk or thin film materials. Using a new particle slurry approach, electrochemical impedance spectroscopy allows dielectric properties to be determined for nanoparticles, as opposed to conventional methods which measure only bulk or thin film dielectric properties. In this manner, Ba1-xSrxTiO3 was investigated in a new size regime, extending the theory on the ferroelectric behavior to < 10 nm diameter. This knowledge will improve the potential to incorporate high dielectric constant, low loss ferroelectric nanoparticles in many complex composites. Finally, powder composite processing and impedance spectroscopy techniques were combined to investigate the SrTiO3/(Y2O3) x(ZrO2)1-x (STO/YSZ) oxide system. Thin film heterostructures of STO/YSZ are used in electrochemical energy devices due to their enhanced interfacial ionic conductivity. This work investigated whether this ionic conductivity enhancement could be observed in bulk sintered architectures, which may lead to new device designs for energy storage needs.

  8. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    PubMed Central

    Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia

    2016-01-01

    Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device. PMID:28335236

  9. Controlled manipulation of the Co-Alq3 interface by rational design of Alq3 derivatives.

    PubMed

    Großmann, Nicolas; Magri, Andrea; Laux, Martin; Stadtmüller, Benjamin; Thielen, Philip; Schäfer, Bernhard; Fuhr, Olaf; Ruben, Mario; Cinchetti, Mirko; Aeschlimann, Martin

    2016-11-15

    Recently, research has revealed that molecules can be used to steer the local spin properties of ferromagnetic surfaces. One possibility to manipulate ferromagnetic-metal-molecule interfaces in a controlled way is to synthesize specific, non-magnetic molecules to obtain a desired interaction with the ferromagnetic substrate. Here, we have synthesized derivatives of the well-known semiconductor Alq 3 (with q = 8-hydroxyquinolinate), in which the 8-hydroxyquinolinate ligands are partially or completely replaced by similar ligands bearing O- or N-donor sets. The goal of this study was to investigate how the presence of (i) different donor atom sets and (ii) aromaticity in different conjugated π-systems influences the spin properties of the metal-molecule interface formed with a Co(100) surface. The spin-dependent metal-molecule-interface properties have been measured by spin-resolved photoemission spectroscopy, backed up by DFT calculations. Overall, our results show that, in the case of the Co-molecule interface, chemical synthesis of organic ligands leads to specific electronic properties of the interface, such as exciton formation or highly spin-polarized interface states. We find that these properties are even additive, i.e. they can be engineered into one single molecular system that incorporates all the relevant ligands.

  10. Influence of the aggregate state on band structure and optical properties of C60 computed with different methods

    NASA Astrophysics Data System (ADS)

    Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei

    2018-05-01

    C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.

  11. The 2016 oxide electronic materials and oxide interfaces roadmap

    NASA Astrophysics Data System (ADS)

    Lorenz, M.; Ramachandra Rao, M. S.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; Shan, F. K.; Grundmann, M.; Boschker, H.; Mukherjee, J.; Priyadarshini, M.; DasGupta, N.; Rogers, D. J.; Teherani, F. H.; Sandana, E. V.; Bove, P.; Rietwyk, K.; Zaban, A.; Veziridis, A.; Weidenkaff, A.; Muralidhar, M.; Murakami, M.; Abel, S.; Fompeyrine, J.; Zuniga-Perez, J.; Ramesh, R.; Spaldin, N. A.; Ostanin, S.; Borisov, V.; Mertig, I.; Lazenka, V.; Srinivasan, G.; Prellier, W.; Uchida, M.; Kawasaki, M.; Pentcheva, R.; Gegenwart, P.; Miletto Granozio, F.; Fontcuberta, J.; Pryds, N.

    2016-11-01

    Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements. Guest editors: M S Ramachandra Rao and Michael Lorenz

  12. Geometric, electronic, and bonding properties of AuNM (N = 1-7, M = Ni, Pd, Pt) clusters.

    PubMed

    Yuan, D W; Wang, Yang; Zeng, Zhi

    2005-03-15

    Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.

  13. Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Doiron, Brock; Li, Yi; Mihai, Andrei P.; Cohen, Lesley F.; Petrov, Peter K.; Alford, Neil M.; Oulton, Rupert F.; Maier, Stefan A.

    2017-08-01

    With similar optical properties to gold and high thermal stability, titanium nitride continues to prove itself as a promising plasmonic material for high-temperature applications in the visible and near-infrared. In this work, we use transient pump probe differential reflection measurements to compare the electron energy decay channels in titanium nitride and gold thin films. Using an extended two temperature model to incorporate the photoexcited electrons, it is possible to separate the electron-electron and electron-phonon scattering contributions immediately following the arrival of the pump pulse. This model allows for incredibly accurate determination of the internal electronic properties using only optical measurements. As the electronic properties are key in hot electron applications, we show that titanium nitide has substantially longer electron thermalization and electron-phonon scattering times. With this, we were also able to resolve electron thermal conduction in the film using purely optical measurements.

  14. Thermodynamic properties of pressurized PH3 superconductor

    NASA Astrophysics Data System (ADS)

    Koka, S.; Rao, G. Venugopal

    2018-05-01

    The paper presents the superconducting thermodynamic functions determined for pressurized phosphorus trihydride (PH3). In particular, free energy difference ΔF, thermodynamic critical field Hc, specific heat etc. have been calculated using analytical expressions. The calculations were performed in the frame work of the strong-coupling formalism. The obtained dimensionless parameters: RΔ ≡ 2Δ(0)/kBTc, RC ≡ ΔC(Tc)/CN(Tc) and RH≡TcCN(Tc)/Hc2(0) are 4.05, 1.96 and 0.156 respectively, which significantly differ from the values arising from the BCS theory of superconductivity. The thermodynamic properties strongly depend on the depairing electron correlations and retardation effects.

  15. Polypyrrole based nanocomposites for supercapacitor applications: A review

    NASA Astrophysics Data System (ADS)

    Sardar, A.; Gupta, P. S.

    2018-05-01

    Recently conducting polymers have attracted great interest for supercapacitor applications. Among conducting polymers polypyrrole is most popular due to its unique electrical conductivity, optoelectrical properties, redox property and excellent environmental stability. In this article, we present a comprehensive review of polypyrrole and polypyrrole based nanocomposites for supercapacitor applications. We have included study of various parameters like power density, energy density, specific-capacitance by various authors for different kinds of nanocomposites where fillers are metal oxides, metal sulphides, graphene etc. Some polypyrrole nanocomposits show good electrochemical performances. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  16. Evaluation of Biological Properties of Electron Beam Melted Ti6Al4V Implant with Biomimetic Coating In Vitro and In Vivo

    PubMed Central

    Wang, Cheng-Tao; Li, Guo-Chen; Lei, Wei; Zhang, Zhi-Yong; Wang, Lin

    2012-01-01

    Background High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation. Methods In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating. Results The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young’s modulus being 14.5–38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation. Conclusions This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields. PMID:23272208

  17. Effect of etching time on morphological, optical, and electronic properties of silicon nanowires.

    PubMed

    Nafie, Nesma; Lachiheb, Manel Abouda; Bouaicha, Mongi

    2012-07-16

    Owing to their interesting electronic, mechanical, optical, and transport properties, silicon nanowires (SiNWs) have attracted much attention, giving opportunities to several potential applications in nanoscale electronic, optoelectronic devices, and silicon solar cells. For photovoltaic application, a superficial film of SiNWs could be used as an efficient antireflection coating. In this work we investigate the morphological, optical, and electronic properties of SiNWs fabricated at different etching times. Characterizations of the formed SiNWs films were performed using a scanning electron microscope, ultraviolet-visible-near-infrared spectroscopy, and light-beam-induced-current technique. The latter technique was used to determine the effective diffusion length in SiNWs films. From these investigations, we deduce that the homogeneity of the SiNWs film plays a key role on the electronic properties.

  18. Fermi surface properties of paramagnetic NpCd11 with a large unit cell

    NASA Astrophysics Data System (ADS)

    Homma, Yoshiya; Aoki, Dai; Haga, Yoshinori; Settai, Rikio; Sakai, Hironori; Ikeda, Shugo; Yamamoto, Etsuji; Nakamura, Akio; Shiokawa, Yoshinobu; Takeuchi, Tetsuya; Yamagami, Hiroshi; Ōnuki, Yoshichika

    2010-03-01

    We succeeded in growing a high-quality single crystal of NpCd11 with the cubic BaHg11-type structure by the Cd-self flux method. The lattice parameter of a = 9.2968(2) Å and crystallographic positions of the atoms were determined by x-ray single-crystal structure analysis. From the results of the magnetic susceptibility and specific heat experiments, this compound is found to be a 5f-localized paramagnet with the singlet ground state in the crystalline electric field (CEF) scheme. Fermi surface properties were measured using the de Haas-van Alphen (dHvA) technique. Long-period oscillations were observed in the dHvA frequency range of 9.1 x 105 to 1.9 x 107 Oe, indicating small cross-sectional areas of Fermi surfaces, which is consistent with a small Brillouin zone based on a large unit cell. From the results of dHvA and magnetoresistance experiments, the Fermi surface of NpCd11 is found to consist of many kinds of closed Fermi surfaces and a multiply-connected-like Fermi surface, although the result of energy band calculations based on the 5f-localized Np3+(5f4) configuration reveals the existence of only closed Fermi surfaces. The corresponding cyclotron effective mass is small, ranging from 0.1 to 0.7 m0, which is consistent with a small electronic specific heat coefficient γ ≅ 10mJ/K2·mol, revealing no hybridization between the 5f electrons and conduction electrons.

  19. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  20. Geometries and focal properties of two electron-lens systems useful in low-energy electron or ion scattering

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1979-01-01

    Geometries and focal properties are given for two types of electron-lens system commonly needed in electron scattering. One is an electron gun that focuses electrons from a thermionic emitter onto a fixed point (target) over a wide range of final energies. The other is an electron analyzer system that focuses scattered electrons of variable energy onto a fixed position (e.g., the entrance plane of an analyzer) at fixed energy with a zero final beam angle. Analyzer-system focusing properties are given for superelastically, elastically, and inelastically scattered electrons. Computer calculations incorporating recent accurate tube-lens focal properties are used to compute lens voltages, locations and diameters of all pupils and windows, filling factors, and asymptotic rays throughout each lens system. Focus voltages as a function of electron energy and energy change are given, and limits of operation of each system discussed. Both lens systems have been in routine use for several years, and good agreement has been consistently found between calculated and operating lens voltages.

  1. Study on the Electronic Transport Properties of Zigzag GaN Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Enling; Wang, Xiqiang; Hou, Liping; Zhao, Danna; Dai, Yuanbin; Wang, Xuewen

    2011-02-01

    The electronic transport properties of zigzag GaN nanotubes (n, 0) (4 <= n <= 9) have been calculated using the density functional theory and non-equilibrium Green's functions method. Firstly, the density functional theory (DFT) is used to optimize and calculate the electronic structure of GaNNTs (n, 0) (4<=n<=9). Secondly, DFT and non-equilibrium Green function (NEGF) method are also used to predict the electronic transport properties of GaNNTs two-probe system. The results showed: there is a corresponding relation between the electronic transport properties and the valley of state density of each GaNNT. In addition, the volt-ampere curve of GaNNT is approximately linear.

  2. Coupled study by TEM/EELS and STM/STS of electronic properties of C- and CN-nanotubes

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Lauret, Jean-Sébastien; Arenal, Raul; Ducastelle, François; Rousset, Sylvie; Loiseau, Annick

    2011-12-01

    Carbon nanotubes are the focus of considerable research efforts due to their fascinating physical properties. They provide an excellent model system for the study of one-dimensional materials and molecular electronics. The chirality of nanotubes can lead to very different electronic behaviour, either metallic or semiconducting. Their electronic spectrum consists of a series of Van Hove singularities defining a bandgap for semiconducting tubes and molecular orbitals at the corresponding energies. A promising way to tune the nanotubes electronic properties for future applications is to use doping by heteroatoms. Here we report on the experimental investigation of the role of many-body interactions in nanotube bandgaps, the visualization in direct space of the molecular orbitals of nanotubes and the properties of nitrogen doped nanotubes using scanning tunneling microscopy and transmission electron microscopy as well as electron energy loss spectroscopy.

  3. Effect of NaI/I 2 mediators on properties of PEO/LiAlO 2 based all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Yin, Yijing; Zhou, Juanjuan; Mansour, Azzam N.; Zhou, Xiangyang

    NaI/I 2 mediators and activated carbon were added into poly(ethylene oxide) (PEO)/lithium aluminate (LiAlO 2) electrolyte to fabricate composite electrodes. All solid-state supercapacitors were fabricated using the as prepared composite electrodes and a Nafion 117 membrane as a separator. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were conducted to evaluate the electrochemical properties of the supercapacitors. With the addition of NaI/I 2 mediators, the specific capacitance increased by 27 folds up to 150 F g -1. The specific capacitance increased with increases in the concentration of mediators in the electrodes. The addition of mediators also reduced the electrode resistance and rendered a higher electron transfer rate between mediator and mediator. The stability of the all-solid-state supercapacitor was tested over 2000 charge/discharge cycles.

  4. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Yuan, Guanghui; Xiang, Jiming; Jin, Huafeng; Wu, Lizhou; Jin, Yanzi; Zhao, Yan

    2018-01-10

    A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG), is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g -1 after 200 cycles at 100 mA g -1 . Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li⁺ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  5. A detailed study of gerJ mutants of Bacillus subtilis.

    PubMed

    Warburg, R J; Buchanan, C E; Parent, K; Halvorson, H O

    1986-08-01

    A total of nine gerJ mutants have now been isolated in Bacillus subtilis. All are defective in their spore germination properties, being blocked at an intermediate (phase grey) stage. The dormant spores are sensitive to heating at 90 degrees C and two of the mutants (generated by transposon insertion) produce spores sensitive at 80 degrees C. The spores of these two more extreme mutants had a visibly defective cortex when studied by electron microscopy, as did some of the other mutants. During sporulation, the acquisition of spore resistance properties and the appearance of the sporulation-specific penicillin-binding protein PBP5* were delayed. A strain probably carrying a lacZ fusion to the gerJ promoter demonstrated increased expression between t2 and t4. We propose that the gerJ locus is involved in the control of one or more sporulation-specific genes.

  6. Regeneration of Waste Edible Oil by the Use of Virgin and Calcined Magnesium Hydroxide as Adsorbents.

    PubMed

    Ogata, Fumihiko; Kawasaki, Naohito

    2016-01-01

    In this study, we prepared virgin (S, L) and calcined (S-380, S-1000, L-380, L-1000) magnesium hydroxide for regeneration of waste edible oil. Deterioration of soybean oil, rapeseed oil, and olive oil was achieved by heat and aeration treatment. The properties of the different adsorbents were investigated using specific surface area measurements, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, and surface pH measurement. Moreover, the relationship between the changes in acid value (AV) and carbonyl value (CV) and the adsorbent properties were evaluated. The specific surface areas of S-380 and L-380 were greater than that of other adsorbents. In addition, the XRD results show that S-380 and L-380 contain both magnesium hydroxide and magnesium oxide structures. The decreases in AV and CV using S-380 and L-380 were greater than achieved using other adsorbents. The correlation coefficients between the decrease in AV and CV and specific surface area were 0.947 for soybean oil, 0.649 for rapeseed oil, and 0.773 for olive oil, respectively. The results obtained in this study suggest that a physical property of the adsorbent, namely specific surface area, was primarily responsible for the observed decreases in AV and CV. Overall, the results suggest that S-380 and L-380 are useful for the regeneration of waste edible oil.

  7. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  8. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    NASA Astrophysics Data System (ADS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  9. Materials Integration and Doping of Carbon Nanotube-based Logic Circuits

    NASA Astrophysics Data System (ADS)

    Geier, Michael

    Over the last 20 years, extensive research into the structure and properties of single- walled carbon nanotube (SWCNT) has elucidated many of the exceptional qualities possessed by SWCNTs, including record-setting tensile strength, excellent chemical stability, distinctive optoelectronic features, and outstanding electronic transport characteristics. In order to exploit these remarkable qualities, many application-specific hurdles must be overcome before the material can be implemented in commercial products. For electronic applications, recent advances in sorting SWCNTs by electronic type have enabled significant progress towards SWCNT-based integrated circuits. Despite these advances, demonstrations of SWCNT-based devices with suitable characteristics for large-scale integrated circuits have been limited. The processing methodologies, materials integration, and mechanistic understanding of electronic properties developed in this dissertation have enabled unprecedented scales of SWCNT-based transistor fabrication and integrated circuit demonstrations. Innovative materials selection and processing methods are at the core of this work and these advances have led to transistors with the necessary transport properties required for modern circuit integration. First, extensive collaborations with other research groups allowed for the exploration of SWCNT thin-film transistors (TFTs) using a wide variety of materials and processing methods such as new dielectric materials, hybrid semiconductor materials systems, and solution-based printing of SWCNT TFTs. These materials were integrated into circuit demonstrations such as NOR and NAND logic gates, voltage-controlled ring oscillators, and D-flip-flops using both rigid and flexible substrates. This dissertation explores strategies for implementing complementary SWCNT-based circuits, which were developed by using local metal gate structures that achieve enhancement-mode p-type and n-type SWCNT TFTs with widely separated and symmetric threshold voltages. Additionally, a novel n-type doping procedure for SWCNT TFTs was also developed utilizing a solution-processed organometallic small molecule to demonstrate the first network top-gated n-type SWCNT TFTs. Lastly, new doping and encapsulation layers were incorporated to stabilize both p-type and n-type SWCNT TFT electronic properties, which enabled the fabrication of large-scale memory circuits. Employing these materials and processing advances has addressed many application specific barriers to commercialization. For instance, the first thin-film SWCNT complementary metal-oxide-semi-conductor (CMOS) logic devices are demonstrated with sub-nanowatt static power consumption and full rail-to-rail voltage transfer characteristics. With the introduction of a new n-type Rh-based molecular dopant, the first SWCNT TFTs are fabricated in top-gate geometries over large areas with high yield. Then by utilizing robust encapsulation methods, stable and uniform electronic performance of both p-type and n-type SWCNT TFTs has been achieved. Based on these complementary SWCNT TFTs, it is possible to simulate, design, and fabricate arrays of low-power static random access memory (SRAM) circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. Together, this work provides a direct pathway for solution processable, large scale, power-efficient advanced integrated logic circuits and systems.

  10. The electronic properties of SWNTs intercalated by electron acceptors

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. V.; Kiseleva, E. A.; Verbitskii, N. I.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.

    2008-05-01

    Here we report synthesis of Chal@SWNT nanocomposites (where Chal=S, Se and Te) and the impact of the intercalated electron-acceptor compounds on the electronic properties of SWNTs. The chalcogens were introduced to the channels of single-walled carbon nanotubes by molten media technique via impregnation of pre-opened SWNTs with melted guest compounds in vacuum. HRTEM imaging confirms the filling of nanotube channels by continuous nanostructures of corresponding chalcogens. The strong influence of incorporated matter on the electronic properties of the SWNTs was detected by Raman spectroscopy.

  11. First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Qingjie; Xie, Jingpei; Wang, Changqing; Li, Liben; Wang, Aiqin; Mao, Aixia

    2018-04-01

    This paper presents a systematic study on the energetic and electronic structure of the Al(111)/6H-SiC(0001) interfaces by using first-principles calculation with density functional theory (DFT). There are all three situations for no-vacuum layer of Al/SiC superlattics, and two cases of C-terminated and Si-terminated interfaces are compared and analyzed. Through the density of states analysis, the initial information of interface combination is obtained. Then the supercells are stretched vertically along the z-axis, and the fracture of the interface is obtained, and it is pointed out that C-terminated SiC and Al interfaces have a better binding property. And, the fracture positions of C-terminated and Si-terminated interfaces are different in the process of stretching. Then, the distance variation in the process of stretching, the charge density differences, and the distribution of the electrons near the interface are analyzed. Al these work makes the specific reasons for the interface fracture are obtained at last.

  12. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors.

    PubMed

    Li, Yingzhi; Zhao, Xin; Xu, Qian; Zhang, Qinghua; Chen, Dajun

    2011-05-17

    A porous and mat-like polyaniline/sodium alginate (PANI/SA) composite with excellent electrochemical properties was polymerized in an aqueous solution with sodium sulfate as a template. Ultraviolet-visible spectra, X-ray diffraction pattern, and Fourier transform infrared spectra were employed to characterize the PANI/SA composite, indicating that the PANI/SA composite was successfully prepared. The PANI/SA nanofibers with uniform diameters from 50 to 100 nm can be observed on scanning electron microscopy. Cyclic voltammetry and galvanostatic charge/discharge tests were carried out to investigate the electrochemical properties. The PANI/SA nanostructure electrode exhibits an excellent specific capacitance as high as 2093 F g(-1), long cycle life, and fast reflect of oxidation/reduction on high current changes. The remarkable electrochemical characteristic is attributed to the nanostructured electrode materials, which generates a high electrode/electrolyte contact area and short path lengths for electronic transport and electrolyte ion. The approach is simple and can be easily extended to fabricate nanostructural composites for supercapacitor electrode materials.

  13. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach.

    PubMed

    Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

  14. Ferromagnetic phases of lunar fines and breccias - Electron magnetic resonance spectra of Apollo 16 samples

    NASA Technical Reports Server (NTRS)

    Weeks, R. A.

    1973-01-01

    Electron magnetic resonance measurements have been made at 9 GHz and at temperatures from 1.2 to 400 K and 35 GHz (300 K) on samples of fines and breccias from Apollo 11-16. Unsorted Apollo 16 fines (less than 1 mm) have Delta H (average) = 580 G and specific intensities that have the same range as fines from the other Apollo collections. The magnetic properties of the 'characteristic' resonance are not in accord with those of iron particles. On the bases of the properties of the 'characteristic' resonance as a function of temperature and Apollo site, laboratory heat treatments on synthetic materials and lunar crystalline rocks and a comparison with the 'characteristic' resonance of the resonance spectra of breccia specimens for which iron particle sizes have been determined from other measurements, it is suggested that some fraction (about 20%) of the 'characteristic' resonance is due to sub-micron particles of ferric oxide phases.

  15. Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing

    PubMed Central

    Sharma, Priyanka; Tuteja, Satish K.; Bhalla, Vijayender; Shekhawat, G.; Dravid, Vinayak P.; Suri, C.Raman

    2014-01-01

    We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene–graphene oxide (fG–GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG–GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes. PMID:22884654

  16. Evolution of the magnetic and structural properties of Fe 1 - x Co x V 2 O 4

    DOE PAGES

    Sinclair, R.; Ma, Jie; Cao, H. B.; ...

    2015-10-12

    The magnetic and structural properties of single-crystal Fe 1-xCo xV 2O 4 samples have been investigated by performing specific heat, susceptibility, neutron diffraction, and x-ray diffraction measurements. As the orbital-active Fe 2+ ions with larger ionic size are gradually substituted by the orbital-inactive Co 2+ ions with smaller ionic size, the system approaches the itinerant electron limit with decreasing V-V distance. Then, various factors such as the Jahn-Teller distortion and the spin-orbital coupling of the Fe 2+ ions on the A sites and the orbital ordering and electronic itinerancy of the V 3+ ions on the B sites compete withmore » each other to produce a complex magnetic and structural phase diagram. Finally, this phase diagram is compared to those of Fe 1-xMn xV 2O 4 and Mn 1-xCo xV 2O 4 to emphasize several distinct features.« less

  17. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopymore » and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.« less

  18. Zirconia and its allotropes; A Quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jokisaari, Andrea; Benali, Anouar; Shin, Hyeondeok; Luo, Ye; Lopez Bezanilla, Alejandro; Ratcliff, Laura; Littlewood, Peter; Heinonen, Olle

    With a high strength and stability at elevated temperatures, Zirconia (zirconium dioxide) is one of the best corrosion-resistant and refractive materials used in metallurgy, and is used in structural ceramics, catalytic converters, oxygen sensors, nuclear industry, and in chemically passivating surfaces. The wide range of applications of ZrO2 has motivated a large number of electronic structures studies of its known allotropes (monoclinic, tetragonal and cubic). Density Functional Theory has been successful at reproducing some of the fundamental properties of some of the allotropes, but these results remain dependent on the specific combination of exchange-correlation functional and type of pseudopotentials, making any type of structural prediction or defect analysis uncertain. Quantum Monte Carlo (QMC) is a many-body quantum theory solving explicitly the electronic correlations, allowing reproducing and predicting materials properties with a limited number of controlled approximations. In this study, we use QMC to revisit the energetic stability of Zirconia's allotropes and compare our results with those obtained from density functional theory.

  19. Ab initio Computations of the Electronic, Mechanical, and Thermal Properties of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray

    2011-01-01

    Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.

  20. Plasma Parameters From Reentry Signal Attenuation

    DOE PAGES

    Statom, T. K.

    2018-02-27

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  1. Growth morphology and properties of metals on graphene

    DOE PAGES

    Liu, Xiaojie; Han, Yong; Evans, James W.; ...

    2015-12-01

    Graphene, a single atomic layer of graphite, has been the focus of recent intensive studies due to its novel electronic and structural properties. With this study, metals grown on graphene also have been of interest because of their potential use as metal contacts in graphene devices, for spintronics applications, and for catalysis. All of these applications require good understanding and control of the metal growth morphology, which in part reflects the strength of the metal–graphene bond. The interaction between graphene and metal is sufficiently strong to modify the electronic structure of graphene is also of great importance. We will discussmore » recent experimental and computational studies related to deposition of metals on graphene supported on various substrates (SiC, SiO 2, and hexagonal close-packed metal surfaces). Of specific interest are the metal–graphene interactions (adsorption energies and diffusion barriers of metal adatoms), and the crystal structures and thermal stability of the metal nanoclusters.« less

  2. Characterization of electronic structure and physicochemical properties of antiparasitic nifurtimox analogues: A theoretical study

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Raya, A.; Esquivel, Rodolfo O.

    American trypanosomiasis, also known as Chagas' disease, is caused by Trypanosoma cruzi (T. cruzi). It is well known that trypanosomes, and particularly T. cruzi, are highly sensitive towards oxidative stress, i.e., to compounds than are able to produce free radicals. Generally, nifurtimox (NFX) and benznidazol are most effective in the acute phase of the disease; therefore, nitroheterocycles constitute good models to design other nitrocompounds with specific biological characteristics. Thus, we have performed an ab initio study at the Hartree-Fock and Density Functional Theory levels of theory of several NFX analogues recently synthesized, to characterize them by obtaining their electronic, structural, and physicochemical properties, which might be linked to the observed antichagasic activity. The antitrypanosomal activity scale previously reported for the NFX analogues studied in this work is in good agreement with our theoretical results, from which we can conclude that the activity seems to be related to the reactivity along with the acidity observed for the most active molecules.

  3. Mass enhancement versus Stoner enhancement in strongly correlated metallic perovskites: LaNiO3 and LaCuO3

    NASA Astrophysics Data System (ADS)

    Zhou, J.-S.; Marshall, L. G.; Goodenough, J. B.

    2014-06-01

    Measurements of physical properties, including transport and magnetic properties, specific heat, and thermal conductivity, have been performed on high-quality samples of LaNiO3 and LaCuO3 synthesized under high pressure. Some measurements, such as thermoelectric power and magnetic susceptibility, have been made under high pressure. The availability of a complete set of data enables a side-by-side comparison between these two narrowband systems. We have demonstrated unambiguously the mass enhancement due to electron-electron correlations in both systems relative to the recent density functional theory results. Correlations in these narrowband systems also enhance the magnetic susceptibility. Ferromagnetic spin fluctuations give rise to a strong Stoner enhancement in the magnetic susceptibility in the quarter-filled LaNiO3. Although we are able to tune the bandwidth by either chemical substitutions or by applying hydrostatic pressure on LaNiO3, the Stoner enhancement does not lead to the Stoner instability.

  4. Plasma Parameters From Reentry Signal Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statom, T. K.

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  5. Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes.

    PubMed

    Abel, Paul R; Chockla, Aaron M; Lin, Yong-Mao; Holmberg, Vincent C; Harris, Justin T; Korgel, Brian A; Heller, Adam; Mullins, C Buddie

    2013-03-26

    Both silicon and germanium are leading candidates to replace the carbon anode of lithium ions batteries. Silicon is attractive because of its high lithium storage capacity while germanium, a superior electronic and ionic conductor, can support much higher charge/discharge rates. Here we investigate the electronic, electrochemical and optical properties of Si(1-x)Gex thin films with x = 0, 0.25, 0.5, 0.75, and 1. Glancing angle deposition provided amorphous films of reproducible nanostructure and porosity. The film's composition and physical properties were investigated by X-ray photoelectron spectroscopy, four-point probe conductivity, Raman, and UV-vis absorption spectroscopy. The films were assembled into coin cells to test their electrochemical properties as a lithium-ion battery anode material. The cells were cycled at various C-rates to determine the upper limits for high rate performance. Adjusting the composition in the Si(1-x)Gex system demonstrates a trade-off between rate capability and specific capacity. We show that high-capacity silicon anodes and high-rate germanium anodes are merely the two extremes; the composition of Si(1-x)Gex alloys provides a new parameter to use in electrode optimization.

  6. Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode

    NASA Astrophysics Data System (ADS)

    Zheng, Honghe; Tan, Li; Liu, Gao; Song, Xiangyun; Battaglia, Vincent S.

    2012-06-01

    Li[Ni1/3Mn1/3Co1/3]O2 cathode laminate containing 8% PVDF and 7% acetylene black is fabricated and calendered to different porosities. Calendering effects on the physical and electrochemical properties of the Li[Ni1/3Mn1/3Co1/3]O2 cathode are investigated. It is found that mechanical properties of the composite laminate strongly depend on the electrode porosity whereas the electronic conductivity is not significantly affected by calendering. Electrochemical performances including the specific capacity, the first coulombic efficiency, cycling performance and rate capability for the cathode at different porosities are compared. An optimized porosity of around 30-40% is identified. Electrochemical impedance spectroscopy (EIS) studies illustrate that calendering improves the electronic conductivity between active particles at relatively high porosities, but increases charge transfer resistance at electrode/electrolyte interface at relatively low porosities. An increase of activation energy of Li interfacial transfer for the electrode at 0% porosity indicates a relatively high barrier of activation at the electrode/electrolyte interface, which accounts for the poor rate capability of the electrode at extremely low porosity.

  7. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting

    PubMed Central

    Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng

    2018-01-01

    Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture—selective laser melting (SLM) and electron beam melting (EBM)—in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples. PMID:29614712

  8. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting.

    PubMed

    Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng

    2018-03-31

    Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.

  9. Hydrodynamic & Transport Properties of Dirac Materials in the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Gochan, Matthew; Bedell, Kevin

    Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, its two dimensional version in graphene, is the focus of this work. We seek a deeper understanding of the interactions in the quantum limit within graphene. Specifically, we derive hydrodynamic and transport properties, such as the conductivity, viscosity, and spin diffusion, in the low temperature regime where electron-electron scattering is dominant. To conclude, we look at the so-called universal lower bound conjectured by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence for the ratio of shear viscosity to entropy density ratio. The lower bound, given by η / s >= ℏ / (4 πkB) , is supposedly obeyed by all quantum fluids. This leads us to ask whether or not graphene can be considered a quantum fluid and perhaps a ''nearly perfect fluid''(NPF) if this is the case, is it possible to find a violation of this bound at low temperatures.

  10. Time-resolved spectroscopic studies of photosynthetic reaction centers and tetrapyrrole chromophores for biomedical and solar-energy applications

    NASA Astrophysics Data System (ADS)

    Kee, Hooi Ling

    2008-10-01

    The photophysical properties of diverse tetrapyrrole chromophores as well as energy and electron transfer processes in tetrapyrrole dyads are investigated using static and time-resolved (femtoseconds to seconds) absorption and fluorescence spectroscopy. The goal of these studies is to elucidate the molecular design principals necessary to construct chromophores with the specific and tunable properties that will enhance applications in optical molecular imaging, photodynamic therapy, and solar-energy conversion. The kinetic properties of the transient intermediate P+H B- involving the bacteriopheophytin molecule HB on the normally inactive (B) cofactor branch of the bacterial photosynthetic reaction center are examined in Rhodobacter capsulatus mutants. Using nanosecond flash photolysis and F(L181)Y/Y(M208)F/L(M212)H mutant, the decay pathways and yields of P+HB- were measured, giving an overall yield of 13% for B-side charge separation P* → P+HB- → P+ QB- in this mutant. The goal of these studies is to understand the fundamental differences in the rates, yields, and mechanisms of charge separation and charge recombination along the two parallel electron-transport chains in the bacterial reaction center.

  11. Template-free fabrication of hierarchical In2O3 hollow microspheres with superior HCHO-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Tian, Zhebin; Wang, Qi

    2018-05-01

    Hierarchical In2O3 hollow microspheres were successfully prepared via a facile and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the Brunauer-Emmett-Teller (BET) approach. The SEM and TEM results revealed that the as-obtained hollow In2O3 microspheres is composed of In2O3 nanospheres with 200-400 nm in diameter, and the size of In2O3 microspheres is about 2-4 μm. The specific surface area of the as-prepared In2O3 is about 40.94 m2/g. The sensor based on hierarchical In2O3 hollow microspheres displays excellent sensing properties to 10 ppm HCHO, and the optimum operating temperature is relatively low (200 °C). The response value of the as-fabricated sensor to 10 ppm HCHO is about 20. Due to the sensor based on hierarchical In2O3 hollow microspheres has many advantages, such as facile preparation and excellent gas-sensing properties, it has a wide range of prospects in practical applications.

  12. Tungsten Oxide Photonic Crystals as Optical Transducer for Gas Sensing.

    PubMed

    Amrehn, Sabrina; Wu, Xia; Wagner, Thorsten

    2018-01-26

    Some metal oxide semiconductors, such as tungsten trioxide or tin dioxide, are well-known as resistive transducers for gas sensing and offer high sensitivities down to the part per billion level. Electrical signal read-out, however, limits the information obtained on the electronic properties of metal oxides to a certain frequency range and its application because of the required electrical contacts. Therefore, a novel approach for building an optical transducer for gas reactions utilizing metal oxide photonic crystals is presented here. By the rational design of the structure and composition it is possible to synthesize a functional material which allows one to obtain insight into its electronic properties in the optical frequency range with simple experimental measures. The concept is demonstrated by tungsten trioxide inverse opal structure as optical transducer material for hydrogen sensing. The sensing behavior is analyzed in a temperature range from room temperature to 500 °C and in a wide hydrogen concentration range (3000 ppm to 10%). The sensing mechanism is mainly the refractive index change resulting from hydrogen intercalation in tungsten trioxide, but the back reaction has also impact on the optical properties of this system. Detailed chemical reaction studies provide suggestions for specific sensing conditions.

  13. Lattice damage assessment and optical waveguide properties in LaAlO3 single crystal irradiated with swift Si ions

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Crespillo, M. L.; Huang, Q.; Wang, T. J.; Liu, P.; Wang, X. L.

    2017-02-01

    As one of the representative ABO3 perovskite-structured oxides, lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and has attracted plenty of fundamental research and promising applications in recent years. Electronic, magnetic, optical and other properties of LaAlO3 strongly depend on its crystal structure, which could be strongly modified owing to the nuclear or electronic energy loss deposited in an ion irradiation environment and, therefore, significantly affecting the performance of LaAlO3-based devices. In this work, utilizing swift (tens of MeV) Si-ion irradiation, the damage behavior of LaAlO3 crystal induced by nuclear or electronic energy loss has been studied in detail utilizing complementary characterization techniques. Differing from other perovskite-structured crystals in which the electronic energy loss could lead to the formation of an amorphous region based on the thermal spike mechanism, in this case, intense electronic energy loss in LaAlO3 will not induce any obvious structural damage. The effects of ion irradiation on the mechanical properties, including hardness increase and elastic modulus decrease, have been confirmed. On the other hand, considering the potential applications of LaAlO3 in the field of integrated optoelectronics, the optical-waveguide properties of the irradiation region have been studied. The significant correspondence (symmetrical inversion) between the iWKB-reconstructed refractive-index profile and SRIM-simulated dpa profile further proves the effects (irradiation-damage production and refractive-index decrease) of nuclear energy loss during the swift-ion penetration process in LaAlO3 crystal. In the case of the rather-thick damage layer produced by swift-ion irradiation, obtaining a damage profile will be constrained owing to the analysis-depth limitation of the characterization techniques (RBS/channeling), and our analysis process (optical guided-mode measurement and subsequent refractive-index-profile reconstruction) also provides a new approach to study the damage behavior (damage profile) once the functional relationship between the refractive index and lattice disorder for the specific material could be determined.

  14. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  15. Novel kaolin/polysiloxane based organic-inorganic hybrid materials: Sol-gel synthesis, characterization and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro

    2018-04-01

    New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).

  16. Interfacial Molecular Packing Determines Exciton Dynamics in Molecular Heterostructures: The Case of Pentacene-Perfluoropentacene.

    PubMed

    Rinn, Andre; Breuer, Tobias; Wiegand, Julia; Beck, Michael; Hübner, Jens; Döring, Robin C; Oestreich, Michael; Heimbrodt, Wolfram; Witte, Gregor; Chatterjee, Sangam

    2017-12-06

    The great majority of electronic and optoelectronic devices depend on interfaces between p-type and n-type semiconductors. Finding matching donor-acceptor systems in molecular semiconductors remains a challenging endeavor because structurally compatible molecules may not necessarily be suitable with respect to their optical and electronic properties, and the large exciton binding energy in these materials may favor bound electron-hole pairs rather than free carriers or charge transfer at an interface. Regardless, interfacial charge-transfer exciton states are commonly considered as an intermediate step to achieve exciton dissociation. The formation efficiency and decay dynamics of such states will strongly depend on the molecular makeup of the interface, especially the relative alignment of donor and acceptor molecules. Structurally well-defined pentacene-perfluoropentacene heterostructures of different molecular orientations are virtually ideal model systems to study the interrelation between molecular packing motifs at the interface and their electronic properties. Comparing the emission dynamics of the heterosystems and the corresponding unitary films enables accurate assignment of every observable emission signal in the heterosystems. These heterosystems feature two characteristic interface-specific luminescence channels at around 1.4 and 1.5 eV that are not observed in the unitary samples. Their emission strength strongly depends on the molecular alignment of the respective donor and acceptor molecules, emphasizing the importance of structural control for device construction.

  17. Thermoelectric Polymers and their Elastic Aerogels.

    PubMed

    Khan, Zia Ullah; Edberg, Jesper; Hamedi, Mahiar Max; Gabrielsson, Roger; Granberg, Hjalmar; Wågberg, Lars; Engquist, Isak; Berggren, Magnus; Crispin, Xavier

    2016-06-01

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  19. Design of Stretchable Electronics Against Impact.

    PubMed

    Yuan, J H; Pharr, M; Feng, X; Rogers, John A; Huang, Yonggang

    2016-10-01

    Stretchable electronics offer soft, biocompatible mechanical properties; these same properties make them susceptible to device failure associated with physical impact. This paper studies designs for stretchable electronics that resist failure from impacts due to incorporation of a viscoelastic encapsulation layer. Results indicate that the impact resistance depends on the thickness and viscoelastic properties of the encapsulation layer, as well as the duration of impact. An analytic model for the critical thickness of the encapsulation layer is established. It is shown that a commercially available, low modulus silicone material offers viscous properties that make it a good candidate as the encapsulation layer for stretchable electronics.

  20. Experimental study of optical and electrical properties of ZnO nano composites electrodeposited on n-porous silicon substrate for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Selmane, Naceur; Cheknane, Ali; Gabouze, Nourddine; Maloufi, Nabila; Aillerie, Michel

    2017-11-01

    ZnO films deposited on silicon porous substrates (PS) were prepared by electro-deposition anodization on n type (100) silicon wafer. This ZnO/PS structure combines substrates having specific structural and optical properties (IR emission), with nano-composites of ZnO potentially interesting due to their functional properties (UV emission) to be integrated as constitutive elements of devices in various optoelectronic applications mainly in blue light emitters. With this combined structure, the blue shift in the PL peak is possible and easy to obtain (467nm). The vibration modes of PS and ZnO films on PS substrates (ZnO /PS) were investigated by infrared (FTIR) measurements and their behaviors were analyzed and discussed by considering the structural properties characterized by X-ray diffraction (DRX) and scanning electronic microscopy (MEB).

  1. Comparison of Microinstability Properties for Stellarator Magnetic Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Rewoldt; L.-P. Ku; W.M. Tang

    2005-06-16

    The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presencemore » of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.« less

  2. Production and mechanical properties of Al-SiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Karvanis, K.; Fasnakis, D.; Maropoulos, A.; Papanikolaou, S.

    2016-11-01

    The usage of Al-SiC Metal Matrix Composites is constantly increasing in the last years due to their unique properties such as light weight, high strength, high specific modulus, high fatigue strength, high hardness and low density. Al-SiC composites of various carbide compositions were produced using a centrifugal casting machine. The mechanical properties, tensile and compression strength, hardness and drop-weight impact strength were studied in order to determine the optimum carbide % in the metal matrix composites. Scanning electron microscopy was used to study the microstructure-property correlation. It was observed that the tensile and the compressive strength of the composites increased as the proportion of silicon carbide became higher in the composites. Also with increasing proportion of silicon carbide in the composite, the material became harder and appeared to have smaller values for total displacement and total energy during impact testing.

  3. Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties

    NASA Astrophysics Data System (ADS)

    Nagpal, Prashant; Singh, Vivek; Ding, Yuchen

    2014-03-01

    Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.

  4. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  5. Study of Plasma Motor Generator (PMG) tether system for orbit reboost

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Detailed designs were produced for a 2 kW plasma motor generator tether system based largely on existing hardware and hardware designs. Specifically, the hollow cathode design and electronics are derived from ion propulsion equipment. A prototype tether was constructed and will be tested for deployment, strength, resistance to breakage and abrasion and electrical properties. In addition, laboratory development models of the electronics will be used to operate two plasma motor generator hollow cathode assemblies with this tether to verify electrical performance parameters for the complete system. Results show that a low cost demonstration of a plasma motor generator tether system appears to be feasible by the middle of the 1990s.

  6. Dynamics of the Trapped Electron Phase Space Density in Relation to the Wave Activity in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J.

    2008-05-01

    The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.

  7. High-nuclearity mixed-valence clusters and mixed-valence chains: general approach to the calculation of the energy levels and bulk magnetic properties.

    PubMed

    Clemente-Juan, J M; Borrás-Almenar, J J; Coronado, E; Palii, A V; Tsukerblat, B S

    2009-05-18

    A general approach to the problem of electron delocalization in the high-nuclearity mixed-valence (MV) clusters containing an arbitrary number of localized spins and itinerant electrons is developed. Along with the double exchange, we consider the isotropic magnetic exchange between the localized electrons as well as the Coulomb intercenter repulsion. As distinguished from the previous approaches dealing with the MV systems in which itinerant electrons are delocalized over all constituent metal sites, here, we consider a more common case of systems exhibiting partial delocalization and containing several delocalized domains. Taking full advantage of the powerful angular momentum technique, we were able to derive closed form analytical expressions for the matrix elements of the full Hamiltonian. These expressions provide an efficient tool for treating complex mixed-valence systems, because they contain only products of 6j-symbols (that appear while treating the delocalized parts) and 9j-symbols (exchange interactions in localized parts) and do not contain high-order recoupling coefficients and 3j-symbols that essentially constrained all previous theories of mixed valency. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk thermodynamic properties (magnetic susceptibility, magnetization, and magnetic specific heat) of high-nuclearity MV clusters. Finally, this approach has been used to discuss the magnetic properties of the octanuclear MV cluster [Fe(8)(mu(4)-O)(4)(4-Cl-pz)(12)Cl(4)](-) and the diphthalocyanine chains [YPc(2)].CH(2)Cl(2) and [ScPc(2)].CH(2)Cl(2) composed of MV dimers interacting through the magnetic exchange and Coulomb repulsion.

  8. Investigating the Structural, Thermal, and Electronic Properties of the Zircon-Type ZrSiO4, ZrGeO4 and HfSiO4 Compounds

    NASA Astrophysics Data System (ADS)

    Chiker, Fafa; Boukabrine, Fatiha; Khachai, H.; Khenata, R.; Mathieu, C.; Bin Omran, S.; Syrotyuk, S. V.; Ahmed, W. K.; Murtaza, G.

    2016-11-01

    In the present study, the structural, thermal, and electronic properties of some important orthosilicate dielectrics, such as the ZrSiO4, ZrGeO4, and HfSiO4 compounds, have been investigated theoretically with the use of first-principle calculations. We attribute the application of the modified Becke-Johnson exchange potential, which is basically an improvement over the local density approximation and the Perdew-Burke-Ernzerhof exchange-correlation functional, for a better description of the band gaps of the compounds. This resulted in a good agreement with our estimated values in comparison with the reported experimental data, specifically for the ZrSiO4, and HfSiO4 compounds. Conversely, for the ZrGeO4 compound, the calculated electronic band structure shows a direct band gap at the Γ point with the value of 5.79 eV. Furthermore, our evaluated thermal properties that are calculated by using the quasi-harmonic Debye model indicated that the volume variation with temperature is higher in the ZrGeO4 compound as compared to both the ZrSiO4 and HfSiO4 compounds, which is ascribed to the difference between the electron shells of the Si and Ge atoms. Therefore, these results also indicate that while the entropy ( S) and enthalpy ( U) parameters increase monotonically, the free energy ( G), in contrast, decreases monotonically with increasing temperature, respectively. Moreover, the pressure and temperature dependencies of the Debye temperature Θ, thermal expansion coefficient, and heat capacities C V were also predicted in our study.

  9. Structural and Electronic Properties of Transition-Metal Oxides Attached to a Single-Walled CNT as a Lithium-Ion Battery Electrode: A First-Principles Study.

    PubMed

    Tack, Liew Weng; Azam, Mohd Asyadi; Seman, Raja Noor Amalina Raja

    2017-04-06

    Single-walled carbon nanotubes (SWCNTs) and metal oxides (MOs), such as manganese(IV) oxide (MnO 2 ), cobalt(II, III) oxide (Co 3 O 4 ), and nickel(II) oxide (NiO) hybrid structures, have received great attention because of their promising application in lithium-ion batteries (LIBs). As electrode materials for LIBs, the structure of SWCNT/MOs provides high power density, good electrical conductivity, and excellent cyclic stability. In this work, first-principles calculations were used to investigate the structural and electronic properties of MOs attached to (5, 5) SWCNT and Li-ion adsorption to SWCNT/metal oxide composites as electrode materials in LIBs. Emphasis was placed on the synergistic effects of the composite on the electrochemical performance of LIBs in terms of adsorption capabilities and charge transfer of Li-ions attached to (5, 5) SWCNT and metal oxides. Also, Li adsorption energy on SWCNTs and three different metal oxides (NiO, MnO 2 , and Co 3 O 4 ) and the accompanying changes in the electronic properties, such as band structure, density of states and charge distribution as a function of Li adsorption were calculated. On the basis of the calculation results, the top C atom was found to be the most stable position for the NiO and MnO 2 attachment to SWCNT, while the Co 3 O 4 molecule, the Co 2+ , was found to be the most stable attachment on SWCNT. The obtained results show that the addition of MOs to the SWCNT electrode enables an increase in specific surface area and improves the electronic conductivity and charge transfer of an LIB.

  10. Some physical properties of naturally irradiated fluorite

    USGS Publications Warehouse

    Berman, Robert

    1955-01-01

    Five samples of purple fluorite found in association with radioactive, materials, and a synthetic colorless control sample were studied and compared.  Before and after heating, observations were made on specific gravity, index of refraction, unit-cell size, breadth of X-ray diffraction lines, and fluorescence.  The purple samples became colorless on heating above 175° C.  During the process, observations were made on color, thermoluminescence, and differential thermal analysis curves.  There were strong correlations between the various physical properties, and it was found possible to arrange the samples in order of increasing difference in their physical properties from the control sample. This order apparently represents increasing structural damage by radiation; if so, it correlates with decreasing specific gravity, increasing index of refraction, broadening of X-ray lines, and increasingly strong exothermic reactions on annealing. The differences between the samples in index of refraction and X-ray pattern are largely eliminated on annealing.  Annealing begins at 1750 C; thermoluminescence at lower temperatures is due to electrons escaping from the metastable potential traps, not the destruction of those traps which takes place on annealing.

  11. Consequences of cavity size and chemical environment on the adsorption properties of isoreticular metal-organic frameworks: an inverse gas chromatography study.

    PubMed

    Gutiérrez, Inés; Díaz, Eva; Vega, Aurelio; Ordóñez, Salvador

    2013-01-25

    The role of the structure of three isoreticular metal-organic frameworks (IRMOFs) on their adsorption behavior has been studied in this work, selecting different kinds of volatile organic compounds (VOCs) as adsorbates (alkanes, alkenes, cycloalkanes, aromatics and chlorinated). For this purpose, three samples (IRMOF-1, IRMOF-8 and IRMOF-10) with cubic structure and without functionalities on the organic linkers were synthesized. Adsorption capacities at infinite dilution were derived from the adsorption isotherms, whereas thermodynamic properties have been determined from chromatographic retention volume. The capacity and the strength of adsorption were strongly influenced by the adsorbate size. This effect is especially relevant for n-alkanes adsorption, indicating the key role of the cavity size on this phenomenon, and hence the importance of the IRMOF structural properties. A different behavior has been observed for the polar compounds, where an enhancement on the specificity of the adsorption with the π-electron rich regions was observed. This fact suggests the specific interaction of these molecules with the organic linkers of the IRMOFs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    NASA Astrophysics Data System (ADS)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  13. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.

  14. Effect of etching time on morphological, optical, and electronic properties of silicon nanowires

    PubMed Central

    2012-01-01

    Owing to their interesting electronic, mechanical, optical, and transport properties, silicon nanowires (SiNWs) have attracted much attention, giving opportunities to several potential applications in nanoscale electronic, optoelectronic devices, and silicon solar cells. For photovoltaic application, a superficial film of SiNWs could be used as an efficient antireflection coating. In this work we investigate the morphological, optical, and electronic properties of SiNWs fabricated at different etching times. Characterizations of the formed SiNWs films were performed using a scanning electron microscope, ultraviolet–visible-near-infrared spectroscopy, and light-beam-induced-current technique. The latter technique was used to determine the effective diffusion length in SiNWs films. From these investigations, we deduce that the homogeneity of the SiNWs film plays a key role on the electronic properties. PMID:22799265

  15. Arc-evaporated carbon films: optical properties and electron mean free paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.W.; Arakawa, E.T.; Dolfini, S.M.

    1984-01-01

    This paper describes briefly a method which can be used to calculate inelastic mean free paths for electrons with energies in the range of interest for the interpretation of surface phenomena. This method requires a knowledge of the optical properties of the material for the photon energies associated with the oscillator strength of the valence electrons. However, in general it is easier to obtain accurate values of the required properties than it is to measure the electron attenuation lengths in the energy region of interest. This technique, demonstrated here for arc-evaporated carbon, can be used for any material for whichmore » the optical properties can be measured over essentially the whole energy range corresponding to the valence electron response.« less

  16. Charge Transport Processes in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires. Using quantum-based calculations, we modeled 'p-type' polaron transport through oligophenylenethiophene (OPTI) wires and assigned transport activation energies to specific modes of nuclear motion. We also show control over 'n-type', LUMO-mediated transport in short ( 2 nm) redox-active perylenediimide (PDI) SAMs bound to contacts through isocyano linkers. By changing the contact work function (φ) and temperature, we were able to verify thermally-assisted LUMO transport. Transition voltage spectroscopy and the single level model was employed to fit the experimental I-V curves and extract the electronic coupling (epsilon) and the EF-LUMO offset (epsilonl). It was found that epsilonl does not change with φ (LUMO pinning), while Gamma changes with both φ and temperature. Further, the PDI SAMs could be reversibly chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  17. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS4 single crystal

    NASA Astrophysics Data System (ADS)

    Pei, Q. L.; Luo, X.; Lin, G. T.; Song, J. Y.; Hu, L.; Zou, Y. M.; Yu, L.; Tong, W.; Song, W. H.; Lu, W. J.; Sun, Y. P.

    2016-01-01

    2-Dimensional (2D) CrPS4 single crystals have been grown by the chemical vapor transport method. The crystallographic, magnetic, electronic, and thermal transport properties of the single crystals were investigated by the room-temperature X-ray diffraction, electrical resistivity ρ(T), specific heat CP(T), and the electronic spin response (ESR) measurements. CrPS4 crystals crystallize into a monoclinic structure. The electrical resistivity ρ(T) shows a semiconducting behavior with an energy gap Ea = 0.166 eV. The antiferromagnetic transition temperature is about TN = 36 K. The spin flipping induced by the applied magnetic field is observed along the c axis. The magnetic phase diagram of CrPS4 single crystal has been discussed. The extracted magnetic entropy at TN is about 10.8 J/mol K, which is consistent with the theoretical value R ln(2S + 1) for S = 3/2 of the Cr3+ ion. Based on the mean-field theory, the magnetic exchange constants J1 and Jc corresponding to the interactions of the intralayer and between layers are about 0.143 meV and -0.955 meV are obtained based on the fitting of the susceptibility above TN, which agree with the results obtained from the ESR measurements. With the help of the strain for tuning the magnetic properties, monolayer CrPS4 may be a promising candidate to explore 2D magnetic semiconductors.

  18. Prospects for Engineering Thermoelectric Properties in La1/3NbO3 Ceramics Revealed via Atomic-Level Characterization and Modeling.

    PubMed

    Kepaptsoglou, Demie; Baran, Jakub D; Azough, Feridoon; Ekren, Dursun; Srivastava, Deepanshu; Molinari, Marco; Parker, Stephen C; Ramasse, Quentin M; Freer, Robert

    2018-01-02

    A combination of experimental and computational techniques has been employed to explore the crystal structure and thermoelectric properties of A-site-deficient perovskite La 1/3 NbO 3 ceramics. Crystallographic data from X-ray and electron diffraction confirmed that the room temperature structure is orthorhombic with Cmmm as a space group. Atomically resolved imaging and analysis showed that there are two distinct A sites: one is occupied with La and vacancies, and the second site is fully unoccupied. The diffuse superstructure reflections observed through diffraction techniques are shown to originate from La vacancy ordering. La 1/3 NbO 3 ceramics sintered in air showed promising high-temperature thermoelectric properties with a high Seebeck coefficient of S 1 = -650 to -700 μV/K and a low and temperature-stable thermal conductivity of k = 2-2.2 W/m·K in the temperature range of 300-1000 K. First-principles electronic structure calculations are used to link the temperature dependence of the Seebeck coefficient measured experimentally to the evolution of the density of states with temperature and indicate possible avenues for further optimization through electron doping and control of the A-site occupancies. Moreover, lattice thermal conductivity calculations give insights into the dependence of the thermal conductivity on specific crystallographic directions of the material, which could be exploited via nanostructuring to create high-efficiency compound thermoelectrics.

  19. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.

    PubMed

    Sahoo, Banalata; Devi, K Sanjana P; Banerjee, Rakesh; Maiti, Tapas K; Pramanik, Panchanan; Dhara, Dibakar

    2013-05-01

    Targeted and efficient delivery of therapeutics to tumor cells is one of the key issues in cancer therapy. In the present work, we report a temperature and pH dual responsive core-shell nanoparticles comprising smart polymer shell coated on magnetic nanoparticles as an anticancer drug carrier and cancer cell-specific targeting agent. Magnetite nanoparticles (MNPs), prepared by a simple coprecipitation method, was surface modified by introducing amine groups using 3-aminopropyltriethoxysilane. Dual-responsive poly(N-isopropylacrylamide)-block-poly(acrylic acid) copolymer, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, was then attached to the amine-functionalized MNPs via EDC/NHS method. Further, to accomplish cancer-specific targeting properties, folic acid was tethered to the surface of the nanoparticles. Thereafter, rhodamine B isothiocyanate was conjugated to endow fluorescent property to the MNPs required for cellular imaging applications. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), zeta potential, vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) measurements, and FTIR, UV-vis spectral analysis. Doxorubicin (DOX), an anticancer drug used for the present study, was loaded into the nanoparticles and its release behavior was subsequently studied. Result showed a sustained release of DOX preferentially at the desired lysosomal pH and temperature condition. The biological activity of the DOX-loaded MNPs was studied by MTT assay, fluorescence microscopy, and apoptosis. Intracellular-uptake studies revealed preferential uptake of these nanoparticles into cancer cells (HeLa cells) compared to normal fibroblast cells (L929 cells). The in vitro apoptosis study revealed that the DOX-loaded nanoparticles caused significant death to the HeLa cells. These nanoparticles were capable of target specific release of the loaded drug in response to pH and temperature and hence may serve as a potential drug carrier for in vivo applications.

  20. A first-principles study of electronic properties of H and F-terminated zigzag BNC nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaal, Naresh; Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.; Department of Materials Engineering, Monash University, Clayton, Victoria -3800, Australia.

    2016-05-06

    Nanoribbons are quasi one-dimensional structures which have interesting electronic properties on the basis of their edge geometries, and width. We studied the electronic properties of hydrogen and fluorine-terminated zigzag BNC nanoribbons (BNCNRs) using a first-principles based density functional theory approach. We considered BNCNRs that were composed of an equal number of C-C and B-N dimers; one of the edges ends with an N atom and opposite edge ends with a C atom. These two edge atoms are passivated by H or F atoms. Our results suggest that hydrogen-terminated BNCNRs (H-BNCNRs) and flourine-terminated BNCNRs (F-BNCNRs) have different electronic properties. H-BNCNRs exhibitmore » intrinsic half-metallic behavior while F-BNCNRs are indirect band gap semiconductors. Chemical functionalization of BNCNRs with H and F atoms show that BNCNRs have a diverse range of electronic properties.« less

  1. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface.

    PubMed

    Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui

    2013-03-07

    Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.

  2. Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein.

    PubMed

    Niu, Yanlian; Yang, Tian; Ma, Shangshang; Peng, Fang; Yi, Meihui; Wan, Mimi; Mao, Chun; Shen, Jian

    2017-06-15

    A novel label-free immunosensor based on hyperbranched polyester nanoparticles with nitrite groups (HBPE-NO 2 ), which were synthesized through a simple one-step chemical reaction, was first developed for specific detection of α-fetoprotein (AFP), the tumor marker for liver cancer. The obtained HBPE-NO 2 nanoparticles (NPs) were characterized by the proton nuclear magnetic resonance spectroscopy ( 1 H NMR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). And the fabricated process of immunosensor was investigated by attenuated total reflection Fourier-transform infrared spectra (ATR-FTIR), static water contact angles, scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the AFP immunosensor were studied. Results indicated the prepared HBPE-NO 2 -modified immunosensor showed excellent electrochemical properties and satisfactory accuracy for the detection of AFP of the real clinical samples that attributed to the properties of the HBPE-NO 2 NPs, which had nanosized structure to increase the specific surface area and unique chemical reactivity for loading capacity of protein molecules. Construction of biosensors using the structure and properties of hyperbranched molecules will offer ideal electrode substrates, which provided more possibilities for the design of biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.

    PubMed

    Liyanage, Wathsala; Nilsson, Bradley L

    2016-01-26

    Supramolecular hydrogels derived from the self-assembly of organic molecules have been exploited for applications ranging from drug delivery to tissue engineering. The relationship between the structure of the assembly motif and the emergent properties of the resulting materials is often poorly understood, impeding rational approaches for the creation of next-generation materials. Aromatic π-π interactions play a significant role in the self-assembly of many supramolecular hydrogelators, but the exact nature of these interactions lacks definition. Conventional models that describe π-π interactions rely on quadrupolar electrostatic interactions between neighboring aryl groups in the π-system. However, recent experimental and computational studies reveal the potential importance of local dipolar interactions between elements of neighboring aromatic rings in stabilizing π-π interactions. Herein, we examine the nature of π-π interactions in the self- and coassembly of Fmoc-Phe-derived hydrogelators by systematically varying the electron-donating or electron-withdrawing nature of the side chain benzyl substituents and correlating these effects to the emergent assembly and gelation properties of the systems. These studies indicate a significant role for stabilizing dipolar interactions between neighboring benzyl groups in the assembled materials. Additional evidence for specific dipolar interactions is provided by high-resolution crystal structures obtained from dynamic transition of gel fibrils to crystals for several of the self-assembled/coassembled Fmoc-Phe derivatives. In addition to electronic effects, steric properties also have a significant effect on the interaction between neighboring benzyl groups in these assembled systems. These findings provide significant insight into the structure-function relationship for Fmoc-Phe-derived hydrogelators and give cues for the design of next-generation materials with desired emergent properties.

  4. Controlling the Charge State and Redox Properties of Supported Polyoxometalates via Soft Landing of Mass Selected Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity

    2014-12-04

    We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply chargedmore » anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.« less

  5. Electronic properties of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Richert, Brent Armand

    1989-08-01

    A semiempirical tight-binding model was developed for the electronic energy bands, the local and total densities of states, and the atomic valences in the high temperature superconductors La(1.85)Sr(0.15)CuO4, YBaCu307, Bi2Sr2CuO6, Bi2CaSr2Cu2O8, Tl2Ba2CuO6, Tl2CaBa2Cu2O8, Tl2Ca2Ba2Cu3O10, TlCa3Ba2Cu4O11, BaPb(0.75)Bi(0.25)O3, and Ba(0.6)K(0.4)BiO3. Calculations of the changes in electronic properties associated with atomic substitutions in YBa2Cu3O7, Bi2CaSr2Cu2O8, and Tl2CaBa2Cu2O8 give results in agreement with expected chemical trends and consistent with observed changes in the superconducting properties. For example, substitution of Lead for Bismuth in BiMCaSr2Cu2O8 increases the concentration of hole carriers within the CuO2 planes. Similarly, doping with Mercury or Pb in TlMCaBa2Cu2O8 also affects the carrier concentration, with Hg creating holes and Pb destroying them. Oxygen vacancies in both La(1.85)Sr(0.15)CuO(4-y) and YBa2Cu3O(7-y) act as electron donors. This is consistent with the observations that oxygen vacancies degrade the superconductivity and metallic conductivity in these materials. Lanthanum vacancies in La2-xCuO4 donate holes, giving the same electronic effect as doping with divalent metal atoms or excess oxygen initially stoichiometric La2CuO4. A specific excitonic mechanism for high temperature superconductivity is proposed which requires insulating metal oxide layers adjacent to the superconducting planes.

  6. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.

    PubMed

    Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S

    2011-02-01

    Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  7. Contact Resistance and Channel Conductance of Graphene Field-Effect Transistors under Low-Energy Electron Irradiation

    PubMed Central

    Giubileo, Filippo; Di Bartolomeo, Antonio; Martucciello, Nadia; Romeo, Francesco; Iemmo, Laura; Romano, Paola; Passacantando, Maurizio

    2016-01-01

    We studied the effects of low-energy electron beam irradiation up to 10 keV on graphene-based field effect transistors. We fabricated metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO2, obtaining specific contact resistivity ρc≈19 kΩ·µm2 and carrier mobility as high as 4000 cm2·V−1·s−1. By using a highly doped p-Si/SiO2 substrate as the back gate, we analyzed the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate herein that low energy irradiation is detrimental to the transistor current capability, resulting in an increase in contact resistance and a reduction in carrier mobility, even at electron doses as low as 30 e−/nm2. We also show that irradiated devices recover their pristine state after few repeated electrical measurements. PMID:28335335

  8. Entanglement entropy of electronic excitations.

    PubMed

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  9. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2.

    PubMed

    Li, Zuocheng; Yan, Xingxu; Tang, Zhenkun; Huo, Ziyang; Li, Guoliang; Jiao, Liying; Liu, Li-Min; Zhang, Miao; Luo, Jun; Zhu, Jing

    2017-08-16

    Electronic properties of two-dimensional (2D) MoS 2 semiconductors can be modulated by introducing specific defects. One important type of defect in 2D layered materials is known as rotational stacking fault (RSF), but the coexistence of multiple RSFs with different rotational angles was not directly observed in freestanding 2D MoS 2 before. In this report, we demonstrate the coexistence of three RSFs with three different rotational angles in a freestanding bilayer MoS 2 sheet as directly observed using an aberration-corrected transmission electron microscope (TEM). Our analyses show that these RSFs originate from cracks and dislocations within the bilayer MoS 2 . First-principles calculations indicate that RSFs with different rotational angles change the electronic structures of bilayer MoS 2 and produce two new symmetries in their bandgaps and offset crystal momentums. Therefore, employing RSFs and their coexistence is a promising route in defect engineering of MoS 2 to fabricate suitable devices for electronics, optoelectronics, and energy conversion.

  10. Electronic transport properties of intermediately coupled superconductors: PdTe2 and Cu0.04PdTe2

    NASA Astrophysics Data System (ADS)

    Hooda, M. K.; Yadav, C. S.

    2018-01-01

    We have investigated the electrical resistivity (1.8-480 K), Seebeck coefficient (2.5-300 K) and thermal conductivity (2.5-300 K) of PdTe2 and 4% Cu intercalated PdTe2 compounds. The electrical resistivity for the compounds shows a Bloch-Gruneisen-type linear temperature (T) dependence for 100 \\text{K}, and Fermi liquid behavior (ρ (T) \\propto T2) for T<50 \\text{K} . Seebeck coefficient data exhibit a strong competition between Normal (N) and Umklapp (U) scattering processes at low T. The low-T, thermal conductivity (κ) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T-dependence below 10 K. However, high-T, κ (T) shows the usual 1/T -dependence, dominated by the U-scattering process. The electron-phonon coupling parameters, estimated from the low-T, specific-heat data and first-principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.

  11. Templated synthesis of nanoporous titania/nanocarbon composites

    NASA Astrophysics Data System (ADS)

    Mistry, Jayur

    Hexagonally patterned (honeycomb structured) nano-porous titania finds distinct applications in the field of material science, electronics, and catalysis. The preparation of titania/nanocarbon composites was carried out using titanium iso-propoxide precursor and a viscous surfactant templated system arranged into nanoscopic channels of water and iso-octane. Nanocarbon was introduced into the titania pores, as it was dispersed into the water (used to increase the W0), while making templets. Prepared titania/nanocarbon composites were analyzed under scanning electron microscopy (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD) after a specific heat treatment. SEM and TEM allows us to see the morphology of the hexagonally patterned templates and XRD shows the change in the crystallinity of the titania after the heat treatment. Further tests are run with the Solartron™ CellTest potentiostat syste, which, allows us to study the electrical properties of the nanocomposites. The composites synthesized have wide applications in number of fields, including energy, sensors and electronics.

  12. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There aremore » correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.« less

  13. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity.

    PubMed

    Smith, Dayle M A; Raugei, Simone; Squier, Thomas C

    2014-11-21

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  14. Effect of solvent, electronic, and steric factors on the reactivity of 1,1'-diethylferrocene, 1,1'-diacetylferrocene, and 1,1'-bis(diphenylphosphino)ferrocene towards hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Kochetkova, K. S.; Galkina, M. S.

    2017-07-01

    The oxidation of Fc(C2H5)2, Fc(COCH3)2, and Fc(PPh2)2, where Fc is a ferrocene, with hydrogen peroxide in aprotic (dioxane and acetonitrile) and hydroxyl-containing (ethanol, acetonitrile-water, and water) solvents is studied via electron spectroscopy. The reactivity of these metal complexes relative to an oxidant is due to the electron-donor or electron-acceptor properties of substituents, their sizes, and their capability for the specific solvation by a particular solvent. Possible mechanisms of the oxidation of metal complexes are discussed. When Fc(PPh2)2 is oxidized, the formation of ferrocenyl cation Fc+(PPh2)2 is due to the redox isomerism of ferrocenylphosphonium cation Fc(PPh2)P+Ph2, which can form during the reaction between protonated complex Fc(PPh2)P(H+)Ph2 and H2O2.

  15. Electronic energy loss spectra from mono-layer to few layers of phosphorene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Thakur, Rajesh; Ahluwalia, P. K.

    2016-05-23

    Using first principles calculations, electronic and optical properties of few-layers phosphorene has been investigated. Electronic band structure show a moderate band gap of 0.9 eV in monolayer phosphorene which decreases with increasing number of layers. Optical properties of few-layers of phosphorene in infrared and visible region shows tunability with number of layers. Electron energy loss function has been plotted and huge red shift in plasmonic behaviours is found. These tunable electronic and optical properties of few-layers of phosphorene can be useful for the applications of optoelectronic devices.

  16. Electron beam irradiation effects on ethylene-tetrafluoroethylene copolymer films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Saidi, Hamdani; Dahlan, Khairul Zaman M.

    2003-12-01

    The effects of electron beam irradiation on ethylene-tetrafluoroethylene copolymer (ETFE) films were studied. Samples were irradiated in air at room temperature by a universal electron beam accelerator for doses ranging from 100 to 1200 kGy. Irradiated samples were investigated with respect to their chemical structure, thermal characteristics, crystallinity and mechanical properties using FTIR, differential scanning calorimeter (DSC) and universal mechanical tester. The interaction of electron irradiation with ETFE films was found to induce dose-dependent changes in all the investigated properties. A mechanism for electron-induced reactions is proposed to explain the structure-property behaviour of irradiated ETFE films.

  17. Electronic conduction in doped multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.

    2009-03-01

    Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.

  18. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph. P.; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong

    2016-01-01

    Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application.Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement for DSSC application. Electronic supplementary information (ESI) available: UV/Vis absorption spectra of GNP/ZnO-NT photoanodes with GNPs obtained with deposition for 30, 60, 300, and 600 s, showing the similar absorbance in the visible region for deposition time above 300 s (Fig. S1); current density vs. voltage profile of GNP/ZnO-NT based DSSC with agglomerated GNPs obtained by using a 10 mM AuCl3 electrolyte. (Fig. S2); and UV/Vis absorption spectra of pristine ZnO-NT and GNP/ZnO-NT samples (Fig. S3). See DOI: 10.1039/c5nr08029k

  19. On the influence of various physicochemical properties of the CNTs based implantable devices on the fibroblasts' reaction in vitro.

    PubMed

    Benko, Aleksandra; Frączek-Szczypta, Aneta; Menaszek, Elżbieta; Wyrwa, Jan; Nocuń, Marek; Błażewicz, Marta

    2015-11-01

    Coating the material with a layer of carbon nanotubes (CNTs) has been a subject of particular interest for the development of new biomaterials. Such coatings, made of properly selected CNTs, may constitute an implantable electronic device that facilitates tissue regeneration both by specific surface properties and an ability to electrically stimulate the cells. The goal of the presented study was to produce, evaluate physicochemical properties and test the applicability of highly conductible material designed as an implantable electronic device. Two types of CNTs with varying level of oxidation were chosen. The process of coating involved suspension of the material of choice in the diluent followed by the electrophoretic deposition to fabricate layers on the surface of a highly biocompatible metal-titanium. Presented study includes an assessment of the physicochemical properties of the material's surface along with an electrochemical evaluation and in vitro biocompatibility, cytotoxicity and apoptosis studies in contact with the murine fibroblasts (L929) in attempt to answer the question how the chemical composition and CNTs distribution in the layer alters the electrical properties of the sample and whether any of these properties have influenced the overall biocompatibility and stimulated adhesion of fibroblasts. The results indicate that higher level of oxidation of CNTs yielded materials more conductive than the metal they are deposited on. In vitro study revealed that both materials were biocompatible and that the cells were not affected by the amount of the functional group and the morphology of the surface they adhered to.

  20. Vacancy and curvature effects on the phonon properties of single wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hossain Howlader, Ashraful; Sherajul Islam, Md.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    Single wall carbon nanotube (SWCNT) is considered as an ideal candidate for next-generation nanoelectronics owing to its unusual properties. Here we have performed an in-depth theoretical analysis of the effect of vacancy defects and curvature on the phonon properties of (10,0) and (10,10) SWCNTs using the forced vibrational method. We report that Raman active E2g mode softens towards the low-frequency region with increasing vacancies and curvature in both types of CNTs. Vacancy induces some new peaks at low-frequency region of the phonon density of states. Phonon localization properties are also manifested. Our calculated mode pattern and localization length show that optical phonon at Raman D-band frequency is strongly localized in vacancy defected and large curved CNTs. Our findings will be helpful in explaining the thermal conductivity, specific heat capacity, and Raman spectra in vacancy type disordered CNTs, as well as electron transport properties of CNT-based nanoelectronic devices.

  1. Influence of electron irradiation on the structural and thermal properties of silk fibroin films

    NASA Astrophysics Data System (ADS)

    Asha, S.; Sangappa, Sanjeev, Ganesh

    2015-06-01

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  2. Fine tuning of graphene properties by modification with aryl halogens

    NASA Astrophysics Data System (ADS)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  3. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging

    DOE PAGES

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...

    2017-07-04

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3NH 3PbI 3–xCl x) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmissionmore » microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less

  4. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  5. Transport properties of correlated metals: A dynamical mean field theory perspective

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu

    Strongly correlated metals, including many transition metal oxides, are characterized by unconventional transport properties with anomalous temperature dependence. For example, in many systems Fermi liquid behavior holds only below an extremely low temperature while at high temperature these bad metals have large resistivity which exceeds the Mott-Ioffe-Regel (MIR) limit. Material specific calculation of these anomalous transport properties is an outstanding challenge. Recent advances enabled us to study the transport and optical properties of two archetypal correlated oxides, vanadium oxides and ruthenates, using the LDA +DMFT method. In V2O3, the prototypical Mott system, our computed resistivity and optical conductivity are in very good agreement with experimental measurements, which clearly demonstrates that the strong correlation dominates the transport of this material. Furthermore by expressing the resistivity in terms of an effective plasma frequency and an effective scattering rate, we uncover the so-called ''hidden Fermi liquid'' [1, 2, 3] behavior, in both the computed and measured optical response of V2O3. This paradigm explains the optics and transport in other materials such as NdNiO3 film and CaRuO3. In the ruthenates family, we carried out a systematical theoretical study on the transport properties of four metallic members, Sr2RuO4, Sr3Ru2O7, SrRuO3 and CaRuO3, which generally encapsulates the gradually structure evolution from two-dimension to three dimension. With a unified computational scheme, we are able to obtain the electronic structure and transport properties of all these materials. The computed effective mass enhancement, resistivity and optical conductivity are good agreement with experimental measurements, which indicates that electron-electron scattering dominates the transport of ruthenates. We explain why the single layered compound Sr2RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity. Comparing our results with experimental data, benchmarks the capability as well as the limitations of existing methodologies for describing transport properties of realistic correlated materials. Supported by NSF DMR-1308141.

  6. Discovery of a Superconducting High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  7. Modern Possibilities for Calculating Some Properties of Molecules and Crystals from the Experimental Electron Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stash, A.I.; Tsirelson, V.G.

    2005-03-01

    Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes itmore » possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.« less

  8. Strongly correlated surface states

    NASA Astrophysics Data System (ADS)

    Alexandrov, Victor A.

    Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo band banding (KBB): a modification of edges and their properties due to interactions. We study (chapter 5) a simplified 1D Kondo model, showing that the topology of its ground state is unstable to KBB. Chapter 6 expands the study to 3D: we argue that not only KBB preserves the topology but it could also explain the experimentally observed anomalously high Fermi velocity at the surface as the case of large KBB effect.

  9. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  10. Theoretical study on the electronic structures and phosphorescent properties of four Ir(III) complexes with different substituents on the ancillary ligand

    NASA Astrophysics Data System (ADS)

    Han, Deming; Shang, Xiaohong; Zhang, Gang; Zhao, Lihui

    2013-12-01

    The geometry structures, electronic structures, absorption and phosphorescent properties of four Ir(III) complexes {[(F2-ppy)2Ir(pta-X)], where F2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = -CF3; -H; -CH3; -N(CH3)2}, are investigated using the density functional method. The results reveal that the electron-accepting group -CF3 has no obvious effect on absorption and emission properties, while the substitutive group -N(CH3)2 with strong electron-donating ability has obvious effect on the emission properties. The mobility of hole and electron were studied computationally based on the Marcus-Hush theory. Calculations of ionisation potential and electron affinity were used to evaluate the injection abilities of holes and electrons into these complexes. We hope that this theoretical work can provide a suitable guide to the future design and synthesis of novel phosphorescent materials for use in the organic light-emitting diodes.

  11. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties. In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions. In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect. In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube, gallium nitride and zinc oxide. Most TMOs at room temperature are known to be strongly hydrated. We show that an adsorbed water film present on the surface of TMOs facilitates the dissolution of gaseous species and promotes charge transfers at the adsorbed-water/oxide interfaces. Further, we show the role of vacancy defects in enhancing catalytic processes by directly monitoring the charge transfer process between gaseous species and vacancy defects in non-stoichiometric p-type nickel oxide and n-type tungsten oxide using in-situ NIR-PL, electrical resistance, and X-ray photoelectron spectroscopy. We find the importance of adsorbed water and vacancy defects in affecting catalytic, electronic, electrical, and optical changes such as insulator-to-metal transitions and radiative emissions during electrochemical reactions. In addition, we demonstrate that electrochemical surface transfer doping exists in another system, specifically, in gallium nitride, and the presence of this adsorbed water film present on the surface of GaN induces electron transfer from GaN that leads to the formation of an electron depletion region on the surface.

  12. CHARACTERIZING THE CONFORMATIONAL AND ELECTRONIC PROPERTIES OF CONAZOLE FUNGICIDES

    EPA Science Inventory

    Conazole fungicides have important environmental and human health considerations including chemical reactivity and transformation pathways. The electronic and conformational properties of an organic molecule determines in conjunction with solvent properties, its chemical reacti...

  13. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  14. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengping; Wu, Xiang-Fa; Fong, Hao

    2012-01-01

    This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.

  15. Neutron stars velocities and magnetic fields

    NASA Astrophysics Data System (ADS)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  16. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures.

    PubMed

    Didiot, Clement; Pons, Stephane; Kierren, Bertrand; Fagot-Revurat, Yannick; Malterre, Daniel

    2007-10-01

    The self-organized growth of nanostructures on surfaces could offer many advantages in the development of new catalysts, electronic devices and magnetic data-storage media. The local density of electronic states on the surface at the relevant energy scale strongly influences chemical reactivity, as does the shape of the nanoparticles. The electronic properties of surfaces also influence the growth and decay of nanostructures such as dimers, chains and superlattices of atoms or noble metal islands. Controlling these properties on length scales shorter than the diffusion lengths of the electrons and spins (some tens of nanometres for metals) is a major goal in electronics and spintronics. However, to date, there have been few studies of the electronic properties of self-organized nanostructures. Here we report the self-organized growth of macroscopic superlattices of Ag or Cu nanostructures on Au vicinal surfaces, and demonstrate that the electronic properties of these systems depend on the balance between the confinement and the perturbation of the surface states caused by the steps and the nanostructures' superlattice. We also show that the local density of states can be modified in a controlled way by adjusting simple parameters such as the type of metal deposited and the degree of coverage.

  17. Investigation of the Effect of Various Oxide and Fluoride Additives on the Microstructure, Electronic Properties, and Phase Shifting Ability of Ba(1-x) Sr(x)TiO3

    DTIC Science & Technology

    1993-09-01

    AD-A271 756 ARMY RESEARCH LABORATORY Investigation of the Effect of Various Oxide and Flouride Additives on the Microstructure, Electronic Properties ...NUMBERS Investigation of the Effect of Various Oxide and Fluoride Additives on the Microstructure, Electronic Properties , and Phase Shifting Ability of...dielectric properties . tunability. hysteresis. and grain size have been investigated. The homogeneity of the doped materials has been verified using

  18. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, H., E-mail: hudsonzanin@gmail.com; Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970; Saito, E., E-mail: esaito135@gmail.com

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Ramanmore » spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.« less

  19. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Superconductivity in layered ZrP2-x Se x with PbFCl-type structure

    NASA Astrophysics Data System (ADS)

    Ishida, Shigeyuki; Fujihisa, Hiroshi; Hase, Izumi; Yanagi, Yousuke; Kawashima, Kenji; Oka, Kunihiko; Gotoh, Yoshito; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi; Kito, Hijiri

    2016-05-01

    We performed a systematic study of the crystal structure, physical properties, and electronic structure of PbFCl-type ZrP2-x Se x (0.3 ≤ x ≤ 0.9). We successfully synthesized single-phase polycrystalline samples for the Se substitution range of 0.4 ≤ x ≤ 0.8. The crystal structure of the compound is characterized by the alternate stacking of a two-dimensional P square net and a Zr-(P1-x Se x ) network. ZrP2-x Se x exhibits a dome-like superconductivity phase diagram and has a maximum superconducting transition temperature (T c) of 6.3 K for x ≈ 0.6. Resistivity and Hall measurements indicated that electron-phonon scattering plays a dominant role and that electron-type carriers dominate charge transport. Specific heat measurements confirmed that ZrP2-x Se x exhibits bulk superconductivity. Further, the value of the specific heat jump at T c (ΔC/γT c ≈ 1.35) is in keeping with the BCS weak-coupling model. These facts suggest a rather conventional pairing mechanism in ZrP2-x Se x . The x dependence of T c can be explained on the basis of the density of states (DOS) for x ≤ 0.7, whereas the decrease in T c with an increase in the DOS for x = 0.8 needs further investigation. One possible reason for the suppression of superconductivity is that the PbFCl-type structure becomes unstable for x ≥ 0.8. The results of electronic structure calculations agree reasonably well with those of the experimental observations, suggesting that the Zrd band plays a primary role in determining the physical properties. Further, the calculations predict a significant change in the Fermi-surface topology for x ≥ 0.8 this is a probable reason for the decrease in T c as well as the instability of the PbFCl-type structure.

  1. Boltzmann transport properties of ultra thin-layer of h-CX monolayers

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-04-01

    Structural, electronic and thermoelectric properties of monolayer h-CX (X= Al, As, B, Bi, Ga, In, P, N, Sb and Tl) have been computed using density functional theory (DFT). The structural, electronic band structure, phonon dispersion curves and thermoelectric properties have been investigated. h-CGa and h-CTl show the periodically lattice vibrations and h-CB and h-CIn show small imaginary ZA frequencies. Thermoelectric properties are obtained using BoltzTrap code with the constant relaxation time (τ) approximation such as electronic, thermal and electrical conductivity calculated for various temperatures. The results indicate that h-CGa, h-CIn, h-CTl and h-CAl have direct band gaps with minimum electronic thermal and electrical conductivity while h-CB and h-CN show the high electronic thermal and electrical conductivity with highest cohesive energy.

  2. Electronic and optical properties of Si and Ge nanocrystals: An ab initio study

    NASA Astrophysics Data System (ADS)

    Pulci, Olivia; Degoli, Elena; Iori, Federico; Marsili, Margherita; Palummo, Maurizia; Del Sole, Rodolfo; Ossicini, Stefano

    2010-01-01

    First-principles calculations within density functional theory and many-body perturbation theory have been carried out in order to investigate the structural, electronic and optical properties of undoped and doped silicon nanostructures. We consider Si nanoclusters co-doped with B and P. We find that the electronic band gap is reduced with respect to that of the undoped crystals, suggesting the possibility of impurity based engineering of electronic and optical properties of Si nanocrystals. Finally, motivated by recent suggestions concerning the chance of exploiting Ge dots for photovoltaic nanodevices, we present calculations of the electronic and optical properties of a Ge 35H 36 nanocrystal, and compare the results with those for the corresponding Si 35H 36 nanocrystals and the co-doped Si 33BPH 36.

  3. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers with a large intramolecular twist, which suppresses both nucleation and crystal growth. The generic design concept of rotationally symmetrical aromatic small molecules with extended π orbital delocalization, including polyaromatic hydrocarbons, phthalocyanines, etc., has also provided some excellent small molecule acceptors. In most cases, additional electron withdrawing functionality, such as imide or ester groups, can be incorporated to stabilize the LUMO and improve properties. New calamitic acceptors have been developed, where molecular orbital hybridization of electron rich and poor segments can be judiciously employed to precisely control energy levels. Conformation and intermolecular associations can be controlled by peripheral functionalization leading to optimization of crystallization length scales. In particular, the use of rhodanine end groups, coupled electronically through short bridged aromatic chains, has been a successful strategy, with promising device efficiencies attributed to high lying LUMO energy levels and subsequently large open circuit voltages. PMID:26505279

  4. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-07-01

    Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c

  5. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms.Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms. Electronic supplementary information (ESI) available: The MALDI-TOF-MS identification of Au24Peptide8, the structural divisions of Au24(Cys-Cys)8 obtained based on the ``divide and protect'' approach, the structure of level-1 and -3 staple motifs, the relative energies of all stable configurations of Au24(Cys-Cys)8, orbital components of Iso1 of Au24(Cys-Cys)8, electronic structure comparison between Au24(Cys-Cys)8 and Au24(SR)20, and the coordination of Iso1. See DOI: 10.1039/c5nr08727a

  6. Thread-like supercapacitors based on one-step spun nanocomposite yarns.

    PubMed

    Meng, Qinghai; Wang, Kai; Guo, Wei; Fang, Jin; Wei, Zhixiang; She, Xilin

    2014-08-13

    Thread-like electronic devices have attracted great interest because of their potential applications in wearable electronics. To produce high-performance, thread-like supercapacitors, a mixture of stable dispersions of single-walled carbon nanotubes and conducting polyaniline nanowires are prepared. Then, the mixture is spun into flexible yarns with a polyvinyl alcohol outer sheath by a one-step spinning process. The composite yarns show excellent mechanical properties and high electrical conductivities after sufficient washing to remove surfactants. After applying a further coating layer of gel electrolyte, two flexible yarns are twisted together to form a thread-like supercapacitor. The supercapacitor based on these two yarns (SWCNTs and PAniNWs) possesses a much higher specific capacitance than that based only on pure SWCNTs yarns, making it an ideal energy-storage device for wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Model systems in heterogeneous catalysis: towards the design and understanding of structure and electronic properties.

    PubMed

    Pan, Q; Li, L; Shaikhutdinov, S; Fujimori, Y; Hollerer, M; Sterrer, M; Freund, H-J

    2018-05-29

    We discuss in this paper two case studies related to nano-particle catalyst systems. One concerns a model system for the Cr/SiO2 Phillips catalyst for ethylene polymerization and here we present XPS data to complement the previously published TPD, IRAS and reactivity studies to elucidate the electronic structure of the system in some detail. The second case study provides additional information on Au nano-particles supported on ultrathin MgO(100)/Ag(100) films where we had observed a specific activity of the particle's rim at the metal-oxide interface with respect to CO2 activation and oxalate formation, obviously connected to electron transfer through the MgO film from the metal substrate underneath. Here we present XPS and Auger data, which allows detailed analysis of the observed chemical shifts. This analysis corroborates previous findings deduced via STM.

  8. The features of self-assembling organic bilayers important to the formation of anisotropic inorganic materials in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Talham, Daniel R.; Adair, James H.

    2005-01-01

    Materials with directional properties are opening new horizons in a variety of applications including chemistry, electronics, and optics. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. The new applications and the need for model particles in scientific investigations are rapidly out-distancing the ability to synthesize anisotropic particles with specific chemistries and narrowly distributed physical characteristics (e.g. size distribution, shape, and aspect ratio).

  9. ExoCross: Spectra from molecular line lists

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Al-Refaie, Ahmed; Tennyson, Jonathan

    2018-03-01

    ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

  10. Synthesis and applications of nanoporous perovskite metal oxides

    PubMed Central

    Huang, Xiubing; Zhao, Guixia

    2018-01-01

    Perovskite-type metal oxides have been widely investigated and applied in various fields in the past several decades due to their extraordinary variability of compositions and structures with targeted physical and chemical properties (e.g., redox behaviour, oxygen mobility, electronic and ionic conductivity). Recently, nanoporous perovskite metal oxides have attracted extensive attention because of their special morphology and properties, as well as superior performance. This minireview aims at summarizing and reviewing the different synthesis methods of nanoporous perovskite metal oxides and their various applications comprehensively. The correlations between the nanoporous structures and the specific performance of perovskite oxides are summarized and highlighted. The future research directions of nanoporous perovskite metal oxides are also prospected. PMID:29862001

  11. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  12. Effect of electron beam on the properties of electron-acoustic rogue waves

    NASA Astrophysics Data System (ADS)

    El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.

    2015-04-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  13. Development of novel semi-conducting ortho-carborane based polymer films: Enhanced electronic and chemical properties

    NASA Astrophysics Data System (ADS)

    Pasquale, Frank L.

    A novel class of semi-conducting ortho-carborane (B 10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H 12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C 2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting that the bottom of the conduction band is composed of states primarily from B10C2H12. Consequently these B10C2HX:Y films may exhibit longer electron-hole separation lifetimes as compared to pure B10C 2HX films. This research should lead to an enhancement of boron carbide based neutron detectors, and is of potential significance for microelectronics, spintronics and photo-catalysis.

  14. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as transport channels. My findings suggest that the hydrogen-bond networks are crucial in understanding the conductance of these junctions. A broader impact of this work pertains the fact that characterizing transport through hydrogen bonding networks may help in developing faster and cost-effective approaches to personalized medicine, to advance DNA sequencing and implantable electronics, and to progress in the design and application of new drugs.

  15. Biosynthesis of amorphous mesoporous aluminophosphates using yeast cells as templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sifontes, Ángela B., E-mail: asifonte@ivic.gob.ve; González, Gema; Tovar, Leidy M.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Amorphous aluminophosphates can take place using yeast as template. ► A mesoporous material was obtained. ► The specific surface area after calcinations ranged between 176 and 214 m{sup 2} g{sup −1}. -- Abstract: In this study aluminophosphates have been synthesized from aluminum isopropoxide and phosphoric acid solutions using yeast cells as template. The physicochemical characterization was carried out by thermogravimetric analysis; X-ray diffraction; Fourier transform infrared; N{sub 2} adsorption–desorption isotherms; scanning electron microscopy; transmission electron microscopy and potentiometric titration with N-butylamine for determination of: thermal stability; crystalline structure; textural properties; morphology and surface acidity,more » respectively. The calcined powders consisted of an intimate mixture of amorphous and crystallized AlPO particles with sizes between 23 and 30 nm. The average pore size observed is 13–16 nm and the specific surface area after calcinations (at 650 °C) ranged between 176 and 214 m{sup 2} g{sup −1}.« less

  16. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  17. Electronic transport in armchair graphene nanoribbon under double magnetic barrier modulation

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wu, Chao; Xie, Fang; Zhang, Xiaojiao; Zhou, Guanghui

    2018-03-01

    We present a theoretical investigation of the transport properties and the magnetoresistance effect in armchair graphene nanoribbons (AGNRs) under modulation by two magnetic barriers. The energy levels are found to be degenerate for a metallic AGNR but are not degenerate for a semiconducting AGNR. However, the conductance characteristics show quantized plateaus in both the metallic and semiconducting cases. When the magnetization directions of the barriers change from parallel to antiparallel, the conductance plateau in the metallic AGNR shows a degenerate feature due to matching between the transport modes in different regions. As the barrier height increases, the conductance shows more oscillatory behavior with sharp peaks and troughs. Specifically, the initial position of nonzero conductance for the metallic AGNR system moves towards a higher energy regime, which indicates that an energy gap has been opened. In addition, the magnetoresistance ratio also shows plateau structures in certain specific energy regions. These results may be useful in the design of electron devices based on AGNR nanostructures.

  18. Theoretical and experimental study of electron-deficient core substitution effect of diketopyrrolopyrrole derivatives on optoelectrical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Ding, Guodong; Mahmood, Asif; Tang, Ailing; Chen, Fan; Zhou, Erjun

    2018-01-01

    Three new diketopyrrolopyrrole based compounds with Acceptor-Donor-Acceptor-Donor-Acceptor (A-D-A-D-A) skeletons were designed and synthesized through varying the electron-deficient core from diphenylquinoxaline (DP-Qx), thieno[3,4-c]pyrrole-4,6-dione (DP-TPD) to 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline (DP-TQx). We have calculated and studied the effect of central acceptor units on electronic, optical and non-optical properties. As well as, we have predicted the charge transport properties. Results indicate that change of central acceptor unit remarkably affects the molecular electronic, optical and non-optical properties. And the molecular band gap and UV/vis adsorption spectra are significantly changed. It should be noted that Compound 3 with 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline as core show superior non-optical properties as compare to other compounds. Our study here indicate that inserting the strong electron-deficient moieties improves intramolecular charge transfer (ICT) and charge transport properties dramatically.

  19. Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris

    DOE PAGES

    Duan, H. Diessel; Lubner, Carolyn E.; Tokmina-Lukaszewska, Monika; ...

    2018-02-09

    A newly-recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low potential electrons to demanding chemical reactions such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation.

  20. Composites based on SiO2 micrograins and cobalt-containing nanoparticles: Synthesis, structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yurkov, G. Yu.; Kozinkin, A. V.; Koksharov, Yu. A.; Ovchenkov, E. A.; Volkov, A. N.; Kozinkin, Yu. A.; Vlasenko, V. G.; Popkov, O. V.; Ivicheva, S. N.; Kargin, Yu. F.

    2013-05-01

    Cobalt-containing particles are synthesized on the surface of silicon dioxide micrograins prepared by the Stöber-Fink method. The composition and structure of nanoparticles are determined by transmission electron microscopy, X-ray diffraction analysis, and EXAFS. The average size of cobalt nanoparticles in the samples is found to be 14 ± 5 nm. The resulting composites are shown to be ferromagnetics with low specific magnetization values.

Top