Science.gov

Sample records for specific enzyme digestion

  1. Specific starch digestion of maize alpha-limit dextrins by recombinant mucosal glucosidase enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch digestion requires two luminal enzymes, salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities from the N- and C-terminals of maltase-glucoamylase (MGAM) and sucrose-isomaltase (SI) complexes. AMY is not a requirement for starch digestion to glucose b...

  2. Digestive Enzyme Supplementation in Gastrointestinal Diseases

    PubMed Central

    Ianiro, Gianluca; Pecere, Silvia; Giorgio, Valentina; Gasbarrini, Antonio; Cammarota, Giovanni

    2016-01-01

    Background: Digestive enzymes are able to break down proteins and carbohydrates and lipids, and their supplementation may play a role in the management of digestive disorders, from lactose intolerance to cystic fibrosis. To date, several formulations of digestive enzymes are available on the market, being different each other in terms of enzyme type, source and origin, and dosage. Methods: This review, performed through a non-systematic search of the available literature, will provide an overview of the current knowledge of digestive enzyme supplementation in gastrointestinal disorders, discussion of the use of pancreatic enzymes, lactase (β-galactosidase) and conjugated bile acids, and also exploring the future perspective of digestive enzyme supplementation. Results: Currently, the animal-derived enzymes represent an established standard of care, however the growing study of plant-based and microbe-derived enzymes offers great promise in the advancement of digestive enzyme therapy. Conclusion: New frontiers of enzyme replacement are being evaluated also in the treatment of diseases not specifically related to enzyme deficiency, whereas the combination of different enzymes might constitute an intriguing therapeutic option in the future. PMID:26806042

  3. Characterizations of substrate and enzyme specificity of glucoamylase assays of mucosal starch digestion with determinations of group and single biopsy reference values

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrate digesting enzyme activities are measured in duodenal biopsies to detect deficiencies of lactase and sucrase activities, however glucoamylase (GA) assays for starch digestion are not included. Because food starch represents half of energy intake in the human diet, assays for starch diges...

  4. Chronic ethanol feeding modulates the synthesis of digestive enzymes

    SciTech Connect

    Ponnappa, B.C.; Hoek, J.B.; Rubin, E.

    1987-05-01

    The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of /sup 3/H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding induced an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas.

  5. Preliminary characterization of digestive enzymes in freshwater mussels

    USGS Publications Warehouse

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.

  6. Susceptibility of sweetpotato (Ipomoea batatas) peel proteins to digestive enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes ...

  7. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.

    PubMed

    Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen

    2015-05-01

    Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.

  8. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Suzer, Cüneyt; Aktülün, Sevim; Coban, Deniz; Okan Kamaci, H; Saka, Sahin; Firat, Kürşat; Alpbaz, Atilla

    2007-10-01

    The ontogenesis and specific activities of pancreatic and intestinal enzymes were investigated in sharpsnout sea bream, Diplodus puntazzo, during larval development until the end of weaning on day 50. The green-water technique was carried out for larval rearing in triplicate. Trypsin was first detected as early as hatching and sharply increased related to age and exogenous feeding until day 25, but a sharp decrease was observed towards the end of the experiment. Amylase was determined 2 days after hatching (DAH) and sharply increased to 10 DAH. Afterwards, slight decreases were found between 10 and 20 DAH and then slow alterations were continued until end of the experiment. Lipase was measured for the first time on day 4, and then slight increase was found to 25 DAH. After this date, slow variations were maintained until end of the experiment. Pepsin was firstly assayed 32 DAH related with stomach formation and sharply increased to 40 DAH. Then it was fluctuated until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N, showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased to 15 DAH and fluctuated until 20 DAH, aminopeptidase N activity slowly declined to 20 DAH. Afterwards, activity of alkaline phosphatase and aminopeptidase N were sharply increased to 30 DAH, showing maturation of the intestinal digestive process and also these activities continued to slight increase until end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase sharply increased to on day 8, then suddenly declined to 12 DAH and further decreased until 20 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased to 25 DAH and continued to gradually decline until the end of the experiment. These converse expressions were indicative of a maturation of enterocytes and the transition to

  9. Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Suzer, Cüneyt; Aktülün, Sevim; Coban, Deniz; Okan Kamaci, H; Saka, Sahin; Firat, Kürşat; Alpbaz, Atilla

    2007-10-01

    The ontogenesis and specific activities of pancreatic and intestinal enzymes were investigated in sharpsnout sea bream, Diplodus puntazzo, during larval development until the end of weaning on day 50. The green-water technique was carried out for larval rearing in triplicate. Trypsin was first detected as early as hatching and sharply increased related to age and exogenous feeding until day 25, but a sharp decrease was observed towards the end of the experiment. Amylase was determined 2 days after hatching (DAH) and sharply increased to 10 DAH. Afterwards, slight decreases were found between 10 and 20 DAH and then slow alterations were continued until end of the experiment. Lipase was measured for the first time on day 4, and then slight increase was found to 25 DAH. After this date, slow variations were maintained until end of the experiment. Pepsin was firstly assayed 32 DAH related with stomach formation and sharply increased to 40 DAH. Then it was fluctuated until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N, showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased to 15 DAH and fluctuated until 20 DAH, aminopeptidase N activity slowly declined to 20 DAH. Afterwards, activity of alkaline phosphatase and aminopeptidase N were sharply increased to 30 DAH, showing maturation of the intestinal digestive process and also these activities continued to slight increase until end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase sharply increased to on day 8, then suddenly declined to 12 DAH and further decreased until 20 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased to 25 DAH and continued to gradually decline until the end of the experiment. These converse expressions were indicative of a maturation of enterocytes and the transition to

  10. Digestive enzymes in juvenile green abalone, Haliotis fulgens, fed natural food.

    PubMed

    García-Carreño, F L; Navarrete del Toro, M A; Serviere-Zaragoza, E

    2003-01-01

    Enzymes responsible for the digestion of food protein by juvenile green abalone (Haliotis fulgens) were studied when fed algae or a sea grass (Phyllospadix torreyi) naturally occurring in the habitat. The effect of food on the composition and activity of the enzymes was also evaluated. Acid, serine proteinases and aminopeptidases, as confirmed by pH profile of activity, specific inhibition and synthetic substrate hydrolysis were found in the digestive organs of juvenile green abalone. Algae and sea grass differentially affected the digestive system in abalone. PMID:12524042

  11. Susceptibility of glutinous rice starch to digestive enzymes.

    PubMed

    Guo, Li; Zhang, Juanjuan; Hu, Jian; Li, Xueling; Du, Xianfeng

    2015-09-01

    To understand the susceptibility of glutinous rice starch to digestive enzymes and its potential impact on glycemic response, enzyme kinetics and in vitro digestibility of the native and gelatinized starches were investigated. The results showed that the Km values of the native and gelatinized starch were 10.35 mg/mL and 9.92 mg/mL, respectively. The digestion rate coefficients k values of the native and gelatinized starches were 2.0 × 10(-3)min(-1) and 1.1 × 10(-2)min(-1), respectively. The contents of rapid digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) in native glutinous rice starch were 8.92%, 21.52% and 69.56%, respectively. After gelatinization, the amounts of RDS, SDS and RS were 18.47%, 29.75% and 51.78%, respectively. The native and gelatinized glutinous rice starches were 10.34% and 14.07% for hydrolysis index (HI), as well as 43.14% and 45.92% for glycemic index (GI), respectively. During the in vitro digestion, the crystallinity of native glutinous rice starch was increased from 34.7% to 35.8% and 38.4% after 20 and 120 min, respectively.

  12. Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta americana.

    PubMed

    Tamaki, Fábio K; Pimentel, André C; Dias, Alcides B; Cardoso, Christiane; Ribeiro, Alberto F; Ferreira, Clélia; Terra, Walter R

    2014-11-01

    Cockroaches are among the first insects to appear in the fossil record. This work is part of ongoing research on insects at critical points in the evolutionary tree to disclose evolutionary trends in the digestive characteristics of insects. A transcriptome (454 Roche platform) of the midgut of Periplanetaamericana was searched for sequences of digestive enzymes. The selected sequences were manually curated. The complete or nearly complete sequences showing all characteristic motifs and highly expressed (reads counting) had their predicted sequences checked by cloning and Sanger sequencing. There are two chitinases (lacking mucin and chitin-binding domains), one amylase, two α- and three β-glucosidases, one β-galactosidase, two aminopeptidases (none of the N-group), one chymotrypsin, 5 trypsins, and none β-glucanase. Electrophoretic and enzymological data agreed with transcriptome data in showing that there is a single β-galactosidase, two α-glucosidases, one preferring as substrate maltase and the other aryl α-glucoside, and two β-glucosidases. Chromatographic and enzymological data identified 4 trypsins, one chymotrypsin (also found in the transcriptome), and one non-identified proteinase. The major digestive trypsin is identifiable to a major P. americana allergen (Per a 10). The lack of β-glucanase expression in midguts was confirmed, thus lending support to claims that those enzymes are salivary. A salivary amylase was molecularly cloned and shown to be different from the one from the midgut. Enzyme distribution showed that most digestion occurs under the action of salivary and midgut enzymes in the foregut and anterior midgut, except the posterior terminal digestion of proteins. A counter-flux of fluid may be functional in the midgut of the cockroach to explain the low excretory rate of digestive enzymes. Ultrastructural and immunocytochemical localization data showed that amylase and trypsin are released by both merocrine and apocrine secretion

  13. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata.

    PubMed

    Fuzita, Felipe J; Pinkse, Martijn W H; Verhaert, Peter D E M; Lopes, Adriana R

    2015-05-01

    Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles. PMID:25818482

  14. Cysteine cathepsins as digestive enzymes in the spider Nephilengys cruentata.

    PubMed

    Fuzita, Felipe J; Pinkse, Martijn W H; Verhaert, Peter D E M; Lopes, Adriana R

    2015-05-01

    Cysteine cathepsins are widely spread on living organisms associated to protein degradation in lysosomes, but some groups of Arthropoda (Heteroptera, Coleoptera, Crustacea and Acari) present these enzymes related to digestion of the meal proteins. Although spiders combine a mechanism of extra-oral with intracellular digestion, the sporadic studies on this subject were mainly concerned with the digestive fluid (DF) analysis. Thus, a more complete scenario of the digestive process in spiders is still lacking in the literature. In this paper we describe the identification and characterization of cysteine cathepsins in the midgut diverticula (MD) and DF of the spider Nephilengys cruentata by using enzymological assays. Furthermore, qualitative and quantitative data from transcriptomic followed by proteomic experiments were used together with biochemical assays for results interpretation. Five cathepsins L, one cathepsin F and one cathepsin B were identified by mass spectrometry, with cathepsins L1 (NcCTSL1) and 2 (NcCTSL2) as the most abundant enzymes. The native cysteine cathepsins presented acidic characteristics such as pH optima of 5.5, pH stability in acidic range and zymogen conversion to the mature form after in vitro acidification. NcCTSL1 seems to be a lysosomal enzyme with its recombinant form displaying acidic characteristics as the native ones and being inhibited by pepstatin. Evolutionarily, arachnid cathepsin L may have acquired different roles but its use for digestion is a common feature to studied taxa. Now a more elucidative picture of the digestive process in spiders can be depicted, with trypsins and astacins acting extra-orally under alkaline conditions whereas cysteine cathepsins will act in an acidic environment, likely in the digestive vacuoles or lysosome-like vesicles.

  15. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests.

    PubMed

    Li, Yi; Demisie, Walelign; Zhang, Ming-kui

    2013-07-01

    The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).

  16. Different digestion of caprine whey proteins by human and porcine gastrointestinal enzymes.

    PubMed

    Eriksen, Ellen K; Holm, Halvor; Jensen, Einar; Aaboe, Ragnhild; Devold, Tove G; Jacobsen, Morten; Vegarud, Gerd E

    2010-08-01

    The objective of the present study was twofold: first to compare the degradation patterns of caprine whey proteins digested with either human digestive juices (gastric or duodenal) or commercial porcine enzymes (pepsin or pancreatic enzymes) and second to observe the effect of gastric pH on digestion. An in vitro two-step assay was performed at 37 degrees C to simulate digestion in the stomach (pH 2, 4 or 6) and the duodenum (pH 8). The whey proteins were degraded more efficiently by porcine pepsin than by human gastric juice at all pH values. Irrespective of the enzyme source, gastric digestion at pH 2 followed by duodenal digestion resulted in the most efficient degradation. Lactoferrin, serum albumin and the Ig heavy chains were highly degraded with less than 6 % remaining after digestion. About 15, 56 and 50 % Ig light chains, beta-lactoglobulin (beta-LG) and alpha-lactalbumin remained intact, respectively, when digested with porcine enzymes compared with 25, 74 and 81 % with human digestive juices. For comparison, purified bovine beta-LG was digested and the peptide profiles obtained were compared with those of the caprine beta-LG in the digested whey. The bovine beta-LG seemed to be more extensively cleaved than the caprine beta-LG in the whey. Commercial enzymes appear to digest whey proteins more efficiently compared with human digestive juices when used at similar enzyme activities. This could lead to conflicting results when comparing human in vivo protein digestion with digestion using purified enzymes of non-human species. Consequently the use of human digestive juices might be preferred.

  17. Different digestion of caprine whey proteins by human and porcine gastrointestinal enzymes.

    PubMed

    Eriksen, Ellen K; Holm, Halvor; Jensen, Einar; Aaboe, Ragnhild; Devold, Tove G; Jacobsen, Morten; Vegarud, Gerd E

    2010-08-01

    The objective of the present study was twofold: first to compare the degradation patterns of caprine whey proteins digested with either human digestive juices (gastric or duodenal) or commercial porcine enzymes (pepsin or pancreatic enzymes) and second to observe the effect of gastric pH on digestion. An in vitro two-step assay was performed at 37 degrees C to simulate digestion in the stomach (pH 2, 4 or 6) and the duodenum (pH 8). The whey proteins were degraded more efficiently by porcine pepsin than by human gastric juice at all pH values. Irrespective of the enzyme source, gastric digestion at pH 2 followed by duodenal digestion resulted in the most efficient degradation. Lactoferrin, serum albumin and the Ig heavy chains were highly degraded with less than 6 % remaining after digestion. About 15, 56 and 50 % Ig light chains, beta-lactoglobulin (beta-LG) and alpha-lactalbumin remained intact, respectively, when digested with porcine enzymes compared with 25, 74 and 81 % with human digestive juices. For comparison, purified bovine beta-LG was digested and the peptide profiles obtained were compared with those of the caprine beta-LG in the digested whey. The bovine beta-LG seemed to be more extensively cleaved than the caprine beta-LG in the whey. Commercial enzymes appear to digest whey proteins more efficiently compared with human digestive juices when used at similar enzyme activities. This could lead to conflicting results when comparing human in vivo protein digestion with digestion using purified enzymes of non-human species. Consequently the use of human digestive juices might be preferred. PMID:20307348

  18. EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE Reticulitermes flavipes.

    PubMed

    Karl, Zachary J; Scharf, Michael E

    2015-10-01

    Termites have recently drawn much attention as models for biomass processing, mainly due to their lignocellulose digestion capabilities and mutualisms with cellulolytic gut symbionts. This research used the lower termite Reticulitermes flavipes to investigate gut enzyme activity changes in response to feeding on five diverse lignocellulosic diets (cellulose filter paper [FP], pine wood [PW], beech wood xylan [X], corn stover [CS], and soybean residue [SB]). Our objectives were to compare whole-gut digestive enzyme activity and host versus symbiont contributions to enzyme activity after feeding on these diets. Our hypothesis was that enzyme activities would vary among diets as an adaptive mechanism enabling termites and symbiota to optimally utilize variable resources. Results support our "diet-adaptation" hypothesis and further indicate that, in most cases, host contributions are greater than those of symbionts with respect to the enzymes and activities studied. The results obtained thus provide indications as to which types of transcriptomic resources, termite or symbiont, are most relevant for developing recombinant enzyme cocktails tailored to specific feedstocks. With regard to the agricultural feedstocks tested (CS and SB), our results suggest endoglucanase and exoglucanase (cellobiohydrolase) activities are most relevant for CS breakdown; whereas endoglucanase and xylosidase activities are relevant for SB breakdown. However, other unexplored activities than those tested may also be important for breakdown of these two feedstocks. These findings provide new protein-level insights into diet adaptation by termites, and also complement host-symbiont metatranscriptomic studies that have been completed for R. flavipes after FP, PW, CS, and SB feeding.

  19. Working with Enzymes - Where Is Lactose Digested? An Enzyme Assay for Nutritional Biochemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd

    1998-06-01

    At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.

  20. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.

    PubMed

    Soares, Tatiane Sanches; Soares Torquato, Ricardo Jose; Alves Lemos, Francisco Jose; Tanaka, Aparecida Sadae

    2013-01-01

    Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.

  1. A Trypsin Inhibitor from Clitoria fairchildiana Cotyledons is Active Against Digestive Enzymes of Aedes aegypti Larvae.

    PubMed

    de Oliveira, Lucilene O; Fernandes, Kátia V S; Pádua, Dayanni de Souza; Carvalho, André de O; Lemos, Francisco J A; Gomes, Valdirene M; Oliveira, Antônia E A; Ferreira, André T da Silva; Perales, Jonas

    2015-01-01

    Aedes aegypti, the principal mosquito vector of yellow fever, dengue fever and chikungunya fever virus-transmitted diseases, is an insect closely associated with humans and their housing habitats. As there is no commercially available vaccine, prevention is the most suggested form of avoiding disease spreading and a number of studies are being developed in order to give support to vector control operations. The present study reports on the identification of a trypsin inhibitor isolated from cotyledons of the Clitoria fairchildiana amazonic tree seeds, which was able to reduce by 87.93 % the activity of digestive enzymes of fourth instar A. aegypti larva. A partial amino acid sequence showed strong similarity with sequences from several trypsin inhibitors already reported in the literature. The 13,000 Da isolated inhibitor was seen to be active solely against trypsin-like enzymes, neither acting on papain, α-amylase nor on other serine proteases, such as elastase, chymotrypsin or subtilisin. At least six from seven active digestive proteases from A. aegypti larvae, visualized by zymography, were severely affected soon after exposed to the inhibitor. The strong and specific action of the isolated inhibitor against trypsin digestive enzymes of this insect vector led us to believe that this protein may be a good candidate for a prospective alternative biocontrol method. PMID:26156641

  2. Salivary digestive enzymes of the wheat bug, Eurygaster integriceps (Insecta: Hemiptera: Scutelleridae).

    PubMed

    Mehrabadi, Mohammad; Bandani, Ali Reza; Dastranj, Mehdi

    2014-06-01

    The digestive enzymes from salivary gland complexes (SGC) of Eurygaster integriceps, and their response to starvation and feeding were studied. Moreover, digestive amylases were partially purified and characterized by ammonium sulfate precipitation and gel filtration chromatography. The SGC are composed of two sections, the principal glands and accessory glands. The principal glands are further divided into the anterior lobes and posterior lobes. The SGC main enzyme was α-amylase, which hydrolyzed starch better than glycogen. The other carbohydrases were also present in the SGC complexes. Enzymatic activities toward mannose (α/β-mannosidases) were little in comparison to activities against glucose (α/β-glucosidases) and galactose (α/β-galactosidases), the latter being the greatest. Acid phosphatase showed higher activity than alkaline phosphatase. There was no measurable activity for lipase and aminopeptidase. Proteolytic activity was detected against general and specific protease substrates. Activities of all enzymes were increased in response to feeding in comparison to starved insects, revealing their induction and secretion in response to feeding pulse. The SGC amylases eluted in four major peaks and post-electrophoretic detection of the α-amylases demonstrated the existence of at least five isoamylases in the SGC. The physiological implication of these findings in pre-oral digestion of E. integriceps is discussed. PMID:24961557

  3. Development of digestive enzymes in larvae of Mayan cichlid Cichlasoma urophthalmus.

    PubMed

    López-Ramírez, G; Cuenca-Soria, C A; Alvarez-González, C A; Tovar-Ramírez, D; Ortiz-Galindo, J L; Perales-García, N; Márquez-Couturier, G; Arias-Rodríguez, L; Indy, J R; Contreras-Sánchez, W M; Gisbert, E; Moyano, F J

    2011-03-01

    The development of digestive enzymes during the early ontogeny of the Mayan cichlid (Cichlasoma urophthalmus) was studied using biochemical and electrophoretic techniques. From yolk absorption (6 days after hatching: dah), larvae were fed Artemia nauplii until 15 dah, afterward they were fed with commercial microparticulated trout food (45% protein and 16% lipids) from 16 to 60 dah. Several samples were collected including yolk-sac larvae (considered as day 1 after hatching) and specimens up to 60 dah. Most digestive enzymes were present from yolk absorption (5-6 dah), except for the specific acid proteases activity (pepsin-like), which increase rapidly from 8 dah up to 20 dah. Three alkaline proteases isoforms (24.0, 24.8, 84.5 kDa) were detected at 8 dah using SDS-PAGE zymogram, corresponding to trypsin, chymotrypsin and probably leucine aminopeptidase enzymes, and only one isoform was detected (relative electromobility, Rf = 0.54) for acid proteases (pepsin-like) from 3 dah onwards using PAGE zymogram. We concluded that C. urophthamus is a precocious fish with a great capacity to digest all kinds of food items, including artificial diets provided from 13 dah.

  4. Media Ethics: Some Specific Problems. ERIC Digest.

    ERIC Educational Resources Information Center

    Gottlieb, Stephen S.

    This digest identifies some of the ethical issues which appeared in the mass media in the 1980s and discusses the implications which these issues have for the law and for those who already work in or study the mass media, as well as for those college students contemplating a career in journalism or broadcasting. (NKA)

  5. Sturgeon hatching enzyme and the mechanism of egg envelope digestion: Insight into changes in the mechanism of egg envelope digestion during the evolution of ray-finned fish.

    PubMed

    Nagasawa, Tatsuki; Kawaguchi, Mari; Sano, Kaori; Yasumasu, Shigeki

    2015-12-01

    We investigated the evolution of the hatching enzyme gene using bester sturgeon (hybrid of Acipencer ruthenus and Huso huso), a basal member of ray-finned fishes. We purified the bester hatching enzyme from hatching liquid, yielding a single band on SDS-PAGE, then isolated its cDNA from embryos by PCR. The sturgeon hatching enzyme consists of an astacin family protease domain and a CUB domain. The CUB domains are present in frog and bird hatching enzymes, but not in teleostei, suggesting that the domain structure of sturgeon hatching enzyme is the tetrapod type. The purified hatching enzyme swelled the egg envelope, and selectively cleaved one of five egg envelope proteins, ZPAX. Xenopus hatching enzyme preferentially digests ZPAX, thus, the egg envelope digestion process is conserved between amphibians and basal ray-finned fish. Teleostei hatching enzymes cleave the repeat sequences at the N-terminal region of ZPB and ZPC, suggesting that the targets of the teleostei hatching enzymes differ from those of amphibians and sturgeons. Such repeat sequences were not found in the N-terminal region of ZPB and ZPC of amphibians and sturgeons. Our results suggest that the change in substrates of the hatching enzymes was accompanied by the mutation of the amino acid sequence of N-terminal regions of ZPB and ZPC. We conclude that the changes in the mechanism of egg envelope digestion, including the change in the domain structure of the hatching enzymes and the switch in substrate, occurred during the evolution of teleostei, likely triggered by the teleost-specific third whole genome duplication. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 720-732, 2015. © 2015 Wiley Periodicals, Inc.

  6. Main factors providing specificity of repair enzymes.

    PubMed

    Nevinsky, G A

    2011-01-01

    Specific and nonspecific DNA complex formation with human uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and apurine/apyrimidine endonuclease, as well as with E. coli 8-oxoguanine-DNA glycosylase and RecA protein was analyzed using the method of stepwise increase in DNA-ligand complexity. It is shown that high affinity of these enzymes to any DNA (10(-4)-10(-8) M) is provided by a large number of weak additive contacts mainly with DNA internucleoside phosphate groups and in a less degree with bases of nucleotide links "covered" by protein globules. Enzyme interactions with specific DNA links are comparable in efficiency with weak unspecific contacts and provide only for one-two orders of affinity (10(-1)-10(-2) M), but these contacts are extremely important at stages of DNA and enzyme structural adaptation and catalysis proper. Only in the case of specific DNA individual for each enzyme alterations in DNA structure provide for efficient adjustment of reacting enzyme atoms and DNA orbitals with accuracy up to 10-15° and, as a result, for high reaction rate. Upon transition from nonspecific to specific DNA, reaction rate (k(cat)) increases by 4-8 orders of magnitude. Thus, stages of DNA and enzyme structural adaptation as well as catalysis proper are the basis of specificity of repair enzymes. PMID:21568843

  7. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  8. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch. PMID:27247894

  9. Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion.

    PubMed

    Bibo-Verdugo, Betsaida; O'Donoghue, Anthony J; Rojo-Arreola, Liliana; Craik, Charles S; García-Carreño, Fernando

    2016-04-01

    Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.

  10. Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion.

    PubMed

    Bibo-Verdugo, Betsaida; O'Donoghue, Anthony J; Rojo-Arreola, Liliana; Craik, Charles S; García-Carreño, Fernando

    2016-04-01

    Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen. PMID:26613762

  11. [Effects of the size of magnetic particles of immobilized enzyme reactors on the digestion performance].

    PubMed

    Zhang, Jiao; Zhou, Lianqi; Tian, Fang; Zhang, Yangjun; Qian, Xiaohong

    2013-02-01

    We applied immobilized enzyme reactors prepared with different sizes of magnetic particles into protein and proteome digestion. In addition, the influences of different sizes of the magnetic particles were studied on the reunion, enzyme efficiency and leakage sites. The experimental results showed that in comparison with the submicron magnetic particles, the amount of trypsin immobilized on the magnetic nanoparticles was 3. 5 times more than that of the submicron magnetic particles. However, the enzymatic efficiency was at the same level when the same amount of trypsin was used, and the reunion phenomenon was obviously improved when the size of the magnetic nanoparticles increased. Taking the immobilized enzyme reactor of 20 nm magnetic nanoparticles as an example, the digestion performance was further examined. The experimental results showed that rapid digestion could be achieved within 1 mm when the mass ratio of the trypsin and bovine serum albumin was 1:1. The peptide number of 0 missed cleavage site and the sequence coverage changed little after the protein was digested for 10 mm. It was concluded that the digestion efficiency of the immobilized enzyme reactor was much better than that of the in-solution digestion. When the immobilized enzyme reactors and the free trypsin were used for digestion, little differences of the leakage sites were found. Therefore, the immobilized enzyme reactors prepared with different sizes of magnetic particles can be applied in proteomic research for quick and efficient digestion.

  12. Inhibition of key digestive enzymes by cocoa extracts and procyanidins.

    PubMed

    Gu, Yeyi; Hurst, William J; Stuart, David A; Lambert, Joshua D

    2011-05-25

    This study determined the in vitro inhibitory effects of cocoa extracts and procyanidins against pancreatic α-amylase (PA), pancreatic lipase (PL), and secreted phospholipase A(2) (PLA(2)) and characterized the kinetics of such inhibition. Lavado, regular, and Dutch-processed cocoa extracts as well as cocoa procyanidins (degree of polymerization (DP) = 2-10) were examined. Cocoa extracts and procyanidins dose-dependently inhibited PA, PL, and PLA(2). Lavado cocoa extract was the most potent inhibitor (IC(50) = 8.5-47 μg/mL). An inverse correlation between log IC(50) and DP (R(2) > 0.93) was observed. Kinetic analysis suggested that regular cocoa extract, the pentamer, and decamer inhibited PL activity in a mixed mode. The pentamer and decamer noncompetitively inhibited PLA(2) activity, whereas regular cocoa extract inhibited PLA(2) competitively. This study demonstrates that cocoa polyphenols can inhibit digestive enzymes in vitro and may, in conjunction with a low-calorie diet, play a role in body weight management. PMID:21495725

  13. A Randomized, Placebo-controlled Trial of Digestive Enzymes in Children with Autism Spectrum Disorders

    PubMed Central

    Saad, Khaled; Eltayeb, Azza A.; Mohamad, Ismail L.; Al-Atram, Abdulrahman A.; Elserogy, Yasser; Bjørklund, Geir; El-Houfey, Amira A.; Nicholson, Bubba

    2015-01-01

    Objective There is growing evidence for a gut-brain connection associated with autism spectrum disorders (ASDs). This suggests a potential benefit from introduced digestive enzymes for children with ASD. Methods We performed a double-blind, randomized clinical trial on 101 children with ASD (82 boys and 19 girls) aged from 3 to 9 years. ASD patients were diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders 4th edition, text revision (DSM-IV-TR) diagnostic criteria. Structured interviews of at least one hour each both with the parents and the child were performed. Later on, another two hours-session was conducted applying the Childhood Autism Rating Scale (CARS). ASD patients were randomized to receive digestive enzymes or placebo. Results The ASD group receiving digestive enzyme therapy for 3 months had significant improvement in emotional response, general impression autistic score, general behavior and gastrointestinal symptoms. Our study demonstrated the usefulness of digestive enzyme in our population of ASD patients. Conclusion Digestive enzymes are inexpensive, readily available, have an excellent safety profile, and have mildly beneficial effects in ASD patients. Depending on the parameter measured in our study, we propose digestive enzymes for managing symptoms of ASD. Digestive enzyme therapy may be a possible option in treatment protocols for ASD in the future. PMID:26243847

  14. EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE Reticulitermes flavipes.

    PubMed

    Karl, Zachary J; Scharf, Michael E

    2015-10-01

    Termites have recently drawn much attention as models for biomass processing, mainly due to their lignocellulose digestion capabilities and mutualisms with cellulolytic gut symbionts. This research used the lower termite Reticulitermes flavipes to investigate gut enzyme activity changes in response to feeding on five diverse lignocellulosic diets (cellulose filter paper [FP], pine wood [PW], beech wood xylan [X], corn stover [CS], and soybean residue [SB]). Our objectives were to compare whole-gut digestive enzyme activity and host versus symbiont contributions to enzyme activity after feeding on these diets. Our hypothesis was that enzyme activities would vary among diets as an adaptive mechanism enabling termites and symbiota to optimally utilize variable resources. Results support our "diet-adaptation" hypothesis and further indicate that, in most cases, host contributions are greater than those of symbionts with respect to the enzymes and activities studied. The results obtained thus provide indications as to which types of transcriptomic resources, termite or symbiont, are most relevant for developing recombinant enzyme cocktails tailored to specific feedstocks. With regard to the agricultural feedstocks tested (CS and SB), our results suggest endoglucanase and exoglucanase (cellobiohydrolase) activities are most relevant for CS breakdown; whereas endoglucanase and xylosidase activities are relevant for SB breakdown. However, other unexplored activities than those tested may also be important for breakdown of these two feedstocks. These findings provide new protein-level insights into diet adaptation by termites, and also complement host-symbiont metatranscriptomic studies that have been completed for R. flavipes after FP, PW, CS, and SB feeding. PMID:25980379

  15. Changes in digestive enzyme activities during larval development of Chinese loach Paramisgurnus dabryanus (Dabry de Thiersant, 1872).

    PubMed

    Zhang, Yun-Long; Wu, Qiao-Wan; Hu, Wei-Hua; Wang, Fan; Zhao, Zhong-Bo; He, Hui; Shao, Wei-Han; Fan, Qi-Xue

    2015-12-01

    The digestive physiology of Chinese loach (Paramisgurnus dabryanus) was studied by assessing the specific and total activities of different pancreatic (trypsin, chymotrypsin, amylase and lipase), gastric (pepsin) and intestinal (alkaline phosphatase and leucine-aminopeptidase) enzymes from hatching to 40 days after hatching (DAH). Larvae were reared at 24.4 ± 0.4 °C and fed with rotifers from mouth opening (4 DAH) to 15 DAH, from 10 to 35 DAH with Cladocera and from 30 to 40 DAH with compound diet. Enzyme activities for trypsin, chymotrypsin, amylase and lipase were detected before the onset of exogenous feeding, indicating that these enzymes were genetically pre-programmed. Most of the pancreatic enzyme specific activities increased until 20 DAH and decreased thereafter. The pepsin activity of Chinese loach was firstly detected at 30 DAH, indicating the appearance of functional gastric gland. Alkaline phosphatase specific activity was detected from hatching onward, showed marked increase and reached the second peak at 20 DAH, while a gradual increase in specific leucine-aminopeptidase activity was observed until the end of the experiment. Accordingly, the larvae of Chinese loach possess a functional digestive system before the onset of exogenous feeding and the digestive capacity gradually increases as development progresses. The abrupt increase in intestinal enzyme activities between 10 and 20 DAH demonstrates onset of juvenile-like digestive mode in Chinese loach larvae. The increase in pepsin activity after 30 DAH indicates the shift from alkaline to acidic digestion in Chinese loach larvae, which may be considered as the onset of weaning. PMID:26232086

  16. Changes in digestive enzyme activities during larval development of Chinese loach Paramisgurnus dabryanus (Dabry de Thiersant, 1872).

    PubMed

    Zhang, Yun-Long; Wu, Qiao-Wan; Hu, Wei-Hua; Wang, Fan; Zhao, Zhong-Bo; He, Hui; Shao, Wei-Han; Fan, Qi-Xue

    2015-12-01

    The digestive physiology of Chinese loach (Paramisgurnus dabryanus) was studied by assessing the specific and total activities of different pancreatic (trypsin, chymotrypsin, amylase and lipase), gastric (pepsin) and intestinal (alkaline phosphatase and leucine-aminopeptidase) enzymes from hatching to 40 days after hatching (DAH). Larvae were reared at 24.4 ± 0.4 °C and fed with rotifers from mouth opening (4 DAH) to 15 DAH, from 10 to 35 DAH with Cladocera and from 30 to 40 DAH with compound diet. Enzyme activities for trypsin, chymotrypsin, amylase and lipase were detected before the onset of exogenous feeding, indicating that these enzymes were genetically pre-programmed. Most of the pancreatic enzyme specific activities increased until 20 DAH and decreased thereafter. The pepsin activity of Chinese loach was firstly detected at 30 DAH, indicating the appearance of functional gastric gland. Alkaline phosphatase specific activity was detected from hatching onward, showed marked increase and reached the second peak at 20 DAH, while a gradual increase in specific leucine-aminopeptidase activity was observed until the end of the experiment. Accordingly, the larvae of Chinese loach possess a functional digestive system before the onset of exogenous feeding and the digestive capacity gradually increases as development progresses. The abrupt increase in intestinal enzyme activities between 10 and 20 DAH demonstrates onset of juvenile-like digestive mode in Chinese loach larvae. The increase in pepsin activity after 30 DAH indicates the shift from alkaline to acidic digestion in Chinese loach larvae, which may be considered as the onset of weaning.

  17. Digestive peptidase evolution in holometabolous insects led to a divergent group of enzymes in Lepidoptera.

    PubMed

    Dias, Renata O; Via, Allegra; Brandão, Marcelo M; Tramontano, Anna; Silva-Filho, Marcio C

    2015-03-01

    Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic L-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.

  18. Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts.

    PubMed

    Jhaveri, Parth; Papastamatiou, Yannis P; German, Donovan P

    2015-11-01

    Few investigations have studied digestive enzyme activities in the alimentary tracts of sharks to gain insight into how these organisms digest their meals. In this study, we examined the activity levels of proteases, carbohydrases, and lipase in the pancreas, and along the anterior intestine, spiral intestine, and colon of the bonnethead shark, Sphyrna tiburo. We then interpreted our data in the context of a rate-yield continuum to discern this shark's digestive strategy. Our data show anticipated decreasing patterns in the activities of pancreatic enzymes moving posteriorly along the gut, but also show mid spiral intestine peaks in aminopeptidase and lipase activities, which support the spiral intestine as the main site of absorption in bonnetheads. Interestingly, we observed spikes in the activity levels of N-acetyl-β-D-glucosaminidase and β-glucosidase in the bonnethead colon, and these chitin- and cellulose-degrading enzymes, respectively, are likely of microbial origin in this distal gut region. Taken in the context of intake and relatively long transit times of food through the gut, the colonic spikes in N-acetyl-β-D-glucosaminidase and β-glucosidase activities suggest that bonnetheads take a yield-maximizing strategy to the digestive process, with some reliance on microbial digestion in their hindguts. This is one of the first studies to examine digestive enzyme activities along the gut of any shark, and importantly, the data match with previous observations that sharks take an extended time to digest their meals (consistent with a yield-maximizing digestive strategy) and that the spiral intestine is the primary site of absorption in sharks.

  19. Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts.

    PubMed

    Jhaveri, Parth; Papastamatiou, Yannis P; German, Donovan P

    2015-11-01

    Few investigations have studied digestive enzyme activities in the alimentary tracts of sharks to gain insight into how these organisms digest their meals. In this study, we examined the activity levels of proteases, carbohydrases, and lipase in the pancreas, and along the anterior intestine, spiral intestine, and colon of the bonnethead shark, Sphyrna tiburo. We then interpreted our data in the context of a rate-yield continuum to discern this shark's digestive strategy. Our data show anticipated decreasing patterns in the activities of pancreatic enzymes moving posteriorly along the gut, but also show mid spiral intestine peaks in aminopeptidase and lipase activities, which support the spiral intestine as the main site of absorption in bonnetheads. Interestingly, we observed spikes in the activity levels of N-acetyl-β-D-glucosaminidase and β-glucosidase in the bonnethead colon, and these chitin- and cellulose-degrading enzymes, respectively, are likely of microbial origin in this distal gut region. Taken in the context of intake and relatively long transit times of food through the gut, the colonic spikes in N-acetyl-β-D-glucosaminidase and β-glucosidase activities suggest that bonnetheads take a yield-maximizing strategy to the digestive process, with some reliance on microbial digestion in their hindguts. This is one of the first studies to examine digestive enzyme activities along the gut of any shark, and importantly, the data match with previous observations that sharks take an extended time to digest their meals (consistent with a yield-maximizing digestive strategy) and that the spiral intestine is the primary site of absorption in sharks. PMID:26239220

  20. Functional changes in digestive enzyme activities of meagre (Argyrosomus regius; Asso, 1801) during early ontogeny.

    PubMed

    Suzer, Cüneyt; Kamacı, H Okan; Çoban, Deniz; Yıldırım, Şükrü; Fırat, Kürşat; Saka, Şahin

    2013-08-01

    The ontogenesis of main pancreatic and intestinal enzymes was investigated in the recent promising Mediterranean candidate species of meagre, Argyrosomus regius, during larval development until 40 days after hatching (DAH). The green-water technique was carried out for larval rearing. Whole-body homogenates were used for enzymatic analysis in larvae younger than 15 DAH; after this date, older larvae were dissected into two segments as pancreatic and intestinal segment. Trypsin was detected as early as hatching and sharply increased concurrently with age and exogenous feeding 15 DAH, but constant decline was observed until the end of experiment. Amylase was determined at 2 DAH and sharply increased 10 DAH. Then, slight decreases were found between 10 and 15 DAH, and then slow alterations were continued until the end of the experiment. Lipase was firstly measured on day 3; then, sudden decline was observed between 20 and 25 DAH. After this date, slow fluctuations were maintained until the end of the experiment. Pepsin was firstly assayed 15 DAH related to gastric gland secretion and sharply increased 30 DAH. Then, it slowly varied until end of the experiment. Enzymes of brush border membranes, alkaline phosphatase and aminopeptidase N showed similar pattern on specific activities during the first 10 days. Thereafter, while specific activity of alkaline phosphatase slightly decreased 15 and fluctuated until 20 DAH, aminopeptidase N activity slowly increased 20 DAH. Then, activity of alkaline phosphatase and aminopeptidase N constantly increased 30 DAH, indicating maturation of the intestinal digestive process, and also, these activities continued to slowly increase until the end of the experiment. The specific activity of cytosolic peptidase, leucine-alanine peptidase, smoothly increased on day 8, then fluctuated until 15 DAH. After this date, in contrast to enzymes of brush border membranes, it sharply decreased 25 DAH and continued to gradually decline until the end

  1. Controlling reaction specificity in pyridoxal phosphate enzymes

    PubMed Central

    Toney, Michael D.

    2012-01-01

    Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carbanionic intermediates at Cα of the substrate. This review attempts to summarize the mechanisms by which reaction specificity can be achieved in PLP enzymes by focusing on three aspects of these reactions: stereoelectronic effects, protonation state of the external aldimine intermediate, and interaction of the carbanionic intermediate with the protein side chains present in the active site. PMID:21664990

  2. Common whelk (Buccinum undatum) allergy: identification of IgE-binding components and effects of heating and digestive enzymes.

    PubMed

    Lee, Byung-Jae; Park, Hae-Sim

    2004-12-01

    In Korea, common whelk (Buccinum undatum) is a popular edible shellfish. The aim of this study was to observe the sensitization rate to common whelk and to characterize its allergens. We carried out skin prick test (SPT) in 1,700 patients with various allergic diseases. Specific IgE were detected by ELISA in the patient sera and ELISA inhibition tests were conducted. IgE-binding components were identified by means of SDS-PAGE and IgE-immunoblotting. The effects of digestive enzymes were evaluated in both raw and thermally treated extracts. SPT to common whelk was positive (>/=2+) in 83 (4.9%) patients studied. Twenty-four (38.7%) out of 62 SPT positive patients had high serum specific IgE to common whelk. ELISA inhibition test showed significant inhibitions by abalone as well as by common whelk. IgE-immunoblotting demonstrated three IgE-binding components (40, 71, 82 kDa), which were digested by simulated intestinal fluid and moderately digested by simulated gastric fluid, and the digestibility of allergens remained unchanged after thermal treatment. In conclusion, IgE-sensitization rate to common whelk was 4.9% in allergy patients. IgE-immunoblotting demonstrated three IgE-binding components, which were degraded by digestive enzymes. Further studies are needed to evaluate the clinical significance of the sensitized patients to common whelk.

  3. Common Whelk (Buccinum undatum) Allergy: Identification of IgE-binding Components and Effects of Heating and Digestive Enzymes

    PubMed Central

    Lee, Byung-Jae

    2004-01-01

    In Korea, common whelk (Buccinum undatum) is a popular edible shellfish. The aim of this study was to observe the sensitization rate to common whelk and to characterize its allergens. We carried out skin prick test (SPT) in 1,700 patients with various allergic diseases. Specific IgE were detected by ELISA in the patient sera and ELISA inhibition tests were conducted. IgE-binding components were identified by means of SDS-PAGE and IgE-immunoblotting. The effects of digestive enzymes were evaluated in both raw and thermally treated extracts. SPT to common whelk was positive (≥2+) in 83 (4.9%) patients studied. Twenty-four (38.7%) out of 62 SPT positive patients had high serum specific IgE to common whelk. ELISA inhibition test showed significant inhibitions by abalone as well as by common whelk. IgE-immunoblotting demonstrated three IgE-binding components (40, 71, 82 kDa), which were digested by simulated intestinal fluid and moderately digested by simulated gastric fluid, and the digestibility of allergens remained unchanged after thermal treatment. In conclusion, IgE-sensitization rate to common whelk was 4.9% in allergy patients. IgE-immunoblotting demonstrated three IgE-binding components, which were degraded by digestive enzymes. Further studies are needed to evaluate the clinical significance of the sensitized patients to common whelk. PMID:15608387

  4. Effect of water quality and confounding factors on digestive enzyme activities in Gammarus fossarum.

    PubMed

    Charron, L; Geffard, O; Chaumot, A; Coulaud, R; Queau, H; Geffard, A; Dedourge-Geffard, O

    2013-12-01

    The feeding activity and subsequent assimilation of the products resulting from food digestion allow organisms to obtain energy for growth, maintenance and reproduction. Among these biological parameters, we studied digestive enzymes (amylase, cellulase and trypsin) in Gammarus fossarum to assess the impact of contaminants on their access to energy resources. However, to enable objective assessment of a toxic effect of decreased water quality on an organisms' digestive capacity, it is necessary to establish reference values based on its natural variability as a function of changing biotic and abiotic factors. To limit the confounding influence of biotic factors, a caging approach with calibrated male organisms from the same population was used. This study applied an in situ deployment at 23 sites of the Rhone basin rivers, complemented by a laboratory experiment assessing the influence of two abiotic factors (temperature and conductivity). The results showed a small effect of conductivity on cellulase activity and a significant effect of temperature on digestive enzyme activity but only at the lowest temperature (7 °C). The experimental conditions allowed us to define an environmental reference value for digestive enzyme activities to select sites where the quality of the water impacted the digestive capacity of the organisms. In addition to the feeding rate, this study showed the relevance of digestive enzymes as biomarkers to be used as an early warning tool to reflect organisms' health and the chemical quality of aquatic ecosystems.

  5. Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements

    PubMed Central

    Janssen, George; Christis, Chantal; Kooy-Winkelaar, Yvonne; Edens, Luppo; Smith, Drew

    2015-01-01

    Background Due to the high proline content of gluten molecules, gastrointestinal proteases are unable to fully degrade them leaving large proline-rich gluten fragments intact, including an immunogenic 33-mer from α-gliadin and a 26-mer from γ-gliadin. These latter peptides can trigger pro-inflammatory T cell responses resulting in tissue remodeling, malnutrition and a variety of other complications. A strict lifelong gluten-free diet is currently the only available treatment to cope with gluten intolerance. Post-proline cutting enzymes have been shown to effectively degrade the immunogenic gluten peptides and have been proposed as oral supplements. Several existing digestive enzyme supplements also claim to aid in gluten degradation. Here we investigate the effectiveness of such existing enzyme supplements in comparison with a well characterized post-proline cutting enzyme, Prolyl EndoPeptidase from Aspergillus niger (AN-PEP). Methods Five commercially available digestive enzyme supplements along with purified digestive enzymes were subjected to 1) enzyme assays and 2) mass spectrometric identification. Gluten epitope degradation was monitored by 1) R5 ELISA, 2) mass spectrometric analysis of the degradation products and 3) T cell proliferation assays. Findings The digestive enzyme supplements showed comparable proteolytic activities with near neutral pH optima and modest gluten detoxification properties as determined by ELISA. Mass spectrometric analysis revealed the presence of many different enzymes including amylases and a variety of different proteases with aminopeptidase and carboxypeptidase activity. The enzyme supplements leave the nine immunogenic epitopes of the 26-mer and 33-mer gliadin fragments largely intact. In contrast, the pure enzyme AN-PEP effectively degraded all nine epitopes in the pH range of the stomach at much lower dose. T cell proliferation assays confirmed the mass spectrometric data. Conclusion Currently available digestive enzyme

  6. Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Zheng, Si-Yang

    2014-11-01

    A magnetic enzyme nanosystem have been designed and constructed by a polydopamine (PDA)-modification strategy. The magnetic enzyme nanosystem has well defined core-shell structure and a relatively high saturation magnetization (Ms) value of 48.3 emu g-1. The magnetic enzyme system can realize rapid, efficient and reusable tryptic digestion of proteins by taking advantage of its magnetic core and biofunctional shell. Various standard proteins (e.g. cytochrome C (Cyt-C), myoglobin (MYO) and bovine serum albumin (BSA)) have been used to evaluate the effectiveness of the magnetic enzyme nanosystem. The results show that the magnetic enzyme nanosystem can digest the proteins in 30 minutes, and the results are comparable to conventional 12 hours in-solution digestion. Furthermore, the magnetic enzyme nanosystem is also effective in the digestion of low-concentration proteins, even at as low as 5 ng μL-1 substrate concentration. Importantly, the system can be reused several times, and has excellent stability for storage. Therefore, this work will be highly beneficial for the rapid digestion and identification of proteins in future proteomics.

  7. Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion

    PubMed Central

    Cheng, Gong; Zheng, Si-Yang

    2014-01-01

    A magnetic enzyme nanosystem have been designed and constructed by a polydopamine (PDA)-modification strategy. The magnetic enzyme nanosystem has well defined core-shell structure and a relatively high saturation magnetization (Ms) value of 48.3 emu g−1. The magnetic enzyme system can realize rapid, efficient and reusable tryptic digestion of proteins by taking advantage of its magnetic core and biofunctional shell. Various standard proteins (e.g. cytochrome C (Cyt-C), myoglobin (MYO) and bovine serum albumin (BSA)) have been used to evaluate the effectiveness of the magnetic enzyme nanosystem. The results show that the magnetic enzyme nanosystem can digest the proteins in 30 minutes, and the results are comparable to conventional 12 hours in-solution digestion. Furthermore, the magnetic enzyme nanosystem is also effective in the digestion of low-concentration proteins, even at as low as 5 ng μL−1 substrate concentration. Importantly, the system can be reused several times, and has excellent stability for storage. Therefore, this work will be highly beneficial for the rapid digestion and identification of proteins in future proteomics. PMID:25374397

  8. Rapid and enhanced proteolytic digestion using electric-field-oriented enzyme reactor.

    PubMed

    Zhou, Yu; Yi, Tie; Park, Sung-Soo; Chadwick, Wayne; Shen, Rong-Fong; Wu, Wells W; Martin, Bronwen; Maudsley, Stuart

    2011-06-10

    We have created a novel enzyme reactor using electric field-mediated orientation and immobilization of proteolytic enzymes (trypsin/chymotrypsin) on biocompatible PVDF membranes in a continuous flow-through chamber. Using less than 5min, this reactor in various enzyme combinations can produce enhanced rapid digestion for standardized prototypic proteins, hydrophilic proteins and hydrophobic transmembrane proteins when compared to in-solution techniques. With improved digestive efficiency, our reactor improved the overall functional analysis of lipid raft proteomes by identifying more closely functionally linked proteins and elucidated a richer set of biological processes and pathways linked to the proteins than traditional in-solution methods. PMID:21338726

  9. Relationship between digestive enzymes and food habit of Lutzomyia longipalpis (Diptera: Psychodidae) larvae: Characterization of carbohydrases and digestion of microorganisms.

    PubMed

    Moraes, C S; Lucena, S A; Moreira, B H S; Brazil, R P; Gontijo, N F; Genta, F A

    2012-08-01

    The sandfly Lutzomyia longipalpis (Lutz and Neiva, 1912) is the main vector of American Visceral Leishmaniasis. In spite of its medical importance and several studies concerning adult digestive physiology, biochemistry and molecular biology, very few studies have been carried out to elucidate the digestion in sandfly larvae. Even the breeding sites and food sources of these animals in the field are largely uncharacterized. In this paper, we describe and characterize several carbohydrases from the gut of L. longipalpis larvae, and show that they are probably not acquired from food. The enzyme profile of this insect is consistent with the digestion of fungal and bacterial cells, which were proved to be ingested by larvae under laboratory conditions. In this respect, sandfly larvae might have a detritivore habit in nature, being able to exploit microorganisms usually encountered in the detritus as a food source.

  10. Modelling enzyme reaction mechanisms, specificity and catalysis.

    PubMed

    Mulholland, Adrian J

    2005-10-15

    Modern modelling methods can now give uniquely detailed understanding of enzyme-catalyzed reactions, including the analysis of mechanisms and the identification of determinants of specificity and catalytic efficiency. A new field of computational enzymology has emerged that has the potential to contribute significantly to structure-based design and to develop predictive models of drug metabolism and, for example, of the effects of genetic polymorphisms. This review outlines important techniques in this area, including quantum-chemical model studies and combined quantum-mechanics and molecular-mechanics (QM/MM) methods. Some recent applications to enzymes of pharmacological interest are also covered, showing the types of problems that can be tackled and the insight they can give.

  11. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

    PubMed Central

    Liu, Y. F.; Zhao, H. B.; Liu, X. M.; You, W.; Cheng, H. J.; Wan, F. C.; Liu, G. F.; Tan, X. W.; Song, E. L.; Zhang, X. L.

    2016-01-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle. PMID:26954111

  12. Pancreatic digestive enzyme blockade in the small intestine prevents insulin resistance in hemorrhagic shock.

    PubMed

    DeLano, Frank A; Schmid-Schönbein, Geert W

    2014-01-01

    Hemorrhagic shock is associated with metabolic defects, including hyperglycemia and insulin resistance, but the mechanisms are unknown. We recently demonstrated that reduction of the extracellular domain of the insulin receptor by degrading proteases may lead to a reduced ability to maintain normal plasma glucose values. In shock, transfer of digestive enzymes from the lumen of the intestine into the systemic circulation after breakdown of the intestinal mucosal barrier causes inflammation and organ dysfunction. Suppression of the digestive enzymes in the lumen of the intestine with protease inhibitors is effective in reducing the level of the inflammatory reactions. To determine the degree to which blockade of digestive enzymes affects insulin resistance in shock, rats were exposed to acute hemorrhagic shock (mean arterial pressure of 30 mmHg for 2 h) at which time all shed blood volume was returned. Digestive proteases in the intestine were blocked with a serine protease inhibitor (tranexamic acid in polyethylene glycol and physiological electrolyte solution), and the density of the insulin receptor was measured with immunohistochemistry in the mesentery microcirculation. The untreated rat without enzyme blockade had significantly attenuated levels of insulin receptor density as compared with control and treated rats. Blockade of the digestive proteases after 60 min of hypotension in the lumen of the small intestine led to a lesser decrease in insulin receptor density compared with controls without protease blockade. Glucose tolerance test indicates a significant increase in plasma glucose levels 2 h after hemorrhagic shock, which are reduced to control values in the presence of protease inhibition in the lumen of the intestine. The transient reduction of the plasma glucose levels after an insulin bolus is significantly attenuated after shock but is restored when digestive enzymes in the lumen of the intestine are blocked. These results suggest that in

  13. Influence of nutritional stress on digestive enzyme activities in juveniles of two marine clam species, Ruditapes decussatus and Venerupis pullastra

    NASA Astrophysics Data System (ADS)

    Albentosa, Marina; Moyano, Francisco J.

    2008-08-01

    The potential use of digestive activities as indicators of the nutritional status in bivalves is discussed in relation to the results obtained in two clam species exposed to starvation and refeeding. Activities of some digestive enzymes (amylase, laminarinase, cellulase, and protease) were measured in juveniles of two commercially interesting species of clams, Ruditapes decussatus and Venerupis pullastra. The specimens were fed normally, being after subjected to a 15-days starvation and a further refeeding period. Samples were obtained at different moments of such feeding schedule to evaluate enzymes as well as weight (live, dry and organic) and length, in order to calculate growth rates and feeding efficiencies. Starvation led to a major decrease in clam growth as measured by dry weight and a negative growth as measured by organic weight, this coinciding with a certain degree of growth of the shell and a consumption of soft tissue. This response occurred more rapidly in R. decussatus but was of a lower magnitude than in V. pullastra. Activity of carbohydrases decreased rapidly in both species with starvation, although protease activity was maintained in R. decussatus. Recovery after the end of starvation was not similar in both species; while R. decussatus attained similar growth rates and enzyme activities to those measured prior to nutritional stress, V. pullastra only recovered 50% of its initial values. For both species of bivalves it can be concluded that digestive enzymes, and more specifically amylase, could be used as indicative of their nutritional condition.

  14. [Activity of digestive enzymes during intraperitoneal intake of metal compounds].

    PubMed

    Zdol'nik, T D

    2001-01-01

    Digestive function was studied when three compounds from Group VIB of the Mendeleev periodic system of elements were intraperitoneally administered during 100 days. Potassium bichromate, ammonium molybdate in a dose of 0.2 mg/kg and sodium tungstate in a dose of 5.0 mg/kg (in terms of metal) were found to have a resorptive effect on pancreatic function and a local effect on the small intestinal mucosa.

  15. Effect of enzymes on anaerobic digestion of primary sludge and septic tank performance.

    PubMed

    Diak, James; Örmeci, Banu; Kennedy, Kevin J

    2012-11-01

    Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors. PMID:22618603

  16. Development of digestive enzyme activity in spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) larvae.

    PubMed

    Moguel-Hernández, I; Peña, R; Nolasco-Soria, H; Dumas, S; Zavala-Leal, I

    2014-06-01

    We describe digestive enzyme activity during the larval development of spotted rose snapper, Lutjanus guttatus. Trypsin, chymotrypsin, leucine aminopeptidase, pepsin, amylase, lipase, and acid and alkaline phosphatase activities were evaluated using spectrophotometric techniques from hatching through 30 days. The spotted rose snapper larvae present the same pattern of digestive enzyme activity previously reported for other species in which pancreatic (i.e., trypsin, chymotrypsin, amylase, and lipase) and intestinal (i.e., acid and alkaline phosphatases and leucine aminopeptidase) enzymatic activities are present from hatching allowing the larvae to digest and absorb nutrients in the yolk-sac and live prey by the time of first feeding. The digestive and absorption capacity of the spotted rose snapper increases during the larval development. A significant increase in individual activity of all enzymes occurs at 20 DAH, and around 25 DAH, the juvenile-type of digestion is observed with the appearance of pepsin secreted by the stomach, suggesting that maturation of the digestive function occurs around 20-25 DAH. Our results are in agreement with a previous suggestion that early weaning may be possible from 20 DAH. However, the patterns of enzymatic activities reported in our study should be considered during the formulation of an artificial diet for early weaning of the spotted rose snapper.

  17. Development of continuous microwave-assisted protein digestion with immobilized enzyme.

    PubMed

    Chen, Zhengyi; Li, Yongle; Lin, Shuhai; Wei, Meiping; Du, Fuyou; Ruan, Guihua

    2014-03-01

    In this study, an easy and efficiency protein digestion method called continuous microwave-assisted protein digestion (cMAED) with immobilized enzyme was developed and applied for proteome analysis by LC-MS(n). Continuous microwave power outputting was specially designed and applied. Trypsin and bromelain were immobilized onto magnetic micropheres. To evaluate the method of cMAED, bovine serum albumin (BSA) and protein extracted from ginkgo nuts were used as model and real protein sample to verify the digestion efficiency of cMAED. Several conditions including continuous microwave power, the ratio of immobilized trypsin/BSA were optimized according to the analysis of peptide fragments by Tricine SDS-PAGE and LC-MS(n). Subsequently, the ginkgo protein was digested with the protocols of cMAED, MAED and conventional heating enzymatic digestion (HED) respectively and the LC-MS(n) profiles of the hydrolysate was compared. Results showed that cMAED combined with immobilized enzyme was a fast and efficient digestion method for protein digestion and microwave power tentatively affected the peptide producing. The cMAED method will be expanded for large-scale preparation of bioactive peptides and peptide analysis in biological and clinical research.

  18. Flying squirrel-associated Rickettsia prowazekii (epidemic typhus rickettsiae) characterized by a specific DNA fragment produced by restriction endonuclease digestion.

    PubMed

    Regnery, R L; Fu, Z Y; Spruill, C L

    1986-01-01

    The DNA from flying squirrel-associated Rickettsia prowazekii was characterized by using a specific DNA fragment produced by digestion with the enzyme BamHI. The DNA fragment was cloned into a plasmid vector and used to readily distinguish between available human- and flying squirrel-associated R. prowazekii DNAs derived from crude cytoplasmic extracts. PMID:3009528

  19. Flying squirrel-associated Rickettsia prowazekii (epidemic typhus rickettsiae) characterized by a specific DNA fragment produced by restriction endonuclease digestion.

    PubMed Central

    Regnery, R L; Fu, Z Y; Spruill, C L

    1986-01-01

    The DNA from flying squirrel-associated Rickettsia prowazekii was characterized by using a specific DNA fragment produced by digestion with the enzyme BamHI. The DNA fragment was cloned into a plasmid vector and used to readily distinguish between available human- and flying squirrel-associated R. prowazekii DNAs derived from crude cytoplasmic extracts. Images PMID:3009528

  20. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    PubMed

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (<24 h) in both waste activated sludge and anaerobic digester sludge environments and that this was, for the majority of enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed. PMID:27498254

  1. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    PubMed

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (<24 h) in both waste activated sludge and anaerobic digester sludge environments and that this was, for the majority of enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed.

  2. Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus.

    PubMed

    Abolfathi, Marzieh; Hajimoradloo, Abdolmajid; Ghorbani, Rasool; Zamani, Abbas

    2012-02-01

    We evaluated the effects of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Fish were divided into four feeding groups (mean mass 1.68 ± 0.12 g). The control group was fed to satiation twice a day throughout the experiment with formulated diet (SFK). The other three groups were deprived of feed for 1(S1), 2(S2), and 3(S3) weeks, respectively, and then fed to satiation during the refeeding period. The results showed that trypsin specific activity was not affected significantly either by starvation or refeeding, in all experimental groups. Chymotrypsin specific activity did not change significantly in S1 fish during the experimental period. In S2 and S3 fish no significant changes were observed during the starvation period. Upon refeeding, the activity increased in S2 fish, while it decreased in S3 fish. Amylase specific activity decreased significantly during the starvation period in all experimental groups. Upon refeeding, the activity increased. Alkaline phosphatase specific activity did not change significantly during the experiment period in S3 fish, while it showed significant changes during the starvation and refeeding period in the S1 and S2 fish. Starvation also had a significant effect on the structure of the intestine.

  3. Susceptibility of sweet potato (Ipomoea batatas) peel proteins to digestive enzymes.

    PubMed

    Maloney, Katherine P; Truong, Van-Den; Allen, Jonathan C

    2014-07-01

    Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes affect sweet potato proteins. Two fractions of industrially processed sweet potato peel, containing 6.8% and 8.5% protein and 80.5% and 83.3% carbohydrate, were used as a source of protein. Sweet potato proteins were incubated with pepsin, trypsin, and chymotrypsin and protein breakdown was visualized with SDS-PAGE. After pepsin digestion, samples were assayed for amylase inhibitory activity. Sporamin, the major storage protein in sweet potatoes, which functions as a trypsin inhibitor as well, exhibited resistance to pepsin, trypsin, and chymotrypsin. Sporamin from blanched peel of orange sweet potatoes was less resistant to pepsin digestion than sporamin from outer peel and from extract of the white-skinned Caiapo sweet potato. Trypsin inhibitory activity remained after simulated gastric digestion, with the Caiapo potato protein and peel samples exhibiting higher inhibitory activity compared to the blanched peel sample. Amylase and chymotrypsin inhibitory activity was not present in any of the samples after digestion.

  4. Susceptibility of sweet potato (Ipomoea batatas) peel proteins to digestive enzymes.

    PubMed

    Maloney, Katherine P; Truong, Van-Den; Allen, Jonathan C

    2014-07-01

    Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes affect sweet potato proteins. Two fractions of industrially processed sweet potato peel, containing 6.8% and 8.5% protein and 80.5% and 83.3% carbohydrate, were used as a source of protein. Sweet potato proteins were incubated with pepsin, trypsin, and chymotrypsin and protein breakdown was visualized with SDS-PAGE. After pepsin digestion, samples were assayed for amylase inhibitory activity. Sporamin, the major storage protein in sweet potatoes, which functions as a trypsin inhibitor as well, exhibited resistance to pepsin, trypsin, and chymotrypsin. Sporamin from blanched peel of orange sweet potatoes was less resistant to pepsin digestion than sporamin from outer peel and from extract of the white-skinned Caiapo sweet potato. Trypsin inhibitory activity remained after simulated gastric digestion, with the Caiapo potato protein and peel samples exhibiting higher inhibitory activity compared to the blanched peel sample. Amylase and chymotrypsin inhibitory activity was not present in any of the samples after digestion. PMID:25473492

  5. Susceptibility of sweet potato (Ipomoea batatas) peel proteins to digestive enzymes

    PubMed Central

    Maloney, Katherine P; Truong, Van-Den; Allen, Jonathan C

    2014-01-01

    Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes affect sweet potato proteins. Two fractions of industrially processed sweet potato peel, containing 6.8% and 8.5% protein and 80.5% and 83.3% carbohydrate, were used as a source of protein. Sweet potato proteins were incubated with pepsin, trypsin, and chymotrypsin and protein breakdown was visualized with SDS-PAGE. After pepsin digestion, samples were assayed for amylase inhibitory activity. Sporamin, the major storage protein in sweet potatoes, which functions as a trypsin inhibitor as well, exhibited resistance to pepsin, trypsin, and chymotrypsin. Sporamin from blanched peel of orange sweet potatoes was less resistant to pepsin digestion than sporamin from outer peel and from extract of the white-skinned Caiapo sweet potato. Trypsin inhibitory activity remained after simulated gastric digestion, with the Caiapo potato protein and peel samples exhibiting higher inhibitory activity compared to the blanched peel sample. Amylase and chymotrypsin inhibitory activity was not present in any of the samples after digestion. PMID:25473492

  6. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    PubMed Central

    Moraes, Caroline da Silva; Diaz-Albiter, Hector M.; Faria, Maiara do Valle; Sant'Anna, Maurício R. V.; Dillon, Rod J.; Genta, Fernando A.

    2014-01-01

    The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females) or blood feeders (females only), and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases, and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18, and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes. PMID:25140153

  7. Inhibitory effect of Pistia tannin on digestive enzymes of Indian major carps: an in vitro study.

    PubMed

    Mandal, Sudipta; Ghosh, Koushik

    2010-12-01

    Aquatic weeds are one of the major unconventional feed ingredients tested for aquafeed formulation. Tannin content in the water lettuce, Pistia, has been quantified (26.67 mg g(-1); dry weight) and graded levels of which (12.5-200 μg) have been incorporated in the reaction mixtures to evaluate any change in the in vitro activity of the principal digestive enzymes from the three Indian major carps (IMC), namely rohu (Labeo rohita), catla (Catla catla) and mrigala (Cirrhinus mrigala). Result of the experiment revealed that the Pistia tannin (PT) significantly inhibit/lower the activities of the digestive enzymes from three IMCs in a dose-dependent manner, even at very low concentration. Significant variation in the reduction of the enzyme activities was noticed between the three fish species, as well as between the three enzymes studied. Among the three species studied, digestive enzymes from L. rohita were found to be the most sensitive to the PT, whereas enzymes from C. catla were found to be comparatively least affected. On the other hand, protease and lipase activities were comparatively more affected than the amylase activity. The results of the study suggest that more stress should be given on the elimination of tannin while incorporating feed ingredients of plant origin in fish diets.

  8. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.

    PubMed

    Warren, Frederick J; Zhang, Bin; Waltzer, Gina; Gidley, Michael J; Dhital, Sushil

    2015-03-01

    In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates.

  9. The interplay of α-amylase and amyloglucosidase activities on the digestion of starch in in vitro enzymic systems.

    PubMed

    Warren, Frederick J; Zhang, Bin; Waltzer, Gina; Gidley, Michael J; Dhital, Sushil

    2015-03-01

    In vitro hydrolysis assays are a key tool in understanding differences in rate and extent of digestion of starchy foods. They offer a greater degree of simplicity and flexibility than dynamic in vitro models or in vivo experiments for quantifiable, mechanistic exploration of starch digestion. In the present work the influence of α-amylase and amyloglucosidase activities on the digestion of maize and potato starch granules was measured using both glucose and reducing sugar assays. Data were analysed through initial rates of digestion, and by 1st order kinetics, utilising logarithm of slope (LOS) plots. The rate and extent of starch digestion was dependent on the activities of both enzymes and the type of starch used. Potato required more enzyme than maize to achieve logarithmic reaction curves, and complete digestion. The results allow targeted design of starch digestion experiments through a thorough understanding of the contributions of α-amylase and amyloglucosidase to digestion rates. PMID:25498625

  10. Influence of Molting and Starvation on Digestive Enzyme Activities and Energy Storage in Gammarus fossarum

    PubMed Central

    Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain

    2014-01-01

    Among the many biological responses studied in ecotoxicology, energy-based biomarkers such as digestive enzyme activities and energy reserves appear to be useful predictive tools for detecting physiological disturbances in organisms. However, the use of these biological responses as biomarkers could be limited by the effects of confounding factors (biotic and abiotic) and physiological processes, such as the reproductive cycle. Thus, the optimal use of these biomarkers will be facilitated by understanding the effects of these factors on the energy metabolism of the sentinel species being studied. We considered abiotic factors (temperature and conductivity) in a previous study, whereas the present study investigated the effects of gender, the female reproductive stage, and food availability on the digestive enzyme activities and energy storage of Gammarus fossarum. The results indicated that, during the female reproductive cycle, the activities of digestive enzymes (amylase, cellulase, and trypsin) decreased significantly, whereas the levels of reserves (proteins, lipids, and sugar) increased until the last premolt stage. Restricted food diets only led to decreased amylase activities in both sexes. Food starvation also induced a decrease in the energy outcomes in females, whereas there were no effects in males. In general, the biochemical (digestive enzyme activities) and physiological (energy reserves) responses were more stable in males than in females. These results support the use of males fed ad libitum to limit the effects of confounding factors when using these energy biomarkers in Gammarus fossarum during biomonitoring programs. PMID:24788197

  11. Digestive Enzyme Supplementation for Autism Spectrum Disorders: A Double-Blind Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Munasinghe, Sujeeva A.; Oliff, Carolyn; Finn, Judith; Wray, John A.

    2010-01-01

    To examine the effects of a digestive enzyme supplement in improving expressive language, behaviour and other symptoms in children with Autism Spectrum Disorder. Randomized, double-blind placebo-controlled trial using crossover design over 6 months for 43 children, aged 3-8 years. Outcome measurement tools included monthly Global Behaviour Rating…

  12. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  13. Expression of digestive enzymes and nutrient transporters in Eimeria acervulina-challenged layers and broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian coccidiosis is a disease caused by the intestinal protozoa Eimeria. Eimeria-infected chickens develop lesions in the intestinal mucosa, which result in reduced feed efficiency and body weight gain. This growth reduction may be due to changes in expression of digestive enzymes and nutrient tran...

  14. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  15. Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.

    PubMed

    Sorndech, Waraporn; Meier, Sebastian; Jansson, Anita M; Sagnelli, Domenico; Hindsgaul, Ole; Tongta, Sunanta; Blennow, Andreas

    2015-11-01

    Starch provides our main dietary caloric intake and over-consumption of starch-containing foods results in escalating life-style disease including diabetes. By increasing the content of α-1,6 branch points in starch, digestibility by human amylolytic enzymes is expected to be retarded. Aiming at generating a soluble and slowly digestible starch by increasing the content and changing the relative positioning of the branch points in the starch molecules, we treated cassava starch with amylomaltase (AM) and branching enzyme (BE). We performed a detailed molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility. Step-by-step enzyme catalysis was the most efficient treatment, and it generated branch structures even more extreme than those of glycogen. All AM- and BE-treated samples showed increased resistance to degradation by porcine pancreatic α-amylase and glucoamylase as compared to cassava starch. The amylolytic products showed chain lengths and branching patterns similar to the products obtained from glycogen. Our data demonstrate that combinatorial enzyme catalysis provides a strategy to generate potential novel soluble α-glucan ingredients with low dietary digestibility assets.

  16. Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture.

    PubMed

    Furlund, Camilla B; Kristoffersen, Anja B; Devold, Tove G; Vegarud, Gerd E; Jonassen, Christine M

    2012-07-01

    Many infant formulas are enriched with lactoferrin (Lf) because of its claimed beneficial effects on health. Native bovine Lf (bLf) is known to inhibit in vitro replication of human enteroviruses, a group of pathogenic viruses that replicate in the gut as their primary infection site. On the basis of a model digestion and human gastrointestinal enzymes, we hypothesized that bLf could retain its antiviral properties against enterovirus in the gastrointestinal tract, either as an intact protein or through bioactive peptide fragments released by digestive enzymes. To test our hypothesis, bLf was digested with human gastric juice and duodenal juice in a 2-step in vitro digestion model. Two gastric pH levels and reduction conditions were used to simulate physiological conditions in adults and infants. The antiviral activity of native bLf and of the digested fractions was studied on echovirus 5 in vitro, using various assay conditions, addressing several mechanisms for replication inhibition. Both native and digested bLf fractions revealed a significant inhibitory effect, when added before or simultaneously with the virus onto the cells. Furthermore, a significant stronger sustained antiviral effect was observed when bLf was fully digested in the gastric phase with fast pH reduction to 2.5, compared with native bLf, suggesting the release of antiviral peptides from bLf during the human digestion process. In conclusion, this study demonstrates that bLf may have a role in the prevention of human gastrointestinal virus infection under physiological conditions and that food containing bLf may protect against infection in vivo. PMID:22901558

  17. Enzyme-digestible swelling hydrogels as platforms for long-term oral drug delivery: synthesis and characterization.

    PubMed

    Park, K

    1988-09-01

    A method was developed for synthesizing enzyme-digestible swelling hydrogels. Albumin molecules were modified using glycidyl acrylate to introduce vinyl groups. The functionalized albumin molecules participated as cross-linkers in the polymerization of vinyl monomers, such as acrylic acid or acrylamide. The extent of chemical modification of albumin was an important variable in controlling the cross-linking ability. The albumin in the synthesized hydrogels retained its property of enzymatic digestion by proteolytic enzymes. The kinetics of swelling and enzymatic digestion of the hydrogels were examined using various enzyme concentrations. It was observed that the digestion kinetics were largely determined by the relative concentrations of albumin and enzyme. The potential application of the enzyme-digestible swelling hydrogels as platforms for long-term oral drug delivery is discussed. PMID:3146993

  18. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock.

    PubMed

    DeLano, Frank A; Hoyt, David B; Schmid-Schönbein, Geert W

    2013-01-23

    Shock, sepsis, and multiorgan failure are associated with inflammation, morbidity, and high mortality. The underlying pathophysiological mechanism is unknown, but evidence suggests that pancreatic enzymes in the intestinal lumen autodigest the intestine and generate systemic inflammation. Blocking these enzymes in the intestine reduces inflammation and multiorgan dysfunction. We investigated whether enzymatic blockade also reduces mortality after shock. Three rat shock models were used here: hemorrhagic shock, peritonitis shock induced by placement of cecal material into the peritoneum, and endotoxin shock. One hour after initiation of hemorrhagic, peritonitis, or endotoxin shock, animals were administered one of three different pancreatic enzyme inhibitors--6-amidino-2-naphtyl p-guanidinobenzoate dimethanesulfate, tranexamic acid, or aprotinin--into the lumen of the small intestine. In all forms of shock, blockade of digestive proteases with protease inhibitor attenuated entry of digestive enzymes into the wall of the intestine and subsequent autodigestion and morphological damage to the intestine, lung, and heart. Animals treated with protease inhibitors also survived in larger numbers than untreated controls over a period of 12 weeks. Surviving animals recovered completely and returned to normal weight within 14 days after shock. The results suggest that the active and concentrated digestive enzymes in the lumen of the intestine play a central role in shock and multiorgan failure, which can be treated with protease inhibitors that are currently available for use in the clinic.

  19. Characterization and ontogenetic development of digestive enzymes in Pacific bluefin tuna Thunnus orientalis larvae.

    PubMed

    Murashita, Koji; Matsunari, Hiroyuki; Kumon, Kazunori; Tanaka, Yosuke; Shiozawa, Satoshi; Furuita, Hirofumi; Oku, Hiromi; Yamamoto, Takeshi

    2014-12-01

    The major digestive enzymes in Pacific bluefin tuna Thunnus orientalis larvae were characterized, and the physiological characteristics of the enzymes during early ontogeny were clarified using biochemical and molecular approaches. The maximum activity of trypsin (Try), chymotrypsin (Ct) and amylase (Amy) was observed at pH 6-11, 8-11 and 6-9, respectively. Maximum activity of Try, Ct and Amy occurred at 50 °C, that of lipase (Lip) was at 60 °C and that of pepsin (Pep) was at 40-50 °C. These pH and thermal profiles were similar to those for other fish species but differed from those previously reported for adult bluefin tuna. Enzyme activity for all enzymes assayed was found to decrease at high temperatures (Try, Ct, Amy and Pep: 50 °C; Lip: 40 °C), which is similar to findings for other fish species with one marked exception-increased Try activity was observed at 40 °C. Lip activity appeared to be dependent on bile salts under our assay conditions, resulting in a significant increase in activity in the presence of bile salts. Ontogenetic changes in pancreatic digestive enzymes showed similar gene expression patterns to those of other fish species, whereas marked temporal increases in enzyme activities were observed at 10-12 days post hatching (dph), coinciding with previously reported timing of the development of the pyloric caeca in bluefin tuna larvae. However, complete development of digestive function was indicated by the high pep gene expression from 19 dph, which contradicts the profile of Pep activity and previously reported development timing of the gastric gland. These findings contribute to the general knowledge of bluefin tuna larval digestive system development.

  20. Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates.

    PubMed

    Chen, Zhen; Mayer, Lawrence M; Weston, Donald P; Bock, Michael J; Jumars, Peter A

    2002-06-01

    Digestive systems of deposit and suspension feeders can be exposed to high concentrations of copper (Cu) by ingestion of contaminated sediments. We assessed a potential impact of this Cu exposure on digestive enzyme activities in a wide range of benthic organisms by monitoring enzyme activities in their gut fluids during in vitro titrations with dissolved Cu, which mimics Cu solubilization from sediments. Increasing Cu inhibited digestive protease activities at threshold values, which varied widely among organisms, from 8 microM for an echinoderm to 0.4 M for an echiuran. More Cu was required to inhibit proteases in guts containing higher amino acid concentrations because strong Cu-binding sites on amino acids prevent Cu interaction with the enzymatically active sites. Threshold Cu concentrations were similar for proteases, esterases, lipases, and alpha- and beta-glucosidases, suggesting the same inhibition mechanism. Copper was less effective at inhibiting enzymes at lower pH, suggesting that protons can compete with Cu ion for binding to enzymatically active sites or that enzyme conformation is less vulnerable to Cu inhibition at lower pH. These results lead to the counterintuitive conclusion that deposit feeders with low enzyme activity, low amino acid concentration, and high pH values are most vulnerable to harm from sedimentary Cu by this mechanism, although they solubilize less sedimentary Cu than their counterparts with high enzyme activity, high amino acid concentrations, and low gut pH. In general, digestive systems of echinoderms may therefore be more susceptible to Cu contamination than those of polychaetes, with various other phyla showing intermediate susceptibilities. If threshold Cu values are converted to solid-phase sedimentary Cu concentrations, the thresholds are at least consistent with Cu loadings that have been observed to lead to biological impacts in the field.

  1. Norwalk Virus–specific Binding to Oyster Digestive Tissues

    PubMed Central

    Loisy, Fabienne; Atmar, Robert L.; Hutson, Anne M.; Estes, Mary K.; Ruvoën-Clouet, Nathalie; Pommepuy, Monique; Le Pendu, Jacques

    2006-01-01

    The primary pathogens related to shellfishborne gastroenteritis outbreaks are noroviruses. These viruses show persistence in oysters, which suggests an active mechanism of virus concentration. We investigated whether Norwalk virus or viruslike particles bind specifically to oyster tissues after bioaccumulation or addition to tissue sections. Since noroviruses attach to carbohydrates of the histo-blood group family, tests using immunohistochemical analysis were performed to evaluate specific binding of virus or viruslike particles to oyster tissues through these ligands. Viral particles bind specifically to digestive ducts (midgut, main and secondary ducts, and tubules) by carbohydrate structures with a terminal N-acetylgalactosamine residue in an α linkage (same binding site used for recognition of human histo-blood group antigens). These data show that the oyster can selectively concentrate a human pathogen and that conventional depuration will not eliminate noroviruses from oyster tissue. PMID:16707048

  2. Digestive enzyme activities in mudskipper Boleophthalmus pectinirostris and Chinese black sleeper Bostrichthys sinensis

    NASA Astrophysics Data System (ADS)

    Wu, Renxie; Hong, Wanshu; Zhang, Qiyong

    2010-07-01

    The mudskipper Boleophthalmus pectinirostris and Chinese black sleeper Bostrichthys sinensis occupy the intertidal zone. However, both species have their own unique diet. The former is an herbivore and the latter is a carnivore. In order to reveal the relationship between digestive enzyme activities and diets in the two species, the activities of protease (P), non-specific bile salt-activated lipase (BAL) and α-amylase (A) were determined in the stomach and intestine of adult mudskipper B. pectinirostris and Chinese black sleeper B. sinensis. The results showed that the activities of protease, BAL and α-amylase in the intestine of B. pectinirostris were significantly ( P<0.05) higher than those in the stomach. In B. sinensis, gastric protease activity was not different from the intestinal protease ( P>0.05), while BAL and α-amylase activities of the intestine were significantly ( P<0.05) higher than those of the stomach. The activity of gastric protease in B. sinensis was significantly ( P<0.05) higher than that in B. pectinirostris, while the activities of intestinal protease were not different between the two fish species ( P>0.05). BAL activities of the stomach and intestine in B. sinensis were significantly ( P<0.05) higher than those in B. pectinirostris, while α-amylase activities of the stomach and intestine in B. pectinirostris were significantly ( P<0.05) higher than those in B. sinensis. The ratios of P/BAL, A/P and A/BAL of the digestive tract in B. pectinirostris were 1.5, 107.3 and 158.6, respectively; and those in B. sinensis were 0.2, 1.6 and 0.2, respectively. It can be concluded that food digestion in the adult B. pectinirostris is mainly carried out in the intestine, whereas in the adult B. sinensis it is initiated in the stomach and finishes in the intestine. The activities of BAL and α-amylase in B. pectinirostris and B. sinensis are well correlated with their diets. However, a clear-cut correlation between protease activity and diets is

  3. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes.

    PubMed

    Furlund, C B; Ulleberg, E K; Devold, T G; Flengsrud, R; Jacobsen, M; Sekse, C; Holm, H; Vegarud, G E

    2013-01-01

    Lactoferrin (LF) is a protein present in milk and other body fluids that plays important biological roles. As part of a diet, LF must survive gastrointestinal conditions or create bioactive fragments to exert its effects. The degradation of LF and formation of bioactive peptides is highly dependent on individual variation in intraluminal composition. The present study was designed to compare the degradation and peptide formation of bovine LF (bLF) following in vitro digestion under different simulated intraluminal conditions. Human gastrointestinal (GI) juices were used in a 2-step model digestion to mimic degradation in the stomach and duodenum. To account for variation in the buffering capacity of different lactoferrin-containing foods, gastric pH was adjusted either slowly or rapidly to 2.5 or 4.0. The results were compared with in vivo digestion of bLF performed in 2 volunteers. High concentration of GI juices and fast pH reduction to 2.5 resulted in complete degradation in the gastric step. More LF resisted gastric digestion when pH was slowly reduced to 2.5 or 4.0. Several peptides were identified; however, few matched with previously reported peptides from studies using nonhuman enzymes. Surprisingly, no bovine lactoferricin, f(17-41), was identified during in vitro or in vivo digestion under the intraluminal conditions used. The diversity of enzymes in human GI juices seems to affect the hydrolysis of bLF, generating different peptide fragments compared with those obtained when using only one or a few proteases of animal origin. Multiple sequence analysis of the identified peptides indicated a motif consisting of proline and neighboring hydrophobic residues that could restrict proteolytic processing. Further structure analysis showed that almost all proteolytic cutting sites were located on the surface and mainly on the nonglycosylated half of lactoferrin. Digestion of bLF by human enzymes may generate different peptides from those found when lactoferrin is

  4. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Zhao, Yunlong; Zhou, Zhongliang; An, Chuanguang; Ma, Qiang

    2008-02-01

    The digestive enzyme activity and mRNA level of trypsin during the embryonic development of Cherax quadricarinatus were analyzed using biochemical and Fluorogenic Quantitative PCR (FQ—PCR) methods. The results show that the activities of trypsin and chymotrypsin had two different change patterns. Trypsin specific activity increased rapidly in the early stages of development and still remained high in preparation for the hatch stage. However, chymotrypsin activity peaked in stage 4 of embryonic development and decreased significantly in the last stage. The mRNA level of trypsin was elevated in all stages and two peak values were observed in stages 2 and 5 respectively. The results indicate that trypsin is very important for the utilization of the yolk during embryonic development and for the assimilation of dietary protein for larvae. The gene of trypsin is probably regulated at transcriptional level. The mRNA levels of trypsin can reflect not only trypsin activity, but also the regulatory mechanism for expression of trypsin gene to a certain degree.

  5. Influence of probiotics on the growth and digestive enzyme activity of white Pacific shrimp ( Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Gómez, R. Geovanny D.; Shen, M. A.

    2008-05-01

    The influence of Bacillus probiotics on the digestive enzyme activity and the growth of Litopenaeus vannamei were determined in this study. The shrimp was treated with five percentages (1.5, 3.0, 4.5, 6.0 and 7.5) of probiotics ( Bacillus spp.) supplemented to the feed and cultured for 45d. The growth measured as the weight gain at the end of culturing was significantly ( P<0.05) higher in probiotic-treated shrimps than that of the control (without receiving probiotics). Activities of protease and amylase, two digestive enzymes of the midgut gland and the intestine were significantly ( P<0.05) higher in probiotic-treated shrimp than in the control.

  6. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales⋆

    PubMed Central

    Renner, Tanya; Specht, Chelsea D

    2013-01-01

    The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales. PMID:23830995

  7. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales.

    PubMed

    Renner, Tanya; Specht, Chelsea D

    2013-08-01

    The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales. PMID:23830995

  8. Tannins: thermostable pigments which complex dietary proteins and inhibit digestive enzymes.

    PubMed

    Carmona, A

    1996-12-01

    The presence of antinutritional factors in legume seeds and other vegetables has been considered as an expression of the chemical warfare of plants against their predators. As a consequence, the nutritional utilization of these foods has only been possible through the use of a variety of treatments (cooking, fermentation, germination) which increase nutrient bioavailability. Nonetheless, some factors are not destroyed by effect of seed processing, among which stand a family of polymeric polyphenols called tannins. These pigments have the ability to complex and precipitate proteins and inhibit digestive enzymes. This paper describes what has been accomplished in regards to the selection of an appropriate solvent to extract bean polyphenols, the assessment of the most commonly used assay procedures, the purification of bean tannins and the evaluation of their interaction with proteins and digestive enzymes, responsible for their antinutritional effect.

  9. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales.

    PubMed

    Renner, Tanya; Specht, Chelsea D

    2013-08-01

    The digestion of prey by carnivorous plants is determined in part by suites of enzymes that are associated with morphologically and anatomically diverse trapping mechanisms. Chitinases represent a group of enzymes known to be integral to effective plant carnivory. In non-carnivorous plants, chitinases commonly act as pathogenesis-related proteins, which are either induced in response to insect herbivory and fungal elicitors, or constitutively expressed in tissues vulnerable to attack. In the Caryophyllales carnivorous plant lineage, multiple classes of chitinases are likely involved in both pathogenic response and digestion of prey items. We review what is currently known about trap morphologies, provide an examination of the diversity, roles, and evolution of chitinases, and examine how herbivore and pathogen defense mechanisms may have been coopted for plant carnivory in the Caryophyllales.

  10. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae.

    PubMed

    Koroiva, R; Souza, C W O; Toyama, D; Henrique-Silva, F; Fonseca-Gessner, A A

    2013-01-01

    We analyzed the digestive activity of the enzymes that digest cellulose and hemicellulose and the bacterial community that is capable of hydrolyzing wood compounds in the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae, which are miners of decomposing submerged tree and bush branches. Based on quantification of reducing sugars, these larvae have a limited capacity for cellulose degradation but a good capacity for xylan hydrolysis. We isolated 31 types of colonies from two larval morphotypes, of which 19 tested positive for the capacity to hydrolyze at least one of the four substrates that were used as the main carbon source in the culture media. Their woody compound degradation capacity was assessed using colorimetric tests. The bacteria were identified by the analysis of the 16S rRNA gene. None of the bacteria were capable of degrading lignin. The genus Pseudomonas had the greatest species richness; Bacillus spp exhibited the greatest capacity for degrading the different substrates, and Sphingobium was found in both morphotypes. Microorganisms participate in the degradation of wood consumed by Stenochironomus larvae. This is the first report of lignocellulolytic bacteria and enzymes in the digestive tracts of mining chironomids.

  11. Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties.

    PubMed

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Gidley, Michael J

    2014-01-22

    After heating in excess water under little or no shear, starch granules do not dissolve completely but persist as highly swollen fragile forms, commonly termed granule "ghosts". The macromolecular architecture of these ghosts has not been defined, despite their importance in determining characteristic properties of starches. In this study, amylase digestion of isolated granule ghosts from maize and potato starches is used as a probe to study the mechanism of ghost formation, through microstructural, mesoscopic, and molecular scale analyses of structure before and after digestion. Digestion profiles showed that neither integral nor surface proteins/lipids were crucial for control of either ghost digestion or integrity. On the basis of the molecular composition and conformation of enzyme-resistant fractions, it was concluded that the condensed polymeric surface structure of ghost particles is mainly composed of nonordered but entangled amylopectin (and some amylose) molecules, with limited reinforcement through partially ordered enzyme-resistant structures based on amylose (for maize starch; V-type order) or amylopectin (for potato starch; B-type order). The high level of branching and large molecular size of amylopectin is proposed to be the origin for the unusual stability of a solid structure based primarily on temporary entanglements. PMID:24382148

  12. Digestive enzymes of two brachyuran and two anomuran land crabs from Christmas Island, Indian Ocean.

    PubMed

    Linton, Stuart M; Saborowski, Reinhard; Shirley, Alicia J; Penny, Jake A

    2014-05-01

    The digestive ability of four sympatric land crabs species (the gecarcinids, Gecarcoidea natalis and Discoplax celeste and the anomurans, Birgus latro and Coenobita perlatus) was examined by determining the activity of their digestive enzymes. The gecarcinids are detritivores that consume mainly leaf litter; the robber crab, B. latro, is an omnivore that preferentially consumes items high in lipid, carbohydrate and/or protein; C. perlatus is also an omnivore/detritivore. All species possess protease, lipase and amylase activity for hydrolysing ubiquitous protein, lipid and storage polysaccharides (glycogen and starch). Similarly all species possess enzymes such as N-acetyl-β-D-glucosaminidase, the cellulases, endo-β-1,4-glucanase and β-glucohydrolase and hemicellulases, lichenase and laminarinase for the respective hydrolysis of structural substrates chitin, cellulose and hemicelluloses, lichenan and laminarin. Except for the enzyme activities of C. perlatus, enzyme activity could not be correlated to dietary preference. Perhaps others factors such as olfactory and locomotor ability and metabolic status may determine the observed dietary preferences. The digestive fluid of C. perlatus possessed higher endo-β-1,4-glucanase, lichenase and laminarinase activities compared to that of the other species. Thus, C. perlatus may be efficient at digestion of cellulose and hemicellulose within plant material. Zymography indicated that the majority of protease, lipase, phosphatase, amylase, endo-β-1,4-glucanase, β-glucohydrolase and N-acetyl-β-D-glucosaminidase isozymes were common to all species, and hence were inherited from a common aquatic ancestor. Differences were observed for the phosphatase, lipase and endo-β-1,4-glucanase isozymes. These differences are discussed in relation to phylogeny and possible evolution to cope with the adoption of a terrestrial diet.

  13. Digestive enzyme expression and epithelial structure of small intestine in neonatal rats after 16 days spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.

    It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.

  14. Hormonal and cholinergic influences on pancreatic lysosomal and digestive enzymes in rats.

    PubMed

    Evander, A; Ihse, I; Lundquist, I

    1983-01-01

    Hormonal and cholinergic influences on lysosomal and digestive enzyme activities in pancreatic tissue were studied in normal adult rats. Hormonal stimulation by the cholecystokinin analogue, caerulein, induced a marked enhancement of the activities of cathepsin D and N-acetyl-beta-D-glucosaminidase in pancreatic tissue, whereas the activities of amylase and lipase tended to decrease. Acid phosphatase activity was not affected. Further, caerulein was found to induce a significant increase of cathepsin D output in bile-pancreatic juice. This output largely parallelled that of amylase. Cholinergic stimulation by the muscarinic agonist carbachol, at a dose level giving the same output of amylase as caerulein, did not affect pancreatic activities of cathepsin D and N-acetyl-beta-D-glucosaminidase. Further, cholinergic stimulation induced an increase of amylase activity and a slight decrease of acid phosphatase activity in pancreatic tissue. Lipase activity was not affected. No apparent effect on cathepsin D output in bile-pancreatic juice was encountered after cholinergic stimulation. The activities of neither the digestive nor the lysosomal enzymes were influenced by the administration of secretin. The results suggest a possible lysosomal involvement in caerulein-induced secretion and/or inactivation of pancreatic digestive enzymes, whereas cholinergic stimulation seems to act through different mechanisms.

  15. Enzyme use in kibble diets formulated with wheat bran for dogs: effects on processing and digestibility.

    PubMed

    Sá, F C; Vasconcellos, R S; Brunetto, M A; Filho, F O R; Gomes, M O S; Carciofi, A C

    2013-05-01

    Recently, there is an interest in technologies that favour the use of coproducts for animal nutrition. The effect of adding two enzyme mixtures in diets for dogs formulated with wheat bran (WB) was evaluated. Two foods with similar compositions were formulated: negative control (NC; without WB) and test diet (25% of WB). The test diet was divided into four treatments: without enzyme (positive control), enzyme mixture 1 (ENZ1; added before extrusion β-glucanase, xylanase, cellulase, glucoamylase, phytase); enzyme mixture 2 (ENZ2; added before extrusion the ENZ1 more α-amylase); enzyme mixture 2 added after the extrusion (ENZ2ex). ENZ1 and ENZ2 were used to evaluate the enzyme effect on extruder pre-conditioner (processing additive) and ENZ2ex to evaluate the effect of enzyme supplementation for the animal. Digestibility was measured through total collection of faeces and urine. The experiment followed a randomized block design with five treatments (diets) and six dogs per diet, totalling 30 dogs (7.0 ± 1.2 years old and 11.0 ± 2.2 kg of body weight). Data were submitted to analysis of variance and means compared by Tukey's test and orthogonal contrasts (p < 0.05). Reducing sugars showed an important reduction after extrusion, suggesting the formation of carbohydrate complexes. The apparent total tract digestibility (ATTD) of dry matter, organic matter, crude protein, acid-hydrolysed fat and energy was higher in NC than in diets with WB (p < 0.001), without effects of enzyme additions. WB diets resulted in higher faecal production and concentration of short-chain fatty acids (SCFA) and reduced pH and ammonia concentration (p < 0.01), with no effect of enzyme addition. The enzyme addition did not result in improved digestibility of a diet high in non-starch polysaccharides; however, only ATTD was measured and nutrient fermentation in the large intestine may have interfered with the results obtained. WB modified fermentation product formation in the colon of dogs.

  16. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production.

    PubMed

    Eun, J-S; Beauchemin, K A

    2005-06-01

    The effects of exogenous proteolytic enzyme (EPE) on intake, digestibility, ruminal fermentation, and lactational performance were determined using 8 lactating Holstein cows in a double 4 x4 Latin square experiment with a 2 x2 factorial arrangement of treatments. Diets based on barley silage and alfalfa hay as the forage sources were formulated to maintain different forage to concentrate ratios [60:40 vs. 34:66, dry matter (DM) basis]. Four dietary treatments were tested: high forage (HF) without EPE (HF-EPE), HF with EPE (HF+EPE), low forage (LF) without EPE (LF-EPE), and LF with EPE (LF+EPE). The EPE, which contained proteolytic activity but negligible fibrolytic activity, was added to the concentrate portion of the diets after pelleting at a rate of 1.25 mL/kg of DM. Adding EPE to the diet increased total tract digestibilities of DM, organic matter, N, acid detergent fiber, and neutral detergent fiber, with larger increases in digestibility observed for cows fed LF+EPE. Effects of added EPE on in vivo digestibility were consistent with improvements in gas production and degradability of the individual components of the TMR observed in vitro. Ruminal enzymic activities of xylanase and endoglucanase increased with addition of EPE to the diet, which may have accounted for improvements in fiber digestion. However, feeding EPE unexpectedly decreased feed intake of cows, which offset the benefits of improved feed digestibility. Consequently, milk yield of cows fed high or low forage diets decreased with adding EPE. Nevertheless, dairy efficiency, expressed as milk/DM intake, was highest for the LF+EPE diet. Addition of EPE to the diet increased milk fat and milk lactose percentages, but decreased milk protein percentage of cows fed a low forage diet. For cows fed high forage diets, EPE only increased milk lactose percentage. Efficiency of N use for milk production was decreased for both the high and low forage diets when EPE was added to the diet. Mean ruminal pH was

  17. Effect of dietary genistein on growth performance, digestive enzyme activity, and body composition of Nile tilapia Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2015-01-01

    An 8-week feeding experiment was performed to evaluate the effect of dietary genistein on growth performance, body composition, and digestive enzymes activity of juvenile Nile tilapia ( Oreochromis niloticus). Four isonitrogenous and isoenergetic diets were formulated containing four graded supplements of genistein: 0, 30, 300, and 3 000 μg/g. Each diet was randomly assigned in triplicate to tanks stocked with 15 juvenile tilapia (10.47±1.24 g). The results show that 30 and 300 μg/g dietary genistein had no significant effect on growth performance of Nile tilapia, but the higher level of genistein (3 000 μg/g) significantly depressed the final body weight and specific growth rate. There was no significant difference in survival rate, feed intake, feed efficiency ratio or whole body composition among all dietary treatments. An assay of digestive enzymes showed that the diet containing 3 000 μg/ggenistein decreased stomach and hepatopancreas protease activity, and amylase activity in the liver and intestine, while a dietary level of 300 μg/g genistein depressed stomach protease and intestine amylase activities. However, no significant difference in stomach amylase activity was found among dietary treatments. Overall, the results of the present study indicate that a high level of dietary genistein (3 000 μg/g, or above) would significantly reduce the growth of Nile tilapia, partly because of its inhibitory effect on the activity of major digestive enzymes. Accordingly, the detrimental effects of genistein, as found in soybean products, should not be ignored when applied as an alternative ingredient source in aquaculture.

  18. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    PubMed

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(P<0.01). Immunofluorescence staining showed that the SCs purity was (95.73±1.51)% in the improved method group,(84.66±2.68)% in the hemi-explants-culture method group,and (74.50±4.23)% in the explants-culture method group(P<0.01). Conclusion The improved enzyme digestion combined with explants-culture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration.

  19. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    PubMed

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(P<0.01). Immunofluorescence staining showed that the SCs purity was (95.73±1.51)% in the improved method group,(84.66±2.68)% in the hemi-explants-culture method group,and (74.50±4.23)% in the explants-culture method group(P<0.01). Conclusion The improved enzyme digestion combined with explants-culture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration. PMID:27594149

  20. Digestive enzyme activities of turbot (Scophthalmus maximus L.) during early developmental stages under culture condition.

    PubMed

    Tong, X H; Xu, S H; Liu, Q H; Li, J; Xiao, Z Z; Ma, D Y

    2012-06-01

    Digestive enzyme activities were analysed in turbot (Scophthalmus maximus) from hatching until 60 days after hatching (DAH). Trypsin sharply increased to the climax at 17 DAH and decreased until 31 DAH followed by a stable level thereafter. Amylase was determined at 4 DAH, reached the maximum value at 19 DAH and declined sharply to 39 DAH and remained at a low level thereafter, suggesting the carbohydrate component should remain at a low level in formulated diets. Pepsin was detected at 9 DAH and increased to 34 DAH and then remained at a stable level. The above results revealed pancreatic enzymes are no longer main enzymes for food digestion after the formation of functional stomach. Leucine-alanine peptidase (Leu-ala) and alkaline phosphatase (AP) and leucine aminopeptidase N (LAP) were found in newly hatched larvae. Both AP and LAP activities markedly increased to 23 DAH, decreased abruptly to 50 DAH and increased gradually to 60 DAH. Leu-ala reached the plateau from 23 to 39 DAH, followed by a decline to 46 DAH and an increase until 60 DAH. The brush border membrane (BBM)-bound enzyme activities increased from 30% at 31 DAH to 81% at 38 DAH of the total activities, indicating the maturation of intestinal tract.

  1. Partial characterization and ontogenetic development of pancreatic digestive enzymes in Japanese eel Anguilla japonica larvae.

    PubMed

    Murashita, Koji; Furuita, Hirofumi; Matsunari, Hiroyuki; Yamamoto, Takeshi; Awaji, Masahiko; Nomura, Kazuharu; Nagao, Jiro; Tanaka, Hideki

    2013-08-01

    The pancreatic digestive enzymes, trypsin, chymotrypsin, lipase and amylase were partially characterized, and changes in their activities were examined during the initial ontogeny of Japanese eel Anguilla japonica larvae from 5 to 34 days post-hatching (dph). The pH optima of the eel larval enzymes were narrower than those other fish species; trypsin activity was highest at pH 9, chymotrypsin and amylase activities were highest at pH 7 and 8, and lipase activity was highest at pH 8 and 9. In an analysis of thermal profiles, the larval pancreatic enzymes had a high optimal temperature and high thermal stability, which are typical of fish from the tropics. At 12 and 13 dph, lipase activity and gene expression levels of trypsin (-a and -b), lipase and amylase decreased markedly, suggesting a marked change in larval metabolism at that time. These data could be useful in the development of artificial larval diets in Japanese eel.

  2. Ontogeny of the digestive tract and enzymes in rock bream Oplegnathus fasciatus (Temminck et Schlegel 1844) larvae.

    PubMed

    He, Tao; Xiao, Zhizhong; Liu, Qinghua; Ma, Daoyuan; Xu, Shihong; Xiao, Yongshuang; Li, Jun

    2012-04-01

    Histological development of the digestive tract and specific activities of three digestive enzymes (trypsin, alkaline phosphatase, and pepsin) were studied in rock bream Oplegnathus fasciatus from hatching to 50 days after hatching (DAH). At hatching, the digestive tract appeared as an undifferentiated straight tube and differentiated into the buccopharynx, esophagus, stomach, intestine, and rectum at mouth opening by 3 DAH. The taste bud and mandibular teeth were present in the buccopharyx at 8 DAH. The goblet cells appeared in the esophagus at 8 DAH and in the buccopharyx at 9 DAH. The stomach anlage was formed at 2 DAH and developed into cardia, fundus, and pylorus at 14 DAH. The gastric glands were visible at 16 DAH, and the pepsin was firstly detected on 22 DAH. At 2 DAH, the intestinal valve appeared and divided the intestine into anterior intestine (AI) and posterior intestine (PI). The rectum was differentiated from the PI at 3 DAH. The supranuclear vacuoles were visible in the rectum by 6 DAH, and the lipid inclusions were present in the AI at 8 DAH. The alkaline phosphatase was detected at 1 DAH, and the increase in its activity indicated the maturation of the intestine after 40 DAH. The hepatocytes and pancreatic cells were differentiated from the blast cells at 2 DAH, and the acidophilic zymogen granules in the exocrine pancreas were observed simultaneously. The trypsin was detected by 1 DAH and increased to the maximum at 19 DAH, followed by a decrease as the stomach became functional.

  3. Daily rhythms of digestive enzyme activity and gene expression in gilthead seabream (Sparus aurata) during ontogeny.

    PubMed

    Mata-Sotres, José Antonio; Moyano, Francisco Javier; Martínez-Rodríguez, Gonzalo; Yúfera, Manuel

    2016-07-01

    In order to identify daily changes in digestive physiology in developing gilthead seabream larvae, the enzyme activity (trypsin, lipases and α-amylase) and gene expression (trypsinogen-try, chymotrypsinogen-ctrb, bile salt-activated lipase-cel1b, phospholipase A2-pla2 and α-amylase-amy2a) were measured during a 24h cycle in larvae reared under a 12h light/12h dark photoperiod. Larvae were sampled at 10, 18, 30 and 60days post-hatch. In each sampling day, larvae were sampled every 3h during a complete 24h cycle. The enzyme activity and gene expression exhibited a marked dependent behavior to the light/darkness cycle in all tested ages. The patterns of activity and expression of all tested enzymes were compared to the feeding pattern found in the same larvae, which showed a rhythmic feeding pattern with a strong light synchronization. In the four tested ages, the activities of trypsin, and to a lesser extent lipases and amylase, were related to feeding activity. Molecular expression of the pancreatic enzymes tended to increase during the night, probably as an anticipation of the forthcoming ingestion of food that will take place during the next light period. It follows that the enzymatic activities are being regulated at translational and/or post-translational level. The potential variability of enzyme secretion along the whole day is an important factor to take into account in future studies. A particularly striking consequence of the present results is the reliability of studies based in only one daily sample taken at the same hour of the day, as those focused to assess ontogeny of digestive enzymes.

  4. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  5. Changes in diarrhea, nutrients apparent digestibility, digestive enzyme activities of weaned piglets in response to chitosan-zinc chelate.

    PubMed

    Qian, Lichun; Yue, Xiaojing; Hu, Luansha; Ma, Yuanfei; Han, Xinyan

    2016-04-01

    A total of 120 weanling barrows weighing 6.11 ± 0.20 kg were randomly allotted to four treatments with three replications (i.e. pen) of ten piglets per replicate. Pigs were received corn-soybean basal diet (control) or the same basal diet supplemented with the following sources of zinc: (i) 100 mg/kg of Zn as ZnSO4 ; (ii) 100 mg/kg of Zn as chitosan-Zn chelate (CS-Zn); and (iii) 100 mg/kg of Zn as ZnSO4 mixed with chitosan (CS + ZnSO4 ). The results showed that CS-Zn could highly improve average daily gain and average daily feed intake than those of ZnSO4 or CS+ ZnSO4 (P < 0.05). The pigs fed dietary CS-Zn had lower diarrhea incidence and higher apparent digestibility of crude protein than those of the pigs fed dietary ZnSO4 (P < 0.05). The protease activities in duodenal content of the pigs receiving CS-Zn diets was higher than that of the pigs fed dietary ZnSO4 or CS + ZnSO4 (P < 0.05). The amylase activity in duodenal content of the pigs fed dietary CS-Zn was higher than that of the pigs receiving ZnSO4 diets or basal diets (P < 0.05). These results indicated that dietary CS-Zn showed different bioactivities from ZnSO4 or CS + ZnSO4 in reducing the incidence of diarrhea, improving activities of digestive enzymes and growth performance of weaned pigs.

  6. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding.

    PubMed

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro

    2016-12-15

    Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity. PMID:27451220

  7. Effects of Hanseniaspora opuntiae C21 on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicas

    NASA Astrophysics Data System (ADS)

    Ma, Yuexin; Liu, Zhiming; Yang, Zhiping; Bao, Pengyun; Zhang, Congyao; Ding, Jianfeng

    2014-07-01

    The effects of a diet containing Hanseniaspora opuntiae C21 on growth and digestive enzyme activity were estimated in juvenile Apostichopus japonicus. Groups of sea cucumbers were fed diets containing H. opuntiae C21 at 0 (control), 104, 105, and 106 CFU (colony-forming units)/g feed. Results showed that after 45 d the specific growth rate (SGR) of sea cucumbers fed a C21-supplemented diet at 10 4 CFU/g feed was significantly higher than that of the control ( P < 0.05). Intestinal trypsin and lipase activities were significantly enhanced by C21 administration at 104 and 105 CFU/g feed compared with the control ( P < 0.05). After feeding for 23-42 d, C21 was demonstrated by denaturing gradient gel electrophoresis to be present in the intestine of sea cucumbers. In addition, after feeding the C21-supplemented diets for 15 d, the sea cucumbers were switched to an unsupplemented diet and C21 was confirmed to be capable of colonizing the intestine for at least 31 d after cessation of feeding. In conclusion, C21 was shown to successfully colonize the intestine of juvenile A. japonicus via dietary supplementation, and improve growth and digestive enzyme activity.

  8. Tissue Specificity of Human Angiotensin I-Converting Enzyme

    PubMed Central

    Kryukova, Olga V.; Tikhomirova, Victoria E.; Golukhova, Elena Z.; Evdokimov, Valery V.; Kalantarov, Gavreel F.; Trakht, Ilya N.; Schwartz, David E.; Dull, Randal O.; Gusakov, Alexander V.; Uporov, Igor V.; Kost, Olga A.; Danilov, Sergei M.

    2015-01-01

    Background Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, as well as in reproductive functions, is expressed as a type-1 membrane glycoprotein on the surface of endothelial and epithelial cells. ACE also presents as a soluble form in biological fluids, among which seminal fluid being the richest in ACE content - 50-fold more than that in blood. Methods/Principal Findings We performed conformational fingerprinting of lung and seminal fluid ACEs using a set of monoclonal antibodies (mAbs) to 17 epitopes of human ACE and determined the effects of potential ACE-binding partners on mAbs binding to these two different ACEs. Patterns of mAbs binding to ACEs from lung and from seminal fluid dramatically differed, which reflects difference in the local conformations of these ACEs, likely due to different patterns of ACE glycosylation in the lung endothelial cells and epithelial cells of epididymis/prostate (source of seminal fluid ACE), confirmed by mass-spectrometry of ACEs tryptic digests. Conclusions Dramatic differences in the local conformations of seminal fluid and lung ACEs, as well as the effects of ACE-binding partners on mAbs binding to these ACEs, suggest different regulation of ACE functions and shedding from epithelial cells in epididymis and prostate and endothelial cells of lung capillaries. The differences in local conformation of ACE could be the base for the generation of mAbs distingushing tissue-specific ACEs. PMID:26600189

  9. Three-Enzyme Cascade Bioreactor for Rapid Digestion of Genomic DNA into Single Nucleosides.

    PubMed

    Yin, Junfa; Xu, Tian; Zhang, Ning; Wang, Hailin

    2016-08-01

    Structure-based DNA modification analysis provides accurate and important information on genomic DNA changes from epigenetic modifications to various DNA lesions. However, genomic DNA strands are often required to be efficiently digested into single nucleosides. It is an arduous task because of the involvement of multiple enzymes with different catalytic acitivities. Here we constructed a three-enzyme cascade capillary monolithic bioreactor that consists of immobilized deoxyribonuclease I (DNase I), snake venom phosphodiesterase (SVP), and alkaline phosphatase (ALPase). By the use of this cascade capillary bioreactor, genomic DNA can be efficiently digested into single nucleosides with an increasing rate of ∼20 folds. The improvement is mainly attributed to dramatically increase enzymatic capacity and activity. With a designed macro-porous structure, genomic DNA of 5-30 Kb (∼1.6-10 million Daltons) can be directly passed through the bioreactor simply by hand pushing or a low-pressure microinjection pump. By coupling with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we further developed a sensitive assay for detection of an oxidative stress biomarker 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in DNA. The proposed three-enzyme cascade bioreactor is also potentially applicable for fast identification and quantitative detection of other lesions and modifications in genomic DNA. PMID:27416319

  10. Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility

    PubMed Central

    2013-01-01

    Background The investigation of structural organisation in lignocellulose materials is important to understand changes in cellulase accessibility and reactivity resulting from hydrothermal deconstruction, to allow development of strategies to maximise bioethanol process efficiencies. To achieve progress, wheat straw lignocellulose and comparative model wood cellulose were characterised following increasing severity of hydrothermal treatment. Powder and fibre wide-angle X-ray diffraction techniques were employed (WAXD), complemented by enzyme kinetic measurements up to high conversion. Results Evidence from WAXD indicated that cellulose fibrils are not perfectly crystalline. A reduction in fibril crystallinity occurred due to hydrothermal treatment, although dimensional and orientational data showed that fibril coherency and alignment were largely retained. The hypothetical inter-fibril spacing created by hydrothermal deconstruction of straw was calculated to be insufficient for complete access by cellulases, although total digestion of cellulose in both treated straw and model pulp was observed. Both treated straw and model pulps were subjected to wet mechanical attrition, which caused separation of smaller fibril aggregates and fragments, significantly increasing enzyme hydrolysis rate. No evidence from WAXD measurements was found for preferential hydrolysis of non-crystalline cellulose at intermediate extent of digestion, for both wood pulp and hydrothermally treated straw. Conclusions The increased efficiency of enzyme digestion of cellulose in the lignocellulosic cell wall following hydrothermal treatment is a consequence of the improved fibril accessibility due to the loss of hemicellulose and disruption of lignin. However, incomplete accessibility of cellulase at the internal surfaces of fibrillar aggregates implies that etching type mechanisms will be important in achieving complete hydrolysis. The reduction in crystalline perfection following hydrothermal

  11. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean.

    PubMed

    Pimentel, Marta S; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A; Pörtner, Hans O; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems. PMID:26221723

  12. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean.

    PubMed

    Pimentel, Marta S; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A; Pörtner, Hans O; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems.

  13. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean

    PubMed Central

    Pimentel, Marta S.; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A.; Pörtner, Hans O.; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems. PMID:26221723

  14. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility

    SciTech Connect

    Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao

    2013-09-01

    To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

  15. Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity.

    PubMed

    Fernández, Katherina; Labra, Javiera

    2013-08-15

    This study investigated the effect of in vitro gastrointestinal digestion on the stability and composition of flavan-3-ols from red grape skin and seed extracts (raw and purified, which are high in proanthocyanidins (PAs)). In addition, the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activities of these extracts were evaluated. The extracts were digested with a mixture of pepsin-HCl for 2 h, followed by a 2 h incubation with pancreatin and bile salts including a cellulose dialysis tubing (molecular weight cut-off 12 kDa) at 37°C with shaking in the dark and under N2. Under gastric conditions, the mean degree of polymerisation (mDP) of seed extracts, raw (mDP≈6, p<0.05), and purified (mDP≈10, p<0.05) was stable. The mDP of the raw skin extracts increased from 19 to 25 towards the end of the digestion. The PAs were significantly degraded (up to 80%) during the pancreatic digestion, yielding low-molecular-weight compounds that diffused into the serum-available fraction (mDP≈2). The overall mass transfer coefficient (K) of the seed extracts was 10(-7) m(2)/s. After simulated gastrointestinal digestion, over 80% of ACE inhibition by raw seed and skin extracts was preserved. However, the purified seed and skin extracts lost their ability to inhibit ACE after intestinal digestion.

  16. Ontogeny changes and weaning effects in gene expression patterns of digestive enzymes and regulatory digestive factors in spotted rose snapper (Lutjanus guttatus) larvae.

    PubMed

    Moguel-Hernández, I; Peña, R; Andree, K B; Tovar-Ramirez, D; Bonacic, K; Dumas, S; Gisbert, E

    2016-10-01

    The study of digestive physiology is an important issue in species that have been introduced in aquaculture like the spotted rose snapper (Lutjanus guttatus). The aims of this study were to describe the expression of digestive enzymes (trypsinogen, chymotrypsinogen, α-amylase, lipoprotein lipase, phospholipase A and pepsinogen) and their relation with orexigenic (neuropeptide Y, NPY) and anorexigenic (cholecystokinin, CCK) factors during the larval development and to evaluate the effect of weaning in their expression. The results showed that the transcripts of all the assayed digestive enzymes, with the exception of pepsinogen, and NPY and CCK were already present in L. guttatus from the hatching stage. The expression of all the enzymes was low during the yolk-sac stage (0-2 days after hatching, DAH), whereas after the onset of exogenous feeding at 2 DAH, their expression increased and fluctuated throughout larval development, which followed a similar pattern as in other marine fish species and reflected changes in different types of food items and the progressive maturation of the digestive system. On the other hand, weaning of L. guttatus larvae from live prey onto a microdiet between 25 and 35 DAH significantly affected the relative expression of most pancreatic digestive enzymes during the first weaning days, whereas chymotrypsinogen 2 and lipoprotein lipase remained stable during this period. At the end of co-feeding, larvae showed similar levels of gene expression regardless of the diet (live prey vs. microdiet), which indicated that larvae of L. guttatus were able to adapt their digestive capacities to the microdiet. In contrast, feeding L. guttatus larvae with live feed or microdiet did not affect the expression of CCK and NPY. The relevance of these findings with regard to current larval rearing procedures of L. guttatus is discussed.

  17. Impaired small-bowel barrier integrity in the presence of lumenal pancreatic digestive enzymes leads to circulatory shock.

    PubMed

    Kistler, Erik B; Alsaigh, Tom; Chang, Marisol; Schmid-Schönbein, Geert W

    2012-08-01

    In bowel ischemia, impaired mucosal integrity may allow intestinal pancreatic enzyme products to become systemic and precipitate irreversible shock and death. This can be attenuated by pancreatic enzyme inhibition in the small-bowel lumen. It is unresolved, however, whether ischemically mediated mucosal disruption is the key event allowing pancreatic enzyme products systemic access and whether intestinal digestive enzyme activity in concert with increased mucosal permeability leads to shock in the absence of ischemia. To test this possibility, the small intestinal lumen of nonischemic rats was perfused for 2 h with either digestive enzymes, a mucin disruption strategy (i.e., mucolytics) designed to increase mucosal permeability, or both, and animals were observed for shock. Digestive enzymes perfused included trypsin, chymotrypsin, elastase, amylase, and lipase. Control (n = 6) and experimental animals perfused with pancreatic enzymes only (n = 6) or single enzymes (n = 3 for each of the five enzyme groups) maintained stable hemodynamics. After mucin disruption using a combination of enteral N-acetylcysteine, atropine, and increased flow rates, rats (n = 6) developed mild hypotension (P < 0.001 compared with groups perfused with pancreatic enzymes only after 90 min) and increased intestinal permeability to intralumenally perfused fluorescein isothiocyanate-dextran 20 kd (P < 0.05) compared with control and enzyme-only groups, but there were no deaths. All animals perfused with both digestive enzymes and subjected to mucin disruption (n = 6) developed hypotension and increased intestinal permeability (P < 0.001 after 90 min). Pancreatic enzymes were measured in the intestinal wall of both groups subjected to mucin disruption, but not in the enzyme-only or control groups. Depletion of plasma protease inhibitors was found only in animals perfused with pancreatic enzymes plus mucin disruption, implicating increased permeability and intralumenal pancreatic enzyme egress

  18. Digestive enzyme activity of two stonefly species (Insecta, Plecoptera) and their feeding habits.

    PubMed

    de Figueroa, J M Tierno; Trenzado, C E; López-Rodríguez, M J; Sanz, A

    2011-11-01

    The digestive enzymes of two stoneflies species, Hemimelaena flaviventris and Isoperla morenica, were studied for the first time. These species are temporary water inhabitants and exhibit great feeding plasticity. Although they are traditionally referred to as predators, a previous study revealed that H. flaviventris incorporates some diatoms into its diet in addition to feeding usually on several prey, and I. morenica (in that study under the name of I. curtata) only feeds on animals occasionally. The enzymatic activities of digestive amylase, lipase, protease, trypsin and chymotrypsin were determined for each species at the same developmental stage. The results show that H. flaviventris has a greater digestive enzymatic pool and higher relative and absolute protease, lipase and trypsin activities than I. morenica. The latter has a relative higher amylase activity. As higher amylase activity is typical of phytophagous species and higher protease activity typical of carnivorous species; these results reveal that H. flaviventris is a more efficient zoophagous species than I. morenica. The ecological implications of these findings, including the higher secondary production of H. flaviventris in its habitat, are discussed.

  19. Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems.

    PubMed

    Santos, Juliana Ferreira; Soares, Karollina Lopes Siqueira; Assis, Caio Rodrigo Dias; Guerra, Carlos Augusto Martins; Lemos, Daniel; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza

    2016-10-01

    The effect of different farming systems (cage, pond) upon digestive enzyme activities of Nile tilapia was evaluated. Juvenile Nile tilapia (87.61 ± 1.52 g) were simultaneously cultured in pond and cage systems during 90 days. Cages used nutritional biphasic plan (35 and 32 % crude protein-CP feeds) and ponds used nutritional triphasic plan (35, 32 and 28 % CP feeds). Biometric measurements were monthly performed for adjustments in feeding regimes and removal of intestine tissues to evaluate the performance of enzyme activities. Total proteolytic, amylase and lipase activities were not statistically different between the treatments throughout the periods analyzed (31, 63 and 94 days of culture). However, trypsin and chymotrypsin activities were higher with 31 and 63 days of culture in fish from pond system, suggesting that natural food may have influenced these activities. A positive correlation was observed between the recommended concentration of essential amino acids for Nile tilapia and specific aminopeptidases activity in fish cage system. Substrate-SDS-PAGE revealed 12 active proteolytic bands in both systems. However, integrated density (ID) values were higher in the bands of ponds. Specimens of either cage or pond exhibited five bands of amylolytic activity. Fish from cage and pond systems showed the highest values of ID within 31 days of cultivation. In this study, the complexity of digestive functions could be verified for animals maintained under commercial conditions. Some of the assessed enzymes may show adaptations of their activities and/or expression that allow the fish to achieve a more efficient nutrient assimilation. PMID:27021899

  20. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal diets.

    PubMed

    Basmacioğlu Malayoğlu, H; Baysal, S; Misirlioğlu, Z; Polat, M; Yilmaz, H; Turan, N

    2010-02-01

    1. The study was conducted to determine the effects of dietary supplementation of enzyme and oregano essential oil at two levels, alone or together, on performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat-soybean meal based diets. 2. The following dietary treatments were used from d 0 to 21. Diet 1 (control, CONT): a commercial diet containing no enzyme or oregano essential oil, diet 2 (ENZY): supplemented with enzyme, diet 3 (EO250): supplemented with essential oil at 250 mg/kg feed, diet 4 (EO500): supplemented with essential oil at 500 mg/kg feed, diet 5 (ENZY + EO250): supplemented with enzyme and essential oil at 250 mg/kg, and diet 6 (ENZY + EO500): supplemented with enzyme and essential oil at 500 mg/kg. 3. Birds fed on diets containing ENZY, EO250 and ENZY + EO250 had significantly higher weight gain than those given CONT diet from d 0 to 7. No significant effects on feed intake, feed conversion ratio, mortality, organ weights except for jejunum weight and intestinal lengths was found with either enzyme or essential oil, alone or in combination, over the 21-d growth period. The supplementation of essential oil together with enzyme decreased jejunum weight compared with essential oil alone. 4. Supplementation with enzyme significantly decreased viscosity and increased dry matter of digesta, but did not alter pH of digesta. There was no effect of essential oil alone at either concentration on viscosity, dry matter or pH of digesta. A significant decrease in viscosity of digesta appeared when essential oil was used with together enzyme. 5. The supplementation of essential oil at both levels with or without enzyme significantly increased chymotrypsin activity in the digestive system, and improved crude protein digestibility. 6. The higher concentration of essential oil with and without enzyme significantly increased serum total cholesterol concentrations. No significant effect on immune response

  1. Effects of cadmium exposure on digestive enzymes, antioxidant enzymes, and lipid peroxidation in the freshwater crab Sinopotamon henanense.

    PubMed

    Wu, Hao; Xuan, Ruijing; Li, Yingjun; Zhang, Xiaomin; Wang, Qian; Wang, Lan

    2013-06-01

    In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.

  2. A novel enzyme activity involving the demethylation of specific partially methylated oligogalacturonides.

    PubMed Central

    Williams, Martin A K; Benen, Jacques A E

    2002-01-01

    Studies of the enzymic digestion of pectic substrates using different polygalacturonase (PG) preparations have revealed evidence for a previously unreported enzyme activity carried out by a contaminating enzyme in one of the preparations. This observed activity involves the demethylation of specific oligogalacturonides, namely 2-methyltrigalacturonic acid and 2,3-dimethyltetragalacturonic acid. However, no large-scale demethylation of highly methylated polymeric substrates is found, demonstrating that the enzyme responsible is not a conventional pectin methylesterase (PME). Furthermore, it has been shown that a commercial sample of fungal PME from Aspergillus niger demethylates all of the oligogalacturonides present as primary products of endo-PG digestion, in contrast with the activity observed here. On the basis of the known methyl ester distribution of the endo-PG-generated fragments and knowledge of which of these oligogalacturonides are demethylated, it is concluded that the observed activity can be explained by the existence of an exo-acting methylesterase that attacks the non-reducing end of the oligogalacturonide molecules. PMID:12097140

  3. Fibrolytic enzyme and ammonia application effects on the nutritive value, intake, and digestion kinetics of bermudagrass hay in beef cattle.

    PubMed

    Romero, J J; Zarate, M A; Queiroz, O C M; Han, J H; Shin, J H; Staples, C R; Brown, W F; Adesogan, A T

    2013-09-01

    The objectives were to compare the effect of exogenous fibrolytic enzyme (Biocellulase A20) or anhydrous ammonia (4% DM) treatment on the nutritive value, voluntary intake, and digestion kinetics of bermudagrass (Cynodon dactylon cultivar Coastal) hay harvested after 2 maturities (5- and 13-wk regrowths). Six individually housed, ruminally cannulated Brangus steers (BW 325 ± 10 kg) were used in an experiment with a 6 × 6 Latin square design with a 3 (additives) × 2 (maturities) factorial arrangement of treatments. Each period consisted of 14 d of adaptation and 7, 4, 1, 1, and 4 d for measuring in vivo digestibility, in situ degradability, no measurements, rumen liquid fermentation and passage indices, and rate of solid passage, respectively. Steers were fed hay for ad libitum intake and supplemented with sugarcane molasses and distillers grain (supplement total of 2.88 kg DM/d). Enzyme did not affect the nutritional composition of hay but ammonia treatment decreased hay NDF, hemicellulose, and ADL concentrations and increased the CP concentration particularly for the mature lignified 13-wk hay. The enzyme increased NDF and hemicellulose digestibility of the 5-wk hay but decreased those of the 13-wk hay. Ammoniation decreased intake of hay but increased digestibility of DM, OM, NDF, hemicellulose, ADF, and cellulose and increased the ruminal in situ soluble and potentially digestible fractions and the rate of DM degradation of the 13-wk hay. Also, ammoniation increased the concentrations of ruminal NH3, total VFA, acetate, and butyrate but enzyme treatment did not. Neither enzyme addition nor ammoniation affected rate of liquid and solid passage. In conclusion, ammoniation decreased the concentration of most fiber fractions, decreased the intake of hays, and increased their CP concentration, in vivo digestibility, and in situ degradability at both maturities whereas enzyme application increased fiber digestibility of the 5-wk hay but decreased it in the case of

  4. Effect of fibrolytic enzymes on the fermentation characteristics, aerobic stability, and digestibility of bermudagrass silage.

    PubMed

    Dean, D B; Adesogan, A T; Krueger, N; Littell, R C

    2005-03-01

    The aim of this study was to determine if the nutritive value and aerobic stability of bermudagrass (Cynodon dactylon) silage could be improved by addition of proprietary, exogenous cellulase/hemicellulase enzyme preparations at ensiling. A 5-wk regrowth of Tifton 85 bermudagrass was conserved without treatment (control) or after treatment with exogenous fibrolytic enzymes including Promote NET (Pr), Biocellulase X-20 (X20), Biocellulase A-20 (A20), and Enzyme CT. The respective enzymes were applied at half the recommended rate, the recommended rate, or twice the recommended rate corresponding to 0.65, 1.3, and 2.6 g/kg of DM, 7.3, 14.5, and 29 mg/kg of DM, at 7.3, 14.4, and 29 mg/kg of DM, and 89, 178, and 356 mg/kg of DM, for Pr, X20, A20, and CT, respectively. The enzymes were sprayed on the bermudagrass at ensiling (not added at feeding as suggested by the manufacturers) to test the objectives of the study. Six 1-kg replicates of chopped (5 cm) forage were ensiled for 145 d in 2.8-L mini silos. Three silos per treatment were used for chemical analysis and 3 for aerobic stability monitoring. The silage juice was analyzed for organic acids, pH, water-soluble carbohydrates (WSC), ammonia-N, and soluble N. Freeze-dried samples were analyzed for crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF). In vitro digestibility of DM (IVDMD), NDF (IVNDFD), and ADF (IVADFD) were determined after digesting the silages in buffered rumen fluid for 6 or 48 h in 2 ANKOM(II) Daisy Incubators. Compared with the other silages, those treated with Pr had lower DM losses, and lower pH and ammonia-N concentration than control silages. Residual WSC concentration was greater in Pr- and CT-treated silages than in control silages and greater in Pr-treated silages than CT-treated silages. Compared with control silages, NDF concentration was lower in silages treated with Pr, X20, and CT, and ADF concentration was lower in silages treated with Pr, X20, and A20

  5. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge.

  6. Examination of digestive enzyme distribution in gut tract and functions of intestinal caecum, in megascolecid earthworms (Oligochaeta: Megascolecidae) in Japan.

    PubMed

    Nozaki, Mana; Ito, Katsutoshi; Miura, Chiemi; Miura, Takeshi

    2013-09-01

    Earthworms ingest various materials in addition to food items, such as soil particles. Most earthworms of the family Megascolecidae, a dominant family in Japan, have intestinal caeca connected directly to the intestinal tract. The function of the caeca has not been demonstrated, although it is thought to be associated with digestion. We investigated the activity of the digestive enzymes amylase, phosphatase, cellulase, and protease in different regions of the gut, including the intestinal caeca, in three species of megascolecid earthworms, Pheretima heteropoda, Pheretima hilgendorfi, and Pheretima sieboldi. Activities of several enzymes were high in the intestinal caeca; in particular, protease activity was higher in the caeca than that in the anterior gut, foregut, midgut, and hindgut in all three species. Moreover, the ratio of enzyme activities in the intestinal caeca to whole-gut tended to be higher in manicate intestinal caeca than in simple intestinal caeca. These results suggest that the digestive system of earthworms relies on the intestinal caeca.

  7. Effects of exogenous enzymes and dietary energy on performance and digestive physiology of broilers

    PubMed Central

    2013-01-01

    The study was conducted to compare the effects of XG with AG and BM at different metabolizable energy diets on growth performance, digestive physiology and energy utilization of broilers fed with corn-SBM diet. A 2 × 4 factorial design was used with two basal diets (the positive control group, PC; negative control with ME reduction 100 kcal/kg, NC) and with or without the addition of three exogenous enzymes (0.02% BM; 0.01% AG; 0.05% XG) respectively. 1,200 one-day-old broilers were randomly allocated to 8 treatments with 10 pens of 15 broilers. There was no significant difference on BW, BWG, and FI at 0-21d, 21-42d or 0-42d for diet, enzymes or their interactions, but FI at 22-42d and 0-42d were tend to be decreased with the addition of enzymes. The F/G was significantly improved by the addition of enzymes especially in NC diet. The dietary AME and TME in PC or NC diet were significantly increased by XG or AG in NC diet. The villus length and V/C of ileum were significantly increased by the addition of BM or XG. XG improved the activities of trypsin, chymotrypsin and amylase, BM improved the activity of trypsin at 21d, and AG improved the activity of chymotrypsin at 21d. Comparing to PC diet, the addition of enzymes in PC or NC diet decreased feed cost per kg body weight gain especially in NC diet (except AG in PC diet) with the highest profits for XG in NC diet. In conclusion, supplementation of 0.02% BM or 0.01% AG or 0.05% XG could improve feed conversion of broilers in corn-soybean meal diet by improving energy utilization and digestive physiology, and also supplementation of 0.05% XG had a preferable efficacy in low energy diet. PMID:23556436

  8. [25S intron analysis followed by restriction enzyme digestion performed for genotyping Candida albicans isolates].

    PubMed

    Karahan, Zeynep Ceren; Saran, Begüm; Yenice, Sevinç; Ağırbaşlı, Handan; Arıkan Akan, Ozay; Tekeli, Alper

    2012-04-01

    Candida albicans is the most frequently encountered fungal pathogen especially in the immunocompromised hosts. Genotyping clinical microbial isolates is important for obtaining epidemiological data and for establishing appropriate infection control strategies in the hospital setting. 25S intron analysis is an easy and reliable method used for genotyping C.albicans strains. As it has a low discriminatory power, its use is limited in epidemiological studies. In this study, our aim was to genotype clinical C.albicans isolates by using 25S intron analysis followed by restriction enzyme digestion in order to develop a more discriminative genotyping system for C.albicans. A total of 260 clinical C.albicans strains isolated from various infection sites (121 blood, 69 sputum, 36 vaginal discharge, 26 wound, 8 urine samples) were genotyped by 25S intron analysis, and all the products obtained by polymerase chain reaction (PCR) were digested with HaeIII restriction enzyme. Discriminatory power of each method was calculated. Among the isolates 184 (70.8%) were classified as genotype A, 42 (16.2%) as genotype B, and 34 (13%) as genotype C by 25S intron analysis. Discriminatory power of the method was calculated as 0.46. HaeIII restriction of genotype A, B and C isolates produced ten, one, and five restriction patterns (genotypes), respectively. By the addition of restriction enzyme analysis, the number of genotypes obtained was increased to 16, and the discriminatory power of the method to 0.79. Combining different genotyping methods increases the discriminatory power by increasing the number of genotypes obtained. However, there is also a risk to split certain strains in different genotypes by the different methods used and this makes the genotypic evaluation more difficult. On the other hand, combining 25S intron analysis with restriction enzyme analysis increases the discriminatory power without introducing a totally different method, and makes the method more suitable for

  9. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions.

    PubMed

    Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh

    2015-10-01

    We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.

  10. [Defense mechanism to prevent ectopic activation of pancreatic digestive enzymes under physiological conditions and its breakdown in acute pancreatitis].

    PubMed

    Kaku, Midori; Otsuko, Makoto

    2004-11-01

    Independent of the etiology, acute pancreatitis is associated with significant morbidity and the potential for mortality. In most patients, acute pancreatitis follows an uncomplicated or mild course. Recent studies in hereditary pancreatitis have clearly revealed that trypsin is the key enzyme at the onset of pancreatitis. However, there are several defense mechanisms to prevent ectopic activation of trypsin under physiological conditions. If the defense mechanisms failed or activation of trypsin occurred over defense ability, trypsin would activate other digestive enzymes and self-digestion of the pancreas would occur.

  11. Effects of dietary stachyose on growth performance, digestive enzyme activities and intestinal morphology of juvenile turbot ( Scophthalmus maximus L)

    NASA Astrophysics Data System (ADS)

    Hu, Haibin; Zhang, Yanjiao; Mai, Kangsen; Ai, Qinghui; Xu, Wei; Zhang, Wenbing; Li, Yanxian; Liu, Jintao

    2015-10-01

    A 12-week feeding trial was conducted to evaluate the effects of dietary stachyose on the growth performance, digestive enzymes activities and intestinal structures of juvenile turbot ( Scophthalmus maximus L). Five isonitrogenous (49.58% crude protein) and isolipidic (10.50% crude lipid) diets were formulated to contain 0 (Control), 0.625% (S-0.625), 1.25% (S-1.25), 2.5% (S-2.5) and 5% (S-5) stachyose, respectively. With the increase of stachyose level, the growth performance and feed utilization of turbot, such as the specific growth rate, final mean body weight, weight gain rate and feed efficiency, increased significantly ( P< 0.05) and then stabilized. The feed intake of fish fed S-5 was significantly higher ( P< 0.05) than that of fish in other groups. The activities of trypsin, intestinal caseinolytic, stomach and intestinal amylase were significantly influenced by stachyose ( P<0.05). The highest values of trypsin and intestinal caseinolytic activities were observed in group S-1.25, while the highest activity of stomach amylase and the lowest activity of intestine amylase were observed in group S-5. No lesion or damage was found on the distal intestine structures of fish from all treatments, while the height of simple folds in the distal intestine was significantly increased ( P< 0.05) when 1.25% or 2.5% stachyose was added in the diets. These results indicated that moderate level of stachyose (1.25%) improves the growth performance, feed utilization, digestive enzyme activities and the distal intestine structures of juvenile turbot.

  12. Digestive enzyme activities during early ontogeny in Common snook (Centropomus undecimalis).

    PubMed

    Jimenez-Martinez, L D; Alvarez-González, C A; Tovar-Ramírez, D; Gaxiola, G; Sanchez-Zamora, A; Moyano, F J; Alarcón, F J; Márquez-Couturier, G; Gisbert, E; Contreras-Sánchez, W M; Perales-García, N; Arias-Rodríguez, L; Indy, J R; Páramo-Delgadillo, S; Palomino-Albarrán, I G

    2012-04-01

    Common snook (Centropomus undecimalis) is one of the most important marine species under commercial exploitation in the Gulf of Mexico; for this reason, interest in developing its culture is a priority. However, larviculture remains as the main bottleneck for massive production. In this sense, our objective was to determine the changes of digestive enzymes activities using biochemical and electrophoretic techniques during 36 days of Common snook larviculture fed with live preys (microalgae, rotifers, and Artemia). During larviculture, all digestive enzymatic activities were detected with low values since yolk absorption, 2 days after hatching (dah) onwards. However, the maximum values for alkaline protease (6,500 U mg protein(-1)), trypsin (0.053 mU × 10(-3) mg protein(-1)), and Leucine aminopeptidase (1.4 × 10(-3) mU mg protein(-1)) were detected at 12 dah; for chymotrypsin at 25 dah (3.8 × 10(-3) mU mg protein(-1)), for carboxypeptidase A (280 mU mg protein(-1)) and lipase at 36 dah (480 U mg protein(-1)), for α-amylase at 7 dah (1.5 U mg protein(-1)), for acid phosphatases at 34 dah (5.5 U mg protein(-1)), and finally for alkaline phosphatase at 25 dah (70 U mg protein(-1)). The alkaline protease zymogram showed two active bands, the first (26.3 kDa) at 25 dah onwards, and the second (51.6 kDa) at 36 dah. The acid protease zymogram showed two bands (RF = 0.32 and 0.51, respectively) at 34 dah. The digestive enzymatic ontogeny of C. undecimalis is very similar to other strictly marine carnivorous fish, and we suggest that weaning process should be started at 34 dah.

  13. Effects of exogenous enzymes and application method on nutrient intake, digestibility and growth performance of Pelibuey lambs.

    PubMed

    López-Aguirre, Daniel; Hernández-Meléndez, Javier; Rojo, Rolando; Sánchez-Dávila, Fernando; López-Villalobos, Nicolás; Salem, Abdel-Fattah Z M; Martínez-González, Juan Carlos; Vázquez-Armijo, José Fernando; Ruíz, Salomón

    2016-01-01

    Pelibuey sheep is the main breed in the tropical and subtropical regions of Mexico, and high demand of sheep meat has favored the finishing of lambs in feedlots with diets containing high levels of grains. The objective of this study was to evaluate the effects of exogenous enzymes (EE) and application method on nutrient intake and digestibility and performance of growing Pelibuey lambs. Treatments were based on comparison of two different methods of adding an enzyme product (sprayed on the total mixed ration or applied orally to the lambs) versus control treatment (no added enzyme). Twenty-one Pelibuey lambs, weighing 15.7 kg (SD = 1.8 kg) initial body weight, were individually housed in shaded pens and assigned randomly to one of the three enzyme treatments. At the end of study (lasting for 45 days), three lambs from each treatment were randomly selected and adapted to a pants and harness designed for fecal collection to measure nutrient digestibilities. Total body gain and average daily gain were affected (P < 0.05) by supplemental EE. The application method of EE had significant (P < 0.05) effect on FCE and FCR, but no effects were observed on nutrient intake. Supplemental EE did improve (P < 0.05) the digestibilities of dry matter, organic matter, neutral and acid detergent fiber, but no differences were observed in crude protein digestibility. The application method of EE had significant (P < 0.05) effect on the digestibility of acid detergent fiber. Supplemental EE can improve body weight gain and nutrient digestibilities without affecting nutrient intake in Pelibuey lambs, but the results of feed conversion efficiency and acid detergent fiber digestibility depend on the application method used of the EE. PMID:27610318

  14. Differential regulation of pancreatic digestive enzymes during chronic high-fat diet-induced obesity in C57BL/6J mice.

    PubMed

    Birk, Ruth Z; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Danino, Hila; Müller, Michael; Daniel, Hannelore

    2014-07-28

    Exocrine pancreatic digestive enzymes are essential for the digestion of dietary components and are regulated by them. Chronic excess dietary high fat (HF) consumption is a contributing factor of diet-induced obesity (DIO) and associated chronic diseases and requires adaptation by the pancreas. The aim of the present study was to investigate the effects of chronic HF diet feeding on exocrine pancreatic digestive enzyme transcript levels in DIO C57BL/6J mice. C57BL/6J mice were fed diets containing either 10 or 45% energy (E%) derived from fat for 12 weeks (n 10 mice per diet group). Pancreatic tissue and blood samples were collected at 0, 4 and 12 weeks. The expression of a panel of exocrine pancreatic digestive enzymes was analysed using quantitative RT-PCR and Western blot analysis. The HF (45 E%) diet-fed C57BL/6J mice developed obesity, hyperleptinaemia, hyperglycaemia and hyperinsulinaemia. The transcript levels of pancreatic lipase (PL), pancreatic lipase-related protein 2 (PLRP2) and pancreatic phospholipase A2 (PLA2) were initially elevated; however, they were down-regulated to basal control levels at week 12. The transcript levels of colipase were significantly affected by diet and time. The protein levels of PL and PLRP2 responded to HF diet feeding. The transcript levels of amylase and proteases were not significantly affected by diet and time. The transcript levels of specific lipases in hyperinsulinaemic, hyperleptinaemic and hyperglycaemic DIO C57BL/6J mice are down-regulated. However, these mice compensate for this by the post-transcriptional regulation of the levels of proteins that respond to dietary fat. This suggests a complex regulatory mechanism involved in the modulation of fat digestion.

  15. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification.

    PubMed

    Jo, A Ra; Kim, Ha Ram; Choi, Seung Jun; Lee, Joon Seol; Chung, Mi Nam; Han, Seon Kyeong; Park, Cheon-Seok; Moon, Tae Wha

    2016-06-01

    Sweet potato Daeyumi starch was dually modified using glycogen branching enzyme (BE) from Streptococcus mutans and amylosucrase (AS) from Neisseria polysaccharea to prepare slowly digestible starch (SDS). Dually modified starches had higher SDS and resistant starch (RS) contents than control starch. The branched chain length distributions of the BE-modified starches indicated an increase in short side-chains [degree of polymerization (DP)≤12] compared with native starch. AS treatment of the BE-modified starches decreased the proportion of short side-chains and increased the proportion of long side-chains (DP≥25) and molecular mass. It also resulted in a B-type X-ray diffraction pattern and an increased relative crystallinity. Regarding thermal properties, the BE-modified starches showed no endothermic peak, whereas the BEAS-modified starches had a broader melting temperature range and lower melting enthalpy compared to native starch. The combined enzymatic treatment resulted in novel glucan polymers with slow digestion properties. PMID:27083356

  16. Changes on digestive enzymes during initial ontogeny in the three-spot cichlid Cichlasoma trimaculatum.

    PubMed

    Toledo-Solís, F J; Uscanga-Martínez, A; Guerrero-Zárate, R; Márquez-Couturier, G; Martínez-García, R; Camarillo-Coop, S; Perales-García, N; Rodríguez-Valencia, W; Gómez-Gómez, M A; Álvarez-González, C A

    2015-02-01

    A study was performed in order to understand the development of digestive enzymes during initial ontogeny of Cichlasoma trimaculatum, for which the activity of acidic and alkaline proteases, lipases, amylases and phosphatases was determined by means of biochemical and electrophoretic analysis. Our results showed that the activity of alkaline proteases, trypsin and chymotrypsin is present from day 6 after hatching (dah) during exogenous feeding with Artemia nauplii. The activities of carboxypeptidase A and leucine aminopeptidase are present from the first days, increasing at 6 dah and reaching their maximum activity at 9 dah while acid protease activity started at 9 dah. Furthermore, the lipase activity is detected on 6 dah and keeps increasing and decreasing on 17 dah. Amylase activity is detected on 3 dah, presenting fluctuations until 45 dah, where it reaches its maximum activity. Acid and alkaline phosphatases are detected from 3 dah and reach a maximum activity between 13 and 19 dah. The SDS-PAGE electrophoresis revealed six types of bands in the alkaline proteases, with molecular weight between 113.4 and 20.4 kDa. First three bands appear on 6 dah, but it is until 11 dah when all isoforms appear. Based on these results, it is considered that this species completes its digestive enzymatic machinery from day 9 after hatching, therefore is recommended to perform the transition from live feed to inert feed at 15 dah.

  17. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-09-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  18. [Effect of light intensity on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicas under two kinds of culture methods].

    PubMed

    Wei, Zi-Zhong; Zhao, Wen

    2014-01-01

    The effects of light intensity (0, 1000, 2000 and 3000 1x) on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus under two kinds of culture methods (compound Chinese medicine preparation and microbial preparation) were studied. Results showed that the relative mass gain rate (WGR) and the specific growth rate (SGR) of juvenile sea cucumber were significantly affected by light intensity (P < 0.05) , and the orders of WGR and SGR (form high to low) of juvenile sea cucumber under different light intensities were 2000 1x > 1000 1x > 3000 1x > 0 1x. Under the same light intensity, the growth of juvenile sea cucumber under the two kinds of culture methods were significantly different (P < 0.05), with the WGR and SGR of the Chinese medicine treatment being greater than those of the microbial treatment. The light intensity also significantly affected the digestive enzyme activity of juvenile sea cucumber. The order of amylase and lipase activity was 2000 1x > 1000 1x > 3000 1x > 0 1x, while that of protease activity was 1000 1x > 2000 1x > 0 1x > 3000 1x. Under the same light intensity, the digestive enzyme activities of the Chinese medicine treatment were generally higher than those of the microbial treatment.

  19. In Vitro Antibody-Enzyme Conjugates with Specific Bactericidal Activity

    PubMed Central

    Knowles, Daniel M.; Sullivan, Timothy J.; Parker, Charles W.; Williams, Ralph C.

    1973-01-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A β-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I- and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia. PMID:4145026

  20. Consequences of Lower Food Intake on the Digestive Enzymes Activities, the Energy Reserves and the Reproductive Outcome in Gammarus fossarum

    PubMed Central

    Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain

    2015-01-01

    Digestive enzyme activity is often used as a sensitive response to environmental pollution. However, only little is known about the negative effects of stress on digestive capacities and their consequences on energy reserves and reproduction, although these parameters are important for the maintenance of populations. To highlight if changes in biochemical responses (digestive enzymes and reserves) led to impairments at an individual level (fertility), Gammarus fossarum were submitted to a lower food intake throughout a complete female reproductive cycle (i.e. from ovogenesis to offspring production). For both males and females, amylase activity was inhibited by the diet stress, whereas trypsin activity was not influenced. These results underline similar sensitivity of males and females concerning their digestive capacity. Energy reserves decreased with food starvation in females, and remained stable in males. The number of embryos per female decreased with food starvation. Lower digestive activity in males and females therefore appears as an early response. These results underline the ecological relevance of digestive markers, as they make it possible to anticipate upcoming consequences on reproduction in females, a key biological variable for population dynamics. PMID:25880985

  1. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes.

    PubMed

    Xie, Ping

    2009-09-16

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  2. Expression of an antimicrobial peptide, digestive enzymes and nutrient transporters in the intestine of E. praecox-infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidiosis is a major intestinal disease of poultry, caused by several species of the protozoan Eimeria. The objective of this study was to examine changes in expression of digestive enzymes, nutrient transporters and an antimicrobial peptide following an Eimeria praecox challenge of chickens at d...

  3. Effects of treating sorghum wet distillers grains with solubles with fibrolytic enzymes on nutrient digestibility and performance in finishing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to determine the effects of treating sorghum WDG with solubles (SWDG) with an enzyme, or enzyme-buffer combination on diet digestibility and feedlot performance. Experimental treatments are; 1) untreated SWDG (control), 2) addition of an enzyme complex to SWDG (enzyme...

  4. The in vitro hydrolysis of phytosterol conjugates in food matrices by mammalian digestive enzymes.

    PubMed

    Moreau, Robert A; Hicks, Kevin B

    2004-08-01

    All fruits, vegetables, and grains contain phytosterols. Numerous clinical studies have documented that phytosterols lower LDL-cholesterol levels and thereby reduce the risk of cardiovascular disease. Most experts believe that the cholesterol-lowering mechanism of phytosterols requires that they be in their "free" form. In addition to their occurrence in the free form, phytosterols also occur as four common phytosterol conjugates: (i) fatty acyl esters, (ii) hydroxycinnamate esters, (iii) steryl glycosides, and (iv) fatty acylated steryl glycosides. This study was undertaken to investigate the extent of hydrolysis of four common phytosterol conjugates by mammalian digestive enzymes (cholesterol esterase and pancreatin, a mixture of pancreatic enzymes) and for comparison purposes, by KOH. Two types of purified hydroxycinnamate esters (sitostanyl ferulate and oryzanol, a mixture of hydroxycinnamate esters purified from rice bran oil) were hydrolyzed by cholesterol esterase and by pancreatin. Both cholesterol esterase and pancreatin hydrolyzed the phytosteryl esters in two functional food matrices, and they hydrolyzed the hydroxycinnamate esters in corn fiber oil. This is the first report to demonstrate that phytostanyl ferulate esters (which are present at levels of 3-6% in corn fiber oil) are hydrolyzed by pancreatic cholesterol esterase. It is also the first report that pancreatin contains enzymes that hydrolyze the fatty acyl moiety of fatty acylated steryl glycoside, converting it to steryl glycoside. Pancreatin had no effect on steryl glycosides. The ability of pancreatin to hydrolyze three other types of lipid conjugates was also evaluated. Phospholipids were completely hydrolyzed. About half of the galactolipids were hydrolyzed, and less than 10% of the polyamine conjugates were hydrolyzed. The extents of hydrolysis of phytosteryl esters by base (saponification) were also studied, and conditions commonly used for the saponification of acyl lipids (1.5 N

  5. Digestive enzyme activities are higher in the shortfin mako shark, Isurus oxyrinchus, than in ectothermic sharks as a result of visceral endothermy.

    PubMed

    Newton, Kyle C; Wraith, James; Dickson, Kathryn A

    2015-08-01

    Lamnid sharks are regionally endothermic fishes that maintain visceral temperatures elevated above the ambient water temperature. Visceral endothermy is thought to increase rates of digestion and food processing and allow thermal niche expansion. We tested the hypothesis that, at in vivo temperatures, the endothermic shortfin mako shark, Isurus oxyrinchus, has higher specific activities of three digestive enzymes-gastric pepsin and pancreatic trypsin and lipase-than the thresher shark, Alopias vulpinus, and the blue shark, Prionace glauca, neither of which can maintain elevated visceral temperatures. Homogenized stomach or pancreas tissue obtained from sharks collected by pelagic longline was incubated at both 15 and 25 °C, at saturating substrate concentrations, to quantify tissue enzymatic activity. The mako had significantly higher enzyme activities at 25 °C than did the thresher and blue sharks at 15 °C. This difference was not a simple temperature effect, because at 25 °C the mako had higher trypsin activity than the blue shark and higher activities for all enzymes than the thresher shark. We also hypothesized that the thermal coefficient, or Q 10 value, would be higher for the mako shark than for the thresher and blue sharks because of its more stable visceral temperature. However, the mako and thresher sharks had similar Q 10 values for all enzymes, perhaps because of their closer phylogenetic relationship. The higher in vivo digestive enzyme activities in the mako shark should result in higher rates of food processing and may represent a selective advantage of regional visceral endothermy.

  6. Digestive enzyme activities are higher in the shortfin mako shark, Isurus oxyrinchus, than in ectothermic sharks as a result of visceral endothermy.

    PubMed

    Newton, Kyle C; Wraith, James; Dickson, Kathryn A

    2015-08-01

    Lamnid sharks are regionally endothermic fishes that maintain visceral temperatures elevated above the ambient water temperature. Visceral endothermy is thought to increase rates of digestion and food processing and allow thermal niche expansion. We tested the hypothesis that, at in vivo temperatures, the endothermic shortfin mako shark, Isurus oxyrinchus, has higher specific activities of three digestive enzymes-gastric pepsin and pancreatic trypsin and lipase-than the thresher shark, Alopias vulpinus, and the blue shark, Prionace glauca, neither of which can maintain elevated visceral temperatures. Homogenized stomach or pancreas tissue obtained from sharks collected by pelagic longline was incubated at both 15 and 25 °C, at saturating substrate concentrations, to quantify tissue enzymatic activity. The mako had significantly higher enzyme activities at 25 °C than did the thresher and blue sharks at 15 °C. This difference was not a simple temperature effect, because at 25 °C the mako had higher trypsin activity than the blue shark and higher activities for all enzymes than the thresher shark. We also hypothesized that the thermal coefficient, or Q 10 value, would be higher for the mako shark than for the thresher and blue sharks because of its more stable visceral temperature. However, the mako and thresher sharks had similar Q 10 values for all enzymes, perhaps because of their closer phylogenetic relationship. The higher in vivo digestive enzyme activities in the mako shark should result in higher rates of food processing and may represent a selective advantage of regional visceral endothermy. PMID:25893905

  7. Angiotensin I-converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat.

    PubMed

    Escudero, Elizabeth; Sentandreu, Miguel Angel; Arihara, Keizo; Toldrá, Fidel

    2010-03-10

    The main purpose of this work was to study the generation of Angiotensin I-converting enzyme inhibitory (ACEI) peptides after gastrointestinal digestion of pork meat by the action of pepsin and pancreatin at simulated gut conditions. The hydrolysate was further subjected to reverse phase chromatography in order to separate the fractions with ACEI activity. Using MALDI-TOF/TOF mass spectrometry, 12 peptides were identified in these fractions. It is worth highlighting the novel peptides ER, KLP, and RPR with IC(50) values of 667 microM, 500 microM, and 382 microM, respectively. Results obtained by MALDI-TOF/TOF mass spectrometry were complemented by a second approach consisting of the analysis of the hydrolysate directly by nanoLC-ESI-MS/MS followed by a study of the obtained sequences and comparison with known ACEI peptide sequences. By using these two approaches, a total of 22 peptides were selected for its synthesis and further in vitro assay of ACEI activity. The strongest ACE inhibition was observed for peptide KAPVA (IC(50) = 46.56 microM) followed by the sequence PTPVP (IC(50) = 256.41 microM). Sequence similarity searches revealed that these two peptides derive from muscle titin, constituting the first identified ACEI peptides coming from this protein. This is also the first time that ACEI sequences MYPGIA and VIPEL have been reported. Other identified and synthesized sequences showed less ACEI activity. The obtained results evidence the potential of pork meat proteins as a source of antihypertensive peptides after gastrointestinal digestion.

  8. Quantitative Site-Specific Phosphoproteomics of Trichoderma reesei Signaling Pathways upon Induction of Hydrolytic Enzyme Production.

    PubMed

    Nguyen, Elizabeth V; Imanishi, Susumu Y; Haapaniemi, Pekka; Yadav, Avinash; Saloheimo, Markku; Corthals, Garry L; Pakula, Tiina M

    2016-02-01

    The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation system controlling hydrolase genes involves various signaling pathways. T. reesei was cultivated in the presence of sorbitol, a carbon source that does not induce the production of cellulases and hemicellulases, and then exposed to either sophorose or spent-grain extract, which are efficient inducers of the enzyme production. Specific changes at phosphorylation sites were investigated in relation to the production of cellulases and hemicellulases using an MS-based framework. Proteome-wide phosphorylation following carbon source exchange was investigated in the early stages of induction: 0, 2, 5, and 10 min. The workflow involved sequential trypsin digestion, TiO2 enrichment, and MS analysis using a Q Exactive mass spectrometer. We report on the identification and quantitation of 1721 phosphorylation sites. Investigation of the data revealed a complex signaling network activated upon induction involving components related to light-mediated cellulase induction, osmoregulation, and carbon sensing. Changes in protein phosphorylation were detected in the glycolytic pathway, suggesting an inhibition of glucose catabolism at 10 min after the addition of sophorose and as early as 2 min after the addition of spent-grain extract. Differential phosphorylation of factors related to carbon storage, intracellular trafficking, cytoskeleton, and cellulase gene regulation were also observed.

  9. Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: effects on growth performance and digestive enzyme activities.

    PubMed

    Hamza, Ahlem; Fdhila, Kais; Zouiten, Dora; Masmoudi, Ahmed Sleheddine

    2016-04-01

    This study examined the effects of two probiotics (Virgibacillus proomii and Bacillus mojavensis) on the digestive enzyme activity, survival and growth of Dicentrarchus labrax at various ontogenetic stages in three separate experiments. These probiotics were incorporated as single or mixed into fish feed for a period of 60 days. The growth parameters, proximate composition of whole body, digestive enzymes and gut microbiology were monitored at regular. The increments in length and weight and the survival were significantly higher (P < 0.05), and the values of food conversions were significantly lower (P < 0.05) in fishes fed the probiotic. The administration of V. proomii and B. mojavensis in diet resulted in an increase (P > 0.05) in body ash and protein content and in the specific activity of phosphatase alkaline and amylase in the digestive tract of all the fishes. V. proomii and B. mojavensis persisted in the fish intestine and in the feed in high numbers during the feeding period (group 1: 5.8 × 10(4) CFU/ml, group 2: 9.6 × 10(4) CFU/ml, and group 3: 9.8 × 10(4) CFU/ml day 60). The two probiotics V. proomii and B. mojavensis were adequate for improved growth performance and survival and for healthy gut microenvironment of the host. PMID:26520833

  10. Specificity of infant digestive conditions: some clues for developing relevant in vitro models.

    PubMed

    Bourlieu, Claire; Ménard, Olivia; Bouzerzour, Karima; Mandalari, Giuseppina; Macierzanka, Adam; Mackie, Alan R; Dupont, Didier

    2014-01-01

    Digestion of nutrients is an essential function of the newborn infant gut to allow growth and development and understanding infant digestive function is essential to optimize nutrition and oral drug delivery. Ethical considerations prohibit invasive in vivo trials and as a consequence in vitro assays are often conducted. However, the choice of in vitro model parameters are not supported by an exhaustive analysis of the literature and do not mimic precisely the digestive conditions of the infant. This review contains a compilation of the studies which characterized the gastroduodenal conditions in full-term or preterm infants of variable postnatal age from birth up to six months. Important data about healthy full-term infants are reported. The enzymatic (type of enzymes and level of activity) and nonenzymatic (milk-based diet, frequency of feeding, bile salt concentrations) conditions of digestion in infants are shown to differ significantly from those in adults. In addition, the interindividual and developmental variability of the digestive conditions in infants is also highlighted.

  11. Effects of Dietary Supplementation with the Combination of Zeolite and Attapulgite on Growth Performance, Nutrient Digestibility, Secretion of Digestive Enzymes and Intestinal Health in Broiler Chickens

    PubMed Central

    Zhou, P.; Tan, Y. Q.; Zhang, L.; Zhou, Y. M.; Gao, F.; Zhou, G. H.

    2014-01-01

    This study was designed to investigate the effects of basal diets supplemented with a clay product consisting of zeolite and attapulgite (ZA) at 1:1 ratio on growth performance, digestibility of feed nutrients, activities of digestive enzymes in small intestine and intestinal health in broiler chickens. In experiment 1, 112 one-day-old male chickens were randomly divided into 2 groups with 8 replicates of 7 chickens each. In experiment 2, 84 one-day-old male chickens were randomly allocated into 2 groups consisting 6 replicates of 7 chickens each. The experimental diets both consisted of a maize-soybean basal control diet supplemented with 0% or 2% ZA. The diets were fed from 1 to 42 days of age. The results showed that ZA supplementation could increase body weight gain (BWG) and feed intake (FI), but had no significant effect on feed conversion ratio. The apparent digestibility values of crude protein and gross energy were significantly increased (p<0.05) by ZA from 14 to 16 d and 35 to 37 d. Dietary ZA treatment significantly increased (p<0.05) the activities of amylase, lipase and trypsin in jejunal digesta and the activities of maltase and sucrase in jejunal mucosa on days 21 and 42. The ZA supplementation also significantly increased (p<0.05) the catalase activity, reduced (p<0.05) the malondialdehyde concentration in the jejunal mucosa. In addition, a decrease of serum diamine oxidase activity and an increase (p<0.05) in concentration of secretory immunoglobulin A in jejunal mucosa were observed in birds treated with ZA on 21 and 42 days. It is concluded that ZA supplementation (2%) could partially improve the growth performance by increasing BWG and FI. This improvement was achieved through increasing the secretion of digestive enzymes, enhancing the digestibilites of nutrients, promoting intestinal health of broiler chickens. PMID:25178375

  12. A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae.

    PubMed

    Hehemann, Jan-Hendrik; Boraston, Alisdair B; Czjzek, Mirjam

    2014-10-01

    Marine algae contribute approximately half of the global primary production. The large amounts of polysaccharides synthesized by these algae are degraded and consumed by microbes that utilize carbohydrate-active enzymes (CAZymes), thus creating one of the largest and most dynamic components of the Earth's carbon cycle. Over the last decade, structural and functional characterizations of marine CAZymes have revealed a diverse set of scaffolds and mechanisms that are used to degrade agars, carrageenan, alginate and ulvan-polysaccharides from red, brown and green seaweeds, respectively. The analysis of these CAZymes is not only expanding our understanding of their functions but is enabling the enhanced annotation of (meta)-genomic data sets, thus promoting an improved understanding of microbes that drive this marine component of the carbon cycle. Furthermore, this information is setting a foundation that will enable marine algae to be harnessed as a novel resource for biorefineries. In this review, we cover the most recent structural and functional analyses of marine CAZymes that are specialized in the digestion of macro-algal polysaccharides.

  13. Endonuclease specificity and sequence dependence of type IIS restriction enzymes.

    PubMed

    Lundin, Sverker; Jemt, Anders; Terje-Hegge, Finn; Foam, Napoleon; Pettersson, Erik; Käller, Max; Wirta, Valtteri; Lexow, Preben; Lundeberg, Joakim

    2015-01-01

    Restriction enzymes that recognize specific sequences but cleave unknown sequence outside the recognition site are extensively utilized tools in molecular biology. Despite this, systematic functional categorization of cleavage performance has largely been lacking. We established a simple and automatable model system to assay cleavage distance variation (termed slippage) and the sequence dependence thereof. We coupled this to massively parallel sequencing in order to provide sensitive and accurate measurement. With this system 14 enzymes were assayed (AcuI, BbvI, BpmI, BpuEI, BseRI, BsgI, Eco57I, Eco57MI, EcoP15I, FauI, FokI, GsuI, MmeI and SmuI). We report significant variation of slippage ranging from 1-54%, variations in sequence context dependence, as well as variation between isoschizomers. We believe this largely overlooked property of enzymes with shifted cleavage would benefit from further large scale classification and engineering efforts seeking to improve performance. The gained insights of in-vitro performance may also aid the in-vivo understanding of these enzymes.

  14. Endonuclease Specificity and Sequence Dependence of Type IIS Restriction Enzymes

    PubMed Central

    Lundin, Sverker; Jemt, Anders; Terje-Hegge, Finn; Foam, Napoleon; Pettersson, Erik; Käller, Max; Wirta, Valtteri; Lexow, Preben; Lundeberg, Joakim

    2015-01-01

    Restriction enzymes that recognize specific sequences but cleave unknown sequence outside the recognition site are extensively utilized tools in molecular biology. Despite this, systematic functional categorization of cleavage performance has largely been lacking. We established a simple and automatable model system to assay cleavage distance variation (termed slippage) and the sequence dependence thereof. We coupled this to massively parallel sequencing in order to provide sensitive and accurate measurement. With this system 14 enzymes were assayed (AcuI, BbvI, BpmI, BpuEI, BseRI, BsgI, Eco57I, Eco57MI, EcoP15I, FauI, FokI, GsuI, MmeI and SmuI). We report significant variation of slippage ranging from 1–54%, variations in sequence context dependence, as well as variation between isoschizomers. We believe this largely overlooked property of enzymes with shifted cleavage would benefit from further large scale classification and engineering efforts seeking to improve performance. The gained insights of in-vitro performance may also aid the in-vivo understanding of these enzymes. PMID:25629514

  15. Operation control of anaerobic digesters on the basis of enzyme activity tests.

    PubMed

    Kardos, Levente; Palkó, György; Oláh, József; Barkács, Katalin; Záray, Gyula

    2009-01-01

    In our experimental work the pilot plant and full scale anaerobic bioreactors of a communal sewage treatment plant were tested by applying usual control parameters (pH, volatile acid content, alkalinity, gas composition), and enzyme activity (dehydrogenase, protease, lipase) measurements. Influence of temperature change was examined in pilot plant scale, while the effect of alteration in specific organic matter load both in pilot and full scale. Among the control parameters only the change of the volatile acid concentration reflected the occurred influences. During the temperature varying experimental phase the dehydrogenase enzyme activity excellently indicated the influence of the different conditions. The effect of altering substrate load onto the gas production was also well followed by the enzyme activity data (mainly protease, lipase), and more rapidly than by measuring volatile acid concentration. In practice it is expedient to use enzyme activity measurements in those cases, when changes in the substrate composition and load are frequent. Another advantage of these tests is that they can be carried out quickly and at a relative low cost.

  16. Site-specific DNA transesterification catalyzed by a restriction enzyme

    PubMed Central

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme–DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively. PMID:17267608

  17. Different digestion enzymes used for human pancreatic islet isolation: a mixed treatment comparison (MTC) meta-analysis.

    PubMed

    Rheinheimer, Jakeline; Ziegelmann, Patrícia Klarmann; Carlessi, Rodrigo; Reck, Luciana Ross; Bauer, Andrea Carla; Leitão, Cristiane Bauermann; Crispim, Daisy

    2014-01-01

    Collagenases are critical reagents determining yield and quality of isolated human pancreatic islets and may affect islet transplantation outcome. Some islet transplantation centers have compared 2 or more collagenase blends; however, the results regarding differences in quantity and quality of islets are conflicting. Thus, for the first time, a mixed treatment comparison (MTC) meta-analysis was carried out to compile data about the effect of different collagenases used for human pancreas digestion on islet yield, purity, viability and stimulation index (SI). Pubmed, Embase and Cochrane libraries were searched. Of 755 articles retrieved, a total of 15 articles fulfilled the eligibility criteria and were included in the MTC meta-analysis. Our results revealed that Vitacyte and Liberase MTF were associated with a small increase in islet yield (islet equivalent number/g pancreas) when compared with Sevac enzyme [standardized mean difference (95% credible interval - CrI) = -2.19 (-4.25 to -0.21) and -2.28 (-4.49 to -0.23), respectively]. However, all other enzyme comparisons did not show any significant difference regarding islet yield. Purity and viability percentages were not significantly different among any of the analyzed digestion enzymes. Interestingly, Vitacyte and Serva NB1 were associated with increased SI when compared with Liberase MTF enzyme [unstandardized weighted mean difference (95% CrI) = -1.69 (-2.87 to -0.51) and -1.07 (-1.79 to -0.39), respectively]. In conclusion, our MTC meta-analysis suggests that the digestion enzymes currently being used for islet isolation works with similar efficiency regarding islet yield, purity and viability; however, Vitacyte and Serva NB1 enzymes seem to be associated with an improved SI as compared with Liberase MTF. PMID:25437379

  18. Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids.

    PubMed

    Isikhuemhen, Omoanghe S; Mikiashvilli, Nona A

    2009-11-01

    Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer. Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated. Lignocellulolytic enzymes activity, substrate utilization, and mushroom yield were evaluated in ten different substrate combinations (SCs) containing varying amounts of solid waste, wheat straw, and millet. Nutritional content of mushrooms produced on the different substrates was also determined. Substrates containing 70-80% wheat straw, 10-20% SW, and 10-20% millet were found to produce the highest mushroom yield (874.8-958.3 g/kg). Loss of organic matter in all SCs tested varied from 45.8% to 56.2%, which had positive correlation with the biological efficiency. Laccase, peroxidase, and carboxymethylcellulase (CMCase) activities were higher before fruiting, whereas xylanase showed higher activities after mushroom fruiting. SW increased the nutritional content in mushrooms harvested, and the combination of wheat straw and SW with millet significantly improved mushroom yield. Our findings demonstrated the possibility of utilizing anaerobic digester solids in mushroom cultivation. The application of SW as such could improve the financial gains in the overall economy of anaerobic digester plants. PMID:19618225

  19. The effect of chaya (Cnidoscolus aconitifolius) leaf meal and of exogenous enzymes on amino acid digestibility in broilers.

    PubMed

    Sarmiento-Franco, L; McNab, J M; Pearson, A; Belmar-Casso, R

    2003-07-01

    1. The apparent ileal nitrogen (N) and amino acid digestibilities in chaya leaf meal (CLM) (Cnidoscolus aconitifolius) with added enzymes, and the same variables in diets containing different amounts of CLM were studied in chickens. 2. In the first experiment pectinase, beta-glucanase, and pectinase + beta-glucanase were added to CLM. In the second experiment, there were three diets based on maize and soybean: 0, 150 and 250 g/kg CLM. 3. Pectinase significantly increased both lysine and overall amino acid digestibilities in CLM. 4. In experiment 2, the amino acid digestibility in birds fed on CLM250 was lower than that from birds fed on either control or CLM150. Only the digestibilities of alanine, arginine and proline were lower in birds fed on CLM150 than in those fed on the control diet. Nitrogen digestibility was lower in birds fed on the CLM250 diet than on either control or CLM150 diets. These findings were attributed to the increasing concentration of fibre with increasing dietary CLM. PMID:12964630

  20. Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C.

    PubMed

    Low, M G; Finean, J B

    1978-04-20

    The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on L-leucyl-beta-naphthylamidase, alkaline phosphodeisterase I and Ca2+- or MG2+-ATPase, but substantial proportions of the alkaline phosphatase and 5-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not exluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.

  1. Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate.

    PubMed

    Zou, Wei; Sissons, Mike; Gidley, Michael J; Gilbert, Robert G; Warren, Frederick J

    2015-12-01

    The aim of the present study is to characterise the influence of gluten structure on the kinetics of starch hydrolysis in pasta. Spaghetti and powdered pasta were prepared from three different cultivars of durum semolina, and starch was also purified from each cultivar. Digestion kinetic parameters were obtained through logarithm-of-slope analysis, allowing identification of sequential digestion steps. Purified starch and semolina were digested following a single first-order rate constant, while pasta and powdered pasta followed two sequential first-order rate constants. Rate coefficients were altered by pepsin hydrolysis. Confocal microscopy revealed that, following cooking, starch granules were completely swollen for starch, semolina and pasta powder samples. In pasta, they were completely swollen in the external regions, partially swollen in the intermediate region and almost intact in the pasta strand centre. Gluten entrapment accounts for sequential kinetic steps in starch digestion of pasta; the compact microstructure of pasta also reduces digestion rates.

  2. Synthesis of. beta. -D-glucan in vitro: HPLC separation of oligosaccharides from enzymic digests of glucans synthesized by Golgi apparatus and UDP-glucose

    SciTech Connect

    Gibeaut, D.M.; Carpita, N.C. )

    1990-05-01

    Anion exchange HPLC (Dionex) resolves {beta}-D-glucose oligosaccharides which vary in (1{yields}3) and (1{yields}4) linkage structure. The products from incubation of UDPG and cellular membranes from maize enriched for Golgi apparatus, ER, and plasma membrane are digested with glucan hydrolases specific for either (1{yields}3) or (1{yields}4) linkages and one which requires a specific (1{yields}3){beta}-D-glc-(1{yields}4){beta}-D-glc sequence. Two oligomers released by the latter enzyme are diagnostic of cereal grass mixed-linkage {beta}-D-glucan and are used as standards to examine reaction conditions for synthesis of this polymer with radioactive substrates. Our preliminary data indicate that formation of specific sequences of {beta}-D-glucan is increased by high concentrations of UDPG. Other radioactive oligomers are present in greater quantity than those from authentic mixed-linkage glucan and their linkage structure is now under investigation.

  3. Mechanism of extraordinary DNA digestion by pepsin.

    PubMed

    Zhang, Yanfang; Li, Chunchuan; Liu, Yu; Wang, Xiaoqian; Dong, Ping; Liang, Xingguo

    2016-03-25

    Recently, the protein-specific enzyme pepsin was found be capable of digesting nucleic acids unexpectedly. In this study, the effects of DNA sequence specificity, purine content (AG content), depurination and length on the nucleic acid (NA) digestion by pepsin were investigated. The results showed that pepsin functioned similar as endonuclease, and presented a moderate sequence preference compared with restriction enzymes and non-specific nuclease. The digestion was specific (sequence dependent to some extent), and pepsin preferred to cleave purine-rich sequences. The digestion of favorable sequence was dramatically accelerated when the purine base at the cleavage site was removed (created an apurinic (AP) site). However, the AP site did not help to cleave the sequence that pepsin could not cleave originally. Moreover, the results indicated that pepsin preferred to digest longer DNA (e.g. > 59 bases) than shorter one, and sequence shorter than 30 bases was barely digested. The mechanism of DNA digestion by pepsin was also discussed.

  4. The Choice of Enzyme for Human Pancreas Digestion Is a Critical Factor for Increasing the Success of Islet Isolation

    PubMed Central

    Qi, Meirigeng; Valiente, Luis; McFadden, Brian; Omori, Keiko; Bilbao, Shiela; Juan, Jemily; Rawson, Jeffrey; Scott, Stephen; Ferreri, Kevin; Mullen, Yoko; El-Shahawy, Mohamed; Dafoe, Donald; Kandeel, Fouad; Al-Abdullah, Ismail H.

    2015-01-01

    Background We evaluated 3 commercially available enzymes for pancreatic digestion by comparing key parameters during the islet isolation process, as well as islet quality after isolation. Methods Retrospectively compared and analyzed islet isolations from pancreata using 3 different enzyme groups: liberase HI (n = 63), collagenase NB1/neutral protease (NP) (n = 43), and liberase mammalian tissue-free collagenase/thermolysin (MTF C/T) (n = 115). A standardized islet isolation and purification method was used. Islet quality assessment was carried out using islet count, viability, in vitro glucose-stimulated insulin secretion (GSIS), glucose-stimulated oxygen consumption rate, and in vivo transplantation model in mice. Results Donor characteristics were not significantly different among the 3 enzyme groups used in terms of age, sex, hospital stay duration, cause of death, body mass index, hemoglobin A1c, cold ischemia time, and pancreas weight. Digestion efficacy (percentage of digested tissue by weight) was significantly higher in the liberase MTF C/T group (73.5 ± 1.5 %) when compared to the liberase HI group (63.6 ± 2.3 %) (P < 0.001) and the collagenase NB1/NP group (61.7 ± 2.9%) (P < 0.001). The stimulation index for GSIS was significantly higher in the liberase MTF C/T group (5.3 ± 0.5) as compared to the liberase HI (2.9 ± 0.2) (P < 0.0001) and the collagenase NB1/NP (3.6 ± 2.9) (P = 0.012) groups. Furthermore, the liberase MTF C/T enzymes showed the highest success rate of transplantation in diabetic non-obese diabetic severe combined immunodeficiency mice (65%), which was significantly higher than the liberase HI (42%, P = 0.001) and the collagenase NB1/NP enzymes (41%, P < 0.001). Conclusions Liberase MTF C/T is superior to liberase HI and collagenase NB1/NP in terms of digestion efficacy and GSIS in vitro. Moreover, liberase MTF C/T had a significantly higher success rate of transplantation in diabetic NOD Scid mice compared to liberase HI and

  5. Soybean hull and enzyme inclusion effects on diet digestibility and growth performance in beef steers consuming corn-based diets.

    PubMed

    Russell, J R; Sexten, W J; Kerley, M S

    2016-06-01

    A beef feedlot study was conducted to determine the effects of increasing soybean hull (SH) inclusion and enzyme addition on diet digestibility and animal performance. The hypothesis was SH inclusion and enzyme addition would increase fiber digestibility with no negative effect on animal performance. Eight treatments (TRT) were arranged in a 4 × 2 factorial using four diets and two enzyme (ENZ) inclusion rates. The diets were composed primarily of whole shell corn (WSC) with 0%, 7%, 14%, or 28% SH replacing corn. The ENZ was a commercial proprietary mix of , and (Cattlemace, R&D Life Sciences, Menomonie, WI) included in the diets at 0% (S0, S7, S14, S28) or 0.045% DM basis (S0e, S7e, S14e, S28e). Eighty steers (287 ± 31 kg, SD) were stratified by weight and blocked into pens with 1 heavy and 1 light pen per TRT (2 pen/TRT, 5 steers/pen). Steers were fed for 70 d with titanium dioxide included in the diets for the final 15 d. Fecal samples were collected on d 70 to determine diet digestibility. Diets were balanced for AA and RDP requirement based on available ME. Individual DMI was measured using a GrowSafe system. Diet, ENZ, and diet × ENZ effects were analyzed using the MIXED procedure of SAS. Initial BW was applied as a covariate for final BW (FBW), and DMI was included as a covariate for all digestibility measures. The diet × ENZ interaction had no effect on FBW, ADG, DMI, or any digestibility measure ( ≥ 0.11). Steers fed ENZ tended to have greater FBW ( = 0.09) and had numerically greater ADG than steers not fed ENZ. Diet influenced DMI ( < 0.01), as steers fed S7 diets had the greatest DMI ( ≤ 0.3), steers fed S0 diets had the least DMI ( ≤ 0.002), and DMI of steers fed S14 and S28 diets did not differ ( = 0.5). There was a diet × ENZ interaction for G:F ( = 0.02) in which S0, S0e, S14e, and S28e did not differ ( ≥ 0.3) and were greatest ( ≤ 0.05). There was no effect of diet or ENZ on DM, OM, or CP digestibility ( ≥ 0.2). Diet had an effect

  6. Molecular hydrogelators of peptoid-peptide conjugates with superior stability against enzyme digestion

    NASA Astrophysics Data System (ADS)

    Wu, Zhidan; Tan, Ming; Chen, Xuemei; Yang, Zhimou; Wang, Ling

    2012-05-01

    We report on molecular hydrogelators based on peptoid-peptide conjugates with good biocompatibility to different cells and superior stability against proteinase K digestion.We report on molecular hydrogelators based on peptoid-peptide conjugates with good biocompatibility to different cells and superior stability against proteinase K digestion. Electronic supplementary information (ESI) available: Synthesis and characterization of gelators, dynamic strain sweep, cell viability, and procedure to determine the stability of compounds against proteinase K digestion. See DOI: 10.1039/c2nr30408b

  7. Identification of DNA homologies among H incompatibility group plasmids by restriction enzyme digestion and Southern transfer hybridization.

    PubMed Central

    Whiteley, M; Taylor, D E

    1983-01-01

    Plasmids belonging to the three HI plasmid incompatibility subgroups were characterized by the use of restriction enzymes and Southern transfer hybridization. A diversity of restriction enzyme patterns was noted among the HI subgroups, and a small amount of DNA homology was observed by probing these digests with a nick-translated HI1 plasmid. Within a single subgroup (HI1 and HI2), similar restriction enzyme patterns were noted. Plasmids of all three HI subgroups and the HII group had a guanine plus cytosine content of 49 to 50 mol%. The IncHII plasmid pHH1508a also showed some homology with the HI1 probe. The DNA homology observed is probably responsible for common phenotypic properties encoded by these plasmids. Images PMID:6314885

  8. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme.

    PubMed

    Tactacan, Glenmer B; Cho, Seung-Yeol; Cho, Jin H; Kim, In H

    2016-07-01

    Although exogenous protease enzymes have been used in poultry diets quite extensively, this has not been the case for pig diets. In general, due to their better gut fermentative capacity and longer transit time, pigs have greater capacity to digest dietary proteins than poultry. However, in early-weaned piglets, the stress brought about by weaning adversely affects the digestion of dietary proteins. Therefore, a study was conducted to determine the effects of a commercial protease enzyme in weanling pigs. Indices of growth, nutrient digestibility, blood profiles, fecal microflora, fecal gas emission and fecal scores were measured during the study. A total of 50 weanling pigs (6.42±0.12 kg) at 28 d of age were randomly assigned to receive 1 of 2 dietary treatments: i) control diet (corn-soy based) with no supplemental protease (CON), and ii) control diet+200 g/ton protease (PROT) for 42 d. A completely randomized design consisting of 2 treatments, 5 replicates, and 5 pigs in each replicate was used. Growth performance in terms of body weight (27.04±0.38 kg vs 25.75±0.39 kg; p<0.05) and average daily gain (491±7.40 g vs 460±7.46 g; p<0.05) in PROT fed pigs were increased significantly, but gain per feed (0.700±0.01 vs 0.678±0.01; p>0.05) was similar between treatments at d 42. Relative to CON pigs, PROT fed pigs had increased (p<0.05) apparent total tract digestibility (84.66%±0.65% vs 81.21%±1.13% dry matter and 84.02%±0.52% vs 80.47%±1.22% nitrogen) and decreased (p<0.05) NH3 emission (2.0±0.16 ppm vs 1.2±0.12 ppm) in the feces at d 42. Except for a decreased (p<0.05) in blood creatinine level, no differences were observed in red blood cell, white blood cell, lymphocyte, urea nitrogen, and IgG concentrations between treatments. Fecal score and fecal microflora (Lactobacillus and E. coli) were also similar between CON and PROT groups. Overall, the supplementation of protease enzyme in weanling pigs resulted in improved growth rate and nutrient

  9. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme

    PubMed Central

    Tactacan, Glenmer B.; Cho, Seung-Yeol; Cho, Jin H.; Kim, In H.

    2016-01-01

    Although exogenous protease enzymes have been used in poultry diets quite extensively, this has not been the case for pig diets. In general, due to their better gut fermentative capacity and longer transit time, pigs have greater capacity to digest dietary proteins than poultry. However, in early-weaned piglets, the stress brought about by weaning adversely affects the digestion of dietary proteins. Therefore, a study was conducted to determine the effects of a commercial protease enzyme in weanling pigs. Indices of growth, nutrient digestibility, blood profiles, fecal microflora, fecal gas emission and fecal scores were measured during the study. A total of 50 weanling pigs (6.42±0.12 kg) at 28 d of age were randomly assigned to receive 1 of 2 dietary treatments: i) control diet (corn-soy based) with no supplemental protease (CON), and ii) control diet+200 g/ton protease (PROT) for 42 d. A completely randomized design consisting of 2 treatments, 5 replicates, and 5 pigs in each replicate was used. Growth performance in terms of body weight (27.04±0.38 kg vs 25.75±0.39 kg; p<0.05) and average daily gain (491±7.40 g vs 460±7.46 g; p<0.05) in PROT fed pigs were increased significantly, but gain per feed (0.700±0.01 vs 0.678±0.01; p>0.05) was similar between treatments at d 42. Relative to CON pigs, PROT fed pigs had increased (p<0.05) apparent total tract digestibility (84.66%±0.65% vs 81.21%±1.13% dry matter and 84.02%±0.52% vs 80.47%±1.22% nitrogen) and decreased (p<0.05) NH3 emission (2.0±0.16 ppm vs 1.2±0.12 ppm) in the feces at d 42. Except for a decreased (p<0.05) in blood creatinine level, no differences were observed in red blood cell, white blood cell, lymphocyte, urea nitrogen, and IgG concentrations between treatments. Fecal score and fecal microflora (Lactobacillus and E. coli) were also similar between CON and PROT groups. Overall, the supplementation of protease enzyme in weanling pigs resulted in improved growth rate and nutrient

  10. Digestive development of the early-weaned pig. 1. Effect of continuous nutrient supply on the development of the digestive tract and on changes in digestive enzyme activity during the first week post-weaning.

    PubMed

    Kelly, D; Smyth, J A; McCracken, K J

    1991-03-01

    -weaning period but that there is also a component of the adaptive response which is independent of nutrient intake. They confirm the rapid substrate induction of the brush-border glucoamylases and indicate the importance of considering total as well as specific enzyme activity for satisfactory interpretation of changes in digestive function.

  11. One-year monitoring of core biomarker and digestive enzyme responses in transplanted zebra mussels (Dreissena polymorpha).

    PubMed

    Palais, F; Dedourge-Geffard, O; Beaudon, A; Pain-Devin, S; Trapp, J; Geffard, O; Noury, P; Gourlay-Francé, C; Uher, E; Mouneyrac, C; Biagianti-Risbourg, S; Geffard, A

    2012-04-01

    A 12-month active biomonitoring study was performed in 2008-2009 on the Vesle river basin (Champagne-Ardenne, France) using the freshwater mussel Dreissena polymorpha as a sentinel species; allochthonous mussels originating from a reference site (Commercy) were exposed at four sites (Bouy, Sept-Saulx, Fismes, Ardre) within the Vesle river basin. Selected core biomarkers (acetylcholinesterase (AChE) activity, glutathione-S transferase (GST) activity, metallothionein concentration), along with digestive enzyme activities (amylase, endocellulase) and energy reserve concentrations (glycogen, lipids), were monitored throughout the study in exposed mussels. At the Fismes and Ardre sites (downstream basin), metallic and organic contamination levels were low but still high enough to elicit AChE and GST activity induction in exposed mussels (chemical stress); besides, chemical pollutants had no apparent deleterious effects on mussel condition. At the Bouy and Sept-Saulx sites (upstream basin), mussels obviously suffered from adverse food conditions which seriously impaired individual physiological state and survival (nutritional stress); food scarcity had however no apparent effects on core biomarker responses. Digestive enzyme activities responded to both chemical and nutritional stresses, the increase in energy outputs (general adaptation syndrome-downstream sites) or the decrease in energy inputs (food scarcity-upstream sites) leading to mid- or long-term induction of digestive carbohydrase activities in exposed mussels (energy optimizing strategy). Complex regulation patterns of these activities require nevertheless the use of a multi-marker approach to allow data interpretation. Besides, their sensitivity to natural confounding environmental factors remains to be precised.

  12. Sensitivity and Specificity of Histoplasma Antigen Detection by Enzyme Immunoassay.

    PubMed

    Cunningham, Lauren; Cook, Audrey; Hanzlicek, Andrew; Harkin, Kenneth; Wheat, Joseph; Goad, Carla; Kirsch, Emily

    2015-01-01

    The objective of this study was to evaluate the sensitivity and specificity of an antigen enzyme immunoassay (EIA) on urine samples for the diagnosis of histoplasmosis in dogs. This retrospective medical records review included canine cases with urine samples submitted for Histoplasma EIA antigen assay between 2007 and 2011 from three veterinary institutions. Cases for which urine samples were submitted for Histoplasma antigen testing were reviewed and compared to the gold standard of finding Histoplasma organisms or an alternative diagnosis on cytology or histopathology. Sensitivity, specificity, negative predictive value, positive predictive value, and the kappa coefficient and associated confidence interval were calculated for the EIA-based Histoplasma antigen assay. Sixty cases met the inclusion criteria. Seventeen cases were considered true positives based on identification of the organism, and 41 cases were considered true negatives with an alternative definitive diagnosis. Two cases were considered false negatives, and there were no false positives. Sensitivity was 89.47% and the negative predictive value was 95.35%. Specificity and the positive predictive value were both 100%. The kappa coefficient was 0.9207 (95% confidence interval, 0.8131-1). The Histoplasma antigen EIA test demonstrated high specificity and sensitivity for the diagnosis of histoplasmosis in dogs.

  13. Characteristics of digestive enzymes of calanoid copepod species from different latitudes in relation to temperature, pH and food.

    PubMed

    Freese, Daniela; Kreibich, Tobias; Niehoff, Barbara

    2012-08-01

    In calanoid copepods it is poorly understood how enzymatic activities and patterns are affected by abiotic and biotic factors. Such knowledge, however, is crucial to assess metabolic functioning and performance of organisms in different habitats. Therefore, our study focuses on digestive enzyme activities in relation to temperature, pH and food in the Arctic species Calanus glacialis and in Centropages hamatus and Temora longicornis from the North Sea. Enzyme activities were measured over a range from 0 to 70 °C (lipases/esterases, proteinases) and pH 5 to 9 (proteinases). In all species, relative proteinases activity peaked at 40/50 °C and pH 6; relative lipases/esterases activity peaked at 30 °C. Between 0 and 20 °C, lipase activity of C. glacialis was higher (40-70% of maximum) than that of the boreal copepods (25-64%), which suggests thermal adaptation of the lipid metabolism in the polar species. Incubating C. glacialis with the diatom Thalassiosira weissflogii showed (i) that enzyme activities increased especially in the alkaline range and (ii) that enzyme patterns, revealed by gel electrophoresis, differed from that of starving individuals, indicating that feeding induced enzyme expression. Such studies, linking abiotic and biotic conditions to enzyme functioning, can help elucidating the capacity of copepods to respond to environmental changes.

  14. Loss of Native Flavanols during Fermentation and Roasting Does Not Necessarily Reduce Digestive Enzyme-Inhibiting Bioactivities of Cocoa.

    PubMed

    Ryan, Caroline M; Khoo, Weslie; Ye, Liyun; Lambert, Joshua D; O'Keefe, Sean F; Neilson, Andrew P

    2016-05-11

    Polyphenol profiles and in vitro digestive enzyme inhibitory activities were compared between cocoa extracts from unfermented beans (UB), fermented beans (FB), unfermented liquor (UL), and fermented liquor (FL). Total polyphenols, total flavanols, and individual flavanols were significantly different between UB/FB and UL/FL. All extracts effectively inhibited α-glucosidase (lowest IC50 = 90.0 μg/mL, UL) and moderately inhibited α-amylase (lowest IC50 = 183 μg/mL, FL) and lipase (lowest IC25 = 65.5 μg/mL, FB). Our data suggest that fermentation does not reduce α-glucosidase inhibition, while roasting may enhance inhibition. For α-amylase, both fermentation and roasting improved inhibition. Finally, for lipase, both fermentation and roasting attenuated inhibition. Conclusive correlations between inhibition and mDP, total polyphenol, and flavanol contents were not found. Our data suggest that enzyme inhibition activities of cocoa are not uniformly reduced by polyphenol/flavanol losses during fermentation and roasting. This paradigm-challenging finding suggests other cocoa constituents, potentially formed during processing, contribute to digestive enzyme inhibition. PMID:27094258

  15. In vitro digestion of purified β-casein variants A(1), A(2), B, and I: effects on antioxidant and angiotensin-converting enzyme inhibitory capacity.

    PubMed

    Petrat-Melin, B; Andersen, P; Rasmussen, J T; Poulsen, N A; Larsen, L B; Young, J F

    2015-01-01

    Genetic polymorphisms of bovine milk proteins affect the protein profile of the milk and, hence, certain technological properties, such as casein (CN) number and cheese yield. However, reports show that such polymorphisms may also affect the health-related properties of milk. Therefore, to gain insight into their digestion pattern and bioactive potential, β-CN was purified from bovine milk originating from cows homozygous for the variants A(1), A(2), B, and I by a combination of cold storage, ultracentrifugation, and acid precipitation. The purity of the isolated β-CN was determined by HPLC, variants were verified by mass spectrometry, and molar extinction coefficients at λ=280nm were determined. β-Casein from each of the variants was subjected to in vitro digestion using pepsin and pancreatic enzymes. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory capacities of the hydrolysates were assessed at 3 stages of digestion and related to that of the undigested samples. Neither molar extinction coefficients nor overall digestibility varied significantly between these 4 variants; however, clear differences in digestion pattern were indicated by gel electrophoresis. In particular, after 60min of pepsin followed by 5min of pancreatic enzyme digestion, one ≈4kDa peptide with the N-terminal sequence (106)H-K-E-M-P-F-P-K- was absent from β-CN variant B. This is likely a result of the (122)Ser to (122)Arg substitution in variant B introducing a novel trypsin cleavage site, leading to the changed digestion pattern. All investigated β-CN variants exhibited a significant increase in antioxidant capacity upon digestion, as measured by the Trolox-equivalent antioxidant capacity assay. After 60min of pepsin + 120min of pancreatic enzyme digestion, the accumulated increase in antioxidant capacity was ≈1.7-fold for the 4 β-CN variants. The ACE inhibitory capacity was also significantly increased by digestion, with the B variant reaching the highest inhibitory

  16. Histochemical distribution of digestive enzymes in the intestine of the common two-banded seabream, Diplodus vulgaris, Geoffroy St-Hilaire 1817.

    PubMed

    Tlak Gajger, I; Nejedli, S; Kozarić, Z

    2013-06-01

    The histochemical localization of non-specific esterase, alkaline and acid phosphatase as well as aminopeptidase in the intestine of the free-living common two-banded sea bream (Diplodus vulgaris) was investigated. Fish were caught near the town of Zadar (Adriatic Sea, Croatia). Samples of pyloric caeca and three parts of the intestine proper (anterior, middle and posterior) were used for the description of non-specific esterase, alkaline and acid phosphatase as well as aminopeptidase. Non-specific esterase activity was found in the cytoplasm of enterocytes in pyloric caeca and in all investigated intestinal segments. The activity was stronger in the anterior and posterior part of the intestine than in the pyloric caeca and middle segment of the intestine. Intestinal alkaline phosphatase was detected in brush border of enterocytes of all investigated intestinal segments. Enzymatic activity gradually decreased in a posterior direction. Acid phosphatase activity was observed as a fine granular reaction product in the supranuclear region of enterocytes. This activity was almost equal in pyloric caeca as well as in the anterior intestinal segment, while it was stronger in the middle and posterior intestinal segment. Aminopeptidase was present along the intestinal epithelium brush border in all investigated parts of the digestive tube. The intensity of aminopeptidase increased posteriorly. The possible role of investigated enzymes in intracellular digestion and transport is discussed.

  17. Understanding the Specificity and Random Collision of Enzyme-Substrate Interaction

    ERIC Educational Resources Information Center

    Kin, Ng Hong; Ling, Tan Aik

    2016-01-01

    The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…

  18. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei.

    PubMed

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Li, Fuhua; Xiang, Jianhai

    2014-09-01

    The Pacific white shrimp (Litopenaeus vannamei), with high commercial value, has a typical metamorphosis pattern by going through embryo, nauplius, zoea, mysis and postlarvae during early development. Its diets change continually in this period, and a high mortality of larvae also occurs in this period. Since there is a close relationship between diets and digestive enzymes, a comprehensive investigation about the types and expression patterns of all digestive enzyme genes during early development of L. vannamei is of considerable significance for shrimp diets and larvae culture. Using RNA-Seq data, the types and expression characteristics of the digestive enzyme genes were analyzed during five different development stages (embryo, nauplius, zoea, mysis and postlarvae) in L. vannamei. Among the obtained 66,815 unigenes, 296 were annotated as 16 different digestive enzymes including five types of carbohydrase, seven types of peptidase and four types of lipase. Such a diverse suite of enzymes illustrated the capacity of L. vannamei to exploit varied diets to fit their nutritional requirements. The analysis of their dynamic expression patterns during development also indicated the importance of transcriptional regulation to adapt to the diet transition. Our study revealed the diverse and dynamic features of digestive enzymes during early development of L. vannamei. These results would provide support to better understand the physiological changes during diet transition.

  19. Effect of extracellular enzyme activity on digestion performance of mesophilic UASB reactor treating high-strength municipal wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan; Comez, Sezen

    2011-05-01

    Effect of extracellular enzyme activity on digestion performance of up-flow anaerobic sludge blanket (UASB) reactor was investigated for enhancement of anaerobic treatability of municipal wastewater. Two identical UASB reactors (9 L), namely Reactor-A (without enzyme addition) and Reactor-B (with enzyme addition),were simultaneously operated at mesophilic conditions (32 ± 2°C) with a hydraulic retention time of 24 h. Preliminary test results showed that the highest total chemical oxygen demand (TCOD) removal were achieved with an extracellular enzyme dosage of 0.2 mL/L. In the activation period of the extracellular enzyme (on days 186-212), while Reactor-A removed up to 69.3% of TCOD and 55.9% of soluble chemical oxygen demand (SCOD), Reactor-B effectively removed up to 81.9% of TCOD and 72.2% of SCOD. The average VFA/alkalinity ratios were determined to be about 0.40 (±0.03) and 0.28 (±0.08) for Reactor-A and Reactor-B, respectively.

  20. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  1. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  2. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  3. Proteolytic digestive enzymes and peritrophic membranes during the development of Plodia interpunctella (Lepidoptera: Piralidae): targets for the action of soybean trypsin inhibitor (SBTI) and chitin-binding vicilin (EvV).

    PubMed

    Amorim, Ticiana M L; Macedo, Leonardo L P; Uchoa, Adriana F; Oliveira, Adeliana S; Pitanga, Joelma C M; Macedo, Francisco P; Santos, Elizeu A; de Sales, Mauricio P

    2008-09-10

    The digestive system of P. interpunctella was characterized during its larval development to determine possible targets for the action of proteinaceous enzyme inhibitors and chitin-binding proteins. High proteolytic activities using azocasein at pH 9.5 as substrate were found. These specific enzymatic activities (AU/mg protein) showed an increase in the homogenate of third instar larvae, and when analyzed by individual larvae (AU/gut), the increase was in sixth instar larvae. Zymograms showed two bands corresponding to those enzymatic activities, which were inhibited by TLCK and SBTI, indicating that the larvae mainly used serine proteinases at pH 9.5 in their digestive process. The presence of a peritrophic membrane in the larvae was confirmed by chemical testing and light microscopy. In a bioassay, P. interpunctella was not susceptible to the soybean trypsin inhibitor, which did not affect larval mass and mortality, likely due to the weak association with its target digestive enzyme. EvV (Erythrina velutina vicilin), when added to the diet, affected mortality (LD50 0.23%) and larval mass (ED50 0.27%). This effect was associated with EvV-binding to the peritrophic membrane, as seen by immunolocalization. EvV was susceptible to gut enzymes and after the digestion process, released an immunoreactive fragment that was bound to the peritrophic matrix, which probably was responsible for the action of EvV.

  4. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis).

    PubMed

    Li, Xiu-Ming; Yu, Li-Juan; Wang, Chuan; Zeng, Ling-Qing; Cao, Zhen-Dong; Fu, Shi-Jian; Zhang, Yao-Guang

    2013-09-01

    Continual swimming exercise usually promotes growth in fish at a moderate water velocity. We hypothesized that the improvement in growth in exercise-trained fish may be accompanied by increases in digestive enzyme activity, respiratory capacity and, hence, postprandial metabolism. Juvenile qingbo fish (Spinibarbus sinensis) were subjected to aerobic training for 8weeks at a water velocity of control (3cms(-1)), 1, 2 and 4 body length (bl)s(-1) at a constant temperature of 25°C. The feed intake (FI), food conversion rate (FCR), specific growth rate (SGR), whole-body composition, trypsin and lipase activities, maximal oxygen consumption (M˙O2max) and postprandial M˙O2 response were measured at the end of the training period. Aerobic exercise training induced a significant increase in FI compared with the control group, while the FCR of the 4bls(-1) group was significantly lower than for the other three groups (P<0.05). The 1 and 2bls(-1) groups showed a significantly higher SGR over the control group (P<0.05). The whole-body fat and protein contents were significantly altered after aerobic exercise training (P<0.05). Furthermore, aerobic exercise training elevated the activity of both trypsin and lipase in the hepatopancreas and intestinal tract of juvenile S. sinensis. The M˙O2max of the 4bls(-1) training group was significantly higher than for the control group. The resting M˙O2 (M˙O2rest) and peak postprandial M˙O2 (M˙O2peak) in the three training groups were significantly higher than in the control group (P<0.05). Time to M˙O2peak was significantly shorter in the 1, 2 and 4bls(-1) training groups compared with the control group, while exercise training showed no effect on SDA (specific dynamic action) duration, factorial metabolic scope, energy expended on SDA and the SDA coefficient when compared to the control group. These data suggest that (1) the optimum water velocity for the growth of juvenile S. sinensis occurred at approximately 2.4bls(-1); (2

  5. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows.

    PubMed

    Hosoda, Kenji; Eruden, Bayaru; Matsuyama, Hiroki; Shioya, Shigeru

    2012-06-01

    Anthocyanin in purple corn (Zea mays L.) has been reported to show several functional and biological attributes, displaying antioxidant, antiobesity and antidiabetic effects in monogastric animals. The objective of this study was to investigate the effect of feeding anthocyanin-rich corn (Zea mays L., Choko C922) silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. The cows were fed diets based on the control corn or the anthocyanin-rich corn silage (AR treatment) in a crossover design. The anthocyanin-rich corn silage-based diet had a lower starch content, nutrient digestibility and total digestible nutrients content when compared to the control diet. The milk yield, lactose and solids-not-fat contents in the AR-treatment cows were lower than in the control cows. The feeding of the anthocyanin-rich corn silage led to a reduction in aspartate aminotransferase (AST) activity and an increase in superoxide dismutase (SOD) activity in the plasma. These data suggest that the anthocyanin-rich corn has a lowering effect on AST activity with concomitant enhancement of SOD activity in lactating dairy cows. However, a new variety of anthocyanin-rich corn with good nutritional value is needed for practical use as a ruminant feed. PMID:22694328

  6. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows.

    PubMed

    Hosoda, Kenji; Eruden, Bayaru; Matsuyama, Hiroki; Shioya, Shigeru

    2012-06-01

    Anthocyanin in purple corn (Zea mays L.) has been reported to show several functional and biological attributes, displaying antioxidant, antiobesity and antidiabetic effects in monogastric animals. The objective of this study was to investigate the effect of feeding anthocyanin-rich corn (Zea mays L., Choko C922) silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. The cows were fed diets based on the control corn or the anthocyanin-rich corn silage (AR treatment) in a crossover design. The anthocyanin-rich corn silage-based diet had a lower starch content, nutrient digestibility and total digestible nutrients content when compared to the control diet. The milk yield, lactose and solids-not-fat contents in the AR-treatment cows were lower than in the control cows. The feeding of the anthocyanin-rich corn silage led to a reduction in aspartate aminotransferase (AST) activity and an increase in superoxide dismutase (SOD) activity in the plasma. These data suggest that the anthocyanin-rich corn has a lowering effect on AST activity with concomitant enhancement of SOD activity in lactating dairy cows. However, a new variety of anthocyanin-rich corn with good nutritional value is needed for practical use as a ruminant feed.

  7. Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.

    2015-01-01

    Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…

  8. Effects of Pseudoalteromonas sp. BC228 on digestive enzyme activity and immune response of juvenile sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Ma, Yuexin; Sun, Feixue; Zhang, Congyao; Bao, Pengyun; Cao, Shuqing; Zhang, Meiyan

    2014-12-01

    A marine bacterium, Pseudoalteromonas sp. BC228 was supplemented to feed in a feeding experiment aiming to determine its ability of enhancing the digestive enzyme activity and immune response of juvenile Apostichopus japonicus. Sea cucumber individuals were fed with the diets containing 0 (control), 105, 107 and 109 CFU g-1 diet of BC228 for 45 days. Results showed that intestinal trypsin and lipase activities were significantly enhanced by 107 and 109 CFU g-1 diet of BC228 in comparison with control ( P < 0.01). The phagocytic activity in the coelomocytes of sea cucumber fed the diet supplemented with 107 CFU g-1 diet of BC228 was significantly higher than that of those fed control diet ( P < 0.05). In addition, 105 and 107 CFU g-1 diet of BC228 significantly enhanced lysozyme and phenoloxidase activities in the coelomic fluid of sea cucumber, respectively, in comparison with other diets ( P < 0.01). Sea cucumbers, 10 each diet, were challenged with Vibrio splendidus NB13 after 45 days of feeding. It was found that the cumulative incidence and mortality of sea cucumber fed with BC228 containing diets were lower than those of animals fed control diet. Our findings evidenced that BC228 supplemented in diets improved the digestive enzyme activity of juvenile sea cucumber, stimulated its immune response and enhanced its resistance to the infection of V. splendidus.

  9. One-year monitoring of core biomarker and digestive enzyme responses in transplanted zebra mussels (Dreissena polymorpha).

    PubMed

    Palais, F; Dedourge-Geffard, O; Beaudon, A; Pain-Devin, S; Trapp, J; Geffard, O; Noury, P; Gourlay-Francé, C; Uher, E; Mouneyrac, C; Biagianti-Risbourg, S; Geffard, A

    2012-04-01

    A 12-month active biomonitoring study was performed in 2008-2009 on the Vesle river basin (Champagne-Ardenne, France) using the freshwater mussel Dreissena polymorpha as a sentinel species; allochthonous mussels originating from a reference site (Commercy) were exposed at four sites (Bouy, Sept-Saulx, Fismes, Ardre) within the Vesle river basin. Selected core biomarkers (acetylcholinesterase (AChE) activity, glutathione-S transferase (GST) activity, metallothionein concentration), along with digestive enzyme activities (amylase, endocellulase) and energy reserve concentrations (glycogen, lipids), were monitored throughout the study in exposed mussels. At the Fismes and Ardre sites (downstream basin), metallic and organic contamination levels were low but still high enough to elicit AChE and GST activity induction in exposed mussels (chemical stress); besides, chemical pollutants had no apparent deleterious effects on mussel condition. At the Bouy and Sept-Saulx sites (upstream basin), mussels obviously suffered from adverse food conditions which seriously impaired individual physiological state and survival (nutritional stress); food scarcity had however no apparent effects on core biomarker responses. Digestive enzyme activities responded to both chemical and nutritional stresses, the increase in energy outputs (general adaptation syndrome-downstream sites) or the decrease in energy inputs (food scarcity-upstream sites) leading to mid- or long-term induction of digestive carbohydrase activities in exposed mussels (energy optimizing strategy). Complex regulation patterns of these activities require nevertheless the use of a multi-marker approach to allow data interpretation. Besides, their sensitivity to natural confounding environmental factors remains to be precised. PMID:22252290

  10. Development of digestive tract and enzyme activities during the early ontogeny of the tropical gar Atractosteus tropicus.

    PubMed

    Frías-Quintana, C A; Márquez-Couturier, G; Alvarez-González, C A; Tovar-Ramírez, D; Nolasco-Soria, H; Galaviz-Espinosa, M A; Martínez-García, R; Camarillo-Coop, S; Martínez-Yañez, R; Gisbert, E

    2015-10-01

    Changes in digestive enzyme activity and histology were studied in Atractosteus tropicus embryos, larvae and juvenile periods. Alkaline protease, chymotrypsin, carboxypeptidase A, lipase and α-amylase were detected in all periods and gradually increased until reaching the maximum peak in juveniles; meanwhile, acid protease was first detected at 5 days after hatching (dah) when first feeding started and trypsin and leucine aminopeptidase activities were detected from 19 dah, their values being increased gradually until reaching a maximum value at 31 dah. Acid and alkaline phosphatase activities increased from yolk-sac absorption (3 dah) until day 31 after hatching. Zymogram for acid protease showed two bands in active forms (0.4 and 0.5 Rfs) from day 5 after hatching and a third protease form (0.3 Rf) that appears at 31 dah. Two active forms (26.3 and 24.9 kDa) were detected using SDS-PAGE alkaline proteases zymogram at 5 dah, and an additional active form (44.1 kDa) was detected at 7 dah. Regarding the histological development of the digestive system, the exocrine pancreas containing zymogen granules was already visible at 3 dah, whereas at 5 dah first gastric glands were already detected in the stomach. Between 7 and 9 dah, the digestive tract of A. tropicus resembled that of a juvenile specimen with a well-developed and short oesophagus, stomach divided into a glandular and non-glandular (pyloric) stomach, folded intestine with pyloric caeca and a well-developed spiral valve (posterior intestine). Considering this, larvae of A. tropicus are capable of digesting several foods from yolk absorption (3 dah), maximizing its activities at 15 dah, age at which the organisms maximize its capability to absorb nutrients from diets provided.

  11. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    PubMed Central

    Chu, Wen-Ting; Wang, Jin

    2016-01-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design. PMID:27298067

  12. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes

    NASA Astrophysics Data System (ADS)

    Chu, Wen-Ting; Wang, Jin

    2016-06-01

    Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.

  13. Nutrient value of spray field forages fed to pigs and the use of feed enzymes to enhance nutrient digestibility.

    PubMed

    Passos, A A; Andrade, C; Phillips, C E; Coffey, M T; Kim, S W

    2015-04-01

    This study determined the DE, ME, apparent total tract digestibility (ATTD) of N, and N retention of spray field forages (Bermuda grass, forage sorghum, and sweet sorghum) fed to pigs and the effects of the supplemental feed enzymes on energy and N utilization. A basal diet was formulated with 96% corn and 4% amino acids, minerals, and vitamins. Test diets contained 85% basal diet + 15% Bermuda grass, forage sorghum, or sweet sorghum. Allzyme SSF (Alltech, Nicholasville, KY) was used as a feed enzyme, which was composed of cellulase, glucanase, xylanase, phytase, and protease. The basal diet and test diets were evaluated by using 4 sets of 2 × 2 Latin square designs consisting of 2 pigs and 2 periods with a total of 32 barrows (38.7 ± 7.9 kg). Each period (10-d adjustment and 4-d collection) had 2 Latin squares. The 2 treatments were levels of enzyme supplementation (0 or 200 mg/kg). Pigs received experimental diets twice daily (0700 and 1700 h) at a fixed amount based on BW of pigs (0.09 × BW0.75 kg). On d 10, chromic oxide (0.5%) was added to the diets at 1700 h as an external marker. Fecal and urine samples were collected during 4 consecutive days. The basal diet contained 3,850 kcal DE/kg, 3,769 kcal ME/kg, 86.06% ATTD of N, and 71.10% N retention and was not affected by enzyme supplementation. Bermuda grass contained 893 kcal DE/kg, 845 kcal ME/kg, -16.50% ATTD of N, and -37.49% N retention and tended to be improved by enzyme supplementation to 1,211 kcal DE/kg (P = 0.098), 1,185 kcal ME/kg (P = 0.081), and -10.54% N retention (P = 0.076). The ATTD of N of Bermuda grass increased (P < 0.05) to 0.08% by enzyme supplementation. The forage sorghum contained 1,520 kcal DE/kg, 1,511 kcal ME/kg, -0.72% ATTD of N, and -16.99% N retention. The sweet sorghum contained 1,086 kcal DE/kg, 1,061 kcal ME/kg, -75.47% ATTD of N, and -49.22% N retention. Enzyme supplementation did not improve energy digestibility of forage sorghum and sweet sorghum. Nitrogen in these

  14. Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

    PubMed Central

    Wang, Y.; Ramirez-Bribiesca, J. E.; Yanke, L. J.; Tsang, A.; McAllister, T. A.

    2012-01-01

    The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and β-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 μg/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 μg/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 μg/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of 15N into particle-associated microbial N (15N-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) 15N-PAMN at 4 h only, but EFE on AS increased (p<0.001) 15N-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) 15N-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it. PMID:25049480

  15. Microbial diversity and digestive enzyme activities in the gut of earthworms found in sawmill industries in Abeokuta, Nigeria.

    PubMed

    Bamidele, Julius A; Idowu, Adewunmi B; Ademolu, Kehinde O; Atayese, Adijat O

    2014-09-01

    The growing demand for wood has resulted in large volumes of wood wastes that are daily released to the soil from the activities of sawmills in South-Western Nigeria. In an attempt to setup a bioremediation model for sawdust, this study therefore aimed at evaluating microbial diversity, and the level of digestive enzymes in the gut of earthworms (Eudrilus eugeniae, Libyodrilus violaceous and Hyperiodrilus africanus) of sawmill origin. Four major sawmills located in Abeokuta (7°9'12" N- 3°19'35" E), namely Lafenwa, Sapon, Isale-Ake and Kotopo sawmills were used for this study. The arboretum of the Federal University of Agriculture, Abeokuta was used as control. Gut microbial analysis was carried out using the pour-plate method while digestive enzyme activities in the earthworm guts were done by the spectrophotometric method. Higher microbial counts (28.5 ± 0.1 x 10(3)-97.0 ± 0.1 x 10(3) cfu for bacteria and 7.0 ± 0.1x 10(3)-96.0 ± 0.1 x 10(3) cfu for fungi) and microbial diversity were recorded in the gut of earthworms of the sawmill locations than those of the control site (17.5 ± 0.1 x10(3) cfu for bacteria and 4.5 ± 0.1 x 10(3) cfu for fungi). Streptococcus mutans and Proteus spp. were common in the gut of E. eugeniae, and L. violaceous from the study sawmills, while Streptococcus mutans were also identified in H. africanus, but absent in the gut of E. eugeniae from the control site. Cellulase (48.67 ± 0.02 mg/g) and lipase (1.81 ± 0.01 mg/g) activities were significantly higher (p < 0.05) in the gut of earthworms from the control site than those of the study sawmills. Furthermore, amylase (α and β) activity was highest in the gut of earthworms from the sawmills. Variations observed in the gut microbial and digestive enzyme activities of earthworms from the study sawmills as compared to the control site suggests that earthworms, especially E. eugeniae, could be a better organism for use as bioremediator of wood wastes.

  16. A specific enzyme for glucose 1,6-bisphosphate synthesis.

    PubMed

    Rose, I A; Warms, J V; Kaklij, G

    1975-05-10

    The reaction: glycerate-1,3-P2 PLUS GLUCOSE-1-P YIELDS TO GLUCOSE-1,6-P2 plus glycerate-P is catalyzed by a distinct enzyme of mouse brain. A divalent metal requirement was shown when the enzyme was treated with imidazole and EDTA. Mg2+, Mn2+, Ca2+, Zn2+, Ni2+, Co2+, and Cd2+ were quite effective cofactors. The enzyme, in better than 50 percent yield, has been purified away from 99 percent of the phosphoglucomutase, phosphoglycrate mutase, and phosphofructokinase. Acetyl-P, ATP, enolpyruvate-P, creatine-P, and fructose-1,6-P2 are not phosphoryl donors. Glucose-6-P and mannose-1-P are good alternate acceptors. Mannose-6-P, galactose-Ps, and fructose-Ps have little or no acceptor activity. Strong inhibition was found with fructose-1,6-P2, glycerate-2,3-P2, enolpyruvate-P, and acetyl CoA. From the amount of activity and the kinetic constants of the purified enzyme it seems likely that this enzyme is responsible for the glucose-1,6-P2 synthesis of brain.

  17. Efficient and Specific Trypsin Digestion of Microgram to Nanogram Quantities of Proteins in Organic-Aqueous Solvent Systems

    SciTech Connect

    Strader, Michael B; Tabb, Dave L; Hervey, IV, William Judson; Pan, Chongle; Hurst, Gregory {Greg} B

    2006-01-01

    Mass spectrometry-based identification of the components of multiprotein complexes often involves solution-phase proteolytic digestion of the complex. The affinity purification of individual protein complexes often yields nanogram to low-microgram amounts of protein, which poses several challenges for enzymatic digestion and protein identification. We tested different solvent systems to optimize trypsin digestions of samples containing limited amounts of protein for subsequent analysis by LC-MS-MS. Data collected from digestion of 10-, 2-, 1-, and 0.2- g portions of a protein standard mixture indicated that an organicaqueous solvent system containing 80% acetonitrile consistently provided the most complete digestion, producing more peptide identifications than the other solvent systems tested. For example, a 1-h digestion in 80% acetonitrile yielded over 52% more peptides than the overnight digestion of 1 g of a protein mixture in purely aqueous buffer. This trend was also observed for peptides from digested ribosomal proteins isolated from Rhodopseudomonas palustris. In addition to improved digestion efficiency, the shorter digestion times possible with the organic solvent also improved trypsin specificity, resulting in smaller numbers of semitryptic peptides than an overnight digestion protocol using an aqueous solvent. The technique was also demonstrated for an affinityisolated protein complex, GroEL. To our knowledge, this report is the first using mass spectrometry data to show a linkage between digestion solvent and trypsin specificity. Mass spectrometry (MS) has become a widely used method for studying proteins, protein complexes, and whole proteomes because of innovations in soft ionization techniques, bioinformatics, and chromatographic separation techniques.1-7 An example of a high-throughput mass spectrometry strategy commonly used for this purpose is a variation of the "shotgun" approach, involving in-solution digestion of a protein complex followed by

  18. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  19. In vitro and in vivo digestibility of corn starch for weaned pigs: Effects of amylose:amylopectin ratio, extrusion, storage duration, and enzyme supplementation.

    PubMed

    Li, Y; Zhang, A R; Luo, H F; Wei, H; Zhou, Z; Peng, J; Ru, Y J

    2015-07-01

    The objective of this study was to investigate the effects of amylose (AM):amylopectin (AP) ratio, extrusion, storage duration, and enzyme supplementation on starch digestibility of corn. Three corn varieties with high (0.60; HA), medium (0.44; MA), and low (0.39; LA) AM:AP ratios, respectively, were selected from 74 corn samples to evaluate the in vitro and in vivo digestibility of starch. In Exp. 1, during wk 4 after extrusion, resistant starch (RS) content of the 3 selected corn varieties (LA, MA, and HA) increased (P < 0.05) each week and starch digestibility in vitro decreased as storage time increased (P < 0.05). The AM:AP ratio affected the formation of RS (P < 0.01). The RS content of the 3 corn varieties was ranked as LA < MA < HA in each week (P < 0.05). Correlation analysis showed that AM:AP ratio and storage duration were both positively correlated with RS content (P < 0.01). Furthermore, a significant quadratic relation was found between storage duration and RS content in each corn variety as well as storage duration and digestibility. Starch digestibility was negatively correlated with RS content (P < 0.001). In Exp. 2, digestion trials were performed on cannulated pigs with BW of 13.20 ± 0.94 kg. Extrusion increased ileal digestibility of GE and starch of either HA or LA compared with the enzyme-supplemented diets (P < 0.001). Enzyme supplementation did not improve ileal energy and starch digestibility. The ileal digestibility of starch and GE of LA varieties was greater than HA samples (P < 0.05). The results implied that AM:AP ratio and storage duration after extrusion may be important determinants of RS formation and digestibility of starch for corn. In addition, RS content could be an important indicator of digestibility of starch in extruded corn. Using a lower AM:AP ratio corn or reducing the storage duration of extruded corn would help to reduce the formation of RS and improve the starch bioavailability of corn for piglets.

  20. Validation of a specific quality of life questionnaire for functional digestive disorders

    PubMed Central

    Chassany, O; Marquis, P; Scherrer, B; Read, N; Finger, T; Bergmann, J; Fraitag, B; Geneve, J; Caulin, C

    1999-01-01

    BACKGROUND—Dyspepsia and irritable bowel syndrome are suitable conditions for assessment of quality of life. Their similarities justify the elaboration of a single specific questionnaire for the two conditions. 
AIMS—To examine the process leading to the validation of the psychometric properties of the functional digestive disorders quality of life questionnaire (FDDQL). 
METHODS—Initially, the questionnaire was given to 154 patients, to assess its acceptability and reproducibility, analyse its content, and reduce the number of items. Its responsiveness was tested during two therapeutic trials which included 428 patients. The questionnaire has been translated into French, English, and German. The psychometric validation study was conducted in France, United Kingdom, and Germany by 187 practitioners. A total of 401patients with dyspepsia or irritable bowel syndrome, defined by the Rome criteria, filled in the FDDQL and generic SF-36 questionnaires. 
RESULTS—The structure of the FDDQL scales was checked by factorial analysis. Its reliability was expressed by a Cronbach's α coefficient of 0.94. Assessment of its discriminant validity showed that the more severe the functional digestive disorders, the more impaired the quality of life (p<0.05). Concurrent validity was supported by the correlation found between the FDDQL and SF-36 questionnaire scales. The final version of the questionnaire contains 43 items belonging to eight domains. 
CONCLUSIONS—The properties of the FDDQL questionnaire, available in French, English, and German, make it appropriate for use in clinical trials designed to evaluate its responsiveness to treatment among patients with dyspepsia and irritable bowel syndrome. 

 Keywords: digestive disorders; irritable bowel syndrome; dyspepsia; quality of life; clinical trial; validation PMID:10075960

  1. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2014-12-01

    Endosymbiosis between symbiotic Chlorella and alga-free Paramecium bursaria cells can be induced by mixing them. To establish the endosymbiosis, algae must acquire temporary resistance to the host lysosomal enzymes in the digestive vacuoles (DVs). When symbiotic algae isolated from the alga-bearing paramecia are kept under a constant dark conditions for 24 h before mixing with the alga-free paramecia, almost all algae are digested in the host DVs. To examine the cause of algal acquisition to the host lysosomal enzymes, the isolated algae were kept under a constant light conditions with or without a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea for 24 h, and were mixed with alga-free paramecia. Unexpectedly, most of the algae were not digested in the DVs irrespective of the presence of the inhibitor. Addition of 1 mM maltose, a main photosynthetic product of the symbiotic algae or of a supernatant of the isolated algae kept for 24 h under a constant light conditions, did not rescue the algal digestion in the DVs. These observations reveal that unknown factors induced by light are a prerequisite for algal resistance to the host lysosomal enzymes.

  2. [The specific enzyme inhibitors for potential therapeutic use].

    PubMed

    Bretner, Maria

    2015-01-01

    Therapy for hepatitis C virus (HCV) initially consisted on administering ribavirin - having a broad spectrum of action - and pegylated interferon, and was only effective in 40-50% of patients. Appropriate was to find effective inhibitors of viral replication e.g. by inhibition of a viral enzyme, NTPase/helicase required in the process of translation and RNA replication of the HCV. We developed methods of synthesis of many compounds belonging to different groups - derivatives of nucleosides, benzotriazole, benzimidazole, tropolone and epirubicine. Some of the derivatives inhibit HCV helicase activity at low concentrations and reduces replication of the viral RNA in subgenomic replicon system. In the process of HCV replication casein kinase CK2 plays an important role. It regulates the level of phosphorylation of HCV protein NS5A, which affects the production of infectious virions of HCV. Effective and selective inhibitors of kinase CK2 could be of use in the treatment of HCV in combination with other drugs. CK2 kinase phosphorylates approximately 300 proteins that affect the growth, differentiation, proliferation or apoptosis. Elevated CK2 kinase activity has been observed in several types of cancer and other diseases, therefore, inhibitors of this enzyme are potential therapeutic importance, particularly for anti-cancer treatment. Research carried out in collaboration with prof. Shugar led to the synthesis of one of the most selective inhibitors of this enzyme which is 4,5,6,7-tetrabromo-1H-benzotriazole, used for the study of the role of kinase CK2 in a number of metabolic processes in tumor cells.

  3. [Studies on digestive enzyme activity of Whitmania pigra in different months old].

    PubMed

    Shi, Hong-zhuan; Liu, Hong; Guo, Qiao-sheng; Wang, Jia; Liu, Fei; Li, Meng-meng

    2015-07-01

    Studies on the variation of amylase, lipase and lrotease activity of Whitmania pigra in 0-6 months old using 3, 5-dinitro- salicylic acid colorimetry, right-nitrophenyl palmitate ester (ρ-NPP) colorimetry and folin-phenol method. The results showed that pro- tease activity remained low before 1.5 months old and with the highest activity in 2 months old, but after showing a small peak in 4 months, alkaline protease rapid declined. Amylase was low at born, then gradually increased the activity of the highest in 2.5 months old. Lipase with a strong vitality at birth, then 1 month with minimum and 2 months peaked, but appeared a small peak in 4 months old. In summary, only lipase exhibits strong activity at birth, lipase with the strongest activity in the digestive tract during develop- ment. Protease, lipase and amylase with the strongest activity at 2-3 months old, but were decreased after 4 months old. PMID:26666029

  4. Debranching and Crystallization of Waxy Maize Starch in Relation to Enzyme Digestibility

    SciTech Connect

    Cai, L.; Shi, Y; Rong, L; Hsiao, B

    2010-01-01

    Molecular and crystal structures as well as morphology during debranching and crystallization of waxy maize starch at a high solid content (25%, w/w) were investigated, and the results were related to the digestibility of debranched products. The starch was cooked at 115-120 C for 10 min, cooled to 50 C and debranched by isoamylase. After 1 h of debranching, wormlike objects with 5-10 nm width and ca. 30 nm length were observed by transmission electron microscopy. Further release of linear chains and crystallization led to assembly of semi-crystalline structures in the form of nano-particles and subsequent growth of nano-particles into large aggregates. After 24 h at 50 C, a debranched starch product with an A-type X-ray diffraction pattern, a high melting temperature (90-140 C), and high resistant starch content (71.4%) was obtained. Small-angle X-ray scattering results indicated that all debranched products were surface fractal in a dry state (4% moisture) but had a mass fractal structure when hydrated (e.g. 45% moisture).

  5. Effect of orally administered betel leaf (Piper betle Linn.) on digestive enzymes of pancreas and intestinal mucosa and on bile production in rats.

    PubMed

    Prabhu, M S; Platel, K; Saraswathi, G; Srinivasan, K

    1995-10-01

    The influence of two varieties of betel leaf (Piper betle Linn.) namely, the pungent Mysore and non-pungent Ambadi, was examined on digestive enzymes of pancreas and intestinal mucosa and on bile secretion in experimental rats. The betel leaves were administered orally at two doses which were either comparable to human consumption level or 5 times this. The results indicated that while these betel leaves do not influence bile secretion and composition, they have a significant stimulatory influence on pancreatic lipase activity. Besides, the Ambadi variety of betel leaf has a positive stimulatory influence on intestinal digestive enzymes, especially lipase, amylase and disaccharidases. A slight lowering in the activity of these intestinal enzymes was seen when Mysore variety of betel leaf was administered, and this variety also had a negative effect on pancreatic amylase. Further, both the betel leaf varieties have shown decreasing influence on pancreatic trypsin and chymotrypsin activities. PMID:8575807

  6. Effect of orally administered betel leaf (Piper betle Linn.) on digestive enzymes of pancreas and intestinal mucosa and on bile production in rats.

    PubMed

    Prabhu, M S; Platel, K; Saraswathi, G; Srinivasan, K

    1995-10-01

    The influence of two varieties of betel leaf (Piper betle Linn.) namely, the pungent Mysore and non-pungent Ambadi, was examined on digestive enzymes of pancreas and intestinal mucosa and on bile secretion in experimental rats. The betel leaves were administered orally at two doses which were either comparable to human consumption level or 5 times this. The results indicated that while these betel leaves do not influence bile secretion and composition, they have a significant stimulatory influence on pancreatic lipase activity. Besides, the Ambadi variety of betel leaf has a positive stimulatory influence on intestinal digestive enzymes, especially lipase, amylase and disaccharidases. A slight lowering in the activity of these intestinal enzymes was seen when Mysore variety of betel leaf was administered, and this variety also had a negative effect on pancreatic amylase. Further, both the betel leaf varieties have shown decreasing influence on pancreatic trypsin and chymotrypsin activities.

  7. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing

    PubMed Central

    2013-01-01

    Background Reduced representation bisulfite sequencing (RRBS) was developed to measure DNA methylation of high-CG regions at single base-pair resolution, and has been widely used because of its minimal DNA requirements and cost efficacy; however, the CpG coverage of genomic regions is restricted and important regions with low-CG will be ignored in DNA methylation profiling. This method could be improved to generate a more comprehensive representation. Results Based on in silico simulation of enzyme digestion of human and mouse genomes, we have optimized the current single-enzyme RRBS by applying double enzyme digestion in the library construction to interrogate more representative regions. CpG coverage of genomic regions was considerably increased in both high-CG and low-CG regions using the double-enzyme RRBS method, leading to more accurate detection of their average methylation levels and identification of differential methylation regions between samples. We also applied this double-enzyme RRBS method to comprehensively analyze the CpG methylation profiles of two colorectal cancer cell lines. Conclusion The double-enzyme RRBS increases the CpG coverage of genomic regions considerably over the previous single-enzyme RRBS method, leading to more accurate detection of their average methylation levels. It will facilitate genome-wide DNA methylation studies in multiple and complex clinical samples. PMID:23324053

  8. Fabrication of an on-line enzyme micro-reactor coupled to liquid chromatography-tandem mass spectrometry for the digestion of recombinant human erythropoietin.

    PubMed

    Foo, Hsiao Ching; Smith, Norman W; Stanley, Shawn M R

    2015-04-01

    Our aim was to develop a fast and efficient on-line method using micro-reactors for the digestion and deglycosylation of recombinant human erythropoietin extracted from equine plasma. The trypsin digestion micro reactors were fabricated using fused silica capillaries with either a dextran-modified coating or a porous monolith that was able to immobilise the enzyme. These were both found to be reasonably robust and durable, with the trypsin immobilised on dextran-modified fused silica capillaries offering better reproducibility than the micro-reactor based upon covalent attachment of this enzyme to the polymer. It is also evident that the enzyme attached micro reactors produced some tryptic peptides in a greater yield than in-solution digestion. A peptide-N-glycosidase F reactor was also fabricated and, when coupled with the trypsin reactor, the deaminated peptides T5 DAM and T9 DAM from recombinant human erythropoietin could also be detected by LC-ESI-MS/MS analysis. These results were better than those achieved using off-line digestion plus deglycosylation reactions and the analysis required far less time and effort to complete. The use of this on-line approach improved the sensitivity, efficiency and speed of our confirmation methodology that is based upon detecting the unique peptide segments of recombinant human erythropoietin that has been affinity extracted from positive equine plasma samples.

  9. Effect of dietary supplementation with an ethanolic extract of propolis on broiler intestinal morphology and digestive enzyme activity.

    PubMed

    Eyng, C; Murakami, A E; Duarte, C R A; Santos, T C

    2014-04-01

    The present study aimed to evaluate the effect of different levels of an ethanolic extract of propolis (EEP) on broiler performance, carcass characteristics, weight of gastrointestinal organs, intestinal morphometry and digestive enzyme activity. 1020 male broiler chicks were assigned in a completely randomised experimental design to six treatments (EEP supplement levels of 0, 1000, 2000, 3000, 4000 and 5000 ppm) and five replications, and 34 birds per experimental unit. The experimental diets were administered from 1 to 21 days of age, and the birds were subsequently provided a ration based on corn and soybean meal. EEP supplementation from 1 to 7 days negatively affected (p < 0.05) the weight gain and feed intake. The proventriculus weight at 7 days exhibited a quadratic response (p < 0.05), which predicted a lower weight at a dose of 2865 ppm of the EEP. For the duodenum at 21 days of age, the response pattern (p < 0.05) predicted that birds that were fed 2943 and 3047 ppm of the EEP would exhibit an improved crypt depth and villus-to-crypt ratio respectively. The villus height, crypt depth and villus-to-crypt ratio in the jejunum and the ileum were not affected (p > 0.05). With increased EEP doses, the duodenal sucrase activity linearly decreased at 7 days of age and linearly increased in the jejunum at 21 days of age (p < 0.05), while pancreatic enzyme activity was unaffected (p > 0.05). Although the carcass and cut yields did not improve, the percentage of abdominal fat decreased (p < 0.05). The supplementation of the broiler pre-starter diet with 1000-5000 ppm of the EEP impaired performance at this stage, most likely due to the decreased sucrase activity. However, the EEP supplementation from 3000 ppm improved intestinal morphophysiology at 21 days of age and did not affect the performance or carcass yield at 42 days of age.

  10. Expression of digestive enzymes and nutrient transporters in Eimeria-challenged broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian coccidiosis is a disease caused by the intestinal protozoa Eimeria. The site of invasion and lesions in the intestine is species-specific, for example E. acervulina affects the duodenum, E. maxima the jejunum, and E. tenella the ceca. Lesions in the intestinal mucosa cause reduced feed effic...

  11. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and α-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties.

  12. Characterization of Digestive Enzymes of Bruchid Parasitoids–Initial Steps for Environmental Risk Assessment of Genetically Modified Legumes

    PubMed Central

    Álvarez-Alfageme, Fernando; Lüthi, Christoph; Romeis, Jörg

    2012-01-01

    Genetically modified (GM) legumes expressing the α-amylase inhibitor 1 (αAI-1) from Phaseolus vulgaris L. or cysteine protease inhibitors are resistant to several bruchid pests (Coleoptera: Chrysomelidae). In addition, the combination of plant resistance factors together with hymenopteran parasitoids can substantially increase the bruchid control provided by the resistance alone. If the strategy of combining a bruchid-resistant GM legume and biological control is to be effective, the insecticidal trait must not adversely affect bruchid antagonists. The environmental risk assessment of such GM legumes includes the characterization of the targeted enzymes in the beneficial species and the assessment of the in vitro susceptibility to the resistance factor. The digestive physiology of bruchid parasitoids remain relatively unknown, and their susceptibility to αAI-1 has never been investigated. We have detected α-amylase and serine protease activities in all five bruchid parasitoid species tested. Thus, the deployment of GM legumes expressing cysteine protease inhibitors to control bruchids should be compatible with the use of parasitoids. In vitro inhibition studies showed that sensitivity of α-amylase activity to αAI-1 in the parasitoids was comparable to that in the target species. Direct feeding assays revealed that harmful effects of α-amylase inhibitors on bruchid parasitoids cannot be discounted and need further evaluation. PMID:22615826

  13. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and α-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties. PMID:25439559

  14. Diurnal feeding rhythms in north sea copepods measured by Gut fluorescence, digestive enzyme activity and grazing on labelled food

    NASA Astrophysics Data System (ADS)

    Baars, M. A.; Oosterhuis, S. S.

    Results obtained with three methods for measuring feeding rhythms of copepods were different. Gut fluorescence showed clear day-night variation during 2 out of 3 cruises at the Oyster Ground in the North Sea. The species studied ( Pseudocalanus, Temora, Centropages, Calanus) had highest gut fluorescence during the night in May and September, the larger species demonstrating the largest difference. Gut fluorescence was positively correlated with ambient chlorophyll concentrations. Gut clearance rate was not dependent on temperature but on gut fullness. Gut passage times at high gut fluorescence levels were ˜25 minutes, at low levels 2 hours. In grazing experiments with 14C labelled food, filtering rates declined after 5 to 15 minutes, presumably before the first defecation of radioactive material. Filtering rates in Temora were higher at night than by day during May and July, but not in Pseudocalanus and Calanus during September. No diurnal pattern of amylase and tryptic activity was found, except in July for amylase but then probably due to vertical migration. The activity of these digestive enzymes appeared to be least and gut fluorescence most suitable for the detection of grazing rhythms. The occurrence of high fluorescence levels at night in all species studied suggests that intermittent feeding by copepods on phytoplankton is a general phenomenon from spring to autumn. The increase in foraging activity appeared to start well before complete darkness, during May and July even one hour or more before sunset.

  15. Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily

    PubMed Central

    Lukk, Tiit; Sakai, Ayano; Kalyanaraman, Chakrapani; Brown, Shoshana D.; Imker, Heidi J.; Song, Ling; Fedorov, Alexander A.; Fedorov, Elena V.; Toro, Rafael; Hillerich, Brandan; Seidel, Ronald; Patskovsky, Yury; Vetting, Matthew W.; Nair, Satish K.; Babbitt, Patricia C.; Almo, Steven C.; Gerlt, John A.; Jacobson, Matthew P.

    2012-01-01

    The rapid advance in genome sequencing presents substantial challenges for protein functional assignment, with half or more of new protein sequences inferred from these genomes having uncertain assignments. The assignment of enzyme function in functionally diverse superfamilies represents a particular challenge, which we address through a combination of computational predictions, enzymology, and structural biology. Here we describe the results of a focused investigation of a group of enzymes in the enolase superfamily that are involved in epimerizing dipeptides. The first members of this group to be functionally characterized were Ala-Glu epimerases in Eschericiha coli and Bacillus subtilis, based on the operon context and enzymological studies; these enzymes are presumed to be involved in peptidoglycan recycling. We have subsequently studied more than 65 related enzymes by computational methods, including homology modeling and metabolite docking, which suggested that many would have divergent specificities;, i.e., they are likely to have different (unknown) biological roles. In addition to the Ala-Phe epimerase specificity reported previously, we describe the prediction and experimental verification of: (i) a new group of presumed Ala-Glu epimerases; (ii) several enzymes with specificity for hydrophobic dipeptides, including one from Cytophaga hutchinsonii that epimerizes D-Ala-D-Ala; and (iii) a small group of enzymes that epimerize cationic dipeptides. Crystal structures for certain of these enzymes further elucidate the structural basis of the specificities. The results highlight the potential of computational methods to guide experimental characterization of enzymes in an automated, large-scale fashion. PMID:22392983

  16. Assessment of enzyme supplementation on growth performance and apparent nutrient digestibility in diets containing undecorticated sunflower seed meal in layer chicks.

    PubMed

    Fafiolu, A O; Oduguwa, O O; Jegede, A V; Tukura, C C; Olarotimi, I D; Teniola, A A; Alabi, J O

    2015-08-01

    Six hundred and forty one-day-old layer chicks were used to investigate the effect of replacing soybean meal with undecorticated sunflower seed meal protein for protein at 0, 25, 50, and 75% levels. Diets were without enzyme supplementation or with enzyme supplementation with four replications of twenty birds. Growth performance and nutrient utilization were determined. Proximate composition of the undecorticated sunflower seed meal used revealed that undecorticated sunflower seed meal contained 925.9, 204.5, 336.2, 215.1, 52.0 and 192.2g/kg dry matter, crude protein, ether extract, crude fibre, ash and soluble carbohydrates, respectively. Results showed that the final weight of 484.4 g/bird was obtained for birds on 75% undecorticated sunflower seed meal diet, while the lowest value of 472.2g/bird was obtained for birds on 25% undecorticated sunflower seed meal diet. Weight gain per bird per day was not significantly (P > 0.05) affected as the level of undecorticated sunflower seed meal increased in the diets. Feed intake per bird per day increased (P < 0.05) across the treatment as a result of increased undecorticated sunflower seed meal inclusion in the diet. However, enzyme supplementation of the diets showed marked (P < 0.05) improvements in feed intake, weight gain, and final weight as well as the feed to gain ratio. Survivability was not affected by the treatments imposed. Dry matter digestibility were significantly (P < 0.05) reduced due to high undecorticated sunflower seed meal inclusion in the diet while crude protein digestibility progressively reduced (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diet. Ash digestibility values were, however, increased (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diets. Birds on enzyme-supplemented diets consistently showed superior (P < 0.05) digestibility values than those on diets without enzyme supplementation. However ether extract digestibility was

  17. Assessment of enzyme supplementation on growth performance and apparent nutrient digestibility in diets containing undecorticated sunflower seed meal in layer chicks.

    PubMed

    Fafiolu, A O; Oduguwa, O O; Jegede, A V; Tukura, C C; Olarotimi, I D; Teniola, A A; Alabi, J O

    2015-08-01

    Six hundred and forty one-day-old layer chicks were used to investigate the effect of replacing soybean meal with undecorticated sunflower seed meal protein for protein at 0, 25, 50, and 75% levels. Diets were without enzyme supplementation or with enzyme supplementation with four replications of twenty birds. Growth performance and nutrient utilization were determined. Proximate composition of the undecorticated sunflower seed meal used revealed that undecorticated sunflower seed meal contained 925.9, 204.5, 336.2, 215.1, 52.0 and 192.2g/kg dry matter, crude protein, ether extract, crude fibre, ash and soluble carbohydrates, respectively. Results showed that the final weight of 484.4 g/bird was obtained for birds on 75% undecorticated sunflower seed meal diet, while the lowest value of 472.2g/bird was obtained for birds on 25% undecorticated sunflower seed meal diet. Weight gain per bird per day was not significantly (P > 0.05) affected as the level of undecorticated sunflower seed meal increased in the diets. Feed intake per bird per day increased (P < 0.05) across the treatment as a result of increased undecorticated sunflower seed meal inclusion in the diet. However, enzyme supplementation of the diets showed marked (P < 0.05) improvements in feed intake, weight gain, and final weight as well as the feed to gain ratio. Survivability was not affected by the treatments imposed. Dry matter digestibility were significantly (P < 0.05) reduced due to high undecorticated sunflower seed meal inclusion in the diet while crude protein digestibility progressively reduced (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diet. Ash digestibility values were, however, increased (P < 0.05) as the level of undecorticated sunflower seed meal increased in the diets. Birds on enzyme-supplemented diets consistently showed superior (P < 0.05) digestibility values than those on diets without enzyme supplementation. However ether extract digestibility was

  18. [Regularities of organ-specific expression of enzyme systems in cattle].

    PubMed

    Tatarenko, O F; Glazko, V I

    1992-01-01

    The organ specificity of creatine kinase, esterase, isocitrate dehydrogenase lactate dehydrogenase, nucleoside phosphorylase, adenylate kinase, hexokinase, malate dehydrogenase, malic enzyme, glucose-6-phosphate dehydrogenase of black-white cattle has been studied. Esterases, creatine kinase, adenylate kinase, hexokinase and glucose-6-phosphate dehydrogenase have a very wide spectrum of the organ variabilities. Liver and heart have the largest specificity of enzymes activity. Some peculiarities of isozyme spectrum are found in ovaries and spleen.

  19. Impact of transgenic oilseed rape expressing oryzacystatin-1 (OC-1) and of insecticidal proteins on longevity and digestive enzymes of the solitary bee Osmia bicornis.

    PubMed

    Konrad, Roger; Connor, Melanie; Ferry, Natalie; Gatehouse, Angharad M R; Babendreier, Dirk

    2009-04-01

    The risk that insect-resistant transgenic plants may pose for solitary bees was assessed by determining longevity of adult Osmia bicornis (O. rufa) chronically exposed to transgenic oilseed rape expressing oryzacystatin-1 (OC-1) or to the purified insecticidal proteins recombinant rOC-1, Kunitz soybean trypsin inhibitor (SBTI), Galanthus nivalis agglutinin (GNA), or Bacillus thuringiensis toxin Cry1Ab dissolved in sugar solution (at 0.01 and 0.1%, w:v, Cry1Ab only at 0.01%). Compared to control bees, longevity was significantly reduced by SBTI and GNA at both concentrations and by rOC-1 at 0.1%, but not by Cry1Ab or rOC-1 at 0.01%. Longevity on the OC-1 oilseed rape was not significantly different from the control plants. The effects of SBTI and rOC-1 on longevity were investigated through characterization of the digestive proteinases of O. bicornis and analysis of the response in proteinase profiles to ingestion of these proteinase inhibitors. A relatively complex profile of at least four types of soluble proteolytic enzymes was identified. Serine proteinases were found to be predominant, with metallo and especially cysteine proteinases making a smaller albeit significant contribution. The compensatory response to in vivo enzyme inhibition was similar for SBTI and rOC-1 although less pronounced for rOC-1. It consisted of a non-specific overproduction of native proteinases, both sensitive and insensitive, and the induction of a novel aspartic proteinase.

  20. Characterization and study of the orientation of immobilized enzymes by tryptic digestion and HPLC-MS: design of an efficient catalyst for the synthesis of cephalosporins.

    PubMed

    Temporini, Caterina; Bonomi, Paolo; Serra, Immacolata; Tagliani, Auro; Bavaro, Teodora; Ubiali, Daniela; Massolini, Gabriella; Terreni, Marco

    2010-06-14

    An innovative approach to determine the orientation of penicillin G acylase (PGA) from Escherichia coli covalently immobilized onto solid supports has been developed. This method is based on tryptic digestion of immobilized PGA followed by HPLC-MS analysis of the released peptides which are supposed to be only those exposed toward the reaction medium and not directly bound to the solid support. To this purpose, PGA was immobilized on Eupergit C (acrylic hydrophobic resin) and glyoxyl-agarose (hydrophilic resin) functionalized with epoxy and aldehyde groups, respectively, both involving the Lys residues of the protein. The peptide maps obtained were analyzed to derive the orientation of immobilized PGA, as the position of the detected Lys gave indication concerning the accessibility of the different areas of the protein. The results indicate that PGA immobilization on both supports involves mainly Lys located near the binding pocket (70%). Some differences in the enzyme orientation on the two supports can be deduced by the presence of different unbound Lys residues in the released peptides, specific to each support (Lys 117alpha for PGA-Eupergit C; Lys 163alpha and Lys 165alpha for PGA-glyoxyl-agarose). These results have been correlated with the data obtained in the kinetically controlled synthesis and indicate that the orientation of PGA on both supports is partially unfavorable, driving the active site near the support surface. This type of orientation of the enzyme enhances the effect of the nature of the support and of the binding chemistry on the catalytic properties. The information obtained indicated the most suitable support and activation strategy to design an immobilized acylase with good synthetic properties for preparative processes. The glyoxyl-Eupergit C support with enhanced porosity synergically combines the mechanical stability and synthetic performances of immobilized PGA and was successfully used in the synthesis of several cephalosporins.

  1. Influence of feeding alternative fiber sources on the gastrointestinal fermentation, digestive enzyme activities and mucosa morphology of growing Greylag geese.

    PubMed

    He, L W; Meng, Q X; Li, D Y; Zhang, Y W; Ren, L P

    2015-10-01

    The objective of this trial was to study the influence of dietary fiber sources on the gastrointestinal fermentation, digestive enzyme activity, and mucosa morphology of growing Greylag geese. In total, 240 Greylag geese (28-day-old) were allocated to 4 treatments (15 pens/treatment) differing in dietary fiber source: corn straw silage (CSS group), steam-exploded corn straw (SECS group), steam-exploded wheat straw (SEWS group), or steam-exploded rice straw (SERS group). At 112 days of age, 15 birds per group were euthanized to collect samples. No difference (P > 0.05) was found on all the gastrointestinal pH values and ammonia-nitrogen concentrations between the groups. The CSS and SERS groups had a lower (P < 0.05) proportion of acetic acid in the gizzard than the SECS and SEWS groups. The CSS group had a higher VFA concentration in the jejunum (P < 0.05) and acetic acid proportion (P < 0.01) in the ceca, and a lower (P < 0.01) butyric acid proportion than the other groups except for the SECS group. The SECS group had a higher (P < 0.01) acetic acid proportion and lower (P < 0.05) proportions of propionic acid and valeric acid in the ceca than the SEWS and SERS groups. Different fiber sources resulted in different VFA profiles, especially in the gizzard and ceca. Almost all gastrointestinal protease activities of the CSS group were higher (P < 0.05) than the other groups, along with lower (P < 0.01) amylase activities in the duodenum, jejunum, ileum, and ceca. Lipase activity in proventriculus was highest (P < 0.01) in the SEWS group and its cecal activity was lower (P < 0.01) in the SECS and SEWS groups than the CSS and SERS groups with a higher (P < 0.01) lipase activity in the CSS group than the SERS group. The SECS and SERS groups had a higher cellulase activity in the ceca than the CSS and SEWS groups, with a higher (P < 0.01) rectal cellulase activity in the SERS group than the other groups. There was no

  2. Restriction enzyme digestion analysis of PCR-amplified DNA of Blastocystis hominis isolates.

    PubMed

    Init, I; Foead, A L; Fong, M Y; Yamazaki, H; Rohela, M; Yong, H S; Mak, J W

    2007-11-01

    Genomic DNA of Blastocystis isolates released into 0.1% Triton X-100 was suitable for amplification and yielded similar results as the genomic DNA extracted with standard kit. The specific B. hominis primers (BH1: GCT TAT CTG GTT GAT CCT GCC AGT and BH2: TGA TCC TTC CGC AGG TTC ACC TAC A) successfully produced the PCR product of about 1,770 bp with all the 7 Blastocystis isolates tested. The restriction fragment length polymorphism (RFLP) patterns yielded by 13 out of 25 restriction endonucleases showed that the 7 isolates could be grouped into 4 subgroups: subgroup-1 consisted of isolate C; subgroup-2 of isolates H4 and H7; subgroup-3 of isolates KP1, Y51 and M12; and subgroup-4 of isolate 27805. The differences between subgroups manifested as clear-cut RFLP patterns. A common band of 230 bp was revealed by Eco R1 in all the Blastocystis isolates tested. The band of about 180 bp was revealed by Alu I, differentiated symptomatic from asymptomatic isolates of this parasite, and might indicate the pathogenicity of this parasite. PMID:18613539

  3. Characterization of digestive enzymes from de-oiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study.

    PubMed

    Asaduzzaman, A K M; Chun, Byung-Soo

    2015-06-01

    The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.

  4. Influence of Palm Kernel Meal Inclusion and Exogenous Enzyme Supplementation on Growth Performance, Energy Utilization, and Nutrient Digestibility in Young Broilers

    PubMed Central

    Abdollahi, M. R.; Hosking, B. J.; Ning, D.; Ravindran, V.

    2016-01-01

    The objective of the present study was to investigate the influence of palm kernel meal (PKM) inclusion and exogenous enzyme supplementation on growth performance, nitrogen-corrected apparent metabolizable energy (AMEn), coefficient of apparent ileal digestibility (CAID) and total tract retention of nutrients in young broilers fed corn-based diets. Four inclusion levels of PKM (no PKM [PKM0], 8% [PKM8], 16% [PKM16], and 24% [PKM24]) and two enzyme additions were evaluated in a 4×2 factorial arrangement of treatments. A total of 384, one-d-old male broilers (Ross 308) were individually weighed and allocated to 48 cages (eight broilers/cage), and cages were randomly assigned to eight dietary treatments. Results indicated that the inclusion of 8% and 16% PKM increased (p<0.05) the weight gain compared to the PKM0 diet. Birds fed the PKM8 diets had the highest (p<0.05) feed intake. Weight gain and feed intake were severely reduced (p<0.05) by feeding the PKM24 diet. Enzyme supplementation increased weight gain (p<0.05), independent of PKM inclusion level. In PKM0 and PKM8 diets, enzyme addition significantly (p<0.05) lowered feed conversion ratio (FCR); whereas enzyme addition had no effect on FCR of birds fed PKM16 and PKM24 diets. In PKM0 and PKM16 diets, enzyme addition significantly (p<0.05) increased CAID of nitrogen and energy but had no effect in the PKM8 and PKM24 diets. Inclusion of PKM into the basal diet, irrespective of inclusion level, enhanced (p<0.05) starch and fat digestibility. Inclusion of PKM at 16% and 24% resulted in similar CAID of neutral detergent fiber (NDF) but higher (p<0.05) than that of the PKM0 and PKM8 diets. Enzyme addition, regardless of the level of PKM inclusion, significantly (p<0.05) increased CAID of NDF. There was a significant (p<0.05) decrease in AMEn with PKM inclusion of 24%. The present data suggest that inclusion of PKM in broiler diets could be optimized if PKM-containing diets are formulated based on digestible amino

  5. Direct evidence for two distinct prosomatostatin converting enzymes. Detection using a rapid, sensitive, and specific assay for propeptide converting enzymes.

    PubMed

    Mackin, R B; Noe, B D

    1987-05-15

    Many bioactive peptides are initially synthesized via larger precursors from which they are released by proteolytic cleavage at basic amino acids. Some precursors contain more than one final product peptide, multiple copies of a single peptide, or both. Different product peptides can be produced from a common precursor in different tissues. It is not currently known whether this cell-type specific production of bioactive peptides is mediated by different, specific propeptide converting enzymes (PCEs) or by a small number of similar PCEs. To resolve this issue for the conversion of prosomatostatin, the processing of prosomatostatin-I (aPSS-I) and prosomatostatin-II (aPSS-II) to either somatostatin-14 (SS-14) or somatostatin-28 (aSS-28), respectively, was examined in anglerfish islets. Two distinct forms of PSS PCE activity were detected using a rapid, sensitive, and specific assay. Examination of the specificity of these two enzyme activities showed that one proteolytic activity performs the aPSS-I to SS-14 conversion, while the other protease liberates aSS-28 from aPSS-II. The SS-14-generating PCE also cleaves aPSS-II to produce [Tyr7,Gly10]SS-14 (a tetra-decapeptide analog of SS-14) and converts proinsulin to insulin. The aSS-28-generating PCE does not process proinsulin. These results provide direct evidence that different, specific PCEs are required for liberation of SS-14 and aSS-28 from their precursors. PMID:2883185

  6. Specific and non-specific enzymes for furanosyl-containing conjugates: biosynthesis, metabolism, and chemo-enzymatic synthesis.

    PubMed

    Chlubnova, Ilona; Legentil, Laurent; Dureau, Rémy; Pennec, Alizé; Almendros, Mélanie; Daniellou, Richard; Nugier-Chauvin, Caroline; Ferrières, Vincent

    2012-07-15

    There is no doubt now that the synthesis of compounds of varying complexity such as saccharides and derivatives thereof continuously grows with enzymatic methods. This review focuses on recent basic knowledge on enzymes specifically involved in the biosynthesis and degradation of furanosyl-containing polysaccharides and conjugates. Moreover, and when possible, biocatalyzed approaches, alternative to standard synthesis, will be detailed in order to strengthen the high potential of these biocatalysts to go further with the preparation of rare furanosides. Interesting results will be also proposed with chemo-enzymatic processes based on nonfuranosyl-specific enzymes.

  7. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.

    PubMed

    Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-08-01

    Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation. PMID:26080680

  8. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.

    PubMed

    Wiśniewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

    2015-08-01

    Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation.

  9. Digestion of Nucleic Acids Starts in the Stomach

    PubMed Central

    Liu, Yu; Zhang, Yanfang; Dong, Ping; An, Ran; Xue, Changhu; Ge, Yinlin; Wei, Liangzhou; Liang, Xingguo

    2015-01-01

    The ingestion of nucleic acids (NAs) as a nutritional supplement or in genetically modified food has attracted the attention of researchers in recent years. Discussions over the fate of NAs led us to study their digestion in the stomach. Interestingly, we found that NAs are digested efficiently by human gastric juice. By performing digests with commercial, recombinant and mutant pepsin, a protein-specific enzyme, we learned that the digestion of NAs could be attributed to pepsin rather than to the acidity of the stomach. Further study showed that pepsin cleaved NAs in a moderately site-specific manner to yield 3′-phosphorylated fragments and the active site to digest NAs is probably the same as that used to digest protein. Our results rectify the misunderstandings that the digestion of NAs in the gastric tract begins in the intestine and that pepsin can only digest protein, shedding new light on NA metabolism and pepsin enzymology. PMID:26168909

  10. Digestion of Nucleic Acids Starts in the Stomach.

    PubMed

    Liu, Yu; Zhang, Yanfang; Dong, Ping; An, Ran; Xue, Changhu; Ge, Yinlin; Wei, Liangzhou; Liang, Xingguo

    2015-07-14

    The ingestion of nucleic acids (NAs) as a nutritional supplement or in genetically modified food has attracted the attention of researchers in recent years. Discussions over the fate of NAs led us to study their digestion in the stomach. Interestingly, we found that NAs are digested efficiently by human gastric juice. By performing digests with commercial, recombinant and mutant pepsin, a protein-specific enzyme, we learned that the digestion of NAs could be attributed to pepsin rather than to the acidity of the stomach. Further study showed that pepsin cleaved NAs in a moderately site-specific manner to yield 3'-phosphorylated fragments and the active site to digest NAs is probably the same as that used to digest protein. Our results rectify the misunderstandings that the digestion of NAs in the gastric tract begins in the intestine and that pepsin can only digest protein, shedding new light on NA metabolism and pepsin enzymology.

  11. Interconversion of the Specificities of Human Lysosomal Enzymes Associated with Fabry and Schindler Diseases

    SciTech Connect

    Tomasic, Ivan B.; Metcalf, Matthew C.; Guce, Abigail I.; Clark, Nathaniel E.; Garman, Scott C.

    2010-09-03

    The human lysosomal enzymes {alpha}-galactosidase ({alpha}-GAL, EC 3.2.1.22) and {alpha}-N-acetylgalactosaminidase ({alpha}-NAGAL, EC 3.2.1.49) share 46% amino acid sequence identity and have similar folds. The active sites of the two enzymes share 11 of 13 amino acids, differing only where they interact with the 2-position of the substrates. Using a rational protein engineering approach, we interconverted the enzymatic specificity of {alpha}-GAL and {alpha}-NAGAL. The engineered {alpha}-GAL (which we call {alpha}-GALSA) retains the antigenicity of {alpha}-GAL but has acquired the enzymatic specificity of {alpha}-NAGAL. Conversely, the engineered {alpha}-NAGAL (which we call {alpha}-NAGAL{sup EL}) retains the antigenicity of {alpha}-NAGAL but has acquired the enzymatic specificity of the {alpha}-GAL enzyme. Comparison of the crystal structures of the designed enzyme {alpha}-GAL{sup SA} to the wild-type enzymes shows that active sites of {alpha}-GAL{sup SA} and {alpha}-NAGAL superimpose well, indicating success of the rational design. The designed enzymes might be useful as non-immunogenic alternatives in enzyme replacement therapy for treatment of lysosomal storage disorders such as Fabry disease.

  12. Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors.

    PubMed

    Iglesias, Jose; Lamontagne, Julien; Erb, Heidi; Gezzar, Sari; Zhao, Shangang; Joly, Erik; Truong, Vouy Linh; Skorey, Kathryn; Crane, Sheldon; Madiraju, S R Murthy; Prentki, Marc

    2016-01-01

    Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, α/β-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.

  13. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme.

    PubMed

    Chen, Po-Ting; Chen, Chao-Long; Lin, Lilian Tsai-Wei; Lo, Chun-Hsien; Hu, Chaur-Jong; Chen, Rita P-Y; Wang, Steven S-S

    2016-01-01

    Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12-16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12-16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1-7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1-7)C and qf-Aβ(12-16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.

  14. Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme

    PubMed Central

    Chen, Po-Ting; Chen, Chao-Long; Lin, Lilian Tsai-Wei; Lo, Chun-Hsien; Hu, Chaur-Jong; Chen, Rita P.-Y.; Wang, Steven S.-S.

    2016-01-01

    Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer’s disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12–16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12–16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12–16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1–7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1–7)C and qf-Aβ(12–16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells. PMID:27096746

  15. A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles.

    PubMed

    Edwards, Cathrina H; Warren, Frederick J; Milligan, Peter J; Butterworth, Peter J; Ellis, Peter R

    2014-11-01

    Studying starch amylolysis kinetics in vitro is valuable for predicting the postprandial glycaemic response to starch intake. Prediction of starch amylolysis behaviour is challenging however, because of the many physico-chemical factors which influence amylolysis. The Logarithm of Slope (LOS) method for analysis of digestibility curves using first-order enzyme kinetics can identify and quantify nutritionally important starch fractions. The early stages of in vitro amylolysis of hydrothermally processed chickpea and durum wheat with variable degrees of structural integrity were studied. The end-point product concentration (C∞) and the pseudo first-order digestibility rate constant k, obtained from LOS analysis, were then used to compute predictive digestibility curves for evaluation of the model performance. LOS analysis enabled rapid identification of nutritionally important starch-fractions. It was clear that purified starches and flours were digested by a single-phase process, but starch amylolysis in macroparticles occurred by a two-phase system that reflected differences in substrate accessibility. The model gave an excellent fit to data obtained from a range of heterogeneous materials. It provides a rigorous means of studying the mechanisms of starch amylolysis in samples of varying complexity, and we strongly recommend its use for the rapid and accurate predictions of amylolysis. Such predictions have implications for prevention and management of type 2 diabetes mellitus and obesity.

  16. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides.

    PubMed

    Mattison, Christopher P; Dinter, Jens; Berberich, Matthew J; Chung, Si-Yin; Reed, Shawndrika S; Le Gall, Sylvie; Grimm, Casey C

    2015-07-01

    Ara h 1 is a major peanut allergen. Processing-induced modifications may modulate the allergenic potency of Ara h 1. Carboxymethyl lysine (CML) modifications are a commonly described nonenzymatic modification on food proteins. In the current study, we tested the ability of digestive and endolysosomal proteases to cleave CML-modified and unmodified Ara h 1 peptides. Mass spectrometric analyses of the digested peptides demonstrate that carboxymethylation of lysine residues renders these peptides refractory to trypsin digestion. We did not detect observable differences in the simulated gastric fluid or endolysosomal digestion between the parental and CML-modified peptides. One of the tested peptides contains a lysine residue previously shown to be CML modified laying in a previously mapped linear IgE epitope, but we did not observe a difference in IgE binding between the modified and parental peptides. Our findings suggest a molecular mechanism for the increased resistance of peanut allergens modified by thermal processing, such as Ara h 1, to digestion in intestinal fluid after heating and could help explain how food processing-induced modifications may lead to more potent food allergens by acting to protect intact IgE epitopes from digestion by proteases targeting lysine residues. PMID:26288719

  17. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    PubMed Central

    Mattison, Christopher P; Dinter, Jens; Berberich, Matthew J; Chung, Si-Yin; Reed, Shawndrika S; Le Gall, Sylvie; Grimm, Casey C

    2015-01-01

    Ara h 1 is a major peanut allergen. Processing-induced modifications may modulate the allergenic potency of Ara h 1. Carboxymethyl lysine (CML) modifications are a commonly described nonenzymatic modification on food proteins. In the current study, we tested the ability of digestive and endolysosomal proteases to cleave CML-modified and unmodified Ara h 1 peptides. Mass spectrometric analyses of the digested peptides demonstrate that carboxymethylation of lysine residues renders these peptides refractory to trypsin digestion. We did not detect observable differences in the simulated gastric fluid or endolysosomal digestion between the parental and CML-modified peptides. One of the tested peptides contains a lysine residue previously shown to be CML modified laying in a previously mapped linear IgE epitope, but we did not observe a difference in IgE binding between the modified and parental peptides. Our findings suggest a molecular mechanism for the increased resistance of peanut allergens modified by thermal processing, such as Ara h 1, to digestion in intestinal fluid after heating and could help explain how food processing-induced modifications may lead to more potent food allergens by acting to protect intact IgE epitopes from digestion by proteases targeting lysine residues. PMID:26288719

  18. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    PubMed

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-01

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.

  19. Short communication: Effect of casein haplotype on angiotensin-converting enzyme inhibitory and antioxidant capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes.

    PubMed

    Perna, Annamaria; Simonetti, Amalia; Gambacorta, Emilio

    2016-09-01

    The aim of this work was to investigate the effect of casein haplotype (αS1, β, and κ) on antioxidative and angiotensin-converting enzyme (ACE) inhibitory capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. The antioxidant capacity was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power assays, whereas ACE inhibition was determined by ACE-inhibitory assay. The ACE-inhibitory and antioxidant capacities of milk casein increased during in vitro gastrointestinal digestion. Casein haplotype significantly influenced the antioxidative and ACE-inhibitory capacities of digested casein. In particular, BB-A(2)A(1)-AA casein and BB-A(1)A(1)-AA casein showed the highest ACE-inhibitory capacity, BB-A(2)A(2)-AA casein showed the highest antioxidant capacity, whereas BB-A(2)A(2)-BB casein showed the lowest biological capacity. To date, few studies have been done on the effect of casein haplotype on biological capacity of milk casein, thus the present study sets the basis for a new knowledge that could lead to the production of milk with better nutraceutical properties.

  20. Short communication: Effect of casein haplotype on angiotensin-converting enzyme inhibitory and antioxidant capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes.

    PubMed

    Perna, Annamaria; Simonetti, Amalia; Gambacorta, Emilio

    2016-09-01

    The aim of this work was to investigate the effect of casein haplotype (αS1, β, and κ) on antioxidative and angiotensin-converting enzyme (ACE) inhibitory capacities of milk casein from Italian Holstein cows before and following in vitro digestion with gastrointestinal enzymes. The antioxidant capacity was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid and ferric-reducing antioxidant power assays, whereas ACE inhibition was determined by ACE-inhibitory assay. The ACE-inhibitory and antioxidant capacities of milk casein increased during in vitro gastrointestinal digestion. Casein haplotype significantly influenced the antioxidative and ACE-inhibitory capacities of digested casein. In particular, BB-A(2)A(1)-AA casein and BB-A(1)A(1)-AA casein showed the highest ACE-inhibitory capacity, BB-A(2)A(2)-AA casein showed the highest antioxidant capacity, whereas BB-A(2)A(2)-BB casein showed the lowest biological capacity. To date, few studies have been done on the effect of casein haplotype on biological capacity of milk casein, thus the present study sets the basis for a new knowledge that could lead to the production of milk with better nutraceutical properties. PMID:27289148

  1. Determination of rotavirus serotype-specific antibodies in sera by competitive enhanced enzyme immunoassay.

    PubMed

    Beards, G M; Desselberger, U

    1989-01-01

    A method is described for the specific detection of antibody to individual rotavirus serotypes in sera. A competitive enzyme immunoassay (EIA) was developed in which rotavirus serotype-specific monoclonal antibodies against VP7 compete with antibodies in test sera for rotavirus serotype-specific antigen bound to a solid phase. There was an excellent correlation between serotype-specific EIA results and serotype-specific neutralization titres (r = 0.915, P = less than 0.001). The value of this method for rotavirus epidemiology and vaccine trials is discussed.

  2. Quantitative assessment of the association between the angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive system cancer risk.

    PubMed

    Wang, J; Yang, S; Guo, F H; Mao, X; Zhou, H; Dong, Y Q; Wang, Z M; Luo, F

    2015-01-01

    The angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism has been reported to be associated with digestive system cancer; however, the results from previous studies have been conflicting. The present study aimed to investigate the association between the ACE I/D polymorphism and the risk of digestive system cancer using a meta-analysis of previously published studies. Databases were systematically searched to identify relevant studies published prior to December 2014. We estimated the pooled OR with its 95%CI to assess the association. The meta-analysis consisted of thirteen case-control studies that included 2557 patients and 4356 healthy controls. Meta-analysis results based on all the studies showed no significant association between the ACE I/D polymorphism and the risk of digestive system cancer (DD vs II: OR = 0.85, 95%CI = 0.59-1.24; DI vs II: OR = 0.94, 95%CI = 0.78-1.15; dominant model: OR = 0.96, 95%CI = 0.81- 1.15; recessive model: OR = 1.06, 95%CI = 0.76-1.48). Subgroup analyses by race and cancer type did not detect an association between the ACE I/D polymorphism and digestive system cancer risk. However, when the analyses were restricted to smaller studies (N < 500 patients), the summary OR of DI vs II was 0.80 (95%CI = 0.66-0.97). Our analyses detected a possibility of publication bias with a misestimate of the true association by smaller studies. Overall, meta-analysis results suggest the ACE I/D polymorphism might not be associated with susceptibility to digestive system cancer. Further large and well-designed studies are needed to confirm these conclusions.

  3. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus.

    PubMed

    Wang, Ji-hui; Zhao, Liu-qun; Liu, Jin-feng; Wang, Han; Xiao, Shan

    2015-04-01

    The effects of dietary addition of yeast Rhodotorula benthica (R. benthica) D30 which isolated from local sea mud at levels of 0 (control), 10(5), 10(6) and 10(7) CFU/g feed on the growth performance, digestive enzyme activity, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus were investigated. It was shown that dietary addition of R. benthica D30 significantly increased the growth rates of sea cucumbers (p < 0.05). The amylase activity, cellulase activity and alginase activity were increased for the animals from three probiotics treated groups. And with the supplemented concentration increased, the values of those digestive enzyme activities increased as well. Dietary addition of R. benthica D30 at the level of 10(7) CFU significantly increased the lysozyme, phagocytic and total nitric oxide synthase activity of A. japonicus (p < 0.05). While, the highest values of the phenoloxidase and alkaline phosphatase activity were found in sea cucumbers fed with R. benthica D30 at the level of 10(6) CFU. Whereas adding R. benthica D30 to diet had no significant effects on the total coelomocyte counts and acid phosphatase activity of A. japonicus (p > 0.05). It was observed that adding R. benthica D30 could significantly decrease the cumulative mortality of sea cucumbers. The present study demonstrated that dietary addition of R. benthica D30 could increase growth performance and some digestive enzyme activities, improve immunity and disease resistance of A. japonicus. And the medium (10(6) CFU) and high (10(7) CFU) additional levels showed better effects. It suggests that yeast R. benthica D30 could be a good probiotic for aquaculture.

  4. The effects of prebiotics on the digestive enzymes and gut histomorphology of red drum (Sciaenops ocellatus) and hybrid striped bass (Morone chrysops × M. saxatilis).

    PubMed

    Anguiano, Maritza; Pohlenz, Camilo; Buentello, Alejandro; Gatlin, Delbert M

    2013-02-28

    The effects of four prebiotics (fructo-oligosaccharide, Bio-MOS, transgalacto-oligosaccharide and GroBiotic-A) on digestive enzymes and intestinal morphology were studied in juvenile hybrid striped bass (Morone chrysops × M. saxatilis) and red drum (Sciaenops ocellatus) using two separate 8-week feeding trials. Red drum were fed experimental diets with the four prebiotics each individually supplemented at 1% and hybrid striped bass were fed diets supplemented with GroBiotic-A at 1 and 2%. Both trials were conducted with each diet fed to apparent satiation twice per d to three replicate groups of fifteen juvenile fish. For histomorphological analysis, gastrointestinal tract (GIT) samples from three randomly selected fish per tank were taken at 4 and 8 weeks for hybrid striped bass and at 8 weeks for red drum. For both trials, GIT samples from two randomly selected fish per tank were taken at 4 and 8 weeks and analysed for pepsin, trypsin, chymotrypsin, aminopeptidase, α-amylase, lipase, and both acid and alkaline phosphatase activities. The results of the histological evaluation indicated that the inclusion of prebiotics was adequate to elicit structural changes in the GIT of both species. On the other hand, no significant changes in the enzyme activities were detected at week 8 in both species. However, there was a transient effect of Bio-MOS supplementation on the activities of aminopeptidase, α-amylase and alkaline phosphatase at week 4 in red drum only. Thus, previously observed improvements in nutrient digestibility by these fish in response to prebiotic supplementation appear to be mostly related to changes in GIT structure as opposed to the enhancement of digestive enzyme activity. PMID:22716899

  5. Intravenous or luminal amino acids are insufficient to maintain pancreatic growth and digestive enzyme expression in the absence of intact dietary protein

    PubMed Central

    Baumler, Megan D.; Koopmann, Matthew C.; Thomas, Diana D. H.; Ney, Denise M.

    2010-01-01

    We previously reported that rats receiving total parenteral nutrition (TPN) undergo significant pancreatic atrophy characterized by reduced total protein and digestive enzyme expression due to a lack of intestinal stimulation by nutrients (Baumler MD, Nelson DW, Ney DM, Groblewski GE. Am J Physiol Gastrointest Liver Physiol 292: G857–G866, 2007). Essentially identical results were recently reported in mice fed protein-free diets (Crozier SJ, D'Alecy LG, Ernst SA, Ginsburg LE, Williams JA. Gastroenterology 137: 1093–1101, 2009), provoking the question of whether reductions in pancreatic protein and digestive enzyme expression could be prevented by providing amino acids orally or by intravenous (IV) infusion while maintaining intestinal stimulation with fat and carbohydrate. Controlled studies were conducted in rats with IV catheters including orally fed/saline infusion or TPN-fed control rats compared with rats fed a protein-free diet, oral amino acid, or IV amino acid feeding, all with oral carbohydrate and fat. Interestingly, neither oral nor IV amino acids were sufficient to prevent the pancreatic atrophy seen for TPN controls or protein-free diets. Oral and IV amino acids partially attenuated the 75–90% reductions in pancreatic amylase and trypsinogen expression; however, values remained 50% lower than orally fed control rats. Lipase expression was more modestly reduced by a lack of dietary protein but did respond to IV amino acids. In comparison, chymotrypsinogen expression was induced nearly twofold in TPN animals but was not altered in other experimental groups compared with oral control animals. In contrast to pancreas, protein-free diets had no detectable effects on jejunal mucosal villus height, total mass, protein, DNA, or sucrase activity. These data underscore that, in the rat, intact dietary protein is essential in maintaining pancreatic growth and digestive enzyme adaptation but has surprisingly little effect on small intestinal mucosa. PMID

  6. The effects of prebiotics on the digestive enzymes and gut histomorphology of red drum (Sciaenops ocellatus) and hybrid striped bass (Morone chrysops × M. saxatilis).

    PubMed

    Anguiano, Maritza; Pohlenz, Camilo; Buentello, Alejandro; Gatlin, Delbert M

    2013-02-28

    The effects of four prebiotics (fructo-oligosaccharide, Bio-MOS, transgalacto-oligosaccharide and GroBiotic-A) on digestive enzymes and intestinal morphology were studied in juvenile hybrid striped bass (Morone chrysops × M. saxatilis) and red drum (Sciaenops ocellatus) using two separate 8-week feeding trials. Red drum were fed experimental diets with the four prebiotics each individually supplemented at 1% and hybrid striped bass were fed diets supplemented with GroBiotic-A at 1 and 2%. Both trials were conducted with each diet fed to apparent satiation twice per d to three replicate groups of fifteen juvenile fish. For histomorphological analysis, gastrointestinal tract (GIT) samples from three randomly selected fish per tank were taken at 4 and 8 weeks for hybrid striped bass and at 8 weeks for red drum. For both trials, GIT samples from two randomly selected fish per tank were taken at 4 and 8 weeks and analysed for pepsin, trypsin, chymotrypsin, aminopeptidase, α-amylase, lipase, and both acid and alkaline phosphatase activities. The results of the histological evaluation indicated that the inclusion of prebiotics was adequate to elicit structural changes in the GIT of both species. On the other hand, no significant changes in the enzyme activities were detected at week 8 in both species. However, there was a transient effect of Bio-MOS supplementation on the activities of aminopeptidase, α-amylase and alkaline phosphatase at week 4 in red drum only. Thus, previously observed improvements in nutrient digestibility by these fish in response to prebiotic supplementation appear to be mostly related to changes in GIT structure as opposed to the enhancement of digestive enzyme activity.

  7. Development of a highly specific and sensitive rubella immunoglobulin M antibody capture enzyme immunoassay that uses enzyme-labeled antigen.

    PubMed Central

    Seppänen, H

    1990-01-01

    An enzyme immunoassay (EIA) for serum immunoglobulin M (IgM) antibodies to rubella virus based on enzyme labeling of viral antigen was developed. The sensitivity of the EIA for the detection of recent rubella virus infection was evaluated by using 115 rubella-IgM-antibody-positive serum specimens, which were confirmed as positive by Rubazyme M (Abbott Diagnostics). In addition, 12 individuals, 2 of whom were exposed to rubella through vaccination and 10 of whom were exposed through natural infection, were studied, and the results were compared with those obtained by indirect EIA (Rubelisa M; Electro-Nucleonics, Inc.) and immunoblotting. The sensitivity of the newly developed EIA with sera from these individuals was 100%. Serum specimens from two patients indicated that the IgM antibodies were detected by the newly developed EIA at the same time as IgM antibodies were detected by immunoblotting and before positive reactions were detected by an indirect EIA. The reference population consisted of 564 healthy blood donors and hospitalized patients (150 serum specimens). In addition, 145 serum specimens commonly giving false-positive reactions in conventional rubella IgM EIAs were studied. With these specimens, no false-positive reactions were observed. Positive IgM responses, which could not be confirmed by immunoblotting, were observed in two samples from the reference population. However, these two samples were rubella IgG positive. The overall specificity of the EIA was 99.8%. Images PMID:2185260

  8. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of small subunit residues

    SciTech Connect

    Jeyakanthan, Jeyaraman; Drevland, Randy; Gayathri, Dasara; Velmurugan, Devadasan; Shinkai, Akeo; Graham, David E

    2010-01-01

    The aconitase family of hydro-lyase enzymes includes three classes of proteins that catalyze the isomerization of -hydroxyacids to -hydroxyacids. Besides aconitase, isopropylmalate isomerase (IPMI) proteins specifically catalyze the isomerization of , -dicarboxylates with hydrophobic -chain groups, and homoaconitase (HACN) proteins catalyze the isomerization of tricarboxylates with variable chain length -carboxylate groups. These enzymes stereospecific hydro-lyase activities make them attractive catalysts to produce diastereomers from unsaturated precursors. However, sequence similarity and convergent evolution among these proteins leads to widespread misannotation and uncertainty about gene function. To find the substrate specificity determinants of homologous IPMI and HACN proteins from Methanocaldococcus jannaschii, the small-subunit HACN protein (MJ1271) was crystallized for X-ray diffraction. The structural model showed characteristic residues in a flexible loop region between 2 and 3 that distinguish HACN from IPMI and aconitase proteins. Site-directed mutagenesis of MJ1271 produced loop-region variant proteins that were reconstituted with wild-type MJ1003 large-subunit protein. The heteromers formed promiscuous hydro-lyases with reduced activity but broader substrate specificity. Both R26K and R26V variants formed relatively efficient IPMI enzymes, while the T27A variant had uniformly lower specificity constants for both IPMI and HACN substrates. The R26V T27Y variant resembles the MJ1277 IPMI small subunit in its flexible loop sequence, but demonstrated the broad substrate specificity of the R26V variant. These mutations may reverse the evolution of HACN activity from an ancestral IPMI gene, demonstrating the evolutionary potential for promiscuity in hydro-lyase enzymes. Understanding these specificity determinants enables the functional reannotation of paralogous HACN and IPMI genes in numerous genome sequences. These structural and kinetic results will

  9. Detection of influenza virus neuraminidase-specific antibodies by an enzyme-linked immunosorbent assay.

    PubMed

    Khan, M W; Gallagher, M; Bucher, D; Cerini, C P; Kilbourne, E D

    1982-07-01

    An enzyme-linked immunosorbent assay was developed for the titration of antibodies in human sera to influenza virus neuraminidase, employing partially purified N1 neuraminidase. Specificity of the test was demonstrated, and the test was more sensitive than either the conventional neuraminidase inhibition or plaque size reduction tests in detecting anti-neuraminidase antibody.

  10. Development of an Enzyme Linked Immunosorbent Assay to Detect Chicken Parvovirus Specific Antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the development and application of an enzyme linked immunosorbent assay to detect parvovirus-specific antibodies in chicken sera. We used an approach previously described for other parvoviruses to clone and express viral structural proteins in insect cells from recombinant baculovirus...

  11. Specifically increased solubility of enzymes in polyethyleneglycol solutions using polymer-bound triazine dyes.

    PubMed

    Johansson, G; Joelsson, M

    1986-10-01

    The enzymes glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 3-phosphoglycerate kinase (EC 2.7.2.3), present in an extract of Bakers' yeast, are largely kept in solution by minor amounts of polyethylene glycol-bound triazine dyes (Procion yellow HE-3G and Procion olive MX-3G) even when the solution contains such concentrations of polyethylene glycol (12.5% w/w) which normally precipitate the enzymes. The specific prevention from precipitation can be used for purification of enzyme, preferentially in dealing with crude extracts, which has been demonstrated in this work. A 3.4-fold purification of glucose-6-phosphate dehydrogenase has been achieved with good recovery (93%). Further purification has been possible by combining the recovered (enzyme-containing) supernatant liquid with a solution of dextran which generates an aqueous two-phase system. The lower, dextran-containing phase extracts part of the remaining bulk proteins leaving the target enzyme in the upper phase. The advantages of this method for enzyme purification in large scale are discussed.

  12. Increased loading rates and specific methane yields facilitated by digesting grass silage at thermophilic rather than mesophilic temperatures.

    PubMed

    Voelklein, M A; Rusmanis, D; Murphy, J D

    2016-09-01

    This study was conducted to advance the understanding of thermophilic grass digestion. Late harvested grass silage was fermented at thermophilic conditions at increasing organic loading rates (OLR). Stable digestion took place at an OLR between 3 and 4gVSL(-1)d(-1). This enabled specific methane yields (SMY) as high as 405LCH4kgVS(-1). An accumulation of volatile fatty acids (VFA), accompanied by a gradual deterioration of pH, FOS/TAC (ratio of VFA to alkalinity) arose at an OLR between 5 and 7gVSL(-1)d(-1), yet inhibition did not occur. SMY decreased with reduced retention time ranging between 336 and 358LCH4kgVS(-1) at OLR 7 and 5gVSL(-1)d(-1) respectively. The biomethane efficiencies remained high (92-103%) at corresponding retention times. Comparative results indicated a superior performance with respect to higher loading and SMY as compared with mesophilic conditions.

  13. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.

    PubMed

    Botyanszki, Zsofia; Tay, Pei Kun R; Nguyen, Peter Q; Nussbaumer, Martin G; Joshi, Neel S

    2015-10-01

    Biocatalytic transformations generally rely on purified enzymes or whole cells to perform complex transformations that are used on industrial scale for chemical, drug, and biofuel synthesis, pesticide decontamination, and water purification. However, both of these systems have inherent disadvantages related to the costs associated with enzyme purification, the long-term stability of immobilized enzymes, catalyst recovery, and compatibility with harsh reaction conditions. We developed a novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E. coli to create a functional nanofiber network capable of covalent immobilization of enzymes. This approach is attractive because it is scalable, represents a modular strategy for site-specific enzyme immobilization, and has the potential to stabilize enzymes under denaturing environmental conditions. We site-specifically immobilized a recombinant α-amylase, fused to the SpyCatcher attachment domain, onto E. coli curli fibers displaying complementary SpyTag capture domains. We characterized the effectiveness of this immobilization technique on the biofilms and tested the stability of immobilized α-amylase in unfavorable conditions. This enzyme-modified biofilm maintained its activity when exposed to a wide range of pH and organic solvent conditions. In contrast to other biofilm-based catalysts, which rely on high cellular metabolism, the modified curli-based biofilm remained active even after cell death due to organic solvent exposure. This work lays the foundation for a new and versatile method of using the extracellular polymeric matrix of E. coli for creating novel biocatalytic surfaces.

  14. Nutritional performance and activity of some digestive enzymes of the cotton bollworm, Helicoverpa armigera, in response to seven tested bean cultivars.

    PubMed

    Namin, Foroogh Rahimi; Naseri, Bahram; Razmjou, Jabraeil

    2014-01-01

    Nutritional performance and activity of some digestive enzymes (protease and α-amylase) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in response to feeding on bean (Phaseolus vulgaris L. (Fabales: Fabaceae)) cultivars (Shokufa, Akhtar, Sayyad, Naz, Pak, Daneshkadeh, and Talash) were evaluated under laboratory conditions (25 ± 1°C, 65 ± 5% RH, and a 16:8 L:D photoperiod). The highest and lowest respective values of approximate digestibility were observed when fourth, fifth, and sixth larval instar H. armigera were fed red kidney bean Akhtar and white kidney bean Daneshkadeh. The efficiency of conversion of ingested and digested food was highest when H. armigera was fed red kidney beans Akhtar and Naz and lowest when they were fed white kidney bean Pak. The highest protease activity of fifth instars was observed when they were fed red kidney bean Naz, and the highest amylase activity of fifth instars was observed when they were fed red kidney bean Sayyad. Sixth instar larvae that fed on red kidney bean Sayyad showed the highest protease activity. Larvae reared on common bean Talash and white kidney bean Pak showed the highest amylase activity. Among bean cultivars tested, red kidney bean Sayyad was the most unsuitable host for feeding H. armigera.

  15. Nutritional performance and activity of some digestive enzymes of the cotton bollworm, Helicoverpa armigera, in response to seven tested bean cultivars.

    PubMed

    Namin, Foroogh Rahimi; Naseri, Bahram; Razmjou, Jabraeil

    2014-01-01

    Nutritional performance and activity of some digestive enzymes (protease and α-amylase) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in response to feeding on bean (Phaseolus vulgaris L. (Fabales: Fabaceae)) cultivars (Shokufa, Akhtar, Sayyad, Naz, Pak, Daneshkadeh, and Talash) were evaluated under laboratory conditions (25 ± 1°C, 65 ± 5% RH, and a 16:8 L:D photoperiod). The highest and lowest respective values of approximate digestibility were observed when fourth, fifth, and sixth larval instar H. armigera were fed red kidney bean Akhtar and white kidney bean Daneshkadeh. The efficiency of conversion of ingested and digested food was highest when H. armigera was fed red kidney beans Akhtar and Naz and lowest when they were fed white kidney bean Pak. The highest protease activity of fifth instars was observed when they were fed red kidney bean Naz, and the highest amylase activity of fifth instars was observed when they were fed red kidney bean Sayyad. Sixth instar larvae that fed on red kidney bean Sayyad showed the highest protease activity. Larvae reared on common bean Talash and white kidney bean Pak showed the highest amylase activity. Among bean cultivars tested, red kidney bean Sayyad was the most unsuitable host for feeding H. armigera. PMID:25368049

  16. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents

    PubMed Central

    Tucci, Sonia A; Boyland, Emma J; Halford, Jason CG

    2010-01-01

    Obesity is a global epidemic associated with significant morbidity and mortality in adults and ill health in children. A proven successful approach in weight management has been the disruption of nutrient digestion, with orlistat having been used to treat obesity for the last 10 years. Although orlistat-induced weight loss remains modest, it produces meaningful reductions in risk factors for obesity-related conditions such as diabetes and cardiovascular disease. Moreover, this lipase inhibitor is free of the serious side effects that have dogged appetite-suppressing drugs. This success had driven investigation into new generation nutraceuticals, supplements and pharmaceutical agents that inhibit the breakdown of complex carbohydrates and fats within the gut. This review focuses on agents purported to inhibit intestinal enzymes responsible for macronutrient digestion. Except for some synthetic products, the majority of agents reviewed are either botanical extracts or bacterial products. Currently, carbohydrate digestion inhibitors are under development to improve glycemic control and these may also induce some weight loss. However, colonic fermentation induced side effects, such as excess gas production, remain an issue for these compounds. The α-glucosidase inhibitor acarbose, and the α-amylase inhibitor phaseolamine, have been used in humans with some promising results relating to weight loss. Nonetheless, few of these agents have made it into clinical studies and without any clinical proof of concept or proven efficacy it is unlikely any will enter the market soon. PMID:21437083

  17. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents.

    PubMed

    Tucci, Sonia A; Boyland, Emma J; Halford, Jason Cg

    2010-01-01

    Obesity is a global epidemic associated with significant morbidity and mortality in adults and ill health in children. A proven successful approach in weight management has been the disruption of nutrient digestion, with orlistat having been used to treat obesity for the last 10 years. Although orlistat-induced weight loss remains modest, it produces meaningful reductions in risk factors for obesity-related conditions such as diabetes and cardiovascular disease. Moreover, this lipase inhibitor is free of the serious side effects that have dogged appetite-suppressing drugs. This success had driven investigation into new generation nutraceuticals, supplements and pharmaceutical agents that inhibit the breakdown of complex carbohydrates and fats within the gut. This review focuses on agents purported to inhibit intestinal enzymes responsible for macronutrient digestion. Except for some synthetic products, the majority of agents reviewed are either botanical extracts or bacterial products. Currently, carbohydrate digestion inhibitors are under development to improve glycemic control and these may also induce some weight loss. However, colonic fermentation induced side effects, such as excess gas production, remain an issue for these compounds. The α-glucosidase inhibitor acarbose, and the α-amylase inhibitor phaseolamine, have been used in humans with some promising results relating to weight loss. Nonetheless, few of these agents have made it into clinical studies and without any clinical proof of concept or proven efficacy it is unlikely any will enter the market soon. PMID:21437083

  18. Influence of low protein diets on gene expression of digestive enzymes and hormone secretion in the gastrointestinal tract of young weaned piglets*

    PubMed Central

    Tian, Zhi-mei; Ma, Xian-yong; Yang, Xue-fen; Fan, Qiu-li; Xiong, Yun-xia; Qiu, Yue-qin; Wang, Li; Wen, Xiao-lu; Jiang, Zong-yong

    2016-01-01

    To investigate dietary protein level effects on digestive mechanisms, weaned piglets were fed for 45 d with diets containing 20%, 17%, or 14% crude protein (CP) supplemented to meet requirements for essential amino acids. This article describes the influence of dietary protein on gastrointestinal hormones and expression of an array of digestive enzymes in the gastrointestinal tract and pancreas. Results indicated that there were no significant differences in expression of enzymes involved in carbohydrate digestion, except for maltase in the duodenum. In the jejunum, amylase expression in pigs fed 20% CP was much higher than that in pigs fed other diets (P<0.05) and maltase expression in those fed 17% CP was higher than that in other treatments (P<0.05). Although there were no remarkable differences in expression of aminopeptidase in the small intestine or carboxypeptidase in the pancreas (P>0.05), there was a trend towards higher expression of various proteases in pigs fed 17% CP. The duodenal expression of enteropeptidase in diets with 14% and 17% CP was significantly higher than that with 20% CP (P<0.05), but treatment differences did not existed in jejunum (P>0.05). The expression of GPR93 as a nutrient-responsive G protein-coupled receptor in 14% and 17% CP diets was significantly higher than that in 20% CP diet in the small intestine (P<0.05). The expressions of genes for pancreatic enzymes, lipase and elastase, were significantly higher in pigs fed diets with low CP, while similar trends occurred for carboxypeptidase, chymotrypsin and amylase. Conversely, the gastric expressions of pepsinogen A and progastricsin were lower with the 17% CP diet. Differences between treatments were found in the gastric antral contents of cholecystokinin and somatostatin: both increased in pigs fed 17% CP, accompanied by decreased content of motilin, which was also seen in plasma concentrations. These patterns were not reflected in duodenal contents. In general, 17% dietary CP

  19. Two Kunitz-type inhibitors with activity against trypsin and papain from Pithecellobium dumosum seeds: purification, characterization, and activity towards pest insect digestive enzyme.

    PubMed

    Oliveira, A S; Migliolo, L; Aquino, R O; Ribeiro, J K C; Macedo, L L P; Bemquerer, M P; Santos, E A; Kiyota, S; de Sales, M P

    2009-01-01

    Two trypsin inhibitors (called PdKI-3.1 and PdKI-3.2) were purified from the seeds of the Pithecellobium dumosum tree. Inhibitors were obtained by TCA precipitation, affinity chromatography on Trypsin-Sepharose and reversed-phase-HPLC. SDS-PAGE analysis with or without reducing agent showed that they are a single polypeptide chain, and MALDI-TOF analysis determined molecular masses of 19696.96 and 19696.36 Da, respectively. The N-terminal sequence of both inhibitors showed strong identity to the Kunitz family trypsin inhibitors. They were stable over a wide pH (2-9) and temperature (37 to 100 degrees C) range. These inhibitors reduced over 84% of trypsin activity with inhibition constant (Ki) of 4.20 x 10(-8) and 2.88 x 10(-8) M, and also moderately inhibited papain activity, a cysteine proteinase. PdKI-3.1 and PdKI-3.2 mainly inhibited digestive enzymes from Plodia interpunctella, Zabrotes subfasciatus and Ceratitis capitata guts. Results show that both inhibitors are members of the Kunitz-inhibitor family and that they affect the digestive enzyme larvae of diverse orders, indicating a potential insect antifeedant.

  20. Some properties of the NADP-specific malic enzyme from the moderate halophile Vibrio costicola.

    PubMed

    Salvarrey, M S; Cazzulo, J J

    1980-01-01

    NADP-specific malic enzyme (EC 1.1.1.40) has been purified about 160-fold from the moderate halophile Vibrio costicola. The enzyme has a molecular weight of about 120,000. The purified enzyme was unstable in dilute solutions but could be stabilised by NaCl or glycerol. NH4Cl or KCI caused maximal activation at 0.1M, but higher concentrations were inhibitory. NaCl did not activate and was instead a mixed-type inhibitor towards NH4Cl or KCI. The salt concentration affected the kinetic parameters of the reaction. The apparent Km for L-malate reached a minimal value at about 0.1 M salt; the value for NADP, on the other hand, increased continuosly with the Co2+ or Mg2+. NADH was a mixed-type inhibitor towards both substrates, whereas oxaloacetate was strictly competitive towards L-malate and non-competitive towards NADP. The inhibition kinetics were sigmoidal for NADH and hyperbolic for oxaloacetate. The malic enzyme form V. costicola was similar to those of a marine Pseudomonas and Halobacterium cutirubrum in kinetic and regulatory properties but showed a response to salts intermediate between those of the latter enzymes.

  1. Allosteric Inhibitory Molecular Recognition of a Photochromic Dye by a Digestive Enzyme: Dihydroindolizine makes α-chymotrypsin Photo-responsive

    PubMed Central

    Bagchi, Damayanti; Ghosh, Abhijit; Singh, Priya; Dutta, Shreyasi; Polley, Nabarun; Althagafi, Ismail.I.; Jassas, Rabab S.; Ahmed, Saleh A.; Pal, Samir Kumar

    2016-01-01

    The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity. PMID:27677331

  2. Allosteric Inhibitory Molecular Recognition of a Photochromic Dye by a Digestive Enzyme: Dihydroindolizine makes α-chymotrypsin Photo-responsive

    NASA Astrophysics Data System (ADS)

    Bagchi, Damayanti; Ghosh, Abhijit; Singh, Priya; Dutta, Shreyasi; Polley, Nabarun; Althagafi, Ismail. I.; Jassas, Rabab S.; Ahmed, Saleh A.; Pal, Samir Kumar

    2016-09-01

    The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.

  3. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw.

    PubMed

    Wang, Xuemei; Li, Zifu; Zhou, Xiaoqin; Wang, Qiqi; Wu, Yanga; Saino, Mayiani; Bai, Xue

    2016-11-01

    The use of enzymes to improve anaerobic co-digestion (AcoD) of cow manure and corn straw was explored in this study, including cellulase pretreatment and direct additions of amylase and protease. The effects of enzymes on microbial community structure were investigated though PCR-DGGE method. Results showed that AcoD with amylase achieved the highest methane yield of 377.63ml·CH4/g·VS, which was an increase of 110.79%. The methane increment consumed the amylase of 4.18×10(-5)g/ml·CH4. Enzymes mainly affected the bacteria in the hydrolysis stage rather than the bacteria in the hydrogenesis and acetogenesis stage and the archaea in the methanogenesis stage. However, the experimental results demonstrated that enzymes had no negative influence on microbial communities; the predominant microbial communities were similar. Therefore, AcoD with amylase was an effective way to improve the bio-methane yield of cow manure and corn straw. PMID:27484671

  4. Positive dermal hypersensitivity and specific antibodies in workers exposed to bio-engineered enzymes

    SciTech Connect

    Biagini, R.E.; Henningsen, G.M.; Driscoll, R.; MacKenzie, B.A.; Wilcox, T.; Scinto, J.D.; Bernstein, D.M.; Swanson, M. Mayo Clinic, Rochester, MN )

    1991-03-15

    Thirty-six employees who produced industrial enzymes from bio-engineered strains of bacteria and fungi were evaluated by skin prick testing and enzyme linked immunosorbent assays for specific IgE and IgG antibodies. The workers complained of asthma- and flu-like' symptoms which generally lessened away from work. The enzymes evaluated were {alpha}-amylase from A. niger (ind-AAN), B. licheniformis (ind-AAL) and B. subtilis (ind-AAS); purified {alpha}-amylase from B. subtilis (AAS) and A. niger (AAN); alkaline protease from B. licheniformis (ind-APL) and purified alkaline protease (APL); amylase glucosidase from A. niger (ind-AGN) and purified amylase glucosidase (AGN). Significantly positive skin tests were found for APL, AGN and ind-AAN. Significantly elevated specific IgE results were observed for AAN, AGN, and ind-AAN; elevated specific IgGs were observed for AAN, ind-AAN, ind-AAS, ind-AAL and ind-AGN. Radioimmunoassays of air filter samples (using sera with high Ab titers) for 4 of the ind-enzymes showed only ind-AAN at extremely high environmental levels. These results indicate that occupational exposure to some ind-enzymes causes immediate onset dermal hypersensitivity reactions. The results are equivocal as to whether these reactions are IgE mediated, as IgE titers were low. Contrary to this, IgG titers were extremely high and suggest that these biomarkers can be used as indicators of both individual exposure and environmental analyses.

  5. Purification and characterization of the crown gall specific enzyme nopaline synthase.

    PubMed

    Kemp, J D; Sutton, D W; Hack, E

    1979-08-21

    Nopaline synthase of sunflower (Helianthus annuus L.) crown gall tissue induced by Agrobacterium tumefaciens strain C58 or T37 (nopaline utilizers) was purified to homogeneity as judged by analytical disc gel electrophoresis. The native enzyme elutes from a column of Ultrogen AcA 34 as a single peak with an estimated molecular weight of 158,000. The dissociated enzyme migrates on NaDodSO4-polyacrylamide gels as a single band with a molecular weight of 40,000. Thus, the native enzyme appears to be composed of four equal-weight subunits. Nopaline synthesizing activity is found exclusively in crown gall tissues induced by strains of A. tumefaciens that utilize nopaline (e.g., C58 and T37). We found the same tissue specificity for the purified protein that we believe represents nopaline synthase. The results of kinetic studies of the purified enzyme are consistent with a ter-bi rapid-equilibrium random-order mechanism. Nopaline synthase is probably responsible for the in vivo synthesis of both N2-(1,3-dicarboxypropyl)arginine (nopaline) and N2-(1,3-dicarboxypropyl)ornithine (ornaline) in crown gall tissues since substrate specificities and Km values do not change during purification.

  6. Responses of non-starch polysaccharide-degrading enzymes on digestibility and performance of growing pigs fed a diet based on corn, soya bean meal and Chinese double-low rapeseed meal.

    PubMed

    Fang, Z F; Peng, J; Liu, Z L; Liu, Y G

    2007-08-01

    This study was conducted to investigate the effect of two distinct enzyme preparations on nutrients' digestibility and growth performance of growing pigs fed diets based on corn, soya bean meal and Chinese double-low rapeseed meal (DLRM). The two enzyme preparations were Enzyme R, a preparation extracted from fermentation of a non-GMO fungus Penicillum funiculosum, developed for multi-grain and multi-animal species; and Enzyme P, a xylanase preparation from Trichoderma longibrachiatum, for pigs fed corn-based diets only. Both enzymes were tested at 0, 0.25 and 0.50 g/kg feed using 70 crossbred male pigs (Large Yorkshire x Landrace) in five dietary treatments and seven replicates in each treatment, for growth period from 27 to 68 kg live weight in 49 days. Results showed that the supplementation of both enzymes (1) increased total-tract digestibility of dietary energy from 77.5% (control) to 81.4% (Enzyme R, p < 0.05) and 81.9% (Enzyme P, p < 0.05); of neutral detergent fibre from 41.0% (control) to 57.8% (Enzyme R, p < 0.05) and 60.0% (Enzyme P, p < 0.05); (2) improved average daily gain from 786 g (control) to 829 g (Enzyme R, p < 0.05) and 846 g (Enzyme P, p < 0.05); and numerical increases in feed intake from 1.96 kg/pig/day (control) to 2.01 (Enzyme R) and 2.00 (p > 0.05) and feed conversion ratio from 2.50 (control) to 2.42 (Enzyme R) and 2.36 (Enzyme P, p < 0.05); (3) there was a dose response but no significant differences were observed in enzyme efficacy between the two enzyme preparations. The present study demonstrated beneficial effects of applying xylanase-based enzymes to improve feeding values of pig diets based on corn, soya bean meal and DLRM.

  7. Effect of method of applying fibrolytic enzymes or ammonia to Bermudagrass hay on feed intake, digestion, and growth of beef steers.

    PubMed

    Krueger, N A; Adesogan, A T; Staples, C R; Krueger, W K; Kim, S C; Littell, R C; Sollenberger, L E

    2008-04-01

    This study examined how different methods of applying a fibrolytic enzyme or ammonia affect the nutritive value of Bermudagrass hay and the performance of beef cattle. Fifty Angus x Brangus crossbred steers (mean initial BW 244 +/- 26 kg) were individually fed for ad libitum intake of a 5-wk regrowth of a mixture of Florakirk and Tifton 44 Bermudagrass [Cynodon dactylon (L.) Pers] hay for 84 d with a concentrate supplement (77% soybean hull pellets, 23% cottonseed meal (DM basis) fed at 1% of BW daily. The Bermudagrass was conserved as hay without treatment (control), with NH(3) (30 g/kg of DM), or with a fibrolytic enzyme (16.5 g/t, air-dry basis) that was applied immediately after cutting (Ec), at baling (Eb), or at feeding. Chromic oxide was dosed to steers for 10 consecutive days, and fecal Cr concentrations from the last 5 d were used to estimate apparent total tract digestibility. In situ ruminal DM degradability was measured by incubating ground (4-mm) hay samples in duplicate in each of 2 ruminally cannulated cows having ad libitum access to Bermudagrass hay and 500 g/d of soybean meal. Unlike the enzyme treatment, ammoniation increased (P < 0.001) the CP concentration and reduced (P < 0.001) NDF, hemicellulose, and lignin concentrations of hay. Total DMI was greater (P < 0.05) for steers fed hays treated with Ec or NH(3) than for those fed control hays. All additive treatments increased (P < 0.05) DM digestibility, and NH(3), Ec, and Eb treatments also increased (P < 0.01) NDF digestibility. The initial and final BW, ADG, BCS, G:F, and hip height of the steers were not affected (P > 0.05) by treatment. The wash loss fractions in hays treated with Ec and Eb were lower than that in the control hay, but the potentially degradable fraction, total degradable fraction, and the effective degradability were increased (P < 0.01) by NH(3) treatment. Application at cutting was the most promising method of enzyme treatment, and this treatment was almost as effective

  8. Screening and purification of a novel trypsin inhibitor from Prosopis juliflora seeds with activity toward pest digestive enzymes.

    PubMed

    Sivakumar, S; Franco, O L; Tagliari, P D; Bloch, C; Mohan, M; Thayumanavan, B

    2005-08-01

    Several pests are capable of decreasing crop production causing severe economical and social losses. Aiming to find novel molecules that could impede the digestion process of different pests, a screening of alpha-amylase and trypsin-like proteinase inhibitors was carried out in Prosopis juliflora, showing the presence of both in dry seeds. Furthermore, a novel trypsin inhibitor, with molecular mass of 13,292 Da, was purified showing remarkable in vitro activity against T. castaneum and C. maculatus.

  9. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping

    2015-12-01

    We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d

  10. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.

    PubMed

    Noda-García, Lianet; Camacho-Zarco, Aldo R; Medina-Ruíz, Sofía; Gaytán, Paul; Carrillo-Tripp, Mauricio; Fülöp, Vilmos; Barona-Gómez, Francisco

    2013-09-01

    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole l-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (βα)8 phosphoribosyl isomerase (priA gene) also involved in l-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA's substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (βα)8 isomerase subfamily with a specialized function in l-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism. PMID:23800623

  11. Effect of cooking and in vitro digestion on the stability of co-enzyme Q10 in processed meat products.

    PubMed

    Tobin, Brian D; O'Sullivan, Maurice G; Hamill, Ruth; Kerry, Joseph P

    2014-05-01

    The use of CoQ10 fortification in the production of a functional food has been demonstrated in the past but primarily for dairy products. This study aimed to determine the bio-accessibility of CoQ10 in processed meat products, beef patties and pork breakfast sausages, fortified with CoQ10. Both the patties and sausages were fortified with a micellarized form of CoQ10 to enhance solubility to a concentration of 1mg/g of sample (NovaSolQ®). An assay was developed combining in vitro digestion and HPLC analysis to quantify the CoQ10 present in fortified products (100mg/g). The cooking retention level of CoQ10 in the products was found to be 74±1.42% for patties and 79.69±0.75% for sausages. The digestibility for both products ranged between 93% and 95%, sausages did have a higher digestibility level than patties but this was not found to be significant (P<0.01).

  12. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Cheng, Yongzhou; Chen, Xiaoyan; Liu, Zhaopu; Long, Xiaohua

    2016-04-01

    Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of diff erent dietary additives [w/w: 2% small peptides, 0.01% probiotics (Bacillus licheniformis) and 0.2% prebiotics (inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations (13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics (combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme (total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control (28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.

  13. Correlation between the activity of digestive enzymes and nonself recognition in the gut of Eisenia andrei earthworms.

    PubMed

    Procházková, Petra; Šustr, Vladimír; Dvořák, Jiří; Roubalová, Radka; Škanta, František; Pižl, Václav; Bilej, Martin

    2013-11-01

    Earthworms Eisenia andrei, similarly to other invertebrates, rely on innate defense mechanisms based on the capability to recognize and respond to nonself. Here, we show a correlation between the expression of CCF, a crucial pattern-recognition receptor, and lysozyme, with enzyme activities in the gut of E. andrei earthworms following a microbial challenge. These data suggest that enzyme activities important for the release and recognition of molecular patterns by pattern-recognition molecules, as well as enzymes involved in effector pathways, are modulated during the microbial challenge. In particular, protease, laminarinase, and glucosaminidase activities were increased in parallel to up-regulated CCF and lysozyme expression.

  14. Prediction and experimental validation of enzyme substrate specificity in protein structures

    PubMed Central

    Amin, Shivas R.; Erdin, Serkan; Ward, R. Matthew; Lua, Rhonald C.; Lichtarge, Olivier

    2013-01-01

    Structural Genomics aims to elucidate protein structures to identify their functions. Unfortunately, the variation of just a few residues can be enough to alter activity or binding specificity and limit the functional resolution of annotations based on sequence and structure; in enzymes, substrates are especially difficult to predict. Here, large-scale controls and direct experiments show that the local similarity of five or six residues selected because they are evolutionarily important and on the protein surface can suffice to identify an enzyme activity and substrate. A motif of five residues predicted that a previously uncharacterized Silicibacter sp. protein was a carboxylesterase for short fatty acyl chains, similar to hormone-sensitive-lipase–like proteins that share less than 20% sequence identity. Assays and directed mutations confirmed this activity and showed that the motif was essential for catalysis and substrate specificity. We conclude that evolutionary and structural information may be combined on a Structural Genomics scale to create motifs of mixed catalytic and noncatalytic residues that identify enzyme activity and substrate specificity. PMID:24145433

  15. Development of a specific and sensitive enzyme-linked immunosorbent assay for the quantification of imatinib.

    PubMed

    Saita, Tetsuya; Shin, Masashi; Fujito, Hiroshi

    2013-01-01

    Imatinib is an oral tyrosine kinase inhibitor used for first-line treatment of chronic myeloid leukemia. Therapeutic drug monitoring targeting trough plasma levels of about 1000 ng/mL may help to optimize imantinib's therapeutic effect. This paper reports a specific and sensitive enzyme-linked immunosorbent assay (ELISA) for a pharmacokinetic evaluation of imatinib. Anti-imatinib antibody was obtained by immunizing rabbits with an antigen conjugated with bovine serum albumin and succinimidyl 4-{(4-methyl-1-piperazinyl)methyl}-benzoate. Enzyme labeling of imatinib with horseradish peroxidase was similarly performed using succinimidyl 4-{(4-methyl-1-piperazinyl)methyl}-benzoate. A simple ELISA for imatinib was developed using the principle of direct competition between imatinib and the enzyme marker for anti-imatinib antibody which had been adsorbed by the plastic surface of a microtiter plate. Serum imatinib concentrations lower than 40 pg/mL were reproducibly measurable using the ELISA. This ELISA was specific to imatinib and showed very slight cross-reactivity (1.2%) with a major metabolite, N-desmethyl imatinib. Using this assay, drug levels were easily measured in the blood of mice after their oral administration of imatinib at a single dose of 50 mg/kg. The specificity and sensitivity of the ELISA for imatinib should provide a valuable new tool for use in therapeutic drug monitoring and pharmacokinetic studies of imatinib.

  16. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP.

    PubMed

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  17. Genomic-Based Restriction Enzyme Selection for Specific Detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP

    PubMed Central

    Mandakovic, Dinka; Glasner, Benjamín; Maldonado, Jonathan; Aravena, Pamela; González, Mauricio; Cambiazo, Verónica; Pulgar, Rodrigo

    2016-01-01

    The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction—Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies. PMID:27242682

  18. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae

    PubMed Central

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W.; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  19. Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae.

    PubMed

    Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W; Gruber, Karl; Macheroux, Peter

    2016-01-01

    Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family. PMID:27276217

  20. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    PubMed Central

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  1. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle.

    PubMed

    He, Z X; Walker, N D; McAllister, T A; Yang, W Z

    2015-03-01

    Two experiments were conducted to evaluate the effect of wheat dried distillers grains with solubles (DDGS) and fibrolytic enzymes (FE) on ruminal fermentation, in situ ruminal and in vivo total tract digestibility, growth performance, and feeding behavior of growing beef cattle. In Exp. 1, 6 ruminally cannulated Angus heifers (average BW of 794 ± 44.2 kg) were used in a 6 × 6 Latin square design with 2 × 3 factorial arrangement of treatments. Treatments were a control diet consisting of 50% barley silage, 10% grass hay, and 40% barley grain-based concentrate (CON) and the CON with 15% DDGS substituted for barley grain (WDG) combined with either 0, 1, or 2 mL FE/kg diet DM, respectively. Inclusion of DDGS increased total tract digestibility of CP ( < 0.01), NDF ( = 0.04), and ADF ( = 0.03). Increasing FE linearly ( = 0.03) increased CP digestibility without affecting the digestibility of other nutrients. There were no effects of DDGS inclusion or FE on ruminal pH or VFA concentration except that propionate was greater ( = 0.04) with the WDG. In situ ruminal DM and NDF disappearance of barley silage was greater ( < 0.04) in heifers fed the WDG than in heifers fed the CON after 24 h of incubation. Increasing FE linearly ( = 0.03) increased in situ NDF disappearance of barley silage after 24 h of incubation. In Exp. 2, 120 weaned steers (initial BW of 289 ± 11.0 kg) were fed diets similar to those in Exp. 1. The steers fed the WDG had greater ( < 0.01) final BW, ADG, DMI, and G:F compared with steers fed the CON. Increasing FE did not alter ADG or G:F but tended ( < 0.07) to linearly decrease DMI. There were interactions ( < 0.02) between DDGS and FE on eating rate and the time spent at the feed bunk. Supplementing FE decreased ( < 0.01) time at the bunk and increased ( < 0.01) eating rate for steers fed the WDG but not for steers fed the CON. Eating rate ( < 0.01) and meal frequency ( = 0.02) were greater but eating duration was shorter ( < 0.01) for steers fed

  2. Influence of partial replacement of ground wheat with whole wheat and exogenous enzyme supplementation on growth performance, nutrient digestibility and energy utilization in young broilers.

    PubMed

    Abdollahi, M R; Ravindran, V; Amerah, A M

    2016-10-01

    This study investigated the influence of pre-pelleting inclusion of whole wheat (WW) and exogenous enzyme supplementation on growth performance, coefficient of apparent ileal nutrient digestibility (CAID) and apparent metabolizable energy (AME) in broilers fed wheat-based pelleted diets. A 2 × 3 factorial arrangement of treatments was used with two methods of wheat inclusion [622 g/kg ground wheat (GW) and 250 g/kg WW replaced GW (wt/wt) pre-pelleting (PWW)] and three enzymes (xylanase, phytase and xylanase plus phytase). A total of 288, one-day-old male broilers (Ross 308) were individually weighed and allocated to 36 cages (8 broilers/cage), and the cages were randomly assigned to the six dietary treatments. Birds fed PWW diets gained more (p < 0.05) weight than those fed GW diets. There was no effect (p > 0.05) of WW inclusion on feed intake (FI). Phytase alone increased (p < 0.05) FI compared to xylanase or the combination. Whole wheat inclusion increased (p < 0.05) the gain-to-feed ratio (G:F). Feeding xylanase plus phytase and phytase-added diets resulted in the greatest and lowest G:F, respectively, with xylanase supplemented diets being intermediate. Birds fed PWW diets had greater (p < 0.05) relative gizzard weights than those fed GW diets. There was no effect (p > 0.05) of WW inclusion on the CAID of nitrogen (N), starch and fat. Combination of xylanase and phytase resulted in greater (p < 0.05) digestibility of N, starch and fat than that of individual additions. Feeding PWW diets resulted in greater (p < 0.05) AME values than GW diets. Combination of xylanase and phytase increased (p < 0.05) the AME compared to the diets with individual additions of xylanase or phytase. The current results suggest that the influence of pre-pelleting WW inclusion and exogenous enzymes on nutrient digestibility and broiler performance is not additive.

  3. Influence of partial replacement of ground wheat with whole wheat and exogenous enzyme supplementation on growth performance, nutrient digestibility and energy utilization in young broilers.

    PubMed

    Abdollahi, M R; Ravindran, V; Amerah, A M

    2016-10-01

    This study investigated the influence of pre-pelleting inclusion of whole wheat (WW) and exogenous enzyme supplementation on growth performance, coefficient of apparent ileal nutrient digestibility (CAID) and apparent metabolizable energy (AME) in broilers fed wheat-based pelleted diets. A 2 × 3 factorial arrangement of treatments was used with two methods of wheat inclusion [622 g/kg ground wheat (GW) and 250 g/kg WW replaced GW (wt/wt) pre-pelleting (PWW)] and three enzymes (xylanase, phytase and xylanase plus phytase). A total of 288, one-day-old male broilers (Ross 308) were individually weighed and allocated to 36 cages (8 broilers/cage), and the cages were randomly assigned to the six dietary treatments. Birds fed PWW diets gained more (p < 0.05) weight than those fed GW diets. There was no effect (p > 0.05) of WW inclusion on feed intake (FI). Phytase alone increased (p < 0.05) FI compared to xylanase or the combination. Whole wheat inclusion increased (p < 0.05) the gain-to-feed ratio (G:F). Feeding xylanase plus phytase and phytase-added diets resulted in the greatest and lowest G:F, respectively, with xylanase supplemented diets being intermediate. Birds fed PWW diets had greater (p < 0.05) relative gizzard weights than those fed GW diets. There was no effect (p > 0.05) of WW inclusion on the CAID of nitrogen (N), starch and fat. Combination of xylanase and phytase resulted in greater (p < 0.05) digestibility of N, starch and fat than that of individual additions. Feeding PWW diets resulted in greater (p < 0.05) AME values than GW diets. Combination of xylanase and phytase increased (p < 0.05) the AME compared to the diets with individual additions of xylanase or phytase. The current results suggest that the influence of pre-pelleting WW inclusion and exogenous enzymes on nutrient digestibility and broiler performance is not additive. PMID:27080922

  4. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities.

    PubMed

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-06-15

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1-4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Po(lpo)) and aldehyde oxidase-1 (Aldox-1(n1)) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Po(lpo)-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Po(lpo) allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1(n1) phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays.

  5. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities

    PubMed Central

    Marelja, Zvonimir; Dambowsky, Miriam; Bolis, Marco; Georgiou, Marina L.; Garattini, Enrico; Missirlis, Fanis; Leimkühler, Silke

    2014-01-01

    In the genome of Drosophila melanogaster, four genes coding for aldehyde oxidases (AOX1–4) were identified on chromosome 3. Phylogenetic analysis showed that the AOX gene cluster evolved via independent duplication events in the vertebrate and invertebrate lineages. The functional role and the substrate specificity of the distinct Drosophila AOX enzymes is unknown. Two loss-of-function mutant alleles in this gene region, low pyridoxal oxidase (Polpo) and aldehyde oxidase-1 (Aldox-1n1) are associated with a phenotype characterized by undetectable AOX enzymatic activity. However, the genes involved and the corresponding mutations have not yet been identified. In this study we characterized the activities, substrate specificities and expression profiles of the four AOX enzymes in D. melanogaster. We show that the Polpo-associated phenotype is the consequence of a structural alteration of the AOX1 gene. We identified an 11-bp deletion in the Polpo allele, resulting in a frame-shift event, which removes the molybdenum cofactor domain of the encoded enzyme. Furthermore, we show that AOX2 activity is detectable only during metamorphosis and characterize a Minos-AOX2 insertion in this developmental gene that disrupts its activity. We demonstrate that the Aldox-1n1 phenotype maps to the AOX3 gene and AOX4 activity is not detectable in our assays. PMID:24737760

  6. Switching of self-assembly in a peptide nanostructure with a specific enzyme

    SciTech Connect

    Webber, Matthew J.; Newcomb, Christina J.; Bitton, Ronit; Stupp, Samuel I.

    2012-03-14

    Peptide self-assembly has been shown to be a useful tool for the preparation of bioactive nanostructures, and recent work has demonstrated their potential as therapies for regenerative medicine. In principle, one route to make these nanostructures more biomimetic would be to incorporate in their molecular design the capacity for biological sensing. We report here on the use of a reversible enzymatic trigger to control the assembly and disassembly of peptide amphiphile (PA) nanostructures. The PA used in these studies contained a consensus substrate sequence specific to protein kinase A (PKA), a biological enzyme important for intracellular signaling that has also been shown to be an extracellular cancer biomarker. Upon treatment with PKA, this PA molecule becomes phosphorylated causing the high aspect-ratio filamentous PA nanostructures to disassemble. Treatment with an enzyme to cleave the phosphate group results in reformation of the filamentous nanostructures. We also show that disassembly in the presence of PKA allows the enzyme-triggered release of an encapsulated cancer drug. In addition, these drug-loaded nanostructures were found to induce preferential cytotoxicity in a cancer cell line that is known to secrete high levels of PKA. This ability to control nanostructure through an enzymatic switch could allow for the preparation of highly sophisticated and biomimetic materials that incorporate a biological sensing capability to enable therapeutic specificity.

  7. Carotenoids in Rhodoplanes species: variation of compositions and substrate specificity of predicted carotenogenesis enzymes.

    PubMed

    Takaichi, Shinichi; Sasikala, Ch; Ramana, Ch V; Okamura, Keiko; Hiraishi, Akira

    2012-08-01

    Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and accumulate unusual carotenoids in some cases. The carotenoids in all established species of Rhodoplanes (Rpl.), a representative of phototrophic genera, were identified using spectroscopic methods. The major carotenoid was spirilloxanthin in Rpl. roseus and Rpl. serenus, and rhodopin in "Rpl. cryptolactis". Rpl. elegans contained rhodopin, anhydrorhodovibrin, and spirilloxanthin. Rpl. pokkaliisoli contained not only rhodopin but also 1,1'-dihydroxylycopene and 3,4,3',4'-tetrahydrospirilloxanthin. These variations in carotenoid composition suggested that Rpl. roseus and Rpl. serenus had normal substrate specificity of the carotenogenesis enzymes of CrtC (acyclic carotene 1,2-hydratase), CrtD (acyclic carotenoid 3,4-desaturase), and CrtF (acyclic 1-hydroxycarotenoid methyltransferase). On the other hand, CrtC of Rpl. elegans, CrtD of "Rpl. cryptolactis", and CrtC, CrtD, and CrtF of Rpl. pokkaliisoli might have different characteristics from the usual activity of these normal enzymes in the normal spirilloxanthin pathway. These results suggest that the variation of carotenoids among the species of Rhodoplanes results from modified substrate specificity of the carotenogenesis enzymes involved.

  8. Human fibroblast collagenase: glycosylation and tissue-specific levels of enzyme synthesis.

    PubMed Central

    Wilhelm, S M; Eisen, A Z; Teter, M; Clark, S D; Kronberger, A; Goldberg, G

    1986-01-01

    Human skin fibroblasts secrete collagenase as two proenzyme forms (57 and 52 kDa). The minor (57-kDa) proenzyme form is the result of a partial posttranslational modification of the major (52-kDa) proenzyme through the addition of N-linked complex oligosaccharides. Human endothelial cells as well as fibroblasts from human colon, cornea, gingiva, and lung also secrete collagenase in two forms indistinguishable from those of the skin fibroblast enzyme. In vitro tissue culture studies have shown that the level of constitutive synthesis of this fibroblast-type interstitial collagenase is tissue specific, varies widely, and correlates with the steady-state level of a single collagenase-specific mRNA of 2.5 kilobases. The tumor promoter, phorbol 12-myristate 13-acetate, apparently blocks the control of collagenase synthesis resulting in a similarly high level of collagenase expression (approximately equal to 3-7 micrograms of collagenase per 10(6) cells per 24 hr) in all examined cells. The constitutive level of synthesis of a 28-kDa collagenase inhibitor does not correlate with that of the enzyme. Phorbol 12-myristate 13-acetate stimulates the production of this inhibitor that in turn modulates the activity of collagenase in the conditioned media. As a result, the apparent activity of the enzyme present in the medium does not accurately reflect the rate of its synthesis and secretion. Images PMID:3012533

  9. Sterilization in a liquid of a specific starch makes it slowly digestible in vitro and low glycemic in rats.

    PubMed

    Severijnen, Chantal; Abrahamse, Evan; van der Beek, Eline M; Buco, Amra; van de Heijning, Bert J M; van Laere, Katrien; Bouritius, Hetty

    2007-10-01

    Diabetics are recommended to eat a balanced diet containing normal amounts of carbohydrates, preferably those with a low glycemic index. For solid foods, this can be achieved by choosing whole-grain, fiber-rich products. For (sterilized) liquid products, such as meal replacers, the choices for carbohydrate sources are restricted due to technological limitations. Starches usually have a high glycemic index after sterilization in liquids, whereas low glycemic sugars and sugar replacers can only be used in limited amounts. Using an in vitro digestion assay, we identified a resistant starch (RS) source [modified high amylose starch (mHAS)] that might enable the production of a sterilized liquid product with a low glycemic index. Heating mHAS for 4-5 min in liquid increased the slowly digestible starch (SDS) fraction at the expense of the RS portion. The effect was temperature dependent and reached its maximum above 120 degrees C. Heating at 130 degrees C significantly reduced the RS fraction from 49 to 22%. The product remained stable for at least several months when stored at 4 degrees C. To investigate whether a higher SDS fraction would result in a lower postprandial glycemic response, the sterilized mHAS solution was compared with rapidly digestible maltodextrin. Male Wistar rats received an i.g. bolus of 2.0 g available carbohydrate/kg body weight. Ingestion of heat-treated mHAS resulted in a significant attenuation of the postprandial plasma glucose and insulin responses compared with maltodextrin. mHAS appears to be a starch source which, after sterilization in a liquid product, acquires slow-release properties. The long-term stability of mHAS solutions indicates that this may provide a suitable carbohydrate source for low glycemic index liquid products for inclusion in a diabetes-specific diet.

  10. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  11. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.

    PubMed

    Paramesvaran, Janahan; Hibbert, Edward G; Russell, Andrew J; Dalby, Paul A

    2009-07-01

    A previous study of random mutations, mostly introduced by error-prone PCR (EPPCR) or DNA shuffling (DS), demonstrated that those closer to the enzyme active site were more effective than distant ones at improving enzyme activity, substrate specificity or enantioselectivity. Since then, many studies have taken advantage of this observation by targeting site-directed saturation mutagenesis (SDSM) to residues closer to or within enzyme active sites. Here, we have analysed a set of SDSM studies, in parallel to a similar set from EPPCR/DS, to determine whether the greater range of amino-acid types accessible by SDSM affects the distances at which the most effective sites occur. We have also analysed the relative effectiveness for obtaining beneficial mutants of residues with different degrees of natural sequence variation, as determined by their sequence entropy which is related to sequence conservation. These analyses attempt to answer the question-how well focused have targeted mutagenesis strategies been? We also compared two different sets of active-site atoms from which to measure distances and found that the inclusion of catalytic, substrate and cofactor atoms refined the analysis compared to using a single key catalytic atom. Using this definition, we found that EPPCR/DS is not effective for altering substrate specificity at sites that are within 5 A of the active-site atoms. In contrast, SDSM is most effective when targeted to residues at <5-6 A from the catalytic, substrate or cofactor atom, and also for residues with intermediate sequence entropies. Furthermore, SDSM is capable of altering substrate specificity at highly and completely conserved residues in the active site. The results suggest ways in which directed evolution by SDSM could be improved for greater efficiency in terms of reducing the library sizes required to obtain beneficial mutations that alter substrate specificity.

  12. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system.

    PubMed

    Najdegerami, Ebrahim H; Bakhshi, Farideh; Lakani, Forouzan Bagherzadeh

    2016-04-01

    Biofloc technology is considered as a method that degrades organic waste by microorganisms and produces microbial flocs. A 30-day experiment was performed to investigate the effects of partial replacement of daily feeding intake with biofloc on the growth performances, digestive enzymes activity and liver histology of the common carp Cyprinus carpio L. fingerlings. Two hundred and eight healthy fingerlings (58.6 ± 0.2 g) were randomly distributed in 12 tanks (30 L) at a density of 25.4 kg m(-3) and fed experimental treatments (100 % daily feeding rate as a control, biofloc + 75% daily feeding rate, biofloc + 50% daily feeding rate, biofloc + 25% daily feeding rate). At the end of experiment, the results indicated that the highest weight gain was observed in the fish fed BFT 75% and control which differed significantly from those fed BFT 25 % (P < 0.05). Diet BFT 75% improved total protease and pepsin activity compared with BFT 25 and 50% (P > 0.05). No significant difference was observed in case of lipase, amylase and alkaline phosphatase activity between the treatments. In the liver, histological alterations were found in the treatments, and feeding the fish with BFT 75% significantly improved hepatocellular quantification and qualification than the other groups. The results obtained in this experiment suggest that the biofloc improves growth performances, digestive enzyme activity and liver condition of the common carp fingerlings when 25% of daily feeding rate (BFT 75%) was replaced with one carbohydrate such as molasses in zero-water exchange system. PMID:26530301

  13. Effects of fish oil replacement by vegetable oil blend on digestive enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Couto, Ana; Pérez-Jiménez, Amalia; Serra, Cláudia R; Díaz-Rosales, Patricia; Fernandes, Rui; Corraze, Geneviève; Panserat, Stéphane; Oliva-Teles, Aires

    2016-02-01

    The impact of replacing circa 70% fish oil (FO) by a vegetable oil (VO) blend (rapeseed, linseed, palm oils; 20:50:30) in diets for European sea bass juveniles (IBW 96 ± 0.8 g) was evaluated in terms of activities of digestive enzymes (amylase, lipase, alkaline phosphatase, trypsin and total alkaline proteases) in the anterior (AI) and posterior (PI) intestine and tissue morphology (pyloric caeca-PC, AI, PI, distal intestine-DI and liver). For that purpose, fish were fed the experimental diets for 36 days and then liver and intestine were sampled at 2, 6 and 24 h after the last meal. Alkaline protease characterization was also done in AI and PI at 6 h post-feeding. Dietary VO promoted higher alkaline phosphatase activity at 2 h post-feeding in the AI and at all sampling points in the PI. Total alkaline protease activity was higher at 6 h post-feeding in the PI of fish fed the FO diet. Identical number of bands was observed in zymograms of alkaline proteases of fish fed both diets. No alterations in the histomorphology of PC, AI, PI or DI were noticed in fish fed the VO diets, while in the liver a tendency towards increased hepatocyte vacuolization due to lipid accumulation was observed. Overall, and with the exception of a higher intestine alkaline phosphatase activity, 70% FO replacement by a VO blend in diets for European sea bass resulted in no distinctive alterations on the postprandial pattern of digestive enzyme activities and intestine histomorphology. PMID:26364216

  14. Comparison of time-restricted and ad libitum self-feeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang

    2016-07-01

    Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the Effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon (Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms (P<0.05). Pepsin activity of TR fish also showed a significant daily rhythm (P<0.05) with the acrophase at the second feed and a decrease over the next 12 h. Average daily trypsin, lipase and amylase levels of FA fish were significantly lower than those of TR fish (P<0.01); however, the growth performance of both groups was similar (P>0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.

  15. Effects of dietary β-1,3/1,6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides.

    PubMed

    Guzmán-Villanueva, Laura T; Ascencio-Valle, Felipe; Macías-Rodríguez, María E; Tovar-Ramírez, Dariel

    2014-06-01

    The effect of β-1,3/1,6-glucan, derived from yeast, on growth, antioxidant, and digestive enzyme performance of Pacific red snapper Lutjanus peru before and after exposure to lipopolysaccharides (LPS) was investigated. The β-1,3/1,6-glucan was added to the basal diet at two concentrations (0.1 and 0.2 %). The treatment lasted 6 weeks, with sampling at regular intervals (0, 2, 4, and 6 weeks). At the end of this period, the remaining fish from either control or β-glucan-fed fish were injected intraperitoneally with LPS (3 mg kg(-1)) or with sterile physiological saline solution (SS) and then sampled at 0, 24, and 72 h. The results showed a significant increase (P < 0.05) in growth performance after 6 weeks of feeding with β-glucan. Superoxide dismutase (SOD) activity in liver was significantly higher in diets containing 0.1 % β-glucan in weeks 4 and 6, compared to the control group. β-Glucan supplementation at 0.1 and 0.2 % significantly increased aminopeptidase, trypsin, and chymotrypsin activity. At 72 h after injection of LPS, we observed a significant increase in catalase activity in liver from fish fed diets supplemented with 0.1 and 0.2 % β-glucan; SOD activity increased in fish fed with 0.1 % β-glucan in relation to those injected with SS. Feed supplemented with β-1,3/1,6-glucan increased growth, antioxidant activity, and digestive enzyme activity in Pacific red snapper.

  16. Effects of fish oil replacement by vegetable oil blend on digestive enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Couto, Ana; Pérez-Jiménez, Amalia; Serra, Cláudia R; Díaz-Rosales, Patricia; Fernandes, Rui; Corraze, Geneviève; Panserat, Stéphane; Oliva-Teles, Aires

    2016-02-01

    The impact of replacing circa 70% fish oil (FO) by a vegetable oil (VO) blend (rapeseed, linseed, palm oils; 20:50:30) in diets for European sea bass juveniles (IBW 96 ± 0.8 g) was evaluated in terms of activities of digestive enzymes (amylase, lipase, alkaline phosphatase, trypsin and total alkaline proteases) in the anterior (AI) and posterior (PI) intestine and tissue morphology (pyloric caeca-PC, AI, PI, distal intestine-DI and liver). For that purpose, fish were fed the experimental diets for 36 days and then liver and intestine were sampled at 2, 6 and 24 h after the last meal. Alkaline protease characterization was also done in AI and PI at 6 h post-feeding. Dietary VO promoted higher alkaline phosphatase activity at 2 h post-feeding in the AI and at all sampling points in the PI. Total alkaline protease activity was higher at 6 h post-feeding in the PI of fish fed the FO diet. Identical number of bands was observed in zymograms of alkaline proteases of fish fed both diets. No alterations in the histomorphology of PC, AI, PI or DI were noticed in fish fed the VO diets, while in the liver a tendency towards increased hepatocyte vacuolization due to lipid accumulation was observed. Overall, and with the exception of a higher intestine alkaline phosphatase activity, 70% FO replacement by a VO blend in diets for European sea bass resulted in no distinctive alterations on the postprandial pattern of digestive enzyme activities and intestine histomorphology.

  17. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken.

    PubMed

    Chen, Z; Xie, J; Wang, B; Tang, J

    2014-10-01

    To explore the effect of dietary γ-aminobutyric acid (GABA) on digestive enzyme activity, absorption function and immune function of intestinal mucosa in heat-stressed Wenchang chicken were studied. One-day-old male Wenchang chickens were randomly divided into a control group (CK), heat stress group (HS), and GABA+HS group. The chickens from the GABA+HS group were administered with 0.2 mL of GABA solution daily. Chickens from HS and GABA+HS groups were subjected to heat stress treatment at 40 ± 0.5°C for 2 h during 1300 to 1500 h every day. Blood was drawn and 0.5 cm-long duodenum, jejunum, and ileum were collected from the chickens on d 3, 5, 7, 9, 12, and 15. Results showed that the activity of Ca²⁺-Mg²⁺-adenosine triphosphatase (ATPase), Na⁺-K⁺-ATPase, maltase, sucrase, and alkaline phosphatase, the contents of secretory IgA, glutathione, and d-xylose, and the number of lymphocytes in HS group were significantly lower than those in the CK group. Among them, some were rescued after the treatment of GABA as the time extension. For maltase, d-xylose, alkaline phosphatase, and Na⁺-K⁺-ATPase, it required 5 to 7 d for achieving the significant effect. For sucrase, 12 d for the alleviation effect was required. In the case of other parameters, no alleviation was observed during the whole period of the study. We have concluded that HS can inhibit the activity of digestive enzymes and reduce absorption and immune functions of intestinal mucosa. γ-Aminobutyric acid can effectively alleviate these inhibitory effects.

  18. Tissue specific response of Miscanthus×giganteus to dilute acid pretreatment for enhancing cellulose digestibility.

    PubMed

    Ji, Zhe; Zhang, Xun; Ling, Zhe; Sun, Run-Cang; Xu, Feng

    2016-12-10

    The recalcitrance in grasses varies according to cell type and tissue. In this study, dilute acid pretreatment was performed on Miscanthus×giganteus internodes that include rind and pith regions which showing heterogeneous structural and chemical changes. Pretreatment on pith effectively hydrolyzed 73.33% hemicelluloses and separated cohesive cell walls from the compound middle lamella due to lignin migration. Lignin droplets with an average diameter of 49.5±29.3nm were concurrently coalesced on wall surface, that in turn exposed more microfibrils deep in walls to be enzymatically hydrolyzed reaching 82.55%. By contrast, the rind with a relatively intergrated cell structure was covered by larger lignin droplets (101.2±44.1nm) and filled with inaccessible microfibrils limiting enzymatic sacchrification (31.50%). Taken together, the cellulose digestibility of biomass was not majorly influenced by cellulose crystallinity, while it was strongly correlated with the positive effects of hemicelluloses degradation, lignin redistribution, cellulose exposure and loosening cell wall structure. PMID:27577916

  19. Optimization of the thermophilic anaerobic co-digestion of pig manure, agriculture waste and inorganic additive through specific methanogenic activity.

    PubMed

    Jiménez, J; Cisneros-Ortiz, M E; Guardia-Puebla, Y; Morgan-Sagastume, J M; Noyola, A

    2014-01-01

    The anaerobic co-digestion of three wastes (manure, rice straw and clay residue, an inorganic additive) at different concentration levels and their interactive effects on methanogenic activity were investigated in this work at thermophilic conditions in order to enhance hydrolytic activity and methane production. A central composite design and the response surface methodology were applied for the optimization of specific methanogenic activity (SMA) by assessing their interaction effects with a reduced number of experiments. The results showed a significant interaction among the wastes on the SMA and confirmed that co-digestion enhances methane production. Rice straw apparently did not supply a significant amount of substrate to make a difference in SMA or methane yield. On the other hand, clay residue had a positive effect as an inorganic additive for stimulating the anaerobic process, based on its mineral content and its adsorbent properties for ammonia. Finally, the optimal conditions for achieving a thermophilic SMA value close to 1.4 g CH4-COD/g VSS · d(-1) were 20.3 gVSS/L of manure, 9.8 gVSS/L of rice straw and 3.3 gTSS/L of clay. PMID:24959998

  20. Increased loading rates and specific methane yields facilitated by digesting grass silage at thermophilic rather than mesophilic temperatures.

    PubMed

    Voelklein, M A; Rusmanis, D; Murphy, J D

    2016-09-01

    This study was conducted to advance the understanding of thermophilic grass digestion. Late harvested grass silage was fermented at thermophilic conditions at increasing organic loading rates (OLR). Stable digestion took place at an OLR between 3 and 4gVSL(-1)d(-1). This enabled specific methane yields (SMY) as high as 405LCH4kgVS(-1). An accumulation of volatile fatty acids (VFA), accompanied by a gradual deterioration of pH, FOS/TAC (ratio of VFA to alkalinity) arose at an OLR between 5 and 7gVSL(-1)d(-1), yet inhibition did not occur. SMY decreased with reduced retention time ranging between 336 and 358LCH4kgVS(-1) at OLR 7 and 5gVSL(-1)d(-1) respectively. The biomethane efficiencies remained high (92-103%) at corresponding retention times. Comparative results indicated a superior performance with respect to higher loading and SMY as compared with mesophilic conditions. PMID:27268433

  1. Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: potential for native α-lactalbumin purification.

    PubMed

    Lisak, Katarina; Toro-Sierra, Jose; Kulozik, Ulrich; Božanić, Rajka; Cheison, Seronei Chelulei

    2013-02-01

    The present study examines the resistance of the α-lactalbumin to α-chymotrypsin (EC 3.4.21.1) digestion under various experimental conditions. Whey protein isolate (WPI) was hydrolysed using randomised hydrolysis conditions (5 and 10% of WPI; pH 7.0, 7.8 and 8.5; temperature 25, 37 and 50 °C; enzyme-to-substrate ratio, E/S, of 0.1%, 0.5 and 1%). Reversed-phase high performance liquid chromatography (RP-HPLC) was used to analyse residual proteins. Heat, pH adjustment and two inhibitors (Bowman-Birk inhibitor and trypsin inhibitor from chicken egg white) were used to stop the enzyme reaction. While operating outside of the enzyme optimum it was observed that at pH 8.5 selective hydrolysis of β-lactoglobulin was improved because of a dimer-to-monomer transition while α-la remained relatively resistant. The best conditions for the recovery of native and pure α-la were at 25 °C, pH 8.5, 1% E/S ratio, 5% WPI (w/v) while the enzyme was inhibited using Bowman-Birk inhibitor with around 81% of original α-la in WPI was recovered with no more β-lg. Operating conditions for hydrolysis away from the chymotrypsin optimum conditions offers a great potential for selective WPI hydrolysis, and removal, of β-lg with production of whey protein concentrates containing low or no β-lg and pure native α-la. This method also offers the possibility for production of β-lg-depleted milk products for sensitive populations.

  2. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.

    PubMed

    Janeček, Štefan; Svensson, Birte; MacGregor, E Ann

    2014-04-01

    α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.

  3. Structure of Human Dual Specificity Protein Phosphatase 23, VHZ, Enzyme-Substrate/Product Complex

    SciTech Connect

    Agarwal,R.; Burley, S.; Swaminathan, S.

    2008-01-01

    Protein phosphorylation plays a crucial role in mitogenic signal transduction and regulation of cell growth and differentiation. Dual specificity protein phosphatase 23 (DUSP23) or VHZ mediates dephosphorylation of phospho-tyrosyl (pTyr) and phospho-seryl/threonyl (pSer/pThr) residues in specific proteins. In vitro, it can dephosphorylate p44ERK1 but not p54SAPK-{beta} and enhance activation of c-Jun N-terminal kinase (JNK) and p38. Human VHZ, the smallest of the catalytically active protein-tyrosine phosphatases (PTP) reported to date (150 residues), is a class I Cys-based PTP and bears the distinctive active site signature motif HCXXGXXRS(T). We present the crystal structure of VHZ determined at 1.93 angstrom resolution. The polypeptide chain adopts the typical a{beta}a PTP fold, giving rise to a shallow active site cleft that supports dual phosphorylated substrate specificity. Within our crystals, the Thr-135-Tyr-136 from a symmetry-related molecule bind in the active site with a malate ion, where they mimic the phosphorylated TY motif of the MAPK activation loop in an enzyme-substrate/product complex. Analyses of intermolecular interactions between the enzyme and this pseudo substrate/product along with functional analysis of Phe-66, Leu-97, and Phe-99 residues provide insights into the mechanism of substrate binding and catalysis in VHZ.

  4. [Development of a specific and sensitive enzyme-linked immunosorbent assay for vindesine].

    PubMed

    Nakano, Yukitaka; Saita, Tetsuya; Fujito, Hiroshi

    2012-01-01

    This paper reports a specific and sensitive enzyme-linked immunosorbent assay (ELISA) for pharmacokinetic studies of vindesine (VDS). Anti-VDS antibody was obtained by immunizing rabbits with VDS conjugated with bovine serum albumin using N-[β-(4-diazophenyl) ethyl] maleimide as a heterobifunctional coupling agent. An enzyme marker was similarly prepared by coupling VDS with horseradish peroxidase using N-(4-diazophenyl) maleimide. The detection limit of VDS by ELISA was approximately 24 pg/mL with 50-mL samples. This assay was specific for VDS and showed very slight cross-reactivity with other vinca alkaloids, vincristine (0.18%) and vinblastine (0.11%). The values for the VDS concentrations detected using this assay were comparable with those detected using HPLC. There was a good correlation between the values determined by the two methods. Moreover, ELISA was about 50-fold more sensitive in detecting VDS at lower concentrations. The sensitivity and specificity of ELISA should provide a useful tool for pharmacokinetic studies of VDS.

  5. An enzyme combination assay for serum sphingomyelin: Improved specificity through avoiding the interference with lysophosphatidylcholine.

    PubMed

    Kimura, Takehide; Kuwata, Hideyuki; Miyauchi, Kazuhito; Katayama, Yuki; Kayahara, Norihiko; Sugiuchi, Hiroyuki; Matsushima, Kazumi; Kondo, Yuki; Ishitsuka, Yoichi; Irikura, Mitsuru; Irie, Tetsumi

    2016-04-01

    Serum sphingomyelin (SM) has predictive value in the development of atherosclerosis. Furthermore, SM plays important roles in cell membrane structure, signal transduction pathways, and lipid raft formation. A convenient enzymatic method for SM is available for routine laboratory practice, but the enzyme specificity is not sufficient because of nonspecific reactions with lysophosphatidylcholine (LPC). Based on the differential specificity of selected enzymes toward choline-containing phospholipids, a two-step assay for measuring SM was constructed and its performance was evaluated using sera from healthy individuals on a Hitachi 7170 autoanalyzer. Results from this assay were highly correlated with theoretical serum SM concentrations estimated by subtracting phosphatidylcholine (PC) and LPC concentrations from that of total phospholipids determined using previously established methods. There was a good correlation between the results of SM assayed by the proposed method and the existing enzymatic method in sera from healthy individuals. Moreover, the proposed method was superior to the existing method in preventing nonspecific reactions with LPC present in sera. The proposed method does not require any pretreatment, uses 2.5 μl of serum samples, and requires only 10 min on an autoanalyzer. This high-throughput method can measure serum SM with sufficient specificity for clinical purposes and is applicable in routine laboratory practice. PMID:26792376

  6. Comprehensive identification of disulfide bonds using non-specific proteinase K digestion and CID-cleavable crosslinking analysis methodology for Orbitrap LC/ESI-MS/MS data.

    PubMed

    Makepeace, Karl A T; Serpa, Jason J; Petrotchenko, Evgeniy V; Borchers, Christoph H

    2015-11-01

    Disulfide bonds are valuable constraints in protein structure modeling. The Cys-Cys disulfide bond undergoes specific fragmentation under CID and, therefore, can be considered as a CID-cleavable crosslink. We have recently reported on the benefits of using non-specific digestion with proteinase K for inter-peptide crosslink determination. Here, we describe an updated application of our CID-cleavable crosslink analysis software and our crosslinking analysis with non-specific digestion methodology for the robust and comprehensive determination of disulfide bonds in proteins, using Orbitrap LC/ESI-MS/MS data.

  7. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. PMID:27174700

  8. Influence of two levels of enzyme preparation on ruminal fermentation, particulate and fluid passage and cell wall digestion in wether lambs consuming either a 10% or 25% grain diet.

    PubMed

    Judkins, M B; Stobart, R H

    1988-04-01

    Effects of a fungal enzyme preparation on ruminal fermentation, digesta kinetics and cell wall digestion were studied. Either 0, 22 or 25 g/d of enzyme preparation was offered to nine ruminally cannulated Rambouillet or Columbia wether lambs (avg wt 28.6 kg) in two randomized complete block experiments. An alfalfa hay-corn mixture at 2.1% of body weight (10% corn) was used in Exp. 1. In Exp. 2, 2.7% of body weight (25% corn; Exp. 2) was fed. Ruminal samples were collected at 0, 4, 8, 12 and 24 h postfeeding on d 17 of each 22-d period to measure fluid dilution rate and fermentation characteristics. An intraruminal dose of Yb-labeled hay followed by fecal sampling on d 19 through 22 was used to estimate particulate passage and fecal output. Ruminal pH, NH3 concentrations, total volatile fatty acid and proportion of individual acids were not influenced (P greater than .10) by the addition of either level of enzyme preparation in either Exp. 1 or 2. Dry matter digestibility also showed no effect (P greater than .10) of enzyme preparation added to either diet. In Exp. 1, wethers receiving 35 g/d of the enzyme preparation had greater cell wall digestion (49.8%; P less than .05) than wethers receiving either 22 g/d or no enzyme preparation (45.7 and 42.9%, respectively). In Exp. 2, with a 25% corn diet, no influence (P greater than .10) of enzyme preparation was noted on cell wall digestibility. Particulate and ruminal fluid passage rate parameters remained unchanged (P greater than .10) by the addition of either level of enzyme preparation, regardless of the diet fed.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Morphallactic regeneration as revealed by region-specific gene expression in the digestive tract of Enchytraeus japonensis (Oligochaeta, Annelida).

    PubMed

    Takeo, Makoto; Yoshida-Noro, Chikako; Tochinai, Shin

    2008-05-01

    Enchytraeus japonensis is a small oligochaete, which primarily reproduces asexually by fragmentation and regeneration. For precise analysis of the pattern formation during regeneration, we isolated three region-specific genes (EjTuba, mino, and horu) expressed in the digestive tract. In growing worms, the expression of EjTuba in the head and mino in the trunk region just posterior to the head were observed in defined body segments, while the expression areas of EjTuba in the trunk and horu were proportional to the total number of body segments. In the regeneration process, expression of these genes disappeared once and recovered to their original pattern by day 7. In abnormal regeneration such as a bipolar head, mino was still expressed in the region next to both the normal and the ectopic heads. These results suggest that there is morphallactic as well as epimorphic or inductive regulation of the body patterning during regeneration of E. japonensis. PMID:18393309

  10. Application of solid waste from anaerobic digestion of poultry litter in Agrocybe aegerita cultivation: mushroom production, lignocellulolytic enzymes activity and substrate utilization.

    PubMed

    Isikhuemhen, Omoanghe S; Mikiashvili, Nona A; Kelkar, Vinaya

    2009-06-01

    The degradation and utilization of solid waste (SW) from anaerobic digestion of poultry litter by Agrocybe aegerita was evaluated through mushroom production, loss of organic matter (LOM), lignocellulolytic enzymes activity, lignocellulose degradation and mushroom nutrients content. Among the substrate combinations (SCs) tested, substrates composed of 10-20% SW, 70-80% wheat straw and 10% millet was found to produce the highest mushroom yield (770.5 and 642.9 g per 1.5 kg of substrate). LOM in all SCs tested varied between 8.8 and 48.2%. A. aegerita appears to degrade macromolecule components (0.6-21.8% lignin, 33.1-55.2% cellulose and 14-53.9% hemicellulose) during cultivation on the different SCs. Among the seven extracellular enzymes monitored, laccase, peroxidase and CMCase activities were higher before fruiting; while xylanase showed higher activities after fruiting. A source of carbohydrates (e.g., millet) in the substrate is needed in order to obtain yield and biological efficiency comparable to other commercially cultivated exotic mushrooms.

  11. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-01

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.

  12. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-01

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants. PMID:26895026

  13. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  14. Hypotensive effects and angiotensin-converting enzyme inhibitory peptides of reishi (Ganoderma lingzhi) auto-digested extract.

    PubMed

    Tran, Hai-Bang; Yamamoto, Atsushi; Matsumoto, Sayaka; Ito, Hisatomi; Igami, Kentaro; Miyazaki, Toshitsugu; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2014-01-01

    Reishi (Ganoderma lingzhi) has been used as a traditional medicine for millennia. However, relatively little is known about this mushroom's proteins and their bioactivities. In this study, we used reishi's own proteases to hydrolyze its protein and obtained auto-digested reishi (ADR) extract. The extract was subjected to in vitro assays and administered to spontaneous hypertensive rats (SHRs) to determine its potential for use as a hypotensive medication. Bioassay-guided fractionation and de novo sequencing were used for identifying the active compounds. After 4 h administration of ADR, the systolic pressure of SHRs significantly decreased to 34.3 mmHg (19.5% change) and the effect was maintained up to 8 h of administration, with the decrease reaching as low as 26.8 mmHg (15% reduction-compare to base line a decrease of 26.8 mmHg is less than a decrease of 34.3 mmHg so it should give a smaller % reduction). Eleven peptides were identified and four of them showed potent inhibition against ACE with IC50 values ranging from 73.1 μM to 162.7 μM. The results showed that ADR could be a good source of hypotensive peptides that could be used for antihypertensive medication or incorporation into functional foods. PMID:25178067

  15. Fat Content and Nitrite-Curing Influence the Formation of Oxidation Products and NOC-Specific DNA Adducts during In Vitro Digestion of Meat

    PubMed Central

    Van Hecke, Thomas; Vossen, Els; Vanden Bussche, Julie; Raes, Katleen; Vanhaecke, Lynn; De Smet, Stefaan

    2014-01-01

    The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes), protein oxidation products (protein carbonyl compounds) and NOC-specific DNA adducts (O6-carboxy-methylguanine) during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%), resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat). A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat. PMID:24978825

  16. Fat content and nitrite-curing influence the formation of oxidation products and NOC-specific DNA adducts during in vitro digestion of meat.

    PubMed

    Van Hecke, Thomas; Vossen, Els; Vanden Bussche, Julie; Raes, Katleen; Vanhaecke, Lynn; De Smet, Stefaan

    2014-01-01

    The effects of fat content and nitrite-curing of pork were investigated on the formation of cytotoxic and genotoxic lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, volatile simple aldehydes), protein oxidation products (protein carbonyl compounds) and NOC-specific DNA adducts (O6-carboxy-methylguanine) during in vitro digestion. The formation of these products during digestion is suggested to be responsible for the association between red meat and processed meat consumption and colorectal cancer risk. Digestion of uncured pork to which fat was added (total fat content 5 or 20%), resulted in significantly higher lipid and protein oxidation in the mimicked duodenal and colonic fluids, compared to digestion of pork without added fat (1% fat). A higher fat content also significantly favored the formation of O6-carboxy-methylguanine in the colon. Nitrite-curing of meat resulted in significantly lower lipid and protein oxidation before and after digestion, while an inconsistent effect on the formation of O6-carboxy-methylguanine was observed. The presented results demonstrate that haem-Fe is not solely responsible for oxidation and nitrosation reactions throughout an in vitro digestion approach but its effect is promoted by a higher fat content in meat.

  17. Approximated maximum adsorption of His-tagged enzyme/mutants on Ni2+-NTA for comparison of specific activities.

    PubMed

    Li, Yuanli; Long, Gaobo; Yang, Xiaolan; Hu, Xiaolei; Feng, Yiran; Tan, Deng; Xie, Yanling; Pu, Jun; Liao, Fei

    2015-03-01

    By approximating maximum activities of six-histidine (6His)-tagged enzyme/mutants adsorbed on Ni2+-NTA-magnetic-submicron-particle (Ni2+-NTA-MSP), a facile approach was tested for comparing enzyme specific activities in cell lysates. On a fixed quantity of Ni2+-NTA-MSP, the activity of an adsorbed 6His-tagged enzyme/mutant was measured via spectrophotometry; the activity after saturation adsorption (Vs) was predicted from response curve with quantities of total proteins from the same lysate as the predictor; Vs was equivalent of specific activity for comparison. This approach required abundance of a 6His-tagged enzyme/mutant over 3% among total proteins in lysate, an accurate series of quantities of total proteins from the same lysate, the largest activity generated by enzyme occupying over 85% binding sites on Ni2+-NTA-MSP and the minimum activity as absorbance change rates of 0.003 min(-1) for analysis. The prediction of Vs tolerated errors in concentrations of total proteins in lysates and was effective to 6His-tagged alkaline phosphatase and its 6His-tagged mutant in lysates. Notably, of those two 6His-tagged enzymes, Vs was effectively approximated with just one optimized quantity of lysates. Hence, this approach with Ni2+-NTA-MSP worked for comparison of specific activities of 6His-tagged enzyme/mutants in lysates when they had sufficient abundance among proteins and activities of adsorbed enzymes were measurable.

  18. Dietary soya beans and kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400-day-old Hooded-Lister rats but only soya beans induce growth of the pancreas.

    PubMed

    Grant, G; Alonso, R; Edwards, J E; Murray, S

    2000-04-01

    The effects of age on cholecystokinin (CCK) release, pancreatic enzyme secretion, and growth of the pancreas mediated by dietary kidney beans or soya beans were evaluated in trials with 30-, 90-, 250-, and 400-day-old rats. Soya beans increased blood CCK and caused hypersecretion of digestive enzymes and rapid pancreatic growth in all rats. Kidney beans also elevated circulating CCK and stimulated enzyme secretion. However, with 90-, 250-, and 400-day-old rats, the secretory responses were attenuated. Furthermore, kidney beans did not induce pancreatic growth in 250- and 400-day-old rats.

  19. Dietary soya beans and kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400-day-old Hooded-Lister rats but only soya beans induce growth of the pancreas.

    PubMed

    Grant, G; Alonso, R; Edwards, J E; Murray, S

    2000-04-01

    The effects of age on cholecystokinin (CCK) release, pancreatic enzyme secretion, and growth of the pancreas mediated by dietary kidney beans or soya beans were evaluated in trials with 30-, 90-, 250-, and 400-day-old rats. Soya beans increased blood CCK and caused hypersecretion of digestive enzymes and rapid pancreatic growth in all rats. Kidney beans also elevated circulating CCK and stimulated enzyme secretion. However, with 90-, 250-, and 400-day-old rats, the secretory responses were attenuated. Furthermore, kidney beans did not induce pancreatic growth in 250- and 400-day-old rats. PMID:10766458

  20. Quantifying specific antibody concentrations by enzyme-linked immunosorbent assay using slope correction.

    PubMed

    Barrette, Roger W; Urbonas, Jessica; Silbart, Lawrence K

    2006-07-01

    Assessing the magnitude of an antibody response is important to many research and clinical endeavors; however, there are considerable differences in the experimental approaches used to achieve this end. Although the time-honored approach of end point titration has merit, the titer can often be misleading due to differences in how it is calculated or when samples contain high concentrations of low-avidity antibodies. One frequently employed alternative is to adapt commercially available enzyme-linked immunosorbent assay kits, designed to measure total antibody concentrations, to estimate antigen-specific antibody concentrations. This is accomplished by coating the specific antigen of interest in place of the capture antibody provided with the kit and then using the kit's standard curve to quantify the specific antibody concentration. This approach introduces considerable imprecision, due primarily to its reliance on a single sample dilution. This "single-point" approach fails to address differences in the slope of the sample titration curve compared to that of the standard curve. Here, we describe a general approach for estimating the effective concentration of specific antibodies, using antisera against foot-and-mouth disease virus VP1 peptide. This was accomplished by initially calculating the slope of the sample titration curve and then mathematically correcting the slope to that of a corresponding standard curve. A significantly higher degree of precision was attained using this approach rather than the single-point method.

  1. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    PubMed

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  2. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal

    PubMed Central

    Kanwar, Jagat R; Kanwar, Rupinder K

    2009-01-01

    Background Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. Results Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1β and TNF-α) and up-regulated IFN-γ, IL-2 and IL-10. Conclusion Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel

  3. Complete Mapping of a Cystine Knot and Nested Disulfides of Recombinant Human Arylsulfatase A by Multi-Enzyme Digestion and LC-MS Analysis Using CID and ETD

    NASA Astrophysics Data System (ADS)

    Ni, Wenqin; Lin, Melanie; Salinas, Paul; Savickas, Philip; Wu, Shiaw-Lin; Karger, Barry L.

    2013-01-01

    Cystine knots or nested disulfides are structurally difficult to characterize, despite current technological advances in peptide mapping with high-resolution liquid chromatography coupled with mass spectrometry (LC-MS). In the case of recombinant human arylsulfatase A (rhASA), there is one cystine knot at the C-terminal, a pair of nested disulfides at the middle, and two out of three unpaired cysteines in the N-terminal region. The statuses of these cysteines are critical structure attributes for rhASA function and stability that requires precise examination. We used a unique approach to determine the status and linkage of each cysteine in rhASA, which was comprised of multi-enzyme digestion strategies (from Lys-C, trypsin, Asp-N, pepsin, and PNGase F) and multi-fragmentation methods in mass spectrometry using electron transfer dissociation (ETD), collision induced dissociation (CID), and CID with MS3 (after ETD). In addition to generating desired lengths of enzymatic peptides for effective fragmentation, the digestion pH was optimized to minimize the disulfide scrambling. The disulfide linkages, including the cystine knot and a pair of nested cysteines, unpaired cysteines, and the post-translational modification of a cysteine to formylglycine, were all determined. In the assignment, the disulfide linkages were Cys138-Cys154, Cys143-Cys150, Cys282-Cys396, Cys470-Cys482, Cys471-Cys484, and Cys475-Cys481. For the unpaired cysteines, Cys20 and Cys276 were free cysteines, and Cys51 was largely converted to formylglycine (>70 %). A successful methodology has been developed, which can be routinely used to determine these difficult-to-resolve disulfide linkages, ensuring drug function and stability.

  4. Responses of non-starch polysaccharide-degrading enzymes on digestibility and performance of growing pigs fed a diet based on corn, soya bean meal and Chinese double-low rapeseed meal.

    PubMed

    Fang, Z F; Peng, J; Liu, Z L; Liu, Y G

    2007-08-01

    This study was conducted to investigate the effect of two distinct enzyme preparations on nutrients' digestibility and growth performance of growing pigs fed diets based on corn, soya bean meal and Chinese double-low rapeseed meal (DLRM). The two enzyme preparations were Enzyme R, a preparation extracted from fermentation of a non-GMO fungus Penicillum funiculosum, developed for multi-grain and multi-animal species; and Enzyme P, a xylanase preparation from Trichoderma longibrachiatum, for pigs fed corn-based diets only. Both enzymes were tested at 0, 0.25 and 0.50 g/kg feed using 70 crossbred male pigs (Large Yorkshire x Landrace) in five dietary treatments and seven replicates in each treatment, for growth period from 27 to 68 kg live weight in 49 days. Results showed that the supplementation of both enzymes (1) increased total-tract digestibility of dietary energy from 77.5% (control) to 81.4% (Enzyme R, p < 0.05) and 81.9% (Enzyme P, p < 0.05); of neutral detergent fibre from 41.0% (control) to 57.8% (Enzyme R, p < 0.05) and 60.0% (Enzyme P, p < 0.05); (2) improved average daily gain from 786 g (control) to 829 g (Enzyme R, p < 0.05) and 846 g (Enzyme P, p < 0.05); and numerical increases in feed intake from 1.96 kg/pig/day (control) to 2.01 (Enzyme R) and 2.00 (p > 0.05) and feed conversion ratio from 2.50 (control) to 2.42 (Enzyme R) and 2.36 (Enzyme P, p < 0.05); (3) there was a dose response but no significant differences were observed in enzyme efficacy between the two enzyme preparations. The present study demonstrated beneficial effects of applying xylanase-based enzymes to improve feeding values of pig diets based on corn, soya bean meal and DLRM. PMID:17615009

  5. Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers.

    PubMed

    Li, Hua-li; Li, Zong-jun; Wei, Zhong-shan; Liu, Ting; Zou, Xiao-zuo; Liao, Yong; Luo, Yu

    2015-12-01

    This study investigates the long-term effects of oral tea polyphenols (TPs) and Lactobacillus brevis M8 (LB) on biochemical parameters, digestive enzymes, and cytokines expression in broilers. In experiment 1, 240 broiler chickens were selected to investigate the effects of 0.06 g/kg body weight (BW) TP and 1.0 ml/kg BW LB on broilers; in experiment 2, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of TP (0.03, 0.06, and 0.09 g/kg BW) combined with 1.0 ml/kg BW LB on broilers; in experiment 3, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of LB (0.5, 1.0, and 1.5 ml/kg BW) combined with 0.06 g/kg BW TP on broilers. The results showed that TP and LB affected serum biochemical parameters, and TP reduced serum cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) abundances in a dosage-dependent manner (P<0.05) on Day 84. Meanwhile, broilers fed a diet supplemented with TP or LB had a lower intestinal lipase activity on Day 84 compared with the control group (P<0.05). Middle and high dosages of TP increased pancreatic lipase and proventriculus pepsin activities (P<0.05). Also middle and high dosages of LB significantly enhanced pancreatic lipase activity (P<0.05), while high LB supplementation inhibited intestinal trypsase (P<0.05) on Day 84. Furthermore, both TP and LB reduced intestinal cytokine expression and nuclear factor-κ B (NF-κB) mRNA level on Days 56 and 84. In conclusion, long-term treatment of TP and LB improved lipid metabolism and digestive enzymes activities, and affected intestinal inflammatory status, which may be associated with the NF-κB signal. PMID:26642185

  6. Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers

    PubMed Central

    Li, Hua-li; Li, Zong-jun; Wei, Zhong-shan; Liu, Ting; Zou, Xiao-zuo; Liao, Yong; Luo, Yu

    2015-01-01

    This study investigates the long-term effects of oral tea polyphenols (TPs) and Lactobacillus brevis M8 (LB) on biochemical parameters, digestive enzymes, and cytokines expression in broilers. In experiment 1, 240 broiler chickens were selected to investigate the effects of 0.06 g/kg body weight (BW) TP and 1.0 ml/kg BW LB on broilers; in experiment 2, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of TP (0.03, 0.06, and 0.09 g/kg BW) combined with 1.0 ml/kg BW LB on broilers; in experiment 3, 180 broiler chickens were assigned randomly to three groups to investigate the effects of different dosages of LB (0.5, 1.0, and 1.5 ml/kg BW) combined with 0.06 g/kg BW TP on broilers. The results showed that TP and LB affected serum biochemical parameters, and TP reduced serum cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) abundances in a dosage-dependent manner (P<0.05) on Day 84. Meanwhile, broilers fed a diet supplemented with TP or LB had a lower intestinal lipase activity on Day 84 compared with the control group (P<0.05). Middle and high dosages of TP increased pancreatic lipase and proventriculus pepsin activities (P<0.05). Also middle and high dosages of LB significantly enhanced pancreatic lipase activity (P<0.05), while high LB supplementation inhibited intestinal trypsase (P<0.05) on Day 84. Furthermore, both TP and LB reduced intestinal cytokine expression and nuclear factor-κ B (NF-κB) mRNA level on Days 56 and 84. In conclusion, long-term treatment of TP and LB improved lipid metabolism and digestive enzymes activities, and affected intestinal inflammatory status, which may be associated with the NF-κB signal. PMID:26642185

  7. The narrow substrate specificity of human tyrosine aminotransferase--the enzyme deficient in tyrosinemia type II.

    PubMed

    Sivaraman, Sharada; Kirsch, Jack F

    2006-05-01

    Human tyrosine aminotransferase (hTATase) is the pyridoxal phosphate-dependent enzyme that catalyzes the reversible transamination of tyrosine to p-hydrophenylpyruvate, an important step in tyrosine metabolism. hTATase deficiency is implicated in the rare metabolic disorder, tyrosinemia type II. This enzyme is a member of the poorly characterized Igamma subfamily of the family I aminotransferases. The full length and truncated forms of recombinant hTATase were expressed in Escherichia coli, and purified to homogeneity. The pH-dependent titration of wild-type reveals a spectrum characteristic of family I aminotransferases with an aldimine pK(a) of 7.22. I249A mutant hTATase exhibits an unusual spectrum with a similar aldimine pK(a) (6.85). hTATase has very narrow substrate specificity with the highest enzymatic activity for the Tyr/alpha-ketoglutarate substrate pair, which gives a steady state k(cat) value of 83 s(-1). In contrast there is no detectable transamination of aspartate or other cosubstrates. The present findings show that hTATase is the only known aminotransferase that discriminates significantly between Tyr and Phe: the k(cat)/K(m) value for Tyr is about four orders of magnitude greater than that for Phe. A comparison of substrate specificities of representative Ialpha and Igamma aminotransferases is described along with the physiological significance of the discrimination between Tyr and Phe by hTATase as applied to the understanding of the molecular basis of phenylketonuria.

  8. A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma1

    PubMed Central

    Drake, Penelope M.; Schilling, Birgit; Niles, Richard K.; Braten, Miles; Johansen, Eric; Liu, Haichuan; Lerch, Michael; Sorensen, Dylan J.; Li, Bensheng; Allen, Simon; Hall, Steven C.; Witkowska, H. Ewa; Regnier, Fred E.; Gibson, Bradford W.; Fisher, Susan J.

    2011-01-01

    Glycans are cell-type specific, post-translational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low ng/mL levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines. PMID:20705048

  9. Glutaraldehyde cross-linking of lectins to marker enzymes: protection of binding site by specific sugars.

    PubMed

    Appukuttan, P S; Chacko, B K; Geetha, M; Annamma, K I; Mathai, J

    2000-04-01

    The role of bound specific sugars in protecting the sugar binding activity of several galactose binding proteins during their covalent conjugation to horse radish peroxidase by glutaraldehyde-mediated cross-linking was examined by: a) affinity matrix binding of the conjugate, b) enzyme linked lectin assay and c) hemagglutination assay. During conjugation using 1% glutaraldehyde, protection of jack fruit (Artocarpus integrifolia) lectin (jacalin) activity depended on concentration of specific sugar present during conjugation; optimum protection was offered by 50 mM galactose. This indicated the presence of one or more primary groups at the binding site of jacalin, which is (are) essential for sugar binding. On the other hand, such essential amino group(s) was not indicated at the sugar binding site of the peanut lectin, bovine heart galectin or of the human serum anti alpha-galactoside antibody, since exclusion of sugar during their conjugation to HRP did not diminish sugar binding activity. The differential behavior is discussed in the light of reported differences in sugar specificities. Results indicated that sugar mediated blocking of active site may be used in characterization of the latter in lectins.

  10. Digestive Diseases

    MedlinePlus

    ... cells and provide energy. This process is called digestion. Your digestive system is a series of hollow ... are also involved. They produce juices to help digestion. There are many types of digestive disorders. The ...

  11. Aspects of Protein Chemistry. Part I: Some Recent Insights Into Enzyme Specificity

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1976-01-01

    Describes some recent advances in enzyme structure and action, including a description of enzyme-substrate interaction. Discusses the methods for determination of amino acid sequences in proteins; the actions of chymotrypsin, trypsin, and elastase; and details of the enzyme-substrate complex derived from kinetic studies and x-ray diffraction…

  12. Inhibition of carbohydrate and lipid digestive enzymes activities by Zygophyllum album extracts: effect on blood and pancreas inflammatory biomarkers in alloxan-induced diabetic rats.

    PubMed

    Mnafgui, Kais; Kchaou, Mouna; Hamden, Khaled; Derbali, Fatma; Slama, Sadok; Nasri, Mbarek; Salah, Hichem Ben; Allouche, Noureddine; Elfeki, Abdelfattah

    2014-03-01

    Zygophyllum album has been used as herbal medicine in Southern Tunisia to treat several diseases such as diabetes mellitus. This study is aimed to reveal the mechanisms underlying the antihyperglycemic potential, the anti-inflammatory and the protective hematological proprieties of this plant in diabetic rats. The inhibition of the α-amylase activity by different solvent-extract fractions of Z. album was tested in vitro. The fraction endowed with the powerful inhibitory activity against α-amylase was administered to surviving diabetic rats for 30 days. Data from in vitro indicated that each extract from the medicinal plant showed moderate inhibition of α-amylase enzyme except the ethyl acetate extract which was ineffective. The powerful inhibition was achieved by ethanol extract of Z. album (EZA) with an IC50 of 43.48 μg/ml as compared to acarbose (Acar) with an IC50 of 14.88 μg/ml. In vivo, the results showed that EZA decreased the α-amylase levels in serum, pancreas and intestine of diabetic rats by 40 %, 45 % and 46 %, respectively, associated with considerably reduction in blood glucose rate by 61 %. Moreover, the EZA helped to protect the structure and function of the β-cells. Interestingly, EZA had a potent anti-inflammatory effect which is manifested by decreases in CRP and TNF-α levels. Overall, a notable reduction in lipase activity both in serum and small intestine of treated diabetic rats resulted in the improvement of serum and liver lipids profile. Z. album showed a prominent antidiabetic effect via inhibition of carbohydrate and lipid digestive enzymes and ameliorated the inflammation and the disturbance of hematological biomarkers in diabetes.

  13. Effect of the dose of exogenous fibrolytic enzyme preparations on preingestive fiber hydrolysis, ruminal fermentation, and in vitro digestibility of bermudagrass haylage.

    PubMed

    Romero, J J; Zarate, M A; Adesogan, A T

    2015-01-01

    Our objectives were to evaluate the effects of the dose rates of 5 Trichoderma reesei and Aspergillus oryzae exogenous fibrolytic enzymes (EFE; 1A, 2A, 11C, 13D, and 15D) on in vitro digestibility, fermentation characteristics, and preingestive hydrolysis of bermudagrass haylage and to identify the optimal dose of each EFE for subsequent in vitro and in vivo studies. In experiment 1, EFE were diluted in citrate-phosphate buffer (pH 6) and applied in quadruplicate in each of 2 runs at 0× (control), 0.5×, 1×, 2×, and 3×; where 1× was the respective manufacturer-recommended dose (2.25, 2.25, 10, 15, and 15g of EFE/kg of dry matter). The suspension was incubated for 24h at 25°C and for a further 24h at 39°C after the addition of ruminal fluid. In experiment 2, a similar approach to that in experiment 1 was used to evaluate simulated preingestive effects, except that sodium azide (0.02% wt/vol) was added to the EFE solution. The suspension was incubated for 24h at 25°C and then 15mL of water was added before filtration to extract water-soluble compounds. For both experiments, data for each enzyme were analyzed separately as a completely randomized block design with a model that included effects of EFE dose, run, and their interaction. In experiment 1, increasing the EFE dose rate nonlinearly increased the DM digestibility of 1A, 2A, 11C, and 13D and the neutral detergent fiber digestibility (NDFD) of 1A, 2A, 11C, and 13D. Optimal doses of 1A, 2A, 11C, 13D, and 15D, as indicated by the greatest increases in NDFD at the lowest dose tested, were 2×, 2×, 1×, 0.5×, and 0.5×, respectively. Increasing the dose rate of 2A, 11C, and 13D nonlinearly increased concentrations of total volatile fatty acids and propionate (mM), decreased their acetate-to-propionate ratios and linearly decreased those of samples treated with 1A and 15D. In experiment 2, increasing the dose rate of each EFE nonlinearly decreased concentrations of netural detergent fiber; also, increasing

  14. Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

    PubMed Central

    2011-01-01

    Background Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line. Results Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination. Conclusions The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited. PMID:21599988

  15. A Comparison Effect of Copper Nanoparticles versus Copper Sulphate on Juvenile Epinephelus coioides: Growth Parameters, Digestive Enzymes, Body Composition, and Histology as Biomarkers

    PubMed Central

    Wang, Tao; Long, Xiaohua; Cheng, Yongzhou; Liu, Zhaopu; Yan, Shaohua

    2015-01-01

    Copper nanoparticles (Cu-NPs) are components in numerous commercial products, but little is known about their potential hazard in the marine environments. In this study the effects of Cu-NPs and soluble Cu on juvenile Epinephelus coioides were investigated. The fish were exposed in triplicate to control, 20 or 100 µg Cu L−1 as either copper sulphate (CuSO4) or Cu-NPs for 25 days. The growth performance decreased with increasing CuSO4 or Cu-NPs dose, more so in the CuSO4 than Cu-NPs treatment. Both forms of Cu exposure inhibited activities of digestive enzymes (protease, amylase, and lipase) found in liver, stomach, and intestine. With an increase in CuSO4 and Cu-NPs dose, crude protein and crude lipid decreased, but ash and moisture increased, more so in the CuSO4 than Cu-NPs treatment. The Cu-NPs treatment caused pathologies in liver and gills, and the kinds of pathologies were broadly of the same type as with CuSO4. With an increase in CuSO4 or Cu-NPs dose, the total polyunsaturated fatty acids decreased, but total monounsaturated fatty acids and total saturated fatty acids increased compared to control. Overall, these data showed that Cu-NPs had a similar type of toxic effects as CuSO4, but soluble Cu was more toxic than Cu-NPs. PMID:26527479

  16. Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme

    SciTech Connect

    Muzykantov, V.R.; Puchnina, E.A.; Atochina, E.N.; Hiemish, H.; Slinkin, M.A.; Meertsuk, F.E.; Danilov, S.M. )

    1991-03-01

    The biodistribution of radiolabeled monoclonal antibody (Mab) to angiotensin-converting enzyme (ACE) was examined in normal and endotoxin-treated rats. Endotoxin administration at a dose of 4 mg/kg induced mild or middle pulmonary edema. The ACE activity in lung homogenate remained virtually unchanged, while the activity of serum ACE increased 15 hr after endotoxin infusion. In normal rats, anti-ACE Mab accumulates specifically in the lung after i.v. injection. Endotoxin injection induces reduction of specific pulmonary uptake of this antibody. Even in non-edematous endotoxemia, the accumulation of anti-ACE Mab antibody (Mab 9B9) decreased from 19.02 to 11.91% of ID/g of tissue without any change in accumulation of control nonspecific IgG. The antibody distribution in other organs and its blood level were almost the same as in the control. In a case of endotoxemia accompanied by increased microvascular permeability, the lung accumulation of Mab 9B9 was reduced to 9.17% of ID/g of tissue, while the accumulation of nonspecific IgG increased to 1.44% versus 0.89% in the control.

  17. Structural basis for specificity and promiscuity in a carrier protein/enzyme system from the sulfur cycle.

    PubMed

    Grabarczyk, Daniel B; Chappell, Paul E; Johnson, Steven; Stelzl, Lukas S; Lea, Susan M; Berks, Ben C

    2015-12-29

    The bacterial Sox (sulfur oxidation) pathway is an important route for the oxidation of inorganic sulfur compounds. Intermediates in the Sox pathway are covalently attached to the heterodimeric carrier protein SoxYZ through conjugation to a cysteine on a protein swinging arm. We have investigated how the carrier protein shuttles intermediates between the enzymes of the Sox pathway using the interaction between SoxYZ and the enzyme SoxB as our model. The carrier protein and enzyme interact only weakly, but we have trapped their complex by using a "suicide enzyme" strategy in which an engineered cysteine in the SoxB active site forms a disulfide bond with the incoming carrier arm cysteine. The structure of this trapped complex, together with calorimetric data, identifies sites of protein-protein interaction both at the entrance to the enzyme active site tunnel and at a second, distal, site. We find that the enzyme distinguishes between the substrate and product forms of the carrier protein through differences in their interaction kinetics and deduce that this behavior arises from substrate-specific stabilization of a conformational change in the enzyme active site. Our analysis also suggests how the carrier arm-bound substrate group is able to outcompete the adjacent C-terminal carboxylate of the carrier arm for binding to the active site metal ions. We infer that similar principles underlie carrier protein interactions with other enzymes of the Sox pathway.

  18. Influence of nutrient restriction and melatonin supplementation of pregnant ewes on maternal and fetal pancreatic digestive enzymes and insulin-containing clusters.

    PubMed

    Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C

    2016-03-01

    Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses

  19. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma

    SciTech Connect

    Hong Jie; Zhao Yingchun; Huang Weida . E-mail: whuang@fudan.edu.cn

    2006-09-22

    Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma.

  20. Effects of exogenous enzyme supplementation to corn- and soybean meal-based or complex diets on growth performance, nutrient digestibility, and blood metabolites in growing pigs.

    PubMed

    Jo, J K; Ingale, S L; Kim, J S; Kim, Y W; Kim, K H; Lohakare, J D; Lee, J H; Chae, B J

    2012-09-01

    Two experiments were conducted to determine the effects of dietary supplementation of exogenous enzymes on growth performance, apparent total tract digestibility (ATTD) of energy and nutrients, blood metabolites, fecal VFA, and fecal ammonia-N in growing pigs (Sus scrofa) fed a corn (Zea mays L.)- and soybean [Glycine max (L.) Merr.] meal (SBM)-based diet. In Exp. 1, 240 growing barrows (initial BW: 55.6 ± 0.9 kg) were randomly allotted to 5 treatments on the basis of BW. There were 4 replicates in each treatment with 12 pigs per replicate. The 5 treatments consisted of a corn-SBM-based control diet and 4 additional diets were similar to the control diet, with the exception that 0.05% β-mannanase (M), α-amylase + β-mannanase (AM), β-mannanase + protease (MPr), or α-amylase + β-mannanase + protease (AMP) was added to the diets, which were fed for 28 d. Pigs fed the AM, MPr, or AMP diet had greater (P < 0.05) ADG than pigs fed the control diet. Pigs fed the AMP diet also had greater (P < 0.05) ADG than pigs fed the M, AM, or MPr diet. Pigs fed the AMP diet had greater (P < 0.05) G:F than pigs fed the control diet. The G:F of the pigs fed the M, AM, or MPr diet were not different (P > 0.05) from the G:F in pigs fed the AMP or control diet. The ADFI, ATTD of nutrients, blood metabolites, and fecal VFA and ammonia-N concentrations were not different among treatments. In Exp. 2, 192 growing barrows (initial BW: 56.9 ± 1.0 kg) were allotted to 4 treatments. There were 4 replicates in each treatment with 12 pigs per replicate. Pigs were fed a corn-SBM-based diet (CSD) or a complex diet (CD) that contained corn, SBM, 3% rapeseed (Brassica napus L.) meal, 3% copra (Cocos nucifera L.) meal, and 3% palm (Elaeis guineensis Jacq.) kernel meal. Each diet was prepared without exogenous enzymes or with 0.05% AMP and all diets were fed for 28 d. The ADG and G:F of pigs fed the CSD were greater (P < 0.05) than pigs fed the CD. However, the type of diet had no effect on the

  1. Structure of UBE2Z Enzyme Provides Functional Insight into Specificity in the FAT10 Protein Conjugation Machinery*

    PubMed Central

    Schelpe, Julien; Monté, Didier; Dewitte, Frédérique; Sixma, Titia K.; Rucktooa, Prakash

    2016-01-01

    FAT10 conjugation, a post-translational modification analogous to ubiquitination, specifically requires UBA6 and UBE2Z as its activating (E1) and conjugating (E2) enzymes. Interestingly, these enzymes can also function in ubiquitination. We have determined the crystal structure of UBE2Z and report how the different domains of this E2 enzyme are organized. We further combine our structural data with mutational analyses to understand how specificity is achieved in the FAT10 conjugation pathway. We show that specificity toward UBA6 and UBE2Z lies within the C-terminal CYCI tetrapeptide in FAT10. We also demonstrate that this motif slows down transfer rates for FAT10 from UBA6 onto UBE2Z. PMID:26555268

  2. Structure of UBE2Z Enzyme Provides Functional Insight into Specificity in the FAT10 Protein Conjugation Machinery.

    PubMed

    Schelpe, Julien; Monté, Didier; Dewitte, Frédérique; Sixma, Titia K; Rucktooa, Prakash

    2016-01-01

    FAT10 conjugation, a post-translational modification analogous to ubiquitination, specifically requires UBA6 and UBE2Z as its activating (E1) and conjugating (E2) enzymes. Interestingly, these enzymes can also function in ubiquitination. We have determined the crystal structure of UBE2Z and report how the different domains of this E2 enzyme are organized. We further combine our structural data with mutational analyses to understand how specificity is achieved in the FAT10 conjugation pathway. We show that specificity toward UBA6 and UBE2Z lies within the C-terminal CYCI tetrapeptide in FAT10. We also demonstrate that this motif slows down transfer rates for FAT10 from UBA6 onto UBE2Z. PMID:26555268

  3. Single-dilution enzyme-linked immunosorbent assay for quantification of antigen-specific salmonid antibody

    USGS Publications Warehouse

    Alcorn, S.W.; Pascho, R.J.

    2000-01-01

    An enzyme-linked immunosorbent assay (ELISA) was developed on the basis of testing a single dilution of serum to quantify the level of antibody to the p57 protein of Renibaclerium salmoninarum in sockeye salmon (Oncorhynchus nerka). The levels of antibody were interpolated from a standard curve constructed by relating the optical densities (OD) produced by several dilutions of a high-titer rainbow trout (O. mykiss) antiserum to the p57 protein. The ELISA OD values produced by as many as 36 test sera on each microplate were compared with the standard curve to calculate the antigen-specific antibody activity. Repeated measurements of 36 samples on 3 microplates on each of 6 assay dates indicated that the mean intraassay coefficient of variation (CV) was 6.68% (range, 0-23%) and the mean interassay CV was 8.29% (range, 4-16%). The antibody levels determined for the serum sample from 24 sockeye salmon vaccinated with a recombinant p57 protein generally were correlated with the levels determined by endpoint titration (r2 = 0.936) and with results from another ELISA that was based on extrapolation of antibody levels from a standard curve (r2 = 0.956). The single-dilution antibody ELISA described here increases the number of samples that can be tested on each microplate compared with immunoassays based on analysis of several dilutions of each test serum. It includes controls for interassay standardization and can be used to test fish weighing <3 g.

  4. A novel pH–enzyme-dependent mesalamine colon-specific delivery system

    PubMed Central

    Jin, Lei; Ding, Yi-cun; Zhang, Yu; Xu, Xiao-qing; Cao, Qin

    2016-01-01

    The aim of the present study was to design a new pH–enzyme double-dependent mesalamine colon-specific delivery system. The drug release behaviors in vitro and pharmacokinetics and biodistribution in vivo were further evaluated. The mean particle diameters of mesalamine-coated microparticles were 312.2 µm. In vitro, a small amount of mesalamine was released in HCl at a pH of 1.2 and PBS medium at a pH of 7.4 for 5 hours, and 71% of the entrapped mesalamine was further released during the subsequent 20 hours of incubation. A greater area under the plasma concentration–time curve (AUC)0–t was obtained for the coated microparticles (1.9-fold) compared to the suspensions group, which indicated that the encapsulated mesalamine had mostly been absorbed in rats over the period of 12 hours. The AUC0–t of the coated microparticles in colon was 2.63-fold higher compared to the suspensions (P<0.05). Hence, mesalamine-coated microparticles are considered to maintain the drug concentration within target ranges for a long period of time. PMID:27382255

  5. Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting.

    PubMed

    Bédard, Nathalie; Jammoul, Samer; Moore, Tamara; Wykes, Linda; Hallauer, Patricia L; Hastings, Kenneth E M; Stretch, Cynthia; Baracos, Vickie; Chevalier, Stéphanie; Plourde, Marie; Coyne, Erin; Wing, Simon S

    2015-09-01

    The ubiquitin system plays a critical role in muscle wasting. Previous work has focused on the roles of ubiquitination. However, a role for deubiquitination in this process has not been established. Because ubiquitin-specific protease (USP)19 deubiquitinating enzyme is induced in skeletal muscle in many catabolic conditions, we generated USP19 knockout (KO) mice. These mice lost less muscle mass than wild-type (WT) animals in response to glucocorticoids, a common systemic cause of muscle atrophy as well as in response to denervation, a model of disuse atrophy. KO mice retained more strength and had less myofiber atrophy with both type I and type IIb fibers being protected. Rates of muscle protein synthesis were similar in WT and KO mice, suggesting that the sparing of atrophy was attributed to suppressed protein degradation. Consistent with this, expression of the ubiquitin ligases MuRF1 and MAFbx/atrogin-1 as well as several autophagy genes was decreased in the muscles of catabolic KO mice. Expression of USP19 correlates with that of MuRF1 and MAFbx/atrogin-1 in skeletal muscles from patients with lung cancer or gastrointestinal cancer, suggesting that USP19 is involved in human muscle wasting. Inhibition of USP19 may be a useful approach to the treatment of many muscle-wasting conditions.

  6. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    SciTech Connect

    Tasayco, M.L.; Prestwich, G.D. )

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.

  7. Structural basis for specificity and promiscuity in a carrier protein/enzyme system from the sulfur cycle

    PubMed Central

    Grabarczyk, Daniel B.; Chappell, Paul E.; Johnson, Steven; Stelzl, Lukas S.; Berks, Ben C.

    2015-01-01

    The bacterial Sox (sulfur oxidation) pathway is an important route for the oxidation of inorganic sulfur compounds. Intermediates in the Sox pathway are covalently attached to the heterodimeric carrier protein SoxYZ through conjugation to a cysteine on a protein swinging arm. We have investigated how the carrier protein shuttles intermediates between the enzymes of the Sox pathway using the interaction between SoxYZ and the enzyme SoxB as our model. The carrier protein and enzyme interact only weakly, but we have trapped their complex by using a “suicide enzyme” strategy in which an engineered cysteine in the SoxB active site forms a disulfide bond with the incoming carrier arm cysteine. The structure of this trapped complex, together with calorimetric data, identifies sites of protein–protein interaction both at the entrance to the enzyme active site tunnel and at a second, distal, site. We find that the enzyme distinguishes between the substrate and product forms of the carrier protein through differences in their interaction kinetics and deduce that this behavior arises from substrate-specific stabilization of a conformational change in the enzyme active site. Our analysis also suggests how the carrier arm-bound substrate group is able to outcompete the adjacent C-terminal carboxylate of the carrier arm for binding to the active site metal ions. We infer that similar principles underlie carrier protein interactions with other enzymes of the Sox pathway. PMID:26655737

  8. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of intestinal alpha-glucosidases and pancreatic alpha-amylases is an approach to controlling blood glucose and serum insulin levels in individuals with Type II diabetes. The two human intestinal glucosidases are maltase-glucoamylase and sucrase-isomaltase. Each incorporates two family 31 ...

  9. Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation.

    PubMed

    Santa-Cruz, Diego M; Pacienza, Natalia A; Zilli, Carla G; Tomaro, Maria L; Balestrasse, Karina B; Yannarelli, Gustavo G

    2014-12-01

    Antioxidant enzymes play a key role in plant tolerance to different types of stress, including ultraviolet-B (UV-B) radiation. Here we report that nitric oxide (NO) enhances antioxidant enzymes gene expression and increases the activity of specific isoforms protecting against UV-B radiation. Pre-treatments with sodium nitroprussiate (SNP), a NO-donor, prevented lipid peroxidation, ion leakage and H2O2 and superoxide anion accumulation in leaves of UV-B-treated soybean plants. Transcripts levels of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were significantly induced by SNP. These data correlated with the enhancement of particular antioxidant enzyme isoforms, such as one CAT isoform and two APX isoforms. Moreover, SNP induced the expression of three new isoforms of SOD, identified as Mn-SOD subclass. Further results showed that total activities of SOD, CAT and APX significantly increased by 2.2-, 1.8- and 2.1-fold in SNP-treated plants compared to controls, respectively. The protective effect of SNP against UV-B radiation was negated by addition of the specific NO scavenger cPTIO, indicating that NO released by SNP mediates the enhancement of antioxidant enzymes activities. In conclusion, NO is involved in the signaling pathway that up-regulates specific isoforms of antioxidant enzymes protecting against UV-B-induced oxidative stress.

  10. Biochemical Characterization of a Structure-Specific Resolving Enzyme from Sulfolobus islandicus Rod-Shaped Virus 2

    PubMed Central

    Gardner, Andrew F.; Guan, Chudi; Jack, William E.

    2011-01-01

    Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70°C–80°C) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal requirements for four-way junction cleavage, and substrate specificity were determined. SIRV2 Hjr cleaves four-way DNA junctions with a preference for cleavage of exchange strand pairs, in contrast to host-derived resolving enzymes, suggesting fundamental differences in substrate recognition and cleavage among closely related Sulfolobus resolving enzymes. Unlike other viral resolving enzymes, such as T4 endonuclease VII or T7 endonuclease I, that cleave branched DNA replication intermediates, SIRV2 Hjr cleavage is specific to four-way DNA junctions and inactive on other branched DNA molecules. In addition, a specific interaction was detected between SIRV2 Hjr and the SIRV2 virion body coat protein (SIRV2gp26). Based on this observation, a model is proposed linking SIRV2 Hjr genome resolution to viral particle assembly. PMID:21858199

  11. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Asaikkutti, Annamalai; Bhavan, Periyakali Saravana; Vimala, Karuppaiya; Karthik, Madhayan; Cheruparambath, Praseeja

    2016-05-01

    The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18 mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system. PMID:27049122

  12. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Asaikkutti, Annamalai; Bhavan, Periyakali Saravana; Vimala, Karuppaiya; Karthik, Madhayan; Cheruparambath, Praseeja

    2016-05-01

    The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50 nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18 mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18 mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18 mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16 mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16 mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18 mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16 mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16 mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system.

  13. Moving college students to a better understanding of substrate specificity of enzymes through utilizing multimedia pre-training and an interactive enzyme model

    NASA Astrophysics Data System (ADS)

    Saleh, Mounir R.

    Scientists' progress in understanding enzyme specificity uncovered a complex natural phenomenon. However, not all of the currently available biology textbooks seem to be up to date on this progress. Students' understanding of how enzymes work is a core requirement in biochemistry and biology tertiary education. Nevertheless, current pre-college science education does not provide students with enough biochemical background to enable them to understand complex material such as this. To bridge this gap, a multimedia pre-training presentation was prepared to fuel the learner's prior knowledge with discrete facts necessary to understand the presented concept. This treatment is also known to manage intrinsic cognitive load during the learning process. An interactive instructional enzyme model was also built to motivate students to learn about substrate specificity of enzymes. Upon testing the effect of this combined treatment on 111 college students, desirable learning outcomes were found in terms of cognitive load, motivation, and achievement. The multimedia pre-training group reported significantly less intrinsic cognitive load, higher motivation, and demonstrated higher transfer performance than the control and post-training groups. In this study, a statistical mediation model is also proposed to explain how cognitive load and motivation work in concert to foster learning from multimedia pre-training. This type of research goes beyond simple forms of "what works" to a deeper understanding of "how it works", thus enabling informed decisions for multimedia instructional design. Multimedia learning plays multiple roles in science education. Therefore, science learners would be some of the first to benefit from improving multimedia instructional design. Accordingly, complex scientific phenomena can be introduced to college students in a motivating, informative, and cognitively efficient learning environment.

  14. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    PubMed Central

    McAllister, Katherine A.; Yasseen, Akeel A.; McKerr, George; Downes, C. S.; McKelvey-Martin, Valerie J.

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  15. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair.

    PubMed

    McAllister, Katherine A; Yasseen, Akeel A; McKerr, George; Downes, C S; McKelvey-Martin, Valerie J

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1(+) and TK1(-) clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1(+) compared to TK1(-) cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK(+) cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1(+) cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  16. Human c-fgr induces a monocyte-specific enzyme in NIH 3T3 cells

    SciTech Connect

    Inoue, Kazushi; Akiyama, Tetsu; Toyoshima, Kumao ); Wongsasant, Budsaba )

    1991-12-01

    The mutant c-fgr protein (p58{sup c-fgr/F523}) containing Phe-523 instead of Tyr-523 exhibited transforming activity in NIH 3T3 cells like other protein-tyrosine kinases of the src family, but normal p58{sup c-fgr} (p58{sup c-fgr/wt}) did not. The mutant protein showed tyrosine kinase activity threefold higher than that of the normal protein in vitro. Surprisingly, transfection of the normal c-fgr gene into NIH 3T3 cells resulted in induction of sodium fluoride (NaF)-sensitive {alpha}-naphthyl butyrate esterase ({alpha}-NBE), marker enzyme of cells of monocytic origin, which was not induced in v-src-, v-fgr-, or lyn-transfected NIH 3T3 cells. The NaF-sensitive {alpha}-NBE induced in c-fgr transfectants was shown by isoelectric focusing to have a pI of 5.2 to 5.4, a range which was the same as those for thioglycolate-induced murine peritoneal macrophages and 1{alpha}, 25-dihydroxyvitamin D{sub 3}-treated WEHI-3B cells. Immunoblotting studies with antophosphotyrosine antibodies revealed that 58-, 62-, 75-, 120-, 200-, and 230-kDa proteins were commonly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in NIH 3T3 cells transfected with normal and mutated c-fgr, while 95-kDa protein was significantly phosphorylated at tyrosine residues in cells transfected with the mutated c-fgr. These findings suggest that tyrosine phosphorylation of specific cellular substrate proteins is important in induction of NaF-sensitive {alpha}-NBE and cell transformation by p58{sup c-fgr}.

  17. Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum.

    PubMed

    Adel Ahmed, Heba; Azzazy, Hassan M E

    2013-11-15

    A power-free, portable "Chip EIA" was designed to render the popular Enzyme Linked Immunosorbent Assay (ELISA) more suitable for point-of-care testing. A number of microfluidic platforms have enabled miniaturization of the conventional microtitre plate ELISA, however, they require external pumping systems, valves, and electric power supply. The Chip EIA platform has eliminated the need for pumps and valves through utilizing a simple permanent magnet and magnetic nanoparticles. The magnetic nanoparticles act as solid support to capture the target and are then moved through chambers harboring different reagents necessary to perform a sandwich ELISA. The use of magnetic nanoparticles increases the volume-to-surface ratio reducing the assay time to 30 min. Changing the color of horseradish peroxidase (HRP) substrate to green indicates a positive result. In addition, a quantitative read-out was obtained through the use of cellphone camera imaging and analyzing the images using Matlab®. Cell phones, including smart ones, are readily available almost everywhere. The Chip EIA device was used to assay total prostate specific antigen (tPSA) in 19 serum samples. The PSA Chip EIA was tested for accuracy, precision, repeatability, and the results were correlated to the commercial Beckman Colter, Hybritech immunoassay® for determination of tPSA in serum samples with a Pearson correlation coefficient (R(2)=0.96). The lower detection limit of the PSA Chip EIA was 3.2 ng/mL. The assay has 88.9% recovery and good reproducibility (% CV of 6.5). We conclude that the developed Chip EIA can be used for detection of protein biomarkers in biological specimens.

  18. Restricted Substrate Specificity for the Geranylgeranyltransferase-I Enzyme in Cryptococcus neoformans: Implications for Virulence

    PubMed Central

    Selvig, Kyla; Ballou, Elizabeth R.; Nichols, Connie B.

    2013-01-01

    Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1). Classically, the variable (X) amino acid determines whether a protein will be an Ftase or Ggtase-I substrate, with Ggtase-I substrates often containing CaaL motifs. In this study, we identify the gene encoding the β subunit of Ggtase-I (CDC43) and demonstrate that Ggtase-mediated activity is not essential. However, Cryptococcus neoformans CDC43 is important for thermotolerance, morphogenesis, and virulence. We find that Ggtase-I function is required for full membrane localization of Rho10 and the two Cdc42 paralogs (Cdc42 and Cdc420). Interestingly, the related Rac and Ras proteins are not mislocalized in the cdc43Δ mutant even though they contain similar CaaL motifs. Additionally, the membrane localization of each of these GTPases is dependent on the prenylation of the CaaX cysteine. These results indicate that C. neoformans CaaX prenyltransferases may recognize their substrates in a unique manner from existing models of prenyltransferase specificity. It also suggests that the C. neoformans Ftase, which has been shown to be more important for C. neoformans proliferation and viability, may be the primary prenyltransferase for proteins that are typically geranylgeranylated in other species. PMID:24014765

  19. Digestive diseases

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007447.htm Digestive diseases To use the sharing features on this page, please enable JavaScript. Digestive diseases are disorders of the digestive tract, which ...

  20. A Study in Enzyme Kinetics Using an Ion-Specific Electrode.

    ERIC Educational Resources Information Center

    Turchi, Sandra; And Others

    1989-01-01

    Describes an undergraduate biochemistry laboratory experiment on enzyme kinetics using the D-amino acid oxidase system and an ammonia electrode. Preparation of an ammonia standard curve, a sample preparation, and inhibition studies are discussed. (YP)

  1. The specific detection of foot-and-mouth disease virus whole particle antigen (140S) by enzyme labelled immunosorbent assay.

    PubMed

    Elzein, E M; Crowther, J R

    1979-08-01

    A solid-phase micro-enzyme-labelled immunosorbent assay (ELISA) using guinea pig antiserum against purified (140S) inactivated foot-and-mouth disease (FMD) virus has been used in a sandwich technique to specifically measure 140S virus in the presence of 12S material. PMID:222837

  2. Serine hydroxymethyltransferase from the cold adapted microorganism Psychromonas ingrahamii: a low temperature active enzyme with broad substrate specificity.

    PubMed

    Angelaccio, Sebastiana; Florio, Rita; Consalvi, Valerio; Festa, Guido; Pascarella, Stefano

    2012-01-01

    Serine hydroxymethyltransferase from the psychrophilic microorganism Psychromonas ingrahamii was expressed in Escherichia coli and purified as a His-tag fusion protein. The enzyme was characterized with respect to its spectroscopic, catalytic, and thermodynamic properties. The properties of the psychrophilic enzyme have been contrasted with the characteristics of the homologous counterpart from E. coli, which has been structurally and functionally characterized in depth and with which it shares 75% sequence identity. Spectroscopic measures confirmed that the psychrophilic enzyme displays structural properties almost identical to those of the mesophilic counterpart. At variance, the P. ingrahamii enzyme showed decreased thermostability and high specific activity at low temperature, both of which are typical features of cold adapted enzymes. Furthermore, it was a more efficient biocatalyst compared to E. coli serine hydroxymethyltransferase (SHMT) particularly for side reactions. Many β-hydroxy-α-amino acids are SHMT substrates and represent important compounds in the synthesis of pharmaceuticals, agrochemicals and food additives. Thanks to these attractive properties, this enzyme could have a significant potential for biotechnological applications.

  3. Comparison of specific methane yield of perennial ryegrass prepared by thermal drying versus non-thermal drying in small-scale batch digestion tests.

    PubMed

    Nolan, P; McEniry, J; Doyle, E M; O'Kiely, P

    2014-10-01

    Dried milled biomass samples are frequently utilised in small-scale batch digestion tests. However, herbage chemical composition can be altered by thermal drying, and this may affect specific methane (CH4) yields. Thus, the specific CH4 yield of herbage pre- and post-ensiling, prepared by two preparation methods were compared. Perennial ryegrass samples were either non-thermally dried (i.e. subject to cryogenic conditions, -196 °C) or thermally dried (40 °C), prior to milling. Specific CH4 yield was subsequently determined in a small-scale batch digestion test. Herbage pre-ensiling yielded 204 and 243 L CH4 kg(-1)VS(added) and herbage post-ensiling yielded 212 and 188 L CH4 kg(-1)VS(added) with non-thermal dried and thermal dried sample preparation methods, respectively. Due to opposing effects of thermal drying on CH4 yields of herbage either pre- or post-ensiling, it is not recommended to use thermal drying. Instead, it is recommended that non-thermal dried herbage samples are used in small-scale batch digestion tests.

  4. Plant rhizosphere species-specific stoichiometry and regulation of extracellular enzyme and microbial community structure

    NASA Astrophysics Data System (ADS)

    Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.

    2012-12-01

    control soil samples) were collected on day 28, 78, and 148 (N = 4 /sample period/species). Microbial community structure was quantified using the barcoded pyrosequencing protocols. We measured the potential activity of seven hydrolytic soil enzymes to represent the degradation of C, N, and P-rich substrates. Soil microbial C:N biomass responses to specific plant rhizospheres (MBC and MBN) were measured using the chloroform fumigation extraction method followed by DOC & N analysis. Fourier Transform Infrared Spectroscopy was used to assess differences in plant and soil C chemistry. We found that species specific rhizospheres are characteristic of very different soil chemical, edaphic, and microbial properties. These plant species act as gateways that introduce variability into soil C, N, and P ecosystem functional dynamics directly facilitated by rhizosphere - microbe associations. Our results suggest that nutrient stoichiometry within plant species' rhizospheres is a useful tool for identifying intra-ecosystem functional patterns. By identifying what and how specific species rhizospheres differ among the overall plant community, we can better predict how below-ground microbial community function and subsequent ecosystem processes can be influenced by alterations in plant community shifts based on the rhizosphere effects.

  5. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes.

    PubMed

    Jeurissen, Suzanne M F; Punt, Ans; Boersma, Marelle G; Bogaards, Jan J P; Fiamegos, Yiannis C; Schilter, Benoit; van Bladeren, Peter J; Cnubben, Nicole H P; Rietjens, Ivonne M C M

    2007-05-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1'-hydroxyestragole were identified and compared to the enzymes of importance for 1'-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that all enzymes tested, except P450 2C8, are intrinsically able to 1'-hydroxylate estragole. Experiments with Gentest microsomes, expressing P450 enzymes to roughly average liver levels, indicated that P450 1A2, 2A6, 2C19, 2D6, and 2E1 might contribute to estragole 1'-hydroxylation in the human liver. Especially P450 1A2 is an important enzyme based on the correlation between P450 1A2 activity and estragole 1'-hydroxylation in human liver microsomal samples and inhibition of estragole 1'-hydroxylation by the P450 1A2 inhibitor alpha-naphthoflavone. Kinetic studies revealed that, at physiologically relevant concentrations of estragole, P450 1A2 and 2A6 are the most important enzymes for bioactivation in the human liver showing enzyme efficiencies (kcat/Km) of, respectively, 59 and 341 min-1 mM-1. Only at relatively high estragole concentrations, P450 2C19, 2D6, and 2E1 might contribute to some extent. Comparison to results from similar studies for safrole and methyleugenol revealed that competitive interactions between estragole and methyleugenol 1'-hydroxylation and between estragole and safrole 1'-hydroxylation are to be expected because of the involvement of, respectively, P450 1A2 and P450 2A6 in the bioactivation of these compounds. Furthermore, poor metabolizer phenotypes in P450 2A6 might diminish the chances on bioactivation of estragole and safrole, whereas lifestyle factors increasing P450 1A2 activities such as cigarette smoking and consumption of charbroiled food might increase those chances for estragole and methyleugenol.

  6. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    PubMed

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (P<0.01). Our results suggest that both the absolute and specific enzyme activities could be used as sensitive soil quality indicators that provide useful linkages with the microbial community structures and environmental factors. To maintain microbial activity and to minimize environmental impacts, P should be applied as a combination of inorganic and organic forms, and total P fertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1). PMID:26196069

  7. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer.

    PubMed

    Zhang, Xinyu; Dong, Wenyi; Dai, Xiaoqin; Schaeffer, Sean; Yang, Fengting; Radosevich, Mark; Xu, Lili; Liu, Xiyu; Sun, Xiaomin

    2015-12-01

    Long-term phosphorus (P) and nitrogen (N) applications may seriously affect soil microbial activity. A long-term field fertilizer application trial was established on reddish paddy soils in the subtropical region of southern China in 1998. We assessed the effects of swine manure and seven different rates or ratios of NPK fertilizer treatments on (1) the absolute and specific enzyme activities per unit of soil organic carbon (SOC) or microbial biomass carbon (MBC) involved in C, N, and P transformations and (2) their relationships with soil environmental factors and soil microbial community structures. The results showed that manure applications led to increases in the absolute and specific activities of soil β-1,4-glucosidase(βG), β-1,4-N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP). The absolute and specific acid phosphatase (AP) activities decreased as mineral P fertilizer application rates and ratios increased. Redundancy analysis (RDA) showed that there were negative correlations between absolute and specific AP activities, pH, and total P contents, while there were positive correlations between soil absolute and specific βG, NAG, and LAP enzyme activities, and SOC and total N contents. RDA showed that the contents of actinomycete and Gram-positive bacterium PLFA biomarkers are more closely related to the absolute and specific enzyme activities than the other PLFA biomarkers (P<0.01). Our results suggest that both the absolute and specific enzyme activities could be used as sensitive soil quality indicators that provide useful linkages with the microbial community structures and environmental factors. To maintain microbial activity and to minimize environmental impacts, P should be applied as a combination of inorganic and organic forms, and total P fertilizer application rates to subtropical paddy soils should not exceed 44 kg P ha(-1) year(-1).

  8. An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: general formulation.

    PubMed

    Mitchell, David Alexander; Carrière, Frédéric; Krieger, Nadia

    2008-04-01

    We present a general formulation of a model that can be used to analyze reaction profiles in systems in which a single enzyme catalyzes several sequential reactions with the same molecular backbone. The analysis of these so-called "repeated-attack systems" allows estimation of the specificities that the enzyme has for the various intermediate substrates that appear in the reaction mixture, relative to the specificity that it has for the initial substrate. Our analytical method has the important advantage that it is not affected by competitive or uncompetitive inhibition, nor by denaturation of the enzyme during the reaction. We carry out case studies in three different systems, the lipase-catalyzed alcoholysis of triacylglycerols, the phytase-catalyzed removal of phosphate groups from phytic acid and the beta-amylase-catalyzed removal of maltose units from maltoheptaose. Our model fits well to all reaction profiles in which the phenomenon of processivity does not occur. It can therefore be used as a general tool for characterizing the relative specificities of "repeated-attack enzymes".

  9. Purification and Characterization of the Crown Gall-specific Enzyme, Octopine Synthase.

    PubMed

    Hack, E; Kemp, J D

    1980-05-01

    A single enzyme catalyzes the synthesis of all four N(2)-(1-carboxyethyl)-amino acid derivatives found in a crown gall tumor tissue induced by Agrobacterium tumefaciens (E. F. Sm. and Town.) Conn strain B6 on sunflower (Helianthus annuus L.). This enzyme, octopine synthase, has been purified by ammonium sulfate fractionation and chromatography on diethylaminoethylcellulose, blue agarose, and hydroxylapatite. The purified enzyme has all the N(2)-(1-carboxyethyl)-amino acid synthesizing activities found in crude preparations, and the relative activities with six amino acids remain nearly constant during purification. Although the maximum velocities (V) and Michaelis constants (K(m)) differ, the ratio V/K(m) is the same for all amino acid substrates. Thus an equimolar mixture of amino acids will give rise to an equimolar mixture of products. The kinetic properties of the enzyme are consistent with a partially ordered mechanism with arginine (NADPH, then arginine or pyruvate). Octopine synthase is a monomeric enzyme with a molecular weight of 39,000 by gel filtration and 38,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  10. Multiple Levels of Synergistic Collaboration in Termite Lignocellulose Digestion

    PubMed Central

    Scharf, Michael E.; Karl, Zachary J.; Sethi, Amit; Boucias, Drion G.

    2011-01-01

    In addition to evolving eusocial lifestyles, two equally fascinating aspects of termite biology are their mutualistic relationships with gut symbionts and their use of lignocellulose as a primary nutrition source. Termites are also considered excellent model systems for studying the production of bioethanol and renewable bioenergy from 2nd generation (non-food) feedstocks. While the idea that gut symbionts are the sole contributors to termite lignocellulose digestion has remained popular and compelling, in recent years host contributions to the digestion process have become increasingly apparent. However, the degree to which host and symbiont, and host enzymes, collaborate in lignocellulose digestion remain poorly understood. Also, how digestive enzymes specifically collaborate (i.e., in additive or synergistic ways) is largely unknown. In the present study we undertook translational-genomic studies to gain unprecedented insights into digestion by the lower termite Reticulitermes flavipes and its symbiotic gut flora. We used a combination of native gut tissue preparations and recombinant enzymes derived from the host gut transcriptome to identify synergistic collaborations between host and symbiont, and also among enzymes produced exclusively by the host termite. Our findings provide important new evidence of synergistic collaboration among enzymes in the release of fermentable monosaccharides from wood lignocellulose. These monosaccharides (glucose and pentoses) are highly relevant to 2nd-generation bioethanol production. We also show that, although significant digestion capabilities occur in host termite tissues, catalytic tradeoffs exist that apparently favor mutualism with symbiotic lignocellulose-digesting microbes. These findings contribute important new insights towards the development of termite-derived biofuel processing biotechnologies and shed new light on selective forces that likely favored symbiosis and, subsequently, group living in primitive

  11. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA

    SciTech Connect

    Horton, John R.; Borgaro, Janine G.; Griggs, Rose M.; Quimby, Aine; Guan, Shengxi; Zhang, Xing; Wilson, Geoffrey G.; Zheng, Yu; Zhu, Zhenyu; Cheng, Xiaodong

    2014-07-03

    AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves DNA containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ~ 70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ~ 22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.

  12. Deubiquitinating Enzyme Specificity for Ubiquitin Chain Topology Profiled by Di-Ubiquitin Activity Probes

    PubMed Central

    McGouran, Joanna F.; Gaertner, Selina R.; Altun, Mikael; Kramer, Holger B.; Kessler, Benedikt M.

    2013-01-01

    Summary Posttranslational modification with ubiquitin (Ub) controls many cellular processes, and aberrant ubiquitination can contribute to cancer, immunopathology, and neurodegeneration. The versatility arises from the ability of Ub to form polymer chains with eight distinct linkages via lysine side chains and the N terminus. In this study, we engineered Di-Ub probes mimicking all eight different poly-Ub linkages and profiled the deubiquitinating enzyme (DUB) selectivity for recognizing Di-Ub moieties in cellular extracts. Mass spectrometric profiling revealed that most DUBs examined have broad selectivity, whereas a subset displays a clear preference for recognizing noncanonical over K48/K63 Ub linkages. Our results expand knowledge of Ub processing enzyme functions in cellular contexts that currently depends largely on using recombinant enzymes and substrates. PMID:24290882

  13. Relationships among measures of growth performance and efficiency with carcass traits, visceral organ mass, and pancreatic digestive enzymes in feedlot cattle.

    PubMed

    Mader, C J; Montanholi, Y R; Wang, Y J; Miller, S P; Mandell, I B; McBride, B W; Swanson, K C

    2009-04-01

    Ninety-three crossbred steer calves (BW+/-SD=385+/-50 kg) were used (n=48 steers in yr 1, n=45 steers in yr 2) to examine the relationship among carcass traits, lean, bone, and fat proportions, visceral tissue weights, and pancreatic digestive enzyme activity with DMI, ADG, G:F, and residual feed intake. Calves were progeny from crossbred dams predominantly of Angus and Simmental breeding and were sired by Angus, Simmental, crossbred (predominantly of Angus and Simmental breeding), Charolais, or Piedmontese bulls. Steers were fed a high-moisture corn-based diet for an average of 112 d. Partial correlation analysis accounting for year, pen within year, week of slaughter within year, and sire breed was conducted. Gain:feed was negatively correlated (P 0.10) between performance measures and the pancreatic proportional content of alpha-amylase and trypsin activity (units/kg of BW). These data indicate that carcass fatness traits and changes in the

  14. Pyrimidine biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in the presence of cytidine.

    PubMed Central

    Kelln, R A; Kinahan, J J; Foltermann, K F; O'Donovan, G A

    1975-01-01

    The repressive effects of exogenous cytidine on growing cells was examined in a specially constructed strain in which the pool sizes of endogenous uridine 5'-diphosphate and uridine 5'-triphosphate cannot be varied by the addition of uracil and/or uridine to the medium. Five enzymes of the pyrimidine biosynthetic pathway and one enzyme of the arginine biosynthetic pathway were assayed from cells grown under a variety of conditions. Cytidine repressed the synthesis of dihydroorotase (encoded by pyrC), dihydroorotate dehydrogenase (encoded by pyrD), and ornithine transcarbamylase (encoded by argI). Moreover, aspartate transcarbamylase (encoded by pyrB) became further derepressed upon cytidine addition, whereas no change occurred in the levels of the last two enzymes (encoded by pyrE and pyrF) of the pyrimidine pathway. Quantitative nucleotide pool determinations have provided evidence that any individual ribo- or deoxyribonucleoside mono-, di-, or triphosphate of cytosine or uracil is not a repressing metabolite for the pyrimidine biosynthetic enzymes. Other nucleotide derivatives or ratios must be considered. PMID:1102530

  15. In vitro and in vivo effects of standardized extract and fractions of Phaleria macrocarpa fruits pericarp on lead carbohydrate digesting enzymes

    PubMed Central

    2013-01-01

    Background One vital therapeutic approach for the treatment of type 2 diabetes mellitus is the use of agents that can decrease postprandial hyperglycaemia by inhibiting carbohydrate digesting enzymes. The present study investigated the effects of bioassay-guided extract and fractions of the dried fruit pericarp of Phaleria macrocarpa, a traditional anti-diabetic plant, on α-glucosidase and α-amylase, in a bid to understand their anti-diabetic mechanism, as well as their possible attenuation action on postprandial glucose increase. Methods Methanol extract (ME), obtained by successive solvent extraction, its most effective liquid-liquid n-butanol fraction (NBF) and the flash column chromatographic sub-fraction (SFI), were evaluated for in vitro α-glucosidase (yeast) and α-amylase (porcine) activity inhibition. Furthermore, confirmatory in vivo tests were carried out in streptozotocin-induced diabetic rats (SDRs) using oral glucose, sucrose and starch tolerance tests. Results At the highest concentration employed (100 μg/ml), NBF showed highest inhibition against α-glucosidase (75%) and α-amylase (87%) in vitro (IC50 = 2.40 ± 0.23 μg/ml and 58.50 ± 0.13 μg/ml, respectively) in a dose-dependent fashion; an effect found to be about 20% higher than acarbose (55%), a standard α-glucosidase inhibitor (IC50 = 3.45 ± 0.19 μg/ml). The ME and SFI also inhibited α-glucosidase (IC50 = 7.50 ± 0.15 μg/ml and 11.45 ± 0.28 μg/ml) and α-amylase (IC50 = 43.90 ± 0.19 μg/ml and 69.80 ± 0.25 μg/ml), but to a lesser extent. In in vivo studies with diabetic rats, NBF and SFI effectively reduced peak blood glucose (PBG) by 15.08% and 6.46%, and the area under the tolerance curve (AUC) by 14.23% and 12.46%, respectively, after an oral sucrose challenge (P < 0.05); thereby validating the observed in vitro action. These reduction effects on PBG and AUC were also demonstrated in glucose and starch tolerance tests

  16. Nitric oxide inhibits specific enzymes in the Krebs cycle and the respiratory chain of rat hepatocyte mitochondria

    SciTech Connect

    Stadler, J.; Billiar, T.R.; Curran, R.D.; Kim, R.; Simmons, R.L. )

    1990-02-26

    Nitric oxide (NO) is a highly-reactive molecule produced from L-arginine as recently described. In macrophages and tumor cells, NO inhibits specific mitochondrial enzymes presumably by attacking their intrinsic 4Fe-4S centers. The susceptible enzymes include aconitase of the Krebs cycle and oxidoreductase (complex II) of the electron transport chain. The authors have recently demonstrated that hepatocytes (HC) produce NO in large amounts in response to endotoxin and inflammatory cytokines. To determine whether HC suffer a similar enzyme inhibition, the authors exposed rat HC to increasing concentrations of NO solutions for 5 minutes. The activity of aconitase, complex 1, complex 2, and complex 4 (cytochrome oxidase) was determined by measuring O{sub 2} consumption after addition of enzyme-specific substrates. An NO concentration-dependent inhibition of aconitase, complex 1, and complex 2 was measured. After exposure to 0.6 mM solution, the activity of aconitase was blocked to non-measurable values while complex 1 was reduced to 11 + 8%, and complex 2 to 36 + 2% of the activity of control HC. Complex 4 of the respiratory chain remained intact at 100 + 8%. These data indicate that HC, like other cell types, are susceptible to inhibition of important steps of energy production by NO. As NO is produced in response to septic stimuli, this mechanism may play a role in the metabolic dysfunction of HC in sepsis.

  17. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation

    PubMed Central

    Petrovska, Ivana; Nüske, Elisabeth; Munder, Matthias C; Kulasegaran, Gayathrie; Malinovska, Liliana; Kroschwald, Sonja; Richter, Doris; Fahmy, Karim; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2014-01-01

    One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell. DOI: http://dx.doi.org/10.7554/eLife.02409.001 PMID:24771766

  18. Release of angiotensin converting enzyme-inhibitor peptides during in vitro gastrointestinal digestion of Parmigiano Reggiano PDO cheese and their absorption through an in vitro model of intestinal epithelium.

    PubMed

    Basiricò, L; Catalani, E; Morera, P; Cattaneo, S; Stuknytė, M; Bernabucci, U; De Noni, I; Nardone, A

    2015-11-01

    The occurrence of 8 bovine casein-derived peptides (VPP, IPP, RYLGY, RYLG, AYFYPEL, AYFYPE, LHLPLP, and HLPLP) reported as angiotensin converting enzyme-inhibitors (ACE-I) was investigated in the 3-kDa ultrafiltered water-soluble extract (WSE) of Parmigiano Reggiano (PR) cheese samples by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry via an electrospray ionization source. Only VPP, IPP, LHLPLP, and HLPLP were revealed in the WSE, and their total amount was in the range of 8.46 to 21.55 mg/kg of cheese. Following in vitro static gastrointestinal digestion, the same ACE-I peptides along with the newly formed AYFYPEL and AYFYPE were found in the 3 kDa WSE of PR digestates. Digestates presented high amounts (1,880-3,053 mg/kg) of LHLPLP, whereas the remaining peptides accounted for 69.24 to 82.82 mg/kg. The half-maximal inhibitory concentration (IC50) values decreased from 7.92 ± 2.08 in undigested cheese to 3.20 ± 1.69 after in vitro gastrointestinal digestion. The 3-kDa WSE of digested cheeses were used to study the transport of the 8 ACE-I peptides across the monolayers of the Caco-2 cell culture grown on a semipermeable membrane of the transwells. After 1h of incubation, 649.20 ± 148.85 mg/kg of LHLPLP remained in the apical compartment, whereas VPP, IPP, AYFYPEL, AYFYPE, and HLPLP accounted in total for less than 36.78 mg/kg. On average, 0.6% of LHLPLP initially present in the digestates added to the apical compartment were transported intact to the basolateral chamber after the same incubation time. Higher transport rate (2.9%) was ascertained for the peptide HLPLP. No other intact ACE-I peptides were revealed in the basolateral compartment. For the first time, these results demonstrated that the ACE-I peptides HLPLP and LHLPLP present in the in vitro digestates of PR cheese are partially absorbed through an in vitro model of human intestinal epithelium.

  19. Possible practical utility of an enzyme cocktail produced by sludge-degrading microbes for methane and hydrogen production from digested sludge.

    PubMed

    Sato, Hayato; Kuribayashi, Kyohei; Fujii, Katsuhiko

    2016-01-25

    Digested sludge (DS) is a major waste product of anaerobic digestion of sewage sludge and is resistant to biodegradation. In this study, we examined suitability of the hydrolases produced by DS-degrading fungal strains (DS-hydrolases) for methane and hydrogen fermentation from DS. Although the strains are mesophilic, DS-hydrolases showed strong chitinase and keratinase activity at ∼50°C. SDS-PAGE analysis suggested that the strains possess a multienzyme system, which allows the hydrolases of some strains to be stable in a wide range of temperatures. Addition of the DS-hydrolases to a vial-scale anaerobic digester enhanced methane and hydrogen production from DS at pH 9.0 and 5.0, respectively. The hydrogen production was also enhanced by the use of methacrylate ester-precipitated DS as a substrate. Further improvement of culture and reaction conditions may make these hydrolases suitable for production of renewable fuels.

  20. Fermentation and addition of enzymes to a diet based on high-moisture corn, rapeseed cake, and peas improve digestibility of nonstarch polysaccharides, crude protein, and phosphorus in pigs.

    PubMed

    Jakobsen, G V; Jensen, B B; Bach Knudsen, K E; Canibe, N

    2015-05-01

    Fluctuating prices of cereals have led to an interest in alternative ingredients for feed. The aim of this study was to evaluate the effect of fermentation and the addition of nonstarch polysaccharide (NSP)-degrading enzymes on the ileal and total tract digestibility of nutrients of a diet based on locally grown crops. Four diets were fed including a nonfermented liquid standard grower diet (Control) and 3 experimental diets based on high-moisture corn, rapeseed cake, and peas fed as nonfermented liquid feed (nFLF), fermented liquid feed (FLF), or FLF supplemented with an enzyme mixture of β-glucanase + xylanase + pectinase (FLF+Enz). The FLF was prepared by mixing feed and water (1:2.5, wt/wt) and, once daily, replacing 50% of the mixture with an equal amount of fresh feed and water. The diets were fed to 8 ileal cannulated barrows in a double Latin square design. Ileal digesta and feces were collected after an adaption period of 10 d. Results showed microbiologically good-quality fermented diets. The levels of Enterobacteriaceae were 5.1 to 5.4 log cfu/g in FLF and FLF+Enz vs. 6.3 log cfu/g in nFLF in the ileum and 5.1 to 5.2 log cfu/g in FLF and FLF+Enz vs. 6.3 log cfu/g in nFLF in the feces. Apparent total tract digestibility (ATTD) of CP was increased by fermentation (73.2% in FLF vs. 69.0% in nFLF; P = 0.033), and digestibility of P showed a tendency (P = 0.073) toward an increase. Addition of the enzyme mixture resulted in a pronounced reduction of dietary NSP compared with FLF (12.8% total NSP in FLF+Enz vs. 15.9% total NSP in FLF; P< 0.001), which also led to increased apparent ileal digestibility (AID) of total and insoluble NSP (total NSP, 31.1% in FLF+Enz vs. 13.6% in FLF; P = 0.002). The Control did not, in general, show higher digestibility values than the experimental diet. However, in the cases were it did, fermentation and enzyme addition brought the digestibility to the level of the Control. In conclusion, fermentation increased the ATTD of CP

  1. A Peptidomic Analysis of Human Milk Digestion in the Infant Stomach Reveals Protein-Specific Degradation Patterns123

    PubMed Central

    Dallas, David C.; Guerrero, Andrés; Khaldi, Nora; Borghese, Robyn; Bhandari, Aashish; Underwood, Mark A.; Lebrilla, Carlito B.; German, J. Bruce; Barile, Daniela

    2014-01-01

    In vitro digestion of isolated milk proteins results in milk peptides with a variety of actions. However, it remains unclear to what degree protein degradation occurs in vivo in the infant stomach and whether peptides previously annotated for bioactivity are released. This study combined nanospray LC separation with time-of-flight mass spectrometry, comprehensive structural libraries, and informatics to analyze milk from 3 human mothers and the gastric aspirates from their 4- to 12-d-old postpartum infants. Milk from the mothers contained almost 200 distinct peptides, demonstrating enzymatic degradation of milk proteins beginning either during lactation or between milk collection and feeding. In the gastric samples, 649 milk peptides were identified, demonstrating that digestion continues in the infant stomach. Most peptides in both the intact milk and gastric samples were derived from β-casein. The numbers of peptides from β-casein, lactoferrin, α-lactalbumin, lactadherin, κ-casein, serum albumin, bile salt–associated lipase, and xanthine dehydrogenase/oxidase were significantly higher in the gastric samples than in the milk samples (P < 0.05). A total of 603 peptides differed significantly in abundance between milk and gastric samples (P < 0.05). Most of the identified peptides have previously identified biologic activity. Gastric proteolysis occurs in the term infant in the first 2 wk of life, releasing biologically active milk peptides with immunomodulatory and antibacterial properties of clinical relevance to the proximal intestinal tract. Data are available via ProteomeXchange (identifier PXD000688). PMID:24699806

  2. Influence of kiwifruit on protein digestion.

    PubMed

    Kaur, Lovedeep; Boland, Mike

    2013-01-01

    Green kiwifruit consumption has long been thought to assist in the digestion of food proteins due to the presence of the proteolytic enzyme actinidin. This chapter reviews the recent findings of both in vitro and in vivo studies on the effect of green kiwifruit (which contain the enzyme actinidin) on the gastro- and small-intestinal digestion of a range of common food proteins and protein-rich foods including milk, meat, fish, eggs, legumes, and cereal proteins. Clear evidence is provided that green kiwifruit, and the enzyme actinidin itself, can provide enhanced upper-tract digestion (particularly gastric) of a variety of food proteins, which lends support to a role for dietary kiwifruit as a digestive aid. Kiwifruit influences the digestion patterns of food proteins to varying extents. For some protein sources, digestion in the presence of green kiwifruit resulted in a substantially greater digestion of intact protein, and different peptide patterns were produced compared with those seen after digestion with mammalian digestive enzymes alone. Kiwifruit extract alone (in the absence of other digestive enzymes) has been observed to be capable of digesting some proteins present in foods, particularly those in yoghurt, cheese, fish, and raw eggs. An in vivo (pig) study including a positive control of added actinidin and a negative control where the actinidin in green kiwifruit had been inactivated showed conclusively that actinidin is responsible for the enhanced gastric hydrolysis of food proteins.

  3. Digestive System

    MedlinePlus

    ... is about 30 feet long. continue How Digestion Works Digestion Begins in the Mouth The process of ... a noncongenital condition. Esophagitis is usually caused by gastroesophageal reflux disease (GERD) , a condition in which the esophageal ...

  4. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal alpha-glucosidase level and are slowly digestible "in vivo"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For digestion of starch in humans, alpha-amylase first hydrolyzes starch molecules to produce alpha-limit dextrins, followed by complete hydrolysis to glucose by the mucosal alpha-glucosidases in the small intestine. It is known that alpha-1,6 linkages in starch are hydrolyzed at a lower rate than a...

  5. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species.

    PubMed

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa.

  6. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles in Fragaria species.

    PubMed

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa. PMID:25393679

  7. Synthesis of a Comprehensive Polyprenol Library for Evaluation of Bacterial Enzyme Lipid Substrate Specificity

    PubMed Central

    Wu, Baolin; Woodward, Robert; Wen, Liuqing; Wang, Xuan; Zhao, Guohui

    2013-01-01

    Polyprenols, a type of universal glycan lipid carrier, play important roles for glycan bio-assembly in wide variety of living systems. Chemical synthesis of natural polyisoprenols such as undecaprenol and dolichols, but especially their homologs, could serves as a powerful molecular tool to dissect and define the functions of enzymes involved in glycan biosynthesis. In this paper, we report an efficient and reliable method to construct this type of hydrophoic molecule through a base-mediated iterative coupling approach using a key bifunctional (Z, Z)-diisoprenyl building block. The ligation with N-acetyl-D-glactosamine (GalNAc) with a set of the synthesized lipid analogs forming polyprenol pyrophosphate linked GalNAc (GalNAc-PP-lipid) conjugates is also demonstrated. PMID:24511260

  8. Magnetic enzyme-linked immunosorbent assay (MELISA) for determination of specific IgG in paracoccidioidomycosis.

    PubMed

    de Camargo, Z P; Guesdon, J L; Drouhet, E; Improvisi, L

    1984-01-01

    A magnetic solid phase enzyme-linked immunosorbent assay (MELISA) for quantification of IgG antibodies to somatic and metabolic antigens of Paracoccidioides brasiliensis was developed. Activation of magnetic polyacrylamide agarose beads with concanavalin A was superior to glutaraldehyde activation, and test sensitivity was higher for somatic than for metabolic antigens. Comparative MELISA, counterimmunoelectrophoresis and erythroimmunoassay tests with sera from 33 proven cases of paracoccidioidomycosis, 14 cases of histoplasmosis and 20 normal human sera showed the MELISA could distinguish antibody levels in paracoccidioidomycosis from those in normal sera; however two sera from histoplasmosis cases cross-reacted in the MELISA. MELISA is a rapid test (5-6 h) and the results suggest it has considerable potential value for assay of anti-P. brasiliensis antibodies. PMID:6438813

  9. Age-Specific Effects on Rat Lung Glutathione and Antioxidant Enzymes after Inhaling Ultrafine Soot

    PubMed Central

    Chan, Jackie K. W.; Kodani, Sean D.; Charrier, Jessie G.; Morin, Dexter; Edwards, Patricia C.; Anderson, Donald S.; Anastasio, Cort

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAHs) and is a dominant contributor to urban particulate pollution (PM). Exposure to PM is linked to respiratory and cardiovascular morbidity and mortality in susceptible populations, such as children. PM can contribute to the development and exacerbation of asthma, and this is thought to occur because of the presence of electrophiles in PM or through electrophile generation via the metabolism of PAHs. Glutathione (GSH), an abundant intracellular antioxidant, confers cytoprotection through conjugation of electrophiles and reduction of reactive oxygen species. GSH-dependent phase II detoxifying enzymes glutathione peroxidase and glutathione S-transferase facilitate metabolism and conjugation, respectively. Ambient particulates are highly variable in composition, which complicates systematic study. In response, we have developed a replicable ultrafine premixed flame particle (PFP)-generating system for in vivo studies. To determine particle effects in the developing lung, 7–day-old neonatal and adult rats inhaled 22 μg/m3 PFP during a single 6-hour exposure. Pulmonary GSH and related phase II detoxifying gene and protein expression were evaluated 2, 24, and 48 hours after exposure. Neonates exhibited significant depletion of GSH despite higher initial baseline levels of GSH. Furthermore, we observed attenuated induction of phase II enzymes (glutamate cysteine ligase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) in neonates compared with adult rats. We conclude that developing neonates have a limited ability to deviate from their normal developmental pattern that precludes adequate adaptation to environmental pollutants, which results in enhanced cytotoxicity from inhaled PM. PMID:23065132

  10. A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4.

    PubMed

    Martinez-Noel, G; Niedenthal, R; Tamura, T; Harbers, K

    1999-07-01

    The ubiquitin-conjugating enzyme UbcM4 was previously shown to be necessary for normal mouse development. As a first step in identifying target proteins or proteins involved in the specificity of UbcM4-mediated ubiquitylation, we have isolated seven cDNAs encoding proteins that specifically interact with UbcM4 but with none of the other Ubcs tested. This interaction was observed in yeast as well as in mammalian cells. With one exception, all UbcM4-interacting proteins (UIPs) belong to a family of proteins that contain a RING finger motif. As they are structurally related to RING finger proteins that have recently been shown to play an essential role in protein ubiquitylation and degradation, the possibility is discussed that UIPs are involved in the specific recognition of substrate proteins of UbcM4.

  11. Molecular co-evolution of a protease and its substrate elucidated by analysis of the activity of predicted ancestral hatching enzyme

    PubMed Central

    2013-01-01

    Background Hatching enzyme is a protease that digests the egg envelope, enabling hatching of the embryo. We have comprehensively studied the molecular mechanisms of the enzyme action to its substrate egg envelope, and determined the gene/protein structure and phylogenetic relationships. Because the hatching enzyme must have evolved while maintaining its ability to digest the egg envelope, the hatching enzyme-egg envelope protein pair is a good model for studying molecular co-evolution of a protease and its substrate. Results Hatching enzymes from medaka (Oryzias latipes) and killifish (Fundulus heteroclitus) showed species-specific egg envelope digestion. We found that by introducing four medaka-type residue amino acid substitutions into recombinant killifish hatching enzyme, the mutant killifish hatching enzyme could digest medaka egg envelope. Further, we studied the participation of the cleavage site of the substrate in the species-specificity of hatching enzyme. A P2-site single amino acid substitution was responsible for the species-specificity. Estimation of the activity of the predicted ancestral enzymes towards various types of cleavage sites along with prediction of the evolutionary timing of substitutions allowed prediction of a possible evolutionary pathway, as follows: ancestral hatching enzyme, which had relatively strict substrate specificity, developed broader specificity as a result of four amino acid substitutions in the active site cleft of the enzyme. Subsequently, a single substitution occurred within the cleavage site of the substrate, and the recent feature of species-specificity was established in the hatching enzyme-egg envelope system. Conclusions The present study clearly provides an ideal model for protease-substrate co-evolution. The evolutionary process giving rise to species-specific egg envelope digestion of hatching enzyme was initiated by amino acid substitutions in the enzyme, resulting in altered substrate specificity, which later

  12. Specific identification of Lachesis muta muta snake venom using antibodies against the plasminogen activator enzyme, LV-PA.

    PubMed

    Felicori, Liza F; Chávez-Olórtegui, Carlos; Sánchez, Eladio F

    2005-05-01

    Sandwich-type enzyme linked immunosorbent assays (ELISA) were developed to detect Lachesis muta muta (bushmaster) snake venom using antibodies against the plasminogen activator enzyme (LV-PA). Antibodies to LV-PA were obtained by immunization of one rabbit with the purified enzyme. The IgG fraction was purified from rabbit blood in a single step on a column of Sepharose-L. m. muta venom and used to coat the microtiter plates. The specificity of the assay was demonstrated by its capacity to correctly discriminate between the circulating antigens in mice that were experimentally inoculated with L. m. muta venom from those in mice inoculated with venoms from Bothrops atrox, B. brazili, B. castelnaudi, Bothriopsis taeniata, B. bilineata, Crotalus durissus ruruima and the antigenic Bothrops (AgB) and Crotalus (AgC) pools venoms used to produce Bothropic and Crotalic antivenoms at Fundacao Ezequiel Dias (FUNED). Measurable absorbance signals were obtained with 1.5 ng of venom per assay. The ELISA was used to follow the kinetic distribution of antigens in experimentally envenomed mice. PMID:15804530

  13. Region specific increase in the antioxidant enzymes and lipid peroxidation products in the brain of rats exposed to lead.

    PubMed

    Bennet, Christopher; Bettaiya, Rajanna; Rajanna, Sharada; Baker, Levenia; Yallapragada, Prabhakara Rao; Brice, Jon J; White, Samuel L; Bokara, Kiran Kumar

    2007-03-01

    The objective of this study is to determine the effect of lead (pb) on antioxidant enzymes and lipid peroxidation products in different regions of rat brain. Wistar male rats were treated with lead acetate (500 ppm) through drinking water for a period of 8 weeks. Control animals were maintained on sodium acetate. Treated and control rats were sacrificed at intervals of 1st, 4th and 8th week and the whole brains were dissected on ice into four regions namely the cerebellum, the hippocampus, the frontal cortex and the brain stem. Antioxidant enzymes namely catalase and superoxide dismutase in all the four regions of brain were determined. In addition, lipid peroxidation products were also estimated. The results indicated a gradual increase in the activity of antioxidant enzymes in different regions of the brain and this response was time-dependent. However, the increase was more in the cerebellum and the hippocampus compared to other regions of the brain. The lipid peroxidation products also showed a similar trend suggesting increased effect of lead in these two regions of the brain. The data indicated a region-specific oxidative stress in the brain exposed to lead. PMID:17364954

  14. Selective release of plasma-membrane enzymes from rat hepatocytes by a phosphatidylinositol-specific phospholipase C.

    PubMed

    Shukla, S D; Coleman, R; Finean, J B; Michell, R H

    1980-04-01

    When isolated hepatocytes are incubated with phosphatidylinositol-specific phospholipase C, three cell-surface enzymes show markedly different behaviour. Most of the alkaline phosphatase is released at very low values of phosphatidylinositol hydrolysis, whereas further phosphatidylinositol hydrolysis releases only a maximum of about one-third of the 5'-nucleotidase. Alkaline phosphodiesterase I is not released. If cells containing phosphatidyl[3H]inositol are similarly treated, then the released [3H]inositol is in the form of inositol phosphate: no evidence has been obtained for any covalent association between released [3H]inositol and alkaline phosphatase.

  15. Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity.

    PubMed

    Zhou, Jun; Cheng, Meng; Zeng, Lizhang; Liu, Weipeng; Zhang, Tao; Xing, Da

    2016-05-15

    Conventional plant protease detection always suffers from high background interference caused by the complex coloring metabolites in plant cells. In this study, a bio-modified magnetic beads-based strategy was developed for sensitive and quantitative detection of plant vacuolar processing enzyme (VPE) activity. Cleavage of the peptide substrate (ESENCRK-FITC) after asparagine residue by VPE resulted in the 2-cyano-6-amino-benzothiazole (CABT)-functionalized magnetic beads capture of the severed substrate CRK-FITC via a condensation reaction between CABT and cysteine (Cys). The catalytic activity was subsequently obtained by the confocal microscopy imaging and flow cytometry quantitative analysis. The sensor system integrated advantages of (i) the high efficient enrichment and separation capabilities of magnetic beads and (ii) the catalyst-free properties of the CABT-Cys condensation reaction. It exhibited a linear relationship between the fluorescence signal and the concentration of severed substrate in the range of 10-600 pM. The practical results showed that, compared with normal growth conditions, VPE activity was increased by 2.7-fold (307.2 ± 25.3 μM min(-1)g(-1)) upon cadmium toxicity stress. This platform effectively overcame the coloring metabolites-caused background interference, showing fine applicability for the detection of VPE activity in real samples. The strategy offers great sensitivity and may be further extended to other protease activity detection. PMID:26797250

  16. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthases, naturally fragile enzymes specifically stabilized by nucleotide binding.

    PubMed

    van den Boom, Johannes; Heider, Dominik; Martin, Stephen R; Pastore, Annalisa; Mueller, Jonathan W

    2012-05-18

    Activated sulfate in the form of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is needed for all sulfation reactions in eukaryotes with implications for the build-up of extracellular matrices, retroviral infection, protein modification, and steroid metabolism. In metazoans, PAPS is produced by bifunctional PAPS synthases (PAPSS). A major question in the field is why two human protein isoforms, PAPSS1 and -S2, are required that cannot complement for each other. We provide evidence that these two proteins differ markedly in their stability as observed by unfolding monitored by intrinsic tryptophan fluorescence as well as circular dichroism spectroscopy. At 37 °C, the half-life for unfolding of PAPSS2 is in the range of minutes, whereas PAPSS1 remains structurally intact. In the presence of their natural ligand, the nucleotide adenosine 5'-phosphosulfate (APS), PAPS synthase proteins are stabilized. Invertebrates only possess one PAPS synthase enzyme that we classified as PAPSS2-type by sequence-based machine learning techniques. To test this prediction, we cloned and expressed the PPS-1 protein from the roundworm Caenorhabditis elegans and also subjected this protein to thermal unfolding. With respect to thermal unfolding and the stabilization by APS, PPS-1 behaved like the unstable human PAPSS2 protein suggesting that the less stable protein is evolutionarily older. Finally, APS binding more than doubled the half-life for unfolding of PAPSS2 at physiological temperatures and effectively prevented its aggregation on a time scale of days. We propose that protein stability is a major contributing factor for PAPS availability that has not as yet been considered. Moreover, naturally occurring changes in APS concentrations may be sensed by changes in the conformation of PAPSS2.

  17. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    SciTech Connect

    Kino, Kuniki . E-mail: kkino@waseda.jp; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-12

    Glutathione (GSH) is synthesized by {gamma}-glutamylcysteine synthetase ({gamma}-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed {gamma}-GCS-GS catalyzing both {gamma}-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the {gamma}-GCS activity, S. agalactiae {gamma}-GCS-GS had different substrate specificities from those of Escherichia coli {gamma}-GCS. Furthermore, S. agalactiae {gamma}-GCS-GS synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-X{sub aa}-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding {gamma}-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae {gamma}-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed {gamma}-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-Cys-X{sub aa}. Whereas the substrate specificities of {gamma}-GCS domain protein and GS domain protein of S. agalactiae {gamma}-GCS-GS were the same as those of S. agalactiae {gamma}-GCS-GS.

  18. Tumor-Specific Formation of Enzyme-Instructed Supramolecular Self-Assemblies as Cancer Theranostics.

    PubMed

    Huang, Peng; Gao, Yuan; Lin, Jing; Hu, Hao; Liao, Hsien-Shun; Yan, Xuefeng; Tang, Yuxia; Jin, Albert; Song, Jibin; Niu, Gang; Zhang, Guofeng; Horkay, Ferenc; Chen, Xiaoyuan

    2015-10-27

    Despite the effort of developing various nanodelivery systems, most of them suffer from undesired high uptakes by the reticuloendothelial system, such as liver and spleen. Herein we develop an endogenous phosphatase-triggered coassembly strategy to form tumor-specific indocyanine green (ICG)-doped nanofibers (5) for cancer theranostics. Based on coordinated intermolecular interactions, 5 significantly altered near-infrared absorbance of ICG, which improves the critical photoacoustic and photothermal properties. The phosphatase-instructed coassembly process, as well as its theranostic capability, was successfully conducted at different levels ranging from in vitro, living cell, tissue mimic, to in vivo. Specifically, the tumor uptake of ICG was markedly increased to 15.05 ± 3.78%ID/g, which was 25-fold higher than that of free ICG (0.59 ± 0.24%ID/g) at 4 h after intravenous injection. The resulting ultrahigh T/N ratios (>15) clearly differentiated tumors from the surrounding normal tissue. Complete tumor elimination with high therapeutic accuracy has been successfully achieved upon laser irradiation (0.8 W/cm(2), 5 min) within 24-48 h postinjection. As the first example, in vivo formation of tumor-specific ICG-doped nanofiber for PTT theranostics owns the immense potential for clinical translation of personalized nanomedicine with targeted drug delivery as well as for cancer theranostics.

  19. Tumor-Specific Formation of Enzyme-Instructed Supramolecular Self-Assemblies as Cancer Theranostics.

    PubMed

    Huang, Peng; Gao, Yuan; Lin, Jing; Hu, Hao; Liao, Hsien-Shun; Yan, Xuefeng; Tang, Yuxia; Jin, Albert; Song, Jibin; Niu, Gang; Zhang, Guofeng; Horkay, Ferenc; Chen, Xiaoyuan

    2015-10-27

    Despite the effort of developing various nanodelivery systems, most of them suffer from undesired high uptakes by the reticuloendothelial system, such as liver and spleen. Herein we develop an endogenous phosphatase-triggered coassembly strategy to form tumor-specific indocyanine green (ICG)-doped nanofibers (5) for cancer theranostics. Based on coordinated intermolecular interactions, 5 significantly altered near-infrared absorbance of ICG, which improves the critical photoacoustic and photothermal properties. The phosphatase-instructed coassembly process, as well as its theranostic capability, was successfully conducted at different levels ranging from in vitro, living cell, tissue mimic, to in vivo. Specifically, the tumor uptake of ICG was markedly increased to 15.05 ± 3.78%ID/g, which was 25-fold higher than that of free ICG (0.59 ± 0.24%ID/g) at 4 h after intravenous injection. The resulting ultrahigh T/N ratios (>15) clearly differentiated tumors from the surrounding normal tissue. Complete tumor elimination with high therapeutic accuracy has been successfully achieved upon laser irradiation (0.8 W/cm(2), 5 min) within 24-48 h postinjection. As the first example, in vivo formation of tumor-specific ICG-doped nanofiber for PTT theranostics owns the immense potential for clinical translation of personalized nanomedicine with targeted drug delivery as well as for cancer theranostics. PMID:26301492

  20. Muscle enzyme and fiber type-specific sarcomere protein increases in serum after inertial concentric-eccentric exercise.

    PubMed

    Carmona, G; Guerrero, M; Cussó, R; Padullés, J M; Moras, G; Lloret, M; Bedini, J L; Cadefau, J A

    2015-12-01

    Muscle damage induced by inertial exercise performed on a flywheel device was assessed through the serum evolution of muscle enzymes, interleukin 6, and fiber type-specific sarcomere proteins such as fast myosin (FM) and slow myosin (SM). We hypothesized that a model of muscle damage could be constructed by measuring the evolution of serum concentration of muscle proteins following inertial exercise, according to their molecular weight and the fiber compartment in which they are located. Moreover, by measuring FM and SM, the type of fibers that are affected could be assessed. Serum profiles were registered before and 24, 48, and 144 h after exercise in 10 healthy and recreationally active young men. Creatine kinase (CK) and CK-myocardial band isoenzyme increased in serum early (24 h) and returned to baseline values after 48 h. FM increased in serum late (48 h) and remained elevated 144 h post-exercise. The increase in serum muscle enzymes suggests increased membrane permeability of both fast and slow fibers, and the increase in FM reveals sarcomere disruption as well as increased membrane permeability of fast fibers. Consequently, FM could be adopted as a fiber type-specific biomarker of muscle damage. PMID:25441613

  1. Detection of Leptospira-Specific Antibodies Using a Recombinant Antigen-Based Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Chen, Hua-Wei; Zhang, Zhiwen; Halsey, Eric S.; Guevara, Carolina; Canal, Enrique; Hall, Eric; Maves, Ryan; Tilley, Drake H.; Kochel, Tadeusz J.; Ching, Wei-Mei

    2013-01-01

    We produced three highly purified recombinant antigens rLipL32, rLipL41, and rLigA-Rep (leptospiral immunoglobulin-like A repeat region) for the detection of Leptospira-specific antibodies in an enzyme-linked immunosorbent assay (ELISA). The performance of these recombinant antigens was evaluated using 121 human sera. Among them, 63 sera were microscopic agglutination test (MAT)-confirmed positive sera from febrile patients in Peru, 22 sera were indigenous MAT-negative febrile patient sera, and 36 sera were from patients with other febrile diseases from Southeast Asia, where leptospirosis is also endemic. Combining the results of immunoglobulin M (IgM) and IgG detection from these three antigens, the overall sensitivity is close to 90% based on the MAT. These results suggest that an ELISA using multiple recombinant antigens may be used as an alternative method for the detection of Leptospira-specific antibodies. PMID:24166046

  2. TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins.

    PubMed

    McMahon, Aoife C; Rahman, Reazur; Jin, Hua; Shen, James L; Fieldsend, Allegra; Luo, Weifei; Rosbash, Michael

    2016-04-21

    RNA transcripts are bound and regulated by RNA-binding proteins (RBPs). Current methods for identifying in vivo targets of an RBP are imperfect and not amenable to examining small numbers of cells. To address these issues, we developed TRIBE (targets of RNA-binding proteins identified by editing), a technique that couples an RBP to the catalytic domain of the Drosophila RNA-editing enzyme ADAR and expresses the fusion protein in vivo. RBP targets are marked with novel RNA editing events and identified by sequencing RNA. We have used TRIBE to identify the targets of three RBPs (Hrp48, dFMR1, and NonA). TRIBE compares favorably to other methods, including CLIP, and we have identified RBP targets from as little as 150 specific fly neurons. TRIBE can be performed without an antibody and in small numbers of specific cells.

  3. A standardised static in vitro digestion method suitable for food - an international consensus.

    PubMed

    Minekus, M; Alminger, M; Alvito, P; Ballance, S; Bohn, T; Bourlieu, C; Carrière, F; Boutrou, R; Corredig, M; Dupont, D; Dufour, C; Egger, L; Golding, M; Karakaya, S; Kirkhus, B; Le Feunteun, S; Lesmes, U; Macierzanka, A; Mackie, A; Marze, S; McClements, D J; Ménard, O; Recio, I; Santos, C N; Singh, R P; Vegarud, G E; Wickham, M S J; Weitschies, W; Brodkorb, A

    2014-06-01

    Simulated gastro-intestinal digestion is widely employed in many fields of food and nutritional sciences, as conducting human trials are often costly, resource intensive, and ethically disputable. As a consequence, in vitro alternatives that determine endpoints such as the bioaccessibility of nutrients and non-nutrients or the digestibility of macronutrients (e.g. lipids, proteins and carbohydrates) are used for screening and building new hypotheses. Various digestion models have been proposed, often impeding the possibility to compare results across research teams. For example, a large variety of enzymes from different sources such as of porcine, rabbit or human origin have been used, differing in their activity and characterization. Differences in pH, mineral type, ionic strength and digestion time, which alter enzyme activity and other phenomena, may also considerably alter results. Other parameters such as the presence of phospholipids, individual enzymes such as gastric lipase and digestive emulsifiers vs. their mixtures (e.g. pancreatin and bile salts), and the ratio of food bolus to digestive fluids, have also been discussed at length. In the present consensus paper, within the COST Infogest network, we propose a general standardised and practical static digestion method based on physiologically relevant conditions that can be applied for various endpoints, which may be amended to accommodate further specific requirements. A frameset of parameters including the oral, gastric and small intestinal digestion are outlined and their relevance discussed in relation to available in vivo data and enzymes. This consensus paper will give a detailed protocol and a line-by-line, guidance, recommendations and justifications but also limitation of the proposed model. This harmonised static, in vitro digestion method for food should aid the production of more comparable data in the future.

  4. Enzyme-linked protein A: an enzyme-linked immunosorbent assay reagent for detection of human immunoglobulin G and virus-specific antibody.

    PubMed

    Madore, H P; Baumgarten, A

    1979-10-01

    A general-purpose reagent capable of reacting with immunoglobulin G in a modified enzyme-linked immunosorbent assay technique was prepared by using protein A coupled with horseradish peroxidase. The reagent detected low levels (0.003 to 1.0 microgram/ml) of human immunoglobulin G and was also applied in an enzyme-linked immunosorbent assay for titration of antibody to human cytomegalovirus. The antibody titers to human cytomegalovirus determined by enzyme-linked immunosorbent assay and by complement fixation were compared. The correlation coefficient between the two techniques was 0.85, but the enzyme-linked immunosorbent assay was 10 times more sensitive than complement fixation in terms of antibody titers detected.

  5. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes. PMID:27580341

  6. Structural and Kinetic Properties of the Aldehyde Dehydrogenase NahF, a Broad Substrate Specificity Enzyme for Aldehyde Oxidation.

    PubMed

    Coitinho, Juliana B; Pereira, Mozart S; Costa, Débora M A; Guimarães, Samuel L; Araújo, Simara S; Hengge, Alvan C; Brandão, Tiago A S; Nagem, Ronaldo A P

    2016-09-27

    The salicylaldehyde dehydrogenase (NahF) catalyzes the oxidation of salicylaldehyde to salicylate using NAD(+) as a cofactor, the last reaction of the upper degradation pathway of naphthalene in Pseudomonas putida G7. The naphthalene is an abundant and toxic compound in oil and has been used as a model for bioremediation studies. The steady-state kinetic parameters for oxidation of aliphatic or aromatic aldehydes catalyzed by 6xHis-NahF are presented. The 6xHis-NahF catalyzes the oxidation of aromatic aldehydes with large kcat/Km values close to 10(6) M(-1) s(-1). The active site of NahF is highly hydrophobic, and the enzyme shows higher specificity for less polar substrates than for polar substrates, e.g., acetaldehyde. The enzyme shows α/β folding with three well-defined domains: the oligomerization domain, which is responsible for the interlacement between the two monomers; the Rossmann-like fold domain, essential for nucleotide binding; and the catalytic domain. A salicylaldehyde molecule was observed in a deep pocket in the crystal structure of NahF where the catalytic C284 and E250 are present. Moreover, the residues G150, R157, W96, F99, F274, F279, and Y446 were thought to be important for catalysis and specificity for aromatic aldehydes. Understanding the molecular features responsible for NahF activity allows for comparisons with other aldehyde dehydrogenases and, together with structural information, provides the information needed for future mutational studies aimed to enhance its stability and specificity and further its use in biotechnological processes.

  7. Non-hydrolyzable Diubiquitin Probes Reveal Linkage-Specific Reactivity of Deubiquitylating Enzymes Mediated by S2 Pockets

    PubMed Central

    Flierman, Dennis; van der Heden van Noort, Gerbrand J.; Ekkebus, Reggy; Geurink, Paul P.; Mevissen, Tycho E.T.; Hospenthal, Manuela K.; Komander, David; Ovaa, Huib

    2016-01-01

    Summary Ubiquitin chains are important post-translational modifications that control a large number of cellular processes. Chains can be formed via different linkages, which determines the type of signal they convey. Deubiquitylating enzymes (DUBs) regulate ubiquitylation status by trimming or removing chains from attached proteins. DUBs can contain several ubiquitin-binding pockets, which confer specificity toward differently linked chains. Most tools for monitoring DUB specificity target binding pockets on opposing sides of the active site; however, some DUBs contain additional pockets. Therefore, reagents targeting additional pockets are essential to fully understand linkage specificity. We report the development of active site-directed probes and fluorogenic substrates, based on non-hydrolyzable diubiquitin, that are equipped with a C-terminal warhead or a fluorogenic activity reporter moiety. We demonstrate that various DUBs in lysates display differential reactivity toward differently linked diubiquitin probes, as exemplified by the proteasome-associated DUB USP14. In addition, OTUD2 and OTUD3 show remarkable linkage-specific reactivity with our diubiquitin-based reagents. PMID:27066941

  8. Detection of herpes simplex virus type-specific antibodies by an enzyme-linked immunosorbent assay based on glycoprotein G.

    PubMed

    Hashido, M; Lee, F K; Inouye, S; Kawana, T

    1997-12-01

    In order to develop a simple and quantitative method to detect herpes simplex virus (HSV) type-specific antibodies, the usefulness of an enzyme-linked immunosorbent assay (ELISA) using HSV glycoprotein G (gG) captured on a plate by monoclonal antibodies as antigen was studied. The gG1- and gG2-specific IgG antibody activities were measured by the ELISA for 54 sera which had been collected from culture-proven genital herpes patients and pre-characterized by an immunodot assay using purified gG antigens. Thirty control sera without antibodies against the HSV whole antigens were also included. In comparison with the immunodot assay as standard, the sensitivities of the ELISA were 88.9% (32/36) for HSV-1 antibody and 89.2% (33/37) for HSV-2 antibody and the specificities were both 100%. Sera taken within a few months after primary infection tended to give false negative results. The HSV type-specific ELISA based on easy-to-prepare gG antigens might be useful to help improve the serological assessment of HSV infections.

  9. Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects.

    PubMed Central

    Nosjean, O; Koyama, I; Goseki, M; Roux, B; Komoda, T

    1997-01-01

    To investigate the possible role(s) of glycans in human tissue non-specific alkaline phosphatase (TNAP) activity, the iso-enzymes were purified and treated with various exo- and endo-glycosidases. Catalytic activity, oligomerization, conformation and immunoreactivity of the modified TNAPs were evaluated. All TNAPs proved to be N-glycosylated, and only the liver isoform (LAP) is not O-glycosylated. Usually, the kidney (KAP) and bone (BAP) isoenzymes are similar and cannot be clearly discriminated. Differences between the immunoreactivity of KAP/BAP and LAP with a BAP antibody were mainly attributed to the N-glycosylated moieties of the TNAPs. In addition, elimination of O-glycosylations moderately affects the TNAP reactivity. Interestingly, N-glycosylation is absolutely essential for TNAP activity, but not for that of the placental or intestinal enzymes. According to the deduced amino acid sequence of TNAP cDNA, Asn-213 is a possible N-glycosylation site, and our present findings suggest that this sugar chain plays a key role in enzyme regulation. With regard to the oligomeric state of alkaline phosphatase (AP) isoforms, the dimer/tetramer equilibrium is dependent on the deglycosylation of glycosyl-phosphatidylinositol(GPI)-free APs, but not GPI-linked APs. This equilibrium does not affect the AP conformation as observed with CD. With regard to TNAPs, no data were available on the gene expression or nature of the 5'-non-translated leader exon of human KAP, as opposed to BAP and LAP genes. cDNA sequencing revealed that cortex/medulla KAP is genetically related to BAP, and medulla KAP to LAP. PMID:9020858

  10. Specific probe selection from landscape phage display library and its application in enzyme-linked immunosorbent assay of free prostate-specific antigen.

    PubMed

    Lang, Qiaolin; Wang, Fei; Yin, Long; Liu, Mingjun; Petrenko, Valery A; Liu, Aihua

    2014-03-01

    Probes against targets can be selected from the landscape phage library f8/8, displaying random octapeptides on the pVIII coat protein of the phage fd-tet and demonstrating many excellent features including multivalency, stability, and high structural homogeneity. Prostate-specific antigen (PSA) is usually determined by immunoassay, by which antibodies are frequently used as the specific probes. Herein we found that more advanced probes against free prostate-specific antigen (f-PSA) can be screened from the landscape phage library. Four phage monoclones were selected and identified by the specificity array. One phage clone displaying the fusion peptide ERNSVSPS showed good specificity and affinity to f-PSA and was used as a PSA capture probe in a sandwich enzyme-linked immunosorbent assay (ELISA) array. An anti-human PSA monoclonal antibody (anti-PSA mAb) was used to recognize the captured antigen, followed by horseradish peroxidase-conjugated antibody (HRP-IgG) and o-phenylenediamine, which were successively added to develop plate color. The ELISA conditions such as effect of blocking agent, coating buffer pH, phage concentration, antigen incubation time, and anti-PSA mAb dilution for phage ELISA were optimized. On the basis of the optimal phage ELISA conditions, the absorbance taken at 492 nm on a microplate reader was linear with f-PSA concentration within 0.825-165 ng/mL with a low limit of detection of 0.16 ng/mL. Thus, the landscape phage is an attractive biomolecular probe in bioanalysis.

  11. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme.

    PubMed

    Hirschi, Alexander; Martin, William J; Luka, Zigmund; Loukachevitch, Lioudmila V; Reiter, Nicholas J

    2016-08-01

    Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms.

  12. Effects of Dietary Pb and Cd and Their Combination on Glutathion-S-Transferase and Catalase Enzyme Activities in Digestive Gland and Foot of the Green Garden Snail, Cantareus apertus (Born, 1778).

    PubMed

    Mleiki, Anwar; Marigómez, Ionan; El Menif, Najoua Trigui

    2015-06-01

    The present study was focused on the assessment of glutathion-S-transferase (GST) and catalase (CAT) activities in the digestive gland and foot of the land snail, Cantareus apertus (Born, 1778), exposed to different nominal dietary concentrations of Pb (25 and 2500 mg Pb/Kg), Cd (5 and 100 mg Cd/Kg) and their combination (25 mg Pb + 5 mg Cd/Kg and 2500 mg Pb + 100 mg Cd/Kg) for 7 and 60 days. GST activity was significantly increased after 7 and 60 days exposure to the highest concentration of Pb, Cd and their combination. The levels of CAT activity were different in the two studied organs but in both cases it resulted increased after 7 and 60 days of exposure, which varied significantly between metals and dietary concentrations. Therefore, it can be concluded that GST and CAT enzymes in digestive gland and foot of C. apertus are responsive to Cd, Pb and their combination, whereby they are suitable to be included in a battery of biomarkers for ecosystem health assessment in metal polluted soils using this species as sentinel.

  13. Determination of key residues for catalysis and RNA cleavage specificity: one mutation turns RNase II into a "SUPER-ENZYME".

    PubMed

    Barbas, Ana; Matos, Rute G; Amblar, Mónica; López-Viñas, Eduardo; Gomez-Puertas, Paulino; Arraiano, Cecília M

    2009-07-31

    RNase II is the prototype of a ubiquitous family of enzymes that are crucial for RNA metabolism. In Escherichia coli this protein is a single-stranded-specific 3'-exoribonuclease with a modular organization of four functional domains. In eukaryotes, the RNase II homologue Rrp44 (also known as Dis3) is the catalytic subunit of the exosome, an exoribonuclease complex essential for RNA processing and decay. In this work we have performed a functional characterization of several highly conserved residues located in the RNase II catalytic domain to address their precise role in the RNase II activity. We have constructed a number of RNase II mutants and compared their activity and RNA binding to the wild type using different single- or double-stranded substrates. The results presented in this study substantially improve the RNase II model for RNA degradation. We have identified the residues that are responsible for the discrimination of cleavage of RNA versus DNA. We also show that the Arg-500 residue present in the RNase II active site is crucial for activity but not for RNA binding. The most prominent finding presented is the extraordinary catalysis observed in the E542A mutant that turns RNase II into a "super-enzyme."

  14. Rapid enzyme-linked immunosorbent assay for the detection of hantavirus-specific antibodies in divergent small mammals.

    PubMed

    Cautivo, Karla; Schountz, Tony; Acuña-Retamar, Mariana; Ferrés, Marcela; Torres-Pérez, Fernando

    2014-05-06

    We assessed the utility of an enzyme-linked immunosorbent assay (ELISA) for the detection of hantavirus-specific antibodies from sera of Oligoryzomys longicaudatus, the principal reservoir of Andes virus (ANDV), using an antigen previously developed for detection of antibodies to Sin Nombre virus (SNV) in sera from Peromyscus maniculatus. The assay uses a protein A/G horseradish peroxidase conjugate and can be performed in as little as 1.5 hours. Serum samples from Oligoryzomys longicaudatus collected in central-south Chile were used and the assay identified several that were antibody positive. This assay can be used for the rapid detection of antibodies to divergent hantaviruses from geographically and phylogenetically distant rodent species.

  15. Tissue-specific variation in glycation of proteins in diabetes: evidence for a functional role of amadoriase enzymes.

    PubMed

    Brown, Sarah M; Smith, Della M; Alt, Nadja; Thorpe, Suzanne R; Baynes, John W

    2005-06-01

    The Amadori product fructoselysine (FL), an intermediate in the formation of many advanced glycation end products, may be deglycated by various pathways. These include spontaneous chemical degradation or enzymatic deglycation by amadoriases. This study was designed to compare changes in FL in various tissues in response to changes in glycemia, thereby testing tissue-specific deglycation. FL content in skin collagen, red cell hemoglobin, and total muscle, liver, and brain protein was analyzed by isotope dilution gas chromatography-mass spectrometry. Mean blood glucose increased over fourfold in diabetic versus control rats, whereas changes in glycation of proteins varied from fivefold in collagen to no change in the liver and brain. These results suggest significant differences among tissues in the activity of deglycating enzymes and/or protein turnover.

  16. [Fibrinogen/fibrin-specific enzymes from copperhead (Agkistrodon halys halys) and cobra (Naja oxiana eichwald) snake venoms].

    PubMed

    Yunusova, E S; Sadykov, E S; Sultanalieva, N M; Shkinev, A V

    2016-03-01

    Ability of fractions of cobra's (Naja oxiana Eichwald) and copperhead snake's (Agkistrodon halys halys) venoms to hydrolyze fibrinogen/fibrin was studied. In cobra's snake a component with molecular mass of nearly 60 kDa was found to hydrolyze a-chain of fibrinogen but failed to hydrolyze casein/azocasein and fibrin. A fibrinogen-specific metalloproteinase, the enzyme was inhibited by EDTA. Cobra's venom reduced the mass of donor's fresh blood clots. The copperhead snake's venom and the fractions obtained by gel-filtration (HW-50) and ion exchange chromatography (DEAE-650) were found to hydrolyze casein/azocasein, a- and b-chains of fibrinogen/fibrin and donor's blood clots. The results from the study of the venom and proteolytically active fractions are the evidence for a thrombolytic potential in a copperhead snake's venom. PMID:27420616

  17. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity.

    PubMed

    Stiti, Naim; Podgórska, Karolina; Bartels, Dorothea

    2014-03-01

    The cofactor-binding site of the NAD(+)-dependent Arabidopsis thaliana aldehyde dehydrogenase ALDH3H1 was analyzed to understand structural features determining cofactor-specificity. Homology modeling and mutant analysis elucidated important amino acid residues. Glu149 occupies a central position in the cofactor-binding cleft, and its carboxylate group coordinates the 2'- and 3'-hydroxyl groups of the adenosyl ribose ring of NAD(+) and repels the 2'-phosphate moiety of NADP(+). If Glu149 is mutated to Gln, Asp, Asn or Thr the binding of NAD(+) is altered and rendered the enzyme capable of using NADP(+). This change is attributed to a weaker steric hindrance and elimination of the electrostatic repulsion force of the 2'-phosphate of NADP(+). Simultaneous mutations of Glu149 and Ile200, which is situated opposite of the cofactor binding cleft, improved the enzyme efficiency with NADP(+). The double mutant ALDH3H1Glu149Thr/Ile200Val showed a good catalysis with NADP(+). Subsequently a triple mutation was generated by replacing Val178 by Arg in order to create a "closed" cofactor binding site. The cofactor specificity was shifted even further in favor of NADP(+), as the mutant ALDH3H1E149T/V178R/I200V uses NADP(+) with almost 7-fold higher catalytic efficiency compared to NAD(+). Our experiments suggest that residues occupying positions equivalent to 149, 178 and 200 constitute a group of amino acids in the ALDH3H1 protein determining cofactor affinity.

  18. Insulin activates a 70-kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide

    SciTech Connect

    Price, D.J.; Gunsalus, J.R.; Avruch, J. )

    1990-10-01

    The dominant insulin-stimulated ribosomal protein S6 kinase activity was purified to near homogeneity from insulin-treated {sup 32}P-labeled rat H4 hepatoma cells and found to copurify with a 70-kDa {sup 32}P-labeled polypeptide. The dominant S6 kinase purified from livers of cycloheximide-treated rats is also a 70-kDa polypeptide. Antiserum raised against rat liver S6 kinase specifically immunoprecipitates the purified {sup 32}P-labeled H4 hepatoma insulin-stimulated S6 kinase. Immune complexes prepared from the cytosol of {sup 32}P-labeled H4 cells contain several {sup 32}P-labeled polypeptides. Insulin treatment increases the {sup 32}P content of the immunoprecipitated 70-kDa S6 kinase polypeptide 3- to 4-fold over basal levels. Tryptic peptide maps indicate that the insulin-stimulated S6 kinase purified from {sup 32}P-labeled H4 cells is phosphorylated at multiple sites distinct from those which participate in autophosphorylation in vitro. The S6 kinases purified from liver of cycloheximide-treated rat and H4 hepatoma insulin-stimulated enzyme are each completely deactivated by incubation with protein phosphatase type 2A in both autophosphorylating and 40S S6 phosphorylating activities. Thus insulin activates the 70-kDa S6 kinase by promoting phosphorylation of specific serine/threonine residues on the enzyme polypeptide, probably through activating an as-yet-unidentified serine/threonine protein kinase distinct from microtubule-associated protein 2 kinase.

  19. Rapid diagnosis of echovirus type 33 meningitis by specific IgM detection using an enzyme linked immunosorbent assay (ELISA).

    PubMed

    Chomel, J J; Thouvenot, D; Fayol, V; Aymard, M

    1985-01-01

    During an outbreak of meningitis in France (in the Lyon area), from June to October 1982, serum and stool samples were collected from 227 patients. An enzyme-linked immunosorbent assay (ELISA) for titrating IgG and IgM antibodies anti-echovirus type 33 was developed and compared with the virus isolation technique, and with the titration of neutralizing antibodies. In 39 patients excreting echovirus 33 in faeces, the ELISA test allowed a positive serodiagnosis in 85% of the cases by detection of specific IgM (64% of the cases) and by seroconversion (21%). Compared with the neutralization (Nt) test, ELISA was found to be more sensitive. The antibody titres in ELISA were over 50 times higher and detected earlier than the neutralizing antibodies. This early immune response allowed a rapid diagnosis by specific IgM detection in the acute sera collected within 8 days after the appearance of the clinical symptoms in more than 50% of the 97 patients examined, whereas the Nt test allowed a positive serodiagnosis in only 32% of the patients. The use of a caesium chloride purified antigen insured the specificity of the reactions.

  20. Detection of Francisella tularensis-specific antibodies in patients with tularemia by a novel competitive enzyme-linked immunosorbent assay.

    PubMed

    Sharma, Neekun; Hotta, Akitoyo; Yamamoto, Yoshie; Fujita, Osamu; Uda, Akihiko; Morikawa, Shigeru; Yamada, Akio; Tanabayashi, Kiyoshi

    2013-01-01

    A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R(2) = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species. PMID:23114700

  1. Detection of Francisella tularensis-Specific Antibodies in Patients with Tularemia by a Novel Competitive Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Sharma, Neekun; Hotta, Akitoyo; Yamamoto, Yoshie; Fujita, Osamu; Uda, Akihiko; Morikawa, Shigeru; Yamada, Akio

    2013-01-01

    A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R2 = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species. PMID:23114700

  2. Evaluation of enzyme-linked immunosorbent assays for detection of Mycoplasma bovis-specific antibody in bison sera.

    PubMed

    Register, Karen B; Sacco, Randy E; Olsen, Steven C

    2013-09-01

    Mycoplasma bovis has recently emerged as a significant and costly infectious disease problem in bison. A method for the detection of M. bovis-specific serum antibodies is needed in order to establish prevalence and transmission patterns. Enzyme-linked immunosorbent assays (ELISAs) validated for the detection of M. bovis-specific serum IgG in cattle are commercially available, but their suitability for bison sera has not been determined. A collection of bison sera, most from animals with a known history of infection or vaccination with M. bovis, was tested for M. bovis-specific IgG using commercially available kits as well as an in-house ELISA in which either cattle or bison M. bovis isolates were used as a source of antigen. Comparison of the results demonstrates that ELISAs optimized for cattle sera may not be optimal for the identification of bison seropositive for M. bovis, particularly those with low to moderate antibody levels. The reagent used for the detection of bison IgG and the source of the antigen affect the sensitivity of the assay. Optimal performance was obtained when the capture antigen was derived from bison isolates rather than cattle isolates and when a protein G conjugate rather than an anti-bovine IgG conjugate was used for the detection of bison IgG.

  3. Detection of Francisella tularensis-specific antibodies in patients with tularemia by a novel competitive enzyme-linked immunosorbent assay.

    PubMed

    Sharma, Neekun; Hotta, Akitoyo; Yamamoto, Yoshie; Fujita, Osamu; Uda, Akihiko; Morikawa, Shigeru; Yamada, Akio; Tanabayashi, Kiyoshi

    2013-01-01

    A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R(2) = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species.

  4. Glial high-affinity binding site with specificity for angiotensin II not angiotensin III: a possible N-terminal-specific converting enzyme

    SciTech Connect

    Printz, M.P.; Jennings, C.; Healy, D.P.; Kalter, V.

    1986-01-01

    Anomalous binding properties of angiotensin II to fetal rat brain primary cultures suggested a possible contribution from contaminating glia. To investigate this possibility, cultures of C6 glioma, a clonal rat cell line, were examined for the presence of angiotensin II receptors. A specific high-affinity site for (/sup 125/I)angiotensin II was measured both by traditional methodology using whole cells and by autoradiography. This site shared properties similar to that found with the brain cells, namely low ligand internalization and markedly decreased affinity for N-terminal sarcosine or arginine-angiotensin analogs. The competition rank order was angiotensin II much greater than (Sar1,Ile8)angiotensin II greater than or equal to des(Asp1,Arg2)angiotensin II. Angiotensin III did not compete for binding to the site. High-pressure liquid chromatography analysis indicated that the ligand either in the incubation or bound to the site was stable at 15 degrees C, but there was very rapid and extensive degradation by the C6 glioma cells at 37 degrees C. It is concluded that the site exhibits unusual N-terminal specificity for angiotensin with nanomolar affinity for angiotensin II. If angiotensin III is an active ligand in the brain, the site may have a converting enzyme function. Alternatively, it may form the des-Asp derivatives of angiotensin for subsequent degradation by other enzymatic pathways. Either way, it is proposed that the site may modulate the brain-angiotensin system.

  5. [Types of digestion in breast feeding: returning to the problem].

    PubMed

    Korot'ko, G F

    2016-01-01

    During the breast feeding the hydrolysis of breast milk nutrients in natural conditions provides by milk enzymes, digestive gland secrets and intestinal epitheliocyte as autolytic induced digestion with following including and development of auto-digestion in hydrolysis of milk lipids and proteins. Milk lactose is hydrolyzed as a type of auto-intestinal digestion. Breast glands release enzymes according to a year lactation dynamics. The mechanism of hydrolase recreation from the mother's blood takes part in milk hudrolase origin.

  6. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family.

    PubMed

    Mandrich, Luigi; Merone, Luigia; Pezzullo, Margherita; Cipolla, Laura; Nicotra, Francesco; Rossi, Mosè; Manco, Giuseppe

    2005-01-21

    A superposition between the structures of Alicyclobacillus acidocaldarius esterase 2 (EST2) and Burkholderia cepacia lipase, the latter complexed with a phosphonate inhibitor, allowed us to hypothesize for the EST2 N terminus a role in restricting the access to the active site and therefore in modulating substrate specificity. In order to test this hypothesis we generated by site-directed mutagenesis some truncated versions of EST2 and its double mutant M211S/R215L (S/L) at the N terminus. In parallel, an analysis of the Sulfolobus solfataricus P2 genome allowed us to identify a gene coding for a putative esterase of the HSL family having a natural deletion of the corresponding region. The product of this gene and the above-mentioned EST2 mutants were expressed in Escherichia coli, purified and characterised. These studies support the notion that the N terminus affects substrate specificity other than several other enzyme parameters. Although the deletions afforded a tenfold and 550-fold decrease in catalytic efficiency towards the best substrate pNP-hexanoate at 50 degrees C for EST2 and S/L, respectively, the analysis of the specific activities with different triacylglycerols with respect to pNP-hexanoate showed that their ratios were higher for deleted versus non-deleted enzymes, on all tested substrates. In particular, the above ratios for glyceryl tridecanoate were 30-fold and 14-fold higher in S/L and EST2 deleted forms, respectively, compared with their full-length versions. This behaviour was confirmed by the analysis of the S.solfataricus esterase, which showed similar specific activities on pNP-hexanoate and triacylglycerols; in addition, higher activities on the latter substrates were observed in comparison with EST2, S/L and their deleted forms. Finally, a dramatic effect on thermophilicity and thermostability in the EST2 deleted forms was observed. This is the first report highlighting the importance of the "cap" domain in the HSL family, since the N

  7. Influence of different length linker containing DHEA-7-CMO-enzyme conjugates on sensitivity and specificity of DHEA-17-CMO-antibody.

    PubMed

    Shrivastav, Tulsidas G; Chaube, Shail K; Kariya, Kiran P; Singh, Rita; Kumar, Dinesh; Pandit, Deepa; Ujawane, Pragati; Kumari, Poonam; Pandey, Bhavana

    2011-01-01

    Introduction of spacers in enzyme conjugates is known to exert an influence on the assay parameters of steroid enzyme immunoassays. We have introduced 3 to 10 atomic length linkers between enzyme and steroid moieties and studied their effects on sensitivity and specificity of dehydroepiandrosterone enzyme immunoassays. Dehydroepiandrosterone-17-carboxymethyloxime-bovine serum albumin (DHEA-17-CMO-BSA) was used as an immunogen to raise the antiserum in New Zealand white rabbits. Five enzyme conjugates were prepared using DHEA-7-CMO as carboxylic derivative of DHEA and horseradish peroxidase (HRP) as label. These were DHEA-7-CMO-HRP, DHEA-7-CMO-urea-HRP (DHEA-7-CMO-U-HRP), DHEA-7-CMO-ehylenediamine-HRP (DHEA-7-CMO-EDA-HRP), DHEA-7-CMO-carbohydrazide-HRP (DHEA-7-CMO-CH-HRP), and DHEA-7-CMO-adipic acid dihydrazide-HRP (DHEA-7-CMO-ADH-HRP). The influence of different atomic length linkers on sensitivity and specificity were studied with reference to label without linker. The results of the present investigation revealed that with incorporation of linkers, the sensitivity improves, whereas specificity only marginally improves. These differential behaviors of various linkers toward the sensitivity and specificity of assays might be due to the difference in the magnitude of overall forces of attraction between the antibody and the enzyme conjugates. PMID:21728820

  8. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis.

    PubMed

    Pommerrenig, Benjamin; Feussner, Kirstin; Zierer, Wolfgang; Rabinovych, Valentyna; Klebl, Franz; Feussner, Ivo; Sauer, Norbert

    2011-05-01

    The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis.

  9. Fluoroimmunoassay for detection of rubella-specific immunoglobulin M: comparison with indirect enzyme immunoassay and mu-chain capture.

    PubMed Central

    Echevarria, J M; de Ory, F; Najera, R

    1985-01-01

    The performance of a commercially-available method of fluoroimmunoassay (Rubella M FIAX, International Diagnostic Technology, Santa Clara, Calif.), designed for the detection of rubella-specific immunoglobulin M, was tested with 137 selected sera, including 52 from cases of primary rubella, 29 from healthy pregnant women, 21 containing rheumatoid factor, and 35 from cases of infectious mononucleosis (IM) caused by Epstein-Barr virus. The results were compared with those obtained by commercial indirect enzyme immunoassay (EIA) and EIA anti-mu chain capture tests. The fluoroimmunoassay technique showed a satisfactory level of sensitivity, but low values had to be interpreted with caution as false-positive results were detected with sera with rheumatoid factor and from IM cases, even after preliminary treatment of sera with the anti-human immunoglobulin G antisera provided in the kit. On the other hand, no false-positive results in the analysis of IM sera were seen in the EIA anti-mu chain capture method. Because of its sensitivity and specificity, we recommend the use of the latter technique for the diagnosis of primary rubella. PMID:2995439

  10. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis.

    PubMed

    Pommerrenig, Benjamin; Feussner, Kirstin; Zierer, Wolfgang; Rabinovych, Valentyna; Klebl, Franz; Feussner, Ivo; Sauer, Norbert

    2011-05-01

    The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis. PMID:21540433

  11. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids.

    PubMed

    Schwarz, Nadine; Armbruster, Ute; Iven, Tim; Brückle, Lena; Melzer, Michael; Feussner, Ivo; Jahns, Peter

    2015-02-01

    The enzyme zeaxanthin epoxidase (ZEP) catalyzes the conversion of zeaxanthin to violaxanthin, a key reaction for ABA biosynthesis and the xanthophyll cycle. Both processes are important for acclimation to environmental stress conditions, in particular drought (ABA biosynthesis) and light (xanthophyll cycle) stress. Hence, both ZEP functions may require differential regulation to optimize plant fitness. The key to understanding the function of ZEP in both stress responses might lie in its spatial and temporal distribution in plant tissues. Therefore, we analyzed the distribution of ZEP in plant tissues and plastids under drought and light stress by use of a ZEP-specific antibody. In addition, we determined the pigment composition of the plant tissues and chloroplast membrane subcompartments in response to these stresses. The ZEP protein was detected in all plant tissues (except flowers) concomitant with xanthophylls. The highest levels of ZEP were present in leaf chloroplasts and root plastids. Within chloroplasts, ZEP was localized predominantly in the thylakoid membrane and stroma, while only a small fraction was bound by the envelope membrane. Light stress affected neither the accumulation nor the relative distribution of ZEP in chloroplasts, while drought stress led to an increase of ZEP in roots and to a degradation of ZEP in leaves. However, drought stress-induced increases in ABA were similar in both tissues. These data support a tissue- and stress-specific accumulation of the ZEP protein in accordance with its different functions in ABA biosynthesis and the xanthophyll cycle.

  12. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II

    PubMed Central

    Bharati, Akhilendra Pratap; Singh, Neha; Kumar, Vikash; Kashif, Md.; Singh, Amit Kumar; Singh, Priyanka; Singh, Sudhir Kumar; Siddiqi, Mohammad Imran; Tripathi, Timir; Akhtar, Md. Sohail

    2016-01-01

    RNA Polymerase II (RNAPII) uniquely possesses an extended carboxy terminal domain (CTD) on its largest subunit, Rpb1, comprising a repetitive Tyr1Ser2Pro3Thr4 Ser5Pro6Ser7 motif with potential phosphorylation sites. The phosphorylation of the CTD serves as a signal for the binding of various transcription regulators for mRNA biogenesis including the mRNA capping complex. In eukaryotes, the 5 prime capping of the nascent transcript is the first detectable mRNA processing event, and is crucial for the productive transcript elongation. The binding of capping enzyme, RNA guanylyltransferases to the transcribing RNAPII is known to be primarily facilitated by the CTD, phosphorylated at Ser5 (Ser5P). Here we report that the Saccharomyces cerevesiae RNA guanylyltransferase (Ceg1) has dual specificity and interacts not only with Ser5P but also with Ser7P of the CTD. The Ser7 of CTD is essential for the unconditional growth and efficient priming of the mRNA capping complex. The Arg159 and Arg185 of Ceg1 are the key residues that interact with the Ser5P, while the Lys175 with Ser7P of CTD. These interactions appear to be in a specific pattern of Ser5PSer7PSer5P in a tri-heptad CTD (YSPTSPPS YSPTSPSP YSPTSPPS) and provide molecular insights into the Ceg1-CTD interaction for mRNA transcription. PMID:27503426

  13. A bacterial protease inhibitor protects antigens delivered in oral vaccines from digestion while triggering specific mucosal immune responses.

    PubMed

    Ibañez, Andrés Esteban; Coria, Lorena Mirta; Carabajal, Marianela Verónica; Delpino, María Victoria; Risso, Gabriela Sofía; Cobiello, Paula Gonzalez; Rinaldi, Jimena; Barrionuevo, Paula; Bruno, Laura; Frank, Fernanda; Klinke, Sebastián; Goldbaum, Fernando Alberto; Briones, Gabriel; Giambartolomei, Guillermo Hernán; Pasquevich, Karina Alejandra; Cassataro, Juliana

    2015-12-28

    We report here that a bacterial protease inhibitor from Brucella spp. called U-Omp19 behaves as an ideal constituent for a vaccine formulation against infectious diseases. When co-administered orally with an antigen (Ag), U-Omp19: i) can bypass the harsh environment of the gastrointestinal tract by inhibiting stomach and intestine proteases and consequently increases the half-life of the co-administered Ag at immune inductive sites: Peyer's patches and mesenteric lymph nodes while ii) it induces the recruitment and activation of antigen presenting cells (APCs) and increases the amount of intracellular Ag inside APCs. Therefore, mucosal as well as systemic Ag-specific immune responses, antibodies, Th1, Th17 and CD8(+) T cells are enhanced when U-Omp19 is co-administered with the Ag orally. Finally, this bacterial protease inhibitor in an oral vaccine formulation confers mucosal protection and reduces parasite loads after oral challenge with virulent Toxoplasma gondii.

  14. Development of a flatfish-specific enzyme-linked immunosorbent assay for Fsh using a recombinant chimeric gonadotropin.

    PubMed

    Chauvigné, François; Verdura, Sara; Mazón, María José; Boj, Mónica; Zanuy, Silvia; Gómez, Ana; Cerdà, Joan

    2015-09-15

    In flatfishes with asynchronous and semicystic spermatogenesis, such as the Senegalese sole (Solea senegalensis), the specific roles of the pituitary gonadotropins during germ cell development, particularly of the follicle-stimulating hormone (Fsh), are still largely unknown in part due to the lack of homologous immunoassays for this hormone. In this study, an enzyme-linked immunosorbent assay (ELISA) for Senegalese sole Fsh was developed by generating a rabbit antiserum against a recombinant chimeric single-chain Fsh molecule (rFsh-C) produced by the yeast Pichia pastoris. The rFsh-C N- and C-termini were formed by the mature sole Fsh β subunit (Fshβ) and the chicken glycoprotein hormone common α subunit (CGA), respectively. Depletion of the antiserum to remove anti-CGA antibodies further enriched the sole Fshβ-specific antibodies, which were used to develop the ELISA using the rFsh-C for the standard curve. The sensitivity of the assay was 10 and 50 pg/ml for Fsh measurement in plasma and pituitary, respectively, and the cross-reactivity with a homologous recombinant single-chain luteinizing hormone was 1%. The standard curve for rFsh-C paralleled those of serially diluted plasma and pituitary extracts of other flatfishes, such as the Atlantic halibut, common sole and turbot. In Senegalese sole males, the highest plasma Fsh levels were found during early spermatogenesis but declined during enhanced spermiation, as found in teleosts with cystic spermatogenesis. In pubertal males, however, the circulating Fsh levels were as high as in adult spermiating fish, but interestingly the Fsh receptor in the developing testis containing only spermatogonia was expressed in Leydig cells but not in the primordial Sertoli cells. These results indicate that a recombinant chimeric Fsh can be used to generate specific antibodies against the Fshβ subunit and to develop a highly sensitive ELISA for Fsh measurements in diverse flatfishes.

  15. A bacterial protease inhibitor protects antigens delivered in oral vaccines from digestion while triggering specific mucosal immune responses.

    PubMed

    Ibañez, Andrés Esteban; Coria, Lorena Mirta; Carabajal, Marianela Verónica; Delpino, María Victoria; Risso, Gabriela Sofía; Cobiello, Paula Gonzalez; Rinaldi, Jimena; Barrionuevo, Paula; Bruno, Laura; Frank, Fernanda; Klinke, Sebastián; Goldbaum, Fernando Alberto; Briones, Gabriel; Giambartolomei, Guillermo Hernán; Pasquevich, Karina Alejandra; Cassataro, Juliana

    2015-12-28

    We report here that a bacterial protease inhibitor from Brucella spp. called U-Omp19 behaves as an ideal constituent for a vaccine formulation against infectious diseases. When co-administered orally with an antigen (Ag), U-Omp19: i) can bypass the harsh environment of the gastrointestinal tract by inhibiting stomach and intestine proteases and consequently increases the half-life of the co-administered Ag at immune inductive sites: Peyer's patches and mesenteric lymph nodes while ii) it induces the recruitment and activation of antigen presenting cells (APCs) and increases the amount of intracellular Ag inside APCs. Therefore, mucosal as well as systemic Ag-specific immune responses, antibodies, Th1, Th17 and CD8(+) T cells are enhanced when U-Omp19 is co-administered with the Ag orally. Finally, this bacterial protease inhibitor in an oral vaccine formulation confers mucosal protection and reduces parasite loads after oral challenge with virulent Toxoplasma gondii. PMID:26456256

  16. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion.

    PubMed

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2015-04-01

    We report an analytical methodology for the quantification of common arsenic species in rice and rice cereal using capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICPMS). An enzyme (i.e., α-amylase)-assisted water-phase microwave extraction procedure was used to extract four common arsenic species, including dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenite [As(III)], and arsenate [As(V)] from the rice matrices. The addition of the enzyme α-amylase during the extraction process was necessary to reduce the sample viscosity, which subsequently increased the injection volume and enhanced the signal response. o-Arsanilic acid (o-ASA) was added to the sample solution as a mobility marker and internal standard. The obtained repeatability [i.e., relative standard deviation (RSD %)] of the four arsenic analytes of interest was less than 1.23% for elution time and 2.91% for peak area. The detection limits were determined to be 0.15-0.27 ng g(-1). Rice standard reference materials SRM 1568b and CRM 7503-a were used to validate this method. The quantitative concentrations of each organic arsenic and summed inorganic arsenic were found within 5% difference of the certified values of the two reference materials.

  17. Influence of different length linker containing DHEA-7-cmo-enzyme conjugates on sensitivity and specificity of DHEA-3-hs-antibody.

    PubMed

    Shrivastav, Tulsidas G; Chaube, Shail K; Kariya, Kiran P; Singh, Rita; Kumar, Dinesh; Jain, Parul; Karwar, Suryakant; Uyake, Jyoti; Deshmukh, Bhavana

    2012-01-01

    The introduction of spacers in coating steroid antigen or enzyme conjugates or immunogen is known to exert an influence on the sensitivity of steroid enzyme immunoassays. We have introduced different homobifunctional spacers having varying atomic length (3 to 10) between enzyme and dehydroepiandrosterone (DHEA) moiety and studied their effects on functional parameters such as sensitivity and specificity of DHEA enzyme immunoassays. DHEA-3-hemisuccinate-bovine serum albumin (DHEA-3-HS-BSA) was used as immunogen to raise the antiserum in New Zealand white rabbits. Five enzyme conjugates were prepared using DHEA-7-carboxymethyloxime (DHEA-7-CMO) as carboxylic derivative of DHEA and horseradish peroxidase (HRP) as an enzyme label. These were DHEA-7-CMO-HRP, DHEA-7-CMO-urea-HRP (DHEA-7-CMO-U-HRP), DHEA-7-CMO-ehylenediamine-HRP (DHEA-7-CMO-EDA-HRP), DHEA-7-CMO-carbohydrazide-HRP (DHEA-7-CMO-CH-HRP), and DHEA-7-CMO-adipic acid dihydrazide-HRP (DHEA-7-CMO-ADH-HRP). The influence of different atomic length linkers on sensitivity and specificity were studied with reference to label without linker. The results of the present investigation revealed that DHEA moiety having a 3-hemisuccinate carboxyl arm that is hydrophilic in nature and spacer arm urea that is also hydrophilic in nature when used for the link to the protein carrier and enzyme for the preparation of immunogen and enzyme conjugate respectively resulted in development of assay having comparable sensitivity and lowest ED(50) as compared to other spacers. Thus sensitivity and ED(50) of the assay depend partly on the nature of the steroid and spacer arm link to the carrier protein and the enzyme. PMID:22181816

  18. Testing in Literature. ERIC Digest.

    ERIC Educational Resources Information Center

    Purves, Alan C.

    Pointing out that student testing in literature should take into account each school's philosophy concerning the literature curriculum, this digest explores the broad domain of literature study and looks at specific objectives and outcomes in literature testing. The digest discusses answers to the following questions: (1) Where are the broad…

  19. Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses.

    PubMed

    Kooijman, Lotte J; Mapes, Samantha M; Pusterla, Nicola

    2016-07-01

    Equine coronavirus (EqCoV) infection has been documented in most reports through quantitative qPCR analysis of feces and viral genome sequencing. Although qPCR is used to detect antigen during the acute disease phase, there is no equine-specific antibody test available to study EqCoV seroprevalence in various horse populations. We developed an enzyme-linked immunosorbent assay (ELISA) targeting antibodies to the spike (S) protein of EqCoV and validated its use, using acute and convalescent sera from 83 adult horses involved in 6 outbreaks. The EqCoV S protein-based ELISA was able to reliably detect antibodies to EqCoV in naturally infected horses. The greatest seroconversion rate was observed in horses with clinical signs compatible with EqCoV infection and EqCoV qPCR detection in feces. The EqCoV S protein-based ELISA could be used effectively for seroepidemiologic studies in order to better characterize the overall infection rate of EqCoV in various horse populations.

  20. Enzyme-linked immunosorbent assay for measuring ileal symbiont intracellularis-specific immunoglobulin G response in sera of pigs.

    PubMed Central

    Holyoake, P K; Cutler, R S; Caple, I W; Monckton, R P

    1994-01-01

    Proliferative enteritis (PE) is a common intestinal disease on pig farms. The disease is caused by ileal symbiont (IS) intracellularis (Campylobacter-like organisms) bacteria. An enzyme-linked immunosorbent assay (ELISA) was developed to measure IS intracellularis-specific immunoglobulin G (IgG) response in the sera of pigs. The antigen used in the ELISA was filtered, percoll gradient-purified IS intracellularis extracted from the intestines of pigs affected with proliferative hemorrhagic enteropathy. The antibody responses of pigs challenged with intestinal homogenates from pigs affected with proliferative hemorrhagic enteropathy containing IS intracellularis or percoll-gradient purified IS intracellularis were low and variable. The low IgG titers measured in challenged pigs support previous findings that IgG plays a minor role in the immune response of pigs to IS intracellularis. On a farm in which infection was endemic, pigs seroconverted at between 7 and 24 weeks of age. High IgG titers, indicative of maternally acquired antibody, were present in 3-week-old pigs. The IgG titers in piglets were lowest at 6 weeks of age, which approximates the age of onset of clinical disease. These results suggest that IgG plays a role in determining the susceptibilities of pigs to natural infection. Measurements of seroconversion by the ELISA might aid in epidemiological investigations of PE in naturally infected herds. However, the variable antibody responses in experimentally challenged pigs would seem to limit its usefulness as an antemortem diagnostic test for PE. PMID:7989553

  1. CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes.

    PubMed

    Potts, Rebecca Casaday; Zhang, Peisu; Wurster, Andrea L; Precht, Patricia; Mughal, Mohamed R; Wood, William H; Zhang, Yonqing; Becker, Kevin G; Mattson, Mark P; Pazin, Michael J

    2011-01-01

    CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease.

  2. CHD5, a Brain-Specific Paralog of Mi2 Chromatin Remodeling Enzymes, Regulates Expression of Neuronal Genes

    PubMed Central

    Potts, Rebecca Casaday; Zhang, Peisu; Wurster, Andrea L.; Precht, Patricia; Mughal, Mohamed R.; Wood, William H.; Zhang, Yonqing; Becker, Kevin G.; Mattson, Mark P.; Pazin, Michael J.

    2011-01-01

    CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ß, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease. PMID:21931736

  3. Site-directed Mutagenesis Switching a Dimethylallyl Tryptophan Synthase to a Specific Tyrosine C3-Prenylating Enzyme*

    PubMed Central

    Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming

    2015-01-01

    The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507

  4. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry.

    PubMed

    Zeglis, Brian M; Davis, Charles B; Aggeler, Robert; Kang, Hee Chol; Chen, Aimei; Agnew, Brian J; Lewis, Jason S

    2013-06-19

    An enzyme- and click chemistry-mediated methodology for the site-selective radiolabeling of antibodies on the heavy chain glycans has been developed and validated. To this end, a model system based on the prostate specific membrane antigen-targeting antibody J591, the positron-emitting radiometal (89)Zr, and the chelator desferrioxamine has been employed. The methodology consists of four steps: (1) the removal of sugars on the heavy chain region of the antibody to expose terminal N-acetylglucosamine residues; (2) the incorporation of azide-modified N-acetylgalactosamine monosaccharides into the glycans of the antibody; (3) the catalyst-free click conjugation of desferrioxamine-modified dibenzocyclooctynes to the azide-bearing sugars; and (4) the radiolabeling of the chelator-modified antibody with (89)Zr. The site-selective labeling methodology has proven facile, reproducible, and robust, producing (89)Zr-labeled radioimmunoconjguates that display high stability and immunoreactivity in vitro (>95%) in addition to highly selective tumor uptake (67.5 ± 5.0%ID/g) and tumor-to-background contrast in athymic nude mice bearing PSMA-expressing subcutaneous LNCaP xenografts. Ultimately, this strategy could play a critical role in the development of novel well-defined and highly immunoreactive radioimmunoconjugates for both the laboratory and clinic.

  5. Sensitive and specific enzyme-linked immunosorbent assay for detecting serum antibodies against Mycobacterium avium subsp. paratuberculosis in fallow deer.

    PubMed

    Prieto, José M; Balseiro, Ana; Casais, Rosa; Abendaño, Naiara; Fitzgerald, Liam E; Garrido, Joseba M; Juste, Ramon A; Alonso-Hearn, Marta

    2014-08-01

    The enzyme-linked immunosorbent assay (ELISA) is the diagnostic test most commonly used in efforts to control paratuberculosis in domestic ruminants. However, commercial ELISAs have not been validated for detecting antibodies against Mycobacterium avium subsp. paratuberculosis in wild animals. In this study, we compared the sensitivities and specificities of five ELISAs using individual serum samples collected from 41 fallow deer with or without histopathological lesions consistent with paratuberculosis. Two target antigenic preparations were selected, an ethanol-treated protoplasmic preparation obtained from a fallow deer M. avium subsp. paratuberculosis isolate (ELISAs A and B) and a paratuberculosis protoplasmic antigen (PPA3) (ELISAs C and D). Fallow deer antibodies bound to the immobilized antigens were detected by using a horseradish peroxidase (HRP)-conjugated anti-fallow deer IgG antibody (ELISAs A and C) or HRP-conjugated protein G (ELISAs B and D). A commercially available assay, ELISA-E, which was designed to detect M. avium subsp. paratuberculosis antibodies in cattle, sheep, and goats, was also tested. Although ELISAs A, C, and E had the same sensitivity (72%), ELISAs A and C were more specific (100%) for detecting fallow deer with lesions consistent with paratuberculosis at necropsy than was the ELISA-E (87.5%). In addition, the ELISA-A was particularly sensitive for detecting fallow deer in the latent stages of infection (62.5%). The antibody responses detected with the ELISA-A correlated with both the severity of enteric lesions and the presence of acid-fast bacteria in gut tissue samples. In summary, our study shows that the ELISA-A can be a cost-effective diagnostic tool for preventing the spread of paratuberculosis among fallow deer populations.

  6. Development of an Enzyme-Linked Immunosorbent Assay Method Specific for the Detection of G-Group Aflatoxins

    PubMed Central

    Li, Peiwu; Zhou, Qian; Wang, Ting; Zhou, Haiyan; Zhang, Wen; Ding, Xiaoxia; Zhang, Zhaowei; Chang, Perng-Kuang; Zhang, Qi

    2015-01-01

    To detect and monitor G-group aflatoxins in agricultural products, we generated class-specific monoclonal antibodies that specifically recognized aflatoxins G1 and G2. Of the final three positive and stable hybridomas obtained, clone 2G6 produced a monoclonal antibody that had equal sensitivity to aflatoxins G1 and G2, and did not cross-react with aflatoxins B1, B2, or M1. Its IC50 values for aflatoxins G1 and G2 were 17.18 ng·mL−1 and 19.75 ng·mL−1, respectively. Using this new monoclonal antibody, we developed a competitive indirect enzyme-linked immunosorbent assay (CI-ELISA); the method had a limit of detection of 0.06 ng·mL−1. To validate this CI-ELISA, we spiked uncontaminated peanut samples with various amounts of aflatoxins G1 and G2 and compared recovery rates with those determined by a standard HPLC method. The recovery rates of the CI-ELISA ranging from 94% to 103% were comparable to those of the HPLC (92% to 102%). We also used both methods to determine the amounts of G-group aflatoxins in five peanut samples contaminated by aflatoxin B1-positive, and their relative standard deviations ranged from 8.4% to 17.7% (under 20%), which demonstrates a good correlation between the two methods. We further used this CI-ELISA to assess the ability of 126 fungal strains isolated from peanuts or field soils to produce G-group aflatoxins. Among these, seven stains producing different amounts of G-group aflatoxins were identified. Our results showed that the monoclonal antibody 2 G6-based CI-ELISA was suitable for the detection of G-group aflatoxins present in peanuts and also those produced by fungi. PMID:26729164

  7. Development of an Enzyme-Linked Immunosorbent Assay Method Specific for the Detection of G-Group Aflatoxins.

    PubMed

    Li, Peiwu; Zhou, Qian; Wang, Ting; Zhou, Haiyan; Zhang, Wen; Ding, Xiaoxia; Zhang, Zhaowei; Chang, Perng-Kuang; Zhang, Qi

    2015-12-28

    To detect and monitor G-group aflatoxins in agricultural products, we generated class-specific monoclonal antibodies that specifically recognized aflatoxins G₁ and G₂. Of the final three positive and stable hybridomas obtained, clone 2G6 produced a monoclonal antibody that had equal sensitivity to aflatoxins G₁ and G₂, and did not cross-react with aflatoxins B₁, B₂, or M₁. Its IC50 values for aflatoxins G₁ and G₂ were 17.18 ng·mL(-1) and 19.75 ng·mL(-1), respectively. Using this new monoclonal antibody, we developed a competitive indirect enzyme-linked immunosorbent assay (CI-ELISA); the method had a limit of detection of 0.06 ng·mL(-1). To validate this CI-ELISA, we spiked uncontaminated peanut samples with various amounts of aflatoxins G₁ and G₂ and compared recovery rates with those determined by a standard HPLC method. The recovery rates of the CI-ELISA ranging from 94% to 103% were comparable to those of the HPLC (92% to 102%). We also used both methods to determine the amounts of G-group aflatoxins in five peanut samples contaminated by aflatoxin B₁-positive, and their relative standard deviations ranged from 8.4% to 17.7% (under 20%), which demonstrates a good correlation between the two methods. We further used this CI-ELISA to assess the ability of 126 fungal strains isolated from peanuts or field soils to produce G-group aflatoxins. Among these, seven stains producing different amounts of G-group aflatoxins were identified. Our results showed that the monoclonal antibody 2 G6-based CI-ELISA was suitable for the detection of G-group aflatoxins present in peanuts and also those produced by fungi.

  8. A simple and rapid method for HLA-DQA1 genotyping by digestion of PCR-amplified DNA with allele specific restriction endonucleases.

    PubMed

    Maeda, M; Murayama, N; Ishii, H; Uryu, N; Ota, M; Tsuji, K; Inoko, H

    1989-11-01

    The second exon of the HLA-DQA1 genes was selectively amplified from genomic DNAs of 72 HLA-homozygous B cell lines by the polymerase chain reaction (PCR). Amplified DNAs were digested with HaeIII, Ddel, ScrFI, FokI and RsaI, which recognize allelic sequence variations in the polymorphic segments of the DQA1 second exon, and then subjected to electrophoresis in polyacrylamide gels. Eight different polymorphic patterns of restriction fragments were obtained, and seven were identical to patterns predicted from the known DNA sequences, correlating with each HLA-DQw type defined by serological typing. The remaining one pattern cannot be explained from the sequence data, suggesting the presence of a novel DQA1 allele at the nucleotide level. This PCR-RFLP method provides a simple and rapid technique for accurate definition of the HLA-DQ types at the nucleotide level, eliminating the need for radioisotope as well as allele specific oligonucleotide probes and can be extended and applied to HLA-DR, -Dw DP typing. PMID:2576477

  9. Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20.

    PubMed

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2005-12-01

    A dehydrogenase from Clostridium sp. EDB2 and a diaphorase from Clostridium kluyveri were reacted with CL-20 to gain insights into the enzyme-catalyzed hydride transfer to CL-20, and the enzyme's stereo-specificity for either pro-R or pro-S hydrogens of NAD(P)H. Both enzymes biotransformed CL-20 at rates of 18.5 and 24nmol/h/mg protein, using NADH and NADPH as hydride-source, respectively, to produce a N-denitrohydrogenated product with a molecular weight of 393Da. In enzyme kinetics studies using reduced deuterated pyridine nucleotides, we found a kinetic deuterium isotopic effect of 2-fold on CL-20 biotransformation rate using dehydrogenase enzyme against (R)NADD as a hydride-source compared to either (S)NADD or NADH. Whereas, in case of diaphorase, the kinetic deuterium isotopic effect of about 1.5-fold was observed on CL-20 biotransformation rate using (R)NADPD as hydride-source. In a comparative study with LC-MS, using deuterated and non-deuterated NAD(P)H, we found a positive mass-shift of 1Da in the N-denitrohydrogenated product suggesting the involvement of a deuteride (D(-)) transfer from NAD(P)D. The present study thus revealed that both dehydrogenase and diaphorase enzymes from the two Clostridium species catalyzed a hydride transfer to CL-20 and showed stereo-specificity for pro-R hydrogen of NAD(P)H. PMID:16225844

  10. Evidence that a lipolytic enzyme--hematopoietic-specific phospholipase C-β2--promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes.

    PubMed

    Adamiak, M; Poniewierska-Baran, A; Borkowska, S; Schneider, G; Abdelbaset-Ismail, A; Suszynska, M; Abdel-Latif, A; Kucia, M; Ratajczak, J; Ratajczak, M Z

    2016-04-01

    Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs.

  11. Carbohydrases in the digestive system of the spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae).

    PubMed

    Ghamari, Mahboob; Hosseininaveh, Vahid; Darvishzadeh, Ali; Chougule, Nanasaheb P

    2014-04-01

    The spined soldier bug, Podisus maculiventris, is a generalist predator of insects and has been used in biological control. However, information on the digestion of food in this insect is lacking. Therefore, we have studied the digestive system in P. maculiventris, and further characterized carbohydrases in the digestive tract. The midgut of all developmental stages was composed of anterior, median, and posterior regions. The volumes of the anterior midgut decreased and the median midgut increased in older instars and adults, suggesting a more important role of the median midgut in food digestion. However, carbohydrase activities were predominant in the anterior midgut. In comparing the specific activity of carbohydrases, α-amylase activity was more in the salivary glands (with two distinct activity bands in zymograms), and glucosidase and galactosidase activities were more in the midgut. Salivary α-amylases were detected in the prey hemolymph, demonstrating the role of these enzymes in extra-oral digestion. However, the catalytic efficiency of midgut α-amylase activity was approximately twofold more than that of the salivary gland enzymes, and was more efficient in digesting soluble starch than glycogen. Midgut α-amylases were developmentally regulated, as one isoform was found in first instar compared to three isoforms in fifth instar nymphs. Starvation significantly affected carbohydrase activities in the midgut, and acarbose inhibited α-amylases from both the salivary glands and midgut in vitro and in vivo. The structural diversity and developmental regulation of carbohydrases in the digestive system of P. maculiventris demonstrate the importance of these enzymes in extra-oral and intra-tract digestion, and may explain the capability of the hemipteran to utilize diverse food sources. PMID:24610734

  12. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  13. Pretreatment of coconut mill effluent using celite-immobilized hydrolytic enzyme preparation from Staphylococcus pasteuri and its impact on anaerobic digestion.

    PubMed

    Kanmani, Palanisamy; Kumaresan, Kuppamuthu; Aravind, Jeyaseelan

    2015-01-01

    Biological treatment of oil and grease (O&G)-containing industrial effluents has long been a challenging issue. Practically feasible avenues to bring down their O&G load and enhance treatability are desired. In one such endeavour, the partially purified lipase from Staphylococcus pasteuri COM-4A was immobilized on celite carrier and applied for the enzymatic hydrolysis of unsterilized coconut oil mill effluent. In batch hydrolysis experiments, optimum conditions of 1% (w/v) immobilized lipase beads, one in four effluent dilution, and a contact time of 30 h resulted in 46% and 24% increase in volatile fatty acids and long-chain fatty acids and a concomitant 52% and 32% decrease in O&G and chemical oxygen demand (COD) levels, respectively. Batch anaerobic biodegradation trials with this prehydrolyzed effluent showed 89%, 91%, and 90% decrease in COD, proteins, and reducing sugars, respectively. These results were validated in a hybrid stirred tank--upflow anaerobic sludge blanket reactor. Average COD and O&G reductions effected by the hybrid reactor were found to be 89% and 88%, whereas that by the control reactor without enzymatic hydrolysis were only 60% and 47%, respectively. A maximum of 0.86 L methane gas was generated by the hybrid reactor per gram of VS added. Hence, this celite-immobilized crude lipase, sourced from a native laboratory isolate, seems to be a workable alternative to commercial enzyme preparations for the management of lipid-rich industrial effluents. PMID:26033963

  14. Pretreatment of coconut mill effluent using celite-immobilized hydrolytic enzyme preparation from Staphylococcus pasteuri and its impact on anaerobic digestion.

    PubMed

    Kanmani, Palanisamy; Kumaresan, Kuppamuthu; Aravind, Jeyaseelan

    2015-01-01

    Biological treatment of oil and grease (O&G)-containing industrial effluents has long been a challenging issue. Practically feasible avenues to bring down their O&G load and enhance treatability are desired. In one such endeavour, the partially purified lipase from Staphylococcus pasteuri COM-4A was immobilized on celite carrier and applied for the enzymatic hydrolysis of unsterilized coconut oil mill effluent. In batch hydrolysis experiments, optimum conditions of 1% (w/v) immobilized lipase beads, one in four effluent dilution, and a contact time of 30 h resulted in 46% and 24% increase in volatile fatty acids and long-chain fatty acids and a concomitant 52% and 32% decrease in O&G and chemical oxygen demand (COD) levels, respectively. Batch anaerobic biodegradation trials with this prehydrolyzed effluent showed 89%, 91%, and 90% decrease in COD, proteins, and reducing sugars, respectively. These results were validated in a hybrid stirred tank--upflow anaerobic sludge blanket reactor. Average COD and O&G reductions effected by the hybrid reactor were found to be 89% and 88%, whereas that by the control reactor without enzymatic hydrolysis were only 60% and 47%, respectively. A maximum of 0.86 L methane gas was generated by the hybrid reactor per gram of VS added. Hence, this celite-immobilized crude lipase, sourced from a native laboratory isolate, seems to be a workable alternative to commercial enzyme preparations for the management of lipid-rich industrial effluents.

  15. Effects of Industrial Heating Processes of Milk-Based Enteral Formulas on Site-Specific Protein Modifications and Their Relationship to in Vitro and in Vivo Protein Digestibility.

    PubMed

    Wada, Yasuaki; Lönnerdal, Bo

    2015-08-01

    Heat treatments are applied to milk and dairy products to ensure their microbiological safety and shelf lives. Types of heating processes may have different effects on protein modifications, leading to different protein digestibility. In this study, milk-based liquid nutritional formulas (simulating enteral formulas) were subjected to steam injection ultra-high-temperature treatment or in-can sterilization, and the formulas were investigated by proteomic methods and in vitro and in vivo digestion assays. Proteomic analyses revealed that in-can sterilization resulted in higher signals for N(ε)-carboxymethyllysine and dephosphorylation of Ser residues in major milk proteins than in steam-injected formula, reflecting the more severe thermal process of in-can sterilization. In vitro and in vivo digestion assays indicated that steam injection improved protein digestibility, supposedly by denaturation, while the improvement seemed to be overwhelmed by formation of aggregates that showed resistance to digestion in in-can sterilized formula. Adverse effects of heat treatment on protein digestibility are more likely to be manifested in milk-based formulas than in cow's milk. Although the differences might be of limited significance in terms of amino acid bioavailability, these results emphasize the importance of protein quality of raw materials and selection of heating processes.

  16. Elucidation of catalytic specificities of human cytochrome P450 and glutathione S-transferase enzymes and relevance to molecular epidemiology.

    PubMed

    Guengerich, F P; Shimada, T; Raney, K D; Yun, C H; Meyer, D J; Ketterer, B; Harris, T M; Groopman, J D; Kadlubar, F F

    1992-11-01

    A number of different approaches have been used to determine the catalytic selectivity of individual human enzymes toward procarcinogens. Studies with cytochrome P450 (P450) enzymes and glutathione S-transferases are summarized here, and recent work with pyrrolizidine alkaloids, aflatoxins, 4,4'-methylenebis(2-chloroaniline), and ethyl carbamate is discussed. In some cases a single enzyme can catalyze both activation and detoxication reactions of a chemical. The purification and characterization of human lung P4501A1 and the development of a noninvasive assay for human P4502E1 are also described. PMID:1486866

  17. Adaptation at Specific Loci. V. Metabolically Adjacent Enzyme Loci May Have Very Distinct Experiences of Selective Pressures

    PubMed Central

    Carter, P. A.; Watt, W. B.

    1988-01-01

    The polymorphic phosphoglucomutase (PGM) and glucose-6-phosphate dehydrogenase (G6PD) loci have been studied in parallel to experimental work on the phosphoglucose isomerase (PGI) polymorphism in Colias butterflies. PGI, PGM and G6PD are also autosomal in Colias. PGM and G6PD are loosely linked (and represent the first identified autosomal linkage group in Colias); they assort independently from PGI. Recombination occurs in both sexes. Neither PGM nor G6PD shows large, consistent differences in flight capacity through the day among its genotypes, as PGI does. PGM shows some change of allele frequencies, and match to Hardy-Weinberg expectation, with air temperature in middle and latter parts of the season, but not early in the season. G6PD may show some heterozygote excess over Hardy-Weinberg expectation early in the day, but more testing is needed. No evidence for differential survivorship was seen at PGM or G6PD, in contrast to PGI. At the PGM and G6PD loci, male heterozygotes are advantaged in mating with females, but without the evidence of female choice which occurs for PGI. These effects are not correlated among the three loci. There is no assortative mating at G6PD (nor at PGI). There is minor positive assortative mating of PGM heterozygotes, but it is too weak to account for the PGM-genotype-specific male mating advantage. No trends of multilocus genotype frequencies involving PGI are seen. Certain PGM-G6PD two-locus genotypes are over-represented, and others under-represented, in wild adult samples, particularly among males and uniformly among successfully mating males. Our results emphasize that enzyme loci sharing a substrate need not have common experience of the existence or strength of natural selection, and suggest initial food-resource processing and allocation as a possible context for fitness-related effects of the PGM and G6PD polymorphisms. PMID:2970419

  18. The Enzyme and the cDNA Sequence of a Thermolabile and Double-Strand Specific DNase from Northern Shrimps (Pandalus borealis)

    PubMed Central

    Nilsen, Inge W.; Øverbø, Kersti; Jensen Havdalen, Linda; Elde, Morten; Gjellesvik, Dag Rune; Lanes, Olav

    2010-01-01

    Background We have previously isolated a thermolabile nuclease specific for double-stranded DNA from industrial processing water of Northern shrimps (Pandalus borealis) and developed an application of the enzyme in removal of contaminating DNA in PCR-related technologies. Methodology/Principal Findings A 43 kDa nuclease with a high specific activity of hydrolysing linear as well as circular forms of DNA was purified from hepatopancreas of Northern shrimp (Pandalus borealis). The enzyme displayed a substrate preference that was shifted from exclusively double-stranded DNA in the presence of magnesium to also encompass significant activity against single-stranded DNA when calcium was added. No activity against RNA was detected. Although originating from a cold-environment animal, the shrimp DNase has only minor low-temperature activity. Still, the enzyme was irreversibly inactivated by moderate heating with a half-life of 1 min at 65°C. The purified protein was partly sequenced and derived oligonucleotides were used to prime amplification of the encoding cDNA. This cDNA sequence revealed an open reading frame encoding a 404 amino acid protein containing a signal peptide. By sequence similarity the enzyme is predicted to belong to a family of DNA/RNA non-specific nucleases even though this shrimp DNase lacks RNase activity and is highly double-strand specific in some respects. These features are in agreement with those previously established for endonucleases classified as similar to the Kamchatka crab duplex-