Jin, Xiaoli; Ren, Jing; Nevo, Eviatar; Yin, Xuegui; Sun, Dongfa; Peng, Junhua
2017-01-01
NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1) uneven constitution of Clusters of Orthologous Groups (COGs) and contrasting birth/death rates among subfamilies, and (2) two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses. PMID:28713414
Evolutionary dynamics of protein domain architecture in plants
2012-01-01
Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s) in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing the notion that plant genomes have undergone dynamic evolution. PMID:22252370
Young, Robert S
2016-07-01
Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.
Xu, Jianpeng; Davis, C. Todd; Christman, Mary C.; Rivailler, Pierre; Zhong, Haizhen; Donis, Ruben O.; Lu, Guoqing
2012-01-01
Background Influenza neuraminidase (NA) is an important surface glycoprotein and plays a vital role in viral replication and drug development. The NA is found in influenza A and B viruses, with nine subtypes classified in influenza A. The complete knowledge of influenza NA evolutionary history and phylodynamics, although critical for the prevention and control of influenza epidemics and pandemics, remains lacking. Methodology/Principal findings Evolutionary and phylogenetic analyses of influenza NA sequences using Maximum Likelihood and Bayesian MCMC methods demonstrated that the divergence of influenza viruses into types A and B occurred earlier than the divergence of influenza A NA subtypes. Twenty-three lineages were identified within influenza A, two lineages were classified within influenza B, and most lineages were specific to host, subtype or geographical location. Interestingly, evolutionary rates vary not only among lineages but also among branches within lineages. The estimated tMRCAs of influenza lineages suggest that the viruses of different lineages emerge several months or even years before their initial detection. The d N /d S ratios ranged from 0.062 to 0.313 for influenza A lineages, and 0.257 to 0.259 for influenza B lineages. Structural analyses revealed that all positively selected sites are at the surface of the NA protein, with a number of sites found to be important for host antibody and drug binding. Conclusions/Significance The divergence into influenza type A and B from a putative ancestral NA was followed by the divergence of type A into nine NA subtypes, of which 23 lineages subsequently diverged. This study provides a better understanding of influenza NA lineages and their evolutionary dynamics, which may facilitate early detection of newly emerging influenza viruses and thus improve influenza surveillance. PMID:22808012
Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions
Ames, Ryan M.; Money, Daniel; Lovell, Simon C.
2014-01-01
The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666
Rivera-Rivera, Carlos J.; Montoya-Burgos, Juan I.
2016-01-01
Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³. PMID:26912812
Rivera-Rivera, Carlos J; Montoya-Burgos, Juan I
2016-06-01
Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA) artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in the algorithm Locus Specific Sequence Subsampling (LS³), aimed at reducing the effects of LBA in multi-gene datasets. For each gene, LS³ sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are flagged as potentially problematic. The software implementation provides the user with the possibility to remove the flagged sequences for generating a new concatenated alignment. We tested LS³ with simulations and two real datasets containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all cases upon removing data flagged by LS³. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genetic and epigenetic variation in the lineage specification of regulatory T cells
Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y
2015-01-01
Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014
Chiapello, Hélène; Mallet, Ludovic; Guérin, Cyprien; Aguileta, Gabriela; Amselem, Joëlle; Kroj, Thomas; Ortega-Abboud, Enrique; Lebrun, Marc-Henri; Henrissat, Bernard; Gendrault, Annie; Rodolphe, François; Tharreau, Didier; Fournier, Elisabeth
2015-01-01
Deciphering the genetic bases of pathogen adaptation to its host is a key question in ecology and evolution. To understand how the fungus Magnaporthe oryzae adapts to different plants, we sequenced eight M. oryzae isolates differing in host specificity (rice, foxtail millet, wheat, and goosegrass), and one Magnaporthe grisea isolate specific of crabgrass. Analysis of Magnaporthe genomes revealed small variation in genome sizes (39–43 Mb) and gene content (12,283–14,781 genes) between isolates. The whole set of Magnaporthe genes comprised 14,966 shared families, 63% of which included genes present in all the nine M. oryzae genomes. The evolutionary relationships among Magnaporthe isolates were inferred using 6,878 single-copy orthologs. The resulting genealogy was mostly bifurcating among the different host-specific lineages, but was reticulate inside the rice lineage. We detected traces of introgression from a nonrice genome in the rice reference 70-15 genome. Among M. oryzae isolates and host-specific lineages, the genome composition in terms of frequencies of genes putatively involved in pathogenicity (effectors, secondary metabolism, cazome) was conserved. However, 529 shared families were found only in nonrice lineages, whereas the rice lineage possessed 86 specific families absent from the nonrice genomes. Our results confirmed that the host specificity of M. oryzae isolates was associated with a divergence between lineages without major gene flow and that, despite the strong conservation of gene families between lineages, adaptation to different hosts, especially to rice, was associated with the presence of a small number of specific gene families. All information was gathered in a public database (http://genome.jouy.inra.fr/gemo). PMID:26454013
Differences in evolutionary pressure acting within highly conserved ortholog groups.
Przytycka, Teresa M; Jothi, Raja; Aravind, L; Lipman, David J
2008-07-17
In highly conserved widely distributed ortholog groups, the main evolutionary force is assumed to be purifying selection that enforces sequence conservation, with most divergence occurring by accumulation of neutral substitutions. Using a set of ortholog groups from prokaryotes, with a single representative in each studied organism, we asked the question if this evolutionary pressure is acting similarly on different subgroups of orthologs defined as major lineages (e.g. Proteobacteria or Firmicutes). Using correlations in entropy measures as a proxy for evolutionary pressure, we observed two distinct behaviors within our ortholog collection. The first subset of ortholog groups, called here informational, consisted mostly of proteins associated with information processing (i.e. translation, transcription, DNA replication) and the second, the non-informational ortholog groups, mostly comprised of proteins involved in metabolic pathways. The evolutionary pressure acting on non-informational proteins is more uniform relative to their informational counterparts. The non-informational proteins show higher level of correlation between entropy profiles and more uniformity across subgroups. The low correlation of entropy profiles in the informational ortholog groups suggest that the evolutionary pressure acting on the informational ortholog groups is not uniform across different clades considered this study. This might suggest "fine-tuning" of informational proteins in each lineage leading to lineage-specific differences in selection. This, in turn, could make these proteins less exchangeable between lineages. In contrast, the uniformity of the selective pressure acting on the non-informational groups might allow the exchange of the genetic material via lateral gene transfer.
Robertson, Fiona M; Gundappa, Manu Kumar; Grammes, Fabian; Hvidsten, Torgeir R; Redmond, Anthony K; Lien, Sigbjørn; Martin, Samuel A M; Holland, Peter W H; Sandve, Simen R; Macqueen, Daniel J
2017-06-14
The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million years ago, fit such a 'time-lag' model of post-WGD radiation, which occurred alongside a major delay in the rediploidization process. Here we propose a model, 'lineage-specific ohnologue resolution' (LORe), to address the consequences of delayed rediploidization. Under LORe, speciation precedes rediploidization, allowing independent ohnologue divergence in sister lineages sharing an ancestral WGD event. Using cross-species sequence capture, phylogenomics and genome-wide analyses of ohnologue expression divergence, we demonstrate the major impact of LORe on salmonid evolution. One-quarter of each salmonid genome, harbouring at least 4550 ohnologues, has evolved under LORe, with rediploidization and functional divergence occurring on multiple independent occasions >50 million years post-WGD. We demonstrate the existence and regulatory divergence of many LORe ohnologues with functions in lineage-specific physiological adaptations that potentially facilitated salmonid species radiation. We show that LORe ohnologues are enriched for different functions than 'older' ohnologues that began diverging in the salmonid ancestor. LORe has unappreciated significance as a nested component of post-WGD divergence that impacts the functional properties of genes, whilst providing ohnologues available solely for lineage-specific adaptation. Under LORe, which is predicted following many WGD events, the functional outcomes of WGD need not appear 'explosively', but can arise gradually over tens of millions of years, promoting lineage-specific diversification regimes under prevailing ecological pressures.
Klassen, Jonathan L.
2010-01-01
Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification. PMID:20582313
Li, Kui; Sun, Xiaohui; Chen, Meixiu; Sun, Yingying; Tian, Ran; Wang, Zhengfei; Xu, Shixia; Yang, Guang
2018-01-01
The diversity of body plans of mammals accelerates the innovation of lifestyles and the extensive adaptation to different habitats, including terrestrial, aerial and aquatic habitats. However, the genetic basis of those phenotypic modifications, which have occurred during mammalian evolution, remains poorly explored. In the present study, we synthetically surveyed the evolutionary pattern of Hox clusters that played a powerful role in the morphogenesis along the head-tail axis of animal embryos and the main regulatory factors (Mll, Bmi1 and E2f6) that control the expression of Hox genes. A deflected density of repetitive elements and lineage-specific radical mutations of Mll have been determined in marine mammals with morphological changes, suggesting that evolutionary changes may alter Hox gene expression in these lineages, leading to the morphological modification of these lineages. Although no positive selection was detected at certain ancestor nodes of lineages, the increased ω values of Hox genes implied the relaxation of functional constraints of these genes during the mammalian evolutionary process. More importantly, 49 positively-selected sites were identified in mammalian lineages with phenotypic modifications, indicating adaptive evolution acting on Hox genes and regulatory factors. In addition, 3 parallel amino acid substitutions in some Hox genes were examined in marine mammals, which might be responsible for their streamlined body. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
González-Romero, Rodrigo; Eirín-López, José M.; Ausió, Juan
2015-01-01
High mobility group (HMG)-N proteins are a family of small nonhistone proteins that bind to nucleosomes (N). Despite the amount of information available on their structure and function, there is an almost complete lack of information on the molecular evolutionary mechanisms leading to their exclusive differentiation. In the present work, we provide evidence suggesting that HMGN lineages constitute independent monophyletic groups derived from a common ancestor prior to the diversification of vertebrates. Based on observations of the functional diversification across vertebrate HMGN proteins and on the extensive silent nucleotide divergence, our results suggest that the long-term evolution of HMGNs occurs under strong purifying selection, resulting from the lineage-specific functional constraints of their different protein domains. Selection analyses on independent lineages suggest that their functional specialization was mediated by bursts of adaptive selection at specific evolutionary times, in a small subset of codons with functional relevance—most notably in HMGN1, and in the rapidly evolving HMGN5. This work provides useful information to our understanding of the specialization imparted on chromatin metabolism by HMGNs, especially on the evolutionary mechanisms underlying their functional differentiation in vertebrates. PMID:25281808
Roitberg, E S; Eplanova, G V; Kotenko, T I; Amat, F; Carretero, M A; Kuranova, V N; Bulakhova, N A; Zinenko, O I; Yakovlev, V A
2015-03-01
The fecundity-advantage hypothesis (FAH) explains larger female size relative to male size as a correlated response to fecundity selection. We explored FAH by investigating geographic variation in female reproductive output and its relation to sexual size dimorphism (SSD) in Lacerta agilis, an oviparous lizard occupying a major part of temperate Eurasia. We analysed how sex-specific body size and SSD are associated with two putative indicators of fecundity selection intensity (clutch size and the slope of the clutch size-female size relationship) and with two climatic variables throughout the species range and across two widespread evolutionary lineages. Variation within the lineages provides no support for FAH. In contrast, the divergence between the lineages is in line with FAH: the lineage with consistently female-biased SSD (L. a. agilis) exhibits higher clutch size and steeper fecundity slope than the lineage with an inconsistent and variable SSD (L. a. exigua). L. a. agilis shows lower offspring size (egg mass, hatchling mass) and higher clutch mass relative to female mass than L. a. exigua, that is both possible ways to enhance offspring number are exerted. As the SSD difference is due to male size (smaller males in L. a. agilis), fecundity selection favouring larger females, together with viability selection for smaller size in both sexes, would explain the female-biased SSD and reproductive characteristics of L. a. agilis. The pattern of intraspecific life-history divergence in L. agilis is strikingly similar to that between oviparous and viviparous populations of a related species Zootoca vivipara. Evolutionary implications of this parallelism are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph
2011-02-10
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.
Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph
2011-01-01
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment. PMID:21347280
Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.
Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B
2013-03-01
Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.
Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages
Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro
2017-01-01
Abstract Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases’ evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. PMID:28369657
Solbakken, Monica Hongrø; Voje, Kjetil Lysne; Jakobsen, Kjetill Sigurd; Jentoft, Sissel
2017-04-26
Host-intrinsic factors as well as environmental changes are known to be strong evolutionary drivers defining the genetic foundation of immunity. Using a novel set of teleost genomes and a time-calibrated phylogeny, we here investigate the family of Toll-like receptor ( TLR ) genes and address the underlying evolutionary processes shaping the diversity of the first-line defence. Our findings reveal remarkable flexibility within the evolutionary design of teleost innate immunity characterized by prominent TLR gene losses and expansions. In the order of Gadiformes, expansions correlate with the loss of major histocompatibility complex class II ( MHCII ) and diversifying selection analyses support that this has fostered new immunological innovations in TLR s within this lineage. In teleosts overall, TLRs expansions correlate with species latitudinal distributions and maximum depth. By contrast, lineage-specific gene losses overlap with well-described changes in palaeoclimate (global ocean anoxia) and past Atlantic Ocean geography. In conclusion, we suggest that the evolvability of the teleost immune system has most likely played a prominent role in the survival and successful radiation of this lineage. © 2017 The Authors.
Gall-induction in insects: evolutionary dead-end or speciation driver?
2010-01-01
Background The tree of life is significantly asymmetrical - a result of differential speciation and extinction - but general causes of such asymmetry are unclear. Differences in niche partitioning are thought to be one possible general explanation. Ecological specialization might lead to increases in diversification rate or, alternatively, specialization might limit the evolutionary potential of specialist lineages and increase their extinction risk. Here we compare the diversification rates of gall-inducing and non-galling insect lineages. Compared with other insect herbivores feeding on the same host plant, gall-inducing insects feed on plant tissue that is more nutritious and less defended, and they do so in a favorable microhabitat that may also provide some protection from natural enemies. We use sister-taxon comparisons to test whether gall-inducing lineages are more host-specific than non-galling lineages, and more or less diverse than non-gallers. We evaluate the significance of diversity bipartitions under Equal Rates Markov models, and use maximum likelihood model-fitting to test for shifts in diversification rates. Results We find that, although gall-inducing insect groups are more host-specific than their non-galling relatives, there is no general significant increase in diversification rate in gallers. However, gallers are found at both extremes - two gall-inducing lineages are exceptionally diverse (Euurina sawflies on Salicaceae and Apiomorpha scale insects on Eucalytpus), and one gall-inducing lineage is exceptionally species-poor (Maskellia armored scales on Eucalyptus). Conclusions The effect of ecological specialization on diversification rates is complex in the case of gall-inducing insects, but host range may be an important factor. When a gall-inducing lineage has a host range approximate to that of its non-galling sister, the gallers are more diverse. When the non-galler clade has a much wider host range than the galler, the non-galler is also much more diverse. There are also lineage-specific effects, with gallers on the same host group exhibiting very different diversities. No single general model explains the observed pattern. PMID:20735853
Quantifying selective pressures driving bacterial evolution using lineage analysis
Lambert, Guillaume; Kussell, Edo
2015-01-01
Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population’s rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages –i.e. the life-histories of individuals and their ancestors– to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to E. coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life-history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection, and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems. PMID:26213639
Genetic Regulatory Networks in Embryogenesis and Evolution
NASA Technical Reports Server (NTRS)
1998-01-01
The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.
Conservation of sex chromosomes in lacertid lizards.
Rovatsos, Michail; Vukić, Jasna; Altmanová, Marie; Johnson Pokorná, Martina; Moravec, Jiří; Kratochvíl, Lukáš
2016-07-01
Sex chromosomes are believed to be stable in endotherms, but young and evolutionary unstable in most ectothermic vertebrates. Within lacertids, the widely radiated lizard group, sex chromosomes have been reported to vary in morphology and heterochromatinization, which may suggest turnovers during the evolution of the group. We compared the partial gene content of the Z-specific part of sex chromosomes across major lineages of lacertids and discovered a strong evolutionary stability of sex chromosomes. We can conclude that the common ancestor of lacertids, living around 70 million years ago (Mya), already had the same highly differentiated sex chromosomes. Molecular data demonstrating an evolutionary conservation of sex chromosomes have also been documented for iguanas and caenophidian snakes. It seems that differences in the evolutionary conservation of sex chromosomes in vertebrates do not reflect the distinction between endotherms and ectotherms, but rather between amniotes and anamniotes, or generally, the differences in the life history of particular lineages. © 2016 John Wiley & Sons Ltd.
Tropical forests are both evolutionary cradles and museums of leaf beetle diversity.
McKenna, Duane D; Farrell, Brian D
2006-07-18
The high extant species diversity of tropical lineages of organisms is usually portrayed as a relatively recent and rapid development or as a consequence of the gradual accumulation or preservation of species over time. These explanations have led to alternative views of tropical forests as evolutionary "cradles" or "museums" of diversity, depending on the organisms under study. However, biogeographic and fossil evidence implies that the evolutionary histories of diversification among tropical organisms may be expected to exhibit characteristics of both cradle and museum models. This possibility has not been explored in detail for any group of terrestrial tropical organisms. From an extensively sampled molecular phylogeny of herbivorous Neotropical leaf beetles in the genus Cephaloleia, we present evidence for (i) comparatively ancient Paleocene-Eocene adaptive radiation associated with global warming and Cenozoic maximum global temperatures, (ii) moderately ancient lineage-specific diversification coincident with the Oligocene adaptive radiation of Cephaloleia host plants in the genus Heliconia, and (iii) relatively recent Miocene-Pliocene diversification coincident with the collision of the Panama arc with South America and subsequent bridging of the Isthmus of Panama. These results demonstrate that, for Cephaloleia and perhaps other lineages of organisms, tropical forests are at the same time both evolutionary cradles and museums of diversity.
Unraveling the processes shaping mammalian gut microbiomes over evolutionary time
Groussin, Mathieu; Mazel, Florent; Sanders, Jon G.; Smillie, Chris S.; Lavergne, Sébastien; Thuiller, Wilfried; Alm, Eric J.
2017-01-01
Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution. PMID:28230052
Sex and virulence in Escherichia coli: an evolutionary perspective
Wirth, Thierry; Falush, Daniel; Lan, Ruiting; Colles, Frances; Mensa, Patience; Wieler, Lothar H; Karch, Helge; Reeves, Peter R; Maiden, Martin CJ; Ochman, Howard; Achtman, Mark
2006-01-01
Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response. PMID:16689791
The evolution of duplicate gene expression in mammalian organs
Guschanski, Katerina; Warnefors, Maria; Kaessmann, Henrik
2017-01-01
Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates. PMID:28743766
Evolutionary change in physiological phenotypes along the human lineage
Vining, Alexander Q.; Nunn, Charles L.
2016-01-01
Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376
Squamate hatchling size and the evolutionary causes of negative offspring size allometry.
Meiri, S; Feldman, A; Kratochvíl, L
2015-02-01
Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
González-Romero, Rodrigo; Eirín-López, José M; Ausió, Juan
2015-01-01
High mobility group (HMG)-N proteins are a family of small nonhistone proteins that bind to nucleosomes (N). Despite the amount of information available on their structure and function, there is an almost complete lack of information on the molecular evolutionary mechanisms leading to their exclusive differentiation. In the present work, we provide evidence suggesting that HMGN lineages constitute independent monophyletic groups derived from a common ancestor prior to the diversification of vertebrates. Based on observations of the functional diversification across vertebrate HMGN proteins and on the extensive silent nucleotide divergence, our results suggest that the long-term evolution of HMGNs occurs under strong purifying selection, resulting from the lineage-specific functional constraints of their different protein domains. Selection analyses on independent lineages suggest that their functional specialization was mediated by bursts of adaptive selection at specific evolutionary times, in a small subset of codons with functional relevance-most notably in HMGN1, and in the rapidly evolving HMGN5. This work provides useful information to our understanding of the specialization imparted on chromatin metabolism by HMGNs, especially on the evolutionary mechanisms underlying their functional differentiation in vertebrates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Klinger, Christen M; Paoli, Lucas; Newby, Robert J; Wang, Matthew Yu-Wei; Carroll, Hyrum D; Leblond, Jeffrey D; Howe, Christopher J; Dacks, Joel B; Bowler, Chris; Cahoon, Aubery Bruce; Dorrell, Richard G
2018-01-01
Abstract Dinoflagellates are a group of unicellular protists with immense ecological and evolutionary significance and cell biological diversity. Of the photosynthetic dinoflagellates, the majority possess a plastid containing the pigment peridinin, whereas some lineages have replaced this plastid by serial endosymbiosis with plastids of distinct evolutionary affiliations, including a fucoxanthin pigment-containing plastid of haptophyte origin. Previous studies have described the presence of widespread substitutional RNA editing in peridinin and fucoxanthin plastid genes. Because reports of this process have been limited to manual assessment of individual lineages, global trends concerning this RNA editing and its effect on the biological function of the plastid are largely unknown. Using novel bioinformatic methods, we examine the dynamics and evolution of RNA editing over a large multispecies data set of dinoflagellates, including novel sequence data from the peridinin dinoflagellate Pyrocystis lunula and the fucoxanthin dinoflagellate Karenia mikimotoi. We demonstrate that while most individual RNA editing events in dinoflagellate plastids are restricted to single species, global patterns, and functional consequences of editing are broadly conserved. We find that editing is biased toward specific codon positions and regions of genes, and generally corrects otherwise deleterious changes in the genome prior to translation, though this effect is more prevalent in peridinin than fucoxanthin lineages. Our results support a model for promiscuous editing application subsequently shaped by purifying selection, and suggest the presence of an underlying editing mechanism transferred from the peridinin-containing ancestor into fucoxanthin plastids postendosymbiosis, with remarkably conserved functional consequences in the new lineage. PMID:29617800
Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M
2012-11-06
All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.
Lindstrom, Stephen E.; Hiromoto, Yasuaki; Nishimura, Hidekazu; Saito, Takehiko; Nerome, Reiko; Nerome, Kuniaki
1999-01-01
Phylogenetic profiles of the genes coding for the hemagglutinin (HA) protein, nucleoprotein (NP), matrix (M) protein, and nonstructural (NS) proteins of influenza B viruses isolated from 1940 to 1998 were analyzed in a parallel manner in order to understand the evolutionary mechanisms of these viruses. Unlike human influenza A (H3N2) viruses, the evolutionary pathways of all four genes of recent influenza B viruses revealed similar patterns of genetic divergence into two major lineages. Although evolutionary rates of the HA, NP, M, and NS genes of influenza B viruses were estimated to be generally lower than those of human influenza A viruses, genes of influenza B viruses demonstrated complex phylogenetic patterns, indicating alternative mechanisms for generation of virus variability. Topologies of the evolutionary trees of each gene were determined to be quite distinct from one another, showing that these genes were evolving in an independent manner. Furthermore, variable topologies were apparently the result of frequent genetic exchange among cocirculating epidemic viruses. Evolutionary analysis done in the present study provided further evidence for cocirculation of multiple lineages as well as sequestering and reemergence of phylogenetic lineages of the internal genes. In addition, comparison of deduced amino acid sequences revealed a novel amino acid deletion in the HA1 domain of the HA protein of recent isolates from 1998 belonging to the B/Yamagata/16/88-like lineage. It thus became apparent that, despite lower evolutionary rates, influenza B viruses were able to generate genetic diversity among circulating viruses through a combination of evolutionary mechanisms involving cocirculating lineages and genetic reassortment by which new variants with distinct gene constellations emerged. PMID:10196339
Evolutionary growth process of highly conserved sequences in vertebrate genomes.
Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi
2012-08-01
Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.
Evolutionary change in physiological phenotypes along the human lineage.
Vining, Alexander Q; Nunn, Charles L
2016-01-01
Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
The C(4) plant lineages of planet Earth.
Sage, Rowan F; Christin, Pascal-Antoine; Edwards, Erika J
2011-05-01
Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C(4) photosynthetic pathway. Here, 62 recognizable lineages of C(4) photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C(3)-C(4) intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C(4) lineage, indicating that they did not share common C(3)-C(4) ancestors with C(4) species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south-central South America, central Asia, northeastern and southern Africa, and inland Australia. With 62 independent lineages, C(4) photosynthesis has to be considered one of the most convergent of the complex evolutionary phenomena on planet Earth, and is thus an outstanding system to study the mechanisms of evolutionary adaptation.
Jourda, Cyril; Cardi, Céline; Gibert, Olivier; Giraldo Toro, Andrès; Ricci, Julien; Mbéguié-A-Mbéguié, Didier; Yahiaoui, Nabila
2016-01-01
Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage. PMID:27994606
Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages.
Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro; Imai, Kenichiro
2017-07-01
Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases' evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis
NASA Astrophysics Data System (ADS)
Lambert, Guillaume; Kussell, Edo
2015-01-01
Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.
Sharma, Bharti; Guo, Chunce; Kong, Hongzhi; Kramer, Elena M
2011-08-01
• The petals of the lower eudicot family Ranunculaceae are thought to have been derived many times independently from stamens. However, investigation of the genetic basis of their identity has suggested an alternative hypothesis: that they share a commonly inherited petal identity program. This theory is based on the fact that an ancient paralogous lineage of APETALA3 (AP3) in the Ranunculaceae appears to have a conserved, petal-specific expression pattern. • Here, we have used a combination of approaches, including RNAi, comparative gene expression and molecular evolutionary studies, to understand the function of this petal-specific AP3 lineage. • Functional analysis of the Aquilegia locus AqAP3-3 has demonstrated that the paralog is required for petal identity with little contribution to the identity of the other floral organs. Expanded expression studies and analyses of molecular evolutionary patterns provide further evidence that orthologs of AqAP3-3 are primarily expressed in petals and are under higher purifying selection across the family than the other AP3 paralogs. • Taken together, these findings suggest that the AqAP3-3 lineage underwent progressive subfunctionalization within the order Ranunculales, ultimately yielding a specific role in petal identity that has probably been conserved, in stark contrast with the multiple independent origins predicted by botanical theories. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado
2018-06-01
The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.
Clive Brasier
2017-01-01
It is now generally accepted that the four evolutionary lineages of Phytophthora ramorum (informally designated NA1, NA2, EU1, and EU2) are relatively anciently divergent populations, recently introduced into Europe and North America from different, unknown geographic locations; that recombinants between them are genetically unstable and probably...
Clues to evolution of the SERA multigene family in 18 Plasmodium species.
Arisue, Nobuko; Kawai, Satoru; Hirai, Makoto; Palacpac, Nirianne M Q; Jia, Mozhi; Kaneko, Akira; Tanabe, Kazuyuki; Horii, Toshihiro
2011-03-15
SERA gene sequences were newly determined from 11 primate Plasmodium species including two human parasites, P. ovale and P. malariae, and the evolutionary history of SERA genes was analyzed together with 7 known species. All have one each of Group I to III cysteine-type SERA genes and varying number of Group IV serine-type SERA genes in tandem cluster. Notably, Group IV SERA genes were ascertained in all mammalian parasite lineages; and in two primate parasite lineages gene events such as duplication, truncation, fragmentation and gene loss occurred at high frequency in a manner that mimics the birth-and-death evolution model. Transcription profile of individual SERA genes varied greatly among rodent and monkey parasites. Results support the lineage-specific evolution of the Plasmodium SERA gene family. These findings provide further impetus for studies that could clarify/provide proof-of-concept that duplications of SERA genes were associated with the parasites' expansion of host range and the evolutionary conundrums of multigene families in Plasmodium.
Geographical, landscape and host associations of Trypanosoma cruzi DTUs and lineages.
Izeta-Alberdi, Amaia; Ibarra-Cerdeña, Carlos N; Moo-Llanes, David A; Ramsey, Janine M
2016-12-07
The evolutionary history and ecological associations of Trypanosoma cruzi, the need to identify genetic markers that can distinguish parasite subpopulations, and understanding the parasite's evolutionary and selective processes have been the subject of a significant number of publications since 1998, the year when the first DNA sequence analysis for the species was published. The current analysis systematizes and re-analyzes this original research, focusing on critical methodological and analytical variables and results that have given rise to interpretations of putative patterns of genetic diversity and diversification of T. cruzi lineages, discrete typing units (DTUs), and populations, and their associations with hosts, vectors, and geographical distribution that have been interpreted as evidence for parasite subpopulation specificities. Few studies use hypothesis-driven or quantitative analysis for T. cruzi phylogeny (16/58 studies) or phylogeography (10/13). Among these, only one phylogenetic and five phylogeographic studies analyzed molecular markers directly from tissues (i.e. not from isolates). Analysis of T. cruzi DTU or lineage niche and its geographical projection demonstrate extensive sympatry among all clades across the continent and no significant niche differences among DTUs. DTU beta-diversity was high, indicating diverse host assemblages across regions, while host dissimilarity was principally due to host species turnover and to a much lesser degree to nestedness. DTU-host order specificities appear related to trophic or microenvironmental interactions. More rigorous study designs and analyses will be required to discern evolutionary processes and the impact of landscape modification on population dynamics and risk for T. cruzi transmission to humans.
Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131.
Stoesser, Nicole; Sheppard, Anna E; Pankhurst, Louise; De Maio, Nicola; Moore, Catrin E; Sebra, Robert; Turner, Paul; Anson, Luke W; Kasarskis, Andrew; Batty, Elizabeth M; Kos, Veronica; Wilson, Daniel J; Phetsouvanh, Rattanaphone; Wyllie, David; Sokurenko, Evgeni; Manges, Amee R; Johnson, Timothy J; Price, Lance B; Peto, Timothy E A; Johnson, James R; Didelot, Xavier; Walker, A Sarah; Crook, Derrick W
2016-03-22
Escherichia colisequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n= 215) of sequenced ST131E. coliisolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of ablaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration ofblaCTX-Mwithin subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, theblaCTX-M-14/14-likegroup. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages ofE. coli These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specificE. colilineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Copyright © 2016 Stoesser et al.
Wang, Xiyin; Wang, Jingpeng; Jin, Dianchuan; Guo, Hui; Lee, Tae-Ho; Liu, Tao; Paterson, Andrew H
2015-06-01
Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane
2016-05-21
The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.
Evolution of Chemical Diversity in Echinocandin Lipopeptide Antifungal Metabolites
Yue, Qun; Chen, Li; Zhang, Xiaoling; Li, Kuan; Sun, Jingzu; Liu, Xingzhong
2015-01-01
The echinocandins are a class of antifungal drugs that includes caspofungin, micafungin, and anidulafungin. Gene clusters encoding most of the structural complexity of the echinocandins provided a framework for hypotheses about the evolutionary history and chemical logic of echinocandin biosynthesis. Gene orthologs among echinocandin-producing fungi were identified. Pathway genes, including the nonribosomal peptide synthetases (NRPSs), were analyzed phylogenetically to address the hypothesis that these pathways represent descent from a common ancestor. The clusters share cooperative gene contents and linkages among the different strains. Individual pathway genes analyzed in the context of similar genes formed unique echinocandin-exclusive phylogenetic lineages. The echinocandin NRPSs, along with the NRPS from the inp gene cluster in Aspergillus nidulans and its orthologs, comprise a novel lineage among fungal NRPSs. NRPS adenylation domains from different species exhibited a one-to-one correspondence between modules and amino acid specificity that is consistent with models of tandem duplication and subfunctionalization. Pathway gene trees and Ascomycota phylogenies are congruent and consistent with the hypothesis that the echinocandin gene clusters have a common origin. The disjunct Eurotiomycete-Leotiomycete distribution appears to be consistent with a scenario of vertical descent accompanied by incomplete lineage sorting and loss of the clusters from most lineages of the Ascomycota. We present evidence for a single evolutionary origin of the echinocandin family of gene clusters and a progression of structural diversification in two fungal classes that diverged approximately 290 to 390 million years ago. Lineage-specific gene cluster evolution driven by selection of new chemotypes contributed to diversification of the molecular functionalities. PMID:26024901
2012-01-01
Background Robust species delimitations are fundamental for conservation, evolutionary, and systematic studies, but they can be difficult to estimate, particularly in rapid and recent radiations. The consensus that species concepts aim to identify evolutionarily distinct lineages is clear, but the criteria used to distinguish evolutionary lineages differ based on the perceived importance of the various characteristics of evolving populations. We examined three different species-delimitation criteria (monophyly, absence of genetic intermediates, and diagnosability) to determine whether currently recognized species of Hawaiian Pritchardia are distinct lineages. Results Data from plastid and nuclear genes, microsatellite loci, and morphological characters resulted in various levels of lineage subdivision that were likely caused by differing evolutionary rates between data sources. Additionally, taxonomic entities may be confounded because of the effects of incomplete lineage sorting and/or gene flow. A coalescent species tree was largely congruent with the simultaneous analysis, consistent with the idea that incomplete lineage sorting did not mislead our results. Furthermore, gene flow among populations of sympatric lineages likely explains the admixture and lack of resolution between those groups. Conclusions Delimiting Hawaiian Pritchardia species remains difficult but the ability to understand the influence of the evolutionary processes of incomplete lineage sorting and hybridization allow for mechanisms driving species diversity to be inferred. These processes likely extend to speciation in other Hawaiian angiosperm groups and the biota in general and must be explicitly accounted for in species delimitation. PMID:22353848
Chromosomal polymorphism in mammals: an evolutionary perspective.
Dobigny, Gauthier; Britton-Davidian, Janice; Robinson, Terence J
2017-02-01
Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species. © 2015 Cambridge Philosophical Society.
Zhang, Yuzhen; Vrancken, Bram; Feng, Yun; Dellicour, Simon; Yang, Qiqi; Yang, Weihong; Zhang, Yunzhi; Dong, Lu; Pybus, Oliver G; Zhang, Hailin; Tian, Huaiyu
2017-06-03
Rabies is an important but underestimated threat to public health, with most cases reported in Asia. Since 2000, a new epidemic wave of rabies has emerged in Yunnan Province, southwestern China, which borders three countries in Southeast Asia. We estimated gene-specific evolutionary rates for rabies virus using available data in GenBank, then used this information to calibrate the timescale of rabies virus (RABV) spread in Asia. We used 452 publicly available geo-referenced complete nucleoprotein (N) gene sequences, including 52 RABV sequences that were recently generated from samples collected in Yunnan between 2008 and 2012. The RABV N gene evolutionary rate was estimated to be 1.88 × 10 -4 (1.37-2.41 × 10 -4 , 95% Bayesian credible interval, BCI) substitutions per site per year. Phylogenetic reconstructions show that the currently circulating RABV lineages in Yunnan result from at least seven independent introductions (95% BCI: 6-9 introductions) and represent each of the three main Asian RABV lineages, SEA-1, -2 and -3. We find that Yunnan is a sink location for the domestic spread of RABV and connects RABV epidemics in North China, South China, and Southeast Asia. Cross-border spread from southeast Asia (SEA) into South China, and intermixing of the North and South China epidemics is also well supported. The influx of RABV into Yunnan from SEA was not well-supported, likely due to the poor sampling of SEA RABV diversity. We found evidence for a lineage displacement of the Yunnan SEA-2 and -3 lineages by Yunnan SEA-1 strains, and considered whether this could be attributed to fitness differences. Overall, our study contributes to a better understanding of the spread of RABV that could facilitate future rabies virus control and prevention efforts.
Harms, Alexander; Segers, Francisca H.I.D.; Quebatte, Maxime; Mistl, Claudia; Manfredi, Pablo; Körner, Jonas; Chomel, Bruno B.; Kosoy, Michael; Maruyama, Soichi; Engel, Philipp
2017-01-01
The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation. PMID:28338931
González, Benito A.; Samaniego, Horacio; Marín, Juan Carlos; Estades, Cristián F.
2013-01-01
Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm), we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m) and precipitation seasonality (mean = 161 mm), hybrid lineage by annual precipitation (mean = 139 mm), and Southern subspecies by annual precipitation (mean = 553 mm), precipitation seasonality (mean = 21 mm) and grass cover (mean = 8.2%). Among lineages, we detected low levels of niche overlap: I (Similarity Index) = 0.06 and D (Schoener’s Similarity Index) = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage (I = 0.32-0.10 and D = 0.12-0.03, respectively). This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km2) with lineages-level (65,321 km2). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides a scientific tool to further develop large scale plans for habitat conservation and preservation of intraspecific genetic variability for this far ranging South American camelid, which inhabits a diversity of ecoregion types from Andean puna to subpolar forests. PMID:24265726
González, Benito A; Samaniego, Horacio; Marín, Juan Carlos; Estades, Cristián F
2013-01-01
Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm), we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m) and precipitation seasonality (mean = 161 mm), hybrid lineage by annual precipitation (mean = 139 mm), and Southern subspecies by annual precipitation (mean = 553 mm), precipitation seasonality (mean = 21 mm) and grass cover (mean = 8.2%). Among lineages, we detected low levels of niche overlap: I (Similarity Index) = 0.06 and D (Schoener's Similarity Index) = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage ( I = 0.32-0.10 and D = 0.12-0.03, respectively). This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2)) with lineages-level (65,321 km(2)). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides a scientific tool to further develop large scale plans for habitat conservation and preservation of intraspecific genetic variability for this far ranging South American camelid, which inhabits a diversity of ecoregion types from Andean puna to subpolar forests.
Yin, Wei; Wang, Zong-ji; Li, Qi-ye; Lian, Jin-ming; Zhou, Yang; Lu, Bing-zheng; Jin, Li-jun; Qiu, Peng-xin; Zhang, Pei; Zhu, Wen-bo; Wen, Bo; Huang, Yi-jun; Lin, Zhi-long; Qiu, Bi-tao; Su, Xing-wen; Yang, Huan-ming; Zhang, Guo-jie; Yan, Guang-mei; Zhou, Qi
2016-01-01
Snakes have numerous features distinctive from other tetrapods and a rich history of genome evolution that is still obscure. Here, we report the high-quality genome of the five-pacer viper, Deinagkistrodon acutus, and comparative analyses with other representative snake and lizard genomes. We map the evolutionary trajectories of transposable elements (TEs), developmental genes and sex chromosomes onto the snake phylogeny. TEs exhibit dynamic lineage-specific expansion, and many viper TEs show brain-specific gene expression along with their nearby genes. We detect signatures of adaptive evolution in olfactory, venom and thermal-sensing genes and also functional degeneration of genes associated with vision and hearing. Lineage-specific relaxation of functional constraints on respective Hox and Tbx limb-patterning genes supports fossil evidence for a successive loss of forelimbs then hindlimbs during snake evolution. Finally, we infer that the ZW sex chromosome pair had undergone at least three recombination suppression events in the ancestor of advanced snakes. These results altogether forge a framework for our deep understanding into snakes' history of molecular evolution. PMID:27708285
A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN
Hohmann, Nora; Wolf, Eva M.
2015-01-01
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization. PMID:26410304
Ramos-Fregonezi, Aline M. C.; Malabarba, Luiz R.; Fagundes, Nelson J. R.
2017-01-01
The Pampas is a Neotropical biome formed primarily by low altitude grasslands and encompasses the southernmost portion of Brazil, Uruguay, and part of Argentina. Despite the high level of endemism, and its significant environmental heterogeneity, Pampean species are underrepresented in phylogeographic studies, especially aquatic organisms. The Pampean hydrological system resulted from a long history of tectonism, climate, and sea level changes since the Neogene. In this study, we examined the population genetic structure of Cnesterodon decemmaculatus, a freshwater fish species that occurs throughout most of the Pampa biome. We characterized mitochondrial and autosomal genetic lineages in populations sampled from Southern Brazil and Uruguay to investigate (1) the correspondence between current drainage systems and evolutionary lineages, (2) the demographic history for each genetic lineage, and (3) the temporal depth of these lineages. Overall, we found that the major evolutionary lineages in this species are strongly related to the main Pampean drainage systems, even though stream capture events may have affected the distribution of genetic lineages among drainages. There was evidence for recent population growth in the lineages occupying drainages closest to the shore, which may indicate the effect of quaternary sea-level changes. In general, divergence time estimates among evolutionary lineages were shallow, ranging from 20,000 to 800,000 years before present, indicating a geologically recent history for this group, as previously reported in other Pampean species. A Bayesian phylogeographical reconstruction suggested that an ancestral lineage probably colonized the Uruguay River Basin, and then expanded throughout the Pampas. This evolutionary scenario may represent useful starting models for other freshwater species having a similar distribution. PMID:29312439
Ramos-Fregonezi, Aline M C; Malabarba, Luiz R; Fagundes, Nelson J R
2017-01-01
The Pampas is a Neotropical biome formed primarily by low altitude grasslands and encompasses the southernmost portion of Brazil, Uruguay, and part of Argentina. Despite the high level of endemism, and its significant environmental heterogeneity, Pampean species are underrepresented in phylogeographic studies, especially aquatic organisms. The Pampean hydrological system resulted from a long history of tectonism, climate, and sea level changes since the Neogene. In this study, we examined the population genetic structure of Cnesterodon decemmaculatus , a freshwater fish species that occurs throughout most of the Pampa biome. We characterized mitochondrial and autosomal genetic lineages in populations sampled from Southern Brazil and Uruguay to investigate (1) the correspondence between current drainage systems and evolutionary lineages, (2) the demographic history for each genetic lineage, and (3) the temporal depth of these lineages. Overall, we found that the major evolutionary lineages in this species are strongly related to the main Pampean drainage systems, even though stream capture events may have affected the distribution of genetic lineages among drainages. There was evidence for recent population growth in the lineages occupying drainages closest to the shore, which may indicate the effect of quaternary sea-level changes. In general, divergence time estimates among evolutionary lineages were shallow, ranging from 20,000 to 800,000 years before present, indicating a geologically recent history for this group, as previously reported in other Pampean species. A Bayesian phylogeographical reconstruction suggested that an ancestral lineage probably colonized the Uruguay River Basin, and then expanded throughout the Pampas. This evolutionary scenario may represent useful starting models for other freshwater species having a similar distribution.
Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals
Chikina, Maria; Robinson, Joseph D.; Clark, Nathan L.
2016-01-01
Abstract Mammal species have made the transition to the marine environment several times, and their lineages represent one of the classical examples of convergent evolution in morphological and physiological traits. Nevertheless, the genetic mechanisms of their phenotypic transition are poorly understood, and investigations into convergence at the molecular level have been inconclusive. While past studies have searched for convergent changes at specific amino acid sites, we propose an alternative strategy to identify those genes that experienced convergent changes in their selective pressures, visible as changes in evolutionary rate specifically in the marine lineages. We present evidence of widespread convergence at the gene level by identifying parallel shifts in evolutionary rate during three independent episodes of mammalian adaptation to the marine environment. Hundreds of genes accelerated their evolutionary rates in all three marine mammal lineages during their transition to aquatic life. These marine-accelerated genes are highly enriched for pathways that control recognized functional adaptations in marine mammals, including muscle physiology, lipid-metabolism, sensory systems, and skin and connective tissue. The accelerations resulted from both adaptive evolution as seen in skin and lung genes, and loss of function as in gustatory and olfactory genes. In regard to sensory systems, this finding provides further evidence that reduced senses of taste and smell are ubiquitous in marine mammals. Our analysis demonstrates the feasibility of identifying genes underlying convergent organism-level characteristics on a genome-wide scale and without prior knowledge of adaptations, and provides a powerful approach for investigating the physiological functions of mammalian genes. PMID:27329977
Aristide, Leandro; Rosenberger, Alfred L; Tejedor, Marcelo F; Perez, S Ivan
2015-01-01
Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis). Copyright © 2013 Elsevier Inc. All rights reserved.
Hill, E
1999-06-01
The nonreproductive role of religious women in the European Middle Ages presents the ideal forum for the discussion of elite family strategies within a historical context. I apply the evolutionary concept of kin selection to this group of women in order to explain how a social formation in which religious women failed to reproduce benefited medieval noble lineages. After a brief review of the roles of noble women in the later Middle Ages, I identify two benefits that nonreproductive women provided within a patrilineal inheritance system. First, spatial segregation and Christian ideology together served to curtail the production of offspring who could pose a threat to lineage interests. Second, cloistered noble women served as a strong political and economic bloc that could further lineage interests within a religious context. Finally, I discuss the evolutionary basis for the formation of groups of nonreproductive women. Using the foundation provided by animal behavioral studies, I apply the twin concepts of cooperative breeding and parental manipulation to noble lineages of the medieval period.
There is no fitness but fitness, and the lineage is its bearer
2016-01-01
Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience. Therefore, inclusive fitness is neither a generalization of classical fitness, nor does it belong exclusively to the individual. Rather, the lineage perspective emphasizes that evolutionary success is determined by the effect of selection on all biological and environmental contexts that a lineage may experience. We argue that this understanding of inclusive fitness based on gene lineages provides the most illuminating and accurate picture and avoids pitfalls in interpretation and empirical applications of inclusive fitness theory. PMID:26729925
Sherman, Natasha A.; Victorine, Anna; Wang, Richard J.; Moyle, Leonie C.
2014-01-01
Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration (‘snowballing’) in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations. PMID:25211473
Lefébure, Tristan; Stanhope, Michael J
2007-01-01
Background The genus Streptococcus is one of the most diverse and important human and agricultural pathogens. This study employs comparative evolutionary analyses of 26 Streptococcus genomes to yield an improved understanding of the relative roles of recombination and positive selection in pathogen adaptation to their hosts. Results Streptococcus genomes exhibit extreme levels of evolutionary plasticity, with high levels of gene gain and loss during species and strain evolution. S. agalactiae has a large pan-genome, with little recombination in its core-genome, while S. pyogenes has a smaller pan-genome and much more recombination of its core-genome, perhaps reflecting the greater habitat, and gene pool, diversity for S. agalactiae compared to S. pyogenes. Core-genome recombination was evident in all lineages (18% to 37% of the core-genome judged to be recombinant), while positive selection was mainly observed during species differentiation (from 11% to 34% of the core-genome). Positive selection pressure was unevenly distributed across lineages and biochemical main role categories. S. suis was the lineage with the greatest level of positive selection pressure, the largest number of unique loci selected, and the largest amount of gene gain and loss. Conclusion Recombination is an important evolutionary force in shaping Streptococcus genomes, not only in the acquisition of significant portions of the genome as lineage specific loci, but also in facilitating rapid evolution of the core-genome. Positive selection, although undoubtedly a slower process, has nonetheless played an important role in adaptation of the core-genome of different Streptococcus species to different hosts. PMID:17475002
Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes
Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A
2016-01-01
Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357
Chattopadhyay, Balaji; Garg, Kritika M; Kumar, A K Vinoth; Doss, D Paramanantha Swami; Rheindt, Frank E; Kandula, Sripathi; Ramakrishnan, Uma
2016-02-18
The Oriental fruit bat genus Cynopterus, with several geographically overlapping species, presents an interesting case study to evaluate the evolutionary significance of coexistence versus isolation. We examined the morphological and genetic variability of congeneric fruit bats Cynopterus sphinx and C. brachyotis using 405 samples from two natural contact zones and 17 allopatric locations in the Indian subcontinent; and investigated the population differentiation patterns, evolutionary history, and the possibility of cryptic diversity in this species pair. Analysis of microsatellites, cytochrome b gene sequences, and restriction digestion based genome-wide data revealed that C. sphinx and C. brachyotis do not hybridize in contact zones. However, cytochrome b gene sequences and genome-wide SNP data helped uncover a cryptic, hitherto unrecognized cynopterine lineage in northeastern India coexisting with C. sphinx. Further analyses of shared variation of SNPs using Patterson's D statistics suggest introgression between this lineage and C. sphinx. Multivariate analyses of morphology using genetically classified grouping confirmed substantial morphological overlap between C. sphinx and C. brachyotis, specifically in the high elevation contact zones in southern India. Our results uncover novel diversity and detect a pattern of genetic introgression in a cryptic radiation of bats, demonstrating the complicated nature of lineage diversification in this poorly understood taxonomic group. Our results highlight the importance of genome-wide data to study evolutionary processes of morphologically similar species pairs. Our approach represents a significant step forward in evolutionary research on young radiations of non-model species that may retain the ability of interspecific gene flow.
2008-01-01
Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a novel carbon catabolite repression system. Hence, this example illustrates that HGT can drive major physiological modifications in bacteria. PMID:18485189
Big bang in the evolution of extant malaria parasites.
Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki
2008-10-01
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.
Evolutionary conservation of regulated longevity assurance mechanisms
McElwee, Joshua J; Schuster, Eugene; Blanc, Eric; Piper, Matthew D; Thomas, James H; Patel, Dhaval S; Selman, Colin; Withers, Dominic J; Thornton, Janet M; Partridge, Linda; Gems, David
2007-01-01
Background To what extent are the determinants of aging in animal species universal? Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) is an evolutionarily conserved (public) regulator of longevity; yet it remains unclear whether the genes and biochemical processes through which IIS acts on aging are public or private (that is, lineage specific). To address this, we have applied a novel, multi-level cross-species comparative analysis to compare gene expression changes accompanying increased longevity in mutant nematodes, fruitflies and mice with reduced IIS. Results Surprisingly, there is little evolutionary conservation at the level of individual, orthologous genes or paralogous genes under IIS regulation. However, a number of gene categories are significantly enriched for genes whose expression changes in long-lived animals of all three species. Down-regulated categories include protein biosynthesis-associated genes. Up-regulated categories include sugar catabolism, energy generation, glutathione-S-transferases (GSTs) and several other categories linked to cellular detoxification (that is, phase 1 and phase 2 metabolism of xenobiotic and endobiotic toxins). Protein biosynthesis and GST activity have recently been linked to aging and longevity assurance, respectively. Conclusion These processes represent candidate, regulated mechanisms of longevity-control that are conserved across animal species. The longevity assurance mechanisms via which IIS acts appear to be lineage-specific at the gene level (private), but conserved at the process level (or semi-public). In the case of GSTs, and cellular detoxification generally, this suggests that the mechanisms of aging against which longevity assurance mechanisms act are, to some extent, lineage specific. PMID:17612391
Restricted Gene Flow among Hospital Subpopulations of Enterococcus faecium
Willems, Rob J. L.; Top, Janetta; van Schaik, Willem; Leavis, Helen; Bonten, Marc; Sirén, Jukka; Hanage, William P.; Corander, Jukka
2012-01-01
ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. PMID:22807567
Shu, Chang; Wang, Shanchen; Xu, Tianjun
2015-05-01
Dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN/CD209) and liver/lymph node-specific ICAM-grabbing non-integrin (L-SIGN/CD299) which are homologues of DC-SIGN are important members in C-type lectin receptors family as key molecules to recognize and eliminate pathogens in the innate immune system. DC-SIGN and L-SIGN have become hot topics in recent studies which both served as cell adhesion and phagocytic pathogen recognition receptors in mammals. However, there have been almost no studies of DC-SIGN and L-SIGN structure and characters in fish, only DC-SIGN in the zebrafish had been studied. In our study, we identified and characterized the full-length miiuy croaker (Miichthys miiuy) DC-SIGN (mmDC-SIGN) and L-SIGN (mmL-SIGN) genes. The sequence analysis results showed that mmDC-SIGN and mmL-SIGN have the same domains with other vertebrates except primates, and share some conserved motifs in CRD among all the vertebrates which play a crucial role in interacting with Ca(2+) and for recognizing mannose-containing motifs. Gene synteny of DC-SIGN and L-SIGN were analyzed for the first time and gene synteny of L-SIGN was conserved among the five fishes. Interestingly, one gene next to L-SIGN from gene synteny had high similarity with L-SIGN gene that was described as L-SIGN-like in fish species. While only one L-SIGN gene existed in other vertebrates, two L-SIGN in fish may be in consequence of the fish-specific genome duplication to adapt the specific environment. The evolutionary analysis showed that the ancestral lineages of L-SIGN gene in fishes experienced purifying selection and the current lineages of L-SIGN gene in fishes underwent positive selection, indicating that the ancestral lineages and current lineages of L-SIGN gene in fishes underwent different evolutionary patterns. Both mmDC-SIGN and mmL-SIGN were expressed in all tested tissues and ubiquitously up-regulated in infected liver, spleen and kidney at different sampling time points, indicating that the mmDC-SIGN and mmL-SIGN participated in the immune response to defense against bacteria infection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inbreeding Depression and Male Survivorship in Drosophila: Implications for Senescence Theory
Swindell, William R.; Bouzat, Juan L.
2006-01-01
The extent to which inbreeding depression affects longevity and patterns of survivorship is an important issue from several research perspectives, including evolutionary biology, conservation biology, and the genetic analysis of quantitative traits. However, few previous inbreeding depression studies have considered longevity as a focal life-history trait. We maintained laboratory populations of Drosophila melanogaster at census population sizes of 2 and 10 male-female pairs for up to 66 generations and performed repeated assays of male survivorship throughout this time period. On average, significant levels of inbreeding depression were observed for median life span and age-specific mortality. For age-specific mortality, the severity of inbreeding depression increased over the life span. We found that a baseline inbreeding load of 0.307 lethal equivalents per gamete affected age-specific mortality, and that this value increased at a rate of 0.046 per day of the life span. With respect to some survivorship parameters, the differentiation of lineages was nonlinear with respect to the inbreeding coefficient, which suggested that nonadditive genetic variation contributed to variation among lineages. These findings provide insights into the genetic basis of longevity as a quantitative trait and have implications regarding the mutation-accumulation evolutionary explanation of senescence. PMID:16204222
Transcriptome sequencing reveals genome-wide variation in molecular evolutionary rate among ferns.
Grusz, Amanda L; Rothfels, Carl J; Schuettpelz, Eric
2016-08-30
Transcriptomics in non-model plant systems has recently reached a point where the examination of nuclear genome-wide patterns in understudied groups is an achievable reality. This progress is especially notable in evolutionary studies of ferns, for which molecular resources to date have been derived primarily from the plastid genome. Here, we utilize transcriptome data in the first genome-wide comparative study of molecular evolutionary rate in ferns. We focus on the ecologically diverse family Pteridaceae, which comprises about 10 % of fern diversity and includes the enigmatic vittarioid ferns-an epiphytic, tropical lineage known for dramatically reduced morphologies and radically elongated phylogenetic branch lengths. Using expressed sequence data for 2091 loci, we perform pairwise comparisons of molecular evolutionary rate among 12 species spanning the three largest clades in the family and ask whether previously documented heterogeneity in plastid substitution rates is reflected in their nuclear genomes. We then inquire whether variation in evolutionary rate is being shaped by genes belonging to specific functional categories and test for differential patterns of selection. We find significant, genome-wide differences in evolutionary rate for vittarioid ferns relative to all other lineages within the Pteridaceae, but we recover few significant correlations between faster/slower vittarioid loci and known functional gene categories. We demonstrate that the faster rates characteristic of the vittarioid ferns are likely not driven by positive selection, nor are they unique to any particular type of nucleotide substitution. Our results reinforce recently reviewed mechanisms hypothesized to shape molecular evolutionary rates in vittarioid ferns and provide novel insight into substitution rate variation both within and among fern nuclear genomes.
The effect of conflicting pressures on the evolution of division of labor.
Goldsby, Heather J; Knoester, David B; Kerr, Benjamin; Ofria, Charles
2014-01-01
Within nature, many groups exhibit division of labor. Individuals in these groups are under seemingly antagonistic pressures to perform the task most directly beneficial to themselves and to potentially perform a less desirable task to ensure the success of the group. Performing experiments to study how these pressures interact in an evolutionary context is challenging with organic systems because of long generation times and difficulties related to group propagation and fine-grained control of within-group and between-group pressures. Here, we use groups of digital organisms (i.e., self-replicating computer programs) to explore how populations respond to antagonistic multilevel selection pressures. Specifically, we impose a within-group pressure to perform a highly-rewarded role and a between-group pressure to perform a diverse suite of roles. Thus, individuals specializing on highly-rewarded roles will have a within-group advantage, but groups of such specialists have a between-group disadvantage. We find that digital groups could evolve to be either single-lineage or multi-lineage, depending on experimental parameters. These group compositions are reminiscent of different kinds of major evolutionary transitions that occur within nature, where either relatives divide labor (fraternal transitions) or multiple different organisms coordinate activities to form a higher-level individual (egalitarian transitions). Regardless of group composition, organisms embraced phenotypic plasticity as a means for genetically similar individuals to perform different roles. Additionally, in multi-lineage groups, organisms from lineages performing highly-rewarded roles also employed reproductive restraint to ensure successful coexistence with organisms from other lineages.
Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae).
Romeiro-Brito, Monique; Moraes, Evandro M; Taylor, Nigel P; Zappi, Daniela C; Franco, Fernando F
2016-01-01
Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies.
Geuverink, E; Beukeboom, L W
2014-01-01
Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects. © 2013 S. Karger AG, Basel.
Evolutionary trends in arvicolids and the endemic murid Mikrotia - New data and a critical overview
NASA Astrophysics Data System (ADS)
Maul, Lutz C.; Masini, Federico; Parfitt, Simon A.; Rekovets, Leonid; Savorelli, Andrea
2014-07-01
The study of evolutionary rates dates back to the work of Simpson and Haldane in the 1940s. Small mammals, especially Plio-Pleistocene arvicolids (voles and lemmings), are particularly suited for such studies because they have an unusually complete fossil record and exhibit significant evolutionary change through time. In recent decades, arvicolids have been the focus of intensive research devoted to the tempo and mode of evolutionary change and the identification of trends in dental evolution that can be used to correlate and date fossil sites. These studies have raised interesting questions about whether voles and lemmings had unique evolutionary trajectories, or show convergent evolutionary patterns with other hypsodont rodents. Here we review evolutionary patterns in selected arvicolid lineages and endemic Messinian murids (Mikrotia spp.) and discuss reasons for convergence in dental morphology in these two groups of hypsodont rodents. The results substantiate previously detected patterns, but the larger dataset shows that some trends are less regular than previous studies have suggested. With the exception of a pervasive and sustained trend towards increased hypsodonty, our results show that other features do not follow consistent patterns in all lineages, exhibiting a mosaic pattern comprising stasis, variable rate evolution and gradual unidirectional change through time. Evidence for higher evolutionary rates is found in lineages apparently undergoing adaptations to new ecological niches. In the case of Mikrotia, Microtus voles and the water vole (Mimomys-Arvicola) lineage, a shift to a fossorial lifestyle appears to have been an important driving force in their evolution. For other characters, different causes can be invoked; for example a shift to a semi-aquatic lifestyle may be responsible for the trend towards increasing size in Arvicola. Biochronological application of the data should take into account the complexity and biases of the data.
Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas
2015-09-01
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Petit, Daniel; Teppa, Elin; Mir, Anne-Marie; Vicogne, Dorothée; Thisse, Christine; Thisse, Bernard; Filloux, Cyril; Harduin-Lepers, Anne
2015-01-01
Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions. PMID:25534026
Cheng, Shifeng; van den Bergh, Erik; Zeng, Peng; Zhong, Xiao; Xu, Jiajia; Liu, Xin; Hofberger, Johannes; de Bruijn, Suzanne; Bhide, Amey S.; Kuelahoglu, Canan; Bian, Chao; Chen, Jing; Fan, Guangyi; Kaufmann, Kerstin; Hall, Jocelyn C.; Becker, Annette; Bräutigam, Andrea; Weber, Andreas P.M.; Shi, Chengcheng; Zheng, Zhijun; Li, Wujiao; Lv, Mingju; Tao, Yimin; Wang, Junyi; Zou, Hongfeng; Quan, Zhiwu; Hibberd, Julian M.; Zhang, Gengyun; Zhu, Xin-Guang; Xu, Xun; Schranz, M. Eric
2013-01-01
The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-α) that is independent of the Brassicaceae-specific duplication (At-α) and nested Brassica (Br-α) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical SERINE RECEPTOR KINASE receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes. PMID:23983221
Barfield, Sarah; Aglyamova, Galina V; Matz, Mikhail V
2016-01-13
The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions. © 2016 The Author(s).
Barfield, Sarah; Aglyamova, Galina V.; Matz, Mikhail V.
2016-01-01
The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions. PMID:26763699
LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.
Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun
2012-01-01
Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene ontology (GO) annotation, promoter identification, gene expression (co-expression), and evolutionary analysis. This database not only provides a way to define lineage-specific and species-specific gene clusters but also facilitates future studies on gene co-regulation, epigenetic control of gene expression (DNA methylation and histone marks), and chromosomal structures in a context of gene clusters and species evolution. LCGbase is freely available at http://lcgbase.big.ac.cn/LCGbase.
Harms, Alexander; Segers, Francisca H I D; Quebatte, Maxime; Mistl, Claudia; Manfredi, Pablo; Körner, Jonas; Chomel, Bruno B; Kosoy, Michael; Maruyama, Soichi; Engel, Philipp; Dehio, Christoph
2017-03-01
The α-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial host adaptation. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Evolutionary Relationships and Functional Diversity of Plant Sulfate Transporters
Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J.; Shiu, Shin-Han
2011-01-01
Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1–SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae. PMID:22629272
Evolutionary relationships and functional diversity of plant sulfate transporters.
Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han
2011-01-01
Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.
Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.
Merker, Matthias; Blin, Camille; Mona, Stefano; Duforet-Frebourg, Nicolas; Lecher, Sophie; Willery, Eve; Blum, Michael G B; Rüsch-Gerdes, Sabine; Mokrousov, Igor; Aleksic, Eman; Allix-Béguec, Caroline; Antierens, Annick; Augustynowicz-Kopeć, Ewa; Ballif, Marie; Barletta, Francesca; Beck, Hans Peter; Barry, Clifton E; Bonnet, Maryline; Borroni, Emanuele; Campos-Herrero, Isolina; Cirillo, Daniela; Cox, Helen; Crowe, Suzanne; Crudu, Valeriu; Diel, Roland; Drobniewski, Francis; Fauville-Dufaux, Maryse; Gagneux, Sébastien; Ghebremichael, Solomon; Hanekom, Madeleine; Hoffner, Sven; Jiao, Wei-wei; Kalon, Stobdan; Kohl, Thomas A; Kontsevaya, Irina; Lillebæk, Troels; Maeda, Shinji; Nikolayevskyy, Vladyslav; Rasmussen, Michael; Rastogi, Nalin; Samper, Sofia; Sanchez-Padilla, Elisabeth; Savic, Branislava; Shamputa, Isdore Chola; Shen, Adong; Sng, Li-Hwei; Stakenas, Petras; Toit, Kadri; Varaine, Francis; Vukovic, Dragana; Wahl, Céline; Warren, Robin; Supply, Philip; Niemann, Stefan; Wirth, Thierry
2015-03-01
Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.
The Radiata and the evolutionary origins of the bilaterian body plan
NASA Technical Reports Server (NTRS)
Martindale, Mark Q.; Finnerty, John R.; Henry, Jonathan Q.
2002-01-01
The apparent conservation of cellular and molecular developmental mechanisms observed in a handful of bilaterian metazoans has spawned a "race" to reconstruct the bilaterian ancestor. Knowledge of this ancestor would permit us to reconstruct the evolutionary changes that have occurred along specific bilaterian lineages. However, comparisons among extant bilaterians provide an unnecessarily limited view of the ancestral bilaterian. Since the original bilaterians are believed by many to be derived from a radially symmetrical ancestor, additional evidence might be obtained by examining present-day radially symmetrical animals. We briefly review pertinent features of the body plans of the extant radial eumetazoan phyla, the Cnidaria, and Ctenophora, in the context of revealing potential evolutionary links to the bilaterians.
Evolutionary heritage influences Amazon tree ecology.
Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R
2016-12-14
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.
Evolutionary heritage influences Amazon tree ecology
Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.
2016-01-01
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517
Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.
Kumar, Rahul
2016-01-01
Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.
de Jager, Marinus L; Ellis, Allan G
2017-02-01
The Greater Cape Floristic Region (GCFR) in South Africa has been extensively investigated for its phenomenal angiosperm diversity. A key emergent pattern is the occurrence of older plant lineages in the southern Fynbos biome and younger lineages in the northern Succulent Karoo biome. We know practically nothing, however, about the evolutionary history of the animals that pollinate this often highly-specialized flora. In this study, we explore the evolutionary history of an important GCFR fly pollinator, Megapalpus capensis, and ask whether it exhibits broadly congruent genetic structuring and timing of diversification to flowering plants within these biomes. We find that the oldest M. capensis lineages originated in Fynbos during the Miocene, while younger Succulent Karoo lineages diverged in the Pliocene and correspond to the proposed age of this recent biome. A strong signature of population expansion is also recovered for flies in this arid biome, consistent with recent colonization. Our first investigation into the evolutionary history of GCFR pollinators thus supports a recent origin of the SK biome, as inferred from angiosperm phylogenies, and suggests that plants and pollinators may have co-diverged within this remarkable area. Copyright © 2016 Elsevier Inc. All rights reserved.
Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo
2013-01-01
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165
Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution
Delaux, Pierre-Marc; Varala, Kranthi; Edger, Patrick P.; Coruzzi, Gloria M.; Pires, J. Chris; Ané, Jean-Michel
2014-01-01
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant–microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. PMID:25032823
Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee.
Jara, Laura; Cepero, Almudena; Garrido-Bailón, Encarna; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar
2012-05-01
The recent decline in honey bee colonies observed in both European countries and worldwide is of great interest and concern, although the underlying causes remain poorly understood. In recent years, growing evidence has implicated parasites and pathogens in this decline of both the vitality and number of honey bee colonies. The Iberian Peninsula provides an interesting environment in which to study the occurrence of pathogens and parasites in the host honey bee populations due to the presence of two evolutionary lineages in A. m. iberiensis (Western European [M] or African [A]). Here, we provide the first evidence linking the population structure of the Iberian honey bee with the prevalence of some of its most important parasites and pathogens: the Varroa destructor mite and the microsporidia Nosema apis and Nosema ceranae. Using data collected in two surveys conducted in 2006 and 2010 in 41 Spanish provinces, the evolutionary lineage and the presence of the three parasitic organisms cited above were analyzed in a total of 228 colonies. In 2006 N. apis was found in a significantly higher proportion of M lineage honey bees than in the A lineage. However, in 2010 this situation had changed significantly due to a higher prevalence of N. ceranae. We observed no significant relationships in either year between the distributions of V. destructor or N. ceranae and the evolutionary lineage present in A. m. iberiensis colonies, but the effects of these organisms on the genetic diversity of the honey bee populations need further research. Copyright © 2012 Elsevier Inc. All rights reserved.
Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates
Niimura, Yoshihito
2007-01-01
The numbers of functional olfactory receptor (OR) genes in humans and mice are about 400 and 1,000 respectively. In both humans and mice, these genes exist as genomic clusters and are scattered over almost all chromosomes. The difference in the number of genes between the two species is apparently caused by massive inactivation of OR genes in the human lineage and a substantial increase of OR genes in the mouse lineage after the human–mouse divergence. Compared with mammals, fishes have a much smaller number of OR genes. However, the OR gene family in fishes is much more divergent than that in mammals. Fishes have many different groups of genes that are absent in mammals, suggesting that the mammalian OR gene family is characterized by the loss of many group genes that existed in the ancestor of vertebrates and the subsequent expansion of specific groups of genes. Therefore, this gene family apparently changed dynamically depending on the evolutionary lineage and evolved under the birth-and-death model of evolution. Study of the evolutionary changes of two gene families for vomeronasal receptors and two gene families for taste receptors, which are structurally similar, but remotely related to OR genes, showed that some of the gene families evolved in the same fashion as the OR gene family. It appears that the number and types of genes in chemosensory receptor gene families have evolved in response to environmental needs, but they are also affected by fortuitous factors. PMID:16607462
Patterns of genome evolution that have accompanied host adaptation in Salmonella
Langridge, Gemma C.; Fookes, Maria; Connor, Thomas R.; Feltwell, Theresa; Feasey, Nicholas; Parsons, Bryony N.; Seth-Smith, Helena M. B.; Barquist, Lars; Stedman, Anna; Humphrey, Tom; Wigley, Paul; Peters, Sarah E.; Maskell, Duncan J.; Corander, Jukka; Chabalgoity, Jose A.; Barrow, Paul; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.
2015-01-01
Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation. PMID:25535353
Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay.
Lucas, Bronwyn A; Lavi, Eitan; Shiue, Lily; Cho, Hana; Katzman, Sol; Miyoshi, Keita; Siomi, Mikiko C; Carmel, Liran; Ares, Manuel; Maquat, Lynne E
2018-01-30
Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3'-untranslated regions (3'-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3'-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3'-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20-25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.
Ohtani, Haruka; Morimoto, Takuya; Beppu, Kenji; Kataoka, Ikuo
2018-01-01
Dioecy, the presence of male and female flowers on distinct individuals, has evolved independently in multiple plant lineages, and the genes involved in this differential development are just starting to be uncovered in a few species. Here, we used genomic approaches to investigate this pathway in kiwifruits (genus Actinidia). Genome-wide cataloging of male-specific subsequences, combined with transcriptome analysis, led to the identification of a type-C cytokinin response regulator as a potential sex determinant gene in this genus. Functional transgenic analyses in two model systems, Arabidopsis thaliana and Nicotiana tabacum, indicated that this gene acts as a dominant suppressor of carpel development, prompting us to name it Shy Girl (SyGI). Evolutionary analyses in a panel of Actinidia species revealed that SyGI is located in the Y-specific region of the genome and probably arose from a lineage-specific gene duplication. Comparisons with the duplicated autosomal counterpart, and with orthologs from other angiosperms, suggest that the SyGI-specific duplication and subsequent evolution of cis-elements may have played a key role in the acquisition of separate sexes in this species. PMID:29626069
Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir
2018-01-01
Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954
The complexity of selection at the major primate beta-defensin locus.
Semple, Colin A M; Maxwell, Alison; Gautier, Philippe; Kilanowski, Fiona M; Eastwood, Hayden; Barran, Perdita E; Dorin, Julia R
2005-05-18
We have examined the evolution of the genes at the major human beta-defensin locus and the orthologous loci in a range of other primates and mouse. For the first time these data allow us to examine selective episodes in the more recent evolutionary history of this locus as well as the ancient past. We have used a combination of maximum likelihood based tests and a maximum parsimony based sliding window approach to give a detailed view of the varying modes of selection operating at this locus. We provide evidence for strong positive selection soon after the duplication of these genes within an ancestral mammalian genome. Consequently variable selective pressures have acted on beta-defensin genes in different evolutionary lineages, with episodes both of negative, and more rarely positive selection, during the divergence of primates. Positive selection appears to have been more common in the rodent lineage, accompanying the birth of novel, rodent-specific beta-defensin genes. These observations allow a fuller understanding of the evolution of mammalian innate immunity. In both the rodent and primate lineages, sites in the second exon have been subject to positive selection and by implication are important in functional diversity. A small number of sites in the mature human peptides were found to have undergone repeated episodes of selection in different primate lineages. Particular sites were consistently implicated by multiple methods at positions throughout the mature peptides. These sites are clustered at positions predicted to be important for the specificity of the antimicrobial or chemoattractant properties of beta-defensins. Surprisingly, sites within the prepropeptide region were also implicated as being subject to significant positive selection, suggesting previously unappreciated functional significance for this region. Identification of these putatively functional sites has important implications for our understanding of beta-defensin function and for novel antibiotic design.
Introgression of the Kinetoplast DNA: An Unusual Evolutionary Journey in Trypanosoma cruzi.
Tomasini, Nicolás
2018-02-01
Phylogenetic relationships between different lineages of Trypanosoma cruzi, the agent of Chagas disease, have been controversial for several years. However, recent phylogenetic and phylogenomic analyses clarified the nuclear relationships among such lineages. However, incongruence between nuclear and kinetoplast DNA phylogenies has emerged as a new challenge. This incongruence implies several events of mitochondrial introgression at evolutionary level. However, the mechanism that gave origin to introgressed lineages is unknown. Here, I will review and discuss how maxicircles of the kinetoplast were horizontally and vertically transferred between different lineages of T. cruzi. Finally, I will discuss what we know - and what we don't - about the kDNA transference and inheritance in the context of sexual reproduction in this parasite.
Lischer, Heidi E L; Excoffier, Laurent; Heckel, Gerald
2014-04-01
Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.
Cabezas, Patricia; Sanmartín, Isabel; Paulay, Gustav; Macpherson, Enrique; Machordom, Annie
2012-06-01
The diversification of Indo-Pacific marine fauna has long captivated the attention of evolutionary biologists. Previous studies have mainly focused on coral reef or shallow water-associated taxa. Here, we present the first attempt to reconstruct the evolutionary history--phylogeny, diversification, and biogeography--of a deep-water lineage. We sequenced the molecular markers 16S, COI, ND1, 18S, and 28S for nearly 80% of the nominal species of the squat lobster genus Paramunida. Analyses of the molecular phylogeny revealed an accelerated diversification in the late Oligocene-Miocene followed by a slowdown in the rate of lineage accumulation over time. A parametric biogeographical reconstruction showed the importance of the southwest Pacific area, specifically the island arc of Fiji, Tonga, Vanuatu, Wallis, and Futuna, for diversification of squat lobsters, probably associated with the global warming, high tectonic activity, and changes in oceanic currents that took place in this region during the Oligocene-Miocene period. These results add strong evidence to the hypothesis that the Neogene was a period of major diversification for marine organisms in both shallow and deep waters. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.
Large-scale turnover of functional transcription factor bindingsites in Drosophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, Alan M.; Pollard, Daniel A.; Nix, David A.
2006-07-14
The gain and loss of functional transcription-factor bindingsites has been proposed as a major source of evolutionary change incis-regulatory DNA and gene expression. We have developed an evolutionarymodel to study binding site turnover that uses multiple sequencealignments to assess the evolutionary constraint on individual bindingsites, and to map gain and loss events along a phylogenetic tree. Weapply this model to study the evolutionary dynamics of binding sites ofthe Drosophila melanogaster transcription factor Zeste, using genome-widein vivo (ChIP-chip) binding data to identify functional Zeste bindingsites, and the genome sequences of D. melanogaster, D. simulans, D.erecta and D. yakuba to study theirmore » evolution. We estimate that more than5 percent of functional Zeste binding sites in D. melanogaster weregained along the D. melanogaster lineage or lost along one of the otherlineages. We find that Zeste bound regions have a reduced rate of bindingsite loss and an increased rate of binding site gain relative to flankingsequences. Finally, we show that binding site gains and losses areasymmetrically distributed with respect to D. melanogaster, consistentwith lineage-specific acquisition and loss of Zeste-responsive regulatoryelements.« less
The Effect of Conflicting Pressures on the Evolution of Division of Labor
Goldsby, Heather J.; Knoester, David B.; Kerr, Benjamin; Ofria, Charles
2014-01-01
Within nature, many groups exhibit division of labor. Individuals in these groups are under seemingly antagonistic pressures to perform the task most directly beneficial to themselves and to potentially perform a less desirable task to ensure the success of the group. Performing experiments to study how these pressures interact in an evolutionary context is challenging with organic systems because of long generation times and difficulties related to group propagation and fine-grained control of within-group and between-group pressures. Here, we use groups of digital organisms (i.e., self-replicating computer programs) to explore how populations respond to antagonistic multilevel selection pressures. Specifically, we impose a within-group pressure to perform a highly-rewarded role and a between-group pressure to perform a diverse suite of roles. Thus, individuals specializing on highly-rewarded roles will have a within-group advantage, but groups of such specialists have a between-group disadvantage. We find that digital groups could evolve to be either single-lineage or multi-lineage, depending on experimental parameters. These group compositions are reminiscent of different kinds of major evolutionary transitions that occur within nature, where either relatives divide labor (fraternal transitions) or multiple different organisms coordinate activities to form a higher-level individual (egalitarian transitions). Regardless of group composition, organisms embraced phenotypic plasticity as a means for genetically similar individuals to perform different roles. Additionally, in multi-lineage groups, organisms from lineages performing highly-rewarded roles also employed reproductive restraint to ensure successful coexistence with organisms from other lineages. PMID:25093399
Deep phylogeographic divergence and cytonuclear discordance in the grasshopper Oedaleus decorus.
Kindler, Eveline; Arlettaz, Raphaël; Heckel, Gerald
2012-11-01
The grasshopper Oedaleus decorus is a thermophilic insect with a large, mostly south-Palaearctic distribution range, stretching from the Mediterranean regions in Europe to Central-Asia and China. In this study, we analyzed the extent of phylogenetic divergence and the recent evolutionary history of the species based on 274 specimens from 26 localities across the distribution range in Europe. Phylogenetic relationships were determined using sequences of two mitochondrial loci (ctr, ND2) with neighbour-joining and Bayesian methods. Additionally, genetic differentiation was analyzed based on mitochondrial DNA and 11 microsatellite markers using F-statistics, model-free multivariate and model-based Bayesian clustering approaches. Phylogenetic analyses detected consistently two highly divergent, allopatrically distributed lineages within O. decorus. The divergence among these Western and Eastern lineages meeting in the region of the Alps was similar to the divergence of each lineage to the sister species O. asiaticus. Genetic differentiation for ctr was extremely high between Western and Eastern grasshopper populations (F(ct)=0.95). Microsatellite markers detected much lower but nevertheless very significant genetic structure among population samples. The nuclear data also demonstrated a case of cytonuclear discordance because the affiliation with mitochondrial lineages was incongruent in Northern Italy. Taken together these results provide evidence of an ancient separation within Oedaleus and either historical introgression of mtDNA among lineages and/or ongoing sex-specific gene flow in this grasshopper. Our study stresses the importance of multilocus approaches for unravelling the history and status of taxa of uncertain evolutionary divergence. Copyright © 2012 Elsevier Inc. All rights reserved.
2013-01-01
Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation. PMID:23343473
Martin, Guillaume E.; Rousseau-Gueutin, Mathieu; Cordonnier, Solenn; Lima, Oscar; Michon-Coudouel, Sophie; Naquin, Delphine; de Carvalho, Julie Ferreira; Aïnouche, Malika; Salmon, Armel; Aïnouche, Abdelkader
2014-01-01
Background and Aims To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the ‘inverted repeat-lacking clade’, IRLC). It is thus very important to sequence plastomes from other lineages in order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plastome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly studied legume group. Methods The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing. Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine the origin of a large inversion identified in L. luteus. Key Results The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted from a flip–flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of remarkably variable regions. Conclusions This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids. Chloroplast mutational hotspots were also identified, which contain novel and potentially informative regions for molecular evolutionary studies at various taxonomic levels in the legumes. Taken together, the results provide new insights into the evolutionary landscape of the legume plastome. PMID:24769537
Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas
2014-01-01
Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing whole plastid genomes to find markers for evolutionary analyses is therefore particularly useful when overall genetic distances are low. PMID:25405773
Reyes-Velasco, Jacobo; Manthey, Joseph D; Bourgeois, Yann; Freilich, Xenia; Boissinot, Stéphane
2018-01-01
Understanding the diversification of biological lineages is central to evolutionary studies. To properly study the process of speciation, it is necessary to link micro-evolutionary studies with macro-evolutionary mechanisms. Micro-evolutionary studies require proper sampling across a taxon's range to adequately infer genetic diversity. Here we use the grass frogs of the genus Ptychadena from the Ethiopian highlands as a model to study the process of lineage diversification in this unique biodiversity hotspot. We used thousands of genome-wide SNPs obtained from double digest restriction site associated DNA sequencing (ddRAD-seq) in populations of the Ptychadena neumanni species complex from the Ethiopian highlands in order to infer their phylogenetic relationships and genetic structure, as well as to study their demographic history. Our genome-wide phylogenetic study supports the existence of approximately 13 lineages clustered into 3 species groups. Our phylogenetic and phylogeographic reconstructions suggest that those endemic lineages diversified in allopatry, and subsequently specialized to different habitats and elevations. Demographic analyses point to a continuous decrease in the population size across the majority of lineages and populations during the Pleistocene, which is consistent with a continuous period of aridification that East Africa experienced since the Pliocene. We discuss the taxonomic implications of our analyses and, in particular, we warn against the recent practice to solely use Bayesian species delimitation methods when proposing taxonomic changes.
Manthey, Joseph D.; Bourgeois, Yann; Freilich, Xenia; Boissinot, Stéphane
2018-01-01
Understanding the diversification of biological lineages is central to evolutionary studies. To properly study the process of speciation, it is necessary to link micro-evolutionary studies with macro-evolutionary mechanisms. Micro-evolutionary studies require proper sampling across a taxon’s range to adequately infer genetic diversity. Here we use the grass frogs of the genus Ptychadena from the Ethiopian highlands as a model to study the process of lineage diversification in this unique biodiversity hotspot. We used thousands of genome-wide SNPs obtained from double digest restriction site associated DNA sequencing (ddRAD-seq) in populations of the Ptychadena neumanni species complex from the Ethiopian highlands in order to infer their phylogenetic relationships and genetic structure, as well as to study their demographic history. Our genome-wide phylogenetic study supports the existence of approximately 13 lineages clustered into 3 species groups. Our phylogenetic and phylogeographic reconstructions suggest that those endemic lineages diversified in allopatry, and subsequently specialized to different habitats and elevations. Demographic analyses point to a continuous decrease in the population size across the majority of lineages and populations during the Pleistocene, which is consistent with a continuous period of aridification that East Africa experienced since the Pliocene. We discuss the taxonomic implications of our analyses and, in particular, we warn against the recent practice to solely use Bayesian species delimitation methods when proposing taxonomic changes. PMID:29389966
Gomes, S; Civetta, A
2014-09-01
Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late-stage sperm development genes are particularly likely to be misexpressed, with fewer early-stage genes affected. Thus, a link has been posited between misexpression and sterility. A more recent alternative explanation for hybrid gene misexpression has been that it is independent of sterility and driven by divergent evolution of male-specific regulatory elements between species (faster male hypothesis). The faster male hypothesis predicts that misregulation of spermatogenesis genes should be independent of sterility and approximately the same in both hybrids, whereas sterility should only affect gene expression in sterile hybrids. To test the faster male hypothesis vs. the effect of sterility on gene misexpression, we analyse spermatogenesis gene expression in different species pairs of the Drosophila phylogeny, where hybrid male sterility occurs in only one direction of the interspecies cross (i.e. unidirectional sterility). We find significant differences among genes in misexpression with effects that are lineage-specific and caused by sterility or fast male regulatory divergence. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Derryberry, Elizabeth P.; Claramunt, Santiago; Derryberry, Graham; Chesser, R. Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J.V.; Brumfield, Robb T.
2011-01-01
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.
Márquez-Corro, José Ignacio; Escudero, Marcial; Luceño, Modesto
2017-10-17
Despite most of the cytogenetic research is focused on monocentric chromosomes, chromosomes with kinetochoric activity localized in a single centromere, several studies have been centered on holocentric chromosomes which have diffuse kinetochoric activity along the chromosomes. The eukaryotic organisms that present this type of chromosomes have been relatively understudied despite they constitute rather diversified species lineages. On the one hand, holocentric chromosomes may present intrinsic benefits (chromosome mutations such as fissions and fusions are potentially neutral in holocentrics). On the other hand, they present restrictions to the spatial separation of the functions of recombination and segregation during meiotic divisions (functions that may interfere), separation that is found in monocentric chromosomes. In this study, we compare the diversification rates of all known holocentric lineages in animals and plants with their most related monocentric lineages in order to elucidate whether holocentric chromosomes constitute an evolutionary advantage in terms of diversification and species richness. The results showed that null hypothesis of equal mean diversification rates cannot be rejected, leading us to surmise that shifts in diversification rates between holocentric and monocentric lineages might be due to other factors, such as the idiosyncrasy of each lineage or the interplay of evolutionary selections with the benefits of having either monocentric or holocentric chromosomes.
Testing Wallace's intuition: water type, reproductive isolation and divergence in an Amazonian fish.
Pires, Tiago H S; Borghezan, Elio A; Machado, Valeria N; Powell, Daniel L; Röpke, Cristhiana P; Oliveira, Claudio; Zuanon, Jansen; Farias, Izeni P
2018-06-01
Alfred Russel Wallace proposed classifying Amazon rivers based on their colour and clarity: white, black and clear water. Wallace also proposed that black waters could mediate diversification and yield distinct fish species. Here, we bring evidence of speciation mediated by water type in the sailfin tetra (Crenuchus spilurus), a fish whose range encompasses rivers of very distinct hydrochemical conditions. Distribution of the two main lineages concords with Wallace's water types: one restricted to the acidic and nutrient-poor waters of the Negro River (herein Rio Negro lineage) and a second widespread throughout the remaining of the species' distribution (herein Amazonas lineage). These lineages occur over a very broad geographical range, suggesting that despite occurring in regions separated by thousands of kilometres, individuals of the distinct lineages fail to occupy each other's habitats, hundreds of metres apart and not separated by physical barrier. Reproductive isolation was assessed in isolated pairs exposed to black-water conditions. All pairs with at least one individual of the lineage not native to black waters showed significantly lower spawning success, suggesting that the water type affected the fitness and contributed to reproductive isolation. Our results endorse Wallace's intuition and highlight the importance of ecological factors in shaping diversity of the Amazon fish fauna. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Anton, K A; Ward, J R; Cruzan, M B
2013-03-01
Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long-term trait changes in derived hybrid lineages has received little attention. We compare pollinator-mediated selection on transgressive floral traits in both early-generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl-shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early-generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade-offs. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Georges, Patrick
2017-01-01
This paper proposes a statistical analysis that captures similarities and differences between classical music composers with the eventual aim to understand why particular composers 'sound' different even if their 'lineages' (influences network) are similar or why they 'sound' alike if their 'lineages' are different. In order to do this we use statistical methods and measures of association or similarity (based on presence/absence of traits such as specific 'ecological' characteristics and personal musical influences) that have been developed in biosystematics, scientometrics, and bibliographic coupling. This paper also represents a first step towards a more ambitious goal of developing an evolutionary model of Western classical music.
Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae)1
Romeiro-Brito, Monique; Moraes, Evandro M.; Taylor, Nigel P.; Zappi, Daniela C.; Franco, Fernando F.
2016-01-01
Premise of the study: Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. Methods: We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Results: Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Discussion: Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies. PMID:26819857
Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.
2013-01-01
Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would entail selecting areas for protection in Mojave and Sonoran Deserts to retain divergent genetic diversity and ensure connectedness across environmental gradients.
Inventory and Phylogenetic Analysis of Meiotic Genes in Monogonont Rotifers
2013-01-01
A long-standing question in evolutionary biology is how sexual reproduction has persisted in eukaryotic lineages. As cyclical parthenogens, monogonont rotifers are a powerful model for examining this question, yet the molecular nature of sexual reproduction in this lineage is currently understudied. To examine genes involved in meiosis, we generated partial genome assemblies for 2 distantly related monogonont species, Brachionus calyciflorus and B. manjavacas. Here we present an inventory of 89 meiotic genes, of which 80 homologs were identified and annotated from these assemblies. Using phylogenetic analysis, we show that several meiotic genes have undergone relatively recent duplication events that appear to be specific to the monogonont lineage. Further, we compare the expression of “meiosis-specific” genes involved in recombination and all annotated copies of the cell cycle regulatory gene CDC20 between obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of B. calyciflorus. We show that “meiosis-specific” genes are expressed in both CP and OP strains, whereas the expression of one of the CDC20 genes is specific to cyclical parthenogenesis. The data presented here provide insights into mechanisms of cyclical parthenogenesis and establish expectations for studies of obligate asexual relatives of monogononts, the bdelloid rotifer lineage. PMID:23487324
Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans.
Tiveron, Marie-Catherine; Beclin, Christophe; Murgan, Sabrina; Wild, Stefan; Angelova, Alexandra; Marc, Julie; Coré, Nathalie; de Chevigny, Antoine; Herrera, Eloisa; Bosio, Andreas; Bertrand, Vincent; Cremer, Harold
2017-11-01
In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegans SIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species. Copyright © 2017 the authors 0270-6474/17/3710611-13$15.00/0.
The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals
Ahrens, Dirk; Schwarzer, Julia; Vogler, Alfried P.
2014-01-01
Extant terrestrial biodiversity arguably is driven by the evolutionary success of angiosperm plants, but the evolutionary mechanisms and timescales of angiosperm-dependent radiations remain poorly understood. The Scarabaeoidea is a diverse lineage of predominantly plant- and dung-feeding beetles. Here, we present a phylogenetic analysis of Scarabaeoidea based on four DNA markers for a taxonomically comprehensive set of specimens and link it to recently described fossil evidence. The phylogeny strongly supports multiple origins of coprophagy, phytophagy and anthophagy. The ingroup-based fossil calibration of the tree widely confirmed a Jurassic origin of the Scarabaeoidea crown group. The crown groups of phytophagous lineages began to radiate first (Pleurostict scarabs: 108 Ma; Glaphyridae between 101 Ma), followed by the later diversification of coprophagous lineages (crown-group age Scarabaeinae: 76 Ma; Aphodiinae: 50 Ma). Pollen feeding arose even later, at maximally 62 Ma in the oldest anthophagous lineage. The clear time lag between the origins of herbivores and coprophages suggests an evolutionary path driven by the angiosperms that first favoured the herbivore fauna (mammals and insects) followed by the secondary radiation of the dung feeders. This finding makes it less likely that extant dung beetle lineages initially fed on dinosaur excrements, as often hypothesized. PMID:25100705
Kawashima, Tomokazu; Thorington, Richard W; Whatton, James F
2009-05-01
The morphology of the autonomic cardiac nervous system (ACNS) was examined in 24 sides of 12 New World monkeys (Platyrrhini) of all four families to document the morphology systematically and to study the evolutionary changes of the ACNS in this primate lineage. We report the following: (1) Although several trivial intra- and inter-specific variations are present, a family-dependent morphology of the ACNS does not exist in New World monkeys. (2) The sympathetic ganglia in New World monkeys consist of the superior cervical, the middle cervical, and the cervicothoracic which is composed of the inferior cervical and first and second thoracic, and the thoracic ganglia starting with the third thoracic. The general cardiac nervous system is the sympathetic middle and inferior cardiac nerves and all parasympathetic vagal cardiac branches. (3) The morphology of the ACNS in the New World monkeys is almost consistent regardless of the number of vertebrae, the cardiac position and deviation (axis), and the great arterial branching pattern of the aortic arch, and it is very similar to that in the Old World monkeys, with only one difference: the superior cervical ganglion in the New World monkeys tends to be relatively smaller, higher, and provides a narrower contribution to the spinal nerves than in the Old World monkeys. The ACNS morphology exhibits significant evolutionary changes within the primate lineage from New and Old World monkeys to humans. The comparative morphology within the lineage is concordant with the phylogeny, suggesting that the primate ACNS preserves its evolutionary history in close alignment with phylogeny.
Grath, Sonja; Parsch, John
2012-01-01
Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome expression data and evolutionary rate estimates for two different Drosophilid lineages, melanogaster and obscura, spanning an evolutionary time scale of around 50 Myr to investigate the influence of sex-biased gene expression and chromosomal location on the rate of molecular evolution. In both lineages, the rate of protein evolution correlated positively with the male/female expression ratio. Genes with highly male-biased expression, genes expressed specifically in male reproductive tissues, and genes with conserved male-biased expression over long evolutionary time scales showed the fastest rates of evolution. An analysis of sex-biased gene evolution in both lineages revealed evidence for a “fast-X” effect in which the rate of evolution was greater for X-linked than for autosomal genes. This pattern was particularly pronounced for male-biased genes. Genes located on the obscura “neo-X” chromosome, which originated from a recent X-autosome fusion, showed rates of evolution that were intermediate between genes located on the ancestral X-chromosome and the autosomes. This suggests that the shift to X-linkage led to an increase in the rate of molecular evolution. PMID:22321769
Midha, Samriti
2014-01-01
Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker (CBC) and is a serious problem worldwide. Like CBC, several important diseases in other fruits, such as mango, pomegranate, and grape, are also caused by Xanthomonas pathovars that display remarkable specificity toward their hosts. While citrus and mango diseases were documented more than 100 years ago, the pomegranate and grape diseases have been known only since the 1950s and 1970s, respectively. Interestingly, diseases caused by all these pathovars were noted first in India. Our genome-based phylogenetic studies suggest that these diverse pathogens belong to a single species and these pathovars may be just a group of rapidly evolving strains. Furthermore, the recently reported pathovars, such as those infecting grape and pomegranate, form independent clonal lineages, while the citrus and mango pathovars that have been known for a long time form one clonal lineage. Such an understanding of their phylogenomic relationship has further allowed us to understand major and unique variations in the lineages that give rise to these pathovars. Whole-genome sequencing studies including ecological relatives from their putative country of origin has allowed us to understand the evolutionary history of Xac and other pathovars that infect fruits. PMID:25085494
Huang, Chien-Hsun; Sun, Renran; Hu, Yi; Zeng, Liping; Zhang, Ning; Cai, Liming; Zhang, Qiang; Koch, Marcus A.; Al-Shehbaz, Ihsan; Edger, Patrick P.; Pires, J. Chris; Tan, Dun-Yan; Zhong, Yang; Ma, Hong
2016-01-01
Brassicaceae is one of the most diverse and economically valuable angiosperm families with widely cultivated vegetable crops and scientifically important model plants, such as Arabidopsis thaliana. The evolutionary history, ecological, morphological, and genetic diversity, and abundant resources and knowledge of Brassicaceae make it an excellent model family for evolutionary studies. Recent phylogenetic analyses of the family revealed three major lineages (I, II, and III), but relationships among and within these lineages remain largely unclear. Here, we present a highly supported phylogeny with six major clades using nuclear markers from newly sequenced transcriptomes of 32 Brassicaceae species and large data sets from additional taxa for a total of 55 species spanning 29 out of 51 tribes. Clade A consisting of Lineage I and Macropodium nivale is sister to combined Clade B (with Lineage II and others) and a new Clade C. The ABC clade is sister to Clade D with species previously weakly associated with Lineage II and Clade E (Lineage III) is sister to the ABCD clade. Clade F (the tribe Aethionemeae) is sister to the remainder of the entire family. Molecular clock estimation reveals an early radiation of major clades near or shortly after the Eocene–Oligocene boundary and subsequent nested divergences of several tribes of the previously polytomous Expanded Lineage II. Reconstruction of ancestral morphological states during the Brassicaceae evolution indicates prevalent parallel (convergent) evolution of several traits over deep times across the entire family. These results form a foundation for future evolutionary analyses of structures and functions across Brassicaceae. PMID:26516094
Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar
2017-06-01
We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.
Ponsuwanna, Patrath; Kochakarn, Theerarat; Bunditvorapoom, Duangkamon; Kümpornsin, Krittikorn; Otto, Thomas D; Ridenour, Chase; Chotivanich, Kesinee; Wilairat, Prapon; White, Nicholas J; Miotto, Olivo; Chookajorn, Thanat
2016-01-29
Malaria parasites have evolved a series of intricate mechanisms to survive and propagate within host red blood cells. Intra-erythrocytic parasitism requires these organisms to digest haemoglobin and detoxify iron-bound haem. These tasks are executed by haemoglobin-specific proteases and haem biocrystallization factors that are components of a large multi-subunit complex. Since haemoglobin processing machineries are functionally and genetically linked to the modes of action and resistance mechanisms of several anti-malarial drugs, an understanding of their evolutionary history is important for drug development and drug resistance prevention. Maximum likelihood trees of genetic repertoires encoding haemoglobin processing machineries within Plasmodium species, and with the representatives of Apicomplexan species with various host tropisms, were created. Genetic variants were mapped onto existing three-dimensional structures. Genome-wide single nucleotide polymorphism data were used to analyse the selective pressure and the effect of these mutations at the structural level. Recent expansions in the falcipain and plasmepsin repertoires are unique to human malaria parasites especially in the Plasmodium falciparum and P. reichenowi lineage. Expansion of haemoglobin-specific plasmepsins occurred after the separation event of Plasmodium species, but the other members of the plasmepsin family were evolutionarily conserved with one copy for each sub-group in every Apicomplexan species. Haemoglobin-specific falcipains are separated from invasion-related falcipain, and their expansions within one specific locus arose independently in both P. falciparum and P. vivax lineages. Gene conversion between P. falciparum falcipain 2A and 2B was observed in artemisinin-resistant strains. Comparison between the numbers of non-synonymous and synonymous mutations suggests a strong selective pressure at falcipain and plasmepsin genes. The locations of amino acid changes from non-synonymous mutations mapped onto protein structures revealed clusters of amino acid residues in close proximity or near the active sites of proteases. A high degree of polymorphism at the haemoglobin processing genes implicates an imposition of selective pressure. The identification in recent years of functional redundancy of haemoglobin-specific proteases makes them less appealing as potential drug targets, but their expansions, especially in the human malaria parasite lineages, unequivocally point toward their functional significance during the independent and repetitive adaptation events in malaria parasite evolutionary history.
2011-01-01
Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways. PMID:21261979
Martínez-Aquino, Andrés; Ceccarelli, Fadia Sara; Eguiarte, Luis E; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce
2014-01-01
Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp.) over the last 6.5 Ma (million years), identifying the main factors (host and/or hydrogeomorphology) that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively) and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a) Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b) Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c) Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins), and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host-parasite events explain the codivergence patterns observed, in which cospeciation and colonisation via host-switching and vicariant plus dispersal events are appreciated, at different times during the diversification history of both associates, particularly during the Pleistocene.
Martínez-Aquino, Andrés; Ceccarelli, Fadia Sara; Eguiarte, Luis E.; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce
2014-01-01
Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp.) over the last 6.5 Ma (million years), identifying the main factors (host and/or hydrogeomorphology) that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively) and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a) Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b) Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c) Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins), and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host-parasite events explain the codivergence patterns observed, in which cospeciation and colonisation via host-switching and vicariant plus dispersal events are appreciated, at different times during the diversification history of both associates, particularly during the Pleistocene. PMID:24999998
Brimacombe, M.; Hazbon, M.; Motiwala, A. S.; Alland, D.
2007-01-01
A single-nucleotide polymorphism-based cluster grouping (SCG) classification system for Mycobacterium tuberculosis was used to examine antibiotic resistance type and resistance mutations in relationship to specific evolutionary lineages. Drug resistance and resistance mutations were seen across all SCGs. SCG-2 had higher proportions of katG codon 315 mutations and resistance to four drugs. PMID:17846140
Olšavská, Katarína; Slovák, Marek; Marhold, Karol; Štubňová, Eliška; Kučera, Jaromír
2016-11-01
The Balkan Peninsula is one of the most important centres of plant diversity in Europe. Here we aim to fill the gap in the current knowledge of the evolutionary processes and factors modelling this astonishing biological richness by applying multiple approaches to the Cyanus napulifer group. To reconstruct the mode of diversification within the C. napulifer group and to uncover its relationships with potential relatives with x = 10 from Europe and Northern Africa, we examined variation in genetic markers (amplified fragment length polymorphisms [AFLPs]; 460 individuals), relative DNA content (4',6-diamidino-2-phenylindole [DAPI] flow cytometry, 330 individuals) and morphology (multivariate morphometrics, 40 morphological characters, 710 individuals). To elucidate its evolutionary history, we analysed chloroplast DNA (cpDNA) sequences of the genus Cyanus deposited in the GenBank database. The AFLPs revealed a suite of closely related entities with variable levels of differentiation. The C. napulifer group formed a genetically well-defined unit. Samples outside the group formed strongly diversified and mostly species-specific genetic lineages with no further geographical patterns, often characterized also by a different DNA content. AFLP analysis of the C. napulifer group revealed extensive radiation and split it into nine allopatric (sub)lineages with varying degrees of congruence among genetic, DNA-content and morphological patterns. Genetic admixture was usually detected in contact zones between genetic lineages. Plastid data indicated extensive maintenance of ancestral variation across Cyanus perennials. The C. napulifer group is an example of a rapidly and recently diversified plant group whose genetic lineages have evolved in spatio-temporal isolation on the topographically complex Balkan Peninsula. Adaptive radiation, accompanied in some cases by long-term isolation and hybridization, has contributed to the formation of this species complex and its mosaic pattern. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Derryberry, Elizabeth P; Claramunt, Santiago; Derryberry, Graham; Chesser, R Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J V; Brumfield, Robb T
2011-10-01
Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
The Use of Bioinformatics for Studying HIV Evolutionary and Epidemiological History in South America
Bello, Gonzalo; Soares, Marcelo A.; Schrago, Carlos G.
2011-01-01
The South American human immunodeficiency virus type 1 (HIV-1) epidemic is driven by several subtypes (B, C, and F1) and circulating and unique recombinant forms derived from those subtypes. Those variants are heterogeneously distributed around the continent in a country-specific manner. Despite some inconsistencies mainly derived from sampling biases and analytical constrains, most of studies carried out in the area agreed in pointing out specificities in the evolutionary dynamics of the circulating HIV-1 lineages. In this paper, we covered the theoretical basis, and the application of bioinformatics methods to reconstruct the HIV spatial-temporal dynamics, unveiling relevant information to understand the origin, geographical dissemination and the current molecular scenario of the HIV epidemic in the continent, particularly in the countries of Southern Cone. PMID:22162803
Reichard, M; Bryja, J; Polačik, M; Smith, C
2011-09-01
Coevolutionary relationships between parasites and hosts can elevate the rate of evolutionary changes owing to reciprocal adaptations between coevolving partners. Such relationships can result in the evolution of host specificity. Recent methodological advances have permitted the recognition of cryptic lineages, with important consequences for our understanding of biological diversity. We used the European bitterling (Rhodeus amarus), a freshwater fish that parasitizes unionid mussels, to investigate host specialization across regions of recent and ancient sympatry between coevolving partners. We combined genetic data (12 microsatellite and 2 mitochondrial markers) from five populations with experimental data for possible mechanisms of host species recognition (imprinting and conditioning). We found no strong evidence for the existence of cryptic lineages in R. amarus, though a small proportion of variation among individuals in an area of recent bitterling-mussel association was statistically significant in explaining host specificity. No other measures supported the existence of host-specific lineages. Behavioural data revealed a weak effect of conditioning that biased behavioural preferences towards specific host species. Host imprinting had no effect on oviposition behaviour. Overall, we established that populations of R. amarus show limited potential for specialization, manifested as weak effects of host conditioning and genetic within-population structure. Rhodeus amarus is the only species of mussel-parasitizing fish in Europe, which contrasts with the species-rich communities of bitterling in eastern Asia where several host-specific bitterling occur. We discuss costs and constraints on the evolution of host-specific lineages in our study system and more generally. © 2011 Blackwell Publishing Ltd.
Aleixandre, Pau; Hernández Montoya, Julio; Milá, Borja
2013-01-01
The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated "cryptic" lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving divergence and speciation, but also their potential role as repositories of ancestral diversity.
Kümpers, Britta M. C.; Smith-Unna, Richard D.; Hibberd, Julian M.
2014-01-01
With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by independent C4 lineages are key targets for engineering the C4 pathway into C3 crops such as rice. PMID:24901697
Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages.
Immonen, Taina T; Leitner, Thomas
2014-10-16
HIV-1 can persist for the duration of a patient's life due in part to its ability to hide from the immune system, and from antiretroviral drugs, in long-lived latent reservoirs. Latent forms of HIV-1 may also be disproportionally involved in transmission. Thus, it is important to detect and quantify latency in the HIV-1 life cycle. We developed a novel molecular clock-based phylogenetic tool to investigate the prevalence of HIV-1 lineages that have experienced latency. The method removes alternative sources that may affect evolutionary rates, such as hypermutation, recombination, and selection, to reveal the contribution of generation-time effects caused by latency. Our method was able to recover latent lineages with high specificity and sensitivity, and low false discovery rates, even on relatively short branches on simulated phylogenies. Applying the tool to HIV-1 sequences from 26 patients, we show that the majority of phylogenetic lineages have been affected by generation-time effects in every patient type, whether untreated, elite controller, or under effective or failing treatment. Furthermore, we discovered extensive effects of latency in sequence data (gag, pol, and env) from reservoirs as well as in the replicating plasma population. To better understand our phylogenetic findings, we developed a dynamic model of virus-host interactions to investigate the proportion of lineages in the actively replicating population that have ever been latent. Assuming neutral evolution, our dynamic modeling showed that under most parameter conditions, it is possible for a few activated latent viruses to propagate so that in time, most HIV-1 lineages will have been latent at some time in their past. These results suggest that cycling in and out of latency plays a major role in the evolution of HIV-1. Thus, no aspect of HIV-1 evolution can be fully understood without considering latency - including treatment, drug resistance, immune evasion, transmission, and pathogenesis.
Nuclear hormone receptors in parasitic helminths
Wu, Wenjie; LoVerde, Philip T
2010-01-01
Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss. PMID:20600585
Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine
2013-01-01
Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products. PMID:24069179
Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine
2013-01-01
Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products.
dePamphilis, Claude W.; Young, Nelson D.; Wolfe, Andrea D.
1997-01-01
The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism. PMID:9207097
Sha, Li-Na; Fan, Xing; Li, Jun; Liao, Jin-Qiu; Zeng, Jian; Wang, Yi; Kang, Hou-Yang; Zhang, Hai-Qin; Zheng, You-Liang; Zhou, Yong-Hong
2017-09-01
Leymus Hochst. (Triticeae: Poaceae), a group of allopolyploid species with the NsXm genomes, is a perennial genus with diversity in morphology, cytology, ecology, and distribution in the Triticeae. To investigate the genome origin and evolutionary history of Leymus, three unlinked low-copy nuclear genes (Acc1, Pgk1, and GBSSI) and three chloroplast regions (trnL-F, matK, and rbcL) of 32 Leymus species were analyzed with those of 36 diploid species representing 18 basic genomes in the Triticeae. The phylogenetic relationships were reconstructed using Bayesian inference, Maximum parsimony, and NeighborNet methods. A time-calibrated phylogeny was generated to estimate the evolutionary history of Leymus. The results suggest that reticulate evolution has occurred in Leymus species, with several distinct progenitors contributing to the Leymus. The molecular data in resolution of the Xm-genome lineage resulted in two apparently contradictory results, with one placing the Xm-genome lineage as closely related to the P/F genome and the other splitting the Xm-genome lineage as sister to the Ns-genome donor. Our results suggested that (1) the Ns genome of Leymus was donated by Psathyrostachys, and additional Ns-containing alleles may be introgressed into some Leymus polyploids by recurrent hybridization; (2) The phylogenetic incongruence regarding the resolution of the Xm-genome lineage suggested that the Xm genome of Leymus was closely related to the P genome of Agropyron; (3) Both Ns- and Xm-genome lineages served as the maternal donor during the speciation of Leymus species; (4) The Pseudoroegneria, Lophopyrum and Australopyrum genomes contributed to some Leymus species. Copyright © 2017 Elsevier Inc. All rights reserved.
Martin, Guillaume E; Rousseau-Gueutin, Mathieu; Cordonnier, Solenn; Lima, Oscar; Michon-Coudouel, Sophie; Naquin, Delphine; de Carvalho, Julie Ferreira; Aïnouche, Malika; Salmon, Armel; Aïnouche, Abdelkader
2014-06-01
To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the 'inverted repeat-lacking clade', IRLC). It is thus very important to sequence plastomes from other lineages in order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plastome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly studied legume group. The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing. Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine the origin of a large inversion identified in L. luteus. The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted from a flip-flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of remarkably variable regions. This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids. Chloroplast mutational hotspots were also identified, which contain novel and potentially informative regions for molecular evolutionary studies at various taxonomic levels in the legumes. Taken together, the results provide new insights into the evolutionary landscape of the legume plastome. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fong, Jonathan J; Li, Pi-Peng; Yang, Bao-Tian; Zhou, Zheng-Yan; Leaché, Adam D; Min, Mi-Sook; Waldman, Bruce
2016-04-01
The Oriental fire-bellied toad (Bombina orientalis) is a commonly used study organism, but knowledge of its evolutionary history is incomplete. We analyze sequence data from four genetic markers (mtDNA genes encoding cytochrome c oxidase subunit I, cytochrome b, and 12S-16S rRNA; nuDNA gene encoding recombination activating gene 2) from 188 individuals across its range in Northeast Asia to elucidate phylogeographic patterns and to identify the historic events that shaped its evolutionary history. Although morphologically similar across its range, B. orientalis exhibits phylogeographic structure, which we infer was shaped by geologic, climatic, and anthropogenic events. Phylogenetic and divergence-dating analyses recover four genetically distinct groups of B. orientalis: Lineage 1-Shandong Province and Beijing (China); Lineage 2-Bukhan Mountain (Korea); Lineage 3-Russia, Northeast China, and northern South Korea; and Lineage 4-South Korea. Lineage 2 was previously unknown. Additionally, we discover an area of secondary contact on the Korean Peninsula, and infer a single dispersal event as the origin of the insular Jeju population. Skyline plots estimate different population histories for the four lineages: Lineages 1 and 2 experienced population decreases, Lineage 3 remained stable, while Lineage 4 experienced a sharp increase during the Holocene. The timing of the population expansion of Lineage 4 coincides with the advent of rice cultivation, which may have facilitated the increase in population size by providing additional breeding habitat. Copyright © 2016 Elsevier Inc. All rights reserved.
Schuettpelz, Eric; Pryer, Kathleen M
2006-06-01
The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.
Mohandesan, Elmira; Fitak, Robert R; Corander, Jukka; Yadamsuren, Adiya; Chuluunbat, Battsetseg; Abdelhadi, Omer; Raziq, Abdul; Nagy, Peter; Stalder, Gabrielle; Walzer, Chris; Faye, Bernard; Burger, Pamela A
2017-08-30
The genus Camelus is an interesting model to study adaptive evolution in the mitochondrial genome, as the three extant Old World camel species inhabit hot and low-altitude as well as cold and high-altitude deserts. We sequenced 24 camel mitogenomes and combined them with three previously published sequences to study the role of natural selection under different environmental pressure, and to advance our understanding of the evolutionary history of the genus Camelus. We confirmed the heterogeneity of divergence across different components of the electron transport system. Lineage-specific analysis of mitochondrial protein evolution revealed a significant effect of purifying selection in the concatenated protein-coding genes in domestic Bactrian camels. The estimated dN/dS < 1 in the concatenated protein-coding genes suggested purifying selection as driving force for shaping mitogenome diversity in camels. Additional analyses of the functional divergence in amino acid changes between species-specific lineages indicated fixed substitutions in various genes, with radical effects on the physicochemical properties of the protein products. The evolutionary time estimates revealed a divergence between domestic and wild Bactrian camels around 1.1 [0.58-1.8] million years ago (mya). This has major implications for the conservation and management of the critically endangered wild species, Camelus ferus.
The influence of habitat on the evolution of plants: a case study across Saxifragales
de Casas, Rafael Rubio; Mort, Mark E.; Soltis, Douglas E.
2016-01-01
Background and Aims Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. Methods We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Key Results Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. Conclusions The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. PMID:27551029
Engel, Dimitri; Jöst, Hanna; Wink, Michael; Börstler, Jessica; Bosch, Stefan; Garigliany, Mutien-Marie; Jöst, Artur; Czajka, Christina; Lühken, Renke; Ziegler, Ute; Groschup, Martin H.; Pfeffer, Martin; Becker, Norbert; Schmidt-Chanasit, Jonas
2016-01-01
ABSTRACT Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. PMID:26838717
Wong, Sienna; Jin, J-P
2017-01-01
Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Citerne, Hélène L.; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine
2013-01-01
TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanum lycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegia coerulea and Nelumbo nucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus. PMID:24019982
Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins
2008-01-01
Background Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi) and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. Results The Rho GTPase-binding domain (GBD/FH3) reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm) formins that define a specific branch (Class III) of the formin family. Conclusion We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored) Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms. PMID:18430232
The complexity of selection at the major primate β-defensin locus
Semple, Colin AM; Maxwell, Alison; Gautier, Philippe; Kilanowski, Fiona M; Eastwood, Hayden; Barran, Perdita E; Dorin, Julia R
2005-01-01
Background We have examined the evolution of the genes at the major human β-defensin locus and the orthologous loci in a range of other primates and mouse. For the first time these data allow us to examine selective episodes in the more recent evolutionary history of this locus as well as the ancient past. We have used a combination of maximum likelihood based tests and a maximum parsimony based sliding window approach to give a detailed view of the varying modes of selection operating at this locus. Results We provide evidence for strong positive selection soon after the duplication of these genes within an ancestral mammalian genome. Consequently variable selective pressures have acted on β-defensin genes in different evolutionary lineages, with episodes both of negative, and more rarely positive selection, during the divergence of primates. Positive selection appears to have been more common in the rodent lineage, accompanying the birth of novel, rodent-specific β-defensin genes. These observations allow a fuller understanding of the evolution of mammalian innate immunity. In both the rodent and primate lineages, sites in the second exon have been subject to positive selection and by implication are important in functional diversity. A small number of sites in the mature human peptides were found to have undergone repeated episodes of selection in different primate lineages. Particular sites were consistently implicated by multiple methods at positions throughout the mature peptides. These sites are clustered at positions predicted to be important for the specificity of the antimicrobial or chemoattractant properties of β-defensins. Surprisingly, sites within the prepropeptide region were also implicated as being subject to significant positive selection, suggesting previously unappreciated functional significance for this region. Conclusions Identification of these putatively functional sites has important implications for our understanding of β-defensin function and for novel antibiotic design. PMID:15904491
Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses
Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel
2015-01-01
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166
Yin, Hao; Du, Jianchang; Li, Leiting; Jin, Cong; Fan, Lian; Li, Meng; Wu, Jun; Zhang, Shaoling
2014-01-01
Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants. PMID:24899073
Li, Yan; Yang, Zexiao
2017-03-01
AbstractYellow fever virus (YFV) has emerged as the causative agent of a vector-borne disease with devastating mortality in the tropics of Africa and the Americas. YFV phylogenies indicate that the isolates collected from West Africa, East and Central Africa, and South America cluster into different lineages and the virus spread into the Americas from Africa. To determine the nature of genetic variation accompanying the intercontinental epidemic, we performed a genome-wide evolutionary study on the West African and South American lineages of YFV. Our results reveal that adaptive genetic diversification has occurred on viral nonstructural protein 5 (NS5), which is crucially required for viral genome replication, in the early epidemic phase of these currently circulating lineages. Furthermore, major amino acid changes relevant to the adaptive diversification generally cluster in different structural regions of NS5 in a lineage-specific manner. These results suggest that YFV has experienced adaptive diversification in the epidemic spread between the continents and shed insights into the genetic determinants of such diversification, which might be beneficial for understanding the emergence and re-emergence of yellow fever as an important global public health issue.
Evolution of SH2 domains and phosphotyrosine signalling networks
Liu, Bernard A.; Nash, Piers D.
2012-01-01
Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907
Mikheecheva, Natalya E; Zaychikova, Marina V; Melerzanov, Alexander V; Danilenko, Valery N
2017-04-01
Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin-antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genome-wide evolutionary dynamics of influenza B viruses on a global scale
Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John
2017-01-01
The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042
Carcelén, María; Abascal, Estefanía; Herranz, Marta; Santantón, Sheila; Zenteno, Roberto; Ruiz Serrano, María Jesús; Bouza, Emilio
2017-01-01
The assignation of lineages in Mycobacterium tuberculosis (MTB) provides valuable information for evolutionary and phylogeographic studies and makes for more accurate knowledge of the distribution of this pathogen worldwide. Differences in virulence have also been found for certain lineages. MTB isolates were initially assigned to lineages based on data obtained from genotyping techniques, such as spoligotyping or MIRU-VNTR analysis, some of which are more suitable for molecular epidemiology studies. However, since these methods are subject to a certain degree of homoplasy, other criteria have been chosen to assign lineages. These are based on targeting robust and specific SNPs for each lineage. Here, we propose two newly designed multiplex targeting methods—both of which are single-tube tests—to optimize the assignation of the six main lineages in MTB. The first method is based on ASO-PCR and offers an inexpensive and easy-to-implement assay for laboratories with limited resources. The other, which is based on SNaPshot, enables more refined standardized assignation of lineages for laboratories with better resources. Both methods performed well when assigning lineages from cultured isolates from a control panel, a test panel, and a problem panel from an unrelated population, Mexico, which included isolates in which standard genotyping was not able to classify lineages. Both tests were also able to assign lineages from stored isolates, without the need for subculture or purification of DNA, and even directly from clinical specimens with a medium-high bacilli burden. Our assays could broaden the contexts where information on lineages can be acquired, thus enabling us to quickly update data from retrospective collections and to merge data with those obtained at the time of diagnosis of a new TB case. PMID:29091913
Drosophila sex combs as a model of evolutionary innovations.
Kopp, Artyom
2011-01-01
The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb-a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between Hox and sex determination genes. Activity of the sex determination pathway was brought under the control of the Hox code to become segment-specific, while Hox gene expression became sexually dimorphic. At the same time, both Hox and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of Hox and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell-differentiation programs have diverged between species, and in some lineages, similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher order taxa. © 2011 Wiley Periodicals, Inc.
Drosophila Sex Combs as a Model of Evolutionary Innovations
Kopp, Artyom
2011-01-01
The diversity of animal and plant forms is shaped by nested evolutionary innovations. Understanding the genetic and molecular changes responsible for these innovations is therefore one of the key goals of evolutionary biology. From the genetic point of view, the origin of novel traits implies the origin of new regulatory pathways to control their development. To understand how these new pathways are assembled in the course of evolution, we need model systems that combine relatively recent innovations with a powerful set of genetic and molecular tools. One such model is provided by the Drosophila sex comb – a male-specific morphological structure that evolved in a relatively small lineage related to the model species D. melanogaster. Our extensive knowledge of sex comb development in D. melanogaster provides the basis for investigating the genetic changes responsible for sex comb origin and diversification. At the same time, sex combs can change on microevolutionary timescales and differ spectacularly among closely related species, providing opportunities for direct genetic analysis and for integrating developmental and population-genetic approaches. Sex comb evolution is associated with the origin of novel interactions between HOX and sex determination genes. Activity of the sex determination pathway was brought under the control of the HOX code to become segment-specific, while HOX gene expression became sexually dimorphic. At the same time, both HOX and sex determination genes were integrated into the intrasegmental spatial patterning network, and acquired new joint downstream targets. Phylogenetic analysis shows that similar sex comb morphologies evolved independently in different lineages. Convergent evolution at the phenotypic level reflects convergent changes in the expression of HOX and sex determination genes, involving both independent gains and losses of regulatory interactions. However, the downstream cell differentiation programs have diverged between species, and in some lineages similar adult morphologies are produced by different morphogenetic mechanisms. These features make the sex comb an excellent model for examining not only the genetic changes responsible for its evolution, but also the cellular processes that translate DNA sequence changes into morphological diversity. The origin and diversification of sex combs provides insights into the roles of modularity, cooption, and regulatory changes in evolutionary innovations, and can serve as a model for understanding the origin of the more drastic novelties that define higher-order taxa. PMID:23016935
Sheng, Zizhang; Schramm, Chaim A.; Connors, Mark; Morris, Lynn; Mascola, John R.; Kwong, Peter D.; Shapiro, Lawrence
2016-01-01
Accumulation of somatic mutations in antibody variable regions is critical for antibody affinity maturation, with HIV-1 broadly neutralizing antibodies (bnAbs) generally requiring years to develop. We recently found that the rate at which mutations accumulate decreases over time, but the mechanism governing this slowing is unclear. In this study, we investigated whether natural selection and/or mutability of the antibody variable region contributed significantly to observed decrease in rate. We used longitudinally sampled sequences of immunoglobulin transcripts of single lineages from each of 3 donors, as determined by next generation sequencing. We estimated the evolutionary rates of the complementarity determining regions (CDRs), which are most significant for functional selection, and found they evolved about 1.5- to 2- fold faster than the framework regions. We also analyzed the presence of AID hotspots and coldspots at different points in lineage development and observed an average decrease in mutability of less than 10 percent over time. Altogether, the correlation between Darwinian selection strength and evolutionary rate trended toward significance, especially for CDRs, but cannot fully explain the observed changes in evolutionary rate. The mutability modulated by AID hotspots and coldspots changes correlated only weakly with evolutionary rates. The combined effects of Darwinian selection and mutability contribute substantially to, but do not fully explain, evolutionary rate change for HIV-1-targeting bnAb lineages. PMID:27191167
Two Orangutan Species Have Evolved Different KIR Alleles and Haplotypes1
Guethlein, Lisbeth A.; Norman, Paul J.; Heijmans, Corinne M. C.; de Groot, Natasja G.; Hilton, Hugo G.; Babrzadeh, Farbod; Abi-Rached, Laurent; Bontrop, Ronald E.; Parham, Peter
2017-01-01
The immune and reproductive functions of human Natural Killer (NK) cells are regulated by interactions of the C1 and C2 epitopes of HLA-C with C1-specific and C2-specific lineage III killer cell immunoglobulin-like receptors (KIR). This rapidly evolving and diverse system of ligands and receptors is restricted to humans and great apes. In this context, the orangutan has particular relevance because it represents an evolutionary intermediate, one having the C1 epitope and corresponding KIR, but lacking the C2 epitope. Through a combination of direct sequencing, KIR genotyping and data mining from the Great Ape Genome Project (GAGP) we characterized the KIR alleles and haplotypes for panels of ten Bornean orangutans and 19 Sumatran orangutans. The orangutan KIR haplotypes have between five and ten KIR genes. The seven orangutan lineage III KIR genes all locate to the centromeric region of the KIR locus, whereas their human counterparts also populate the telomeric region. One lineage III KIR gene is Bornean-specific, one is Sumatran-specific and five are shared. Of twelve KIR gene-content haplotypes five are Bornean-specific, five are Sumatran-specific and two are shared. The haplotypes have different combinations of genes encoding activating and inhibitory C1 receptors that can be of higher or lower affinity. All haplotypes encode an inhibitory C1 receptor, but only some haplotypes encode an activating C1 receptor. Of 130 KIR alleles, 55 are Bornean-specific, 65 are Sumatran specific and ten are shared. PMID:28264973
Near, Thomas J; Dornburg, Alex; Tokita, Masayoshi; Suzuki, Dai; Brandley, Matthew C; Friedman, Matt
2014-04-01
Understanding the history that underlies patterns of species richness across the Tree of Life requires an investigation of the mechanisms that not only generate young species-rich clades, but also those that maintain species-poor lineages over long stretches of evolutionary time. However, diversification dynamics that underlie ancient species-poor lineages are often hidden due to a lack of fossil evidence. Using information from the fossil record and time calibrated molecular phylogenies, we investigate the history of lineage diversification in Polypteridae, which is the sister lineage of all other ray-finned fishes (Actinopterygii). Despite originating at least 390 million years (Myr) ago, molecular timetrees support a Neogene origin for the living polypterid species. Our analyses demonstrate polypterids are exceptionally species depauperate with a stem lineage duration that exceeds 380 million years (Ma) and is significantly longer than the stem lineage durations observed in other ray-finned fish lineages. Analyses of the fossil record show an early Late Cretaceous (100.5-83.6 Ma) peak in polypterid genus richness, followed by 60 Ma of low richness. The Neogene species radiation and evidence for high-diversity intervals in the geological past suggest a "boom and bust" pattern of diversification that contrasts with common perceptions of relative evolutionary stasis in so-called "living fossils." © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Top predators induce the evolutionary diversification of intermediate predator species.
Zu, Jian; Yuan, Bo; Du, Jianqiang
2015-12-21
We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Biological and phylogenetic characteristics of yellow fever virus lineages from West Africa.
Stock, Nina K; Laraway, Hewád; Faye, Ousmane; Diallo, Mawlouth; Niedrig, Matthias; Sall, Amadou A
2013-03-01
The yellow fever virus (YFV), the first proven human-pathogenic virus, although isolated in 1927, is still a major public health problem, especially in West Africa where it causes outbreaks every year. Nevertheless, little is known about its genetic diversity and evolutionary dynamics, mainly due to a limited number of genomic sequences from wild virus isolates. In this study, we analyzed the phylogenetic relationships of 24 full-length genomes from YFV strains isolated between 1973 and 2005 in a sylvatic context of West Africa, including 14 isolates that had previously not been sequenced. By this, we confirmed genetic variability within one genotype by the identification of various YF lineages circulating in West Africa. Further analyses of the biological properties of these lineages revealed differential growth behavior in human liver and insect cells, correlating with the source of isolation and suggesting host adaptation. For one lineage, repeatedly isolated in a context of vertical transmission, specific characteristics in the growth behavior and unique mutations of the viral genome were observed and deserve further investigation to gain insight into mechanisms involved in YFV emergence and maintenance in nature.
Biological and Phylogenetic Characteristics of Yellow Fever Virus Lineages from West Africa
Laraway, Hewád; Faye, Ousmane; Diallo, Mawlouth; Niedrig, Matthias
2013-01-01
The yellow fever virus (YFV), the first proven human-pathogenic virus, although isolated in 1927, is still a major public health problem, especially in West Africa where it causes outbreaks every year. Nevertheless, little is known about its genetic diversity and evolutionary dynamics, mainly due to a limited number of genomic sequences from wild virus isolates. In this study, we analyzed the phylogenetic relationships of 24 full-length genomes from YFV strains isolated between 1973 and 2005 in a sylvatic context of West Africa, including 14 isolates that had previously not been sequenced. By this, we confirmed genetic variability within one genotype by the identification of various YF lineages circulating in West Africa. Further analyses of the biological properties of these lineages revealed differential growth behavior in human liver and insect cells, correlating with the source of isolation and suggesting host adaptation. For one lineage, repeatedly isolated in a context of vertical transmission, specific characteristics in the growth behavior and unique mutations of the viral genome were observed and deserve further investigation to gain insight into mechanisms involved in YFV emergence and maintenance in nature. PMID:23269797
Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M.
2016-01-01
Abstract Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints. PMID:28175287
Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M; Ruiz-Herrera, Aurora
2016-12-01
Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.
Kovalev, S Y; Mukhacheva, T A
2017-11-01
Tick-borne encephalitis is widespread in Eurasia and transmitted by Ixodes ticks. Classification of its causative agent, tick-borne encephalitis virus (TBEV), includes three subtypes, namely Far-Eastern, European, and Siberian (TBEV-Sib), as well as a group of 886-84-like strains with uncertain taxonomic status. TBEV-Sib is subdivided into three phylogenetic lineages: Baltic, Asian, and South-Siberian. A reason to reconsider TBEV-Sib classification was the analysis of 186 nucleotide sequences of an E gene fragment submitted to GenBank during the last two years. Within the South-Siberian lineage, we have identified a distinct group with prototype strains Aina and Vasilchenko as an individual lineage named East-Siberian. The analysis of reclassified lineages has promoted a new model of the evolutionary history of TBEV-Sib lineages and TBEV-Sib as a whole. Moreover, we present arguments supporting separation of 886-84-like strains into an individual TBEV subtype, which we propose to name Baikalian (TBEV-Bkl). Copyright © 2017 Elsevier B.V. All rights reserved.
Caetano-Anollés, Gustavo; Mittenthal, Jay E; Caetano-Anollés, Derek; Kim, Kyung Mo
2014-01-01
Time-calibrated phylogenomic trees of protein domain structure produce powerful chronologies describing the evolution of biochemistry and life. These timetrees are built from a genomic census of millions of encoded proteins using models of nested accumulation of molecules in evolving proteomes. Here we show that a primordial stem line of descent, a propagating series of pluripotent cellular entities, populates the deeper branches of the timetrees. The stem line produced for the first time cellular grades ~2.9 billion years (Gy)-ago, which slowly turned into lineages of superkingdom Archaea. Prompted by the rise of planetary oxygen and aerobic metabolism, the stem line also produced bacterial and eukaryal lineages. Superkingdom-specific domain repertoires emerged ~2.1 Gy-ago delimiting fully diversified Bacteria. Repertoires specific to Eukarya and Archaea appeared 300 millions years later. Results reconcile reductive evolutionary processes leading to the early emergence of Archaea to superkingdom-specific innovations compatible with a tree of life rooted in Bacteria.
Larson-Johnson, Kathryn
2016-01-01
As a primary determinant of spatial structure in angiosperm populations, fruit dispersal may impact large-scale ecological and evolutionary processes. Essential to understanding these mechanisms is an accurate reconstruction of dispersal mode over the entire history of an angiosperm lineage. A total-evidence phylogeny is presented for most fossil fruit and all extant genera in Fagales over its c. 95 million yr history. This phylogeny - the largest of its kind to include plant fossils - was used to reconstruct an evolutionary history directly informed by fossil morphologies and to assess relationships among dispersal mode, biogeographic range size, and diversification rate. Reconstructions indicate four transitions to wind dispersal and seven to biotic dispersal, with the phylogenetic integration of fossils crucial to understanding these patterns. Complexity further increased when more specialized behaviors were considered, with fluttering, gliding, autorotating, and scatter-hoarding evolving multiple times across the order. Preliminary biogeographic analyses suggest larger range sizes in biotically dispersed lineages, especially when pollination mode was held constant. Biotically dispersed lineages had significantly higher diversification rates than abiotically dispersed lineages, although transitions in dispersal mode alone cannot explain all detected diversification rate shifts across Fagales. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Featherston, Jonathan; Arakaki, Yoko; Hanschen, Erik R; Ferris, Patrick J; Michod, Richard E; Olson, Bradley J S C; Nozaki, Hisayoshi; Durand, Pierre M
2018-04-01
Multicellularity is the premier example of a major evolutionary transition in individuality and was a foundational event in the evolution of macroscopic biodiversity. The volvocine chlorophyte lineage is well suited for studying this process. Extant members span unicellular, simple colonial, and obligate multicellular taxa with germ-soma differentiation. Here, we report the nuclear genome sequence of one of the most morphologically simple organisms in this lineage-the 4-celled colonial Tetrabaena socialis and compare this to the three other complete volvocine nuclear genomes. Using conservative estimates of gene family expansions a minimal set of expanded gene families was identified that associate with the origin of multicellularity. These families are rich in genes related to developmental processes. A subset of these families is lineage specific, which suggests that at a genomic level the evolution of multicellularity also includes lineage-specific molecular developments. Multiple points of evidence associate modifications to the ubiquitin proteasomal pathway (UPP) with the beginning of coloniality. Genes undergoing positive or accelerating selection in the multicellular volvocines were found to be enriched in components of the UPP and gene families gained at the origin of multicellularity include components of the UPP. A defining feature of colonial/multicellular life cycles is the genetic control of cell number. The genomic data presented here, which includes diversification of cell cycle genes and modifications to the UPP, align the genetic components with the evolution of this trait.
Evolution of floral diversity: genomics, genes and gamma
Berger, Brent A.; Howarth, Dianella G.; Soltis, Douglas E.
2017-01-01
A salient feature of flowering plant diversification is the emergence of a novel suite of floral features coinciding with the origin of the most species-rich lineage, Pentapetalae. Advances in phylogenetics, developmental genetics and genomics, including new analyses presented here, are helping to reconstruct the specific evolutionary steps involved in the evolution of this clade. The enormous floral diversity among Pentapetalae appears to be built on a highly conserved ground plan of five-parted (pentamerous) flowers with whorled phyllotaxis. By contrast, lability in the number and arrangement of component parts of the flower characterize the early-diverging eudicot lineages subtending Pentapetalae. The diversification of Pentapetalae also coincides closely with ancient hexaploidy, referred to as the gamma whole-genome triplication, for which the phylogenetic timing, mechanistic details and molecular evolutionary consequences are as yet not fully resolved. Transcription factors regulating floral development often persist in duplicate or triplicate in gamma-derived genomes, and both individual genes and whole transcriptional programmes exhibit a shift from broadly overlapping to tightly defined expression domains in Pentapetalae flowers. Investigations of these changes associated with the origin of Pentapetalae can lead to a more comprehensive understanding of what is arguably one of the most important evolutionary diversification events within terrestrial plants. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994132
Koizumi, Itsuro; Usio, Nisikawa; Kawai, Tadashi; Azuma, Noriko; Masuda, Ryuichi
2012-01-01
Intra-specific genetic diversity is important not only because it influences population persistence and evolutionary potential, but also because it contains past geological, climatic and environmental information. In this paper, we show unusually clear genetic structure of the endangered Japanese crayfish that, as a sedentary species, provides many insights into lesser-known past environments in northern Japan. Over the native range, most populations consisted of unique 16S mtDNA haplotypes, resulting in significant genetic divergence (overall F ST = 0.96). Owing to the simple and clear structure, a new graphic approach unraveled a detailed evolutionary history; regional crayfish populations were comprised of two distinct lineages that had experienced contrasting demographic processes (i.e. rapid expansion vs. slow stepwise range expansion) following differential drainage topologies and past climate events. Nuclear DNA sequences also showed deep separation between the lineages. Current ocean barriers to dispersal did not significantly affect the genetic structure of the freshwater crayfish, indicating the formation of relatively recent land bridges. This study provides one of the best examples of how phylogeographic analysis can unravel a detailed evolutionary history of a species and how this history contributes to the understanding of the past environment in the region. Ongoing local extinctions of the crayfish lead not only to loss of biodiversity but also to the loss of a significant information regarding past geological and climatic events. PMID:22470505
Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae
Arslan, Defne; Legendre, Matthieu; Seltzer, Virginie; Abergel, Chantal; Claverie, Jean-Michel
2011-01-01
Mimivirus, a DNA virus infecting acanthamoeba, was for a long time the largest known virus both in terms of particle size and gene content. Its genome encodes 979 proteins, including the first four aminoacyl tRNA synthetases (ArgRS, CysRS, MetRS, and TyrRS) ever found outside of cellular organisms. The discovery that Mimivirus encoded trademark cellular functions prompted a wealth of theoretical studies revisiting the concept of virus and associated large DNA viruses with the emergence of early eukaryotes. However, the evolutionary significance of these unique features remained impossible to assess in absence of a Mimivirus relative exhibiting a suitable evolutionary divergence. Here, we present Megavirus chilensis, a giant virus isolated off the coast of Chile, but capable of replicating in fresh water acanthamoeba. Its 1,259,197-bp genome is the largest viral genome fully sequenced so far. It encodes 1,120 putative proteins, of which 258 (23%) have no Mimivirus homologs. The 594 Megavirus/Mimivirus orthologs share an average of 50% of identical residues. Despite this divergence, Megavirus retained all of the genomic features characteristic of Mimivirus, including its cellular-like genes. Moreover, Megavirus exhibits three additional aminoacyl-tRNA synthetase genes (IleRS, TrpRS, and AsnRS) adding strong support to the previous suggestion that the Mimivirus/Megavirus lineage evolved from an ancestral cellular genome by reductive evolution. The main differences in gene content between Mimivirus and Megavirus genomes are due to (i) lineages specific gains or losses of genes, (ii) lineage specific gene family expansion or deletion, and (iii) the insertion/migration of mobile elements (intron, intein). PMID:21987820
Arbour, J H; López-Fernández, H
2014-11-01
Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Stuart, Bryan L; Inger, Robert F; Voris, Harold K
2006-01-01
Amphibians tend to exhibit conservative morphological evolution, and the application of molecular and bioacoustic tools in systematic studies have been effective at revealing morphologically ‘cryptic’ species within taxa that were previously considered to be a single species. We report molecular genetic findings on two forest-dwelling ranid frogs from localities across Southeast Asia, and show that sympatric evolutionary lineages of morphologically cryptic frogs are a common pattern. These findings imply that species diversity of Southeast Asian frogs remains significantly underestimated, and taken in concert with other molecular investigations, suggest there may not be any geographically widespread, forest-dwelling frog species in the region. Accurate assessments of diversity and distributions are needed to mitigate extinctions of evolutionary lineages in these threatened vertebrates. PMID:17148433
Facilitation can increase the phylogenetic diversity of plant communities.
Valiente-Banuet, Alfonso; Verdú, Miguel
2007-11-01
With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity.
Phillips, R D; Brown, G R; Dixon, K W; Hayes, C; Linde, C C; Peakall, R
2017-09-01
The mechanism of pollinator attraction is predicted to strongly influence both plant diversification and the extent of pollinator sharing between species. Sexually deceptive orchids rely on mimicry of species-specific sex pheromones to attract their insect pollinators. Given that sex pheromones tend to be conserved among related species, we predicted that in sexually deceptive orchids, (i) pollinator sharing is rare, (ii) closely related orchids use closely related pollinators and (iii) there is strong bias in the wasp lineages exploited by orchids. We focused on species that are pollinated by sexual deception of thynnine wasps in the distantly related genera Caladenia and Drakaea, including new field observations for 45 species of Caladenia. Specialization was extreme with most orchids using a single pollinator species. Unexpectedly, seven cases of pollinator sharing were found, including two between Caladenia and Drakaea, which exhibit strikingly different floral morphology. Phylogenetic analysis of pollinators using four nuclear sequence loci demonstrated that although orchids within major clades primarily use closely related pollinator species, up to 17% of orchids within these clades are pollinated by a member of a phylogenetically distant wasp genus. Further, compared to the total diversity of thynnine wasps within the study region, orchids show a strong bias towards exploiting certain genera. Although these patterns may arise through conservatism in the chemical classes used in sex pheromones, apparent switches between wasp clades suggest unexpected flexibility in floral semiochemical production. Alternatively, wasp sex pheromones within lineages may exhibit greater chemical diversity than currently appreciated. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Bhuiyan, Sharmin Siddique; Kinoshita, Shigeharu; Wongwarangkana, Chaninya; Asaduzzaman, Md; Asakawa, Shuichi; Watabe, Shugo
2013-07-06
A novel sarcomeric myosin heavy chain gene, MYH14, was identified following the completion of the human genome project. MYH14 contains an intronic microRNA, miR-499, which is expressed in a slow/cardiac muscle specific manner along with its host gene; it plays a key role in muscle fiber-type specification in mammals. Interestingly, teleost fish genomes contain multiple MYH14 and miR-499 paralogs. However, the evolutionary history of MYH14 and miR-499 has not been studied in detail. In the present study, we identified MYH14/miR-499 loci on various teleost fish genomes and examined their evolutionary history by sequence and expression analyses. Synteny and phylogenetic analyses depict the evolutionary history of MYH14/miR-499 loci where teleost specific duplication and several subsequent rounds of species-specific gene loss events took place. Interestingly, miR-499 was not located in the MYH14 introns of certain teleost fish. An MYH14 paralog, lacking miR-499, exhibited an accelerated rate of evolution compared with those containing miR-499, suggesting a putative functional relationship between MYH14 and miR-499. In medaka, Oryzias latipes, miR-499 is present where MYH14 is completely absent in the genome. Furthermore, by using in situ hybridization and small RNA sequencing, miR-499 was expressed in the notochord at the medaka embryonic stage and slow/cardiac muscle at the larval and adult stages. Comparing the flanking sequences of MYH14/miR-499 loci between torafugu Takifugu rubripes, zebrafish Danio rerio, and medaka revealed some highly conserved regions, suggesting that cis-regulatory elements have been functionally conserved in medaka miR-499 despite the loss of its host gene. This study reveals the evolutionary history of the MYH14/miRNA-499 locus in teleost fish, indicating divergent distribution and expression of MYH14 and miR-499 genes in different teleost fish lineages. We also found that medaka miR-499 was even expressed in the absence of its host gene. To our knowledge, this is the first report that shows the conversion of intronic into non-intronic miRNA during the evolution of a teleost fish lineage.
Evolutionary genomics of yeast pathogens in the Saccharomycotina
Naranjo-Ortíz, Miguel A.; Marcet-Houben, Marina
2016-01-01
Saccharomycotina comprises a diverse group of yeasts that includes numerous species of industrial or clinical relevance. Opportunistic pathogens within this clade are often assigned to the genus Candida but belong to phylogenetically distant lineages that also comprise non-pathogenic species. This indicates that the ability to infect humans has evolved independently several times among Saccharomycotina. Although the mechanisms of infection of the main groups of Candida pathogens are starting to be unveiled, we still lack sufficient understanding of the evolutionary paths that led to a virulent phenotype in each of the pathogenic lineages. Deciphering what genomic changes underlie the evolutionary emergence of a virulence trait will not only aid the discovery of novel virulence mechanisms but it will also provide valuable information to understand how new pathogens emerge, and what clades may pose a future danger. Here we review recent comparative genomics efforts that have revealed possible evolutionary paths to pathogenesis in different lineages, focusing on the main three agents of candidiasis worldwide: Candida albicans, C. parapsilosis and C. glabrata. We will discuss what genomic traits may facilitate the emergence of virulence, and focus on two different genome evolution mechanisms able to generate drastic phenotypic changes and which have been associated to the emergence of virulence: gene family expansion and interspecies hybridization. PMID:27493146
Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.
Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B
2015-10-01
Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further understand the differential roles of GPCR/G protein mediated intracellular signaling system across various metazoan lineages. Copyright © 2015 Elsevier Inc. All rights reserved.
Phylogenetic Pattern, Evolutionary Processes and Species Delimitation in the Genus Echinococcus.
Lymbery, A J
2017-01-01
An accurate and stable alpha taxonomy requires a clear conception of what constitutes a species and agreed criteria for delimiting different species. An evolutionary or general lineage concept defines a species as a single lineage of organisms with a common evolutionary trajectory, distinguishable from other such lineages. Delimiting evolutionary species is a two-step process. In the first step, phylogenetic reconstruction identifies putative species as groups of organisms that are monophyletic (share a common ancestor) and exclusive (more closely related to each other than to organisms outside the group). The second step is to assess whether members of the group possess genetic exchangeability (where cohesion is maintained by gene flow among populations) or ecological exchangeability (where cohesion is maintained because populations occupy the same ecological niche). Recent taxonomic reviews have recognized nine species within the genus Echinococcus. Phylogenetic reconstructions of the relationships between these putative species using mtDNA and nuclear gene sequences show that for the most part these nine species are monophyletic, although there are important incongruences that need to be resolved. Applying the criteria of genetic and ecological exchangeability suggests that seven of the currently recognized species represent evolutionarily distinct lineages. The species status of Echinococcus canadensis and Echinococcus ortleppi could not be confirmed. Coalescent-based analyses represent a promising approach to species delimitation in these closely related taxa. It seems likely, from a comparison of sister species groups, that speciation in the genus has been driven by geographic isolation, but biogeographic scenarios are largely speculative and require further testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preventive evolutionary medicine of cancers.
Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula
2013-01-01
Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.
Arbour, Jessica Hilary; López-Fernández, Hernán
2016-08-17
Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram-suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram-suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. © 2016 The Author(s).
López-Fernández, Hernán
2016-01-01
Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by ‘ecological opportunity’ are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram–suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram–suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. PMID:27512144
Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae).
Fitze, Patrick S; Gonzalez-Jimena, Virginia; San-Jose, Luis M; San Mauro, Diego; Aragón, Pedro; Suarez, Teresa; Zardoya, Rafael
2011-11-30
Genetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness. Here, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages. Our results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.
Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis
Williams, Ben P; Johnston, Iain G; Covshoff, Sarah; Hibberd, Julian M
2013-01-01
C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: http://dx.doi.org/10.7554/eLife.00961.001 PMID:24082995
Bonatti, Vanessa; Simões, Zilá Luz Paulino; Franco, Fernando Faria; Francoy, Tiago Mauricio
2014-01-01
Melipona subnitida, a tropical stingless bee, is an endemic species of the Brazilian northeast and exhibits great potential for honey and pollen production in addition to its role as one of the main pollinators of the Caatinga biome. To understand the genetic structure and better assist in the conservation of this species, we characterized the population variability of M. subnitida using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing. We collected workers from six localities in the northernmost distribution. Both methodologies indicated that the variability among the sampled populations is related both to the environment in which samples were collected and the geographical distance between the sampling sites, indicating that differentiation among the populations is due to the existence of at least evolutionary lineages. Molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya. The conservation of all evolutionary lineages is important since they can present differential resistance to environmental changes, as resistance to drought and diseases.
NASA Astrophysics Data System (ADS)
Bonatti, Vanessa; Simões, Zilá Luz Paulino; Franco, Fernando Faria; Francoy, Tiago Mauricio
2014-01-01
Melipona subnitida, a tropical stingless bee, is an endemic species of the Brazilian northeast and exhibits great potential for honey and pollen production in addition to its role as one of the main pollinators of the Caatinga biome. To understand the genetic structure and better assist in the conservation of this species, we characterized the population variability of M. subnitida using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing. We collected workers from six localities in the northernmost distribution. Both methodologies indicated that the variability among the sampled populations is related both to the environment in which samples were collected and the geographical distance between the sampling sites, indicating that differentiation among the populations is due to the existence of at least evolutionary lineages. Molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya. The conservation of all evolutionary lineages is important since they can present differential resistance to environmental changes, as resistance to drought and diseases.
The influence of habitat on the evolution of plants: a case study across Saxifragales.
de Casas, Rafael Rubio; Mort, Mark E; Soltis, Douglas E
2016-12-01
Organismal evolution tends to be closely associated with ecological conditions. However, the extent to which this association constrains adaptation or diversification into new habitats remains unclear. We studied habitat evolution in the hyper-diverse angiosperm clade Saxifragales. We used species-level phylogenies for approx. 950 species to analyse the evolution of habitat shifts as well as their influence on plant diversification. We combined habitat characterization based on floristic assignments and state-of-the art phylogenetic comparative methods to estimate within- and across-habitat diversification patterns. Our analyses showed that Saxifragales diversified into multiple habitats from a forest-inhabiting ancestor and that this diversification is governed by relatively rare habitat shifts. Lineages are likely to stay within inferred ancestral ecological conditions. Adaptation to some habitat types (e.g. aquatic, desert) may be canalizing events that lineages do not escape. Although associations between increased diversification rates and shifts in habitat preferences are occasionally observed, extreme macroevolutionary rates are closely associated with specific habitats. Lineages occurring in shrubland, and especially tundra and rock cliffs, exhibit comparatively high diversification, whereas forest, grassland, desert and aquatic habitats are associated with low diversification. The likelihood of occupation of new habitats appears to be asymmetric. Shifts to aquatic and desert habitats may be canalizing events. Other habitats, such as tundra, might act as evolutionary sources, while forests provide the only habitat seemingly colonized easily by lineages originating elsewhere. However, habitat shifts are very rare, and any major environmental alteration is expected to have dramatic evolutionary consequences. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Shen, Tong; Xu, Shixia; Wang, Xiaohong; Yu, Wenhua; Zhou, Kaiya; Yang, Guang
2012-03-24
Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. This is the first study thus far to characterize the TLR gene in cetaceans. Our data present evidences that cetacean TLR4 has undergone adaptive evolution against the background of purifying selection in response to the secondary aquatic adaptation and rapid diversification in the sea. It is suggested that microbial pathogens in different environments are important factors that promote adaptive changes at cetacean TLR4 and new functions of some amino acid sites specialized for recognizing pathogens in dramatically contrasted environments to enhance the fitness for the adaptation and survival of cetaceans.
2012-01-01
Background Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. Results We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. Conclusions This is the first study thus far to characterize the TLR gene in cetaceans. Our data present evidences that cetacean TLR4 has undergone adaptive evolution against the background of purifying selection in response to the secondary aquatic adaptation and rapid diversification in the sea. It is suggested that microbial pathogens in different environments are important factors that promote adaptive changes at cetacean TLR4 and new functions of some amino acid sites specialized for recognizing pathogens in dramatically contrasted environments to enhance the fitness for the adaptation and survival of cetaceans. PMID:22443485
Bats, Primates, and the Evolutionary Origins and Diversification of Mammalian Gammaherpesviruses
Rojas-Anaya, Edith; Kolokotronis, Sergios-Orestis; Taboada, Blanca; Loza-Rubio, Elizabeth; Méndez-Ojeda, Maria L.; Osterrieder, Nikolaus
2016-01-01
ABSTRACT Gammaherpesviruses (γHVs) are generally considered host specific and to have codiverged with their hosts over millions of years. This tenet is challenged here by broad-scale phylogenetic analysis of two viral genes using the largest sample of mammalian γHVs to date, integrating for the first time bat γHV sequences available from public repositories and newly generated viral sequences from two vampire bat species (Desmodus rotundus and Diphylla ecaudata). Bat and primate viruses frequently represented deep branches within the supported phylogenies and clustered among viruses from distantly related mammalian taxa. Following evolutionary scenario testing, we determined the number of host-switching and cospeciation events. Cross-species transmissions have occurred much more frequently than previously estimated, and most of the transmissions were attributable to bats and primates. We conclude that the evolution of the Gammaherpesvirinae subfamily has been driven by both cross-species transmissions and subsequent cospeciation within specific viral lineages and that the bat and primate orders may have potentially acted as superspreaders to other mammalian taxa throughout evolutionary history. PMID:27834200
Colin, Ricardo; Eguiarte, Luis E
2016-05-01
Genetic data suggest that three lineages of Phragmites australis are found in North America: the Native North American lineage, the Gulf Coast lineage, and the Invasive lineage. In Mexico, P. australis is a common species, but nothing is known about the distribution or ecology of these lineages. We examined the phylogeography of P. australis to analyze the current geographic distribution of genetic variation, demographic history, and dispersal patterns to better understand its evolutionary history in Mexico. We sampled 427 individuals from 28 populations. We used two noncoding regions of chloroplast DNA to estimate the levels of genetic variation and identified the genetic groups across the species' geographical range in Mexico. We compared the genealogical relationships among haplotypes with those previously reported. A hypothesis of demographic expansion was also tested for the Mexican P. australis lineages. We found 13 new haplotypes native to Mexico that might be undergoing an active process of expansion and diversification. Genealogical analyses provided evidence that two independent lineages of P. australis are present in Mexico. The invasive lineage was not detected with our sampling. Our estimates of population expansions in Mexico ranged from 0.202 to 0.726 mya. Phragmites australis is a native species that has been in Mexico for thousands of years. Genetic data suggest that climatic changes during the Pleistocene played an important role in the demographic expansion of the populations that constitute the different genetic groups of P. australis in Mexico. © 2016 Botanical Society of America.
Evolution and Expression of Tissue Globins in Ray-Finned Fishes.
Gallagher, Michael D; Macqueen, Daniel J
2017-01-01
The globin gene family encodes oxygen-binding hemeproteins conserved across the major branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gene expression analyses to discover and characterize canonical “non-blood” globin family members (i.e., myoglobin, cytoglobin, neuroglobin, globin-X, and globin-Y) across multiple ray-finned fish lineages, revealing novel gene duplicates (paralogs) conserved from whole genome duplication (WGD) and small-scale duplication events. Our key findings were that: (1) globin-X paralogs in teleosts have been retained from the teleost-specific WGD, (2) functional paralogs of cytoglobin, neuroglobin, and globin-X, but not myoglobin, have been conserved from the salmonid-specific WGD, (3) triplicate lineage-specific myoglobin paralogs are conserved in arowanas (Osteoglossiformes), which arose by tandem duplication and diverged under positive selection, (4) globin-Y is retained in multiple early branching fish lineages that diverged before teleosts, and (5) marked variation in tissue-specific expression of globin gene repertoires exists across ray-finned fish evolution, including several previously uncharacterized sites of expression. In this respect, our data provide an interesting link between myoglobin expression and the evolution of air breathing in teleosts. Together, our findings demonstrate great-unrecognized diversity in the repertoire and expression of nonblood globins that has arisen during ray-finned fish evolution.
Jąkalski, Marcin; Takeshita, Kazutaka; Deblieck, Mathieu; Koyanagi, Kanako O; Makałowska, Izabela; Watanabe, Hidemi; Makałowski, Wojciech
2016-08-04
Retroposition, one of the processes of copying the genetic material, is an important RNA-mediated mechanism leading to the emergence of new genes. Because the transcription controlling segments are usually not copied to the new location in this mechanism, the duplicated gene copies (retrocopies) become pseudogenized. However, few can still survive, e.g. by recruiting novel regulatory elements from the region of insertion. Subsequently, these duplicated genes can contribute to the formation of lineage-specific traits and phenotypic diversity. Despite the numerous studies of the functional retrocopies (retrogenes) in animals and plants, very little is known about their presence in green algae, including morphologically diverse species. The current availability of the genomes of both uni- and multicellular algae provides a good opportunity to conduct a genome-wide investigation in order to fill the knowledge gap in retroposition phenomenon in this lineage. Here we present a comparative genomic analysis of uni- and multicellular algae, Chlamydomonas reinhardtii and Volvox carteri, respectively, to explore their retrogene complements. By adopting a computational approach, we identified 141 retrogene candidates in total in both genomes, with their fraction being significantly higher in the multicellular Volvox. Majority of the retrogene candidates showed signatures of functional constraints, thus indicating their functionality. Detailed analyses of the identified retrogene candidates, their parental genes, and homologs of both, revealed that most of the retrogene candidates were derived from ancient retroposition events in the common ancestor of the two algae and that the parental genes were subsequently lost from the respective lineages, making many retrogenes 'orphan'. We revealed that the genomes of the green algae have maintained many possibly functional retrogenes in spite of experiencing various molecular evolutionary events during a long evolutionary time after the retroposition events. Our first report about the retrogene set in the green algae provides a good foundation for any future investigation of the repertoire of retrogenes and facilitates the assessment of the evolutionary impact of retroposition on diverse morphological traits in this lineage. This article was reviewed by William Martin and Piotr Zielenkiewicz.
Coleman, Richard R; Eble, Jeffrey A; DiBattista, Joseph D; Rocha, Luiz A; Randall, John E; Berumen, Michael L; Bowen, Brian W
2016-07-01
The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occurs on reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d=0.006-0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographic barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST=0.066-0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7-0.9Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypothesis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition. We recommend P.d. diacanthus and P.d. flavescens for the Pacific and Indian Ocean/Red Sea forms. Copyright © 2016 Elsevier Inc. All rights reserved.
Origin of a cryptic lineage in a threatened reptile through isolation and historical hybridization.
Sovic, M G; Fries, A C; Gibbs, H L
2016-11-01
Identifying phylogenetically distinct lineages and understanding the evolutionary processes by which they have arisen are important goals of phylogeography. This information can also help define conservation units in endangered species. Such analyses are being transformed by the availability of genomic-scale data sets and novel analytical approaches for statistically comparing different historical scenarios as causes of phylogeographic patterns. Here, we use genomic-scale restriction-site-associated DNA sequencing (RADseq) data to test for distinct lineages in the endangered Eastern Massasauga Rattlesnake (Sistrurus catenatus). We then use coalescent-based modeling techniques to identify the evolutionary mechanisms responsible for the origin of the lineages in this species. We find equivocal evidence for distinct phylogenetic lineages within S. catenatus east of the Mississippi River, but strong support for a previously unrecognized lineage on the western edge of the range of this snake, represented by populations from Iowa, USA. Snakes from these populations show patterns of genetic admixture with a nearby non-threatened sister species (Sistrurus tergeminus). Tests of historical demographic models support the hypothesis that the genetic distinctiveness of Iowa snakes is due to a combination of isolation and historical introgression between S. catenatus and S. tergeminus. Our work provides an example of how model-based analysis of genomic-scale data can help identify conservation units in rare species.
A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids.
McGee, Matthew D; Borstein, Samuel R; Neches, Russell Y; Buescher, Heinz H; Seehausen, Ole; Wainwright, Peter C
2015-11-27
Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion. Copyright © 2015, American Association for the Advancement of Science.
Terán, Lucrecia C; Coeuret, Gwendoline; Raya, Raúl; Zagorec, Monique; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane
2018-06-01
Lactobacillus curvatus is a lactic acid bacterium encountered in many different types of fermented food (meat, seafood, vegetables, and cereals). Although this species plays an important role in the preservation of these foods, few attempts have been made to assess its genomic diversity. This study uses comparative analyses of 13 published genomes (complete or draft) to better understand the evolutionary processes acting on the genome of this species. Phylogenomic analysis, based on a coalescent model of evolution, revealed that the 6,742 sites of single nucleotide polymorphism within the L. curvatus core genome delineate two major groups, with lineage 1 represented by the newly sequenced strain FLEC03, and lineage 2 represented by the type-strain DSM20019. The two lineages could also be distinguished by the content of their accessory genome, which sheds light on a long-term evolutionary process of lineage-dependent genetic acquisition and the possibility of population structure. Interestingly, one clade from lineage 2 shared more accessory genes with strains of lineage 1 than with other strains of lineage 2, indicating recent convergence in carbohydrate catabolism. Both lineages had a wide repertoire of accessory genes involved in the fermentation of plant-derived carbohydrates that are released from polymers of α/β-glucans, α/β-fructans, and N-acetylglucosan. Other gene clusters were distributed among strains according to the type of food from which the strains were isolated. These results give new insight into the ecological niches in which L. curvatus may naturally thrive (such as silage or compost heaps) in addition to fermented food.
NASA Astrophysics Data System (ADS)
Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent
2015-06-01
The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2-/-, Spry4-/-, and Rsk2-/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.
Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.
Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel
2015-05-27
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A
2017-04-01
Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo
2016-04-01
Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2012-01-01
Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678
Wynne-Edwards, K E
2001-01-01
Hormone disruption is a major, underappreciated component of the plant chemical arsenal, and the historical coevolution between hormone-disrupting plants and herbivores will have both increased the susceptibility of carnivores and diversified the sensitivities of herbivores to man-made endocrine disruptors. Here I review diverse evidence of the influence of plant secondary compounds on vertebrate reproduction, including human reproduction. Three of the testable hypotheses about the evolutionary responses of vertebrate herbivores to hormone-disrupting challenges from their diet are developed. Specifically, the hypotheses are that a) vertebrate herbivores will express steroid hormone receptors in the buccal cavity and/or the vomeronasal organ; b) absolute sex steroid concentrations will be lower in carnivores than in herbivores; and c) herbivore steroid receptors should be more diverse in their binding affinities than carnivore lineages. The argument developed in this review, if empirically validated by support for the specific hypotheses, suggests that a) carnivores will be more susceptible than herbivores to endocrine-disrupting compounds of anthropogenic origin entering their bodies, and b) diverse herbivore lineages will be variably susceptible to any given natural or synthetic contaminant. As screening methods for hormone-disrupting potential are compared and adopted, comparative endocrine physiology research is urgently needed to develop models that predict the broad applicability of those screening results in diverse vertebrate species. PMID:11401754
Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine
2014-01-01
Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.
Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine
2014-01-01
Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture. PMID:24752428
Independent origins of neurons and synapses: insights from ctenophores
Moroz, Leonid L.; Kohn, Andrea B.
2016-01-01
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses suggest that both electrical and chemical synapses evolved more than once. PMID:26598724
Transformation and diversification in early mammal evolution.
Luo, Zhe-Xi
2007-12-13
Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.
A possible biochemical missing link among archaebacteria
NASA Technical Reports Server (NTRS)
Achenbach-Richter, Laurie; Woese, Carl R.; Stetter, Karl O.
1987-01-01
The characteristics of the newly discovered strain of archaebacteria, VC-16, the only archaebacterium known to reduce sulfate, suggest that VC-16 might represent a transitional form between an anaerobic thermophilic sulfur-based type of metabolism and methanogenesis. It is shown here, using a matrix of evolutionary distances derived from an alignment of various archaebacterial 16S rRNAs and the phylogenetic tree derived from these evolutionary distances, that the lineage represented by strain VC-16 arises from the archaebacterial tree precisely where such an interpretation would predict that it would, between the Methanococcus lineage and that of Thermococcus.
Wolf, Y I; Aravind, L; Grishin, N V; Koonin, E V
1999-08-01
Phylogenetic analysis of aminoacyl-tRNA synthetases (aaRSs) of all 20 specificities from completely sequenced bacterial, archaeal, and eukaryotic genomes reveals a complex evolutionary picture. Detailed examination of the domain architecture of aaRSs using sequence profile searches delineated a network of partially conserved domains that is even more elaborate than previously suspected. Several unexpected evolutionary connections were identified, including the apparent origin of the beta-subunit of bacterial GlyRS from the HD superfamily of hydrolases, a domain shared by bacterial AspRS and the B subunit of archaeal glutamyl-tRNA amidotransferases, and another previously undetected domain that is conserved in a subset of ThrRS, guanosine polyphosphate hydrolases and synthetases, and a family of GTPases. Comparison of domain architectures and multiple alignments resulted in the delineation of synapomorphies-shared derived characters, such as extra domains or inserts-for most of the aaRSs specificities. These synapomorphies partition sets of aaRSs with the same specificity into two or more distinct and apparently monophyletic groups. In conjunction with cluster analysis and a modification of the midpoint-rooting procedure, this partitioning was used to infer the likely root position in phylogenetic trees. The topologies of the resulting rooted trees for most of the aaRSs specificities are compatible with the evolutionary "standard model" whereby the earliest radiation event separated bacteria from the common ancestor of archaea and eukaryotes as opposed to the two other possible evolutionary scenarios for the three major divisions of life. For almost all aaRSs specificities, however, this simple scheme is confounded by displacement of some of the bacterial aaRSs by their eukaryotic or, less frequently, archaeal counterparts. Displacement of ancestral eukaryotic aaRS genes by bacterial ones, presumably of mitochondrial origin, was observed for three aaRSs. In contrast, there was no convincing evidence of displacement of archaeal aaRSs by bacterial ones. Displacement of aaRS genes by eukaryotic counterparts is most common among parasitic and symbiotic bacteria, particularly the spirochaetes, in which 10 of the 19 aaRSs seem to have been displaced by the respective eukaryotic genes and two by the archaeal counterpart. Unlike the primary radiation events between the three main divisions of life, that were readily traceable through the phylogenetic analysis of aaRSs, no consistent large-scale bacterial phylogeny could be established. In part, this may be due to additional gene displacement events among bacterial lineages. Argument is presented that, although lineage-specific gene loss might have contributed to the evolution of some of the aaRSs, this is not a viable alternative to horizontal gene transfer as the principal evolutionary phenomenon in this gene class.
A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification
Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.
2016-01-01
The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544
Baier, Felix; Schmitz, Andreas; Sauer-Gürth, Hedwig; Wink, Michael
2017-06-09
Many animal and plant species in the Middle East and northern Africa have a predominantly longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait morphological variation. The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of pre-Quaternary origin, and are characterized by p-distances of 9-10%. In addition, within each of these lineages a more recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our morphological analysis revealed that the majority of morphological traits show significant mean differences between specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric, morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with several taxa. Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were shaped by complex evolutionary processes, involving the region's intricate geological history, climatic oscillations, and the presence of the Sahara.
Castillo, Andrea G; Alò, Dominique; González, Benito A; Samaniego, Horacio
2018-01-01
The main goal of this contribution was to define the ecological niche of the guanaco ( Lama guanicoe ), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species ( L.g. cacsilensis and L.g. guanicoe ). We used maximum entropy to model lineage's climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics.
Comparative genomics reveals insights into avian genome evolution and adaptation
Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun
2015-01-01
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712
2011-01-01
Background Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms. Results Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands. Conclusions The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites. PMID:21966954
The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees
Ramírez, Santiago R.
2017-01-01
Abstract Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. PMID:28854688
Phylogenomic Insights into Mouse Evolution Using a Pseudoreference Approach
Sarver, Brice A.J.; Keeble, Sara; Cosart, Ted; Tucker, Priscilla K.; Dean, Matthew D.
2017-01-01
Comparative genomic studies are now possible across a broad range of evolutionary timescales, but the generation and analysis of genomic data across many different species still present a number of challenges. The most sophisticated genotyping and down-stream analytical frameworks are still predominantly based on comparisons to high-quality reference genomes. However, established genomic resources are often limited within a given group of species, necessitating comparisons to divergent reference genomes that could restrict or bias comparisons across a phylogenetic sample. Here, we develop a scalable pseudoreference approach to iteratively incorporate sample-specific variation into a genome reference and reduce the effects of systematic mapping bias in downstream analyses. To characterize this framework, we used targeted capture to sequence whole exomes (∼54 Mbp) in 12 lineages (ten species) of mice spanning the Mus radiation. We generated whole exome pseudoreferences for all species and show that this iterative reference-based approach improved basic genomic analyses that depend on mapping accuracy while preserving the associated annotations of the mouse reference genome. We then use these pseudoreferences to resolve evolutionary relationships among these lineages while accounting for phylogenetic discordance across the genome, contributing an important resource for comparative studies in the mouse system. We also describe patterns of genomic introgression among lineages and compare our results to previous studies. Our general approach can be applied to whole or partitioned genomic data and is easily portable to any system with sufficient genomic resources, providing a useful framework for phylogenomic studies in mice and other taxa. PMID:28338821
Sunagar, Kartik; Moran, Yehu
2015-01-01
Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a ‘two-speed’ mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species–the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia–the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms. PMID:26492532
Jouiaei, Mahdokht; Sunagar, Kartik; Federman Gross, Aya; Scheib, Holger; Alewood, Paul F; Moran, Yehu; Fry, Bryan G
2015-06-01
Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically characterized cnidarian toxin families, including peptide neurotoxins (voltage-gated Na(+) and K(+) channel-targeting toxins: NaTxs and KTxs, respectively), pore-forming toxins (actinoporins, aerolysin-related toxins, and jellyfish toxins), and the newly discovered small cysteine-rich peptides (SCRiPs). We show that despite long evolutionary histories, most cnidarian toxins remain conserved under the strong influence of negative selection-a finding that is in striking contrast to the rapid evolution of toxin families in evolutionarily younger lineages, such as cone snails and advanced snakes. In contrast to the previous suggestions that implicated SCRiPs in the biomineralization process in corals, we demonstrate that they are potent neurotoxins that are likely involved in the envenoming function, and thus represent the first family of neurotoxins from corals. We also demonstrate the common evolutionary origin of type III KTxs and NaTxs in sea anemones. We show that type III KTxs have evolved from NaTxs under the regime of positive selection, and likely represent a unique evolutionary innovation of the Actinioidea lineage. We report a correlation between the accumulation of episodically adaptive sites and the emergence of novel pharmacological activities in this rapidly evolving neurotoxic clade. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kevin M. Potter; Douglas J. Shinneman; Robert E. Means; Valerie D. Hipkins; Mary Frances Mahalovich
2017-01-01
Geological, climatological and ecological processes partially or entirely isolate evolutionary lineages within tree species. These lineages may develop adaptations to different local environmental conditions, and may eventually evolve into distinct forms or species. Isolation also can reduce adaptive genetic variation within populations of a species, potentially...
Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G
2000-12-15
The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.
Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda)
Wang, Yan-hui; Engel, Michael S.; Rafael, José A.; Wu, Hao-yang; Rédei, Dávid; Xie, Qiang; Wang, Gang; Liu, Xiao-guang; Bu, Wen-jun
2016-01-01
Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. PMID:27958352
McLysaght, Aoife; Guerzoni, Daniele
2015-09-26
The origin of novel protein-coding genes de novo was once considered so improbable as to be impossible. In less than a decade, and especially in the last five years, this view has been overturned by extensive evidence from diverse eukaryotic lineages. There is now evidence that this mechanism has contributed a significant number of genes to genomes of organisms as diverse as Saccharomyces, Drosophila, Plasmodium, Arabidopisis and human. From simple beginnings, these genes have in some instances acquired complex structure, regulated expression and important functional roles. New genes are often thought of as dispensable late additions; however, some recent de novo genes in human can play a role in disease. Rather than an extremely rare occurrence, it is now evident that there is a relatively constant trickle of proto-genes released into the testing ground of natural selection. It is currently unknown whether de novo genes arise primarily through an 'RNA-first' or 'ORF-first' pathway. Either way, evolutionary tinkering with this pool of genetic potential may have been a significant player in the origins of lineage-specific traits and adaptations. © 2015 The Authors.
Rogozin, Igor B; Wolf, Yuri I; Sorokin, Alexander V; Mirkin, Boris G; Koonin, Eugene V
2003-09-02
Sequencing of eukaryotic genomes allows one to address major evolutionary problems, such as the evolution of gene structure. We compared the intron positions in 684 orthologous gene sets from 8 complete genomes of animals, plants, fungi, and protists and constructed parsimonious scenarios of evolution of the exon-intron structure for the respective genes. Approximately one-third of the introns in the malaria parasite Plasmodium falciparum are shared with at least one crown group eukaryote; this number indicates that these introns have been conserved through >1.5 billion years of evolution that separate Plasmodium from the crown group. Paradoxically, humans share many more introns with the plant Arabidopsis thaliana than with the fly or nematode. The inferred evolutionary scenario holds that the common ancestor of Plasmodium and the crown group and, especially, the common ancestor of animals, plants, and fungi had numerous introns. Most of these ancestral introns, which are retained in the genomes of vertebrates and plants, have been lost in fungi, nematodes, arthropods, and probably Plasmodium. In addition, numerous introns have been inserted into vertebrate and plant genes, whereas, in other lineages, intron gain was much less prominent.
Bloom, Devin D; Lovejoy, Nathan R
2014-03-07
One of the most remarkable types of migration found in animals is diadromy, a life-history behaviour in which individuals move between oceans and freshwater habitats for feeding and reproduction. Diadromous fishes include iconic species such as salmon, eels and shad, and have long fascinated biologists because they undergo extraordinary physiological and behavioural modifications to survive in very different habitats. However, the evolutionary origins of diadromy remain poorly understood. Here, we examine the widely accepted productivity hypothesis, which states that differences in productivity between marine and freshwater biomes determine the origins of the different modes of diadromy. Specifically, the productivity hypothesis predicts that anadromous lineages should evolve in temperate areas from freshwater ancestors and catadromous lineages should evolve in tropical areas from marine ancestors. To test this, we generated a time-calibrated phylogeny for Clupeiformes (herrings, anchovies, sardines and allies), an ecologically and economically important group that includes high diversity of diadromous species. Our results do not support the productivity hypothesis. Instead we find that the different modes of diadromy do not have predictable ancestry based on latitude, and that predation, competition and geological history may be at least as important as productivity in determining the origins of diadromy.
Diversity Arrays Technology (DArT) for Pan-Genomic Evolutionary Studies of Non-Model Organisms
James, Karen E.; Schneider, Harald; Ansell, Stephen W.; Evers, Margaret; Robba, Lavinia; Uszynski, Grzegorz; Pedersen, Niklas; Newton, Angela E.; Russell, Stephen J.; Vogel, Johannes C.; Kilian, Andrzej
2008-01-01
Background High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. Methodology/Principal Findings This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. Conclusions/Significance These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography. PMID:18301759
Talla, Venkat; Suh, Alexander; Kalsoom, Faheema; Dincă, Vlad; Vila, Roger; Friberg, Magne; Wiklund, Christer
2017-01-01
Abstract Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths. PMID:28981642
Vandewege, Michael W.; Mangum, Sarah F.; Gabaldón, Toni; Castoe, Todd A.; Ray, David A.; Hoffmann, Federico G.
2016-01-01
Olfactory receptors (ORs) are membrane proteins that mediate the detection of odorants in the environment, and are the largest vertebrate gene family. Comparative studies of mammalian genomes indicate that OR repertoires vary widely, even between closely related lineages, as a consequence of frequent OR gains and losses. Several studies also suggest that mammalian OR repertoires are influenced by life history traits. Sauropsida is a diverse group of vertebrates group that is the sister group to mammals, and includes birds, testudines, squamates, and crocodilians, and represents a natural system to explore predictions derived from mammalian studies. In this study, we analyzed olfactory receptor (OR) repertoire variation among several representative species and found that the number of intact OR genes in sauropsid genomes analyzed ranged over an order of magnitude, from 108 in the green anole to over 1,000 in turtles. Our results suggest that different sauropsid lineages have highly divergent OR repertoire composition that derive from lineage-specific combinations of gene expansions, losses, and retentions of ancestral OR genes. These differences also suggest that varying degrees of adaption related to life history have shaped the unique OR repertoires observed across sauropsid lineages. PMID:26865070
Pluripotency and lineages in the mammalian blastocyst: an evolutionary view.
Cañon, Susana; Fernandez-Tresguerres, Beatriz; Manzanares, Miguel
2011-06-01
Early mammalian development is characterized by a highly specific stage, the blastocyst, by which embryonic and extraembryonic lineages have been determined, but pattern formation has not yet begun. The blastocyst is also of interest because cell precursors of the embryo proper retain for a certain time the capability to generate all the cell types of the adult animal. This embryonic pluripotency is established and maintained by a regulatory network under the control of a small set of transcription factors, comprising Oct4, Sox2 and Nanog. This network is largely conserved in eutherian mammals, but there is scarce information about how it arose in vertebrates. We have analysed the conservation of gene regulatory networks controlling blastocyst lineages and pluripotency in the mouse by comparison with the chick. We found that few of elements of the network are novel to mammals; rather, most of them were present before the separation of the mammalian lineage from other amniotes, but acquired novel expression domains during early mammalian development. Our results strongly support the hypothesis that mammalian blastocyst regulatory networks evolved through rewiring of pre-existing components, involving the co-option and duplication of existing genes and the establishment of new regulatory interactions among them.
The Modern Synthesis in the Light of Microbial Genomics.
Booth, Austin; Mariscal, Carlos; Doolittle, W Ford
2016-09-08
We review the theoretical implications of findings in genomics for evolutionary biology since the Modern Synthesis. We examine the ways in which microbial genomics has influenced our understanding of the last universal common ancestor, the tree of life, species, lineages, and evolutionary transitions. We conclude by advocating a piecemeal toolkit approach to evolutionary biology, in lieu of any grand unified theory updated to include microbial genomics.
Oliver, Paul M; Doughty, Paul
2016-03-08
Lizards restricted to rocky habitats often comprise numerous deeply divergent lineages, reflecting the disjunct nature of their preferred habitat and the capacity of rocky habitats to function as evolutionary refugia. Here we review the systematics and diversity of the predominantly saxicoline Australian marbled velvet geckos (genus Oedura) in the Australian arid and semi-arid zones using newly-gathered morphological data and previously published genetic data. Earlier work showed that four largely allopatric and genetically divergent lineages are present: Western (Pilbara and Gascoyne regions), Gulf (west and south of the Gulf of Carpentaria), Central (central ranges) and Eastern (Cooper and Darling Basins). None of these four populations are conspecific with true O. marmorata, a seperate species complex that is restricted to the Top End region of the Northern Territory. Top End forms share a short, bulbous tail whereas the other four lineages treated here possess a long, tapering tail. Morphological differences among the arid and semi-arid lineages include smaller body size, tapering lamellae and a shorter tail for the Gulf population, and a partially divided rostral scale in the Western population compared to the Central and Eastern populations. Accordingly, we resurrect O. cincta de Vis from synonymy for the Central and Eastern lineages, and regard this species as being comprised of two evolutionary significant units. We also describe the Gulf and Western lineages as new species: Oedura bella sp. nov. and O. fimbria sp. nov., respectively. We note that a predominantly arboreal lineage (the Eastern lineage of O. cincta) is more widely distributed than the other lineages and is phylogenetically nested within a saxicoline clade, but tends to have a deeper head and shorter limbs, consistent with morphological variation observed in other lizard radiations including both saxicoline and arboreal taxa.
Sage, Rowan F
2016-07-01
Fifty years ago, the C4 photosynthetic pathway was first characterized. In the subsequent five decades, much has been learned about C4 plants, such that it is now possible to place nearly all C4 species into their respective evolutionary lineages. Sixty-one independent lineages of C4 photosynthesis are identified, with additional, ancillary C4 origins possible in 12 of these principal lineages. The lineages produced ~8100 C4 species (5044 grasses, 1322 sedges, and 1777 eudicots). Using midpoints of stem and crown node dates in their respective phylogenies, the oldest and most speciose C4 lineage is the grass lineage Chloridoideae, estimated to be near 30 million years old. Most C4 lineages are estimated to be younger than 15 million years. Older C4 lineages tend to be more speciose, while those younger than 7 million years have <43 species each. To further highlight C4 photosynthesis for a 50th anniversary snapshot, a Hall of Fame comprised of the 40 most significant C4 species is presented. Over the next 50 years, preservation of the Earth's C4 diversity is a concern, largely because of habitat loss due to elevated CO2 effects, invasive species, and expanded agricultural activities. Ironically, some members of the C4 Hall of Fame are leading threats to the natural C4 flora due to their association with human activities on landscapes where most C4 plants occur. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sage, Rowan F
2017-01-01
Fifty years ago, the C 4 photosynthetic pathway was first characterized. In the subsequent five decades, much has been learned about C 4 plants, such that it is now possible to place nearly all C 4 species into their respective evolutionary lineages. Sixty-one independent lineages of C 4 photosynthesis are identified, with additional, ancillary C 4 origins possible in 12 of these principal lineages. The lineages produced ~8100 C 4 species (5044 grasses, 1322 sedges, and 1777 eudicots). Using midpoints of stem and crown node dates in their respective phylogenies, the oldest and most speciose C 4 lineage is the grass lineage Chloridoideae, estimated to be near 30 million years old. Most C 4 lineages are estimated to be younger than 15 million years. Older C 4 lineages tend to be more speciose, while those younger than 7 million years have <43 species each. To further highlight C 4 photosynthesis for a 50th anniversary snapshot, a Hall of Fame comprised of the 40 most significant C 4 species is presented. Over the next 50 years, preservation of the Earth's C 4 diversity is a concern, largely because of habitat loss due to elevated CO 2 effects, invasive species, and expanded agricultural activities. Ironically, some members of the C 4 Hall of Fame are leading threats to the natural C 4 flora due to their association with human activities on landscapes where most C 4 plants occur. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Adaptive evolution of Mediterranean pines.
Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C
2013-09-01
Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.
Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution
Rutledge, Gavin G.; Böhme, Ulrike; Sanders, Mandy; Reid, Adam J.; Cotton, James A.; Maiga-Ascofare, Oumou; Djimdé, Abdoulaye A.; Apinjoh, Tobias O.; Amenga-Etego, Lucas; Manske, Magnus; Barnwell, John W.; Renaud, François; Ollomo, Benjamin; Prugnolle, Franck; Anstey, Nicholas M.; Auburn, Sarah; Price, Ric N.; McCarthy, James S.; Kwiatkowski, Dominic P.; Newbold, Chris I.; Berriman, Matthew; Otto, Thomas D.
2017-01-01
Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri)1. These species are prevalent across most regions in which malaria is endemic2,3 and are often undetectable by light microscopy4, rendering their study in human populations difficult5. The exact evolutionary relationship of these species to the other human-infective species has been contested6,7. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole. PMID:28117441
Upadhyay, Mohita; Vivekanandan, Perumal
2015-01-01
Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our results highlight the existence of divergent evolutionary pressures leading to CpG dinucleotide depletion among small ds-DNA viruses infecting vertebrate hosts.
Weadick, Cameron J; Chang, Belinda S W
2009-05-01
Within the vertebrate eye, betagamma crystallins are extremely stable lens proteins that are uniquely adapted to increase refractory power while maintaining transparency. Unlike alpha crystallins, which are well-characterized, multifunctional proteins that have important functions both in and out of the lens, betagamma lens crystallins are a diverse group of proteins with no clear ancestral or contemporary nonlens role. We carried out phylogenetic and molecular evolutionary analyses of the betagamma-crystallin superfamily in order to study the evolutionary history of the gamma N crystallins, a recently discovered, biochemically atypical family suggested to possess a divergent or ancestral function. By including nonlens, betagamma-motif-containing sequences in our analysis as outgroups, we confirmed the phylogenetic position of the gamma N family as sister to other gamma crystallins. Using maximum likelihood codon models to estimate lineage-specific nonsynonymous-to-synonymous rate ratios revealed strong positive selection in all of the early lineages within the betagamma family, with the striking exception of the lineage leading to the gamma N crystallins which was characterized by strong purifying selection. Branch-site analysis, used to identify candidate sites involved in functional divergence between gamma N crystallins and its sister clade containing all other gamma crystallins, identified several positively selected changes at sites of known functional importance in the betagamma crystallin protein structure. Further analyses of a fish-specific gamma N crystallin gene duplication revealed a more recent episode of positive selection in only one of the two descendant lineages (gamma N2). Finally, from the guppy, Poecilia reticulata, we isolated complete gamma N1 and gamma N2 coding sequence data from cDNA and partial coding sequence data from genomic DNA in order to confirm the presence of a novel gamma N2 intron, discovered through data mining of two pufferfish genomes. We conclude that the function of the gamma N family likely resembles the ancestral vertebrate betagamma crystallin more than other betagamma families. Furthermore, owing to the presence of an additional intron in some fish gamma N2 crystallins, and the inferred action of positive selection following the fish-specific gamma N duplication, we suggest that further study of fish gamma N crystallins will be critical in further elucidating possible ancestral functions of gamma N crystallins and any nonstructural role they may have.
Competition promotes the evolution of host generalists in obligate parasites
Johnson, Kevin P.; Malenke, Jael R.; Clayton, Dale H.
2009-01-01
Ecological theory traditionally predicts that interspecific competition selects for an increase in ecological specialization. Specialization, in turn, is often thought to be an evolutionary ‘dead end,’ with specialist lineages unlikely to evolve into generalist lineages. In host–parasite systems, this specialization can take the form of host specificity, with more specialized parasites using fewer hosts. We tested the hypothesis that specialists are evolutionarily more derived, and whether competition favours specialization, using the ectoparasitic feather lice of doves. Phylogenetic analyses revealed that complete host specificity is actually the ancestral condition, with generalists repeatedly evolving from specialist ancestors. These multiple origins of generalists are correlated with the presence of potentially competing species of the same genus. A competition experiment with captive doves and lice confirmed that congeneric species of lice do, in fact, have the potential to compete in ecological time. Taken together, these results suggest that interspecific competition can favour the evolution of host generalists, not specialists, over macroevolutionary time. PMID:19710056
Evolutionary ecology of specialization: insights from phylogenetic analysis
Vamosi, Jana C.; Armbruster, W. Scott; Renner, Susanne S.
2014-01-01
In this Special feature, we assemble studies that illustrate phylogenetic approaches to studying salient questions regarding the effect of specialization on lineage diversification. The studies use an array of techniques involving a wide-ranging collection of biological systems (plants, butterflies, fish and amphibians are all represented). Their results reveal that macroevolutionary examination of specialization provides insight into the patterns of trade-offs in specialized systems; in particular, the genetic mechanisms of trade-offs appear to extend to very different aspects of life history in different groups. In turn, because a species may be a specialist from one perspective and a generalist in others, these trade-offs influence whether we perceive specialization to have effects on the evolutionary success of a lineage when we examine specialization only along a single axis. Finally, how geographical range influences speciation and extinction of specialist lineages remains a question offering much potential for further insight. PMID:25274367
Edwards, Taylor; Vaughn, Mercy; Rosen, Philip C.; Torres, Ma. Cristina Melendez; Karl, Alice E.; Culver, Melanie; Murphy, Robert W.
2015-01-01
The historically shifting ecotone between tropical deciduous forest and Sonoran desertscrub appears to be a boundary that fostered divergence between parapatric lineages of tortoises. The sharp genetic cline between the two lineages suggests that periods of isolation in temporary refugia due to Pleistocene climatic cycling influenced divergence. Despite incomplete reproductive isolation, the Sonoran and Sinaloan lineages of G. morafkai are on separate evolutionary trajectories.
Origin of a cryptic lineage in a threatened reptile through isolation and historical hybridization
Sovic, M G; Fries, A C; Gibbs, H L
2016-01-01
Identifying phylogenetically distinct lineages and understanding the evolutionary processes by which they have arisen are important goals of phylogeography. This information can also help define conservation units in endangered species. Such analyses are being transformed by the availability of genomic-scale data sets and novel analytical approaches for statistically comparing different historical scenarios as causes of phylogeographic patterns. Here, we use genomic-scale restriction-site-associated DNA sequencing (RADseq) data to test for distinct lineages in the endangered Eastern Massasauga Rattlesnake (Sistrurus catenatus). We then use coalescent-based modeling techniques to identify the evolutionary mechanisms responsible for the origin of the lineages in this species. We find equivocal evidence for distinct phylogenetic lineages within S. catenatus east of the Mississippi River, but strong support for a previously unrecognized lineage on the western edge of the range of this snake, represented by populations from Iowa, USA. Snakes from these populations show patterns of genetic admixture with a nearby non-threatened sister species (Sistrurus tergeminus). Tests of historical demographic models support the hypothesis that the genetic distinctiveness of Iowa snakes is due to a combination of isolation and historical introgression between S. catenatus and S. tergeminus. Our work provides an example of how model-based analysis of genomic-scale data can help identify conservation units in rare species. PMID:27460499
Evolutionary turnover of kinetochore proteins: a ship of Theseus?
Drinnenberg, Ines A.; Henikoff, Steven; Malik, Harmit S.
2016-01-01
Summary The kinetochore is a multi-protein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores. For example, kinetochore proteins that are essential in some species have been lost in others, whereas new kinetochore proteins have emerged in other lineages. Even in lineages with similar kinetochore composition, individual kinetochore proteins have functionally diverged to acquire either essential or redundant roles. Thus, despite functional conservation, the repertoire of kinetochore proteins has undergone recurrent evolutionary turnover. PMID:26877204
Mammalian X homolog acts as sex chromosome in lacertid lizards
Rovatsos, M; Vukić, J; Kratochvíl, L
2016-01-01
Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation. PMID:26980341
Pollock, Laura J; Rosauer, Dan F; Thornhill, Andrew H; Kujala, Heini; Crisp, Michael D; Miller, Joseph T; McCarthy, Michael A
2015-02-19
Evolutionary and genetic knowledge is increasingly being valued in conservation theory, but is rarely considered in conservation planning and policy. Here, we integrate phylogenetic diversity (PD) with spatial reserve prioritization to evaluate how well the existing reserve system in Victoria, Australia captures the evolutionary lineages of eucalypts, which dominate forest canopies across the state. Forty-three per cent of remaining native woody vegetation in Victoria is located in protected areas (mostly national parks) representing 48% of the extant PD found in the state. A modest expansion in protected areas of 5% (less than 1% of the state area) would increase protected PD by 33% over current levels. In a recent policy change, portions of the national parks were opened for development. These tourism development zones hold over half the PD found in national parks with some species and clades falling entirely outside of protected zones within the national parks. This approach of using PD in spatial prioritization could be extended to any clade or area that has spatial and phylogenetic data. Our results demonstrate the relevance of PD to regional conservation policy by highlighting that small but strategically located areas disproportionally impact the preservation of evolutionary lineages.
Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds.
Sunagar, Kartik; Undheim, Eivind A B; Chan, Angelo H C; Koludarov, Ivan; Muñoz-Gómez, Sergio A; Antunes, Agostinho; Fry, Bryan G
2013-12-13
The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent's worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged peptides and antimicrobial peptides (AMP). We have thus demonstrated that even neglected lineages of scorpions are a rich pool of novel biochemical components, which have evolved over millions of years to target specific ion channels in prey animals, and as a result, possess tremendous implications in therapeutics.
Evolution of drug resistance in multiple distinct lineages of H5N1 avian influenza.
Hill, Andrew W; Guralnick, Robert P; Wilson, Meredith J C; Habib, Farhat; Janies, Daniel
2009-03-01
Some predict that influenza A H5N1 will be the cause of a pandemic among humans. In preparation for such an event, many governments and organizations have stockpiled antiviral drugs such as oseltamivir (Tamiflu). However, it is known that multiple lineages of H5N1 are already resistant to another class of drugs, adamantane derivatives, and a few lineages are resistant to oseltamivir. What is less well understood is the evolutionary history of the mutations that confer drug resistance in the H5N1 population. In order to address this gap, we conducted phylogenetic analyses of 676 genomic sequences of H5N1 and used the resulting hypotheses as a basis for asking 3 molecular evolutionary questions: (1) Have drug-resistant genotypes arisen in distinct lineages of H5N1 through point mutation or through reassortment? (2) Is there evidence for positive selection on the codons that lead to drug resistance? (3) Is there evidence for covariation between positions in the genome that confer resistance to drugs and other positions, unrelated to drug resistance, that may be under selection for other phenotypes? We also examine how drug-resistant lineages proliferate across the landscape by projecting or phylogenetic analysis onto a virtual globe. Our results for H5N1 show that in most cases drug resistance has arisen by independent point mutations rather than reassortment or covariation. Furthermore, we found that some codons that mediate resistance to adamantane derivatives are under positive selection, but did not find positive selection on codons that mediate resistance to oseltamivir. Together, our phylogenetic methods, molecular evolutionary analyses, and geographic visualization provide a framework for analysis of globally distributed genomic data that can be used to monitor the evolution of drug resistance.
Evolution and Expression of Tissue Globins in Ray-Finned Fishes
Gallagher, Michael D.
2017-01-01
The globin gene family encodes oxygen-binding hemeproteins conserved across the major branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gene expression analyses to discover and characterize canonical “non-blood” globin family members (i.e., myoglobin, cytoglobin, neuroglobin, globin-X, and globin-Y) across multiple ray-finned fish lineages, revealing novel gene duplicates (paralogs) conserved from whole genome duplication (WGD) and small-scale duplication events. Our key findings were that: (1) globin-X paralogs in teleosts have been retained from the teleost-specific WGD, (2) functional paralogs of cytoglobin, neuroglobin, and globin-X, but not myoglobin, have been conserved from the salmonid-specific WGD, (3) triplicate lineage-specific myoglobin paralogs are conserved in arowanas (Osteoglossiformes), which arose by tandem duplication and diverged under positive selection, (4) globin-Y is retained in multiple early branching fish lineages that diverged before teleosts, and (5) marked variation in tissue-specific expression of globin gene repertoires exists across ray-finned fish evolution, including several previously uncharacterized sites of expression. In this respect, our data provide an interesting link between myoglobin expression and the evolution of air breathing in teleosts. Together, our findings demonstrate great-unrecognized diversity in the repertoire and expression of nonblood globins that has arisen during ray-finned fish evolution. PMID:28173090
Character combinations, convergence and diversification in ectoparasitic arthropods.
Poulin, Robert
2009-08-01
Different lineages of organisms diversify over time at different rates, in part as a consequence of the characteristics of the species in these lineages. Certain suites of traits possessed by species within a clade may determine rates of diversification, with some particular combinations of characters acting synergistically to either limit or promote diversification; the most successful combinations may also emerge repeatedly in different clades via convergent evolution. Here, the association between species characters and diversification is investigated amongst 21 independent lineages of arthropods ectoparasitic on vertebrate hosts. Using nine characters (each with two to four states) that capture general life history strategy, transmission mode and host-parasite interaction, each lineage was described by the set of character states it possesses. The results show, firstly, that most possible pair-wise combinations of character states have been adopted at least once, sometimes several times independently by different lineages; thus, ectoparasitic arthropods have explored most of the life history character space available to them. Secondly, lineages possessing commonly observed combinations of character states are not necessarily the ones that have experienced the highest rates of diversification (measured as a clade's species-per-genus ratio). Thirdly, some specific traits are associated with higher rates of diversification. Using more than one host per generation, laying eggs away from the host and intermediate levels of fecundity are features that appear to have promoted diversification. These findings indicate that particular species characters may be evolutionary drivers of diversity, whose effects could also apply in other taxa.
Comparative genomics reveals insights into avian genome evolution and adaptation.
Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun
2014-12-12
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. Copyright © 2014, American Association for the Advancement of Science.
Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.
Huang, Bing-Hong; Liao, Pei-Chun
2015-07-01
Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Schott, Ryan K; Van Nynatten, Alexander; Card, Daren C; Castoe, Todd A; S W Chang, Belinda
2018-06-01
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, A T; Huntley, S; Tran-Gyamfi, M
Although most genes are conserved as one-to-one orthologs in different mammalian orders, certain gene families have evolved to comprise different numbers and types of protein-coding genes through independent series of gene duplications, divergence and gene loss in each evolutionary lineage. One such family encodes KRAB-zinc finger (KRAB-ZNF) genes, which are likely to function as transcriptional repressors. One KRAB-ZNF subfamily, the ZNF91 clade, has expanded specifically in primates to comprise more than 110 loci in the human genome, yielding large gene clusters in human chromosomes 19 and 7 and smaller clusters or isolated copies at other chromosomal locations. Although phylogenetic analysismore » indicates that many of these genes arose before the split between old world monkeys and new world monkeys, the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. The paralogous loci are distinguished by sequence divergence within their zinc finger arrays indicating a selection for proteins with different DNA binding specificities. RT-PCR and in situ hybridization data show that some of these ZNF genes can have tissue-specific expression patterns, however many KRAB-ZNFs that are near-ubiquitous could also be playing very specific roles in halting target pathways in all tissues except for a few, where the target is released by the absence of its repressor. The number of variant KRAB-ZNF proteins is increased not only because of the large number of loci, but also because many loci can produce multiple splice variants, which because of the modular structure of these genes may have separate and perhaps even conflicting regulatory roles. The lineage-specific duplication and rapid divergence of this family of transcription factor genes suggests a role in determining species-specific biological differences and the evolution of novel primate traits.« less
Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts.
del Campo, Javier; Ruiz-Trillo, Iñaki
2013-04-01
The Opisthokonta clade includes Metazoa, Fungi, and several unicellular lineages, such as choanoflagellates, filastereans, ichthyosporeans, and nucleariids. To date, studies of the evolutionary diversity of opisthokonts have focused exclusively on metazoans, fungi, and, very recently, choanoflagellates. Thus, very little is known about diversity among the filastereans, ichthyosporeans, and nucleariids. To better understand the evolutionary diversity and ecology of the opisthokonts, here we analyze published environmental data from nonfungal unicellular opisthokonts and report 18S ribosomal DNA phylogenetic analyses. Our data reveal extensive diversity among all unicellular opisthokonts, except for the filastereans. We identify several clades that consist exclusively of environmental sequences, especially among ichthyosporeans and choanoflagellates. Moreover, we show that the ichthyosporeans represent a significant percentage of overall unicellular opisthokont diversity, with a greater ecological role in marine environments than previously believed. Our results provide a useful phylogenetic framework for future ecological and evolutionary studies of these poorly known lineages.
Host-switching by a vertically transmitted rhabdovirus in Drosophila.
Longdon, Ben; Wilfert, Lena; Osei-Poku, Jewelna; Cagney, Heather; Obbard, Darren J; Jiggins, Francis M
2011-10-23
A diverse range of endosymbionts are found within the cells of animals. As these endosymbionts are normally vertically transmitted, we might expect their evolutionary history to be dominated by host-fidelity and cospeciation with the host. However, studies of bacterial endosymbionts have shown that while this is true for some mutualists, parasites often move horizontally between host lineages over evolutionary timescales. For the first time, to our knowledge, we have investigated whether this is also the case for vertically transmitted viruses. Here, we describe four new sigma viruses, a group of vertically transmitted rhabdoviruses previously known in Drosophila. Using sequence data from these new viruses, and the previously described sigma viruses, we show that they have switched between hosts during their evolutionary history. Our results suggest that sigma virus infections may be short-lived in a given host lineage, so that their long-term persistence relies on rare horizontal transmission events between hosts.
Johnson, Marc T J; Fitzjohn, Richard G; Smith, Stacey D; Rausher, Mark D; Otto, Sarah P
2011-11-01
The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. These results provide the first empirical evidence in support of the alternative theoretical prediction that asexual populations should instead diversify more rapidly than sexual populations because they are free from the homogenizing effects of sexual recombination and segregation. Although asexual reproduction may often constrain adaptive evolution, our results show that the loss of recombination and segregation need not be an evolutionary dead end in terms of diversification of lineages. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Kumar, Narender; Mariappan, Vanitha; Baddam, Ramani; Lankapalli, Aditya K.; Shaik, Sabiha; Goh, Khean-Lee; Loke, Mun Fai; Perkins, Tim; Benghezal, Mohammed; Hasnain, Seyed E.; Vadivelu, Jamuna; Marshall, Barry J.; Ahmed, Niyaz
2015-01-01
The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host–pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner. PMID:25452339
Kim, Seon-Hee; Bae, Young-An
2017-09-01
Tyrosinase provides an essential activity during egg production in diverse platyhelminths by mediating sclerotization of eggshells. In this study, we investigated the genomic and evolutionary features of tyrosinases in parasitic platyhelminths whose genomic information is available. A pair of paralogous tyrosinases was detected in most trematodes, whereas they were lost in cyclophyllidean cestodes. A pseudophyllidean cestode displaying egg biology similar to that of trematodes possessed an orthologous gene. Interestingly, one of the paralogous tyrosinases appeared to have been multiplied into three copies in Clonorchis sinensis and Opisthorchis viverrini. In addition, a fifth tyrosinase gene that was minimally transcribed through all developmental stages was further detected in these opisthorchiid genomes. Phylogenetic analyses demonstrated that the tyrosinase gene has undergone duplication at least three times in platyhelminths. The additional opisthorchiid gene arose from the first duplication. A paralogous copy generated from these gene duplications, except for the last one, seemed to be lost in the major neodermatans lineages. In C. sinensis, tyrosinase gene expressions were initiated following sexual maturation and the levels were significantly enhanced by the presence of O2 and bile. Taken together, our data suggest that tyrosinase has evolved lineage-specifically across platyhelminths related to its copy number and induction mechanism.
Hashimoto, Yasushi; Fukukawa, Satoru; Kunishi, Ayako; Suga, Haruhisa; Richard, Franck; Sauve, Mathieu; Selosse, Marc-André
2012-08-01
Dust seeds that germinate by obtaining nutrients from symbiotic fungi have evolved independently in orchids and 11 other plant lineages. The fungi involved in this 'mycoheterotrophic' germination have been identified in some orchids and non-photosynthetic Ericaceae, and proved identical to mycorrhizal fungi of adult plants. We investigated a third lineage, the Pyroleae, chlorophyllous Ericaceae species whose partial mycoheterotrophy at adulthood has recently attracted much attention. We observed experimental Pyrola asarifolia germination at four Japanese sites and investigated the germination pattern and symbiotic fungi, which we compared to mycorrhizal fungi of adult plants. Adult P. asarifolia, like other Pyroleae, associated with diverse fungal species that were a subset of those mycorrhizal on surrounding trees. Conversely, seedlings specifically associated with a lineage of Sebacinales clade B (endophytic Basidiomycetes) revealed an intriguing evolutionary convergence with orchids, some of which also germinate with Sebacinales clade B. Congruently, seedlings clustered spatially together, but not with adults. This unexpected transition in specificity and ecology of partners could support the developmental transition from full to partial mycoheterotrophy, but probably challenges survival and distribution during development. We discuss the physiological and ecological traits that predisposed to the repeated recruitment of Sebacinales clade B for dust seed germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Developmental gene regulatory network architecture across 500 million years of echinoderm evolution
NASA Technical Reports Server (NTRS)
Hinman, Veronica F.; Nguyen, Albert T.; Cameron, R. Andrew; Davidson, Eric H.
2003-01-01
Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.
Draft Genome of the Scarab Beetle Oryctes borbonicus on La Réunion Island
Meyer, Jan M.; Markov, Gabriel V.; Baskaran, Praveen; Herrmann, Matthias; Sommer, Ralf J.; Rödelsperger, Christian
2016-01-01
Beetles represent the largest insect order and they display extreme morphological, ecological and behavioral diversity, which makes them ideal models for evolutionary studies. Here, we present the draft genome of the scarab beetle Oryctes borbonicus, which has a more basal phylogenetic position than the two previously sequenced pest species Tribolium castaneum and Dendroctonus ponderosae providing the potential for sequence polarization. Oryctes borbonicus is endemic to La Réunion, an island located in the Indian Ocean, and is the host of the nematode Pristionchus pacificus, a well-established model organism for integrative evolutionary biology. At 518 Mb, the O. borbonicus genome is substantially larger and encodes more genes than T. castaneum and D. ponderosae. We found that only 25% of the predicted genes of O. borbonicus are conserved as single copy genes across the nine investigated insect genomes, suggesting substantial gene turnover within insects. Even within beetles, up to 21% of genes are restricted to only one species, whereas most other genes have undergone lineage-specific duplications and losses. We illustrate lineage-specific duplications using detailed phylogenetic analysis of two gene families. This study serves as a reference point for insect/coleopteran genomics, although its original motivation was to find evidence for potential horizontal gene transfer (HGT) between O. borbonicus and P. pacificus. The latter was previously shown to be the recipient of multiple horizontally transferred genes including some genes from insect donors. However, our study failed to provide any clear evidence for additional HGTs between the two species. PMID:27289092
The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees.
Brand, Philipp; Ramírez, Santiago R
2017-08-01
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Talla, Venkat; Suh, Alexander; Kalsoom, Faheema; Dinca, Vlad; Vila, Roger; Friberg, Magne; Wiklund, Christer; Backström, Niclas
2017-10-01
Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Jacquin, L; Reader, S M; Boniface, A; Mateluna, J; Patalas, I; Pérez-Jvostov, F; Hendry, A P
2016-07-01
Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild-caught F0 and laboratory-reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory-reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild-caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay-offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Schwentner, Martin; Bosch, Thomas C G
2015-10-01
The genus Hydra has long served as a model system in comparative immunology, developmental and evolutionary biology. Despite its relevance for fundamental research, Hydra's evolutionary origins and species level diversity are not well understood. Detailed previous studies using molecular techniques identified several clades within Hydra, but how these are related to described species remained largely an open question. In the present study, we compiled all published sequence data for three mitochondrial and nuclear genes (COI, 16S and ITS), complemented these with some new sequence data and delimited main genetic lineages (=hypothetical species) objectively by employing two DNA barcoding approaches. Conclusions on the species status of these main lineages were based on inferences of reproductive isolation. Relevant divergence times within Hydra were estimated based on relaxed molecular clock analyses with four genes (COI, 16S, EF1α and 28S) and four cnidarians fossil calibration points All in all, 28 main lineages could be delimited, many more than anticipated from earlier studies. Because allopatric distributions were common, inferences of reproductive isolation often remained ambiguous but reproductive isolation was rarely refuted. Our results support three major conclusions which are central for Hydra research: (1) species level diversity was underestimated by molecular studies; (2) species affiliations of several crucial 'workhorses' of Hydra evolutionary research were wrong and (3) crown group Hydra originated ∼200mya. Our results demonstrate that the taxonomy of Hydra requires a thorough revision and that evolutionary studies need to take this into account when interspecific comparisons are made. Hydra originated on Pangea. Three of four extant groups evolved ∼70mya ago, possibly on the northern landmass of Laurasia. Consequently, Hydra's cosmopolitan distribution is the result of transcontinental and transoceanic dispersal. Copyright © 2015 Elsevier Inc. All rights reserved.
Ingram, T; Harmon, L J; Shurin, J B
2012-09-01
Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
The Evolution of Human Handedness
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-01-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. PMID:23647442
Day, E H; Hua, X; Bromham, L
2016-06-01
Specialization has often been claimed to be an evolutionary dead end, with specialist lineages having a reduced capacity to persist or diversify. In a phylogenetic comparative framework, an evolutionary dead end may be detectable from the phylogenetic distribution of specialists, if specialists rarely give rise to large, diverse clades. Previous phylogenetic studies of the influence of specialization on macroevolutionary processes have demonstrated a range of patterns, including examples where specialists have both higher and lower diversification rates than generalists, as well as examples where the rates of evolutionary transitions from generalists to specialists are higher, lower or equal to transitions from specialists to generalists. Here, we wish to ask whether these varied answers are due to the differences in macroevolutionary processes in different clades, or partly due to differences in methodology. We analysed ten phylogenies containing multiple independent origins of specialization and quantified the phylogenetic distribution of specialists by applying a common set of metrics to all datasets. We compared the tip branch lengths of specialists to generalists, the size of specialist clades arising from each evolutionary origin of a specialized trait and whether specialists tend to be clustered or scattered on phylogenies. For each of these measures, we compared the observed values to expectations under null models of trait evolution and expected outcomes under alternative macroevolutionary scenarios. We found that specialization is sometimes an evolutionary dead end: in two of the ten case studies (pollinator-specific plants and host-specific flies), specialization is associated with a reduced rate of diversification or trait persistence. However, in the majority of studies, we could not distinguish the observed phylogenetic distribution of specialists from null models in which specialization has no effect on diversification or trait persistence. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Honys, David
2017-01-01
Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants. PMID:29131847
Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus?
Drinnenberg, Ines A; Henikoff, Steven; Malik, Harmit S
2016-07-01
The kinetochore is a multiprotein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores. For example, kinetochore proteins that are essential in some species have been lost in others, whereas new kinetochore proteins have emerged in other lineages. Even in lineages with similar kinetochore composition, individual kinetochore proteins have functionally diverged to acquire either essential or redundant roles. Thus, despite functional conservation, the repertoire of kinetochore proteins has undergone recurrent evolutionary turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.
Harnessing recombination to speed adaptive evolution in Escherichia coli.
Winkler, James; Kao, Katy C
2012-09-01
Evolutionary engineering typically involves asexual propagation of a strain to improve a desired phenotype. However, asexual populations suffer from extensive clonal interference, a phenomenon where distinct lineages of beneficial clones compete and are often lost from the population given sufficient time. Improved adaptive mutants can likely be generated by genetic exchange between lineages, thereby reducing clonal interference. We present a system that allows continuous in situ recombination by using an Esherichia coli F-based conjugation system lacking surface exclusion. Evolution experiments revealed that Hfr-mediated recombination significantly speeds adaptation in certain circumstances. These results show that our system is stable, effective, and suitable for use in evolutionary engineering applications. Copyright © 2012 Elsevier Inc. All rights reserved.
May, Michael R; Moore, Brian R
2016-11-01
Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified [Formula: see text] of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers-in order to clarify whether these methods can make reliable inferences from empirical datasets-and to theoretical biologists-in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
May, Michael R.; Moore, Brian R.
2016-01-01
Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where each model assigns branches of the phylogeny to a set of diversification-rate categories. Each model is first fit to the data, and the Akaike information criterion (AIC) is then used to identify the optimal diversification model. Surprisingly, the statistical behavior of this popular method is uncharacterized, which is a concern in light of: (1) the poor performance of the AIC as a means of choosing among models in other phylogenetic contexts; (2) the ad hoc algorithm used to visit diversification models, and; (3) errors that we reveal in the likelihood function used to fit diversification models to the phylogenetic data. Here, we perform an extensive simulation study demonstrating that MEDUSA (1) has a high false-discovery rate (on average, spurious diversification-rate shifts are identified ≈30% of the time), and (2) provides biased estimates of diversification-rate parameters. Understanding the statistical behavior of MEDUSA is critical both to empirical researchers—in order to clarify whether these methods can make reliable inferences from empirical datasets—and to theoretical biologists—in order to clarify the specific problems that need to be solved in order to develop more reliable approaches for detecting shifts in the rate of lineage diversification. [Akaike information criterion; extinction; lineage-specific diversification rates; phylogenetic model selection; speciation.] PMID:27037081
Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent
2015-01-01
The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2−/−, Spry4−/−, and Rsk2−/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents. PMID:26123406
Quiñones, Andrés E.; Pen, Ido
2017-01-01
Explaining the origin of eusociality, with strict division of labour between workers and reproductives, remains one of evolutionary biology’s greatest challenges. Specific combinations of genetic, behavioural and demographic traits in Hymenoptera are thought to explain their relatively high frequency of eusociality, but quantitative models integrating such preadaptations are lacking. Here we use mathematical models to show that the joint evolution of helping behaviour and maternal sex ratio adjustment can synergistically trigger both a behavioural change from solitary to eusocial breeding, and a demographic change from a life cycle with two reproductive broods to a life cycle in which an unmated cohort of female workers precedes a final generation of dispersing reproductives. Specific suits of preadaptations are particularly favourable to the evolution of eusociality: lifetime monogamy, bivoltinism with male generation overlap, hibernation of mated females and haplodiploidy with maternal sex ratio adjustment. The joint effects of these preadaptations may explain the abundance of eusociality in the Hymenoptera and its virtual absence in other haplodiploid lineages. PMID:28643786
Castillo, Andrea G.; González, Benito A.
2018-01-01
Background The main goal of this contribution was to define the ecological niche of the guanaco (Lama guanicoe), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species (L.g. cacsilensis and L.g. guanicoe). Methods We used maximum entropy to model lineage’s climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. Results We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Discussion Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics. PMID:29868293
Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives
Kilian, Mogens; Poulsen, Knud; Blomqvist, Trinelise; Håvarstein, Leiv S.; Bek-Thomsen, Malene; Tettelin, Hervé; Sørensen, Uffe B. S.
2008-01-01
Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts. PMID:18628950
Wood, Dustin A; Fisher, Robert N; Reeder, Tod W
2008-02-01
Mitochondrial DNA (mtDNA) sequence variation was examined in 131 individuals of the Rosy Boa (Lichanura trivirgata) from across the species range in southwestern North America. Bayesian inference and nested clade phylogeographic analyses (NCPA) were used to estimate relationships and infer evolutionary processes. These patterns were evaluated as they relate to previously hypothesized vicariant events and new insights are provided into the biogeographic and evolutionary processes important in Baja California and surrounding North American deserts. Three major lineages (Lineages A, B, and C) are revealed with very little overlap. Lineage A and B are predominately separated along the Colorado River and are found primarily within California and Arizona (respectively), while Lineage C consists of disjunct groups distributed along the Baja California peninsula as well as south-central Arizona, southward along the coastal regions of Sonora, Mexico. Estimated divergence time points (using a Bayesian relaxed molecular clock) and geographic congruence with postulated vicariant events suggest early extensions of the Gulf of California and subsequent development of the Colorado River during the Late Miocene-Pliocene led to the formation of these mtDNA lineages. Our results also suggest that vicariance hypotheses alone do not fully explain patterns of genetic variation. Therefore, we highlight the importance of dispersal to explain these patterns and current distribution of populations. We also compare the mtDNA lineages with those based on morphological variation and evaluate their implications for taxonomy.
Wood, D.A.; Fisher, R.N.; Reeder, T.W.
2008-01-01
Mitochondrial DNA (mtDNA) sequence variation was examined in 131 individuals of the Rosy Boa (Lichanura trivirgata) from across the species range in southwestern North America. Bayesian inference and nested clade phylogeographic analyses (NCPA) were used to estimate relationships and infer evolutionary processes. These patterns were evaluated as they relate to previously hypothesized vicariant events and new insights are provided into the biogeographic and evolutionary processes important in Baja California and surrounding North American deserts. Three major lineages (Lineages A, B, and C) are revealed with very little overlap. Lineage A and B are predominately separated along the Colorado River and are found primarily within California and Arizona (respectively), while Lineage C consists of disjunct groups distributed along the Baja California peninsula as well as south-central Arizona, southward along the coastal regions of Sonora, Mexico. Estimated divergence time points (using a Bayesian relaxed molecular clock) and geographic congruence with postulated vicariant events suggest early extensions of the Gulf of California and subsequent development of the Colorado River during the Late Miocene-Pliocene led to the formation of these mtDNA lineages. Our results also suggest that vicariance hypotheses alone do not fully explain patterns of genetic variation. Therefore, we highlight the importance of dispersal to explain these patterns and current distribution of populations. We also compare the mtDNA lineages with those based on morphological variation and evaluate their implications for taxonomy. ?? 2007 Elsevier Inc. All rights reserved.
Bloom, Devin D.; Lovejoy, Nathan R.
2014-01-01
One of the most remarkable types of migration found in animals is diadromy, a life-history behaviour in which individuals move between oceans and freshwater habitats for feeding and reproduction. Diadromous fishes include iconic species such as salmon, eels and shad, and have long fascinated biologists because they undergo extraordinary physiological and behavioural modifications to survive in very different habitats. However, the evolutionary origins of diadromy remain poorly understood. Here, we examine the widely accepted productivity hypothesis, which states that differences in productivity between marine and freshwater biomes determine the origins of the different modes of diadromy. Specifically, the productivity hypothesis predicts that anadromous lineages should evolve in temperate areas from freshwater ancestors and catadromous lineages should evolve in tropical areas from marine ancestors. To test this, we generated a time-calibrated phylogeny for Clupeiformes (herrings, anchovies, sardines and allies), an ecologically and economically important group that includes high diversity of diadromous species. Our results do not support the productivity hypothesis. Instead we find that the different modes of diadromy do not have predictable ancestry based on latitude, and that predation, competition and geological history may be at least as important as productivity in determining the origins of diadromy. PMID:24430843
Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan
2012-01-01
Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research. PMID:22792207
Zhang, Liangzhi; Jia, Shangang; Plath, Martin; Huang, Yongzhen; Li, Congjun; Lei, Chuzhao; Zhao, Xin; Chen, Hong
2015-01-01
Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression. PMID:26260653
du Toit, Nina; van Vuuren, Bettine Jansen; Matthee, Sonja; Matthee, Conrad A
2012-10-01
Within southern Africa, a link between past climatic changes and faunal diversification has been hypothesized for a diversity of taxa. To test the hypothesis that evolutionary divergences may be correlated to vegetation changes (induced by changes in climate), we selected the widely distributed four-striped mouse, Rhabdomys, as a model. Two species are currently recognized, the mesic-adapted R. dilectus and arid-adapted R. pumilio. However, the morphology-based taxonomy and the distribution boundaries of previously described subspecies remain poorly defined. The current study, which spans seven biomes, focuses on the spatial genetic structure of the arid-adapted R. pumilio (521 specimens from 31 localities), but also includes limited sampling of the mesic-adapted R. dilectus (33 specimens from 10 localities) to act as a reference for interspecific variation within the genus. The mitochondrial COI gene and four nuclear introns (Eef1a1, MGF, SPTBN1, Bfib7) were used for the construction of gene trees. Mitochondrial DNA analyses indicate that Rhabdomys consists of four reciprocally monophyletic, geographically structured clades, with three distinct lineages present within the arid-adapted R. pumilio. These monophyletic lineages differ by at least 7.9% (±0.3) and these results are partly confirmed by a multilocus network of the combined nuclear intron dataset. Ecological niche modeling in MaxEnt supports a strong correlation between regional biomes and the distribution of distinct evolutionary lineages of Rhabdomys. A Bayesian relaxed molecular clock suggests that the geographic clades diverged between 3.09 and 4.30Ma, supporting the hypothesis that the radiation within the genus coincides with paleoclimatic changes (and the establishment of the biomes) characterizing the Miocene-Pliocene boundary. Marked genetic divergence at the mitochondrial DNA level, coupled with strong nuclear and mtDNA signals of non-monophyly of R. pumilio, support the notion that a taxonomic revision of the genus is needed. Copyright © 2012 Elsevier Inc. All rights reserved.
Verstraete, Brecht; Janssens, Steven; Rønsted, Nina
2017-08-01
Every plant species on Earth interacts in some way or another with microorganisms and it is well known that certain forms of symbiosis between different organisms can drive evolution. Within some clades of Rubiaceae (coffee family), a specific plant-bacteria interaction exists in which non-pathological endophytes are present in the leaves of their hosts. It is hypothesized that the bacterial endophytes, either alone or by interacting with the host, provide chemical protection against herbivory or pathogens by producing toxic or otherwise advantageous secondary metabolites. If the bacteria indeed have a direct beneficial influence on their hosts, it is reasonable to assume that the endophytes may increase the fitness of their hosts and therefore it is probable that their presence also has an influence on the long-term evolution of the particular plant lineages. In this study, the possible origin in time of non-nodulated bacterial leaf symbiosis in the Vanguerieae tribe of Rubiaceae is elucidated and dissimilarities in evolutionary dynamics between species with endophytes versus species without are investigated. Bacterial leaf symbiosis is shown to have most probably originated in the Late Miocene, a period when the savannah habitat is believed to have expanded on the African continent and herbivore pressure increased. The presence of bacterial leaf endophytes appears to be restricted to Old World lineages so far. Plant lineages with leaf endophytes show a significantly higher speciation rate than plant lineages without endophytes, while there is only a small difference in extinction rate. The transition rate shows that evolving towards having endophytes is twice as fast as evolving towards not having endophytes, suggesting that leaf symbiosis must be beneficial for the host plants. We conclude that the presence of bacterial leaf endophytes may also be an important driver for speciation of host plants. Copyright © 2017 Elsevier Inc. All rights reserved.
Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins
Opazo, Juan C.; Butts, G. Tyler; Nery, Mariana F.; Storz, Jay F.; Hoffmann, Federico G.
2013-01-01
Subsequent to the two rounds of whole-genome duplication that occurred in the common ancestor of vertebrates, a third genome duplication occurred in the stem lineage of teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided genetic raw materials for the physiological, morphological, and behavioral diversification of this highly speciose group. The extreme physiological versatility of teleost fish is manifest in their diversity of blood–gas transport traits, which reflects the myriad solutions that have evolved to maintain tissue O2 delivery in the face of changing metabolic demands and environmental O2 availability during different ontogenetic stages. During the course of development, regulatory changes in blood–O2 transport are mediated by the expression of multiple, functionally distinct hemoglobin (Hb) isoforms that meet the particular O2-transport challenges encountered by the developing embryo or fetus (in viviparous or oviparous species) and in free-swimming larvae and adults. The main objective of the present study was to assess the relative contributions of whole-genome duplication, large-scale segmental duplication, and small-scale gene duplication in producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we integrated phylogenetic reconstructions with analyses of conserved synteny to characterize the genomic organization and evolutionary history of the globin gene clusters of teleosts. These results were then integrated with available experimental data on functional properties and developmental patterns of stage-specific gene expression. Our results indicate that multiple α- and β-globin genes were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived globin gene clusters, each of which has undergone lineage-specific changes in gene content via repeated duplication and deletion events. Phylogenetic reconstructions revealed that paralogous genes convergently evolved similar functional properties in different teleost lineages. Consistent with other recent studies of globin gene family evolution in vertebrates, our results revealed evidence for repeated evolutionary transitions in the developmental regulation of Hb synthesis. PMID:22949522
Culasso, Andrés Carlos Alberto; Monzani, María Cecilia; Baré, Patricia; Campos, Rodolfo Hector
2018-05-04
The HCV evolutionary dynamics play a key role in the infection onset, maintenance of chronicity, pathogenicity, and drug resistance variants fixation, and are thought to be one of the main caveats in the development of an effective vaccine. Previous studies in HCV/HIV co-infected patients suggest that a decline in the immune status is related with increases in the HCV intra-host genetic diversity. However, these findings are based on single point sequence diversity measures or coalescence analyses in several virus-host interactions. In this work, we describe the molecular evolution of HCV-E2 region in a single HIV-co-infected patient with two clearly defined immune conditions. The phylogenetic analysis of the HCV-1a sequences from the studied patient showed that he was co-infected with three different viral lineages. These lineages were not evenly detected throughout time. The sequence diversity and coalescence analyses of these lineages suggested the action of different evolutionary patterns in different immune conditions: a slow rate, drift-like process in an immunocompromised condition (low levels of CD4+ T lymphocytes); and a fast rate, variant-switch process in an immunocompetent condition (high levels of CD4+ T lymphocytes). Copyright © 2017. Published by Elsevier B.V.
Phylogeography above the species level for perennial species in a composite genus
Tremetsberger, Karin; Ortiz, María Ángeles; Terrab, Anass; Balao, Francisco; Casimiro-Soriguer, Ramón; Talavera, María; Talavera, Salvador
2016-01-01
In phylogeography, DNA sequence and fingerprint data at the population level are used to infer evolutionary histories of species. Phylogeography above the species level is concerned with the genealogical aspects of divergent lineages. Here, we present a phylogeographic study to examine the evolutionary history of a western Mediterranean composite, focusing on the perennial species of Helminthotheca (Asteraceae, Cichorieae). We used molecular markers (amplified fragment length polymorphism (AFLP), internal transcribed spacer and plastid DNA sequences) to infer relationships among populations throughout the distributional range of the group. Interpretation is aided by biogeographic and molecular clock analyses. Four coherent entities are revealed by Bayesian mixture clustering of AFLP data, which correspond to taxa previously recognized at the rank of subspecies. The origin of the group was in western North Africa, from where it expanded across the Strait of Gibraltar to the Iberian Peninsula and across the Strait of Sicily to Sicily. Pleistocene lineage divergence is inferred within western North Africa as well as within the western Iberian region. The existence of the four entities as discrete evolutionary lineages suggests that they should be elevated to the rank of species, yielding H. aculeata, H. comosa, H. maroccana and H. spinosa, whereby the latter two necessitate new combinations. PMID:26644340
Conservation genomics reveals multiple evolutionary units within Bell’s Vireo (Vireo bellii).
Klicka, Luke B.; Kus, Barbara E.; Title, Pascal O.; Burns, Kevin J.
2016-01-01
The Bell’s Vireo (Vireo bellii) is a widespread North American species of bird that has declined since the mid-1960s primarily due to habitat modification. Throughout its range, Bell’s Vireo populations are regulated under varying degrees of protection; however, the species has never been characterized genetically. Therefore, the current taxonomy used to guide management decisions may misrepresent the true evolutionary history for the species. We sequenced 86 individuals for ND2 and genotyped 48 individuals for genome-wide SNPs to identify distinct lineages within Bell’s Vireo. Phylogenetic analyses uncovered two distinct clades that are separated in the arid southwestern United States, near the border of the Chihuahuan and Sonoran Deserts. These clades diverged from each other approximately 1.11–2.04 mya. The timing of diversification, geographic location, and niche modeling of the east/west divergence suggest vicariance as a mode of diversification for these two lineages. Analyses of the SNP dataset provided additional resolution and indicated the Least Bell’s Vireo populations are a distinct evolutionary lineage. Our genetic evidence, together with information from morphology and behavior, suggests that the Bell’s Vireo complex involves two species, each containing two separate subspecies. This new information has implications for the federal, state and other listing status of Bell’s Vireo throughout its range.
Rübben, Albert; Nordhoff, Ole
2013-01-01
Summary Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome architecture have multiple and possibly opposed effects which manifest themselves at disparate times and progression stages. Dissection of putative mechanisms mediating constraints exerted by the genome architecture on somatic cancer evolution may provide an algorithm for understanding and predicting as well as modifying somatic cancer evolution in individual patients. PMID:23336076
Independent Lineage of Lymphocytic Choriomeningitis Virus in Wood Mice (Apodemus sylvaticus), Spain
Ledesma, Juan; Fedele, Cesare Giovanni; Carro, Francisco; Lledó, Lourdes; Sánchez-Seco, María Paz; Tenorio, Antonio; Soriguer, Ramón Casimiro; Saz, José Vicente; Domínguez, Gerardo; Rosas, María Flora; Barandika, Jesús Félix
2009-01-01
To clarify the presence of lymphocytic choriomeningitis virus (LCMV) in Spain, we examined blood and tissue specimens from 866 small mammals. LCMV RNA was detected in 3 of 694 wood mice (Apodemus sylvaticus). Phylogenetic analyses suggest that the strains constitute a new evolutionary lineage. LCMV antibodies were detected in 4 of 10 rodent species tested. PMID:19861074
Ota, Tatsuya; Rast, Jonathan P.; Litman, Gary W.; Amemiya, Chris T.
2003-01-01
The lineage leading to lungfishes is one of the few major jawed vertebrate groups in which Ig heavy chain isotype structure has not been investigated at the genetic level. In this study, we have characterized three different Ig heavy chain isotypes of the African lungfish, Protopterus aethiopicus, including an IgM-type heavy chain and short and long forms of non-IgM heavy chains. Northern blot analysis as well as patterns of VH utilization suggest that the IgM and non-IgM isotypes are likely encoded in separate loci. The two non-IgM isotypes identified in Protopterus share structural features with the short and long forms of IgX/W/NARC (referred to hereafter as IgW), which were previously considered to be restricted to the cartilaginous fish. It seems that the IgW isotype has a far broader phylogenetic distribution than considered originally and raises questions with regard to the origin and evolutionary divergence of IgM and IgW. Moreover, its absence in other gnathostome lineages implies paradoxically that the IgW-type genes were lost from teleost and tetrapod lineages. PMID:12606718
Stern, David B.; Breinholt, Jesse; Pedraza‐Lara, Carlos; López‐Mejía, Marilú; Owen, Christopher L.; Bracken‐Grissom, Heather; Fetzner, James W.; Crandall, Keith A.
2017-01-01
Abstract Caves are perceived as isolated, extreme habitats with a uniquely specialized biota, which long ago led to the idea that caves are “evolutionary dead‐ends.” This implies that cave‐adapted taxa may be doomed for extinction before they can diversify or transition to a more stable state. However, this hypothesis has not been explicitly tested in a phylogenetic framework with multiple independently evolved cave‐dwelling groups. Here, we use the freshwater crayfish, a group with dozens of cave‐dwelling species in multiple lineages, as a system to test this hypothesis. We consider historical patterns of lineage diversification and habitat transition as well as current patterns of geographic range size. We find that while cave‐dwelling lineages have small relative range sizes and rarely transition back to the surface, they exhibit remarkably similar diversification patterns to those of other habitat types and appear to be able to maintain a diversity of lineages through time. This suggests that cave adaptation is not a “dead‐end” for freshwater crayfish, which has positive implications for our understanding of biodiversity and conservation in cave habitats. PMID:28804900
Verboom, G Anthony; Stock, William D; Cramer, Michael D
2017-06-01
Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.
Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.
Pierron, Denis; Opazo, Juan C; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I
2011-01-01
Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.
Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c
Pierron, Denis; Opazo, Juan C.; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E.; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I.
2011-01-01
Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades. PMID:22028846
Hasselmann, Martin; Lechner, Sarah; Schulte, Christina; Beye, Martin
2010-07-27
The most remarkable outcome of a gene duplication event is the evolution of a novel function. Little information exists on how the rise of a novel function affects the evolution of its paralogous sister gene copy, however. We studied the evolution of the feminizer (fem) gene from which the gene complementary sex determiner (csd) recently derived by tandem duplication within the honey bee (Apis) lineage. Previous studies showed that fem retained its sex determination function, whereas the rise of csd established a new primary signal of sex determination. We observed a specific reduction of nonsynonymous to synonymous substitution ratios in Apis to non-Apis fem. We found a contrasting pattern at two other genetically linked genes, suggesting that hitchhiking effects to csd, the locus under balancing selection, is not the cause of this evolutionary pattern. We also excluded higher synonymous substitution rates by relative rate testing. These results imply that stronger purifying selection is operating at the fem gene in the presence of csd. We propose that csd's new function interferes with the function of Fem protein, resulting in molecular constraints and limited evolvability of fem in the Apis lineage. Elevated silent nucleotide polymorphism in fem relative to the genome-wide average suggests that genetic linkage to the csd gene maintained more nucleotide variation in today's population. Our findings provide evidence that csd functionally and genetically interferes with fem, suggesting that a newly evolved gene and its functions can limit the evolutionary capability of other genes in the genome.
Cui, Peng; Liu, Huitao; Lin, Qiang; Ding, Feng; Zhuo, Guoyin; Hu, Songnian; Liu, Dongcheng; Yang, Wenlong; Zhan, Kehui; Zhang, Aimin; Yu, Jun
2009-12-01
Plant mitochondrial genomes, encoding necessary proteins involved in the system of energy production, play an important role in the development and reproduction of the plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts. Here, we determined the winter wheat (Triticum aestivum cv. Chinese Yumai) mitochondrial genome in a length of 452 and 526 bp by shotgun sequencing its BAC library. It contains 202 genes, including 35 known protein-coding genes, three rRNA and 17 tRNA genes, as well as 149 open reading frames (ORFs; greater than 300 bp in length). The sequence is almost identical to the previously reported sequence of the spring wheat (T. aestivum cv. Chinese Spring); we only identified seven SNPs (three transitions and four transversions) and 10 indels (insertions and deletions) between the two independently acquired sequences, and all variations were found in non-coding regions. This result confirmed the accuracy of the previously reported mitochondrial sequence of the Chinese Spring wheat. The nucleotide frequency and codon usage of wheat are common among the lineage of higher plant with a high AT-content of 58%. Molecular evolutionary analysis demonstrated that plant mitochondrial genomes evolved at different rates, which may correlate with substantial variations in metabolic rate and generation time among plant lineages. In addition, through the estimation of the ratio of non-synonymous to synonymous substitution rates between orthologous mitochondrion-encoded genes of higher plants, we found an accelerated evolutionary rate that seems to be the result of relaxed selection.
Y-Chromosome Variation in Hominids: Intraspecific Variation Is Limited to the Polygamous Chimpanzee
Greve, Gabriele; Alechine, Evguenia; Pasantes, Juan J.; Hodler, Christine; Rietschel, Wolfram; Robinson, Terence J.; Schempp, Werner
2011-01-01
Background We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y) varied with respect to copy number and position among chimpanzees (Pan troglodytes). In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus), the chimpanzee's closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), and examine the resulting patterns in the light of the species' markedly different social and mating behaviors. Methodology/Principal Findings Fluorescence in situ hybridization analysis (FISH) of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla) and a single lineage of the eastern lowland gorilla (G. beringei graueri) showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus), and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii). We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR) in chimpanzee and bonobo. Conclusion/Significance High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans—species that are not subject to sperm competition—showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA sequences, but is also shaped by the social and behavioral circumstances under which the specific species has evolved. PMID:22216243
Vanneste, Kevin; Baele, Guy; Maere, Steven; Van de Peer, Yves
2014-01-01
Ancient whole-genome duplications (WGDs), also referred to as paleopolyploidizations, have been reported in most evolutionary lineages. Their attributed role remains a major topic of discussion, ranging from an evolutionary dead end to a road toward evolutionary success, with evidence supporting both fates. Previously, based on dating WGDs in a limited number of plant species, we found a clustering of angiosperm paleopolyploidizations around the Cretaceous–Paleogene (K–Pg) extinction event about 66 million years ago. Here we revisit this finding, which has proven controversial, by combining genome sequence information for many more plant lineages and using more sophisticated analyses. We include 38 full genome sequences and three transcriptome assemblies in a Bayesian evolutionary analysis framework that incorporates uncorrelated relaxed clock methods and fossil uncertainty. In accordance with earlier findings, we demonstrate a strongly nonrandom pattern of genome duplications over time with many WGDs clustering around the K–Pg boundary. We interpret these results in the context of recent studies on invasive polyploid plant species, and suggest that polyploid establishment is promoted during times of environmental stress. We argue that considering the evolutionary potential of polyploids in light of the environmental and ecological conditions present around the time of polyploidization could mitigate the stark contrast in the proposed evolutionary fates of polyploids. PMID:24835588
Thermodynamic System Drift in Protein Evolution
Hart, Kathryn M.; Harms, Michael J.; Schmidt, Bryan H.; Elya, Carolyn; Thornton, Joseph W.; Marqusee, Susan
2014-01-01
Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH) proteins evolved. RNH proteins from Thermus thermophilus (ttRNH) and Escherichia coli (ecRNH) share similar structures but differ in melting temperature (Tm) by 20°C. ttRNH's greater stability is caused in part by the presence of residual structure in the unfolded state, which results in a low heat capacity of unfolding (ΔCp) relative to ecRNH. We first characterized RNH proteins from a variety of extant bacteria and found that Tm correlates with the species' growth temperatures, consistent with environmental selection for stability. We then used ancestral sequence reconstruction to statistically infer evolutionary intermediates along lineages leading to ecRNH and ttRNH from their common ancestor, which existed approximately 3 billion years ago. Finally, we synthesized and experimentally characterized these intermediates. The shared ancestor has a melting temperature between those of ttRNH and ecRNH; the Tms of intermediate ancestors along the ttRNH lineage increased gradually over time, while the ecRNH lineage exhibited an abrupt drop in Tm followed by relatively little change. To determine whether the underlying mechanisms for thermostability correlate with the changes in Tm, we measured the thermodynamic basis for stabilization—ΔCp and other thermodynamic parameters—for each of the ancestors. We observed that, while the Tm changes smoothly, the mechanistic basis for stability fluctuates over evolutionary time. Thus, even while overall stability appears to be strongly driven by selection, the proteins explored a wide variety of mechanisms of stabilization, a phenomenon we call “thermodynamic system drift.” This suggests that even on lineages with strong selection to increase stability, proteins have wide latitude to explore sequence space, generating biophysical diversity and potentially opening new evolutionary pathways. PMID:25386647
Estimating the Effect of Competition on Trait Evolution Using Maximum Likelihood Inference.
Drury, Jonathan; Clavel, Julien; Manceau, Marc; Morlon, Hélène
2016-07-01
Many classical ecological and evolutionary theoretical frameworks posit that competition between species is an important selective force. For example, in adaptive radiations, resource competition between evolving lineages plays a role in driving phenotypic diversification and exploration of novel ecological space. Nevertheless, current models of trait evolution fit to phylogenies and comparative data sets are not designed to incorporate the effect of competition. The most advanced models in this direction are diversity-dependent models where evolutionary rates depend on lineage diversity. However, these models still treat changes in traits in one branch as independent of the value of traits on other branches, thus ignoring the effect of species similarity on trait evolution. Here, we consider a model where the evolutionary dynamics of traits involved in interspecific interactions are influenced by species similarity in trait values and where we can specify which lineages are in sympatry. We develop a maximum likelihood based approach to fit this model to combined phylogenetic and phenotypic data. Using simulations, we demonstrate that the approach accurately estimates the simulated parameter values across a broad range of parameter space. Additionally, we develop tools for specifying the biogeographic context in which trait evolution occurs. In order to compare models, we also apply these biogeographic methods to specify which lineages interact sympatrically for two diversity-dependent models. Finally, we fit these various models to morphological data from a classical adaptive radiation (Greater Antillean Anolis lizards). We show that models that account for competition and geography perform better than other models. The matching competition model is an important new tool for studying the influence of interspecific interactions, in particular competition, on phenotypic evolution. More generally, it constitutes a step toward a better integration of interspecific interactions in many ecological and evolutionary processes. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kanda, Atsuhiro; Satake, Honoo; Kawada, Tsuyoshi; Minakata, Hiroyuki
2004-01-01
The common octopus, Octopus vulgaris, is the first invertebrate species that was shown to possess two oxytocin/vasopressin (OT/VP) superfamily peptides, octopressin (OP) and cephalotocin (CT). Previously, we cloned a GPCR (G-protein-coupled receptor) specific to CT [CTR1 (CT receptor 1)]. In the present study, we have identified an additional CTR, CTR2, and a novel OP receptor, OPR. Both CTR2 and OPR include domains and motifs typical of GPCRs, and the intron– exon structures are in accord with those of OT/VP receptor genes. CTR2 and OPR expressed in Xenopus oocytes induced calcium-mediated inward chloride current in a CT- and OP-specific manner respectively. Several regions and residues, which are requisite for binding of the vertebrate OT/VP receptor family with their ligands, are highly conserved in CTRs, but not in OPR. These different sequences between CTRs and OPR, as well as the amino acid residues of OP and CT at positions 2–5, were presumed to play crucial roles in the binding selectivity to their receptors, whereas the difference in the polarity of OT/VP family peptide residues at position 8 confers OT and VP with the binding specificity in vertebrates. CTR2 mRNA was present in various peripheral tissues, and OPR mRNA was detected in both the nervous system and peripheral tissues. Our findings suggest that the CT and OP genes, similar to the OT/VP family, evolved through duplication, but the ligand–receptor selectivity were established through different evolutionary lineages from those of their vertebrate counterparts. PMID:15504101
Hofberger, Johannes A.; Ramirez, Aldana M.; van den Bergh, Erik; Zhu, Xinguang; Bouwmeester, Harro J.; Schuurink, Robert C.; Schranz, M. Eric
2015-01-01
An important component of plant evolution is the plethora of pathways producing more than 200,000 biochemically diverse specialized metabolites with pharmacological, nutritional and ecological significance. To unravel dynamics underlying metabolic diversification, it is critical to determine lineage-specific gene family expansion in a phylogenomics framework. However, robust functional annotation is often only available for core enzymes catalyzing committed reaction steps within few model systems. In a genome informatics approach, we extracted information from early-draft gene-space assemblies and non-redundant transcriptomes to identify protein families involved in isoprenoid biosynthesis. Isoprenoids comprise terpenoids with various roles in plant-environment interaction, such as pollinator attraction or pathogen defense. Combining lines of evidence provided by synteny, sequence homology and Hidden-Markov-Modelling, we screened 17 genomes including 12 major crops and found evidence for 1,904 proteins associated with terpenoid biosynthesis. Our terpenoid genes set contains evidence for 840 core terpene-synthases and 338 triterpene-specific synthases. We further identified 190 prenyltransferases, 39 isopentenyl-diphosphate isomerases as well as 278 and 219 proteins involved in mevalonate and methylerithrol pathways, respectively. Assessing the impact of gene and genome duplication to lineage-specific terpenoid pathway expansion, we illustrated key events underlying terpenoid metabolic diversification within 250 million years of flowering plant radiation. By quantifying Angiosperm-wide versatility and phylogenetic relationships of pleiotropic gene families in terpenoid modular pathways, our analysis offers significant insight into evolutionary dynamics underlying diversification of plant secondary metabolism. Furthermore, our data provide a blueprint for future efforts to identify and more rapidly clone terpenoid biosynthetic genes from any plant species. PMID:26046541
Ecophysiology Tracks Phylogeny and Meets Ecological Models in an Iberian Gecko.
Rato, C; Carretero, M A
2015-01-01
Because fitness of ectotherms, including reptiles, is highly dependent on temperature and water availability, the study of ecophysiological traits, such as preferred temperature (T p) and water loss rates (WLRs), may provide mechanistic evidence on the restricting factors to the species ranges. The Moorish gecko, Tarentola mauritanica, is a species complex with a circum-Mediterranean distribution. In the Iberian Peninsula, two sister parapatric forms of the complex, known as the Iberian and the European clades, are found. Ecological models previously performed using presence records and bioclimatic variables suggest niche divergence between both lineages correlated with precipitation rather than with temperature. In this study, we test this correlative hypothesis using ecophysiological evidence. In the laboratory, we analyzed the T p and WLRs for 84 adult males from seven distinct populations ascribed to one of the two lineages present in Iberia. Specifically, we evaluated the existence of trait conservatism versus adaptation among populations, lineages, or both. In addition, we tested for a trade-off between water and thermal traits and assessed whether climate regime of sampling localities had any influence on the ecophysiological patterns found. We found that T p is quite conserved at both the population and lineage levels and independent from body size. In contrast, water loss experiments revealed some variation among populations, but the regression analysis failed to detect correlation between T p and WLR at any level. Overall, the European lineage displayed a trend for higher water loss and was more diverse among populations when compared with the Iberian lineage. The lack of correspondence between ecophysiological traits and local climatic conditions favors phylogenetic signal versus adaptation. This suggests divergent evolutionary responses to the environment, mainly acting on water ecology, in both lineages, which may account for the differences in their range expansion.
A Passerine Bird's evolution corroborates the geologic history of the island of New Guinea.
Deiner, Kristy; Lemmon, Alan R; Mack, Andrew L; Fleischer, Robert C; Dumbacher, John P
2011-05-06
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.
A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea
Deiner, Kristy; Lemmon, Alan R.; Mack, Andrew L.; Fleischer, Robert C.; Dumbacher, John P.
2011-01-01
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5–11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history. PMID:21573115
The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex.
Brites, Daniela; Gagneux, Sebastien
2017-01-01
The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.
Smith, Jeramiah J; Kuraku, Shigehiro; Holt, Carson; Sauka-Spengler, Tatjana; Jiang, Ning; Campbell, Michael S; Yandell, Mark D; Manousaki, Tereza; Meyer, Axel; Bloom, Ona E; Morgan, Jennifer R; Buxbaum, Joseph D; Sachidanandam, Ravi; Sims, Carrie; Garruss, Alexander S; Cook, Malcolm; Krumlauf, Robb; Wiedemann, Leanne M; Sower, Stacia A; Decatur, Wayne A; Hall, Jeffrey A; Amemiya, Chris T; Saha, Nil R; Buckley, Katherine M; Rast, Jonathan P; Das, Sabyasachi; Hirano, Masayuki; McCurley, Nathanael; Guo, Peng; Rohner, Nicolas; Tabin, Clifford J; Piccinelli, Paul; Elgar, Greg; Ruffier, Magali; Aken, Bronwen L; Searle, Stephen MJ; Muffato, Matthieu; Pignatelli, Miguel; Herrero, Javier; Jones, Matthew; Brown, C Titus; Chung-Davidson, Yu-Wen; Nanlohy, Kaben G; Libants, Scot V; Yeh, Chu-Yin; McCauley, David W; Langeland, James A; Pancer, Zeev; Fritzsch, Bernd; de Jong, Pieter J; Zhu, Baoli; Fulton, Lucinda L; Theising, Brenda; Flicek, Paul; Bronner, Marianne E; Warren, Wesley C; Clifton, Sandra W; Wilson, Richard K; Li, Weiming
2013-01-01
Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ~500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms. PMID:23435085
Iraola, Gregorio; Forster, Samuel C; Kumar, Nitin; Lehours, Philippe; Bekal, Sadjia; García-Peña, Francisco J; Paolicchi, Fernando; Morsella, Claudia; Hotzel, Helmut; Hsueh, Po-Ren; Vidal, Ana; Lévesque, Simon; Yamazaki, Wataru; Balzan, Claudia; Vargas, Agueda; Piccirillo, Alessandra; Chaban, Bonnie; Hill, Janet E; Betancor, Laura; Collado, Luis; Truyers, Isabelle; Midwinter, Anne C; Dagi, Hatice T; Mégraud, Francis; Calleros, Lucía; Pérez, Ruben; Naya, Hugo; Lawley, Trevor D
2017-11-08
Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.
Ancient Recombination Events between Human Herpes Simplex Viruses
Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H.
2017-01-01
Abstract Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. PMID:28369565
Evolutionary history and dynamics of dog rabies virus in western and central Africa.
Talbi, Chiraz; Holmes, Edward C; de Benedictis, Paola; Faye, Ousmane; Nakouné, Emmanuel; Gamatié, Djibo; Diarra, Abass; Elmamy, Bezeid Ould; Sow, Adama; Adjogoua, Edgard Valery; Sangare, Oumou; Dundon, William G; Capua, Ilaria; Sall, Amadou A; Bourhy, Hervé
2009-04-01
The burden of rabies in Africa is estimated at 24,000 human deaths year(-1), almost all of which result from infection with dog rabies viruses (RABV). To investigate the evolutionary dynamics of RABV in western and central Africa, 92 isolates sampled from 27 African countries over 29 years were collected and sequenced. This revealed that RABV currently circulating in dogs in this region fell into a single lineage designated 'Africa 2'. A detailed analysis of the phylogeographical structure of this Africa 2 lineage revealed strong population subdivision at the country level, with only limited movement of virus among localities, including a possible east-to-west spread across Africa. In addition, Bayesian coalescent analysis suggested that the Africa 2 lineage was introduced into this region of Africa only recently (probably <200 years ago), in accordance with the timescale of expanding European colonial influence and urbanization, and then spread relatively slowly, perhaps occupying the entire region in a 100 year period.
Rissanen, Ilona; Grimes, Jonathan M.; Pawlowski, Alice; Mäntynen, Sari; Harlos, Karl; Bamford, Jaana K.H.; Stuart, David I.
2013-01-01
Summary It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor. PMID:23623731
2013-01-01
Background The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S. cerevisiae, the four ARN/SIT family members encode siderophore transporters and the two GEX family members encode glutathione extrusion pumps. The evolutionary history of DHA2, ARN and GEX genes, encoding 14-spanner MFS transporters, is reconstructed in this study. Results The translated ORFs of 31 strains from 25 hemiascomycetous species, including 10 pathogenic Candida species, were compared using a local sequence similarity algorithm. The constraining and traversing of a network representing the pairwise similarity data gathered 355 full size proteins and retrieved ARN and GEX family members together with DHA2 transporters, suggesting the existence of a close phylogenetic relationship among these 14-spanner major facilitators. Gene neighbourhood analysis was combined with tree construction methodologies to reconstruct their evolutionary history and 7 DHA2 gene lineages, 5 ARN gene lineages, and 1 GEX gene lineage, were identified. The S. cerevisiae DHA2 proteins Sge1, Azr1, Vba3 and Vba5 co-clustered in a large phylogenetic branch, the ATR1 and YMR279C genes were proposed to be paralogs formed during the Whole Genome Duplication (WGD) whereas the closely related ORF YOR378W resides in its own lineage. Homologs of S. cerevisiae DHA2 vacuolar proteins Vba1, Vba2 and Vba4 occur widespread in the Hemiascomycetes. Arn1/Arn2 homologs were only found in species belonging to the Saccharomyces complex and are more abundant in the pre-WGD species. Arn4 homologs were only found in sub-telomeric regions of species belonging to the Sacharomyces sensu strictu group (SSSG). Arn3 type siderophore transporters are abundant in the Hemiascomycetes and form an ancient gene lineage extending to the filamentous fungi. Conclusions The evolutionary history of DHA2, ARN and GEX genes was reconstructed and a common evolutionary root shared by the encoded proteins is hypothesized. A new protein family, denominated DAG, is proposed to span these three phylogenetic subfamilies of 14-spanner MFS transporters. PMID:24345006
Human Variation in Short Regions Predisposed to Deep Evolutionary Conservation
Loots, Gabriela G.; Ovcharenko, Ivan
2010-01-01
The landscape of the human genome consists of millions of short islands of conservation that are 100% conserved across multiple vertebrate genomes (termed “bricks”), the majority of which are located in noncoding regions. Several hundred thousand bricks are deeply conserved reaching the genomes of amphibians and fish. Deep phylogenetic conservation of noncoding DNA has been reported to be strongly associated with the presence of gene regulatory elements, introducing bricks as a proxy to the functional noncoding landscape of the human genome. Here, we report a significant overrepresentation of bricks in the promoters of transcription factors and developmental genes, where the high level of phylogenetic conservation correlates with an increase in brick overrepresentation. We also found that the presence of a brick dictates a predisposition to evolutionary constraint, with only 0.7% of the amniota brick central nucleotides being diverged within the primate lineage—an 11-fold reduction in the divergence rate compared with random expectation. Human single-nucleotide polymorphism (SNP) data explains only 3% of primate-specific variation in amniota bricks, thus arguing for a widespread fixation of brick mutations within the primate lineage and prior to human radiation. This variation, in turn, might have been utilized as a driving force for primate- and hominoid-specific adaptation. We also discovered a pronounced deviation from the evolutionary predisposition in the human lineage, with over 20-fold increase in the substitution rate at brick SNP sites over expected values. In addition, contrary to typical brick mutations, brick variation commonly encountered in the human population displays limited, if any, signatures of negative selection as measured by the minor allele frequency and population differentiation (F-statistical measure) measures. These observations argue for the plasticity of gene regulatory mechanisms in vertebrates—with evidence of strong purifying selection acting on the gene regulatory landscape of the human genome, where widespread advantageous mutations in putative regulatory elements are likely utilized in functional diversification and adaptation of species. PMID:20093432
Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan
2012-01-01
Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication. PMID:22808219
Zhou, Mi; Yan, Jun; Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan
2012-01-01
HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.
Floral gene resources from basal angiosperms for comparative genomics research
Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H
2005-01-01
Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. PMID:15799777
Derzelle, Sylviane; Aguilar-Bultet, Lisandra; Frey, Joachim
2016-12-01
With the advent of affordable next-generation sequencing (NGS) technologies, major progress has been made in the understanding of the population structure and evolution of the B. anthracis species. Here we report the use of whole genome sequencing and computer-based comparative analyses to characterize six strains belonging to the A.Br.Vollum lineage. These strains were isolated in Switzerland, in 1981, during iterative cases of anthrax involving workers in a textile plant processing cashmere wool from the Indian subcontinent. We took advantage of the hundreds of currently available B. anthracis genomes in public databases, to investigate the genetic diversity existing within the A.Br.Vollum lineage and to position the six Swiss isolates into the worldwide B. anthracis phylogeny. Thirty additional genomes related to the A.Br.Vollum group were identified by whole-genome single nucleotide polymorphism (SNP) analysis, including two strains forming a new evolutionary branch at the basis of the A.Br.Vollum lineage. This new phylogenetic lineage (termed A.Br.H9401) splits off the branch leading to the A.Br.Vollum group soon after its divergence to the other lineages of the major A clade (i.e. 6 SNPs). The available dataset of A.Br.Vollum genomes were resolved into 2 distinct groups. Isolates from the Swiss wool processing facility clustered together with two strains from Pakistan and one strain of unknown origin isolated from yarn. They were clearly differentiated (69 SNPs) from the twenty-five other A.Br.Vollum strains located on the branch leading to the terminal reference strain A0488 of the lineage. Novel analytic assays specific to these new subgroups were developed for the purpose of rapid molecular epidemiology. Whole genome SNP surveys greatly expand upon our knowledge on the sub-structure of the A.Br.Vollum lineage. Possible origin and route of spread of this lineage worldwide are discussed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana
MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian
2015-01-01
The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359
Evolutionary History of the Nesophontidae, the Last Unplaced Recent Mammal Family.
Brace, Selina; Thomas, Jessica A; Dalén, Love; Burger, Joachim; MacPhee, Ross D E; Barnes, Ian; Turvey, Samuel T
2016-12-01
The mammalian evolutionary tree has lost several major clades through recent human-caused extinctions. This process of historical biodiversity loss has particularly affected tropical island regions such as the Caribbean, an area of great evolutionary diversification but poor molecular preservation. The most enigmatic of the recently extinct endemic Caribbean mammals are the Nesophontidae, a family of morphologically plesiomorphic lipotyphlan insectivores with no consensus on their evolutionary affinities, and which constitute the only major recent mammal clade to lack any molecular information on their phylogenetic placement. Here, we use a palaeogenomic approach to place Nesophontidae within the phylogeny of recent Lipotyphla. We recovered the near-complete mitochondrial genome and sequences for 17 nuclear genes from a ∼750-year-old Hispaniolan Nesophontes specimen, and identify a divergence from their closest living relatives, the Solenodontidae, more than 40 million years ago. Nesophontidae is thus an older distinct lineage than many extant mammalian orders, highlighting not only the role of island systems as "museums" of diversity that preserve ancient lineages, but also the major human-caused loss of evolutionary history. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Symbiosis in eukaryotic evolution.
López-García, Purificación; Eme, Laura; Moreira, David
2017-12-07
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of Sex-Specific Traits through Changes in HOX-Dependent doublesex Expression
Tanaka, Kohtaro; Barmina, Olga; Sanders, Laura E.; Arbeitman, Michelle N.; Kopp, Artyom
2011-01-01
Almost every animal lineage is characterized by unique sex-specific traits, implying that such traits are gained and lost frequently in evolution. However, the genetic mechanisms responsible for these changes are not understood. In Drosophila, the activity of the sex determination pathway is restricted to sexually dimorphic tissues, suggesting that spatial regulation of this pathway may contribute to the evolution of sex-specific traits. We examine the regulation and function of doublesex (dsx), the main transcriptional effector of the sex determination pathway, in the development and evolution of Drosophila sex combs. Sex combs are a recent evolutionary innovation and show dramatic diversity in the relatively few Drosophila species that have them. We show that dsx expression in the presumptive sex comb region is activated by the HOX gene Sex combs reduced (Scr), and that the male isoform of dsx up-regulates Scr so that both genes become expressed at high levels in this region in males but not in females. Precise spatial regulation of dsx is essential for defining sex comb position and morphology. Comparative analysis of Scr and dsx expression reveals a tight correlation between sex comb morphology and the expression patterns of both genes. In species that primitively lack sex combs, no dsx expression is observed in the homologous region, suggesting that the origin and diversification of this structure were linked to the gain of a new dsx expression domain. Two other, distantly related fly lineages that independently evolved novel male-specific structures show evolutionary gains of dsx expression in the corresponding tissues, where dsx may also be controlled by Scr. These findings suggest that changes in the spatial regulation of sex-determining genes are a key mechanism that enables the evolution of new sex-specific traits, contributing to some of the most dramatic examples of phenotypic diversification in nature. PMID:21886483
Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia
2015-10-01
Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.
Goudenège, David; Labreuche, Yannick; Krin, Evelyne; Ansquer, Dominique; Mangenot, Sophie; Calteau, Alexandra; Médigue, Claudine; Mazel, Didier; Polz, Martin F; Le Roux, Frédérique
2013-01-01
Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo. PMID:23739050
Connallon, Tim; Clark, Andrew G
2010-12-01
Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Ancient host specificity within a single species of brood parasitic bird
Spottiswoode, Claire N.; Stryjewski, Katherine Faust; Quader, Suhel; Colebrook-Robjent, John F. R.; Sorenson, Michael D.
2011-01-01
Parasites that exploit multiple hosts often experience diversifying selection for host-specific adaptations. This can result in multiple strains of host specialists coexisting within a single parasitic species. A long-standing conundrum is how such sympatric host races can be maintained within a single parasitic species in the face of interbreeding among conspecifics specializing on different hosts. Striking examples are seen in certain avian brood parasites such as cuckoos, many of which show host-specific differentiation in traits such as host egg mimicry. Exploiting a Zambian egg collection amassed over several decades and supplemented by recent fieldwork, we show that the brood parasitic Greater Honeyguide Indicator indicator exhibits host-specific differentiation in both egg size and egg shape. Genetic analysis of honeyguide eggs and chicks show that two highly divergent mitochondrial DNA lineages are associated with ground- and tree-nesting hosts, respectively, indicating perfect fidelity to two mutually exclusive sets of host species for millions of years. Despite their age and apparent adaptive diversification, however, these ancient lineages are not cryptic species; a complete lack of differentiation in nuclear genes shows that mating between individuals reared by different hosts is sufficiently frequent to prevent speciation. These results indicate that host specificity is maternally inherited, that host-specific adaptation among conspecifics can be maintained without reproductive isolation, and that host specificity can be remarkably ancient in evolutionary terms. PMID:21949391
Faucher, Leslie; Hénocq, Laura; Vanappelghem, Cédric; Rondel, Stéphanie; Quevillart, Robin; Gallina, Sophie; Godé, Cécile; Jaquiéry, Julie; Arnaud, Jean-François
2017-09-01
Human activities affect microevolutionary dynamics by inducing environmental changes. In particular, land cover conversion and loss of native habitats decrease genetic diversity and jeopardize the adaptive ability of populations. Nonetheless, new anthropogenic habitats can also promote the successful establishment of emblematic pioneer species. We investigated this issue by examining the population genetic features and evolutionary history of the natterjack toad (Bufo [Epidalea] calamita) in northern France, where populations can be found in native coastal habitats and coalfield habitats shaped by European industrial history, along with an additional set of European populations located outside this focal area. We predicted contrasting patterns of genetic structure, with newly settled coalfield populations departing from migration-drift equilibrium. As expected, coalfield populations showed a mosaic of genetically divergent populations with short-range patterns of gene flow, and native coastal populations indicated an equilibrium state with an isolation-by-distance pattern suggestive of postglacial range expansion. However, coalfield populations exhibited (i) high levels of genetic diversity, (ii) no evidence of local inbreeding or reduced effective population size and (iii) multiple maternal mitochondrial lineages, a genetic footprint depicting independent colonization events. Furthermore, approximate Bayesian computations suggested several evolutionary trajectories from ancient isolation in glacial refugia during the Pleistocene, with biogeographical signatures of recent expansion probably confounded by human-mediated mixing of different lineages. From an evolutionary and conservation perspective, this study highlights the ecological value of industrial areas, provided that ongoing regional gene flow is ensured within the existing lineage boundaries. © 2017 John Wiley & Sons Ltd.
Renz, Adina J.; Meyer, Axel; Kuraku, Shigehiro
2013-01-01
Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon. PMID:23825540
Renz, Adina J; Meyer, Axel; Kuraku, Shigehiro
2013-01-01
Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon.
Early diversification trend and Asian origin for extent bat lineages.
Yu, W; Wu, Y; Yang, G
2014-10-01
Bats are a unique mammalian group, which belong to one of the largest and most diverse mammalian radiations, but their early diversification is still poorly understood, and conflicting hypotheses have emerged regarding their biogeographic history. Understanding their diversification is crucial for untangling the enigmatic evolutionary history of bats. In this study, we elucidated the rate of diversification and the biogeographic history of extant bat lineages using genus-level chronograms. The results suggest that a rapid adaptive radiation persisted from the emergence of crown bats until the Early Eocene Climatic Optimum, whereas there was a major deceleration in diversification around 35-49 Ma. There was a positive association between changes in the palaeotemperature and the net diversification rate until 35 Ma, which suggests that the palaeotemperature may have played an important role in the regulation of ecological opportunities. By contrast, there were unexpectedly higher diversification rates around 25-35 Ma during a period characterized by intense and long-lasting global cooling, which implies that intrinsic innovations or adaptations may have released some lineages from the intense selective pressures associated with these severe conditions. Our reconstruction of the ancestral distribution suggests an Asian origin for bats, thereby indicating that the current panglobal but disjunct distribution pattern of extant bats may be related to events involving seriate cross-continental dispersal and local extinction, as well as the influence of geological events and the expansion and contraction of megathermal rainforests during the Tertiary. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Spiewak, Jessica E.
2014-01-01
Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288
Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage
Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong
2016-01-01
The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris. PMID:27853303
Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage.
Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong
2016-11-17
The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.
Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykidis, Athanasios
2006-12-01
Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymesmore » and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.« less
Foot-and-Mouth Disease in the Middle East Caused by an A/ASIA/G-VII Virus Lineage, 2015-2016.
Bachanek-Bankowska, Katarzyna; Di Nardo, Antonello; Wadsworth, Jemma; Henry, Elisabeth K M; Parlak, Ünal; Timina, Anna; Mischenko, Alexey; Qasim, Ibrahim Ahmad; Abdollahi, Darab; Sultana, Munawar; Hossain, M Anwar; King, Donald P; Knowles, Nick J
2018-06-01
Phylogenetic analyses of foot-and-mouth disease type A viruses in the Middle East during 2015-2016 identified viruses belonging to the A/ASIA/G-VII lineage, which originated in the Indian subcontinent. Changes in a critical antigenic site within capsid viral protein 1 suggest possible evolutionary pressure caused by an intensive vaccination program.
Anantha M. Prasad; Kevin M. Potter
2017-01-01
Eastern hemlock (Tsuga canadensis) occupies a large swath of eastern North America and has historically undergone range expansion and contraction resulting in several genetically separate lineages. This conifer is currently experiencing mortality across most of its range following infestation of a non-native insect. With the goal of better...
Luna-Ramirez, Karen; Miller, Adam D.
2017-01-01
Background Australian scorpions have received far less attention from researchers than their overseas counterparts. Here we provide the first insight into the molecular variation and evolutionary history of the endemic Australian scorpion Urodacus yaschenkoi. Also known as the inland robust scorpion, it is widely distributed throughout arid zones of the continent and is emerging as a model organism in biomedical research due to the chemical nature of its venom. Methods We employed Bayesian Inference (BI) methods for the phylogenetic reconstructions and divergence dating among lineages, using unique haplotype sequences from two mitochondrial loci (COXI, 16S) and one nuclear locus (28S). We also implemented two DNA taxonomy approaches (GMYC and PTP/dPTP) to evaluate the presence of cryptic species. Linear Discriminant Analysis was used to test whether the linear combination of 21 variables (ratios of morphological measurements) can predict individual’s membership to a putative species. Results Genetic and morphological data suggest that U. yaschenkoi is a species complex. High statistical support for the monophyly of several divergent lineages was found both at the mitochondrial loci and at a nuclear locus. The extent of mitochondrial divergence between these lineages exceeds estimates of interspecific divergence reported for other scorpion groups. The GMYC model and the PTP/bPTP approach identified major lineages and several sub-lineages as putative species. Ratios of several traits that approximate body shape had a strong predictive power (83–100%) in discriminating two major molecular lineages. A time-calibrated phylogeny dates the early divergence at the onset of continental-wide aridification in late Miocene and Pliocene, with finer-scale phylogeographic patterns emerging during the Pleistocene. This structuring dynamics is congruent with the diversification history of other fauna of the Australian arid zones. Discussion Our results indicate that the taxonomic status of U. yaschenkoi requires revision, and we provide recommendations for such future efforts. A complex evolutionary history and extensive diversity highlights the importance of conserving U. yaschenkoi populations from different Australian arid zones in order to preserve patterns of endemism and evolutionary potential. PMID:28123903
Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes
Near, Thomas J.; Dornburg, Alex; Eytan, Ron I.; Keck, Benjamin P.; Smith, W. Leo; Kuhn, Kristen L.; Moore, Jon A.; Price, Samantha A.; Burbrink, Frank T.; Friedman, Matt; Wainwright, Peter C.
2013-01-01
Spiny-rayed fishes, or acanthomorphs, comprise nearly one-third of all living vertebrates. Despite their dominant role in aquatic ecosystems, the evolutionary history and tempo of acanthomorph diversification is poorly understood. We investigate the pattern of lineage diversification in acanthomorphs by using a well-resolved time-calibrated phylogeny inferred from a nuclear gene supermatrix that includes 520 acanthomorph species and 37 fossil age constraints. This phylogeny provides resolution for what has been classically referred to as the “bush at the top” of the teleost tree, and indicates acanthomorphs originated in the Early Cretaceous. Paleontological evidence suggests acanthomorphs exhibit a pulse of morphological diversification following the end Cretaceous mass extinction; however, the role of this event on the accumulation of living acanthomorph diversity remains unclear. Lineage diversification rates through time exhibit no shifts associated with the end Cretaceous mass extinction, but there is a global decrease in lineage diversification rates 50 Ma that occurs during a period when morphological disparity among fossil acanthomorphs increases sharply. Analysis of clade-specific shifts in diversification rates reveal that the hyperdiversity of living acanthomorphs is highlighted by several rapidly radiating lineages including tunas, gobies, blennies, snailfishes, and Afro-American cichlids. These lineages with high diversification rates are not associated with a single habitat type, such as coral reefs, indicating there is no single explanation for the success of acanthomorphs, as exceptional bouts of diversification have occurred across a wide array of marine and freshwater habitats. PMID:23858462
Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes
Richardson, Dale N; Simmons, Mark P; Reddy, Anireddy SN
2006-01-01
Background Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. Results We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. Conclusion The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the functional diversification of kinesins. Results from our gene-tree analyses indicate that there was tremendous lineage-specific duplication and diversification of kinesins in eukaryotes. Since the functions of only a few plant kinesins are reported in the literature, this comprehensive comparative analysis will be useful in designing functional studies with photosynthetic eukaryotes. PMID:16448571
Evolution of endemism on a young tropical mountain.
Merckx, Vincent S F T; Hendriks, Kasper P; Beentjes, Kevin K; Mennes, Constantijn B; Becking, Leontine E; Peijnenburg, Katja T C A; Afendy, Aqilah; Arumugam, Nivaarani; de Boer, Hugo; Biun, Alim; Buang, Matsain M; Chen, Ping-Ping; Chung, Arthur Y C; Dow, Rory; Feijen, Frida A A; Feijen, Hans; Feijen-van Soest, Cobi; Geml, József; Geurts, René; Gravendeel, Barbara; Hovenkamp, Peter; Imbun, Paul; Ipor, Isa; Janssens, Steven B; Jocqué, Merlijn; Kappes, Heike; Khoo, Eyen; Koomen, Peter; Lens, Frederic; Majapun, Richard J; Morgado, Luis N; Neupane, Suman; Nieser, Nico; Pereira, Joan T; Rahman, Homathevi; Sabran, Suzana; Sawang, Anati; Schwallier, Rachel M; Shim, Phyau-Soon; Smit, Harry; Sol, Nicolien; Spait, Maipul; Stech, Michael; Stokvis, Frank; Sugau, John B; Suleiman, Monica; Sumail, Sukaibin; Thomas, Daniel C; van Tol, Jan; Tuh, Fred Y Y; Yahya, Bakhtiar E; Nais, Jamili; Repin, Rimi; Lakim, Maklarin; Schilthuizen, Menno
2015-08-20
Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
Frankixalus, a New Rhacophorid Genus of Tree Hole Breeding Frogs with Oophagous Tadpoles
Biju, S. D.; Mahony, Stephen; Kamei, Rachunliu G.; Thomas, Ashish; Shouche, Yogesh; Raxworthy, Christopher J.; Meegaskumbura, Madhava; Bocxlaer, Ines Van
2016-01-01
Despite renewed interest in the biogeography and evolutionary history of Old World tree frogs (Rhacophoridae), this family still includes enigmatic frogs with ambiguous phylogenetic placement. During fieldwork in four northeastern states of India, we discovered several populations of tree hole breeding frogs with oophagous tadpoles. We used molecular data, consisting of two nuclear and three mitochondrial gene fragments for all known rhacophorid genera, to investigate the phylogenetic position of these new frogs. Our analyses identify a previously overlooked, yet distinct evolutionary lineage of frogs that warrants recognition as a new genus and is here described as Frankixalus gen. nov. This genus, which contains the enigmatic ‘Polypedates’ jerdonii described by Günther in 1876, forms the sister group of a clade containing Kurixalus, Pseudophilautus, Raorchestes, Mercurana and Beddomixalus. The distinctiveness of this evolutionary lineage is also corroborated by the external morphology of adults and tadpoles, adult osteology, breeding ecology, and life history features. PMID:26790105
Stickleback fishes: Bridging the gap between population biology and paleobiology.
Bell, M A
1988-12-01
Integration of evolutionary mechanisms and phylogeny requires study of phenotypes that change in the fossil record and continue to evolve in extant populations. Pelvic reduction in the three-spined stickle-back has evolved rapidly in a Miocene fossil assemblage and in numerous extant isolated lake populations throughout its distribution. Although pelvic reduction is caused by selection, expression of reduced pelvic phenotypes is constrained by development and other factors. However, lineages with pelvis reduction rapidly go extinct while lineages that retain the fully formed pelvic girdle tend to persist. Existence of pelvic reduction since the Miocene has depended on an equilibrium between divergence and extinction. The phylogenetic topology resulting from this process differs greatly from the conventional view of evolutionary history, and could only be recognized by analysis of both extant populations and fossil material. If this phylogenetic topology is common, it may help to account for the different perceptions that population biologists and paleobiologists have of evolutionary tempo. Copyright © 1988. Published by Elsevier Ltd.
Arms races between and within species.
Dawkins, R; Krebs, J R
1979-09-21
An adaptation in one lineage (e.g. predators) may change the selection pressure on another lineage (e.g. prey), giving rise to a counter-adaptation. If this occurs reciprocally, an unstable runaway escalation or 'arms race' may result. We discuss various factors which might give one side an advantage in an arms race. For example, a lineage under strong selection may out-evolve a weakly selected one (' the life-dinner principle'). We then classify arms races in two independent ways. They may be symmetric or asymmetric, and they may be interspecific or intraspecific. Our example of an asymmetric interspecific arms race is that between brood parasites and their hosts. The arms race concept may help to reduce the mystery of why cuckoo hosts are so good at detecting cuckoo eggs, but so bad at detecting cuckoo nestlings. The evolutionary contest between queen and worker ants over relative parental investment is a good example of an intraspecific asymmetric arms race. Such cases raise special problems because the participants share the same gene pool. Interspecific symmetric arms races are unlikely to be important, because competitors tend to diverge rather than escalate competitive adaptations. Intraspecific symmetric arms races, exemplified by adaptations for male-male competition, may underlie Cope's Rule and even the extinction of lineages. Finally we consider ways in which arms races can end. One lineage may drive the other to extinction; one may reach an optimum, thereby preventing the other from doing so; a particularly interesting possibility, exemplified by flower-bee coevolution, is that both sides may reach a mutual local optimum; lastly, arms races may have no stable and but may cycle continuously. We do not wish necessarily to suggest that all, or even most, evolutionary change results from arms races, but we do suggest that the arms race concept may help to resolve three long-standing questions in evolutionary theory.
Wilson, Jeremy D; Hughes, Jane M; Raven, Robert J; Rix, Michael G; Schmidt, Daniel J
2018-05-01
Spiders of the infraorder Mygalomorphae are fast becoming model organisms for the study of biogeography and speciation. However, these spiders can be difficult to study in the absence of fundamental life history information. In particular, their cryptic nature hinders comprehensive sampling, and linking males with conspecific females can be challenging. Recently discovered differences in burrow entrance architecture and male morphology indicated that these challenges may have impeded our understanding of the trapdoor spider genus Euoplos in Australia's eastern mesic zone. We investigated the evolutionary significance of these discoveries using a multi-locus phylogenetic approach. Our results revealed the existence of a second, previously undocumented, lineage of Euoplos in the eastern mesic zone. This new lineage occurs in sympatry with a lineage previously known from the region, and the two are consistently divergent in their burrow entrance architecture and male morphology, revealing the suitability of these characters for use in phylogenetic studies. Divergent burrow entrance architecture and observed differences in microhabitat preferences are suggested to facilitate sympatry and syntopy between the lineages. Finally, by investigating male morphology and plotting it onto the phylogeny, we revealed that the majority of Euoplos species remain undescribed, and that males of an unnamed species from the newly discovered lineage had historically been linked, erroneously, to a described species from the opposite lineage. This paper clarifies the evolutionary relationships underlying life history diversity in the Euoplos of eastern Australia, and provides a foundation for urgently needed taxonomic revision of this genus. Copyright © 2018 Elsevier Inc. All rights reserved.
Integrating Evolutionary and Molecular Genetics of Aging
Flatt, Thomas; Schmidt, Paul S.
2010-01-01
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940’s and 1950’s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980’s and 1990’s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging. PMID:19619612
Integrating evolutionary and molecular genetics of aging.
Flatt, Thomas; Schmidt, Paul S
2009-10-01
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.
Lozier, Jeffrey D; Roderick, George K; Mills, Nicholas J
2007-06-01
Over the past several decades biologists' fascination with plant-herbivore interactions has generated intensive research into the implications of these interactions for insect diversification. The study of closely related phytophagous insect species or populations from an evolutionary perspective can help illuminate ecological and selective forces that drive these interactions. Here we present such an analysis for aphids in the genus Hyalopterus (Hemiptera: Aphididae), a cosmopolitan group that feeds on plants in the genus Prunus (Rosaceae). Hyalopterus currently contains two recognized species associated with different Prunus species, although the taxonomy and evolutionary history of the group is poorly understood. Using mitochondrial COI sequences, 16S rDNA sequences from the aphid endosymbiont Buchnera aphidicola, and nine microsatellite loci we investigated population structure in Hyalopterus from the most commonly used Prunus host species throughout the Mediterranean as well as in California, where the species H. pruni is an invasive pest. We found three deeply divergent lineages structured in large part by specific associations with plum, almond, and peach trees. There was no evidence that geographic or temporal barriers could explain the overall diversity in the genus. Levels of genetic differentiation are consistent with that typically attributed to aphid species and indicate divergence times older than the domestication of Prunus for agriculture. Interestingly, in addition to their typical hosts, aphids from each of the three lineages were frequently found on apricot trees. Apricot also appears to act as a resource mediated hybrid zone for plum and almond associated lineages. Together, results suggest that host plants have played a role in maintaining host-associated differentiation in Hyalopterus for as long as several million years, despite worldwide movement of host plants and the potential for ongoing hybridization.
Ancient Complexity, Opisthokont Plasticity, and Discovery of the 11th Subfamily of Arf GAP Proteins
Schlacht, Alexander; Mowbrey, Kevin; Elias, Marek; Kahn, Richard A.; Dacks, Joel B.
2013-01-01
The organelle paralogy hypothesis is one model for the acquisition of non-endosymbiotic organelles, generated from molecular evolutionary analyses of proteins encoding specificity in the membrane traffic system. GTPase Activating Proteins (GAPs) for the ADP-ribosylation factor (Arfs) GTPases are additional regulators of the kinetics and fidelity of membrane traffic. Here we describe molecular evolutionary analyses of Arf GAP protein family. Of the ten subfamilies previously defined in humans, we find that five were likely present in the Last Eukaryotic Common Ancestor (LECA). Of the three more recently derived subfamilies, one was likely present in the ancestor of opisthokonts (animals and fungi) and apusomonads (flagellates classified as the sister lineage to opisthokonts), while two arose in the holozoan lineage. We also propose to have identified a novel ancient subfamily (ArfGAPC2), present in diverse eukaryotes but which is lost frequently, including in the opisthokonts. Surprisingly few ancient domains accompanying the ArfGAP domain were identified, in marked contrast to the extensively decorated human Arf GAPs. Phylogenetic analyses of the subfamilies reveal patterns of single and multiple gene duplications specific to the Holozoa, to some degree mirroring evolution of Arf GAP targets, the Arfs. Conservation, and lack thereof, of various residues in the ArfGAP structure provide contextualization of previously identified functional amino acids and their application to Arf GAP biology in general. Overall, our results yield insights into current Arf GAP biology, reveal complexity in the ancient eukaryotic ancestor, and integrate the Arf GAP family into a proposed mechanism for the evolution of non-endosymbiotic organelles. PMID:23433073
Memon, Abdul R
2009-01-01
Small GTP-binding genes act as molecular switches regulating myriad of cellular processes including vesicle-mediated intracellular trafficking, signal transduction, cytoskeletal reorganization and cell division in plants and animals. Even though these genes are well conserved both functionally and sequentially across whole Eukaryotae, occasional lineage-specific diversification in some plant species in terms of both functional and expressional characteristics have been reported. Hence, comparative phyletic and correlative functional analyses of legume small GTPases homologs with the genes from other Metazoa and Embryophyta species would be very beneficial for gleaning out the small GTPases that could have specialized in legume-specific processes; e.g., nodulation. The completion of genome sequences of two model legumes, Medicago truncatula and Lotus japonicus will significantly improve our knowledge about mechanism of biological processes taking place in legume-rhizobia symbiotic associations. Besides, the need for molecular switches coordinating busy cargo-trafficking between symbiosis partners would suggest a possible subfunctionalization of small GTPases in Fabaceae for these functions. Therefore, more detailed investigation into the functional characteristics of legume small GTPases would be helpful for the illumination of the events initialized with the perception of bacteria by host, followed by the formation of infection thread and the engulfment of rhizobial bacteria, and end with the senescence of nitrogen-fixing organelles, nodules. In summary, a more thorough functional and evolutionary characterization of small GTPases across the main lineages of Embryophyta is significant for better comprehension of evolutionary history of Plantae, that is because, these genes are associated with multitude of vital biological processes including organogenesis. PMID:19794839
Marie, Benjamin; Jackson, Daniel J; Ramos-Silva, Paula; Zanella-Cléon, Isabelle; Guichard, Nathalie; Marin, Frédéric
2013-01-01
Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3) deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we present an analysis of SMPs isolated form the CaCO(3) shell of the limpet Lottia gigantea, a gastropod that constructs an aragonitic cross-lamellar shell. We identified 39 SMPs by combining proteomic analysis with genomic and transcriptomic database interrogations. Among these proteins are various low-complexity domain-containing proteins, enzymes such as peroxidases, carbonic anhydrases and chitinases, acidic calcium-binding proteins and protease inhibitors. This list is likely to contain the most abundant SMPs of the shell matrix. It reveals the presence of both highly conserved and lineage-specific biomineralizing proteins. This mosaic evolutionary pattern suggests that there may be an ancestral molluscan SMP set upon which different conchiferan lineages have elaborated to produce the diversity of shell microstructures we observe nowadays. © 2012 The Authors Journal compilation © 2012 FEBS.
Kumar, Narender; Mariappan, Vanitha; Baddam, Ramani; Lankapalli, Aditya K; Shaik, Sabiha; Goh, Khean-Lee; Loke, Mun Fai; Perkins, Tim; Benghezal, Mohammed; Hasnain, Seyed E; Vadivelu, Jamuna; Marshall, Barry J; Ahmed, Niyaz
2015-01-01
The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Change and aging senescence as an adaptation.
Martins, André C R
2011-01-01
Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual, and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will be between parents and their progeny; iii) optimal conditions are not stationary, and mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces can sometimes win over group selection ones, it is not exactly the individual that is selected but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.
Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.
Markunas, Chelsea M; Triemer, Richard E
2016-05-01
Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.
Laterality and the evolution of the prefronto-cerebellar system in anthropoids.
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-06-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. © 2013 New York Academy of Sciences.
The eastern migratory caribou: the role of genetic introgression in ecotype evolution.
Klütsch, Cornelya F C; Manseau, Micheline; Trim, Vicki; Polfus, Jean; Wilson, Paul J
2016-02-01
Understanding the evolutionary history of contemporary animal groups is essential for conservation and management of endangered species like caribou (Rangifer tarandus). In central Canada, the ranges of two caribou subspecies (barren-ground/woodland caribou) and two woodland caribou ecotypes (boreal/eastern migratory) overlap. Our objectives were to reconstruct the evolutionary history of the eastern migratory ecotype and to assess the potential role of introgression in ecotype evolution. STRUCTURE analyses identified five higher order groups (i.e. three boreal caribou populations, eastern migratory ecotype and barren-ground). The evolutionary history of the eastern migratory ecotype was best explained by an early genetic introgression from barren-ground into a woodland caribou lineage during the Late Pleistocene and subsequent divergence of the eastern migratory ecotype during the Holocene. These results are consistent with the retreat of the Laurentide ice sheet and the colonization of the Hudson Bay coastal areas subsequent to the establishment of forest tundra vegetation approximately 7000 years ago. This historical reconstruction of the eastern migratory ecotype further supports its current classification as a conservation unit, specifically a Designatable Unit, under Canada's Species at Risk Act. These findings have implications for other sub-specific contact zones for caribou and other North American species in conservation unit delineation.
The eastern migratory caribou: the role of genetic introgression in ecotype evolution
Klütsch, Cornelya F. C.; Manseau, Micheline; Trim, Vicki; Polfus, Jean; Wilson, Paul J.
2016-01-01
Understanding the evolutionary history of contemporary animal groups is essential for conservation and management of endangered species like caribou (Rangifer tarandus). In central Canada, the ranges of two caribou subspecies (barren-ground/woodland caribou) and two woodland caribou ecotypes (boreal/eastern migratory) overlap. Our objectives were to reconstruct the evolutionary history of the eastern migratory ecotype and to assess the potential role of introgression in ecotype evolution. STRUCTURE analyses identified five higher order groups (i.e. three boreal caribou populations, eastern migratory ecotype and barren-ground). The evolutionary history of the eastern migratory ecotype was best explained by an early genetic introgression from barren-ground into a woodland caribou lineage during the Late Pleistocene and subsequent divergence of the eastern migratory ecotype during the Holocene. These results are consistent with the retreat of the Laurentide ice sheet and the colonization of the Hudson Bay coastal areas subsequent to the establishment of forest tundra vegetation approximately 7000 years ago. This historical reconstruction of the eastern migratory ecotype further supports its current classification as a conservation unit, specifically a Designatable Unit, under Canada’s Species at Risk Act. These findings have implications for other sub-specific contact zones for caribou and other North American species in conservation unit delineation. PMID:26998320
Yegorov, Sergey; Bogerd, Jan; Good, Sara V
2014-12-01
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.
Mansion, Guilhem; Parolly, Gerald; Crowl, Andrew A.; Mavrodiev, Evgeny; Cellinese, Nico; Oganesian, Marine; Fraunhofer, Katharina; Kamari, Georgia; Phitos, Dimitrios; Haberle, Rosemarie; Akaydin, Galip; Ikinci, Nursel; Raus, Thomas; Borsch, Thomas
2012-01-01
Background Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions. Methodology/Principal Findings Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates. Conclusions/Significance A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades. PMID:23209646
Life on the rocks: Multilocus phylogeography of rock hyrax (Procavia capensis) from southern Africa.
Maswanganye, K Amanda; Cunningham, Michael J; Bennett, Nigel C; Chimimba, Christian T; Bloomer, Paulette
2017-09-01
Understanding the role of geography and climatic cycles in determining patterns of biodiversity is important in comparative and evolutionary biology and conservation. We studied the phylogeographic pattern and historical demography of a rock-dwelling small mammal species from southern Africa, the rock hyrax Procavia capensis capensis. Using a multilocus coalescent approach, we assessed the influence of strong habitat dependence and fluctuating regional climates on genetic diversity. We sequenced a mitochondrial gene (cytochrome b) and two nuclear introns (AP5, PRKC1) supplemented with microsatellite genotyping, in order to assess evolutionary processes over multiple temporal scales. In addition, distribution modelling was used to investigate the current and predicted distribution of the species under different climatic scenarios. Collectively, the data reveal a complex history of isolation followed by secondary contact shaping the current intraspecific diversity. The cyt b sequences confirmed the presence of two previously proposed geographically and genetically distinct lineages distributed across the southern African Great Escarpment and north-western mountain ranges. Molecular dating suggests Miocene divergence of the lineages, yet there are no discernible extrinsic barriers to gene flow. The nuclear markers reveal incomplete lineage sorting or ongoing mixing of the two lineages. Although the microsatellite data lend some support to the presence of two subpopulations, there is weak structuring within and between lineages. These data indicate the presence of gene flow from the northern into the southern parts of the southern African sub-region likely following the secondary contact. The distribution modelling predictably reveal the species' preference for rocky areas, with stable refugia through time in the northern mountain ranges, the Great Escarpment, as well as restricted areas of the Northern Cape Province and the Cape Fold Mountains of South Africa. Different microclimatic variables appear to determine the distributional range of the species. Despite strong habitat preference, the micro-habitat offered by rocky crevices and unique life history traits likely promoted the adaptability of P. capensis, resulting in the widespread distribution and persistence of the species over a long evolutionary period. Spatio-temporal comparison of the evolutionary histories of other co-distributed species across the rocky landscapes of southern Africa will improve our understanding of the regional patterns of biodiversity and local endemism. Copyright © 2017 Elsevier Inc. All rights reserved.
Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S
2009-01-01
Background Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Results Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Conclusion Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are closely related to each other, but the precise branching order within the Gymnodinium sensu stricto clade remains unresolved. We regard the ocelloid as the best synapomorphy for warnowiids and infer that the most recent common ancestor of polykrikoids and warnowiids possessed both nematocysts and photosynthetic plastids that were subsequently lost during the early evolution of warnowiids. Our summary of species and genus concepts in warnowiids demonstrate that the systematics of this poorly understood group is highly problematic and a comprehensive revision is needed. PMID:19467154
Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S
2009-05-25
Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are closely related to each other, but the precise branching order within the Gymnodinium sensu stricto clade remains unresolved. We regard the ocelloid as the best synapomorphy for warnowiids and infer that the most recent common ancestor of polykrikoids and warnowiids possessed both nematocysts and photosynthetic plastids that were subsequently lost during the early evolution of warnowiids. Our summary of species and genus concepts in warnowiids demonstrate that the systematics of this poorly understood group is highly problematic and a comprehensive revision is needed.
Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds
Sunagar, Kartik; Undheim, Eivind A. B.; Chan, Angelo H. C.; Koludarov, Ivan; Muñoz-Gómez, Sergio A.; Antunes, Agostinho; Fry, Bryan G.
2013-01-01
The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection. Recognition of the true biocomplexity is further hampered by the limited taxon selection, with easy to obtain or medically important species typically being the subject of intense venom research, relative to the actual taxonomical diversity in nature. This holds true for scorpions, which are one of the most ancient terrestrial venomous animal lineages. The family Buthidae that includes all the medically significant species has been intensely investigated around the globe, while almost completely ignoring the remaining non-buthid families. Australian scorpion lineages, for instance, have been completely neglected, with only a single scorpion species (Urodacus yaschenkoi) having its venom transcriptome sequenced. Hence, the lack of venom composition and toxin sequence information from an entire continent’s worth of scorpions has impeded our understanding of the molecular evolution of scorpion venom. The molecular origin, phylogenetic relationships and evolutionary histories of most scorpion toxin scaffolds remain enigmatic. In this study, we have sequenced venom gland transcriptomes of a wide taxonomical diversity of scorpions from Australia, including buthid and non-buthid representatives. Using state-of-art molecular evolutionary analyses, we show that a majority of CSα/β toxin scaffolds have experienced episodic influence of positive selection, while most non-CSα/β linear toxins evolve under the extreme influence of negative selection. For the first time, we have unraveled the molecular origin of the major scorpion toxin scaffolds, such as scorpion venom single von Willebrand factor C-domain peptides (SV-SVC), inhibitor cystine knot (ICK), disulphide-directed beta-hairpin (DDH), bradykinin potentiating peptides (BPP), linear non-disulphide bridged peptides and antimicrobial peptides (AMP). We have thus demonstrated that even neglected lineages of scorpions are a rich pool of novel biochemical components, which have evolved over millions of years to target specific ion channels in prey animals, and as a result, possess tremendous implications in therapeutics. PMID:24351712
Classification of Cowpox Viruses into Several Distinct Clades and Identification of a Novel Lineage
Franke, Annika; Pfaff, Florian; Jenckel, Maria; Hoffmann, Bernd; Höper, Dirk; Antwerpen, Markus; Meyer, Hermann; Beer, Martin; Hoffmann, Donata
2017-01-01
Cowpox virus (CPXV) was considered as uniform species within the genus Orthopoxvirus (OPV). Previous phylogenetic analysis indicated that CPXV is polyphyletic and isolates may cluster into different clades with two of these clades showing genetic similarities to either variola (VARV) or vaccinia viruses (VACV). Further analyses were initiated to assess both the genetic diversity and the evolutionary background of circulating CPXVs. Here we report the full-length sequences of 20 CPXV strains isolated from different animal species and humans in Germany. A phylogenetic analysis of altogether 83 full-length OPV genomes confirmed the polyphyletic character of the species CPXV and suggested at least four different clades. The German isolates from this study mainly clustered into two CPXV-like clades, and VARV- and VACV-like strains were not observed. A single strain, isolated from a cotton-top tamarin, clustered distantly from all other CPXVs and might represent a novel and unique evolutionary lineage. The classification of CPXV strains into clades roughly followed their geographic origin, with the highest clade diversity so far observed for Germany. Furthermore, we found evidence for recombination between OPV clades without significant disruption of the observed clustering. In conclusion, this analysis markedly expands the number of available CPXV full-length sequences and confirms the co-circulation of several CPXV clades in Germany, and provides the first data about a new evolutionary CPXV lineage. PMID:28604604
Bocak, Ladislav; Bocakova, Milada; Hunt, Toby; Vogler, Alfried P
2008-01-01
Neoteny, the maintenance of larval features in sexually mature adults, is a radical way of generating evolutionary novelty through shifts in relative timing of developmental programmes. While controlled by the environment in facultative neotenics, retention of larval features is obligatory in many species of Lycidae (net-winged beetles). They are studied here as an example of how developmental shifts and ecology interact to produce macroevolutionary impacts. We conducted a phylogenetic analysis of Lycidae based on DNA sequences from nuclear (18S and 28S rRNA) and mitochondrial (rrnL, cox1, cob and nad5) genes from a representative set of lineages (73 species), including 17 neotenic taxa. Major changes of basal relationships compared with those implied in the current classification generally supported three independent origins of neotenics in Lycidae. The southeast Asian Lyropaeinae and Ateliinae were in basal positions indicating evolutionary antiquity, also confirmed by molecular clock estimates, unlike the neotropical leptolycines nested within Calopterini and presumably much younger. neotenics exhibit typical K-selected traits including slow development, large body size, high investment in offspring and low dispersal. This correlated with low species richness and restricted ranges of neotenic lineages compared with their sisters. Yet, these factors did not impede the evolutionary persistence of affected lineages, even without reversals to fully metamorphosed forms, contradicting earlier suggestions of recent evolution from dispersive non-neotenics. PMID:18477542
Caraballo, Diego A; Abruzzese, Giselle A; Rossi, María Susana
2012-06-01
Tuco-tucos (small subterranean rodents of the genus Ctenomys) that inhabit sandy soils of the area under the influence of the second largest wetland of South America, in Northeastern Argentina (Corrientes province), are a complex of species and forms whose taxonomic status were not defined, nor are the evolutionary relationships among them. The tuco-tuco populations of this area exhibit one of the most ample grades of chromosomal variability within the genus. In order to analyze evolutionary relationships within the Corrientes group and its chromosomal variability, we completed the missing karyotypic information and performed a phylogenetic analysis. We obtained partial sequences of three mitochondrial markers: D-loop, cytochrome b and cytochrome oxidase I. The Corrientes group was monophyletic and split into three main clades that grouped related karyomorphs. The phylogeny suggested an ancestral condition of the karyomorph with diploid number (2n) 70 and fundamental number (FN) 84 that has evolved mainly via reductions of the FN although amplifications occurred in certain lineages. We discuss the relationship between patterns of chromosomal variability and species and groups boundaries. From the three main clades the one named iberá exhibited a remarkable karyotypic homogeneity, and could be considered as an independent and cohesive evolutionary lineage. On the contrary, the former recognized species C. dorbignyi is a polyphyletic lineage and hence its systematic classification should be reviewed.
Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk
2013-01-01
WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197
Pitteloud, Camille; Arrigo, Nils; Suchan, Tomasz; Mastretta-Yanes, Alicia; Dincă, Vlad; Hernández-Roldán, Juan; Brockmann, Ernst; Chittaro, Yannick; Kleckova, Irena; Fumagalli, Luca; Buerki, Sven; Pellissier, Loïc
2017-01-01
Understanding how speciation relates to ecological divergence has long fascinated biologists. It is assumed that ecological divergence is essential to sympatric speciation, as a mechanism to avoid competition and eventually lead to reproductive isolation, while divergence in allopatry is not necessarily associated with niche differentiation. The impact of the spatial context of divergence on the evolutionary rates of abiotic dimensions of the ecological niche has rarely been explored for an entire clade. Here, we compare the magnitude of climatic niche shifts between sympatric versus allopatric divergence of lineages in butterflies. By combining next-generation sequencing, parametric biogeography and ecological niche analyses applied to a genus-wide phylogeny of Palaearctic Pyrgus butterflies, we compare evolutionary rates along eight climatic dimensions across sister lineages that diverged in large-scale sympatry versus allopatry. In order to examine the possible effects of the spatial scale at which sympatry is defined, we considered three sets of biogeographic assignments, ranging from narrow to broad definition. Our findings suggest higher rates of niche evolution along all climatic dimensions for sister lineages that diverge in sympatry, when using a narrow delineation of biogeographic areas. This result contrasts with significantly lower rates of climatic niche evolution found in cases of allopatric speciation, despite the biogeographic regions defined here being characterized by significantly different climates. Higher rates in allopatry are retrieved when biogeographic areas are too widely defined—in such a case allopatric events may be recorded as sympatric. Our results reveal the macro-evolutionary significance of abiotic niche differentiation involved in speciation processes within biogeographic regions, and illustrate the importance of the spatial scale chosen to define areas when applying parametric biogeographic analyses. PMID:28404781
Galván-Quesada, Sesángari; Doadrio, Ignacio; Alda, Fernando; Perdices, Anabel; Reina, Ruth Gisela; García Varela, Martín; Hernández, Natividad; Campos Mendoza, Antonio; Bermingham, Eldredge; Domínguez-Domínguez, Omar
2016-01-01
Species of the genus Dormitator, also known as sleepers, are representatives of the amphidromous freshwater fish fauna that inhabit the tropical and subtropical coastal environments of the Americas and Western Africa. Because of the distribution of this genus, it could be hypothesized that the evolutionary patterns in this genus, including a pair of geminate species across the Central American Isthmus, could be explained by vicariance following the break-up of Gondwana. However, the evolutionary history of this group has not been evaluated. We constructed a time-scaled molecular phylogeny of Dormitator using mitochondrial (Cytochrome b) and nuclear (Rhodopsin and β-actin) DNA sequence data to infer and date the cladogenetic events that drove the diversification of the genus and to relate them to the biogeographical history of Central America. Two divergent lineages of Dormitator were recovered: one that included all of the Pacific samples and another that included all of the eastern and western Atlantic samples. In contrast to the Pacific lineage, which showed no phylogeographic structure, the Atlantic lineage was geographically structured into four clades: Cameroon, Gulf of Mexico, West Cuba and Caribbean, showing evidence of potential cryptic species. The separation of the Pacific and Atlantic lineages was estimated to have occurred ~1 million years ago (Mya), whereas the four Atlantic clades showed mean times of divergence between 0.2 and 0.4 Mya. The splitting times of Dormitator between ocean basins are similar to those estimated for other geminate species pairs with shoreline estuarine preferences, which may indicate that the common evolutionary histories of the different clades are the result of isolation events associated with the closure of the Central American Isthmus and the subsequent climatic and oceanographic changes. PMID:27074006
Evolutionary history of African mongoose rabies.
Van Zyl, N; Markotter, W; Nel, L H
2010-06-01
Two biotypes or variants of rabies virus (RABV) occur in southern Africa. These variants are respectively adapted to hosts belonging to the Canidae family (the canid variant) and hosts belonging to the Herpestidae family (the mongoose variant). Due to the distinct host adaptation and differences in epidemiology and pathogenesis, it has been hypothesized that the two variants were introduced into Africa at different times. The objective of this study was to investigate the molecular phylogeny of representative RABV isolates of the mongoose variant towards a better understanding of the origins of this group. The study was based on an analysis of the full nucleoprotein and glycoprotein gene sequences of a panel of 27 viruses. Phylogenetic analysis of this dataset confirmed extended evolutionary adaptation of isolates in specific geographic areas. The evolutionary dynamics of this virus variant was investigated using Bayesian methodology, allowing for rate variation among viral lineages. Molecular clock analysis estimated the age of the African mongoose RABV to be approximately 200 years old, which is in concurrence with literature describing rabies in mongooses since the early 1800 s. (c) 2010 Elsevier B.V. All rights reserved.
Extreme halophilic archaea derive from two distinct methanogen Class II lineages.
Aouad, Monique; Taib, Najwa; Oudart, Anne; Lecocq, Michel; Gouy, Manolo; Brochier-Armanet, Céline
2018-04-20
Phylogenetic analyses of conserved core genes have disentangled most of the ancient relationships in Archaea. However, some groups remain debated, like the DPANN, a deep-branching super-phylum composed of nanosized archaea with reduced genomes. Among these, the Nanohaloarchaea require high-salt concentrations for growth. Their discovery in 2012 was significant because they represent, together with Halobacteria (a Class belonging to Euryarchaeota), the only two described lineages of extreme halophilic archaea. The phylogenetic position of Nanohaloarchaea is highly debated, being alternatively proposed as the sister-lineage of Halobacteria or a member of the DPANN super-phylum. Pinpointing the phylogenetic position of extreme halophilic archaea is important to improve our knowledge of the deep evolutionary history of Archaea and the molecular adaptive processes and evolutionary paths that allowed their emergence. Using comparative genomic approaches, we identified 258 markers carrying a reliable phylogenetic signal. By combining strategies limiting the impact of biases on phylogenetic inference, we showed that Nanohaloarchaea and Halobacteria represent two independent lines that derived from two distinct but related methanogens Class II lineages. This implies that adaptation to high salinity emerged twice independently in Archaea and indicates that their emergence within DPANN in previous studies is likely the consequence of a tree reconstruction artifact, challenging the existence of this super-phylum. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Erickson, Gregory M.; Sidebottom, Mark A.; Curry, John F.; Kay, David Ian; Kuhn-Hendricks, Stephen; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.
2016-06-01
In most mammals and a rare few reptilian lineages the evolution of precise dental occlusion led to the capacity to form functional chewing surfaces due to pressures generated while feeding. The complex dental architectures of such teeth and the biomechanics of their self-wearing nature are poorly understood. Our research team composed of paleontologists, evolutionary biologists, and engineers have developed a protocol to: (1) determine the histological make-up of grinding dentitions in extant and fossil taxa; (2) ascertain wear-relevant material properties of the tissues; (3) determine how those properties relate to inter-tissue-biomechanics leading the dental functionality using a three-dimensional Archard’s wear model developed specifically for dental applications; (4) analyze those data in phylogenetic contexts to infer evolutionary patterns as they relate to feeding. Finally we discuss industrial applications that are emerging from our paleontologically-inspired research.
Marivaux, Laurent; Adnet, Sylvain; Altamirano-Sierra, Ali J; Pujos, François; Ramdarshan, Anusha; Salas-Gismondi, Rodolfo; Tejada-Lara, Julia V; Antoine, Pierre-Olivier
2016-11-01
Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance. Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have allowed for the discovery of an early late Miocene (ca. 11 Ma; Mayoan SALMA) fossil primate-bearing locality (CTA-43; Pebas Formation). In this study, we analyze the primate material, which consists of five isolated teeth documenting two distinct Cebidae: Cebus sp., a medium-sized capuchin (Cebinae), and Cebuella sp., a tiny marmoset (Callitrichinae). Although limited, this new fossil material of platyrrhines contributes to documenting the post-Laventan evolutionary history of cebids, and besides testifies to the earliest occurrences of the modern Cebuella and Cebus/Sapajus lineages in the Neotropics. Regarding the evolutionary history of callitrichine marmosets, the discovery of an 11 Ma-old fossil representative of the modern Cebuella pushes back by at least 6 Ma the age of the Mico/Cebuella divergence currently proposed by molecular biologists (i.e., ca. 4.5 Ma). This also extends back to > 11 Ma BP the divergence between Callithrix and the common ancestor (CA) of Mico/Cebuella, as well as the divergence between the CA of marmosets and Callimico (Goeldi's callitrichine). This discovery from Peruvian Amazonia implies a deep evolutionary root of the Cebuella lineage in the northwestern part of South America (the modern western Amazon basin), slightly before the recession of the Pebas mega-wetland system (PMWS), ca. 10.5 Ma, and well-before the subsequent establishment of the Amazon drainage system (ca. 9-7 Ma). During the late middle/early late Miocene interval, the PMWS was seemingly not a limiting factor for dispersals and widespread distribution of terrestrial mammals, but it was also likely a source of diversification via a complex patchwork of submerged/emerged lands varying through time. © 2016 Wiley Periodicals, Inc.
Schelly, Robert C.; Smith, W. Leo; Davis, Matthew P.; Tchernov, Dan; Pieribone, Vincent A.
2014-01-01
The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play. PMID:24421880
Sparks, John S; Schelly, Robert C; Smith, W Leo; Davis, Matthew P; Tchernov, Dan; Pieribone, Vincent A; Gruber, David F
2014-01-01
The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.
Kolekar, Pandurang; Hake, Nilesh; Kale, Mohan; Kulkarni-Kale, Urmila
2014-03-01
West Nile virus (WNV), genus Flavivirus, family Flaviviridae, is a major cause of viral encephalitis with broad host range and global spread. The virus has undergone a series of evolutionary changes with emergence of various genotypic lineages that are known to differ in type and severity of the diseases caused. Currently, genotyping is carried out using molecular phylogeny of complete coding sequences and genotype is assigned based on proximity to reference genotypes in tree topology. Efficient epidemiological surveillance of WNVs demands development of objective criteria for typing. An alignment-free approach based on return time distribution (RTD) of k-mers has been validated for genotyping of WNVs. The RTDs of complete genome sequences at k=7 were found to be optimum for classification of the known lineages of WNVs as well as for genotyping. It provides time and computationally efficient alternative for genome based annotation of WNV lineages. The development of a WNV Typer server based on RTD is described (http://bioinfo.net.in/wnv/homepage.html). Both the method and the server have 100% sensitivity and specificity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Naumann, Julia; Salomo, Karsten; Der, Joshua P.; Wafula, Eric K.; Bolin, Jay F.; Maass, Erika; Frenzke, Lena; Samain, Marie-Stéphanie; Neinhuis, Christoph
2013-01-01
Extreme haustorial parasites have long captured the interest of naturalists and scientists with their greatly reduced and highly specialized morphology. Along with the reduction or loss of photosynthesis, the plastid genome often decays as photosynthetic genes are released from selective constraint. This makes it challenging to use traditional plastid genes for parasitic plant phylogenetics, and has driven the search for alternative phylogenetic and molecular evolutionary markers. Thus, evolutionary studies, such as molecular clock-based age estimates, are not yet available for all parasitic lineages. In the present study, we extracted 14 nuclear single copy genes (nSCG) from Illumina transcriptome data from one of the “strangest plants in the world”, Hydnora visseri (Hydnoraceae). A ∼15,000 character molecular dataset, based on all three genomic compartments, shows the utility of nSCG for reconstructing phylogenetic relationships in parasitic lineages. A relaxed molecular clock approach with the same multi-locus dataset, revealed an ancient age of ∼91 MYA for Hydnoraceae. We then estimated the stem ages of all independently originated parasitic angiosperm lineages using a published dataset, which also revealed a Cretaceous origin for Balanophoraceae, Cynomoriaceae and Apodanthaceae. With the exception of Santalales, older parasite lineages tend to be more specialized with respect to trophic level and have lower species diversity. We thus propose the “temporal specialization hypothesis” (TSH) implementing multiple independent specialization processes over time during parasitic angiosperm evolution. PMID:24265760
Friis, Guillermo; Aleixandre, Pau; Rodríguez-Estrella, Ricardo; Navarro-Sigüenza, Adolfo G; Milá, Borja
2016-12-01
Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates. © 2016 John Wiley & Sons Ltd.
Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.
Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki
2014-11-25
Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry. Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.
Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution
2011-01-01
Background Glyceraldehyde-3-phosphate dehydrogenase (GAPD) catalyses one of the glycolytic reactions and is also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain some insights into specialization of GAPD-2 as a testis-specific protein. Results A dataset of GAPD sequences was assembled from public databases and used for phylogeny reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different regions of the same sequences. Conclusions The obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing. PMID:21663662
Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution.
Kuravsky, Mikhail L; Aleshin, Vladimir V; Frishman, Dmitrij; Muronetz, Vladimir I
2011-06-10
Glyceraldehyde-3-phosphate dehydrogenase (GAPD) catalyses one of the glycolytic reactions and is also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain some insights into specialization of GAPD-2 as a testis-specific protein. A dataset of GAPD sequences was assembled from public databases and used for phylogeny reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different regions of the same sequences. The obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing.
Evolution of resource cycling in ecosystems and individuals.
Crombach, Anton; Hogeweg, Paulien
2009-06-01
Resource cycling is a defining process in the maintenance of the biosphere. Microbial communities, ranging from simple to highly diverse, play a crucial role in this process. Yet the evolutionary adaptation and speciation of micro-organisms have rarely been studied in the context of resource cycling. In this study, our basic questions are how does a community evolve its resource usage and how are resource cycles partitioned? We design a computational model in which a population of individuals evolves to take up nutrients and excrete waste. The waste of one individual is another's resource. Given a fixed amount of resources, this leads to resource cycles. We find that the shortest cycle dominates the ecological dynamics, and over evolutionary time its length is minimized. Initially a single lineage processes a long cycle of resources, later crossfeeding lineages arise. The evolutionary dynamics that follow are determined by the strength of indirect selection for resource cycling. We study indirect selection by changing the spatial setting and the strength of direct selection. If individuals are fixed at lattice sites or direct selection is low, indirect selection result in lineages that structure their local environment, leading to 'smart' individuals and stable patterns of resource dynamics. The individuals are good at cycling resources themselves and do this with a short cycle. On the other hand, if individuals randomly change position each time step, or direct selection is high, individuals are more prone to crossfeeding: an ecosystem based solution with turbulent resource dynamics, and individuals that are less capable of cycling resources themselves. In a baseline model of ecosystem evolution we demonstrate different eco-evolutionary trajectories of resource cycling. By varying the strength of indirect selection through the spatial setting and direct selection, the integration of information by the evolutionary process leads to qualitatively different results from individual smartness to cooperative community structures.
Zhang, Liangzhi; Jia, Shangang; Plath, Martin; Huang, Yongzhen; Li, Congjun; Lei, Chuzhao; Zhao, Xin; Chen, Hong
2015-08-10
Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Bass, David; Tikhonenkov, Denis Victorovich; Foster, Rachel; Dyal, Patricia; Janouškovec, Jan; Keeling, Patrick J; Gardner, Michelle; Neuhauser, Sigrid; Hartikainen, Hanna; Mylnikov, Alexandre P; Berney, Cédric
2018-04-15
Rhizarian 'Novel Clade 10' (NC10) is frequently detected by 18S rRNA gene sequencing studies in freshwater planktonic samples. We describe a new genus and two species of eukaryovorous biflagellate protists, Aquavolon hoantrani n. gen. n. sp. and A. dientrani n. gen. n. sp., which represent the first morphologically characterized members of NC10, here named Aquavolonida ord. nov. The slightly metabolic cells possess naked heterodynamic flagella, whose kinetosomes lie at a right angle to each other and are connected by at least one fibril. Unlike their closest known relative Tremula longifila, they rotate around their longitudinal axis when swimming and only very rarely glide on surfaces. Screening of a wide range of environmental DNA extractions with lineage-specific PCR primers reveals that Aquavolonida consists of a large radiation of protists, which are most diversified in freshwater planktonic habitats and as yet undetected in marine environments. Earlier-branching lineages in Aquavolonida include less frequently detected organisms from soils and freshwater sediments. The 18S rRNA gene phylogeny suggests that Aquavolonida forms a common evolutionary lineage with tremulids and uncharacterized 'Novel Clade 12', which likely represents one of the deepest lineages in the Rhizaria, separate from Cercozoa (Filosa), Endomyxa, and Retaria. © 2018 The Authors Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.
Island biogeography: Taking the long view of nature's laboratories.
Whittaker, Robert J; Fernández-Palacios, José María; Matthews, Thomas J; Borregaard, Michael K; Triantis, Kostas A
2017-09-01
Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos. Emergent patterns of diversity include predictable variation in island species-area relationships, progression rule colonization from older to younger land masses, and syndromes including loss of dispersability and secondary woodiness in herbaceous plant lineages. Further developments in Earth system science, molecular biology, and trait data for islands hold continued promise for unlocking many of the unresolved questions in evolutionary biology and biogeography. Copyright © 2017, American Association for the Advancement of Science.
John, Christopher R.; Smith-Unna, Richard D.; Woodfield, Helen; Covshoff, Sarah; Hibberd, Julian M.
2014-01-01
Leaves of almost all C4 lineages separate the reactions of photosynthesis into the mesophyll (M) and bundle sheath (BS). The extent to which messenger RNA profiles of M and BS cells from independent C4 lineages resemble each other is not known. To address this, we conducted deep sequencing of RNA isolated from the M and BS of Setaria viridis and compared these data with publicly available information from maize (Zea mays). This revealed a high correlation (r = 0.89) between the relative abundance of transcripts encoding proteins of the core C4 pathway in M and BS cells in these species, indicating significant convergence in transcript accumulation in these evolutionarily independent C4 lineages. We also found that the vast majority of genes encoding proteins of the C4 cycle in S. viridis are syntenic to homologs used by maize. In both lineages, 122 and 212 homologous transcription factors were preferentially expressed in the M and BS, respectively. Sixteen shared regulators of chloroplast biogenesis were identified, 14 of which were syntenic homologs in maize and S. viridis. In sorghum (Sorghum bicolor), a third C4 grass, we found that 82% of these trans-factors were also differentially expressed in either M or BS cells. Taken together, these data provide, to our knowledge, the first quantification of convergence in transcript abundance in the M and BS cells from independent lineages of C4 grasses. Furthermore, the repeated recruitment of syntenic homologs from large gene families strongly implies that parallel evolution of both structural genes and trans-factors underpins the polyphyletic evolution of this highly complex trait in the monocotyledons. PMID:24676859
Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages.
Liu, Xiaobo; Li, Meng; Castelle, Cindy J; Probst, Alexander J; Zhou, Zhichao; Pan, Jie; Liu, Yang; Banfield, Jillian F; Gu, Ji-Dong
2018-06-08
As a recently discovered member of the DPANN superphylum, Woesearchaeota account for a wide diversity of 16S rRNA gene sequences, but their ecology, evolution, and metabolism remain largely unknown. Here, we assembled 133 global clone libraries/studies and 19 publicly available genomes to profile these patterns for Woesearchaeota. Phylogenetic analysis shows a high diversity with 26 proposed subgroups for this recently discovered archaeal phylum, which are widely distributed in different biotopes but primarily in inland anoxic environments. Ecological patterns analysis and ancestor state reconstruction for specific subgroups reveal that oxic status of the environments is the key factor driving the distribution and evolutionary diversity of Woesearchaeota. A selective distribution to different biotopes and an adaptive colonization from anoxic to oxic environments can be proposed and supported by evidence of the presence of ferredoxin-dependent pathways in the genomes only from anoxic biotopes but not from oxic biotopes. Metabolic reconstructions support an anaerobic heterotrophic lifestyle with conspicuous metabolic deficiencies, suggesting the requirement for metabolic complementarity with other microbes. Both lineage abundance distribution and co-occurrence network analyses across diverse biotopes confirmed metabolic complementation and revealed a potential syntrophic relationship between Woesearchaeota and methanogens, which is supported by metabolic modeling. If correct, Woesearchaeota may impact methanogenesis in inland ecosystems. The findings provide an ecological and evolutionary framework for Woesearchaeota at a global scale and indicate their potential ecological roles, especially in methanogenesis.
Mega-evolutionary dynamics of the adaptive radiation of birds.
Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H
2017-02-16
The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.
Evolutionary domestication in Drosophila subobscura.
Simões, P; Rose, M R; Duarte, A; Gonçalves, R; Matos, M
2007-03-01
The domestication of plants and animals is historically one of the most important topics in evolutionary biology. The evolutionary genetic changes arising from human cultivation are complex because of the effects of such varied processes as continuing natural selection, artificial selection, deliberate inbreeding, genetic drift and hybridization of different lineages. Despite the interest of domestication as an evolutionary process, few studies of multicellular sexual species have approached this topic using well-replicated experiments. Here we present a comprehensive study in which replicated evolutionary trajectories from several Drosophila subobscura populations provide a detailed view of the evolutionary dynamics of domestication in an outbreeding animal species. Our results show a clear evolutionary response in fecundity traits, but no clear pattern for adult starvation resistance and juvenile traits such as development time and viability. These results supply new perspectives on the confounding of adaptation with other evolutionary mechanisms in the process of domestication.
Jain, Aditi; Anand, Saurabh; Singh, Neer K; Das, Sandip
2018-03-12
The impact of polyploidy on functional diversification of cis-regulatory elements is poorly understood. This is primarily on account of lack of well-defined structure of cis-elements and a universal regulatory code. To the best of our knowledge, this is the first report on characterization of sequence and functional diversification of paralogous and homeologous promoter elements associated with MIR164 from Brassica. The availability of whole genome sequence allowed us to identify and isolate a total of 42 homologous copies of MIR164 from diploid species-Brassica rapa (A-genome), Brassica nigra (B-genome), Brassica oleracea (C-genome), and allopolyploids-Brassica juncea (AB-genome), Brassica carinata (BC-genome) and Brassica napus (AC-genome). Additionally, we retrieved homologous sequences based on comparative genomics from Arabidopsis lyrata, Capsella rubella, and Thellungiella halophila, spanning ca. 45 million years of evolutionary history of Brassicaceae. Sequence comparison across Brassicaceae revealed lineage-, karyotype, species-, and sub-genome specific changes providing a snapshot of evolutionary dynamics of miRNA promoters in polyploids. Tree topology of cis-elements associated with MIR164 was found to re-capitulate the species and family evolutionary history. Phylogenetic shadowing identified transcription factor binding sites (TFBS) conserved across Brassicaceae, of which, some are already known as regulators of MIR164 expression. Some of the TFBS were found to be distributed in a sub-genome specific (e.g., SOX specific to promoter of MIR164c from MF2 sub-genome), lineage-specific (YABBY binding motif, specific to C. rubella in MIR164b), or species-specific (e.g., VOZ in A. thaliana MIR164a) manner which might contribute towards genetic and adaptive variation. Reporter activity driven by promoters associated with MIR164 paralogs and homeologs was majorly in agreement with known role of miR164 in leaf shaping, regulation of lateral root development and senescence, and one previously un-described novel role in trichome. The impact of polyploidy was most profound when reporter activity across three MIR164c homeologs were compared that revealed negligible overlap, whereas reporter activity among two homeologs of MIR164a displays significant overlap. A copy number dependent cis-regulatory divergence thus exists in MIR164 genes in Brassica juncea. The full extent of regulatory diversification towards adaptive strategies will only be known when future endeavors analyze the promoter function under duress of stress and hormonal regimes.
2010-01-01
Background Rabbit haemorrhagic disease virus (RHDV) is a highly virulent calicivirus, first described in domestic rabbits in China in 1984. RHDV appears to be a mutant form of a benign virus that existed in Europe long before the first outbreak. In the Iberian Peninsula, the first epidemic in 1988 severely reduced the populations of autochthonous European wild rabbit. To examine the evolutionary history of RHDV in the Iberian Peninsula, we collected virus samples from wild rabbits and sequenced a fragment of the capsid protein gene VP60. These data together with available sequences from other Western European countries, were analyzed following Bayesian Markov chain Monte Carlo methods to infer their phylogenetic relationships, evolutionary rates and demographic history. Results Evolutionary relationships of RHDV revealed three main lineages with significant phylogeographic structure. All lineages seem to have emerged at a common period of time, between ~1875 and ~1976. The Iberian Peninsula showed evidences of genetic isolation, probably due to geographic barriers to gene flow, and was also the region with the youngest MRCA. Overall, demographic analyses showed an initial increase and stabilization of the relative genetic diversity of RHDV, and a subsequent reduction in genetic diversity after the first epidemic breakout in 1984, which is compatible with a decline in effective population size. Conclusions Results were consistent with the hypothesis that the current Iberian RHDV arose from a single infection between 1869 and 1955 (95% HPD), and rendered a temporal pattern of appearance and extinction of lineages. We propose that the rising positive selection pressure observed throughout the history of RHDV is likely mediated by the host immune system as a consequence of the genetic changes that rendered the virus virulent. Consequently, this relationship is suggested to condition RHDV demographic history. PMID:21067589
Gratton, P; Konopiński, M K; Sbordoni, V
2008-10-01
Genetic data are currently providing a large amount of new information on past distribution of species and are contributing to a new vision of Pleistocene ice ages. Nonetheless, an increasing number of studies on the 'time dependency' of mutation rates suggest that date assessments for evolutionary events of the Pleistocene might be overestimated. We analysed mitochondrial (mt) DNA (COI) sequence variation in 225 Parnassius mnemosyne individuals sampled across central and eastern Europe in order to assess (i) the existence of genetic signatures of Pleistocene climate shifts; and (ii) the timescale of demographic and evolutionary events. Our analyses reveal a phylogeographical pattern markedly influenced by the Pleistocene/Holocene climate shifts. Eastern Alpine and Balkan populations display comparatively high mtDNA diversity, suggesting multiple glacial refugia. On the other hand, three widely distributed and spatially segregated lineages occupy most of northern and eastern Europe, indicating postglacial recolonization from different refugial areas. We show that a conventional 'phylogenetic' substitution rate cannot account for the present distribution of genetic variation in this species, and we combine phylogeographical pattern and palaeoecological information in order to determine a suitable intraspecific rate through a Bayesian coalescent approach. We argue that our calibrated 'time-dependent' rate (0.096 substitutions/ million years), offers the most convincing time frame for the evolutionary events inferred from sequence data. When scaled by the new rate, estimates of divergence between Balkan and Alpine lineages point to c. 19 000 years before present (last glacial maximum), and parameters of demographic expansion for northern lineages are consistent with postglacial warming (5-11 000 years before present).
Ancient Recombination Events between Human Herpes Simplex Viruses.
Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H; Calvignac-Spencer, Sébastien
2017-07-01
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Cowman, P F; Bellwood, D R
2011-12-01
Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Evolutionary Origins of Rhizarian Parasites.
Sierra, Roberto; Cañas-Duarte, Silvia J; Burki, Fabien; Schwelm, Arne; Fogelqvist, Johan; Dixelius, Christina; González-García, Laura N; Gile, Gillian H; Slamovits, Claudio H; Klopp, Christophe; Restrepo, Silvia; Arzul, Isabelle; Pawlowski, Jan
2016-04-01
The SAR group (Stramenopila, Alveolata, Rhizaria) is one of the largest clades in the tree of eukaryotes and includes a great number of parasitic lineages. Rhizarian parasites are obligate and have devastating effects on commercially important plants and animals but despite this fact, our knowledge of their biology and evolution is limited. Here, we present rhizarian transcriptomes from all major parasitic lineages in order to elucidate their evolutionary relationships using a phylogenomic approach. Our results suggest that Ascetosporea, parasites of marine invertebrates, are sister to the novel clade Apofilosa. The phytomyxean plant parasites branch sister to the vampyrellid algal ectoparasites in the novel clade Phytorhiza. They also show that Ascetosporea + Apofilosa + Retaria + Filosa + Phytorhiza form a monophyletic clade, although the branching pattern within this clade is difficult to resolve and appears to be model-dependent. Our study does not support the monophyly of the rhizarian parasitic lineages (Endomyxa), suggesting independent origins for rhizarian animal and plant parasites. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genome-Based Characterization of Biological Processes That Differentiate Closely Related Bacteria
Palmer, Marike; Steenkamp, Emma T.; Coetzee, Martin P. A.; Blom, Jochen; Venter, Stephanus N.
2018-01-01
Bacteriologists have strived toward attaining a natural classification system based on evolutionary relationships for nearly 100 years. In the early twentieth century it was accepted that a phylogeny-based system would be the most appropriate, but in the absence of molecular data, this approach proved exceedingly difficult. Subsequent technical advances and the increasing availability of genome sequencing have allowed for the generation of robust phylogenies at all taxonomic levels. In this study, we explored the possibility of linking biological characters to higher-level taxonomic groups in bacteria by making use of whole genome sequence information. For this purpose, we specifically targeted the genus Pantoea and its four main lineages. The shared gene sets were determined for Pantoea, the four lineages within the genus, as well as its sister-genus Tatumella. This was followed by functional characterization of the gene sets using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In comparison to Tatumella, various traits involved in nutrient cycling were identified within Pantoea, providing evidence for increased efficacy in recycling of metabolites within the genus. Additionally, a number of traits associated with pathogenicity were identified within species often associated with opportunistic infections, with some support for adaptation toward overcoming host defenses. Some traits were also only conserved within specific lineages, potentially acquired in an ancestor to the lineage and subsequently maintained. It was also observed that the species isolated from the most diverse sources were generally the most versatile in their carbon metabolism. By investigating evolution, based on the more variable genomic regions, it may be possible to detect biologically relevant differences associated with the course of evolution and speciation. PMID:29467735
Functional requirements driving the gene duplication in 12 Drosophila species.
Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui
2013-08-15
Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.
Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Ye, Jeng-Jia; Hsiao, Chung-Der
2016-05-01
In this study, the complete mitogenome sequence of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by next-generation sequencing method. The assembled mitogenome consisting of 16,694 bp, includes 13 protein coding genes, 25 transfer RNAs, 2 ribosomal RNAs genes. The overall base composition of "lineage B" S. lessoniana is 36.7% for A, 18.9 % for C, 34.5 % for T and 9.8 % for G and show 90% identities to "lineage C" S. lessoniana. It is also exhibits high T + A content (71.2%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage B" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.
Hsiao, Chung-Der; Shen, Kang-Ning; Ching, Tzu-Yun; Wang, Ya-Hsien; Ye, Jeng-Jia; Tsai, Shiou-Yi; Wu, Shan-Chun; Chen, Ching-Hung; Wang, Chia-Hui
2016-07-01
In this study, the complete mitogenome sequence of the cryptic "lineage A" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consists of 16,605 bp, which includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of "lineage A" S. lessoniana is 37.5% for A, 17.4% for C, 9.1% for G, and 35.9% for T and shows 87% identities to "lineage C" S. lessoniana. It is also noticed by its high T + A content (73.4%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage A" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.
Kimura, Yuri; Jacobs, Louis L.; Flynn, Lawrence J.
2013-01-01
Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define functional adaptations of teeth to resources. PMID:24155885
Kimura, Yuri; Jacobs, Louis L; Flynn, Lawrence J
2013-01-01
Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define functional adaptations of teeth to resources.
2010-01-01
Background Acrodonta consists of Agamidae and Chamaeleonidae that have the characteristic acrodont dentition. These two families and Iguanidae sensu lato are members of infraorder Iguania. Phylogenetic relationships and historical biogeography of iguanian lizards still remain to be elucidated in spite of a number of morphological and molecular studies. This issue was addressed by sequencing complete mitochondrial genomes from 10 species that represent major lineages of acrodont lizards. This study also provided a good opportunity to compare molecular evolutionary modes of mitogenomes among different iguanian lineages. Results Acrodontan mitogenomes were found to be less conservative than iguanid counterparts with respect to gene arrangement features and rates of sequence evolution. Phylogenetic relationships were constructed with the mitogenomic sequence data and timing of gene rearrangements was inferred on it. The result suggested highly lineage-specific occurrence of several gene rearrangements, except for the translocation of the tRNAPro gene from the 5' to 3' side of the control region, which likely occurred independently in both agamine and chamaeleonid lineages. Phylogenetic analyses strongly suggested the monophyly of Agamidae in relation to Chamaeleonidae and the non-monophyly of traditional genus Chamaeleo within Chamaeleonidae. Uromastyx and Brookesia were suggested to be the earliest shoot-off of Agamidae and Chamaeleonidae, respectively. Together with the results of relaxed-clock dating analyses, our molecular phylogeny was used to infer the origin of Acrodonta and historical biogeography of its descendant lineages. Our molecular data favored Gondwanan origin of Acrodonta, vicariant divergence of Agamidae and Chamaeleonidae in the drifting India-Madagascar landmass, and migration of the Agamidae to Eurasia with the Indian subcontinent, although Laurasian origin of Acrodonta was not strictly ruled out. Conclusions We detected distinct modes of mitogenomic evolution among iguanian families. Agamidae was highlighted in including a number of lineage-specific mitochondrial gene rearrangements. The mitogenomic data provided a certain level of resolution in reconstructing acrodontan phylogeny, although there still remain ambiguous relationships. Our biogeographic implications shed a light on the previous hypothesis of Gondwanan origin of Acrodonta by adding some new evidence and concreteness. PMID:20465814
The genomic and epidemiological dynamics of human influenza A virus.
Rambaut, Andrew; Pybus, Oliver G; Nelson, Martha I; Viboud, Cecile; Taubenberger, Jeffery K; Holmes, Edward C
2008-05-29
The evolutionary interaction between influenza A virus and the human immune system, manifest as 'antigenic drift' of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink-source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions.
Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge
2010-08-03
Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.
Crawford, Andrew J.; Lips, Karen R.; Bermingham, Eldredge
2010-01-01
Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927
Edwards, Taylor; Vaughn, Mercy; Meléndez Torres, Cristina; Karl, Alice E.; Rosen, Philip C.; Berry, Kristin H.; Murph, Robert W.
2013-01-01
The enduring processes of time, climate, and adaptation have sculpted the distribution of organisms we observe in the Sonoran Desert. One such organism is Morafka’s desert tortoise, Gopherus morafkai. We apply a genomic approach to identify the evolutionary processes driving diversity in this species and present preliminary findings and emerging hypotheses. The Sonoran Desert form of the tortoise exhibits a continuum of genetic similarity spanning 850 km of Sonoran desertscrub extending from Empalme, Sonora, to Kingman, Arizona. However, at the ecotone between desertscrub and foothills thornscrub we identify a distinct, Sinaloan lineage and this occurrence suggests a more complex evolutionary history for G. morafkai. By using multiple loci from throughout the tortoise’s genome, we aim to determine if divergence between these lineages occurred in allopatry, and further to investigate for signatures of past or current genetic introgression. This international, collaborative project will assist state and federal agencies in developing management strategies that best preserve the evolutionary potential of Morafka’s desert tortoise. Ultimately, an understanding of the evolutionary history of desert tortoises will not only clarify the forces that have driven the divergence in this group, but also contribute to our knowledge of the biogeographic history of the Southwestern deserts and how diversity is maintained within them.
Genetic diversity and evolution of Pneumocystis fungi infecting wild Southeast Asian murid rodents.
Latinne, Alice; Bezé, François; Delhaes, Laurence; Pottier, Muriel; Gantois, Nausicaa; Nguyen, Julien; Blasdell, Kim; Dei-Cas, Eduardo; Morand, Serge; Chabé, Magali
2017-11-09
Pneumocystis organisms are airborne-transmitted fungal parasites that infect the lungs of numerous mammalian species with strong host specificity. In this study, we investigated the genetic diversity and host specificity of Pneumocystis organisms infecting Southeast Asian murid rodents through PCR amplification of two mitochondrial genes and tested the co-phylogeny hypothesis among these fungi and their rodent hosts. Pneumocystis DNA was detected in 215 of 445 wild rodents belonging to 18 Southeast Asian murid species. Three of the Pneumocystis lineages retrieved in our phylogenetic trees correspond to known Pneumocystis species, but some of the remaining lineages may correspond to new undescribed species. Most of these Pneumocystis species infect several rodent species or genera and some sequence types are shared among several host species and genera. These results indicated a weaker host specificity of Pneumocystis species infecting rodents than previously thought. Our co-phylogenetic analyses revealed a complex evolutionary history among Pneumocystis and their rodent hosts. Even if a significant global signal of co-speciation has been detected, co-speciation alone is not sufficient to explain the observed co-phylogenetic pattern and several host switches are inferred. These findings conflict with the traditional view of a prolonged process of co-evolution and co-speciation of Pneumocystis and their hosts.
Hybrid zone studies: An interdisciplinary approach for the analysis of evolutionary processes
Scribner, Kim T.
1994-01-01
There has been considerable debate in the ecological and evolutionary literature over the relative importance and rate by which microevolutionary processes operating at the population level result in separation and differentiation of lineages and populations, and ultimately in speciation. Our understanding of evolutionary processes have need greatly enhances through the study of hybridization and hybrid zones. Indeed, hybrid zones have been described as “natural laboratories” (Barton, N. H., and G .M. Hewitt, 189. Adaptation, speciation, and hybrid zones. Nature 341:497-503) or as “windows on the evolutionary processes” (Harrison, R. G. 1990. Hybrid zones: windows on the evolutionary process. Oxford Surveys in Evolutionary Biology 7:69-128). Hybrid zones greatly facilitate analyses of evolutionary dynamics because differences in factors such as mating preference, fertility, and viability are likely to be magnified, making the consequences easier to document over short periods of time.
Al-Khannaq, Maryam Nabiel; Ng, Kim Tien; Oong, Xiang Yong; Pang, Yong Kek; Takebe, Yutaka; Chook, Jack Bee; Hanafi, Nik Sherina; Kamarulzaman, Adeeba; Tee, Kok Keng
2016-02-25
Despite the worldwide circulation of human coronavirus OC43 (HCoV-OC43) and HKU1 (HCoV-HKU1), data on their molecular epidemiology and evolutionary dynamics in the tropical Southeast Asia region is lacking. The study aimed to investigate the genetic diversity, temporal distribution, population history and clinical symptoms of betacoronavirus infections in Kuala Lumpur, Malaysia between 2012 and 2013. A total of 2,060 adults presented with acute respiratory symptoms were screened for the presence of betacoronaviruses using multiplex PCR. The spike glycoprotein, nucleocapsid and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 48/2060 (2.4 %) specimens were tested positive for HCoV-OC43 (1.3 %) and HCoV-HKU1 (1.1 %). Both HCoV-OC43 and HCoV-HKU1 were co-circulating throughout the year, with the lowest detection rates reported in the October-January period. Phylogenetic analysis of the spike gene showed that the majority of HCoV-OC43 isolates were grouped into two previously undefined genotypes, provisionally assigned as novel lineage 1 and novel lineage 2. Sign of natural recombination was observed in these potentially novel lineages. Location mapping showed that the novel lineage 1 is currently circulating in Malaysia, Thailand, Japan and China, while novel lineage 2 can be found in Malaysia and China. Molecular dating showed the origin of HCoV-OC43 around late 1950s, before it diverged into genotypes A (1960s), B (1990s), and other genotypes (2000s). Phylogenetic analysis revealed that 27.3 % of the HCoV-HKU1 strains belong to genotype A while 72.7 % belongs to genotype B. The tree root of HCoV-HKU1 was similar to that of HCoV-OC43, with the tMRCA of genotypes A and B estimated around the 1990s and 2000s, respectively. Correlation of HCoV-OC43 and HCoV-HKU1 with the severity of respiratory symptoms was not observed. The present study reported the molecular complexity and evolutionary dynamics of human betacoronaviruses among adults with acute respiratory symptoms in a tropical country. Two novel HCoV-OC43 genetic lineages were identified, warranting further investigation on their genotypic and phenotypic characteristics.
Macaca specific exon creation event generates a novel ZKSCAN5 transcript.
Kim, Young-Hyun; Choe, Se-Hee; Song, Bong-Seok; Park, Sang-Je; Kim, Myung-Jin; Park, Young-Ho; Yoon, Seung-Bin; Lee, Youngjeon; Jin, Yeung Bae; Sim, Bo-Woong; Kim, Ji-Su; Jeong, Kang-Jin; Kim, Sun-Uk; Lee, Sang-Rae; Park, Young-Il; Huh, Jae-Won; Chang, Kyu-Tae
2016-02-15
ZKSCAN5 (also known as ZFP95) is a zinc-finger protein belonging to the Krűppel family. ZKSCAN5 contains a SCAN box and a KRAB A domain and is proposed to play a distinct role during spermatogenesis. In humans, alternatively spliced ZKSCAN5 transcripts with different 5'-untranslated regions (UTRs) have been identified. However, investigation of our Macaca UniGene Database revealed novel alternative ZKSCAN5 transcripts that arose due to an exon creation event. Therefore, in this study, we identified the full-length sequences of ZKSCAN5 and its alternative transcripts in Macaca spp. Additionally, we investigated different nonhuman primate sequences to elucidate the molecular mechanism underlying the exon creation event. We analyzed the evolutionary features of the ZKSCAN5 transcripts by reverse transcription polymerase chain reaction (RT-PCR) and genomic PCR, and by sequencing various nonhuman primate DNA and RNA samples. The exon-created transcript was only detected in the Macaca lineage (crab-eating monkey and rhesus monkey). Full-length sequence analysis by rapid amplification of cDNA ends (RACE) identified ten full-length transcripts and four functional isoforms of ZKSCAN5. Protein sequence analyses revealed the presence of two groups of isoforms that arose because of differences in start-codon usage. Together, our results demonstrate that there has been specific selection for a discrete set of ZKSCAN5 variants in the Macaca lineage. Furthermore, study of this locus (and perhaps others) in Macaca spp. might facilitate our understanding of the evolutionary pressures that have shaped the mechanism of exon creation in primates. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
2013-01-01
Background Lutzomyia umbratilis (a probable species complex) is the main vector of Leishmania guyanensis in the northern region of Brazil. Lutzomyia anduzei has been implicated as a secondary vector of this parasite. These species are closely related and exhibit high morphological similarity in the adult stage; therefore, they have been wrongly identified, both in the past and in the present. This shows the need for employing integrated taxonomy. Methods With the aim of gathering information on the molecular taxonomy and evolutionary relationships of these two vectors, 118 sequences of 663 base pairs (barcode region of the mitochondrial DNA cytochrome oxidase I – COI) were generated from 72 L. umbratilis and 46 L. anduzei individuals captured, respectively, in six and five localities of the Brazilian Amazon. The efficiency of the barcode region to differentiate the L. umbratilis lineages I and II was also evaluated. The data were analyzed using the pairwise genetic distances matrix and the Neighbor-Joining (NJ) tree, both based on the Kimura Two Parameter (K2P) evolutionary model. Results The analyses resulted in 67 haplotypes: 32 for L. umbratilis and 35 for L. anduzei. The mean intra-specific genetic distance was 0.008 (0.002 to 0.010 for L. umbratilis; 0.008 to 0.014 for L. anduzei), whereas the mean interspecific genetic distance was 0.044 (0.041 to 0.046), supporting the barcoding gap. Between the L. umbratilis lineages I and II, it was 0.009 to 0.010. The NJ tree analysis strongly supported monophyletic clades for both L. umbratilis and L. anduzei, whereas the L. umbratilis lineages I and II formed two poorly supported monophyletic subclades. Conclusions The barcode region clearly separated the two species and may therefore constitute a valuable tool in the identification of the sand fly vectors of Leishmania in endemic leishmaniasis areas. However, the barcode region had not enough power to separate the two lineages of L. umbratilis, likely reflecting incipient species that have not yet reached the status of distinct species. PMID:24021095
Scarpassa, Vera Margarete; Alencar, Ronildo Baiatone
2013-09-11
Lutzomyia umbratilis (a probable species complex) is the main vector of Leishmania guyanensis in the northern region of Brazil. Lutzomyia anduzei has been implicated as a secondary vector of this parasite. These species are closely related and exhibit high morphological similarity in the adult stage; therefore, they have been wrongly identified, both in the past and in the present. This shows the need for employing integrated taxonomy. With the aim of gathering information on the molecular taxonomy and evolutionary relationships of these two vectors, 118 sequences of 663 base pairs (barcode region of the mitochondrial DNA cytochrome oxidase I - COI) were generated from 72 L. umbratilis and 46 L. anduzei individuals captured, respectively, in six and five localities of the Brazilian Amazon. The efficiency of the barcode region to differentiate the L. umbratilis lineages I and II was also evaluated. The data were analyzed using the pairwise genetic distances matrix and the Neighbor-Joining (NJ) tree, both based on the Kimura Two Parameter (K2P) evolutionary model. The analyses resulted in 67 haplotypes: 32 for L. umbratilis and 35 for L. anduzei. The mean intra-specific genetic distance was 0.008 (0.002 to 0.010 for L. umbratilis; 0.008 to 0.014 for L. anduzei), whereas the mean interspecific genetic distance was 0.044 (0.041 to 0.046), supporting the barcoding gap. Between the L. umbratilis lineages I and II, it was 0.009 to 0.010. The NJ tree analysis strongly supported monophyletic clades for both L. umbratilis and L. anduzei, whereas the L. umbratilis lineages I and II formed two poorly supported monophyletic subclades. The barcode region clearly separated the two species and may therefore constitute a valuable tool in the identification of the sand fly vectors of Leishmania in endemic leishmaniasis areas. However, the barcode region had not enough power to separate the two lineages of L. umbratilis, likely reflecting incipient species that have not yet reached the status of distinct species.
Pech-May, Angélica; Marina, Carlos F; Vázquez-Domínguez, Ella; Berzunza-Cruz, Miriam; Rebollar-Téllez, Eduardo A; Narváez-Zapata, José A; Moo-Llanes, David; Ibáñez-Bernal, Sergio; Ramsey, Janine M; Becker, Ingeborg
2013-06-01
The low dispersal capacity of sand flies could lead to population isolation due to geographic barriers, climate variation, or to population fragmentation associated with specific local habitats due to landscape modification. The phlebotomine sand fly Lutzomyia cruciata has a wide distribution throughout Mexico and is a vector of Leishmania mexicana in the southeast. The aim of this study was to evaluate the genetic diversity, structure, and divergence within and among populations of Lu. cruciata in the state of Chiapas, and to infer the intra-specific phylogeny using the 3' end of the mitochondrial cytochrome b gene. We analyzed 62 sequences from four Lu. cruciata populations and found 26 haplotypes, high genetic differentiation and restricted gene flow among populations (Fst=0.416, Nm=0.701, p<0.001). The highest diversity values were recorded in populations from Loma Bonita and Guadalupe Miramar. Three lineages (100% bootstrap and 7% overall divergence) were identified using a maximum likelihood phylogenetic analysis which showed high genetic divergence (17.2-22.7%). A minimum spanning haplotype network also supported separation into three lineages. Genetic structure and divergence within and among Lu. cruciata populations are hence affected by geographic heterogeneity and evolutionary background. Data obtained in the present study suggest that Lu. cruciata in the state of Chiapas consists of at least three lineages. Such findings may have implications for vector capacity and hence for vector control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Diet is the primary determinant of bacterial community structure in the guts of higher termites.
Mikaelyan, Aram; Dietrich, Carsten; Köhler, Tim; Poulsen, Michael; Sillam-Dussès, David; Brune, Andreas
2015-10-01
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically 'lower termites' are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood-feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus-level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host-specific distribution of the bacterial lineages in termite guts are best explained by diet-related differences in the availability of microhabitats and functional niches. © 2015 John Wiley & Sons Ltd.
History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis.
Gazave, Eve; Guillou, Aurélien; Balavoine, Guillaume
2014-01-01
The Hes superfamily or Hes/Hey-related genes encompass a variety of metazoan-specific bHLH genes, with somewhat fuzzy phylogenetic relationships. Hes superfamily members are involved in a variety of major developmental mechanisms in metazoans, notably in neurogenesis and segmentation processes, in which they often act as direct effector genes of the Notch signaling pathway. We have investigated the molecular and functional evolution of the Hes superfamily in metazoans using the lophotrochozoan Platynereis dumerilii as model. Our phylogenetic analyses of more than 200 Metazoan Hes/Hey-related genes revealed the presence of five families, three of them (Hes, Hey and Helt) being pan-metazoan. Those families were likely composed of a unique representative in the last common metazoan ancestor. The evolution of the Hes family was shaped by many independent lineage specific tandem duplication events. The expression patterns of 13 of the 15 Hes/Hey-related genes in Platynereis indicate a broad functional diversification. Nevertheless, a majority of these genes are involved in two crucial developmental processes in annelids: neurogenesis and segmentation, resembling functions highlighted in other animal models. Combining phylogenetic and expression data, our study suggests an unusual evolutionary history for the Hes superfamily. An ancestral multifunctional annelid Hes gene may have undergone multiples rounds of duplication-degeneration-complementation processes in the lineage leading to Platynereis, each gene copies ensuring their maintenance in the genome by subfunctionalisation. Similar but independent waves of duplications are at the origin of the multiplicity of Hes genes in other metazoan lineages.
From sauropsids to mammals and back: New approaches to comparative cortical development
Montiel, Juan F.; Vasistha, Navneet A.; Garcia‐Moreno, Fernando
2015-01-01
Abstract Evolution of the mammalian neocortex (isocortex) has been a persisting problem in neurobiology. While recent studies have attempted to understand the evolutionary expansion of the human neocortex from rodents, similar approaches have been used to study the changes between reptiles, birds, and mammals. We review here findings from the past decades on the development, organization, and gene expression patterns in various extant species. This review aims to compare cortical cell numbers and neuronal cell types to the elaboration of progenitor populations and their proliferation in these species. Several progenitors, such as the ventricular radial glia, the subventricular intermediate progenitors, and the subventricular (outer) radial glia, have been identified but the contribution of each to cortical layers and cell types through specific lineages, their possible roles in determining brain size or cortical folding, are not yet understood. Across species, larger, more diverse progenitors relate to cortical size and cell diversity. The challenge is to relate the radial and tangential expansion of the neocortex to the changes in the proliferative compartments during mammalian evolution and with the changes in gene expression and lineages evident in various sectors of the developing brain. We also review the use of recent lineage tracing and transcriptomic approaches to revisit theories and to provide novel understanding of molecular processes involved in specification of cortical regions. J. Comp. Neurol. 524:630–645, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26234252
Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world
Wang, Minglei; Yafremava, Liudmila S.; Caetano-Anollés, Derek; Mittenthal, Jay E.; Caetano-Anollés, Gustavo
2007-01-01
The repertoire of protein architectures in proteomes is evolutionarily conserved and capable of preserving an accurate record of genomic history. Here we use a census of protein architecture in 185 genomes that have been fully sequenced to generate genome-based phylogenies that describe the evolution of the protein world at fold (F) and fold superfamily (FSF) levels. The patterns of representation of F and FSF architectures over evolutionary history suggest three epochs in the evolution of the protein world: (1) architectural diversification, where members of an architecturally rich ancestral community diversified their protein repertoire; (2) superkingdom specification, where superkingdoms Archaea, Bacteria, and Eukarya were specified; and (3) organismal diversification, where F and FSF specific to relatively small sets of organisms appeared as the result of diversification of organismal lineages. Functional annotation of FSF along these architectural chronologies revealed patterns of discovery of biological function. Most importantly, the analysis identified an early and extensive differential loss of architectures occurring primarily in Archaea that segregates the archaeal lineage from the ancient community of organisms and establishes the first organismal divide. Reconstruction of phylogenomic trees of proteomes reflects the timeline of architectural diversification in the emerging lineages. Thus, Archaea undertook a minimalist strategy using only a small subset of the full architectural repertoire and then crystallized into a diversified superkingdom late in evolution. Our analysis also suggests a communal ancestor to all life that was molecularly complex and adopted genomic strategies currently present in Eukarya. PMID:17908824
Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles.
Farrell, B D
2001-03-01
The insects that feed on the related plant families Apocynaceae and Asclepiadaceae (here collectively termed "milkweeds") comprise a "component community" of highly specialized, distinctive lineages of species that frequently sequester toxic cardiac glycosides from their host plants for defense against predators and are thus often aposematic, advertising their consequent unpalatability. Such sets of specialized lineages provide opportunities for comparative studies of the rate of adaptation, diversification, and habitat-related effects on molecular evolution. The cerambycid genus Tetraopes is the most diverse of the new world milkweed herbivores and the species are generally host specific, being restricted to single, different species of Asclepias, more often so than most other milkweed insects. Previous work revealed correspondence between the phylogeny of these beetles and that of their hosts. The present study provides analyses of near-complete DNA sequences for Tetraopes and relatives that are used to establish a molecular clock and temporal framework for Tetraopes evolution with their milkweed hosts. Copyright 2001 Academic Press.
Island phytophagy: explaining the remarkable diversity of plant-feeding insects
Joy, Jeffrey B.; Crespi, Bernard J.
2012-01-01
Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa. PMID:22553094
Diehl, William E; Patel, Nirali; Halm, Kate; Johnson, Welkin E
2016-01-01
Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections. DOI: http://dx.doi.org/10.7554/eLife.12704.001 PMID:26952212
Diehl, William E; Patel, Nirali; Halm, Kate; Johnson, Welkin E
2016-03-08
Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections.
Island phytophagy: explaining the remarkable diversity of plant-feeding insects.
Joy, Jeffrey B; Crespi, Bernard J
2012-08-22
Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.
The Ciona intestinalis genome: when the constraints are off
NASA Technical Reports Server (NTRS)
Holland, Linda Z.; Gibson-Brown, Jeremy J.
2003-01-01
The recent genome sequencing of a non-vertebrate deuterostome, the ascidian tunicate Ciona intestinalis, makes a substantial contribution to the fields of evolutionary and developmental biology.1 Tunicates have some of the smallest bilaterian genomes, embryos with relatively few cells, fixed lineages and early determination of cell fates. Initial analyses of the C. intestinalis genome indicate that it has been evolving rapidly. Comparisons with other bilaterians show that C. intestinalis has lost a number of genes, and that many genes linked together in most other bilaterians have become uncoupled. In addition, a number of independent, lineage-specific gene duplications have been detected. These new results, although interesting in themselves, will take on a deeper significance once the genomes of additional invertebrate deuterostomes (e.g. echinoderms, hemichordates and amphioxus) have been sequenced. With such a broadened database, comparative genomics can begin to ask pointed questions about the relationship between the evolution of genomes and the evolution of body plans. Copyright 2003 Wiley Periodicals, Inc.
The evolution of syntax: an exaptationist perspective.
Fitch, W Tecumseh
2011-01-01
The evolution of language required elaboration of a number of independent mechanisms in the hominin lineage, including systems involved in signaling, semantics, and syntax. Two perspectives on the evolution of syntax can be contrasted. The "continuist" perspective seeks the evolutionary roots of complex human syntax in simpler combinatory systems used in animal communication systems, such as iteration and sequencing. The "exaptationist" perspective posits evolutionary change of function, so that systems today used for linguistic communication might previously have served quite different functions in earlier hominids. I argue that abundant biological evidence supports an exaptationist perspective, in general, and that it must be taken seriously when considering language evolution. When applied to syntax, this suggests that core computational components used today in language could have originally served non-linguistic functions such as motor control, non-verbal thought, or spatial reasoning. I outline three specific exaptationist hypotheses for spoken language. These three hypotheses each posit a change of functionality in a precursor circuit, and its transformation into a neural circuit or region specifically involved in language today. Hypothesis 1 suggests that the precursor mechanism for intentional vocal control, specifically direct cortical control over the larynx, was manual motor control subserved by the cortico-spinal tract. The second is that the arcuate fasciculus, which today connects syntactic and lexical regions, had its origin in intracortical connections subserving vocal imitation. The third is that the specialized components of Broca's area, specifically BA 45, had their origins in non-linguistic motor control, and specifically hierarchical planning of action. I conclude by illustrating the importance of both homology (studied via primates) and convergence (typically analyzed in birds) for testing such evolutionary hypotheses.
Gray, H W I; Nishida, S; Welch, A J; Moura, A E; Tanabe, S; Kiani, M S; Culloch, R; Möller, L; Natoli, A; Ponnampalam, L S; Minton, G; Gore, M; Collins, T; Willson, A; Baldwin, R; Hoelzel, A R
2018-05-01
Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new 'aduncus' type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range. Copyright © 2017 Elsevier Inc. All rights reserved.
Ancient DNA clarifies the evolutionary history of American Late Pleistocene equids.
Orlando, Ludovic; Male, Dean; Alberdi, Maria Teresa; Prado, Jose Luis; Prieto, Alfredo; Cooper, Alan; Hänni, Catherine
2008-05-01
Hippidions are past members of the equid lineage which appeared in the South American fossil record around 2.5 Ma but then became extinct during the great late Pleistocene megafaunal extinction. According to fossil records and numerous dental, cranial, and postcranial characters, Hippidion and Equus lineages were expected to cluster in two distinct phylogenetic groups that diverged at least 10 MY, long before the emergence of the first Equus. However, the first DNA sequence information retrieved from Hippidion fossils supported a striking different phylogeny, with hippidions nesting inside a paraphyletic group of Equus. This result indicated either that the currently accepted phylogenetic tree of equids was incorrect regarding the timing of the evolutionary split between Hippidion and Equus or that the taxonomic identification of the hippidion fossils used for DNA analysis needed to be reexamined (and attributed to another extinct South American member of the equid lineage). The most likely candidate for the latter explanation is Equus (Amerhippus) neogeus. Here, we show by retrieving new ancient mtDNA sequences that hippidions and Equus (Amerhippus) neogeus were members of two distinct lineages. Furthermore, using a rigorous phylogenetic approach, we demonstrate that while formerly the largest equid from Southern America, Equus (Amerhippus) was just a member of the species Equus caballus. This new data increases the known phenotypic plasticity of horses and consequently casts doubt on the taxonomic validity of the subgenus Equus (Amerhippus).
Gossner, Martin M; Chao, Anne; Bailey, Richard I; Prinzing, Andreas
2009-05-01
The relative roles of evolutionary history and geographical and ecological contingency for community assembly remain unknown. Plant species, for instance, share more phytophages with closer relatives (phylogenetic conservatism), but for exotic plants introduced to another continent, this may be overlaid by geographically contingent evolution or immigration from locally abundant plant species (mass effects). We assessed within local forests to what extent exotic trees (Douglas-fir, red oak) recruit phytophages (Coleoptera, Heteroptera) from more closely or more distantly related native plants. We found that exotics shared more phytophages with natives from the same major plant lineage (angiosperms vs. gymnosperms) than with natives from the other lineage. This was particularly true for Heteroptera, and it emphasizes the role of host specialization in phylogenetic conservatism of host use. However, for Coleoptera on Douglas-fir, mass effects were important: immigration from beech increased with increasing beech abundance. Within a plant phylum, phylogenetic proximity of exotics and natives increased phytophage similarity, primarily in younger Coleoptera clades on angiosperms, emphasizing a role of past codiversification of hosts and phytophages. Overall, phylogenetic conservatism can shape the assembly of local phytophage communities on exotic trees. Whether it outweighs geographic contingency and mass effects depends on the interplay of phylogenetic scale, local abundance of native tree species, and the biology and evolutionary history of the phytophage taxon.
Ty Hang, Vu Thi; Holmes, Edward C.; Veasna, Duong; Quy, Nguyen Thien; Tinh Hien, Tran; Quail, Michael; Churcher, Carol; Parkhill, Julian; Cardosa, Jane; Farrar, Jeremy; Wills, Bridget; Lennon, Niall J.; Birren, Bruce W.; Buchy, Philippe
2010-01-01
A better description of the extent and structure of genetic diversity in dengue virus (DENV) in endemic settings is central to its eventual control. To this end we determined the complete coding region sequence of 187 DENV-2 genomes and 68 E genes from viruses sampled from Vietnamese patients between 1995 and 2009. Strikingly, an episode of genotype replacement was observed, with Asian 1 lineage viruses entirely displacing the previously dominant Asian/American lineage viruses. This genotype replacement event also seems to have occurred within DENV-2 in Thailand and Cambodia, suggestive of a major difference in viral fitness. To determine the cause of this major evolutionary event we compared both the infectivity of the Asian 1 and Asian/American genotypes in mosquitoes and their viraemia levels in humans. Although there was little difference in infectivity in mosquitoes, we observed significantly higher plasma viraemia levels in paediatric patients infected with Asian 1 lineage viruses relative to Asian/American viruses, a phenotype that is predicted to result in a higher probability of human-to-mosquito transmission. These results provide a mechanistic basis to a marked change in the genetic structure of DENV-2 and more broadly underscore that an understanding of DENV evolutionary dynamics can inform the development of vaccines and anti-viral drugs. PMID:20651932
Bermuda as an Evolutionary Life Raft for an Ancient Lineage of Endangered Lizards
Brandley, Matthew C.; Wang, Yuezhao; Guo, Xianguang; Nieto Montes de Oca, Adrián; Fería Ortíz, Manuel; Hikida, Tsutomu; Ota, Hidetoshi
2010-01-01
Oceanic islands are well known for harboring diverse species assemblages and are frequently the basis of research on adaptive radiation and neoendemism. However, a commonly overlooked role of some islands is their function in preserving ancient lineages that have become extinct everywhere else (paleoendemism). The island archipelago of Bermuda is home to a single species of extant terrestrial vertebrate, the endemic skink Plestiodon (formerly Eumeces) longirostris. The presence of this species is surprising because Bermuda is an isolated, relatively young oceanic island approximately 1000 km from the eastern United States. Here, we apply Bayesian phylogenetic analyses using a relaxed molecular clock to demonstrate that the island of Bermuda, although no older than two million years, is home to the only extant representative of one of the earliest mainland North American Plestiodon lineages, which diverged from its closest living relatives 11.5 to 19.8 million years ago. This implies that, within a short geological time frame, mainland North American ancestors of P. longirostris colonized the recently emergent Bermuda and the entire lineage subsequently vanished from the mainland. Thus, our analyses reveal that Bermuda is an example of a “life raft” preserving millions of years of unique evolutionary history, now at the brink of extinction. Threats such as habitat destruction, littering, and non-native species have severely reduced the population size of this highly endangered lizard. PMID:20614024
Bermuda as an evolutionary life raft for an ancient lineage of endangered lizards.
Brandley, Matthew C; Wang, Yuezhao; Guo, Xianguang; Nieto Montes de Oca, Adrián; Fería Ortíz, Manuel; Hikida, Tsutomu; Ota, Hidetoshi
2010-06-30
Oceanic islands are well known for harboring diverse species assemblages and are frequently the basis of research on adaptive radiation and neoendemism. However, a commonly overlooked role of some islands is their function in preserving ancient lineages that have become extinct everywhere else (paleoendemism). The island archipelago of Bermuda is home to a single species of extant terrestrial vertebrate, the endemic skink Plestiodon (formerly Eumeces) longirostris. The presence of this species is surprising because Bermuda is an isolated, relatively young oceanic island approximately 1000 km from the eastern United States. Here, we apply Bayesian phylogenetic analyses using a relaxed molecular clock to demonstrate that the island of Bermuda, although no older than two million years, is home to the only extant representative of one of the earliest mainland North American Plestiodon lineages, which diverged from its closest living relatives 11.5 to 19.8 million years ago. This implies that, within a short geological time frame, mainland North American ancestors of P. longirostris colonized the recently emergent Bermuda and the entire lineage subsequently vanished from the mainland. Thus, our analyses reveal that Bermuda is an example of a "life raft" preserving millions of years of unique evolutionary history, now at the brink of extinction. Threats such as habitat destruction, littering, and non-native species have severely reduced the population size of this highly endangered lizard.
Zhu, Qiyun; Kosoy, Michael; Olival, Kevin J.; Dittmar, Katharina
2014-01-01
Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution. PMID:25106622
Stach, Thomas; Anselmi, Chiara
2015-12-23
Understanding the evolution of divergent developmental trajectories requires detailed comparisons of embryologies at appropriate levels. Cell lineages, the accurate visualization of cleavage patterns, tissue fate restrictions, and morphogenetic movements that occur during the development of individual embryos are currently available for few disparate animal taxa, encumbering evolutionarily meaningful comparisons. Tunicates, considered to be close relatives of vertebrates, are marine invertebrates whose fossil record dates back to 525 million years ago. Life-history strategies across this subphylum are radically different, and include biphasic ascidians with free swimming larvae and a sessile adult stage, and the holoplanktonic larvaceans. Despite considerable progress, notably on the molecular level, the exact extent of evolutionary conservation and innovation during embryology remain obscure. Here, using the innovative technique of bifocal 4D-microscopy, we demonstrate exactly which characteristics in the cell lineages of the ascidian Phallusia mammillata and the larvacean Oikopleura dioica were conserved and which were altered during evolution. Our accurate cell lineage trees in combination with detailed three-dimensional representations clearly identify conserved correspondence in relative cell position, cell identity, and fate restriction in several lines from all prospective larval tissues. At the same time, we precisely pinpoint differences observable at all levels of development. These differences comprise fate restrictions, tissue types, complex morphogenetic movement patterns, numerous cases of heterochronous acceleration in the larvacean embryo, and differences in bilateral symmetry. Our results demonstrate in extraordinary detail the multitude of developmental levels amenable to evolutionary innovation, including subtle changes in the timing of fate restrictions as well as dramatic alterations in complex morphogenetic movements. We anticipate that the precise spatial and temporal cell lineage data will moreover serve as a high-precision guide to devise experimental investigations of other levels, such as molecular interactions between cells or changes in gene expression underlying the documented structural evolutionary changes. Finally, the quantitative amount of digital high-precision morphological data will enable and necessitate software-based similarity assessments as the basis of homology hypotheses.
Occurrence of plastid RNA editing in all major lineages of land plants
Freyer, Regina; Kiefer-Meyer, Marie-Christine; Kössel, Hans
1997-01-01
RNA editing changes posttranscriptionally single nucleotides in chloroplast-encoded transcripts. Although much work has been done on mechanistic and functional aspects of plastid editing, little is known about evolutionary aspects of this RNA processing step. To gain a better understanding of the evolution of RNA editing in plastids, we have investigated the editing patterns in ndhB and rbcL transcripts from various species comprising all major groups of land plants. Our results indicate that RNA editing occurs in plastids of bryophytes, fern allies, true ferns, gymnosperms, and angiosperms. Both editing frequencies and editing patterns show a remarkable degree of interspecies variation. Furthermore, we have found that neither plastid editing frequencies nor the editing pattern of a specific transcript correlate with the phylogenetic tree of the plant kingdom. The poor evolutionary conservation of editing sites among closely related species as well as the occurrence of single species-specific editing sites suggest that the differences in the editing patterns and editing frequencies are probably due both to independent loss and to gain of editing sites. In addition, our results indicate that RNA editing is a relatively ancient process that probably predates the evolution of land plants. This supposition is in good agreement with the phylogenetic data obtained for plant mitochondrial RNA editing, thus providing additional evidence for common evolutionary roots of the two plant organellar editing systems. PMID:9177209
Seecharran, Tristan; Kalin-Manttari, Laura; Koskela, Katja; Nikkari, Simo; Dickins, Benjamin; Corander, Jukka; Skurnik, Mikael
2017-01-01
Yersinia pseudotuberculosis is a Gram-negative intestinal pathogen of humans and has been responsible for several nationwide gastrointestinal outbreaks. Large-scale population genomic studies have been performed on the other human pathogenic species of the genus Yersinia, Yersinia pestis and Yersinia enterocolitica allowing a high-resolution understanding of the ecology, evolution and dissemination of these pathogens. However, to date no purpose-designed large-scale global population genomic analysis of Y. pseudotuberculosis has been performed. Here we present analyses of the genomes of 134 strains of Y. pseudotuberculosis isolated from around the world, from multiple ecosystems since the 1960s. Our data display a phylogeographic split within the population, with an Asian ancestry and subsequent dispersal of successful clonal lineages into Europe and the rest of the world. These lineages can be differentiated by CRISPR cluster arrays, and we show that the lineages are limited with respect to inter-lineage genetic exchange. This restriction of genetic exchange maintains the discrete lineage structure in the population despite co-existence of lineages for thousands of years in multiple countries. Our data highlights how CRISPR can be informative of the evolutionary trajectory of bacterial lineages, and merits further study across bacteria. PMID:29177091
Stabilizing multicellularity through ratcheting
Libby, Eric; Conlin, Peter L.; Kerr, Ben; Ratcliff, William C.
2016-01-01
The evolutionary transition to multicellularity probably began with the formation of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant unicellular taxa, suggesting that there are few genetic barriers to this first key step. This may act as a double-edged sword: labile transitions between unicellular and multicellular states may facilitate the evolution of simple multicellularity, but reversion to a unicellular state may inhibit the evolution of increased complexity. In this paper, we examine how multicellular adaptations can act as evolutionary ‘ratchets’, limiting the potential for reversion to unicellularity. We consider a nascent multicellular lineage growing in an environment that varies between favouring multicellularity and favouring unicellularity. The first type of ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a single-celled context, reducing the fitness of revertants. The second type of ratcheting mutations directly decrease the probability that a mutation will result in reversion (either as a pleiotropic consequence or via direct modification of switch rates). We show that both types of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic effects between the two types of ratcheting mutations in which the presence of one creates the selective conditions favouring the other. Ratcheting mutations may play a key role in diverse evolutionary transitions in individuality, sustaining selection on the new higher-level organism by constraining evolutionary reversion. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431522
Mega-evolutionary dynamics of the adaptive radiation of birds
Capp, Elliot J. R.; Chira, Angela M.; Hughes, Emma C.; Moody, Christopher J. A.; Nouri, Lara O.; Varley, Zoë K.; Thomas, Gavin H.
2017-01-01
The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear9. Here we address this problem on a global scale by analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We find that bill diversity expanded early in extant avian evolutionary history before transitioning to a phase dominated by morphospace packing. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare but major discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks. PMID:28146475
The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes
Vayssier-Taussat, Muriel; Le Rhun, Danielle; Deng, Hong Kuan; Biville, Francis; Cescau, Sandra; Danchin, Antoine; Marignac, Geneviève; Lenaour, Evelyne; Boulouis, Henri Jean; Mavris, Maria; Arnaud, Lionel; Yang, Huanming; Wang, Jing; Quebatte, Maxime; Engel, Philipp; Saenz, Henri; Dehio, Christoph
2010-01-01
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. PMID:20548954
Tao, Junjie; Feng, Chao; Ai, Bin; Kang, Ming
2016-01-01
Background and Aims Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. Methods Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. Key Results Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5′ end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. Conclusions The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1. PMID:27582362
Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches.
Zhao, Hanxin; Chen, Jianshun; Fang, Chun; Xia, Ye; Cheng, Changyong; Jiang, Lingli; Fang, Weihuan
2011-10-01
Listeria monocytogenes is a foodborne pathogen of humans and animals. The majority of human listeriosis cases are caused by strains of lineages I and II, while lineage III strains are rare and seldom implicated in human listeriosis. We revealed by 16S rRNA sequencing the special evolutionary status of L. monocytogenes lineage III, which falls between lineages I and II strains of L. monocytogenes and the non-pathogenic species L. innocua and L. marthii in the dendrogram. Thirteen lineage III strains were then characterized by polyphasic approaches. Biochemical reactions demonstrated 8 biotypes, internalin profiling identified 10 internal-in types clustered in 4 groups, and multilocus sequence typing differentiated 12 sequence types. These typing schemes show that lineage III strains represent the most diverse population of L. monocytogenes, and comprise at least four subpopulations IIIA-1, IIIA-2, HIB, and IIIC. The in vitro and in vivo virulence assessments showed that two lineage IIIA-2 strains had reduced pathogenicity, while the other lineage III strains had comparable virulence to lineages I and II. The HIB strains are phylogenetically distinct from other sub-populations, providing additional evidence that this sublineage represents a novel lineage. The two biochemical reactions L-rhamnose and L-lactate alkalinization, and 10 internalins were identified as potential markers for lineage III subpopulations. This study provides new insights into the biodiversity and population structure of lineage III strains, which are important for understanding the evolution of the L. mono-cytogenes-L. innocua clade.
Jiang, Zhi J; Castoe, Todd A; Austin, Christopher C; Burbrink, Frank T; Herron, Matthew D; McGuire, Jimmy A; Parkinson, Christopher L; Pollock, David D
2007-01-01
Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence. Results We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs. Conclusion Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis of evolutionary pressures in vertebrate mitochondria. PMID:17655768
Liu, Yang; El-Kassaby, Yousry A.
2017-01-01
While DNA methylation carries genetic signals and is instrumental in the evolution of organismal complexity, small RNAs (sRNAs), ~18–24 ribonucleotide (nt) sequences, are crucial mediators of methylation as well as gene silencing. However, scant study deals with sRNA evolution via featuring their expression dynamics coupled with species of different evolutionary time. Here we report an atlas of sRNAs and microRNAs (miRNAs, single-stranded sRNAs) produced over time at seed-set of two major spermatophytes represented by populations of Picea glauca and Arabidopsis thaliana with different seed-set duration. We applied diverse profiling methods to examine sRNA and miRNA features, including size distribution, sequence conservation and reproduction-specific regulation, as well as to predict their putative targets. The top 27 most abundant miRNAs were highly overlapped between the two species (e.g., miR166,−319 and−396), but in P. glauca, they were less abundant and significantly less correlated with seed-set phases. The most abundant sRNAs in libraries were deeply conserved miRNAs in the plant kingdom for Arabidopsis but long sRNAs (24-nt) for P. glauca. We also found significant difference in normalized expression between populations for population-specific sRNAs but not for lineage-specific ones. Moreover, lineage-specific sRNAs were enriched in the 21-nt size class. This pattern is consistent in both species and alludes to a specific type of sRNAs (e.g., miRNA, tasiRNA) being selected for. In addition, we deemed 24 and 9 sRNAs in P. glauca and Arabidopsis, respectively, as sRNA candidates targeting known adaptive genes. Temperature had significant influence on selected gene and miRNA expression at seed development in both species. This study increases our integrated understanding of sRNA evolution and its potential link to genomic architecture (e.g., sRNA derivation from genome and sRNA-mediated genomic events) and organismal complexity (e.g., association between different sRNA expression and their functionality). PMID:29046688
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.
2012-01-01
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J
2012-02-21
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.
The emergence of human-evolutionary medical genomics
Crespi, Bernard J
2011-01-01
In this review, I describe how evolutionary genomics is uniquely suited to spearhead advances in understanding human disease risk, owing to the privileged position of genes as fundamental causes of phenotypic variation, and the ability of population genetic and phylogenetic methods to robustly infer processes of natural selection, drift, and mutation from genetic variation at the levels of family, population, species, and clade. I first provide an overview of models for the origins and maintenance of genetically based disease risk in humans. I then discuss how analyses of genetic disease risk can be dovetailed with studies of positive and balancing selection, to evaluate the degree to which the ‘genes that make us human’ also represent the genes that mediate risk of polygenic disease. Finally, I present four basic principles for the nascent field of human evolutionary medical genomics, each of which represents a process that is nonintuitive from a proximate perspective. Joint consideration of these principles compels novel forms of interdisciplinary analyses, most notably studies that (i) analyze tradeoffs at the level of molecular genetics, and (ii) identify genetic variants that are derived in the human lineage or in specific populations, and then compare individuals with derived versus ancestral alleles. PMID:25567974
Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie
2012-09-15
Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.
The evolution of climatic niches in squamate reptiles.
Pie, Marcio R; Campos, Leonardo L F; Meyer, Andreas L S; Duran, Andressa
2017-07-12
Despite the remarkable diversity found in squamate reptiles, most of their species tend to be found in warm/dry environments, suggesting that climatic requirements played a crucial role in their diversification, yet little is known about the evolution of their climatic niches. In this study, we integrate climatic information associated with the geographical distribution of 1882 squamate species and their phylogenetic relationships to investigate the tempo and mode of climatic niche evolution in squamates, both over time and among lineages. We found that changes in climatic niche dynamics were pronounced over their recent squamate evolutionary history, and we identified extensive evidence for rate heterogeneity in squamate climatic niche evolution. Most rate shifts involved accelerations, particularly over the past 50 Myr. Most squamates occupy similar regions of the climatic niche space, with only a few lineages diversifying into colder and humid climatic conditions. The changes from arid to mesic conditions in some regions of the globe may have provided opportunities for climatic niche evolution, although most lineages tended to remain near their ancestral niche. Variation in rates of climatic niche evolution seems common, particularly in response to the availability of new climatic conditions over evolutionary time. © 2017 The Author(s).
Revised phylogeny of the Cellulose Synthase gene superfamily: insights into cell wall evolution.
Little, Alan; Schwerdt, Julian G; Shirley, Neil J; Khor, Shi F; Neumann, Kylie; O'Donovan, Lisa A; Lahnstein, Jelle; Collins, Helen M; Henderson, Marilyn; Fincher, Geoffrey B; Burton, Rachel A
2018-05-20
Cell walls are crucial for the integrity and function of all land plants, and are of central importance in human health, livestock production, and as a source of renewable bioenergy. Many enzymes that mediate the biosynthesis of cell wall polysaccharides are encoded by members of the large cellulose synthase (CesA) gene superfamily. Here, we analyzed 29 sequenced genomes and 17 transcriptomes to revise the phylogeny of the CesA gene superfamily in angiosperms. Our results identify ancestral gene clusters that predate the monocot-eudicot divergence and reveal several novel evolutionary observations, including the expansion of the Poaceae-specific cellulose synthase-like CslF family to the graminids and restiids and the characterisation of a previously unreported eudicot lineage, CslM, that forms a reciprocally monophyletic eudicot-monocot grouping with the CslJ clade. The CslM lineage is widely distributed in eudicots, and the CslJ clade, which was previously thought to be restricted to the Poales, is widely distributed in monocots. Our analyses show that some members of the CslJ lineage, but not the newly identified CslM genes, are capable of directing (1,3;1,4)-β-glucan biosynthesis, which, contrary to current dogma, is not restricted to Poaceae. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Estimate of within population incremental selection through branch imbalance in lineage trees
Liberman, Gilad; Benichou, Jennifer I.C.; Maman, Yaakov; Glanville, Jacob; Alter, Idan; Louzoun, Yoram
2016-01-01
Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method's wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens. PMID:26586802
Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis.
Ma, W-J; Schwander, T
2017-05-01
Female-producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont-induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56-75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo-diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont-induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one-third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont-induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont-induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont-induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont-induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis. © 2017 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection
Quereda, Juan J.; Dussurget, Olivier; Nahori, Marie-Anne; Ghozlane, Amine; Volant, Stevenn; Dillies, Marie-Agnès; Regnault, Béatrice; Kennedy, Sean; Mondot, Stanislas; Villoing, Barbara; Cossart, Pascale; Pizarro-Cerda, Javier
2016-01-01
Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence. PMID:27140611
Strijk, Joeri S.; Noyes, Richard D.; Strasberg, Dominique; Cruaud, Corinne; Gavory, Fredéric; Chase, Mark W.; Abbott, Richard J.; Thébaud, Christophe
2012-01-01
Madagascar is surrounded by archipelagos varying widely in origin, age and structure. Although small and geologically young, these archipelagos have accumulated disproportionate numbers of unique lineages in comparison to Madagascar, highlighting the role of waif-dispersal and rapid in situ diversification processes in generating endemic biodiversity. We reconstruct the evolutionary and biogeographical history of the genus Psiadia (Asteraceae), a plant genus with near equal numbers of species in Madagascar and surrounding islands. Analyzing patterns and processes of diversification, we explain species accumulation on peripheral islands and aim to offer new insights on the origin and potential causes for diversification in the Madagascar and Indian Ocean Islands biodiversity hotspot. Our results provide support for an African origin of the group, with strong support for non-monophyly. Colonization of the Mascarenes took place by two evolutionary distinct lineages from Madagascar, via two independent dispersal events, each unique for their spatial and temporal properties. Significant shifts in diversification rate followed regional expansion, resulting in co-occurring and phenotypically convergent species on high-elevation volcanic slopes. Like other endemic island lineages, Psiadia have been highly successful in dispersing to and radiating on isolated oceanic islands, typified by high habitat diversity and dynamic ecosystems fuelled by continued geological activity. Results stress the important biogeographical role for Rodrigues in serving as an outlying stepping stone from which regional colonization took place. We discuss how isolated volcanic islands contribute to regional diversity by generating substantial numbers of endemic species on short temporal scales. Factors pertaining to the mode and tempo of archipelago formation and its geographical isolation strongly govern evolutionary pathways available for species diversification, and the potential for successful diversification of dispersed lineages, therefore, appears highly dependent on the timing of arrival, as habitat and resource properties change dramatically over the course of oceanic island evolution. PMID:22900068
Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes.
Koblmüller, Stephan; Egger, Bernd; Sturmbauer, Christian; Sefc, Kristina M
2007-09-01
Although Lake Tanganyika is not the most species-rich of the Great East African Lakes it comprises by far the greatest diversity of cichlid fishes in terms of morphology, ecology, and breeding styles. Our study focuses on the Tanganyikan cichlid tribe Perissodini, which exhibits one of the most peculiar feeding strategies found in cichlids-scale-eating. Their evolutionary history was reconstructed from 1416 bp DNA sequence of two mitochondrial genes (ND2 and partial control region) and from 612 AFLP markers. We confirm the inclusion of the zooplanktivorous genus Haplotaxodon in the tribe Perissodini, and species status of Haplotaxodon trifasciatus. Within the Perissodini, the major lineages emerged within a short period roughly 1.5-2 MYA, which makes their radiation slightly younger than that of other Tanganyikan cichlid tribes. Most scale-eaters evolved in deep-water habitat, perhaps associated with the previously documented radiations of other deep-water dwelling cichlid lineages, and colonized the shallow habitat only recently.
Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L
2017-01-01
Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses. PMID:29231813
Savory, Elizabeth A; Fuller, Skylar L; Weisberg, Alexandra J; Thomas, William J; Gordon, Michael I; Stevens, Danielle M; Creason, Allison L; Belcher, Michael S; Serdani, Maryna; Wiseman, Michele S; Grünwald, Niklaus J; Putnam, Melodie L; Chang, Jeff H
2017-12-12
Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus , and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses.
Host shifts and evolutionary radiations of butterflies
Fordyce, James A.
2010-01-01
Ehrlich and Raven proposed a model of coevolution where major host plant shifts of butterflies facilitate a burst of diversification driven by their arrival to a new adaptive zone. One prediction of this model is that reconstructions of historical diversification of butterflies should indicate an increase in diversification rate following major host shifts. Using reconstructed histories of 15 butterfly groups, I tested this prediction and found general agreement with Ehrlich and Raven's model. Butterfly lineages with an inferred major historical host shift showed evidence of diversification rate variation, with a significant acceleration following the host shift. Lineages without an inferred major host shift generally agreed with a constant-rate model of diversification. These results are consistent with the view that host plant associations have played a profound role in the evolutionary history of butterflies, and show that major shifts to chemically distinct plant groups leave a historical footprint that remains detectable today. PMID:20610430
A Molecular Phylogeny of Living Primates
Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill
2011-01-01
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896
Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism.
Liu, Zhenhua; Tavares, Raquel; Forsythe, Evan S; André, François; Lugan, Raphaël; Jonasson, Gabriella; Boutet-Mercey, Stéphanie; Tohge, Takayuki; Beilstein, Mark A; Werck-Reichhart, Danièle; Renault, Hugues
2016-10-07
Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.
Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.
Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J
2014-04-02
The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.
Shine, Richard
2013-03-18
Most small children can tell you that 'reptiles' are the snakes, lizards, crocodiles, and turtles (perhaps with the dinosaurs thrown in) - suggesting that it's easy to tell the difference between reptiles and other animals. Unfortunately, evolutionary biologists struggle with the same task, because phylogenetic analysis tells us loud and clear that these different types of what we loosely call 'reptiles' are not particularly closely related to each other (Figure 1). On the evolutionary tree, some of them (dinosaurs, crocodiles) are much more closely related to birds than to the other animals that we call reptiles. Other reptiles are the descendants of very ancient lineages; for example, turtles separated from the other reptiles, including the now-dominant Squamata (lizards and snakes), at least 200 million years ago. And another 200-million-year-old lineage has left just a single survivor, a lizard-like creature (the tuatara), on a few islands in New Zealand. Copyright © 2013 Elsevier Ltd. All rights reserved.
Martinez-Morales, Juan R
2016-07-01
Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Cycloheximide: No Ordinary Bitter Stimulus
Hettinger, Thomas P.; Formaker, Bradley K.; Frank, Marion E.
2007-01-01
Cycloheximide (CyX), a toxic antibiotic with a unique chemical structure generated by the actinomycete, Streptomyces griseus, has emerged as a primary focus of studies on mammalian bitter taste. Rats and mice avoid it at concentrations well below the thresholds for most bitter stimuli and T2R G-protein-coupled receptors specific for CyX with appropriate sensitivity are identified for those species. Like mouse and rat, golden hamsters, Mesocricetus auratus, also detected and rejected micromolar levels of CyX, although 1 mM CyX failed to activate the hamster chorda tympani nerve. Hamsters showed an initial tolerance for 500 μM CyX, but after that, avoidance of CyX dramatically increased, plasticity not reported for rat or mouse. As the hamster lineage branches well before division of the mouse-rat lineage in evolutionary time, differences between hamster and mouse-rat reactions to CyX are not surprising. Furthermore, unlike hamster LiCl-induced learned aversions, the induced CyX aversion neither specifically nor robustly generalized to other non-ionic bitter stimuli; and unlike adverse reactions to other chemosensory stimuli, aversions to CyX were not mollified by adding a sweetener. Thus, CyX is unlike other bitter stimuli. The gene for the high-affinity CyX receptor is a member of a cluster of 5 orthologous T2R genes that are likely rodent specific; this “CyX clade” is found in the mouse, rat and probably hamster, but not in the human or rabbit genome. The rodent CyX-T2R interaction may be one of multiple lineage-specific stimulus-receptor interactions reflecting a response to a particular environmental toxin. The combination of T2R multiplicity, species divergence and gene duplication results in diverse ligands for multiple species-specific T2R receptors, which confounds definition of ‘bitter’ stimuli across species. PMID:17400304
Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou
2017-09-18
The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450 gene families in A. thaliana and Brassica species. This study provides a biology model to study the mechanism of gene family formation, particularly in the context of the evolutionary history of angiosperms, and offers novel insights for the study of angiosperm genomes.
Karasev, Alexander V.; Hu, Xiaojun; Brown, Celeste J.; Kerlan, Camille; Nikolaeva, Olga V.; Crosslin, James M.; Gray, Stewart M.
2011-01-01
The ordinary strain of Potato virus Y (PVY), PVYO, causes mild mosaic in tobacco and induces necrosis and severe stunting in potato cultivars carrying the Ny gene. A novel substrain of PVYO was recently reported, PVYO-O5, which is spreading in the United States and is distinguished from other PVYO isolates serologically (i.e., reacting to the otherwise PVYN-specific monoclonal antibody 1F5). To characterize this new PVYO-O5 subgroup and address possible reasons for its continued spread, we conducted a molecular study of PVYO and PVYO-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis. In all, 44 PVYO isolates were sequenced, including 31 from the previously defined PVYO-O5 group, and subjected to whole-genome analysis. PVYO-O5 isolates formed a separate lineage within the PVYO genome cluster in the whole-genome phylogenetic tree and represented a novel evolutionary lineage of PVY from potato. On the other hand, the PVYO sequences separated into at least two distinct lineages on the whole-genome phylogenetic tree. To shed light on the origin of the three most common PVY recombinants, a more detailed phylogenetic analysis of a sequence fragment, nucleotides 2,406 to 5,821, that is present in all recombinant and nonrecombinant PVYO genomes was conducted. The analysis revealed that PVYN:O and PVYN-Wi recombinants acquired their PVYO segments from two separate PVYO lineages, whereas the PVYNTN recombinant acquired its PVYO segment from the same lineage as PVYN:O. These data suggest that PVYN:O and PVYN-Wi recombinants originated from two separate recombination events involving two different PVYO parental genomes, whereas the PVYNTN recombinants likely originated from the PVYN:O genome via additional recombination events. PMID:21675922
Gray, Michael W
2015-08-18
Comparative studies of the mitochondrial proteome have identified a conserved core of proteins descended from the α-proteobacterial endosymbiont that gave rise to the mitochondrion and was the source of the mitochondrial genome in contemporary eukaryotes. A surprising result of phylogenetic analyses is the relatively small proportion (10-20%) of the mitochondrial proteome displaying a clear α-proteobacterial ancestry. A large fraction of mitochondrial proteins typically has detectable homologs only in other eukaryotes and is presumed to represent proteins that emerged specifically within eukaryotes. A further significant fraction of the mitochondrial proteome consists of proteins with homologs in prokaryotes, but without a robust phylogenetic signal affiliating them with specific prokaryotic lineages. The presumptive evolutionary source of these proteins is quite different in contending models of mitochondrial origin.
2013-01-01
Background The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure. Results The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. Conclusions The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa. PMID:24021154
Avian skin development and the evolutionary origin of feathers.
Sawyer, Roger H; Knapp, Loren W
2003-08-15
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers. Copyright 2003 Wiley-Liss, Inc.
Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes.
Erisman, Brad E; Petersen, Christopher W; Hastings, Philip A; Warner, Robert R
2013-10-01
Hermaphroditism is taxonomically widespread among teleost fishes and takes on many forms including simultaneous, protogynous, and protandrous hermaphroditism, bidirectional sex change, and androdioecy. The proximate mechanisms that influence the timing, incidence, and forms of hermaphroditism in fishes are supported by numerous theoretical and empirical studies on their mating systems and sexual patterns, but few have examined aspects of sex-allocation theory or the evolution of hermaphroditism for this group within a strict phylogenetic context. Fortunately, species-level phylogenetic reconstructions of the evolutionary history of many lineages of fishes have emerged, providing opportunities for understanding fine-scale evolutionary pathways and transformations of sex allocation. Examinations of several families of fishes with adequate data on phylogeny, patterns of sex allocation, mating systems, and with some form of hermaphroditism reveal that the evolution and expression of protogyny and other forms of sex allocation show little evidence of phylogenetic inertia within specific lineages but rather are associated with particular mating systems in accordance with prevalent theories about sex allocation. Transformations from protogyny to gonochorism in groupers (Epinephelidae), seabasses (Serranidae), and wrasses and parrotfishes (Labridae) are associated with equivalent transformations in the structure of mating groups from spawning of pairs to group spawning and related increases in sperm competition. Similarly, patterns of protandry, androdioecy, simultaneous hermaphroditism, and bidirectional sex change in other lineages (Aulopiformes, Gobiidae, and Pomacentridae) match well with particular mating systems in accordance with sex-allocation theory. Unlike other animals and plants, we did not find evidence that transitions between hermaphroditism and gonochorism required functional intermediates. Two instances in which our general conclusions might not hold include the expression of protandry in the Sparidae and the distribution of simultaneous hermaphroditism. In the Sparidae, the association of hypothesized mating systems and patterns of sex allocation were not always consistent with the size-advantage model (SAM), in that certain protandric sparids show evidence of intense sperm competition that should favor the expression of gonochorism. In the other case, simultaneous hermaphroditism does not occur in some groups of monogamous fishes, which are similar in ecology to the hermaphroditic serranines, suggesting that this form of sex allocation may be more limited by phylogenetic inertia. Overall, this work strongly supports sexual lability within teleost fishes and confirms evolutionary theories of sex allocation in this group of vertebrates.
NASA Astrophysics Data System (ADS)
Torres-Pratts, H.; Lado-Insua, T.; Rhyne, A. L.; Rodríguez-Matos, L.; Schizas, N. V.
2011-06-01
We examined the genetic variation of the corallimorpharian Ricordea florida; it is distributed throughout the Caribbean region and is heavily harvested for the marine aquarium trade. Eighty-four distinct individuals of R. florida were sequenced from four geographically distant Caribbean locations (Curaçao, Florida, Guadeloupe, and Puerto Rico). Analysis of the ribosomal nuclear region (ITS1, 5.8S, ITS2) uncovered two geographically partially overlapping genetic lineages in R. florida, probably representing two cryptic species. Lineage 1 was found in Florida and Puerto Rico, and Lineage 2 was found in Florida, Puerto Rico, Guadeloupe, and Curaçao. Because of the multi-allelic nature of the ITS region, four individuals from Lineage 1 and six from Lineage 2 were cloned to evaluate the levels of hidden intra-individual variability. Pairwise genetic comparisons indicated that the levels of intra-individual and intra-lineage variability (<1%) were approximately an order of magnitude lower than the divergence (~9%) observed between the two lineages. The fishery regulations of the aquarium trade regard R. florida as one species. More refined regulations should take into account the presence of two genetic lineages, and they should be managed separately in order to preserve the long-term evolutionary potential of this corallimorpharian. The discovery of two distinct lineages in R. florida illustrates the importance of evaluating genetic variability in harvested species prior to the implementation of management policies.
Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul
2018-01-01
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166
Serrano-Serrano, Martha Liliana; Perret, Mathieu; Guignard, Maïté; Chautems, Alain; Silvestro, Daniele; Salamin, Nicolas
2015-11-10
Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.
NASA Astrophysics Data System (ADS)
Agnew, J. G.; Nunn, J. A.
2007-12-01
Shell Foundation sponsors a program at Louisiana State University called Shell Undergraduate Recruitment and Geoscience Education (SURGE). The purpose of SURGE is to help local high school science teachers incorporate geology into their classrooms by providing resources and training. As part of this program, a workshop for high school biology teachers was held at Louisiana State University in Baton Rouge on June 3-5, 2007. We had the teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic earth science concepts such as geologic time, superposition, and faunal succession and provided the teachers with lesson plans and materials. As an example, one of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth make excellent evolutionary subjects because they have a good fossil record and show continuous transitions in morphology from the Eocene to Pliocene. Our activity follows the learning cycle model. We take advantage of the curiosity of sharks shared by most people, and allow students to explore the variations among different shark teeth and explain the causes of those variations. The objectives of this exercise are to have the students: 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships among fossil shark teeth; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. To do the activity, students are divided into groups of 2-3 and given a shuffled set of 72 shark tooth cards with different images of megatoothed shark teeth. They are instructed to group the shark tooth cards into separate species of sharks. After sorting the cards, students are asked to consider the evolutionary relationships among their species and arrange their species chronologically according to the species first appearance in the fossil record. This is followed by a group discussion of each group's predictions. Next students are given photographs of teeth from different megatoothed sharks, and a geologic time scale with the sharks stratigraphic ranges. Students are asked to describe evolutionary trends in the fossil megatoothed lineage and formulate several hypotheses to explain the observed evolutionary trends. The exercise is concluded with a discussion of the environmental and biotic events occurring between the Eocene and Miocene epochs that may have caused the evolutionary changes in the megatoothed shark's teeth.
Hull, J.M.; Strobel, Bradley N.; Boal, C.W.; Hull, A.C.; Dykstra, C.R.; Irish, A.M.; Fish, A.M.; Ernest, H.B.
2008-01-01
Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted. ?? 2008 Elsevier Inc. All rights reserved.
Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei
2015-01-01
Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004
2004-12-09
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
Ontogenetic ritualization of primate gesture as a case study in dyadic brain modeling.
Gasser, Brad; Cartmill, Erica A; Arbib, Michael A
2014-01-01
This paper introduces dyadic brain modeling - the simultaneous, computational modeling of the brains of two interacting agents - to explore ways in which our understanding of macaque brain circuitry can ground new models of brain mechanisms involved in ape interaction. Specifically, we assess a range of data on gestural communication of great apes as the basis for developing an account of the interactions of two primates engaged in ontogenetic ritualization, a proposed learning mechanism through which a functional action may become a communicative gesture over repeated interactions between two individuals (the 'dyad'). The integration of behavioral, neural, and computational data in dyadic (or, more generally, social) brain modeling has broad application to comparative and evolutionary questions, particularly for the evolutionary origins of cognition and language in the human lineage. We relate this work to the neuroinformatics challenges of integrating and sharing data to support collaboration between primatologists, neuroscientists and modelers that will help speed the emergence of what may be called comparative neuro-primatology.
[Where do the parasites of man come from?].
Combes, C
1990-01-01
The Hominids have come in contact, over the last few million years, with the infective stages of many parasites which had up to then evolved in non Primate hosts; this is because Hominids have occupied multiple environments and acquired diversified behaviour. The high number of these lateral transfers explains the multiplicity of current human parasitic diseases whereas their youth on an evolutionary scale accounts for the seriousness of most of these diseases. The basic questions arising from the exceptional opportunities offered to parasites by the evolution of the human lineage concern: the precise role played by human behaviour, the mechanisms of alterations in specificity, the identity of the original host phyla, the dynamic and genetic consequences for parasites, the relationship with the evolutionary history of the ancestors of Homo sapiens sapiens; for instance, it is suggested that man's mastery of fire, allowing him to cook his food, dramatically reduced his contamination by certain parasites and that this contributed to the subsequent success of Hominids.
Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu
2017-12-21
Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.
Montelongo, Tinguaro; Gómez-Zurita, Jesús
2015-01-01
Many unisexual animal lineages supposedly arose from hybridization. However, support for their putative hybrid origins mostly comes from indirect methodologies, which are rarely confirmatory. Here we provide compelling data indicating that tetraploid unisexual Calligrapha are true genetic mosaics obtained via analysis of mitochondrial DNA (mtDNA) and allelic variation and coalescence times for three single-copy nuclear genes (CPS, HARS, and Wg) in five of six unisexual Calligrapha and a representative sample of bisexual species. Nuclear allelic diversity in unisexuals consistently segregates in the gene pools of at least two but up to three divergent bisexual species, interpreted as putative parentals of interspecific hybridization crosses. Interestingly, their mtDNA diversity derives from an additional yet undiscovered older evolutionary lineage that is possibly the same for all independently originated unisexual species. One possibly extinct species transferred its mtDNA to several evolutionary lineages in a wave of hybridization events during the Pliocene, whereby descendant species retained a polymorphic mtDNA constitution. Recent hybridizations, in the Pleistocene and always involving females with the old introgressed mtDNA, seemingly occurred in the lineages leading to unisexual species, decoupling mtDNA introgression (and inferences derived from these data, such as timing and parentage) from subsequent acquisition of the new reproductive mode. These results illuminate an unexpected complexity in possible routes to animal unisexuality, with implications for the interpretation of ancient unisexuality. If the origin of unisexuality requires a mechanism where (1) hybridization is a necessary but insufficient condition and (2) multiple bouts of hybridization involving more than two divergent lineages are required, then the origins of several classical unisexual systems may have to be reassessed.
Oldest Known Pantherine Skull and Evolution of the Tiger
Mazák, Ji H.; Christiansen, Per; Kitchener, Andrew C.
2011-01-01
The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species. PMID:22016768
Bagley, Justin C; Alda, Fernando; Breitman, M Florencia; Bermingham, Eldredge; van den Berghe, Eric P; Johnson, Jerald B
2015-01-01
Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including 'non-adaptive radiations' containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci) from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial 'major-lineages' diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively) 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the importance of testing for hybridization versus incomplete lineage sorting, which aids inference of not only species limits but also evolutionary processes influencing genetic diversity.
Oldest known pantherine skull and evolution of the tiger.
Mazák, Ji H; Christiansen, Per; Kitchener, Andrew C
2011-01-01
The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55-2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species.
Tosh, J.; Dessein, S.; Buerki, S.; Groeninckx, I.; Mouly, A.; Bremer, B.; Smets, E. F.; De Block, P.
2013-01-01
Background and Aims Previous work on the pantropical genus Ixora has revealed an Afro-Madagascan clade, but as yet no study has focused in detail on the evolutionary history and morphological trends in this group. Here the evolutionary history of Afro-Madagascan Ixora spp. (a clade of approx. 80 taxa) is investigated and the phylogenetic trees compared with several key morphological traits in taxa occurring in Madagascar. Methods Phylogenetic relationships of Afro-Madagascan Ixora are assessed using sequence data from four plastid regions (petD, rps16, rpoB-trnC and trnL-trnF) and nuclear ribosomal external transcribed spacer (ETS) and internal transcribed spacer (ITS) regions. The phylogenetic distribution of key morphological characters is assessed. Bayesian inference (implemented in BEAST) is used to estimate the temporal origin of Ixora based on fossil evidence. Key Results Two separate lineages of Madagascan taxa are recovered, one of which is nested in a group of East African taxa. Divergence in Ixora is estimated to have commenced during the mid Miocene, with extensive cladogenesis occurring in the Afro-Madagascan clade during the Pliocene onwards. Conclusions Both lineages of Madagascan Ixora exhibit morphological innovations that are rare throughout the rest of the genus, including a trend towards pauciflorous inflorescences and a trend towards extreme corolla tube length, suggesting that the same ecological and selective pressures are acting upon taxa from both Madagascan lineages. Novel ecological opportunities resulting from climate-induced habitat fragmentation and corolla tube length diversification are likely to have facilitated species radiation on Madagascar. PMID:24142919
Hernández-Hernández, Tania; Hernández, Héctor M; De-Nova, J Arturo; Puente, Raul; Eguiarte, Luis E; Magallón, Susana
2011-01-01
Cactaceae is one of the most charismatic plant families because of the extreme succulence and outstanding diversity of growth forms of its members. Although cacti are conspicuous elements of arid ecosystems in the New World and are model systems for ecological and anatomical studies, the high morphological convergence and scarcity of phenotypic synapomorphies make the evolutionary relationships and trends among lineages difficult to understand. We performed phylogenetic analyses implementing parsimony ratchet and likelihood methods, using a concatenated matrix with 6148 bp of plastid and nuclear markers (trnK/matK, matK, trnL-trnF, rpl16, and ppc). We included 224 species representing approximately 85% of the family's genera. Likelihood methods were used to perform an ancestral character reconstruction within Cactoideae, the richest subfamily in terms of morphological diversity and species number, to evaluate possible growth form evolutionary trends. Our phylogenetic results support previous studies showing the paraphyly of subfamily Pereskioideae and the monophyly of subfamilies Opuntioideae and Cactoideae. After the early divergence of Blossfeldia, Cactoideae splits into two clades: Cacteae, including North American globose and barrel-shaped members, and core Cactoideae, including the largest diversity of growth forms distributed throughout the American continent. Para- or polyphyly is persistent in different parts of the phylogeny. Main Cactoideae clades were found to have different ancestral growth forms, and convergence toward globose, arborescent, or columnar forms occurred in different lineages. Our study enabled us to provide a detailed hypothesis of relationships among cacti lineages and represents the most complete general phylogenetic framework available to understand evolutionary trends within Cactaceae.
Kutschera, Verena E.; Bidon, Tobias; Hailer, Frank; Rodi, Julia L.; Fain, Steven R.; Janke, Axel
2014-01-01
Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. PMID:24903145
Yokoyama, Ryota; Goto, Akira
2005-09-01
The freshwater sculpins, genus Cottus (Teleostei; Cottidae), comprise bottom-dwelling fishes that exhibit various life-history styles, having radiated throughout Northern Hemisphere freshwater habitats. The phylogenetic relationships among Cottus and related taxa were estimated from mitochondrial DNA 12S rRNA and control region (CR) sequences, the freshwater sculpins examined falling into five lineages (A-E). Lineage A consisted of Trachidermus fasciatus and C. kazika, both having a catadromous life-history. The remaining species (lineages B-E) spawn in freshwater habitats regardless of life-history (amphidromous, lacustrine or fluvial), suggesting that the various life-history types post-dated a common ancestor of lineages B-E. Molecular clock estimates suggested a Pliocene-Pleistocene radiation (or Miocene-Pliocene from the alternative clock) of lineages B-E. In eastern Eurasia, speciation with life-history changes to amphidromous or fluvial styles has apparently occurred independently in some lineages, as a general pattern. Mitochondrial DNA CR phylogeny showed the monophyletic Baikalian cottoids (Cottoidei) to be nested within Cottus and Trachidermus, suggesting that the former ecologically and morphologically divergent cottoids may have originated from a single lineage which invaded the ancient lake.
Diversity rankings among bacterial lineages in soil.
Youssef, Noha H; Elshahed, Mostafa S
2009-03-01
We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.
A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice
White, Michael A.; Ikeda, Akihiro; Payseur, Bret A.
2012-01-01
The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2–4 million years ago. Here, we use a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period. PMID:22763584
A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice.
White, Michael A; Ikeda, Akihiro; Payseur, Bret A
2012-08-01
The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.
Heterostyly accelerates diversification via reduced extinction in primroses.
de Vos, Jurriaan M; Hughes, Colin E; Schneeweiss, Gerald M; Moore, Brian R; Conti, Elena
2014-06-07
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower-pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.
Natural pedagogy as evolutionary adaptation.
Csibra, Gergely; Gergely, György
2011-04-12
We propose that the cognitive mechanisms that enable the transmission of cultural knowledge by communication between individuals constitute a system of 'natural pedagogy' in humans, and represent an evolutionary adaptation along the hominin lineage. We discuss three kinds of arguments that support this hypothesis. First, natural pedagogy is likely to be human-specific: while social learning and communication are both widespread in non-human animals, we know of no example of social learning by communication in any other species apart from humans. Second, natural pedagogy is universal: despite the huge variability in child-rearing practices, all human cultures rely on communication to transmit to novices a variety of different types of cultural knowledge, including information about artefact kinds, conventional behaviours, arbitrary referential symbols, cognitively opaque skills and know-how embedded in means-end actions. Third, the data available on early hominin technological culture are more compatible with the assumption that natural pedagogy was an independently selected adaptive cognitive system than considering it as a by-product of some other human-specific adaptation, such as language. By providing a qualitatively new type of social learning mechanism, natural pedagogy is not only the product but also one of the sources of the rich cultural heritage of our species.
Natural pedagogy as evolutionary adaptation
Csibra, Gergely; Gergely, György
2011-01-01
We propose that the cognitive mechanisms that enable the transmission of cultural knowledge by communication between individuals constitute a system of ‘natural pedagogy’ in humans, and represent an evolutionary adaptation along the hominin lineage. We discuss three kinds of arguments that support this hypothesis. First, natural pedagogy is likely to be human-specific: while social learning and communication are both widespread in non-human animals, we know of no example of social learning by communication in any other species apart from humans. Second, natural pedagogy is universal: despite the huge variability in child-rearing practices, all human cultures rely on communication to transmit to novices a variety of different types of cultural knowledge, including information about artefact kinds, conventional behaviours, arbitrary referential symbols, cognitively opaque skills and know-how embedded in means-end actions. Third, the data available on early hominin technological culture are more compatible with the assumption that natural pedagogy was an independently selected adaptive cognitive system than considering it as a by-product of some other human-specific adaptation, such as language. By providing a qualitatively new type of social learning mechanism, natural pedagogy is not only the product but also one of the sources of the rich cultural heritage of our species. PMID:21357237
Heterostyly accelerates diversification via reduced extinction in primroses
de Vos, Jurriaan M.; Hughes, Colin E.; Schneeweiss, Gerald M.; Moore, Brian R.; Conti, Elena
2014-01-01
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower–pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification. PMID:24759859
2014-01-01
Background Although serotype O157:H7 is the predominant enterohemorrhagic Escherichia coli (EHEC), outbreaks of non-O157 EHEC that cause severe foodborne illness, including hemolytic uremic syndrome have increased worldwide. In fact, non-O157 serotypes are now estimated to cause over half of all the Shiga toxin-producing Escherichia coli (STEC) cases, and outbreaks of non-O157 EHEC infections are frequently associated with serotypes O26, O45, O103, O111, O121, and O145. Currently, there are no complete genomes for O145 in public databases. Results We determined the complete genome sequences of two O145 strains (EcO145), one linked to a US lettuce-associated outbreak (RM13514) and one to a Belgium ice-cream-associated outbreak (RM13516). Both strains contain one chromosome and two large plasmids, with genome sizes of 5,737,294 bp for RM13514 and 5,559,008 bp for RM13516. Comparative analysis of the two EcO145 genomes revealed a large core (5,173 genes) and a considerable amount of strain-specific genes. Additionally, the two EcO145 genomes display distinct chromosomal architecture, virulence gene profile, phylogenetic origin of Stx2a prophage, and methylation profile (methylome). Comparative analysis of EcO145 genomes to other completely sequenced STEC and other E. coli and Shigella genomes revealed that, unlike any other known non-O157 EHEC strain, EcO145 ascended from a common lineage with EcO157/EcO55. This evolutionary relationship was further supported by the pangenome analysis of the 10 EHEC str ains. Of the 4,192 EHEC core genes, EcO145 shares more genes with EcO157 than with the any other non-O157 EHEC strains. Conclusions Our data provide evidence that EcO145 and EcO157 evolved from a common lineage, but ultimately each serotype evolves via a lineage-independent nature to EHEC by acquisition of the core set of EHEC virulence factors, including the genes encoding Shiga toxin and the large virulence plasmid. The large variation between the two EcO145 genomes suggests a distinctive evolutionary path between the two outbreak strains. The distinct methylome between the two EcO145 strains is likely due to the presence of a BsuBI/PstI methyltransferase gene cassette in the Stx2a prophage of the strain RM13514, suggesting a role of horizontal gene transfer-mediated epigenetic alteration in the evolution of individual EHEC strains. PMID:24410921
The evolutionary diversification of seed size: using the past to understand the present.
Sims, Hallie J
2012-05-01
The Devonian origin of seed plants and subsequent morphological diversification of seeds during the late Paleozoic represents an adaptive radiation into unoccupied ecological niche space. A plant's seed size is correlated with its life-history strategy, growth form, and seed dispersal syndrome. The fossil record indicates that the oldest seed plants had relatively small seeds, but the Mississippian seed size envelope increased significantly with the diversification of larger seeded lineages. Fossil seeds equivalent to the largest extant gymnosperm seeds appeared by the Pennsylvanian, concurrent with morphological diversification of growth forms and dispersal syndromes as well as the clade's radiation into new environments. Wang's Analysis of Skewness indicates that the evolutionary trend of increasing seed size resulted from primarily passive processes in Pennsylvanian seed plants. The distributions of modern angiosperms indicate a more diverse system of active and some passive processes, unbounded by Paleozoic limits; multiple angiosperm lineages independently evolved though the upper and lower bounds. Quantitative measures of preservation suggest that, although our knowledge of Paleozoic seeds is far from complete, the evolutionary trend in seed size is unlikely to be an artifact of taphonomy. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.