Fluorescent probes for nucleic Acid visualization in fixed and live cells.
Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G
2013-12-11
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Zhang, Shaojuan
2016-01-01
Fluorescent probes are widely utilized for noninvasive fluorescence imaging. Continuing efforts have been made in developing novel fluorescent probes with improved fluorescence quantum yield, enhanced target-specificity, and lower cytotoxicity. Before such probes are administrated into a living system, it is essential to evaluate the subcellular uptake, targeting specificity, and cytotoxicity in vitro. In this chapter, we briefly outline common methods used to evaluate fluorescent probes using fluorescence microscopy, multiplate reader, and cytotoxicity assay.
Recent Progress in Fluorescent Imaging Probes
Pak, Yen Leng; Swamy, K. M. K.; Yoon, Juyoung
2015-01-01
Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn2+, Hg2+, Cu2+ and Au3+, and anions including cyanide and adenosine triphosphate (ATP). PMID:26402684
Recent Progress in Fluorescent Imaging Probes.
Pak, Yen Leng; Swamy, K M K; Yoon, Juyoung
2015-09-22
Due to the simplicity and low detection limit, especially the bioimaging ability for cells, fluorescence probes serve as unique detection methods. With the aid of molecular recognition and specific organic reactions, research on fluorescent imaging probes has blossomed during the last decade. Especially, reaction based fluorescent probes have been proven to be highly selective for specific analytes. This review highlights our recent progress on fluorescent imaging probes for biologically important species, such as biothiols, reactive oxygen species, reactive nitrogen species, metal ions including Zn(2+), Hg(2+), Cu(2+) and Au(3+), and anions including cyanide and adenosine triphosphate (ATP).
Development of Fluorescent Protein Probes Specific for Parallel DNA and RNA G-Quadruplexes.
Dang, Dung Thanh; Phan, Anh Tuân
2016-01-01
We have developed fluorescent protein probes specific for parallel G-quadruplexes by attaching cyan fluorescent protein to the G-quadruplex-binding motif of the RNA helicase RHAU. Fluorescent probes containing RHAU peptide fragments of different lengths were constructed, and their binding to G-quadruplexes was characterized. The selective recognition and discrimination of G-quadruplex topologies by the fluorescent protein probes was easily detected by the naked eye or by conventional gel imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minoshima, Masafumi; Kikuchi, Kazuya
Fluorescent molecules are widely used as a tool to directly visualize target biomolecules in vivo. Fluorescent probes have the advantage that desired function can be rendered based on rational design. For bone-imaging fluorescent probes in vivo, they should be delivered to bone tissue upon administration. Recently, a fluorescent probe for detecting osteoclast activity was developed. The fluorescent probe has acid-sensitive fluorescence property, specific delivery to bone tissue, and durability against laser irradiation, which enabled real-time intravital imaging of bone-resorbing osteoclasts for a long period of time.
Single nucleotide polymorphism analysis using different colored dye dimer probes
NASA Astrophysics Data System (ADS)
Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter
2006-09-01
Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.
Kobayashi, Hisataka; Choyke, Peter L.
2010-01-01
CONSPECTUS Conventional imaging methods, such as angiography, computed tomography, magnetic resonance imaging and radionuclide imaging, rely on contrast agents (iodine, gadolinium, radioisotopes) that are “always on”. While these agents have proven clinically useful, they are not sufficiently sensitive because of the inadequate target to background ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, i.e. only “turned on” under certain conditions. These probes can be designed to emit signal only after binding a target tissue, greatly increasing sensitivity and specificity in the detection of disease. There are two basic types of activatable fluorescence probes; 1) conventional enzymatically activatable probes, which exist in the quenched state until activated by enzymatic cleavage mostly outside of the cells, and 2) newly designed target-cell specific activatable probes, which are quenched until activated in targeted cells by endolysosomal processing that results when the probe binds specific cell-surface receptors and is subsequently internalized. Herein, we present a review of the rational design and in vivo applications of target-cell specific activatable probes. Designing these probes based on their photo-chemical (e.g. activation strategy), pharmacological (e.g. biodistribution), and biological (e.g. target specificity) properties has recently allowed the rational design and synthesis of target-cell specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photo-chemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include: self-quenching, homo- and hetero-fluorescence resonance energy transfer (FRET), H-dimer formation and photon-induced electron transfer (PeT). In addition, the repertoire is further expanded by the option for reversibility or irreversibility of the signal emitted using the aforementioned mechanisms. Given the wide range of photochemical mechanisms and properties, target-cell specific activatable probes possess considerable flexibility and can be adapted to specific diagnostic needs. Herein, we summarize the chemical, pharmacological, and biological basis of target-cell specific activatable imaging probes and discuss methods to successfully design such target-cell specific activatable probes for in vivo cancer imaging. PMID:21062101
A colorimetric and fluorescent probe for detecting intracellular biothiols.
Chen, Chunyang; Liu, Wei; Xu, Cong; Liu, Weisheng
2016-11-15
A new rapid and highly sensitive coumarin-based probe (probe 1) has been designed and synthesized for detecting intracellular thiols. Probe 1 was prepared by a 4-step procedure as a latent fluorescence probe to achieve high sensitivity and fluorescence turn-on response toward cysteine and homocysteine over GSH and other various natural amino acids under physiological conditions. Owing to specific cyclization between thiols and aldehyde group, probe 1 displayed a highly selectivity toward cysteine and homocysteine. Above all, probe 1 was successfully used for fluorescence imaging of biothiols in Hela cells, and quantitative determination had been achieved within a certain range. Then specific fluorescence imaging of mice organ tissues was obtained for proving the permeability of probe 1. Simultaneously, the viability was measured to be more than 80%, which shows probe 1 can be a rapid and biocompatible probe for biothiols in cells. Furthermore, the measurement of thiols detection in 5 kinds of animal serum showed that probe 1 can be used in determination of biothiols in blood. Copyright © 2016 Elsevier B.V. All rights reserved.
A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells
NASA Astrophysics Data System (ADS)
Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying
2017-07-01
Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.
Yan, Yuling; Marriott, M Emma; Petchprayoon, Chutima; Marriott, Gerard
2011-02-01
Few to single molecule imaging of fluorescent probe molecules can provide information on the distribution, dynamics, interactions and activity of specific fluorescently tagged proteins during cellular processes. Unfortunately, these imaging studies are made challenging in living cells because of fluorescence signals from endogenous cofactors. Moreover, related background signals within multi-cell systems and intact tissue are even higher and reduce signal contrast even for ensemble populations of probe molecules. High-contrast optical imaging within high-background environments will therefore require new ideas on the design of fluorescence probes, and the way their fluorescence signals are generated and analysed to form an image. To this end, in the present review we describe recent studies on a new family of fluorescent probe called optical switches, with descriptions of the mechanisms that underlie their ability to undergo rapid and reversible transitions between two distinct states. Optical manipulation of the fluorescent and non-fluorescent states of an optical switch probe generates a modulated fluorescence signal that can be isolated from a larger unmodulated background by using OLID (optical lock-in detection) techniques. The present review concludes with a discussion on select applications of synthetic and genetically encoded optical switch probes and OLID microscopy for high-contrast imaging of specific proteins and membrane structures within living systems.
Winterbourn, Christine C
2014-02-01
Small molecule fluorescent probes are vital tools for monitoring reactive oxygen species in cells. The types of probe available, the extent to which they are specific or quantitative and complications in interpreting results are discussed. Most commonly used probes (e.g. dihydrodichlorofluorescein, dihydrorhodamine) have some value in providing information on changes to the redox environment of the cell, but they are not specific for any one oxidant and the response is affected by numerous chemical interactions and not just increased oxidant generation. These probes generate the fluorescent end product by a free radical mechanism, and to react with hydrogen peroxide they require a metal catalyst. Probe radicals can react with oxygen, superoxide, and various antioxidant molecules, all of which influence the signal. Newer generation probes such as boronates act by a different mechanism in which nucleophilic attack by the oxidant on a blocking group releases masked fluorescence. Boronates react with hydrogen peroxide, peroxynitrite, hypochlorous acid and in some cases superoxide, so are selective but not specific. They react with hydrogen peroxide very slowly, and kinetic considerations raise questions about how the reaction could occur in cells. Data from oxidant-sensitive fluorescent probes can provide some information on cellular redox activity but is widely misinterpreted. Recently developed non-redox probes show promise but are not generally available and more information on specificity and cellular reactions is needed. We do not yet have probes that can quantify cellular production of specific oxidants. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.
The design and application of fluorophore–gold nanoparticle activatable probes
Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan
2013-01-01
Fluorescence-based assays and detection techniques are among the most highly sensitive and popular biological tests for researchers. To match the needs of research and the clinic, detection limits and specificities need to improve, however. One mechanism is to decrease non-specific background signals, which is most efficiently done by increasing fluorescence quenching abilities. Reports in the literature of theoretical and experimental work have shown that metallic gold surfaces and nanoparticles are ultra-efficient fluorescence quenchers. Based on these findings, subsequent reports have described gold nanoparticle fluorescence-based activatable probes that were designed to increase fluorescence intensity based on a range of stimuli. In this way, these probes can detect and signify assorted biomarkers and changes in environmental conditions. In this review, we explore the various factors and theoretical models that affect gold nanoparticle fluorescence quenching, explore current uses of activatable probes, and propose an engineering approach for future development of fluorescence based gold nanoparticle activatable probes. PMID:21380462
Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry
2005-08-01
In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.
Fluorescent probes for lipid rafts: from model membranes to living cells.
Klymchenko, Andrey S; Kreder, Rémy
2014-01-16
Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yi, Hyunjung; Ghosh, Debadyuti; Ham, Moon-Ho; Qi, Jifa; Barone, Paul W; Strano, Michael S; Belcher, Angela M
2012-03-14
Second near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to 4-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control nontargeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. © 2012 American Chemical Society
HAM, MOON-HO; QI, JIFA; BARONE, PAUL W.; STRANO, MICHAEL S.; BELCHER, ANGELA M.
2014-01-01
Second near-infrared (NIR) window light (950-1,400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to four-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control non-targeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas. PMID:22268625
Protein recognition by a pattern-generating fluorescent molecular probe.
Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M; Motiei, Leila; Margulies, David
2017-12-01
Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.
Protein recognition by a pattern-generating fluorescent molecular probe
NASA Astrophysics Data System (ADS)
Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David
2017-12-01
Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Optical fluorescence-guided imaging is increasingly used to guide surgery and endoscopic procedures. Sprayable enzyme-activatable probes are particularly useful because of high target-to-background ratios that increase sensitivity for tiny cancer foci. However, green fluorescent activatable probes suffers from interference from autofluorescence found in biological tissue. Dynamic imaging followed by the kinetic analysis could be detected local enzyme activity and used to differentiate specific fluorescence arising from an activated probe in a tumor from autofluorescence in background tissues especially when low concentrations of the dye are applied to detect tiny cancer foci. Serial fluorescence imaging was performed using various concentrations of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) which was sprayed on the peritoneal surface with tiny implants of SHIN3-dsRed ovarian cancer tumors. Temporal differences in signal between specific green fluorescence in cancer foci and non-specific autofluorescence in background tissue was measured and processed into three kinetic maps reflecting maximum fluorescence signal (MF), wash-in rate (WIR), and area under the curve (AUC), respectively. Especially at lower concentrations, kinetic maps derived from dynamic fluorescence imaging were clearly superior to unprocessed images for detection small cancer foci.
Molecular cytogenetics using fluorescence in situ hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Kuo, Wen-Lin; Lucas, J.
1990-12-07
Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences tomore » which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.« less
Kobayashi, Hisataka; Choyke, Peter L
2011-02-15
Conventional imaging methods, such as angiography, computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide imaging, rely on contrast agents (iodine, gadolinium, and radioisotopes, for example) that are "always on." Although these indicators have proven clinically useful, their sensitivity is lacking because of inadequate target-to-background signal ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, that is, only "turned on" under certain conditions. These probes are engineered to emit signal only after binding a target tissue; this design greatly increases sensitivity and specificity in the detection of disease. Current research focuses on two basic types of activatable fluorescence probes. The first developed were conventional enzymatically activatable probes. These fluorescent molecules exist in the quenched state until activated by enzymatic cleavage, which occurs mostly outside of the cells. However, more recently, researchers have begun designing target-cell-specific activatable probes. These fluorophores exist in the quenched state until activated within targeted cells by endolysosomal processing, which results when the probe binds specific receptors on the cell surface and is subsequently internalized. In this Account, we present a review of the rational design and in vivo applications of target-cell-specific activatable probes. In engineering these probes, researchers have asserted control over a variety of factors, including photochemistry, pharmacological profile, and biological properties. Their progress has recently allowed the rational design and synthesis of target-cell-specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photochemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include self-quenching, homo- and hetero-fluorescence resonance energy transfer (FRET), H-dimer formation, and photon-induced electron transfer (PeT). In addition, the repertoire is further expanded by the option for reversibility or irreversibility of the signal emitted through these mechanisms. Given the wide range of photochemical mechanisms and properties, target-cell-specific activatable probes have considerable flexibility and can be adapted to specific diagnostic needs. A multitude of cell surface molecules, such as overexpressed growth factor receptors, are directly related to carcinogenesis and thus provide numerous targets highly specific for cancer. This discussion of the chemical, pharmacological, and biological basis of target-cell-specific activatable imaging probes, and methods for successfully designing them, underscores the systematic, rational basis for further developing in vivo cancer imaging.
Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles.
Zhu, Hao; Fan, Jiangli; Du, Jianjun; Peng, Xiaojun
2016-10-18
Fluorescent probes have become powerful tools in biosensing and bioimaging because of their high sensitivity, specificity, fast response, and technical simplicity. In the last decades, researchers have made remarkable progress in developing fluorescent probes that respond to changes in microenvironments (e.g., pH, viscosity, and polarity) or quantities of biomolecules of interest (e.g., ions, reactive oxygen species, and enzymes). All of these analytes are specialized to carry out vital functions and are linked to serious disorders in distinct subcellular organelles. Each of these organelles plays a specific and indispensable role in cellular processes. For example, the nucleus regulates gene expression, mitochondria are responsible for aerobic metabolism, and lysosomes digest macromolecules for cell recycling. A certain organelle requires specific biological species and the appropriate microenvironment to perform its cellular functions, while breakdown of the homeostasis of biomolecules or microenvironmental mutations leads to organelle malfunctions, which further cause disorders or diseases. Fluorescent probes that can be targeted to both specific organelles and biochemicals/microenvironmental factors are capable of reporting localized bioinformation and are potentially useful for gaining insight into the contributions of analytes to both healthy and diseased states. In this Account, we review our recent work on the development of fluorescent probes for sensing and imaging within specific organelles. We present an overview of the design, photophysical properties, and biological applications of the probes, which can localize to mitochondria, lysosomes, the nucleus, the Golgi apparatus, and the endoplasmic reticulum. Although a diversity of organelle-specific fluorescent stains have been commercially available, our efforts place an emphasis on improvements in terms of low cytotoxicity, high photostability, near-infrared (NIR) emission, two-photon excitation, and long fluorescence lifetimes, which are crucial for long-time tracking of biological processes, tissue and body imaging with deep penetration and low autofluorescence, and time-resolved fluorescence imaging. Research on fluorescent probes with both analyte responsiveness and organelle targetability is a new and emerging area that has attracted increasing attention over the past few years. We have extended the diversity by developing organelle-specific responsive probes capable of detecting changes in biomolecular levels (reactive oxygen species, fluoride ion, hydrogen sulfide, zinc cation, thiol-containing amino acids, and cyclooxygenase-2) and the microenvironment (viscosity, polarity, and pH). Future research should give more considerations of the "low-concern" organelles, such as the Golgi apparatus, the endoplasmic reticulum, and ribosomes. In addition, given the tiny sizes of subcellular organelles (20-1000 nm), we anticipate that clearer visulization of the cellular events within specific organelles will rely on super-resolution optical microscopy with nanoscopic-scale resolution.
Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements
Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W.
2011-01-01
Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (<2 s) and long-term (>30 s) effects of probe pressure on diffuse reflectance and fluorescence measurements. Short-term light probe pressure (P0 < 9 mN∕mm2) effects are within 0 ± 10% on all physiological properties extracted from diffuse reflectance and fluorescence measurements, and less than 0 ± 5% for diagnostically significant physiological properties. Absorption decreases with site-specific variations due to blood being compressed out of the sampled volume. Reduced scattering coefficient variation is site specific. Intrinsic fluorescence shows a large standard error, although no specific pressure-related trend is observed. Differences in tissue structure and morphology contribute to site-specific probe pressure effects. Therefore, the effects of pressure can be minimized when the pressure is small and applied for a short amount of time; however, long-term and large pressures induce significant distortions in measured spectra. PMID:21280899
Janvier, Monique; Regnault, Béatrice; Grimont, Patrick
2003-09-01
Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.
Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.
Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie
2017-10-02
Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.
Nian, Linge; Hu, Yue; Fu, Caihong; Song, Chen; Wang, Jie; Xiao, Jianxi
2018-01-01
The development of novel assays to detect collagen fragments is of utmost importance for diagnostic, prognostic and therapeutic decisions in various collagen-related diseases, and one essential question is to discover probe peptides that can specifically recognize target collagen sequences. Herein we have developed the fluorescence self-quenching assay as a convenient tool to screen the capability of a series of fluorescent probe peptides of variable lengths to bind with target collagen peptides. We have revealed that the targeting ability of probe peptides is length-dependent, and have discovered a relatively short probe peptide FAM-G(POG) 8 capable to identify the target peptide. We have further demonstrated that fluorescence self-quenching assay together with this short probe peptide can be applied to specifically detect the desired collagen fragment in complex biological media. Fluorescence self-quenching assay provides a powerful new tool to discover effective peptides for the recognition of collagen biomarkers, and it may have great potential to identify probe peptides for various protein biomarkers involved in pathological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Weinstein, S.; Pane, D.; Warren-Rhodes, K.; Cockell, C.; Ernst, L. A.; Minkley, E.; Fisher, G.; Emani, S.; Wettergreen, D. S.; Wagner, M.
2005-01-01
We have developed an imaging system, the Fluorescence Imager (FI), for detecting fluorescence signals from sparse microorganisms and biofilms during autonomous rover exploration. The fluorescence signals arise both from naturally occurring chromophores, such as chlorophyll of cyanobacteria and lichens, and from fluorescent probes applied to soil and rocks. Daylight imaging has been accomplished by a novel use of a high-powered flashlamp synchronized to a CCD camera. The fluorescent probes are cell permanent stains that have extremely low intrinsic fluorescence (quantum yields less than 0.01) and a large fluorescence enhancement (quantum yields greater than 0.4) when bound to the target. Each probe specifically targets either carbohydrates, proteins, nucleic acids or membrane lipids, the four classes of macromolecules found in terrestrial life. The intent of the probes is to interrogate the environment for surface and endolithic life forms.
Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations
Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry
2013-01-01
The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063
In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers
Ardeshirpour, Yasaman; Chernomordik, Victor; Zielinski, Rafal; Capala, Jacek; Griffiths, Gary; Vasalatiy, Olga; Smirnov, Aleksandr V.; Knutson, Jay R.; Lyakhov, Ilya; Achilefu, Samuel; Gandjbakhche, Amir; Hassan, Moinuddin
2012-01-01
One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy. PMID:22384092
Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging.
Hudson, Devin A; Caplan, Jeffrey L; Thorpe, Colin
2018-02-20
The development of genetically encoded fluorescent probes for analyte-specific imaging has revolutionized our understanding of intracellular processes. Current classes of intracellular probes depend on the selection of binding domains that either undergo conformational changes on analyte binding or can be linked to thiol redox chemistry. Here we have designed novel probes by fusing a flavoenzyme, whose fluorescence is quenched on reduction by the analyte of interest, with a GFP domain to allow for rapid and specific ratiometric sensing. Two flavoproteins, Escherichia coli thioredoxin reductase and Saccharomyces cerevisiae lipoamide dehydrogenase, were successfully developed into thioredoxin and NAD + /NADH specific probes, respectively, and their performance was evaluated in vitro and in vivo. A flow cell format, which allowed dynamic measurements, was utilized in both bacterial and mammalian systems. In E. coli the first reported intracellular steady-state of the cytoplasmic thioredoxin pool was measured. In HEK293T mammalian cells, the steady-state cytosolic ratio of NAD + /NADH induced by glucose was determined. These genetically encoded fluorescent constructs represent a modular approach to intracellular probe design that should extend the range of metabolites that can be quantitated in live cells.
Okamura, Yukio; Watanabe, Yuichiro
2006-01-01
Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X
2017-03-22
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.
A Cu-free clickable fluorescent probe for intracellular targeting of small biomolecules.
Yamagishi, Kento; Sawaki, Kazuaki; Murata, Atsushi; Takeoka, Shinji
2015-05-07
We synthesized a novel cyclooctyne-based clickable fluorescent probe with versatile properties such as high cell-membrane permeability and free diffusibility in the cell. Our probe "FC-DBCO" was conjugated to an azide-modified mannose via a Cu-free click reaction in living HeLa cells and displayed intracellular specific fluorescence imaging with low background signals.
Preassembled Fluorescent Multivalent Probes for the Imaging of Anionic Membranes.
Roland, Felicia M; Peck, Evan M; Rice, Douglas R; Smith, Bradley D
2017-04-19
A new self-assembly process known as Synthavidin (synthetic avidin) technology was used to prepare targeted probes for near-infrared fluorescence imaging of anionic membranes and cell surfaces, a hallmark of many different types of disease. The probes were preassembled by threading a tetralactam macrocycle with six appended zinc-dipicolylamine (ZnDPA) targeting units onto a linear scaffold with one or two squaraine docking stations to produce hexavalent or dodecavalent fluorescent probes. A series of liposome titration experiments showed that multivalency promoted stronger membrane binding by the dodecavalent probe. In addition, the dodecavalent probe exhibited turn-on fluorescence due to probe unfolding during fluorescence microscopy at the membrane surface. However, the dodecavalent probe also had a higher tendency to self-aggregate after membrane binding, leading to probe self-quenching under certain conditions. This self-quenching effect was apparent during fluorescence microscopy experiments that recorded low fluorescence intensity from anionic dead and dying mammalian cells that were saturated with the dodecavalent probe. Conversely, probe self-quenching was not a factor with anionic microbial surfaces, where there was intense fluorescence staining by the dodecavalent probe. A successful set of rat tumor imaging experiments confirmed that the preassembled probes have sufficient mechanical stability for effective in vivo imaging. The results demonstrate the feasibility of this general class of preassembled fluorescent probes for multivalent targeting, but fluorescence imaging performance depends on the specific physical attributes of the biomarker target, such as the spatial distance between different copies of the biomarker and the propensity of the probe-biomarker complex to self-aggregate.
NASA Astrophysics Data System (ADS)
Lamperti, Marco; Nardo, Luca; Bondani, Maria
2015-05-01
Site-specific fluorescence-resonance-energy-transfer donor-acceptor dual-labelled oligonucleotide probes are widely used in state-of-art biotechnological applications. Such applications include their usage as primers in polymerase chain reaction. However, the steady-state fluorescence intensity signal emitted by these molecular tools strongly depends from the specificities of the probe conformation. For this reason, the information which can be reliably inferred by steady-state fluorimetry performed on such samples is forcedly confined to a semi-qualitative level. Namely, fluorescent emission is frequently used as ON/OFF indicator of the probe hybridization state, i.e. detection of fluorescence signals indicates either hybridization to or detachment from the template DNA of the probe. Nonetheless, a fully quantitative analysis of their fluorescence emission properties would disclose other exciting applications of dual-labelled probes in biosensing. Here we show how time-correlated single-photon counting can be applied to get rid of the technical limitations and interpretational ambiguities plaguing the intensity analysis, and to derive information on the template DNA reaching single-base.
Onoyama, Haruna; Kamiya, Mako; Kuriki, Yugo; Komatsu, Toru; Abe, Hiroyuki; Tsuji, Yosuke; Yagi, Koichi; Yamagata, Yukinori; Aikou, Susumu; Nishida, Masato; Mori, Kazuhiko; Yamashita, Hiroharu; Fujishiro, Mitsuhiro; Nomura, Sachiyo; Shimizu, Nobuyuki; Fukayama, Masashi; Koike, Kazuhiko; Urano, Yasuteru; Seto, Yasuyuki
2016-01-01
Early detection of esophageal squamous cell carcinoma (ESCC) is an important prognosticator, but is difficult to achieve by conventional endoscopy. Conventional lugol chromoendoscopy and equipment-based image-enhanced endoscopy, such as narrow-band imaging (NBI), have various practical limitations. Since fluorescence-based visualization is considered a promising approach, we aimed to develop an activatable fluorescence probe to visualize ESCCs. First, based on the fact that various aminopeptidase activities are elevated in cancer, we screened freshly resected specimens from patients with a series of aminopeptidase-activatable fluorescence probes. The results indicated that dipeptidylpeptidase IV (DPP-IV) is specifically activated in ESCCs, and would be a suitable molecular target for detection of esophageal cancer. Therefore, we designed, synthesized and characterized a series of DPP-IV-activatable fluorescence probes. When the selected probe was topically sprayed onto endoscopic submucosal dissection (ESD) or surgical specimens, tumors were visualized within 5 min, and when the probe was sprayed on biopsy samples, the sensitivity, specificity and accuracy reached 96.9%, 85.7% and 90.5%. We believe that DPP-IV-targeted activatable fluorescence probes are practically translatable as convenient tools for clinical application to enable rapid and accurate diagnosis of early esophageal cancer during endoscopic or surgical procedures. PMID:27245876
Synthesis of Bipartite Tetracysteine PNA Probes for DNA In Situ Fluorescent Labeling.
Fang, Ge-Min; Seitz, Oliver
2017-12-24
"Label-free" fluorescent probes that avoid additional steps or building blocks for conjugation of fluorescent dyes with oligonucleotides can significantly reduce the time and cost of parallel bioanalysis of a large number of nucleic acid samples. A method for the synthesis of "label-free" bicysteine-modified PNA probes using solid-phase synthesis and procedures for sequence-specific DNA in situ fluorescent labeling is described here. The concept is based on the adjacent alignment of two bicysteine-modified peptide nucleic acids on a DNA target to form a structurally optimized bipartite tetracysteine motif, which induces a sequence-specific fluorogenic reaction with commercially available biarsenic dyes, even in complex media such as cell lysate. This unit will help researchers to quickly synthesize bipartite tetracysteine PNA probes and carry out low-cost DNA in situ fluorescent labeling experiments. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential
NASA Astrophysics Data System (ADS)
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.
2017-03-01
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.
van Gijlswijk, R P; Wiegant, J; Vervenne, R; Lasan, R; Tanke, H J; Raap, A K
1996-01-01
We present a sensitive and rapid fluorescence in situ hybridization (FISH) strategy for detecting chromosome-specific repeat sequences. It uses horseradish peroxidase (HRP)-labeled oligonucleotide sequences in combination with fluorescent tyramide-based detection. After in situ hybridization, the HRP conjugated to the oligonucleotide probe is used to deposit fluorescently labeled tyramide molecules at the site of hybridization. The method features full chemical synthesis of probes, strong FISH signals, and short processing periods, as well as multicolor capabilities.
Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu
2017-06-16
A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.
Method and apparatus for staining immobilized nucleic acids
Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.
2000-01-01
A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.
Wu, Luling; Li, Xiaolin; Ling, Yifei; Huang, Chusen; Jia, Nengqin
2017-08-30
The development of a suitable fluorescent probe for the specific labeling and imaging of lysosomes through the direct visual fluorescent signal is extremely important for understanding the dysfunction of lysosomes, which might induce various pathologies, including neurodegenerative diseases, cancer, and Alzheimer's disease. Herein, a new carbon dot-based fluorescent probe (CDs-PEI-ML) was designed and synthesized for highly selective imaging of lysosomes in live cells. In this probe, PEI (polyethylenimine) is introduced to improve water solubility and provide abundant amine groups for the as-prepared CDs-PEI, and the morpholine group (ML) serves as a targeting unit for lysosomes. More importantly, passivation with PEI could dramatically increase the fluorescence quantum yield of CDs-PEI-ML as well as their stability in fluorescence emission under different excitation wavelength. Consequently, experimental data demonstrated that the target probe CDs-PEI-ML has low cytotoxicity and excellent photostability. Additionally, further live cell imaging experiment indicated that CDs-PEI-ML is a highly selective fluorescent probe for lysosomes. We speculate the mechanism for selective staining of lysosomes that CDs-PEI-ML was initially taken up by lysosomes through the endocytic pathway and then accumulated in acidic lysosomes. It is notable that there was less diffusion of CDs-PEI-ML into cytoplasm, which could be ascribed to the presence of lysosome target group morpholine on surface of CDs-PEI-ML. The blue emission wavelength combined with the high photo stability and ability of long-lasting cell imaging makes CDs-PEI-ML become an alternative fluorescent probe for multicolor labeling and long-term tracking of lysosomes in live cells and the potential application in super-resolution imaging. To best of our knowledge, there are still limited carbon dots-based fluorescent probes that have been studied for specific lysosomal imaging in live cells. The concept of surface functionality of carbon dots will also pave a new avenue for developing carbon dots-based fluorescent probes for subcellular labeling.
Stender, Henrik; Kurtzman, Cletus; Hyldig-Nielsen, Jens J.; Sørensen, Ditte; Broomer, Adam; Oliveira, Kenneth; Perry-O'Keefe, Heather; Sage, Andrew; Young, Barbara; Coull, James
2001-01-01
A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity. PMID:11157265
A theoretical investigation of two typical two-photon pH fluorescent probes.
Xu, Zhong; Ren, Ai-Min; Guo, Jing-Fu; Liu, Xiao-Ting; Huang, Shuang; Feng, Ji-Kang
2013-01-01
Intracellular pH plays an important role in many cellular events, such as cell growth, endocytosis, cell adhesion and so on. Some pH fluorescent probes have been reported, but most of them are one-photon fluorescent probes, studies about two-photon fluorescent probes are very rare. In this work, the geometrical structure, electronic structure and one-photon properties of a series of two-photon pH fluorescent probes have been theoretically studied by using density functional theory (DFT) method. Their two-photon absorption (TPA) properties are calculated using the method of ZINDO/sum-over-states method. Two types of two-photon pH fluorescent probes have been investigated by theoretical methods. The mechanisms of the Photoinduced Charge Transfer (PCT) probes and the Photoinduced Electron Transfer (PET) probes are verified specifically. Some designed strategies of good two-photon pH fluorescent probes are suggested on the basis of the investigated results of two mechanisms. For the PCT probes, substituting a stronger electron-donating group for the terminal methoxyl group is an advisable choice to increase the TPA cross section. For the PET probes, the TPA cross sections increase upon protonation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Colorful protein-based fluorescent probes for collagen imaging.
Aper, Stijn J A; van Spreeuwel, Ariane C C; van Turnhout, Mark C; van der Linden, Ardjan J; Pieters, Pascal A; van der Zon, Nick L L; de la Rambelje, Sander L; Bouten, Carlijn V C; Merkx, Maarten
2014-01-01
Real-time visualization of collagen is important in studies on tissue formation and remodeling in the research fields of developmental biology and tissue engineering. Our group has previously reported on a fluorescent probe for the specific imaging of collagen in live tissue in situ, consisting of the native collagen binding protein CNA35 labeled with fluorescent dye Oregon Green 488 (CNA35-OG488). The CNA35-OG488 probe has become widely used for collagen imaging. To allow for the use of CNA35-based probes in a broader range of applications, we here present a toolbox of six genetically-encoded collagen probes which are fusions of CNA35 to fluorescent proteins that span the visible spectrum: mTurquoise2, EGFP, mAmetrine, LSSmOrange, tdTomato and mCherry. While CNA35-OG488 requires a chemical conjugation step for labeling with the fluorescent dye, these protein-based probes can be easily produced in high yields by expression in E. coli and purified in one step using Ni2+-affinity chromatography. The probes all bind specifically to collagen, both in vitro and in porcine pericardial tissue. Some first applications of the probes are shown in multicolor imaging of engineered tissue and two-photon imaging of collagen in human skin. The fully-genetic encoding of the new probes makes them easily accessible to all scientists interested in collagen formation and remodeling.
Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.
Jiang, Xiqian; Wang, Lingfei; Carroll, Shaina L; Chen, Jianwei; Wang, Meng C; Wang, Jin
2018-02-16
The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 00, 000-000.
Two-Photon Fluorescent Probe for Monitoring Autophagy via Fluorescence Lifetime Imaging.
Hou, Liling; Ning, Peng; Feng, Yan; Ding, Yaqi; Bai, Lei; Li, Lin; Yu, Haizhu; Meng, Xiangming
2018-06-19
We reported the first lysosome targeted two-photon fluorescent probe (Lyso-NP) as a viscosity probe for monitoring autophagy. The fluorescence lifetime of Lyso-NP exhibited an excellent linear relationship with viscosity value ( R 2 = 0.99, x = 0.39). Lyso-NP also showed the specific capability for imaging lysosomal viscosity under two-photon excitation at 860 nm along with good biocompatibility. More importantly, Lyso-NP could be used to monitor the autophagy process in living cells by quantitatively detecting lysosomal viscosity changes during the membrane fusion process via two-photon fluorescence lifetime imaging.
Suseela, Y V; Narayanaswamy, Nagarjun; Pratihar, Sumon; Govindaraju, Thimmaiah
2018-02-05
The structural diversity and functional relevance of nucleic acids (NAs), mainly deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are indispensable for almost all living organisms, with minute aberrations in their structure and function becoming causative factors in numerous human diseases. The standard structures of NAs, termed canonical structures, are supported by Watson-Crick hydrogen bonding. Under special physiological conditions, NAs adopt distinct spatial organisations, giving rise to non-canonical conformations supported by hydrogen bonding other than the Watson-Crick type; such non-canonical structures have a definite function in controlling gene expression and are considered as novel diagnostic and therapeutic targets. Development of molecular probes for these canonical and non-canonical DNA/RNA structures has been an active field of research. Among the numerous probes studied, probes with turn-on fluorescence in the far-red (600-750 nm) region are highly sought-after due to minimal autofluorescence and cellular damage. Far-red fluorescent probes are vital for real-time imaging of NAs in live cells as they provide good resolution and minimal perturbation of the cell under investigation. In this review, we present recent advances in the area of far-red fluorescent probes of DNA/RNA and non-canonical G-quadruplex structures. For the sake of continuity and completeness, we provide a brief overview of visible fluorescent probes. Utmost importance is given to design criteria, characteristic properties and biological applications, including in cellulo imaging, apart from critical discussion on limitations of the far-red fluorescent probes. Finally, we offer current and future prospects in targeting canonical and non-canonical NAs specific to cellular organelles, through sequence- and conformation-specific far-red fluorescent probes. We also cover their implications in chemical and molecular biology, with particular focus on decoding various disease mechanisms involving NAs.
Franzini, Raphael M.
2015-01-01
We report a new strategy for template-mediated fluorogenic chemistry that results in enhanced performance for the fluorescence detection of nucleic acids. In this approach, two successive templated reactions are required to induce a fluorescence signal, rather than only one. These novel fluorescein-labeled oligonucleotide probes, termed 2-STAR probes, contain two quencher groups tethered by separate reductively cleavable linkers. When a 2-STAR quenched probe binds adjacent to either two successive mono triphenyl-phosphine (TPP)-DNAs or a dual TPP-DNA, the two quenchers are released, resulting in a fluorescence signal. Because of the requirement for two consecutive reactions, 2-STAR probes display an unprecedented level of sequence-specificity for template-mediated probe designs. At the same time, background emission generated by off-template reactions or incomplete quenching is among the lowest of any fluorogenic reactive probes for the detection of DNA or RNA. PMID:21294182
A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells
NASA Astrophysics Data System (ADS)
Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian
2018-06-01
A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.
;Turn-on; fluorescent probe detection of Ca2 + ions and applications to bioimaging
NASA Astrophysics Data System (ADS)
Zhang, Huifang; Yin, Caixia; Liu, Tao; Zhang, Yongbin; Huo, Fangjun
2017-06-01
Ca2 + is intracellular divalent cation with the largest concentration variations and involved in many biological phenomena and often acted as a second messenger in signaling pathway. Therefore, the development of probes for specific Ca2 + detection is of great importance. Herein, a novel turn-on fluorescent probe for the detection of Ca2 + in MeCN-aqueous medium was designed and synthesized. The probe displayed responses to Ca2 + with a fluorescence enhancement at 525 nm, accompanying with a distinct fluorescence change from nearly colorless to bright yellow-green. Besides, the probe exhibited a rapid signal response time (within 25 s), a good linearity range and a lower detection limit (2.70 × 10- 7 M). In addition, the ability of the probe to detect Ca2 + in living cells (HeLa cells) via an enhancement of the fluorescence has also been demonstrated.
NASA Astrophysics Data System (ADS)
Chao, Jianbin; Liu, Yuhong; Zhang, Yan; Zhang, Yongbin; Huo, Fangjun; Yin, Caixia; Wang, Yu; Qin, Liping
2015-07-01
A new fluorescent enhanced probe based on (E)-9-(2-nitrovinyl)-anthracene is developed, which shows high selectivity and sensitivity for the detection of bisulfite anions at Na2HPO4 citric acid buffer solutions (pH 5.0). When addition of HSO3-, the fluorescence intensity is significantly enhanced and the probe displays apparent fluorescence color changes from non-fluorescence to blue under a UV lamp illumination, the solution color also changes from yellow to colorless. The detection limit is determined to be as low as 6.30 μM. This offers another specific colorimetric and fluorescent probe for bisulfite anions detection, furthermore it is applied in detecting the level of bisulfite in sugar samples.
Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species
NASA Astrophysics Data System (ADS)
Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.
2018-02-01
Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.
Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.
Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F
2018-02-01
Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.
Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species
Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.
2018-01-01
Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease. PMID:29515860
Fluorescent hybridization probes for nucleic acid detection.
Guo, Jia; Ju, Jingyue; Turro, Nicholas J
2012-04-01
Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.
2014-11-01
Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.
Wang, Sheng; Chen, Xuanze; Chang, Lei; Ding, Miao; Xue, Ruiying; Duan, Haifeng; Sun, Yujie
2018-06-05
Fluorescent probes with multimodal and multilevel imaging capabilities are highly valuable as imaging with such probes not only can obtain new layers of information but also enable cross-validation of results under different experimental conditions. In recent years, the development of genetically encoded reversibly photoswitchable fluorescent proteins (RSFPs) has greatly promoted the application of various kinds of live-cell nanoscopy approaches, including reversible saturable optical fluorescence transitions (RESOLFT) and stochastic optical fluctuation imaging (SOFI). However, these two classes of live-cell nanoscopy approaches require different optical characteristics of specific RSFPs. In this work, we developed GMars-T, a monomeric bright green RSFP which can satisfy both RESOLFT and photochromic SOFI (pcSOFI) imaging in live cells. We further generated biosensor based on bimolecular fluorescence complementation (BiFC) of GMars-T which offers high specificity and sensitivity in detecting and visualizing various protein-protein interactions (PPIs) in different subcellular compartments under physiological conditions (e.g., 37 °C) in live mammalian cells. Thus, the newly developed GMars-T can serve as both structural imaging probe with multimodal super-resolution imaging capability and functional imaging probe for reporting PPIs with high specificity and sensitivity based on its derived biosensor.
Sengupta, Partha Pratim; Gloria, Jared N; Amato, Dahlia N; Amato, Douglas V; Patton, Derek L; Murali, Beddhu; Flynt, Alex S
2015-10-12
Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.
Activatable fluorescent probes in fluorescence-guided surgery: Practical considerations.
Mochida, Ai; Ogata, Fusa; Nagaya, Tadanobu; Choyke, Peter L; Kobayashi, Hisataka
2018-02-15
Fluorescence-guided imaging during surgery is a promising technique that is increasingly used to aid surgeons in identifying sites of tumor and surgical margins. Of the two types of fluorescent probes, always-on and activatable, activatable probes are preferred because they produce higher target-to-background ratios, thus improving sensitivity compared with always-on probes that must contend with considerable background signal. There are two types of activatable probes: 1) enzyme-reactive probes that are normally quenched but can be activated after cleavage by cancer-specific enzymes (activity-based probes) and 2) molecular-binding probes which use cancer targeting moieties such as monoclonal antibodies to target receptors found in abundance on cancers and are activated after internalization and lysosomal processing (binding-based probes). For fluorescence-guided intraoperative surgery, enzyme-reactive probes are superior because they can react quickly, require smaller dosages especially for topical applications, have limited side effects, and have favorable pharmacokinetics. Enzyme-reactive probes are easier to use, fit better into existing work flows in the operating room and have minimal toxicity. Although difficult to prove, it is assumed that the guidance provided to surgeons by these probes results in more effective surgeries with better outcomes for patients. In this review, we compare these two types of activatable fluorescent probes for their ease of use and efficacy. Published by Elsevier Ltd.
Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen
2015-01-01
Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.
Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines.
Wang, Yaling; Cui, Yanyan; Liu, Ru; Wei, Yueteng; Jiang, Xinglu; Zhu, Huarui; Gao, Liang; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun
2013-11-25
A bifunctional peptide was designed to in situ reduce Cu ions and anchor a Cu cluster. The peptide-Cu cluster probe, mainly composed of Cu14, emitted blue two-photon fluorescence under femtosecond laser excitation. Most important, the probe can specifically mark the nuclei of HeLa and A549 cells, respectively.
NASA Technical Reports Server (NTRS)
Shrestha, Suresh; Salins, Lyndon L E.; Mark Ensor, C.; Daunert, Sylvia
2002-01-01
Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the submicromolar range was developed. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 517-526, 2002.
NASA Astrophysics Data System (ADS)
Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez
2018-02-01
Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.
NASA Astrophysics Data System (ADS)
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-09-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.
Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.
2014-01-01
Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596
Xu, Jian; Sun, Shaobo; Li, Qian; Yue, Ying; Li, Yingdong; Shao, Shijun
2014-11-07
A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F(-)) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the "Turn-On" fluorescent response of probe 1 to F(-) was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F(-) in the range of 0.1-1mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of "Turn-On" fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F(-) in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
[Development of a Fluorescence Probe for Live Cell Imaging].
Shibata, Aya
2017-01-01
Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.
Li, Qian; Chang, Young-Tae
2006-01-01
This protocol outlines a methodology for the preparation and characterization of three RNA-specific fluorescent probes (E36, E144 and F22) and their use in live cell imaging. It describes a detailed procedure for their chemical synthesis and purification; serial product characterization and quality control tests, including measurements of their fluorescence properties in solution, measurement of RNA specificity and analysis of cellular toxicity; and live cell staining and counterstaining with Hoechst or DAPI. Preparation and application of these RNA imaging probes takes 1 week.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.
2007-02-01
Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.
Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping
2013-02-19
Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.
Gong, Deyan; Han, Shi-Chong; Iqbal, Anam; Qian, Jing; Cao, Ting; Liu, Wei; Liu, Weisheng; Qin, Wenwu; Guo, Huichen
2017-12-19
Two fluorescent, m-nitrophenol-substituted difluoroboron dipyrromethene dyes have been designed by nucleophilic substitution reaction of 3,5-dichloro-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY). Nonsymmetric and symmetric probes, that is. BODIPY 1 (with one nitrophenol group at the position 3) and BODIPY 2 (with two nitrophenol groups at the positions 3 and 5) were applied to ratiometric fluorescent glutathione detection. The detection is based on the two-step nucleophilic aromatic substitution of the nitrophenol groups of the probes by glutathione in buffer solution containing CTAB. In the first stage, probe 1 showed ratiometric fluorescent color change from green (λ em = 530 nm) to yellow (λ em = 561 nm) because of monosubstitution with glutathione (I 561nm /I 530nm ). Addition of excess glutathione caused the second stage of ratiometric fluorescent color change from yellow to reddish orange (λ em = 596 nm, I 596nm /I 561nm ) due to disubstitution with glutathione. Therefore, different concentration ranges of glutathione (from less to excess) could be rapidly detected by the two-stage ratiometric fluorescent probe 1 in 5 min. While, probe 2 shows single-stage ratiometric fluorescent detection to GSH (from green to reddish orange, I 596nm /I 535nm ). Probes 1 and 2 exhibit excellent properties with sensitive, specific colorimetric response and ratiometric fluorescent response to glutathione over other sulfur nucleophiles. Application to cellular ratiometric fluorescence imaging indicated that the probes were highly responsive to intracellular glutathione.
Guo, Ting; Cui, Lei; Shen, Jiaoning; Wang, Rui; Zhu, Weiping; Xu, Yufang; Qian, Xuhong
2013-03-04
A novel dual-emission fluorescence probe has been developed for specific and sensitive detection of hypochlorite (ClO(-)). Upon addition of ClO(-), significant changes in fluorescence emission intensity at two discrete wavelengths were observed. Meanwhile OONO(-) led to only a single-channel fluorescence enhancement. This feature makes it a clear advantage in distinguishing ClO(-), RNS from other ROS.
Wang, Jianbo; Xia, Shuai; Bi, Jianheng; Fang, Mingxi; Mazi, Wafa; Zhang, Yibin; Conner, Nathan; Luo, Fen-Tair; Lu, H Peter; Liu, Haiying
2018-04-18
In this paper, we present three ratiometric near-infrared fluorescent probes (A-C) for accurate, ratiometric detection of intracellular pH changes in live cells. Probe A consists of a tetraphenylethene (TPE) donor and near-infrared hemicyanine acceptor in a through-bond energy transfer (TBET) strategy, while probes B and C are composed of TPE and hemicyanine moieties through single and double sp 2 carbon-carbon bond connections in a π-conjugation modulation strategy. The specific targeting of the probes to lysosomes in live cells was achieved by introducing morpholine residues to the hemicyanine moieties to form closed spirolactam ring structures. Probe A shows aggregation-induced emission (AIE) property at neutral or basic pH, while probes B and C lack AIE properties. At basic or neutral pH, the probes only show fluorescence of TPE moieties with closed spirolactam forms of hemicyanine moieties, and effectively avoid blind fluorescence imaging spots, an issue which typical intensity-based pH fluorescent probes encounter. Three probes show ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with TPE fluorescence decreases and hemicyanine fluorescence increases, because acidic pH makes the spirolactam rings open to enhance π-conjugation of hemicyanine moieties. However, probe A shows much more sensitive ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with remarkable ratio increase of TPE fluorescence to hemicyanine fluorescence up to 238-fold than probes B and C because of its high efficiency of energy transfer from TPE donor to the hemicyanine acceptor in the TBET strategy. The probe offers dual Stokes shifts with a large pseudo-Stokes shift of 361 nm and well-defined dual emissions, and allows for colocalization of the imaging readouts of visible and near-infrared fluorescence channels to achieve more precisely double-checked ratiometric fluorescence imaging. These platforms could be employed to develop a variety of novel ratiometric fluorescent probes for accurate detection of different analytes in applications of chemical and biological sensing, imaging, and diagnostics by introducing appropriate sensing ligands to hemicyanine moieties to form on-off spirolactam switches.
Dendrimer probes for enhanced photostability and localization in fluorescence imaging.
Kim, Younghoon; Kim, Sung Hoon; Tanyeri, Melikhan; Katzenellenbogen, John A; Schroeder, Charles M
2013-04-02
Recent advances in fluorescence microscopy have enabled high-resolution imaging and tracking of single proteins and biomolecules in cells. To achieve high spatial resolutions in the nanometer range, bright and photostable fluorescent probes are critically required. From this view, there is a strong need for development of advanced fluorescent probes with molecular-scale dimensions for fluorescence imaging. Polymer-based dendrimer nanoconjugates hold strong potential to serve as versatile fluorescent probes due to an intrinsic capacity for tailored spectral properties such as brightness and emission wavelength. In this work, we report a new, to our knowledge, class of molecular probes based on dye-conjugated dendrimers for fluorescence imaging and single-molecule fluorescence microscopy. We engineered fluorescent dendritic nanoprobes (FDNs) to contain multiple organic dyes and reactive groups for target-specific biomolecule labeling. The photophysical properties of dye-conjugated FDNs (Cy5-FDNs and Cy3-FDNs) were characterized using single-molecule fluorescence microscopy, which revealed greatly enhanced photostability, increased probe brightness, and improved localization precision in high-resolution fluorescence imaging compared to single organic dyes. As proof-of-principle demonstration, Cy5-FDNs were used to assay single-molecule nucleic acid hybridization and for immunofluorescence imaging of microtubules in cytoskeletal networks. In addition, Cy5-FDNs were used as reporter probes in a single-molecule protein pull-down assay to characterize antibody binding and target protein capture. In all cases, the photophysical properties of FDNs resulted in enhanced fluorescence imaging via improved brightness and/or photostability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Liu, Xianjun; Xiang, Meihao; Tong, Zongxuan; Luo, Fengyan; Chen, Wen; Liu, Feng; Wang, Fenglin; Yu, Ru-Qin; Jiang, Jian-Hui
2018-05-01
Histone deacetylases (HDACs) play essential roles in transcription regulation and are valuable theranostic targets. However, there are no activatable fluorescent probes for imaging of HDAC activity in live cells. Here, we develop for the first time a novel activatable two-photon fluorescence probe that enables in situ imaging of HDAC activity in living cells and tissues. The probe is designed by conjugating an acetyl-lysine mimic substrate to a masked aldehyde-containing fluorophore via a cyanoester linker. Upon deacetylation by HDAC, the probe undergoes a rapid self-immolative intramolecular cyclization reaction, producing a cyanohydrin intermediate that is spontaneously rapidly decomposed into the highly fluorescent aldehyde-containing two-photon fluorophore. The probe is shown to exhibit high sensitivity, high specificity, and fast response for HDAC detection in vitro. Imaging studies reveal that the probe is able to directly visualize and monitor HDAC activity in living cells. Moreover, the probe is demonstrated to have the capability of two-photon imaging of HDAC activity in deep tissue slices up to 130 μm. This activatable fluorescent probe affords a useful tool for evaluating HDAC activity and screening HDAC-targeting drugs in both live cell and tissue assays.
Pan, Deng; Hu, Zhe; Qiu, Fengwu; Huang, Zhen-Li; Ma, Yilong; Wang, Yina; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Zhang, Yu-Hui
2014-11-20
Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging.
PROBES FOR THE SPECIFIC DETECTION OF CRYPTOSPORIDIUM PARVUM
A probe set, consisting of two synthetic oligonucleotides each tagged with a fluorescent reporter molecule, has been developed for specific detection of Cryptosporidium parvum.Each probe strand detects ribosomal RNA from a range of isolates of this species, and the combination is...
NASA Astrophysics Data System (ADS)
Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei
2018-05-01
Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.
NASA Astrophysics Data System (ADS)
Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui
2017-03-01
Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.
Feng, Feng; Zhang, Haoling; Zhu, Zhaoqin; Li, Cong; Shi, Yuxin; Zhang, Zhiyong
2014-09-01
Here, we aimed to assess the feasibility of anti-ESAT-6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT-6 expression in tuberculosis tissue of mice using near-infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti-ESAT-6 mAb or IgG. Mice in the experimental group were injected with fluorescence-labeled mAb probe, and mice in the control group were injected with fluorescence-labeled non-specific IgG antibody. Twenty-four hours later, the lung tissue of mice was examined using ex vivo near-infrared fluorescence imaging. In addition, the contrast-to-noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near-infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p < 0.001). The fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti-ESAT-6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Viallet, Pierre M.; Yassine, Mohamed; Salmon, Jean-Marie; Vigo, Jean
1996-05-01
The intracellular concentration of ions such as H+, Hg2+, Ca2+ is known to monitor the activity of many intracellular enzymes. Furthermore these ions are considered as intracellular messengers involved in signal transducing. Moreover recent technological progresses gave rise to the feeling that accurate data are instantly accessible on microvolumes. So the determination of ionic intracellular concentrations has been achieved using fluorescent specific probes and different equipments (Microspectrofluorometer, Flow Cytometer, Numerical Image Analyzer with or without Confocal system), without taking care of the physico-chemical properties of the probe. Unfortunately fluorescent probes are supposed to fill up conflicting requirements in terms of ionic affinity, specificity, fluorescence quantum yield of the free and ion-bound probe, absence of fading and diffusibility out of the cell. Because most of the probes are not so specific than it is claimed, unexpected interactions may obscure the interpretation of results and even make it difficult to get an intracellular calibration curve. Such a situation generally precludes the use of the popular simplest methods of data acquisition and treatment. The scope of this presentation is to point out some underestimated difficulties, to discuss different ways for bypassing some of them and to rationale the use of Videomicrofluorometry.
Pyrene maleimide as a probe of microenvironmental and dynamics properties of protein binding sites
NASA Astrophysics Data System (ADS)
Benci, S.; Vaccari, S.; Schianchi, G.; Locatelli, Donata; Vaghi, P.; Bottiroli, Giovanni F.
1995-01-01
N-(1-Pyrene)maleimide is highly fluorescent upon covalent binding with sulfhydryl and amino groups of the proteins. Multiexponential fluorescence decays were observed for the dye bound to different proteins even when a single binding site is involved. The lack of information about the fluorescence decay of free dye does not allow to define the variations of fluorescence parameter following the conjugation and their correlation with the binding properties of the fluorophore. In this work, a study of the fluorescence of the probe, free in solution, bound to different antibodies and to the antigen-antibody complex both in solution and in cell, has been performed. The experimental results showed that chemico-physical properties of the medium influence the fluorescence decay of the probe in both the free and bound forms, although to a different extent. The variations of fluorescence decay and anisotropy of the bound probe are related to the electronic characteristics of microenvironment and show an increased stabilization of the probe binding site with the increasing complexity of the substrate. The sensitivity of the fluorescence properties of the probe to the binding site environment opens interesting perspectives concerning the application of Py- maleimide fluorochromization to assess the degree of specificity of immunocytochemical labelling.
NASA Astrophysics Data System (ADS)
Obaid, Girgis; Spring, Bryan Q.; Bano, Shazia; Hasan, Tayyaba
2017-12-01
The emergence of fluorescently labeled therapeutic antibodies has given rise to molecular probes for image-guided surgery. However, the extraneous interstitial presence of an unbound and nonspecifically accumulated probe gives rise to false-positive detection of tumor tissue and margins. Thus, the concept of tumor-cell activation of smart probes provides a potentially superior mechanism of delineating tumor margins as well as small tumor deposits. The combination of molecular targeting with intracellular activation circumvents the presence of extracellular, nonspecific signals of targeted probe accumulation. Here, we present a demonstration of the clinical antibodies cetuximab (cet, anti-EGFR mAb) and trastuzumab (trast, anti-HER-2 mAb) conjugated to Alexa Fluor molecules and IRDye QC-1 quencher optimized at the ratio of 1∶2∶6 to provide the greatest degree of proteolytic fluorescence activation, synonymous with intracellular lysosomal degradation. The cet-AF-Q-C1 conjugate (1∶2∶6) provides up to 9.8-fold proteolytic fluorescence activation. By preparing a spectrally distinct, irrelevant sham IgG-AF-QC-1 conjugate, a dual-activatable probe approach is shown to enhance the specificity of imaging within an orthotopic AsPC-1 pancreatic cancer xenograft model. The dual-activatable approach warrants expedited clinical translation to improve the specificity of image-guided surgery by spectrally decomposing specific from nonspecific probe accumulation, binding, and internalization.
Hu, Fang; Yuan, Youyong; Wu, Wenbo; Mao, Duo; Liu, Bin
2018-06-05
Metabolic glycoengineering of unnatural glycans with bio-orthogonal chemical groups and a subsequent click reaction with fluorescent probes have been widely used in monitoring various bioprocesses. Herein, we developed a dual-responsive metabolic precursor that could specifically generate unnatural glycans with azide groups on the membrane of targeted cancer cells with high selectivity. Moreover, a water-soluble fluorescent light-up probe with aggregation-induced emission (AIE) was synthesized, which turned its fluorescence on upon a click reaction with azide groups on the cancer cell surface, enabling special cancer cell imaging with low background signal. Furthermore, the probe can generate 1 O 2 upon light irradiation, fulfilling its dual role as an imaging and therapeutic agent for cancer cells. Therefore, the concepts of the cancer-cell-specific metabolic precursor cRGD-S-Ac 3 ManNAz and the AIE light-up probe are promising in bio-orthogonal labeling and cancer-specific imaging and therapy.
NASA Astrophysics Data System (ADS)
Asanuma, Daisuke; Urano, Yasuteru; Nagano, Tetsuo; Hama, Yukihiro; Koyama, Yoshinori; Kobayashi, Hisataka
2009-02-01
One goal of molecular imaging is to establish a widely applicable technique for specific detection of tumors with minimal background. Here, we achieve specific in vivo tumor visualization with a newly-designed "activatable" targeted fluorescence probe. This agent is activated after cellular internalization by sensing the pH change in the lysosome. Novel acidic pH-activatable probes based on the BODIPY fluorophore were synthesized, and then conjugated to a cancer-targeting monoclonal antibody, Trastuzumab, or galactosyl serum albumin (GSA). As proof of concept, ex and in vivo imaging of two different tumor mouse models was performed: HER2-overexpressed lung metastasis tumor with Trastuzumab-pH probe conjugates and lectin-overexpressed i.p. disseminated tumor with GSA-pH probe conjugates. These pH-activatable targeted probes were highly specific for tumors with minimal background signal. Because the acidic pH in lysosomes is maintained by the energy-consuming proton pump, only viable cancer cells were successfully visualized. Furthermore, this strategy was also applied to fluorescence endoscopy in tumor mouse models, resulting in specific visualization of tumors as small as submillimeter in size that could hardly detected by naked eyes because of their poor contrast against normal tissues. The design concept can be widely adapted to cancer-specific cell-surface-targeting molecules that result in cellular internalization.
Kutyavin, Igor V.
2013-01-01
Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed ‘probe-luring’ sequence at their 5′ ends. Hybridization of this sequence to a complementary ‘anchoring’ tail introduced at the 3′ end of a fluorescent probe enables the probe to bind to its target during PCR, and the subsequent probe cleavage results in the florescence signal. As it has been shown in the study, this amplicon-endorsed and guided formation of the probe-target duplex allows the use of extremely short oligonucleotide probes, up to tetranucleotides in length. In particular, the short length of the fluorescent probes makes possible the development of a ‘universal’ probe inventory that is relatively small in size but represents all possible sequence variations. The unparalleled cost-effectiveness of the inventory approach is discussed. Despite the short length of the probes, this new method, named Angler real-time PCR, remains highly sequence specific, and the results of the study indicate that it can be effectively used for quantitative PCR and the detection of polymorphic variations. PMID:24013564
Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer
NASA Astrophysics Data System (ADS)
Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei
2014-11-01
Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.
Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro
2001-01-01
We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011
Qin, Zhengtao; Hall, David J.; Liss, Michael A.; Hoh, Carl K.; Kane, Christopher J.; Wallace, Anne M.
2013-01-01
Abstract. The optical properties of a receptor-targeted probe designed for dual-modality mapping of the sentinel lymph node (SLN) was optimized. Specific fluorescence brightness was used as the design criterion, which was defined as the fluorescence brightness per mole of the contrast agent. Adjusting the molar ratio of the coupling reactants, IRDye 800CW-NHS-ester and tilmanocept, enabled us to control the number of fluorescent molecules attached to each tilmanocept, which was quantified by H1 nuclear magnetic resonance spectroscopy. Quantum yields and molar absorptivities were measured for unconjugated IRDye 800CW and IRDye 800CW-tilmanocept (800CW-tilmanocept) preparations at 0.7, 1.5, 2.3, 2.9, and 3.8 dyes per tilmanocept. Specific fluorescence brightness was calculated by multiplication of the quantum yield by the molar absorptivity and the number of dyes per tilmanocept. It predicted that the preparation with 2.3 dyes per tilmanocept would exhibit the brightest signal, which was confirmed by fluorescence intensity measurements using three optical imaging systems. When radiolabeled with Ga68 and injected into the footpads of mice, the probe identified SLNs by both fluorescence and positron emission tomography (PET) while maintaining high percent extraction by the SLN. These studies demonstrated the feasibility of 800CW-tilmanocept for multimodal SLN mapping via fluorescence and PET–computed tomography imaging. PMID:23958947
A fluorescent probe for ecstasy.
Masseroni, D; Biavardi, E; Genovese, D; Rampazzo, E; Prodi, L; Dalcanale, E
2015-08-18
A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug.
Passamani, Paulo Z; Carvalho, Carlos R; Soares, Fernanda A F
2018-01-01
Chromosome-specific probes have been widely used in molecular cytogenetics, being obtained with different methods. In this study, a reproducible protocol for construction of chromosome-specific probes is proposed which associates in situ amplification (PRINS), micromanipulation and degenerate oligonucleotide-primed PCR (DOP-PCR). Human lymphocyte cultures were used to obtain metaphases from male and female individuals. The chromosomes were amplified via PRINS, and subcentromeric fragments of the X chromosome were microdissected using microneedles coupled to a phase contrast microscope. The fragments were amplified by DOP-PCR and labeled with tetramethyl-rhodamine-5-dUTP. The probes were used in fluorescent in situ hybridization (FISH) procedure to highlight these specific regions in the metaphases. The results show one fluorescent red spot in male and two in female X chromosomes and interphase nuclei.
Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging
Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.
2010-01-01
Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480
Zhang, Xianghan; Wang, Bo; Zhao, Na; Tian, Zuhong; Dai, Yunpeng; Nie, Yongzhan; Tian, Jie; Wang, Zhongliang; Chen, Xiaoyuan
2017-01-01
The traditional labeling method for targeted NIR fluorescence probes requires directly covalent-bonded conjugation of targeting domains and fluorophores in vitro . Although this strategy works well, it is not sufficient for detecting or treating cancers in vivo , due to steric hindrance effects that relatively large fluorophore molecules exert on the configurations and physiological functions of specific targeting domains. The copper-free, "click-chemistry"-assisted assembly of small molecules in living systems may enhance tumor accumulation of fluorescence probes by improving the binding affinities of the targeting factors. Here, we employed a vascular homing peptide, GEBP11, as a targeting factor for gastric tumors, and we demonstrate its effectiveness for in vivo imaging via click-chemistry-mediated conjugation with fluorescence molecules in tumor xenograft mouse models. This strategy showed higher binding affinities than those of the traditional conjugation method, and our results showed that the tumor accumulation of click-chemistry-mediated probes are 11-fold higher than that of directly labeled probes. The tracking life was prolonged by 12-fold, and uptake of the probes into the kidney was reduced by 6.5-fold. For lesion tumors of different sizes, click-chemistry-mediated probes can achieve sufficient signal-to-background ratios (3.5-5) for in vivo detection, and with diagnostic sensitivity approximately 3.5 times that of traditional labeling probes. The click-chemistry-assisted detection strategy utilizes the advantages of "small molecule" probes while not perturbing their physiological functions; this enables tumor detection with high sensitivity and specific selectivity.
Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases
González-Vera, Juan A.; Morris, May C.
2015-01-01
Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes. PMID:28248276
Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing.
Wong, Joseph K-H; Todd, Matthew H; Rutledge, Peter J
2017-01-25
Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.
Light on fluorescent lipids in rafts: a lesson from model membranes.
Kahya, Nicoletta
2010-09-15
Tracking fluorescent lipids in cellular membranes has been applied for decades to shed light on membrane trafficking, sorting, endocytosis and exocytosis, viral entry, and to understand the functional relevance of membrane heterogeneity, phase separation and lipid rafts. However, fluorescent probes may display different organizing behaviour from their corresponding endogenous lipids. A full characterization of these probes is therefore required for proper interpretation of fluorescence microscopy data in complex membrane systems. Model membrane studies provide essential clues that guide us to design and interpret our experiments, help us to avoid pitfalls and resolve artefacts in complex cellular environments. In the present issue of the Biochemical Journal, Juhasz, Davis and Sharom demonstrate the importance of testing lipid probes systematically in heterogeneous model membranes of specific composition and well-defined thermodynamic properties. The phase-partitioning behaviour of fluorescent probes, alone and/or in combination, cannot simply be assumed, but has to be fully characterized.
Taskent-Sezgin, Humeyra; Marek, Peter; Thomas, Rosanne; Goldberg, Daniel; Chung, Juah; Carrico, Isaac; Raleigh, Daniel P.
2011-01-01
p-Cyanophenylalanine is an extremely useful fluorescence probe of protein structure which can be recombinantly and chemically incorporated into proteins. The probe has been used to study protein folding, protein-membrane interactions, protein-peptide interactions and amyloid formation, however the factors that control its fluorescence are not fully understood. Hydrogen bonding to the cyano group is known to play a major role in modulating the fluorescence quantum yield, but the role of potential side-chain quenchers has not yet been elucidated. A systematic study on the effects of different side-chains on p-cyanophenylalanine fluorescence is reported. Tyr is found to have the largest effect followed by deprotonated His, Met, Cys, protonated His, Asn, Arg, and protonated Lys. Deprotonated amino groups are much more effective fluorescence quenchers than protonated amino groups. Free neutral imidazole and hydroxide ion are also effective quenchers of p-cyanophenylalanine fluorescence with Stern-Volmer constants of 39.8 M−1 and 22.1 M−1, respectively. The quenching of p-cyanophenylalanine fluorescence by specific side-chains is exploited to develop specific, high sensitivity, fluorescence probes of helix formation. The approach is demonstrated with Ala based peptides that contain a p-cyanophenylalanine-His or a p-cyanophenylalanine-Tyr pair located at positions i and i+4. The p-cyanophenylalanine-His pair is most useful when the His side-chain is deprotonated and is, thus, complimentary to Trp-His pair which is most sensitive when the His side-chain is protonated. PMID:20565125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milczarek, Justyna; Pawlowska, Roza; Zurawinski, Remigiusz
Over the last few years, considerable efforts are taken, in order to find a molecular fluorescent probe fulfilling their applicability requirements. Due to a good optical properties and affinity to biological structures conjugated oligoelectrolytes (COEs) can be considered as a promising dyes for application in fluorescence-based bioimaging. In this work, we synthetized COEs with phenylenevinylene core (PV-COEs) and applied as fluorescent membranous-specific probes. Cytotoxicity effects of each COE were probed on cancerous and non-cancerous cell types and little to no toxicity effects were observed at the high range of concentrations. The intensity of cell fluorescence following the COE staining wasmore » determined by the photoluminescence analysis and fluorescence activated cell sorting method (FACS). Intercalation of tested COEs into mammalian cell membranes was revealed by fluorescent and confocal microscopy colocalization with commercial dyes specific for cellular structures including mitochondria, Golgi apparatus and endoplasmic reticulum. The phenylenevinylene conjugated oligoelectrolytes have been found to be suitable for fluorescent bioimaging of mammalian cells and membrane-rich organelles. Due to their water solubility coupled with spontaneous intercalation into cells, favorable photophysical features, ease of cell staining, low cytotoxicity and selectivity for membranous structures, PV-COEs can be applied as markers for fluorescence imaging of a variety of cell types.« less
Posokhov, Yevgen; Kyrychenko, Alexander
2018-04-01
2'-Hydroxy derivatives of 2,5-diaryl-1,3-oxazole are known as environment-sensitive ratiometric excited-state intramolecular proton transfer (ESIPT) fluorescent probes, which are used to monitor physicochemical properties of lipid membranes. However, because of their heterogeneous membrane distribution, accurate experimental determination of the probe position is difficult. To estimate the location of the ESIPT probes in lipid membranes we have performed fluorescence measurements and molecular dynamics (MD) simulations. In the series composed of 2-(2'-hydroxy-phenyl)-5-phenyl-1,3-oxazole (1), 2-(2'-hydroxy-phenyl)-5-(4'-biphenyl)-1,3-oxazole (2), and 2-(2'-hydroxy-phenyl)-phenanthro[9,10-d]-1,3-oxazole (3), the structure of the ESIPT-moiety of 2-(2'-hydroxy-phenyl)-oxazole was varied by either aromatic ring substitution or annealing, leading to the systematical increase in the hydrophobic character of the probes. The comparison of the fluorescence behavior of probes 1-3 in a wide variety of solvents with those in phospholipid vesicles revealed that all three probes prefer to reside inside a membrane. Our MD results demonstrate that the probes locate from the glycerol residues and the polar carbonyl groups of phospholipids up to hydrophobic acyl chain units. It has been found that the probe location correlates well with the size of the aromatic moiety, being gradually shifted from 11.1 Å to 7.6 Å from the bilayer center for probes 1 to 3, respectively. Our results may be useful for the design of novel fluorescent probes for fluorescence sensing of specific regions within a lipid membrane. Copyright © 2018 Elsevier B.V. All rights reserved.
Computer-aided design of peptide near infrared fluorescent probe for tumor diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Congying; Gu, Yueqing
2014-09-01
Integrin αvβ3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth, so they become hot research tagets in cancer diagnosis. Peptides possess several attractive features when compared to protein and small molecule, such as small size and high structural compatibility with target proteins. Efficient design of high-affinity peptide ligands to Integrin αvβ3 receptors has been an important problem. Designed peptides in silico provide a valuable and high-selectivity peptide, meanwhile decrease the time of drug screening. In this study, we design peptide which can bind with integrin αvβ3 via computer, and then synthesis near infrared fluorescent probe. The characterization of this near infrared fluorescent probe was detected by UV. To investigate the tumor cell targeting of this probe, it was labeled with visible fluorescent dye Rhodamine B (RhB) for microscopy. To evaluate the targeting capability of this near infrared fluorescent probe, mice bearing integrin αvβ3 positive tumor xenografts were used. In vitro cellular experiments indicated that this probe have a clear binding affinity to αvβ3-positive tumor cells. In vivo experiments confirmed the receptor binding specificity of this probe. The peptide of computational design can bind with integrin αvβ3. Combined peptide near-infrared fluorescent probe with imaging technology use for clinical and tumor diagnosis have a greater development in future.
A fast-response two-photon fluorescent probe for imaging endogenous H2O2 in living cells and tissues
NASA Astrophysics Data System (ADS)
Lu, Yanan; Shi, Xiaomin; Fan, Wenlong; Black, Cory A.; Lu, Zhengliang; Fan, Chunhua
2018-02-01
As a second messenger, hydrogen peroxide plays significant roles in numerous physiological and pathological processes and is related to various diseases including inflammatory disease, diabetes, neurodegenerative disorders, cardiovascular disease and Alzheimer's disease. Two-photon (TP) fluorescent probes reported for the detection of endogenous H2O2 are rare and most have drawbacks such as slow response and low sensitivity. In this report, we demonstrate a simple H2O2-specific TP fluorescent probe (TX-HP) containing a two-photon dye 6-hydroxy-2,3,4,4a-tetrahydro-1H-xanthen-1-one (TX) on the modulation of the ICT process. The probe exhibits a rapid fluorescent response to H2O2 in 9 min with both high sensitivity and selectivity. The probe can detect exogenous H2O2 in living cells. Furthermore, the probe is successfully utilized for imaging H2O2 in liver tissues.
Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes
NASA Astrophysics Data System (ADS)
Xu, Shujuan; Li, Qian; Xiang, Junfeng; Yang, Qianfan; Sun, Hongxia; Guan, Aijiao; Wang, Lixia; Liu, Yan; Yu, Lijia; Shi, Yunhua; Chen, Hongbo; Tang, Yalin
2016-04-01
RNA G-quadruplexes (G4s) play important roles in translational regulation, mRNA processing events and gene expression. Therefore, a fluorescent probe that is capable of efficiently recognizing RNA G-quadruplex structures among other RNA forms is highly desirable. In this study, a water-soluble fluorogenic dye (i.e., Thioflavin T (ThT)) was employed to recognize RNA G-quadruplex structures using UV-Vis absorption spectra, fluorescence spectra and emission lifetime experiments. By stacking on the G-tetrad, the ThT probe exhibited highly specific recognition of RNA G-quadruplex structures with striking fluorescence enhancement compared with other RNA forms. The specific binding demonstrates that ThT is an efficient fluorescence sensor that can distinguish G4 and non-G4 RNA structures.
Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA
Woehrstein, Johannes B.; Strauss, Maximilian T.; Ong, Luvena L.; Wei, Bryan; Zhang, David Y.; Jungmann, Ralf; Yin, Peng
2017-01-01
Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target. PMID:28691083
Shimizu, Yoichi; Temma, Takashi; Hara, Isao; Makino, Akira; Kondo, Naoya; Ozeki, Ei-Ichi; Ono, Masahiro; Saji, Hideo
2014-08-01
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease activating MMP-2 that mediates cleavage of extracellular matrix components and plays pivotal roles in tumor migration, invasion and metastasis. Because in vivo noninvasive imaging of MT1-MMP would be useful for tumor diagnosis, we developed a novel near-infrared (NIR) fluorescence probe that can be activated following interaction with MT1-MMP in vivo. MT1-hIC7L is an activatable fluorescence probe comprised of anti-MT1-MMP monoclonal antibodies conjugated to self-assembling polymer micelles that encapsulate NIR dyes (IC7-1, λem : 858 nm) at concentrations sufficient to cause fluorescence self-quenching. In aqueous buffer, MT1-hIC7L fluorescence was suppressed to background levels and increased approximately 35.5-fold in the presence of detergent. Cellular uptake experiments revealed that in MT1-MMP positive C6 glioma cells, MT1-hIC7L showed significantly higher fluorescence that increased with time as compared to hIC7L, a negative control probe lacking the anti-MT1-MMP monoclonal antibody. In MT1-MMP negative MCF-7 breast adenocarcinoma cells, both MT1-hIC7L and hIC7L showed no obvious fluorescence. In addition, the fluorescence intensity of C6 cells treated with MT1-hIC7L was suppressed by pre-treatment with an MT1-MMP endocytosis inhibitor (P < 0.05). In vivo optical imaging using probes intravenously administered to tumor-bearing mice showed that MT1-hIC7L specifically visualized C6 tumors (tumor-to-background ratios: 3.8 ± 0.3 [MT1-hIC7L] vs 3.1 ± 0.2 [hIC7L] 48 h after administration, P < 0.05), while the probes showed similarly low fluorescence in MCF-7 tumors. Together, these results show that MT1-hIC7L would be a potential activatable NIR probe for specifically detecting MT1-MMP-expressing tumors. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.
Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O
1994-09-01
Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.
NASA Astrophysics Data System (ADS)
Tang, Xianghai; Yu, Rencheng; Zhou, Mingjiang; Yu, Zhigang
2012-03-01
The dinoflagellate Alexandrium minutum is often associated with harmful algal blooms (HABs). This species consists of many strains that differ in their ability to produce toxins but have similar morphology, making identification difficult. In this study, species-specific rRNA probes were designed for whole-cell fluorescence in situ hybridization (FISH) to distinguish A. minutum from two phylogenetic clades. We acquired the complete SSU to LSU rDNA sequences (GenBank accession numbers JF906989-JF906999) of 11 Alexandrium strains and used these to design rRNA targeted oligonucleotide probes. Three ribotype-specific probes, M-GC-1, M-PC-2, and M-PC-3, were designed. The former is specific for the GC clade ("Global clade") of A. minutum, the majority of which have been found non-toxic, and the latter two are specific for the PSP (paralytic shellfish poisoning)-producing PC clade ("Pacific clade"). The specificity of these three probes was confirmed by FISH. All cells in observed fields of view were fluorescently labeled when probes and target species were incubated under optimized FISH conditions. However, the accessibility of rRNA molecules in ribosomes varied among the probe binding positions. Thus, there was variation in the distribution of positive signals in labeled cells within nucleolus and cytosol (M-GC-1, M-PC-3), or just nucleolus (M-PC-2). Our results provide a methodological basis for studying the biogeography and population dynamics of A. minutum, and providing an early warning of toxic HABs.
Gangidi, R R; Metzger, L E
2006-11-01
The purpose of this study was to determine if the ionic calcium content of skim milk could be determined using molecular probes and front-face fluorescence spectroscopy. Current methods for determining ionic calcium are not sensitive, overestimate ionic calcium, or require complex procedures. Molecular probes designed specifically for measuring ionic calcium could potentially be used to determine the ionic calcium content of skim milk. The goal of the current study was to develop foundation methods for future studies to determine ionic calcium directly in skim milk and other dairy products with molecular probes and fluorescence spectroscopy. In this study, the effect of pH on calcium-sensitive fluorescent probe (Rhod-5N and Fluo-5N) performance using various concentrations of skim milk was determined. The pH of diluted skim milk (1.9 to 8.9% skim milk), was adjusted to either 6.2 or 7.0, after which the samples were analyzed with fluorescent probes (1 microM) and front-face fluorescence spectroscopy. The ionic calcium content of each sample was also determined using a calcium ion-selective electrode. The results demonstrated that the ionic calcium content of each sample was highly correlated (R2 > 0.989) with the fluorescence intensities of the probe-calcium adduct using simple linear regression. Higher than suggested ionic calcium contents of 1,207 and 1,973 microM were determined with the probes (Fluo-5N and Rhod-5N) in diluted skim milk with pH 7.0 and 6.2, respectively. The fluorescence intensity of the probe-calcium adduct decreased with a decrease in pH for the same ionic calcium concentration. This study demonstrates that Fluo-5N and Rhod-5N can be used to determine the ionic-calcium content of diluted milk with front-face fluorescence spectroscopy. Furthermore, these probes may also have the potential to determine the ionic calcium content of undiluted skim milk.
Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen
2016-07-04
To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.
Aliberti, A; Cusano, A M; Battista, E; Causa, F; Netti, P A
2016-02-21
A novel class of probes for fluorescence detection was developed and combined to microgel particles for a high sensitive fluorescence detection of nucleic acids. A double strand probe with an optimized fluorescent-quencher couple was designed for the detection of different lengths of nucleic acids (39 nt and 100 nt). Such probe proved efficient in target detection in different contests and specific even in presence of serum proteins. The conjugation of double strand probes onto polymeric microgels allows for a sensitive detection of DNA sequences from HIV, HCV and SARS corona viruses with a LOD of 1.4 fM, 3.7 fM and 1.4 fM, respectively, and with a dynamic range of 10(-9)-10(-15) M. Such combination enhances the sensitivity of the detection of almost five orders of magnitude when compared to the only probe. The proposed platform based on the integration of innovative double strand probe into microgels particles represents an attractive alternative to conventional sensitive DNA detection technologies that rely on amplifications methods.
A new fluorescent pH probe for imaging lysosomes in living cells.
Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang
2014-01-15
A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ramsey, J. Michael; Foote, Robert S.
2003-12-09
A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.
Ramsey, J. Michael; Foote, Robert S.
2002-01-01
A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.
NASA Astrophysics Data System (ADS)
Chen, Chao; Hua, Yongquan; Hu, Yawen; Fang, Yuan; Ji, Shenglu; Yang, Zhimou; Ou, Caiwen; Kong, Deling; Ding, Dan
2016-03-01
As lysosomal protein transmembrane 4 beta (LAPTM4B) is an important biomarker for many solid tumours, development of small-molecule fluorescence light-up probes for detection and imaging of LAPTM4B proteins is particularly valuable. In this work, we reported the design and synthesis of a far-red/near-infrared (FR/NIR) fluorescence light-up probe DBT-2EEGIHGHHIISVG, which could specifically visualize LAPTM4B proteins in cancer cells and tumour-bearing live mice. DBT-2EEGIHGHHIISVG was synthesized by the conjugation of two LAPTM4B-binding peptide ligands (EEGIHGHHIISVG) with one environment-sensitive fluorogen, 4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole (DBT). Owing to the intramolecular charge transfer character of DBT, DBT-2EEGIHGHHIISVG is weakly emissive in aqueous solution, but switches to fluoresce upon LAPTM4B proteins specifically bind to the peptide ligand of the probe, which provide the DBT with hydrophobic microenvironment, greatly reducing its charge transfer effect with water. It is found that DBT-2EEGIHGHHIISVG can achieve targeted imaging of LAPTM4B proteins in HepG2 cancer cells and visualize LAPTM4B protein-expressed tumour tissues of live mice in a selective and high-contrast manner.
Chemical biology-based approaches on fluorescent labeling of proteins in live cells.
Jung, Deokho; Min, Kyoungmi; Jung, Juyeon; Jang, Wonhee; Kwon, Youngeun
2013-05-01
Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive reaction mediated by an endogenous analogue of the introduced protein tag. These limitations have been addressed, in part, by the split-intein-based labeling approach, which introduces fluorescent probes with a minimal size (~4 amino acids) peptide tag. In this review, the advantages and the limitations of each labeling method are discussed.
NASA Astrophysics Data System (ADS)
Henderson, Eric R.; DSouza, Alisha V.; Paulsen, Keith D.; Pogue, Brian W.
2017-02-01
Sarcomas are cancers of the bones, muscles, nerves, and fat that require complete surgical removal for cure. The primary surgical goal therefore is to remove the tumor with a zone of normal, non-cancerous tissue surrounding the tumor, considered a `negative' surgical margin. At present, surgeons rely on radiologic imaging and visual and tactile clues to gauge cancer depth and guide surgical excision. This can result in removal of too much or too little tissue, which can lead to unnecessary removal of vital structures or incomplete cancer removal, respectively. Both results can have negative effects on ultimate patient outcome, with positive margins reported in 23% of sarcoma surgeries. Near-infrared (NIR) fluorescence probes are molecules that when stimulated with specific, known frequencies of near-infrared light will emit light of another distinct frequency. NIR light penetrates human tissue reasonably well and therefore can be used to detect the presence and location of unseen structures labeled with NIR fluorescence probes through several centimeters of tissue. Intra-operative near-infrared (NIR) fluorescence probes have been effective for this purpose in brain tumor surgery and may be applicable to sarcoma surgery. Foundational research is needed to explore the potential of this affibody probe and perfusion probes to estimate margin thickness in sarcoma surgery. In this study we will determine if sarcoma labeling using NIR fluorescence probes is superior with perfusion probes or a novel affibody probe. We will also determine whether NIR fluorescence using perfusion probes or a novel affibody probe can be correlated accurately to margin thickness.
Qi, Shibo; Miao, Zheng; Liu, Hongguang; Xu, Yingding; Feng, Yaqing; Cheng, Zhen
2012-06-20
The epidermal growth factor receptor 1 (EGFR) has become an attractive target for cancer molecular imaging and therapy. An Affibody protein with strong binding affinity for EGFR, ZEGFR:1907, has been reported. We are interested in translating Affibody molecules to potential clinical optical imaging of EGFR positive cancers. In this study, four anti-EGFR Affibody based near-infrared (NIR) fluorescent probes were thus prepared, and their in vivo performance was evaluated in the mice bearing EGFR positive subcutaneous A431 tumors. The Affibody analogue, Ac-Cys-ZEGFR:1907, was synthesized using solid-phase peptide synthesis method. The purified small protein was then site-specifically conjugated with four NIR fluorescent dyes, Cy5.5-monomaleimide, Alex-Fluor-680-maleimide, SRfluor680-maleimide, or IRDye-800CW-maleimide, to produce four optical probes-Cy5.5-ZEGFR:1907, Alexa680-ZEGFR:1907, SR680-ZEGFR:1907, and 800CW-ZEGFR:1907. The EGFR binding property and specificity of the four NIR fluorescent Affibody probes were studied by fluorescence microscopy using high EGFR expressing A431 cells and low expressing MCF7 cells. The binding affinities of the probes (KD) to EGFR were further determined by flow cytometry. In vivo optical imaging of the four probes was performed in the mice bearing subcutaneous A431 tumors. The four NIR optical probes were prepared in high purity. In vitro cell imaging studies demonstrated that all of them could specifically bind to EGFR positive A431 cells while showing minimum uptake in low EGFR expressing MCF7 cells. Flow cytometry showed that Cy5.5-ZEGFR:1907 and Alexa680-ZEGFR:1907 possessed high binding affinity in low nanomolar range (43.6 ± 8.4 and 28.3 ± 4.9, respectively). In vivo optical imaging of the four probes revealed that they all showed fast tumor targeting ability and good tumor-to-normal tissue contrast as early as 0.5 h postinjection (p.i.). The tumor-to-normal tissue ratio reached a peak at 2 to 4 h p.i. by regional of interest (ROI) analysis of images. Ex vivo studies further demonstrated that the four probes had high tumor uptakes. Particularly, Cy5.5-ZEGFR:1907 and Alex680-ZEGFR:1907 displayed higher tumor-to-normal tissue ratios than those of the other two probes. This work demonstrates that Affibody proteins can be modified with different NIR fluorescent dyes and used for imaging of EGFR expressing tumors. Different NIR fluorescent dyes have variable impact on the in vitro binding and in vivo performance of the resulting Affibody based probes. Therefore, selection of an appropriate NIRF label is important for optical probe development. The probes developed are promising for further tumor imaging applications and clinical translation. Particularly, Alex680-ZEGFR:1907 and Cy5.5-ZEGFR:1907 are excellent candidates as EGFR-targeted probes for optical imaging.
A Sensitive Near-Infrared Fluorescent Sensor for Mitochondrial Hydrogen Sulfide.
Ji, Ao; Fan, Yichong; Ren, Wei; Zhang, Shen; Ai, Hui-Wang
2018-05-03
Hydrogen sulfide (H 2 S) is an important gasotransmitter. Although a large number of fluorescent probes for cellular H 2 S have been reported, only a few can detect H 2 S in mitochondria, a cellular organelle connecting H 2 S with mitochondrial function and metabolic pathways. We hereby describe a novel near-infrared fluorescent probe, nimazide, by introducing sulfonyl azide to the core structure of a QSY-21 dark quencher. Nimazide responded quickly to H 2 S, resulting in robust fluorescence turn-off changes. This conversion displayed high specificity and fast kinetics. More impressively, we observed a robust fluorescence decrease in live cells loaded with mitochondrial nimazide in response to extracellular addition of nanomolar H 2 S, and successfully imaged biologically generated mitochondrial H 2 S in live mammalian cells. Nimazide is one of the most sensitive fluorescent probes for mitochondrial H 2 S.
Gabelica, Valérie; Maeda, Ryuichi; Fujimoto, Takeshi; Yaku, Hidenobu; Murashima, Takashi; Sugimoto, Naoki; Miyoshi, Daisuke
2013-08-20
Thioflavin T (ThT), a typical probe for protein fibrils, also binds human telomeric G-quadruplexes with a fluorescent light-up signal change and high specificity against DNA duplexes. Cell penetration and low cytotoxicity of fibril probes having been widely established, modifying ThT and other fibril probes is an attractive means of generating new G-quadruplex ligands. Thus, elucidating the binding mechanism is important for the design of new drugs and fluorescent probes based on ThT. Here, we investigated the binding mechanism of ThT with several variants of the human telomeric sequence in the presence of monovalent cations. Fluorescence titrations and electrospray ionization mass spectrometry (ESI-MS) analyses demonstrated that each G-quadruplex unit cooperatively binds to several ThT molecules. ThT brightly fluoresces when a single ligand is bound to the G-quadruplex and is quenched as ligand binding stoichiometry increases. Both the light-up signal and the dissociation constants are exquisitely sensitive to the base sequence and to the G-quadruplex structure. These results are crucial for the sensible design and interpretation of G-quadruplex detection assays using fluorescent ligands in general and ThT in particular.
Synthesis and evaluation of a photoresponsive quencher for fluorescent hybridization probes.
Kovaliov, Marina; Wachtel, Chaim; Yavin, Eylon; Fischer, Bilha
2014-10-21
Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucleotide sequence and in any number, and used as a quencher in different hybridization sensitive probes. Specifically, we introduced a 5-(4-((dimethylamino)phenyl)azo)benzene)-2'-deoxy-uridine (dU(DAB)) quencher. The photoisomerization and dU(DAB)'s ability to quench fluorescein emission have been investigated. We incorporated dU(DAB) into a series of oligonucleotide (ON) probes including strand displacement probes, labeled with both fluorescein (FAM) and dU(DAB), and TaqMan probes bearing one or two dU(DAB) and a FAM fluorophore. We used these probes for the detection of a DNA target in real-time PCR (RT-PCR). All probes showed amplification of targeted DNA. A dU(DAB) modified TaqMan RT-PCR probe was more efficient as compared to a DABCYL bearing probe (93% vs. 87%, respectively). Furthermore, dU(DAB) had a stabilizing effect on the duplex, causing an increase in Tm up to 11 °C. In addition we showed the photoisomerisation of the azobenzene moiety of dU(DAB) and the dU(DAB) triply-labeled oligonucleotide upon irradiation. These findings suggest that dU(DAB) modified probes are promising probes for gene quantification in real-time PCR detection and as photoswitchable devices.
Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs
NASA Astrophysics Data System (ADS)
Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-05-01
A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.
Quantum-dot-based quantitative identification of pathogens in complex mixture
NASA Astrophysics Data System (ADS)
Lim, Sun Hee; Bestwater, Felix; Buchy, Philippe; Mardy, Sek; Yu, Alexey Dan Chin
2010-02-01
In the present study we describe sandwich design hybridization probes consisting of magnetic particles (MP) and quantum dots (QD) with target DNA, and their application in the detection of avian influenza virus (H5N1) sequences. Hybridization of 25-, 40-, and 100-mer target DNA with both probes was analyzed and quantified by flow cytometry and fluorescence microscopy on the scale of single particles. The following steps were used in the assay: (i) target selection by MP probes and (ii) target detection by QD probes. Hybridization efficiency between MP conjugated probes and target DNA hybrids was controlled by a fluorescent dye specific for nucleic acids. Fluorescence was detected by flow cytometry to distinguish differences in oligo sequences as short as 25-mer capturing in target DNA and by gel-electrophoresis in the case of QD probes. This report shows that effective manipulation and control of micro- and nanoparticles in hybridization assays is possible.
Construction of a 'turn-on' fluorescent probe system for His-tagged proteins.
Murata, Atsushi; Arai, Satoshi; Yoon, Su-In; Takabayashi, Masao; Ozaki, Miwako; Takeoka, Shinji
2010-12-01
Hexahistidine ((His)(6)) tags are used to purify genetically engineered proteins. Herein, we describe the construction of a 'turn-on' fluorescent probe system that consists of the fluorescence quencher, Dabcyl, conjugated to (His)(6), and fluorescent tetramethylrhodamine conjugated to nitrilotriacetic acid, which, in the presence of Ni(2+), can bind (His)(6). The system is turned off when Dabcyl-(His)(6) is bound to the fluorescent nitrilotriacetic acid derivative. The binding strength of this system was assessed using electrospray ionization mass spectrometry, fluorescence correlation spectroscopy, and fluorescence intensity distribution analysis-polarization. Although there was no significant enhancement in fluorescence after addition of an equimolar amount of ubiquitin, the fluorescence increased from 14% to 40% of its initial intensity when an equimolar amount of (His)(6)-ubiquitin was added. Therefore, this system should be able to specifically recognize (His)(6)-proteins with good resolution and has the additional advantage that a washing step is not required to remove fluorescent probe, that is, not bound to the (His)(6)-protein. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pump-probe optical microscopy for imaging nonfluorescent chromophores.
Wei, Lu; Min, Wei
2012-06-01
Many chromophores absorb light intensely but have undetectable fluorescence. Hence microscopy techniques other than fluorescence are highly desirable for imaging these chromophores inside live cells, tissues, and organisms. The recently developed pump-probe optical microscopy techniques provide fluorescence-free contrast mechanisms by employing several fundamental light-molecule interactions including excited state absorption, stimulated emission, ground state depletion, and the photothermal effect. By using the pump pulse to excite molecules and the subsequent probe pulse to interrogate the created transient states on a laser scanning microscope, pump-probe microscopy offers imaging capability with high sensitivity and specificity toward nonfluorescent chromophores. Single-molecule sensitivity has even been demonstrated. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques.
Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe
NASA Astrophysics Data System (ADS)
He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing
2011-11-01
The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.
Restrepo-Ortiz, C X; Merbt, S N; Barrero-Canossa, J; Fuchs, B M; Casamayor, E O
2018-04-28
The Thaumarchaeota SAGMCG-1 group and, in particular, members of the genus Nitrosotalea have high occurrence in acidic soils, the rhizosphere, groundwater and oligotrophic lakes, and play a potential role in nitrogen cycling. In this study, the specific oligonucleotide fluorescence in situ hybridization probe SAG357 was designed for this Thaumarchaeota group based on the available 16S rRNA gene sequences in databases, and included the ammonia-oxidizing species Nitrosotalea devanaterra. Cell permeabilization for catalyzed reporter deposition fluorescence in situ detection and the hybridization conditions were optimized on enrichment cultures of the target species N. devanaterra, as well as the non-target ammonia-oxidizing archaeon Nitrosopumilus maritimus. Probe specificity was improved with a competitor oligonucleotide, and fluorescence intensity and cell visualization were enhanced by the design and application of two adjacent helpers. Probe performance was tested in soil samples along a pH gradient, and counting results matched the expected in situ distributions. Probe SAG357 and the CARD-FISH protocol developed in the present study will help to improve the current understanding of the ecology and physiology of N. devanaterra and its relatives in natural environments. Copyright © 2018 Elsevier GmbH. All rights reserved.
Kisin-Finfer, Einat; Ferber, Shiran; Blau, Rachel; Satchi-Fainaro, Ronit; Shabat, Doron
2014-06-01
Recent years have seen tremendous progress in the design and study of molecular imaging geared towards biological and biomedical applications. The expression or activity of specific enzymes including proteases can be monitored by cutting edge molecular imaging techniques. Cathepsin B plays key roles in tumor progression via controlled degradation of extracellular matrix. Consequently, this protease has been attracting significant attention in cancer research, and many imaging probes targeting its activity have been developed. Here, we describe the design, synthesis and evaluation of two novel near infrared (NIR) fluorescent probes for detection of cathepsin B activity with different turn-ON mechanisms. One probe is based on an ICT activation mechanism of a donor-two-acceptor π-electron dye system, while the other is based on the FRET mechanism obtained by a fluorescent dye and a quencher. The two probes exhibit significant fluorescent turn-ON response upon cleavage by cathepsin B. The NIR fluorescence of the ICT probe in its OFF state was significantly lower than that of the FRET-based probe. This effect results in a higher signal-to-noise ratio and consequently increased sensitivity and better image contrast. Copyright © 2014 Elsevier Ltd. All rights reserved.
Marras, Salvatore A E
2008-03-01
The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.
Wang, Dan Ohtan; Matsuno, Hitomi; Ikeda, Shuji; Nakamura, Akiko; Yanagisawa, Hiroyuki; Hayashi, Yasunori; Okamoto, Akimitsu
2012-01-01
Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO–FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO–FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO–FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO–FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution. PMID:22101241
Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik
2016-09-10
A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Georgiev, Nikolai I; Bryaskova, Rayna; Tzoneva, Rumiana; Ugrinova, Iva; Detrembleur, Christophe; Miloshev, Stoyan; Asiri, Abdullah M; Qusti, Abdullah H; Bojinov, Vladimir B
2013-11-01
Herein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide-rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer-poly(methyl methacrylate)-b-poly(methacrylic acid) (PMMA48-b-PMAA27). The RNI-PMMA48-b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells. Furthermore, they showed cell specificity and significantly higher photostability than that of a pure organic dye label such as BODIPY. The valuable properties of the newly prepared fluorescent micelles indicate the high potential of the probe for future biological and biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oushiki, Daihi; Kojima, Hirotatsu; Takahashi, Yuki; Komatsu, Toru; Terai, Takuya; Hanaoka, Kenjiro; Nishikawa, Makiya; Takakura, Yoshinobu; Nagano, Tetsuo
2012-05-15
We present a novel design strategy for near-infrared (NIR) fluorescence probes utilizing dye-protein interaction as a trigger for fluorescence enhancement. The design principle involves modification of a polymethine dye with cleavable functional groups that reduce the dye's protein-binding affinity. When these functional groups are removed by specific interaction with the target enzymes, the dye's protein affinity is restored, protein binding occurs, and the dye's fluorescence is strongly enhanced. To validate this strategy, we first designed and synthesized an alkaline phosphatase (ALP) sensor by introducing phosphate into the squarylium dye scaffold; this sensor was able to detect ALP-labeled secondary antibodies in Western blotting analysis. Second, we synthesized a probe for β-galactosidase (widely used as a reporter of gene expression) by means of β-galactosyl substitution of the squarylium scaffold; this sensor was able to visualize β-galactosidase activity both in vitro and in vivo. Our strategy should be applicable to obtain NIR fluorescence probes for a wide range of target enzymes.
NASA Technical Reports Server (NTRS)
Wade, Lawrence A. (Inventor); Shapiro, Ian R. (Inventor); Bittner, Jr., Vern Garrett (Inventor); Collier, Charles Patrick (Inventor); Esplandiu, Maria J. (Inventor); Giapis, Konstantinos P. (Inventor)
2009-01-01
Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes. Biological macromolecules such as proteins or DNA can be attached to nanotubes to create highly specific single-molecule probes for investigations of intermolecular dynamics, for assembling hybrid biological and nanoscale materials, or for developing molecular electronics. In one example, electrical wiring of single redox enzymes to carbon nanotube scanning probes allows observation and electrochemical control over single enzymatic reactions by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes ''nanowired'' to the tips of carbon nanotubes in accordance with embodiments of the present invention, may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Pinkel, D.; Trask, B.
1987-07-24
This paper discusses the application of analytical cytology to the detection of clinically important chromosome abnormalities in human tumors. Flow cytometric measurements of DNA distributions have revealed that many human tumors have abnormal (usually elevated) DNA contents and that the occurrence of DNA abnormality may be diagnostically or prognostically important. However, DNA indices (ratio of tumor DNA content to normal DNA content) provide little information about the specific chromosome(s) involved in the DNA content abnormality. Fluorescence in situ hybridization with chromosome specific probes is suggested as a technique to facilitate detection of specific chromosome aneuploidy in interphase and metaphase humanmore » tumor cells. Fluorescence hybridization to nuclei on slides allows enumeration of brightly fluorescent nuclear domains as an estimate of the number of copies of the chromosome type for which the hybridization probe is specific. Fluorescence hybridization can also be made to nuclei in suspension. The fluorescence intensity can then be measured flow cytometrically as an indication of the number of chromosomes in each nucleus carrying the DNA sequence homologous to the probe. In addition, quantitative image analysis may be used to explore the position of chromosomes in interphase nuclei and to look for changes in the order that may eventually permit detection of clinicaly important conditions. 55 refs., 8 figs., 1 tab.« less
Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells.
Ricard, Clément; Arroyo, Erica D; He, Cynthia X; Portera-Cailliau, Carlos; Lepousez, Gabriel; Canepari, Marco; Fiole, Daniel
2018-05-11
Imaging the brain of living laboratory animals at a microscopic scale can be achieved by two-photon microscopy thanks to the high penetrability and low phototoxicity of the excitation wavelengths used. However, knowledge of the two-photon spectral properties of the myriad fluorescent probes is generally scarce and, for many, non-existent. In addition, the use of different measurement units in published reports further hinders the design of a comprehensive imaging experiment. In this review, we compile and homogenize the two-photon spectral properties of 280 fluorescent probes. We provide practical data, including the wavelengths for optimal two-photon excitation, the peak values of two-photon action cross section or molecular brightness, and the emission ranges. Beyond the spectroscopic description of these fluorophores, we discuss their binding to biological targets. This specificity allows in vivo imaging of cells, their processes, and even organelles and other subcellular structures in the brain. In addition to probes that monitor endogenous cell metabolism, studies of healthy and diseased brain benefit from the specific binding of certain probes to pathology-specific features, ranging from amyloid-β plaques to the autofluorescence of certain antibiotics. A special focus is placed on functional in vivo imaging using two-photon probes that sense specific ions or membrane potential, and that may be combined with optogenetic actuators. Being closely linked to their use, we examine the different routes of intravital delivery of these fluorescent probes according to the target. Finally, we discuss different approaches, strategies, and prerequisites for two-photon multicolor experiments in the brains of living laboratory animals.
Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, S. E.; Donohoe, B. S.; Beery, K. E.
Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. Thesemore » probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.« less
Riou, Virginie; Périot, Marine; Biegala, Isabelle C
2017-01-01
Oligonucleotide probes are increasingly being used to characterize natural microbial assemblages by Tyramide Signal Amplification-Fluorescent in situ Hybridization (TSA-FISH, or CAtalysed Reporter Deposition CARD-FISH). In view of the fast-growing rRNA databases, we re-evaluated the in silico specificity of eleven bacterial and eukaryotic probes and competitor frequently used for the quantification of marine picoplankton. We performed tests on cell cultures to decrease the risk for non-specific hybridization, before they are used on environmental samples. The probes were confronted to recent databases and hybridization conditions were tested against target strains matching perfectly with the probes, and against the closest non-target strains presenting one to four mismatches. We increased the hybridization stringency from 55 to 65% formamide for the Eub338+EubII+EubIII probe mix to be specific to the Eubacteria domain. In addition, we found that recent changes in the Gammaproteobacteria classification decreased the specificity of Gam42a probe, and that the Roseo536R and Ros537 probes were not specific to, and missed part of the Roseobacter clade. Changes in stringency conditions were important for bacterial probes; these induced, respectively, a significant increase, in Eubacteria and Roseobacter and no significant changes in Gammaproteobacteria concentrations from the investigated natural environment. We confirmed the eukaryotic probes original conditions, and propose the Euk1209+NChlo01+Chlo02 probe mix to target the largest picoeukaryotic diversity. Experiences acquired through these investigations leads us to propose the use of seven steps protocol for complete FISH probe specificity check-up to improve data quality in environmental studies.
Intra-operative probe for brain cancer: feasibility study
NASA Astrophysics Data System (ADS)
Vu Thi, M. H.; Charon, Y.; Duval, M. A.; Lefebvre, F.; Menard, L.; Pitre, S.; Pinot, L.; Siebert, R.
2007-07-01
The present work aims a new medical probe for surgeons devoted to brain cancers, in particular glioblastoma multiforme. Within the last years, our group has started the development of a new intra-operative beta imaging probe. More recently, we took an alternative approach for the same application: a fluorescence probe. In both cases the purpose is to differentiate normal from tumor brain tissue. In a first step, we developed set-ups capable to measure autofluorescence. They are based on a dedicated epi-fluorescence design and on specific fiber optic probes. Relative signal amplitude, spectral shape and fluorescence lifetime measurements are foreseen to distinguish normal and cancer tissue by analyzing fluorophores like NADH, lipopigments and porphyrines. The autofluorescence spectra are recorded in the 460-640 nm range with a low resolution spectrometer. For lifetime measurements a fast detector (APD) is used together with a TCSPC-carte. Intrinsic wavelength- and time-resolutions are a few nm and 200 ps, respectively. Different samples have been analyzed to validate our new detection system and to allow a first configuration of our medical fluorescence probe. First results from the tissue measurements are shown.
Glowing locked nucleic acids: brightly fluorescent probes for detection of nucleic acids in cells.
Østergaard, Michael E; Cheguru, Pallavi; Papasani, Madhusudhan R; Hill, Rodney A; Hrdlicka, Patrick J
2010-10-13
Fluorophore-modified oligonucleotides have found widespread use in genomics and enable detection of single-nucleotide polymorphisms, real-time monitoring of PCR, and imaging of mRNA in living cells. Hybridization probes modified with polarity-sensitive fluorophores and molecular beacons (MBs) are among the most popular approaches to produce hybridization-induced increases in fluorescence intensity for nucleic acid detection. In the present study, we demonstrate that the 2'-N-(pyren-1-yl)carbonyl-2'-amino locked nucleic acid (LNA) monomer X is a highly versatile building block for generation of efficient hybridization probes and quencher-free MBs. The hybridization and fluorescence properties of these Glowing LNA probes are efficiently modulated and optimized by changes in probe backbone chemistry and architecture. Correctly designed probes are shown to exhibit (a) high affinity toward RNA targets, (b) excellent mismatch discrimination, (c) high biostability, and (d) pronounced hybridization-induced increases in fluorescence intensity leading to formation of brightly fluorescent duplexes with unprecedented emission quantum yields (Φ(F) = 0.45-0.89) among pyrene-labeled oligonucleotides. Finally, specific binding between messenger RNA and multilabeled quencher-free MBs based on Glowing LNA monomers is demonstrated (a) using in vitro transcription assays and (b) by quantitative fluorometric assays and direct microscopic observation of probes bound to mRNA in its native form. These features render Glowing LNA as promising diagnostic probes for biomedical applications.
NASA Astrophysics Data System (ADS)
Sun, Jessica; Miller, Jessica P.; Hathi, Deep; Zhou, Haiying; Achilefu, Samuel; Shokeen, Monica; Akers, Walter J.
2016-08-01
Fluorescence imaging, in combination with tumor-avid near-infrared (NIR) fluorescent molecular probes, provides high specificity and sensitivity for cancer detection in preclinical animal models, and more recently, assistance during oncologic surgery. However, conventional camera-based fluorescence imaging techniques are heavily surface-weighted such that surface reflection from skin or other nontumor tissue and nonspecific fluorescence signals dominate, obscuring true cancer-specific signals and blurring tumor boundaries. To address this challenge, we applied structured illumination fluorescence molecular imaging (SIFMI) in live animals for automated subtraction of nonspecific surface signals to better delineate accumulation of an NIR fluorescent probe targeting α4β1 integrin in mice bearing subcutaneous plasma cell xenografts. SIFMI demonstrated a fivefold improvement in tumor-to-background contrast when compared with other full-field fluorescence imaging methods and required significantly reduced scanning time compared with diffuse optical spectroscopy imaging. Furthermore, the spatial gradient mapping enhanced highlighting of tumor boundaries. Through the relatively simple hardware and software modifications described, SIFMI can be integrated with clinical fluorescence imaging systems, enhancing intraoperative tumor boundary delineation from the uninvolved tissue.
Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.
Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin
2018-02-06
Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
2011-01-01
Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of them detect non-oral species and phylogenetic groups of importance in a variety of medical conditions and the food industry. PMID:21247450
Development of background-free tame fluorescent probes for intracellular live cell imaging
Alamudi, Samira Husen; Satapathy, Rudrakanta; Kim, Jihyo; Su, Dongdong; Ren, Haiyan; Das, Rajkumar; Hu, Lingna; Alvarado-Martínez, Enrique; Lee, Jung Yeol; Hoppmann, Christian; Peña-Cabrera, Eduardo; Ha, Hyung-Ho; Park, Hee-Sung; Wang, Lei; Chang, Young-Tae
2016-01-01
Fluorescence labelling of an intracellular biomolecule in native living cells is a powerful strategy to achieve in-depth understanding of the biomolecule's roles and functions. Besides being nontoxic and specific, desirable labelling probes should be highly cell permeable without nonspecific interactions with other cellular components to warrant high signal-to-noise ratio. While it is critical, rational design for such probes is tricky. Here we report the first predictive model for cell permeable background-free probe development through optimized lipophilicity, water solubility and charged van der Waals surface area. The model was developed by utilizing high-throughput screening in combination with cheminformatics. We demonstrate its reliability by developing CO-1 and AzG-1, a cyclooctyne- and azide-containing BODIPY probe, respectively, which specifically label intracellular target organelles and engineered proteins with minimum background. The results provide an efficient strategy for development of background-free probes, referred to as ‘tame' probes, and novel tools for live cell intracellular imaging. PMID:27321135
Jansen, G J; Wildeboer-Veloo, A C; Tonk, R H; Franks, A H; Welling, G W
1999-09-01
An automated microscopy-based method using fluorescently labelled 16S rRNA-targeted oligonucleotide probes directed against the predominant groups of intestinal bacteria was developed and validated. The method makes use of the Leica 600HR image analysis system, a Kodak MegaPlus camera model 1.4 and a servo-controlled Leica DM/RXA ultra-violet microscope. Software for automated image acquisition and analysis was developed and tested. The performance of the method was validated using a set of four fluorescent oligonucleotide probes: a universal probe for the detection of all bacterial species, one probe specific for Bifidobacterium spp., a digenus-probe specific for Bacteroides spp. and Prevotella spp. and a trigenus-probe specific for Ruminococcus spp., Clostridium spp. and Eubacterium spp. A nucleic acid stain, 4',6-diamidino-2-phenylindole (DAPI), was also included in the validation. In order to quantify the assay-error, one faecal sample was measured 20 times using each separate probe. Thereafter faecal samples of 20 different volunteers were measured following the same procedure in order to quantify the error due to individual-related differences in gut flora composition. It was concluded that the combination of automated microscopy and fluorescent whole-cell hybridisation enables distinction in gut flora-composition between volunteers at a significant level. With this method it is possible to process 48 faecal samples overnight, with coefficients of variation ranging from 0.07 to 0.30.
Fluorescent probes for the simultaneous detection of multiple analytes in biology.
Kolanowski, Jacek L; Liu, Fei; New, Elizabeth J
2018-01-02
Many of the key questions facing cellular biology concern the location and concentration of chemical species, from signalling molecules to metabolites to exogenous toxins. Fluorescent sensors (probes) have revolutionised the understanding of biological systems through their exquisite sensitivity to specific analytes. Probe design has focussed on selective sensors for individual analytes, but many of the most pertinent biological questions are related to the interaction of more than one chemical species. While it is possible to simultaneously use multiple sensors for such applications, data interpretation will be confounded by the fact that sensors will have different uptake, localisation and metabolism profiles. An alternative solution is to instead use a single probe that responds to two analytes, termed a dual-responsive probe. Recent progress in this field has yielded exciting probes, some of which have demonstrated biological application. Here we review work that has been carried out to date, and suggest future research directions that will harness the considerable potential of dual-responsive fluorescent probes.
Chemical probes for analysis of carbonylated proteins: a review
Yan, Liang-Jun; Forster, Michael J.
2010-01-01
Protein carbonylation is a major form of protein oxidation and is widely used as an indicator of oxidative stress. Carbonyl groups do not have distinguishing UV or visible, spectrophotometric absorbance/fluorescence characteristics and thus their detection and quantification can only be achieved using specific chemical probes. In this paper, we review the advantages and disadvantages of several chemical probes that have been and are still being used for protein carbonyl analysis. These probes include 2, 4-dinitrophenylhydazine (DNPH), tritiated sodium borohydride ([3H]NaBH4), biotin-containing probes, and fluorescence probes. As our discussions lean toward gel-based approaches, utilizations of these probes in 2D gel-based proteomic analysis of carbonylated proteins are illustrated where applicable. Analysis of carbonylated proteins by ELISA, immunofluorescent imaging, near infrared fluorescence detection, and gel-free proteomic approaches are also discussed where appropriate. Additionally, potential applications of blue native gel electrophoresis as a tool for first dimensional separation in 2D gel-based analysis of carbonylated proteins are discussed as well. PMID:20732835
Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging
NASA Astrophysics Data System (ADS)
Kujala, Naresh Gandhi
Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The optical molecular probe AF750 BBN peptide exhibits optimal pharmacokinetic properties for targeting GRPr in mice. Fluorescent microscopic imaging of the molecular probe in PC-3 prostate and T-47D breast cancer cell lines indicated specific uptake, internalization, and receptor blocking of these probes. In vivo investigations in severely compromised immunodeficient (SCID) mice bearing xenografted PC-3 prostate and T47-D breast cancer lesions demonstrated the ability of this new molecular probe to specifically target tumor tissue with high selectively and affinity.
Rapid labeling of intracellular His-tagged proteins in living cells.
Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe
2015-03-10
Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.
Development of dansyl-modified oligonucleotide probes responding to structural changes in a duplex.
Suzuki, Yoshio; Kowata, Keiko; Komatsu, Yasuo
2013-11-15
We have synthesized a nonnucleoside amidite block of dansyl fluorophore to prepare dansyl-modified oligonucleotides (ONTs). The fluorescence intensities of dansyl-ONT specifically increased by the presence of adjacent guanosine residues but, significantly reduced in a dansyl-flipping duplex. These changes were caused by solvatochromism effect due to the number of guanine which is hydrophobic functional group and the external environment of dansyl group. The fluorescence intensities could be plotted as a function of the ONTs concentrations and the increase in the fluorescence was observed to equimolar concentrations of target DNA. This duplex exhibited higher melting temperature relative to the corresponding duplexes containing other base pairs. Similar changes in fluorescence could be detected upon hybridization with complementary RNAs. Thus, the dansyl-modified ONTs provide sequence specific fluorescent probe of DNA and RNA. Copyright © 2013 Elsevier Ltd. All rights reserved.
2008-01-01
With the increasing demand for confocal and two-photon fluorescence imaging, the availability of reactive probes that possess high two-photon absorptivity, high fluorescence quantum yield, and high photostability is of paramount importance. To address the demand for better-performing probes, we prepared two-photon absorbing amine-reactive fluorenyl-based probes 2-(9,9-bis(2-(2-methoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)benzothiazole (1) and 2-(4-(2-(9,9-bis(2-(2-ethoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)vinyl)phenyl)benzothiazole (2), incorporating the isothiocyanate as a reactive linker. Probe design was augmented by integrating high optical nonlinearities, increased hydrophilicity, and coupling with reactive functional groups for specific targeting of biomolecules, assuring a better impact on two-photon fluorescence microscopy (2PFM) imaging. The isothiocyanate (NCS) derivatives were conjugated with cyclic peptide RGDfK and Reelin protein. The study of the chemical and photophysical properties of the new labeling reagents, as well as the conjugates, is described. The conjugates displayed high chemical stability and photostability. The NCS derivatives had low fluorescence quantum yields, while their bioconjugates exhibited high fluorescence quantum yields, essentially “lighting up” after conjugation. Conventional and 2PFM imaging and fluorescence lifetime imaging (FLIM) of HeLa, NT2, and H1299 cells, incubated with two-photon absorbing amine-reactive probe (1), RGDfK-dye conjugate (7), and Reelin-dye conjugate (6), was demonstrated. PMID:19090700
Schuppler, M; Wagner, M; Schön, G; Göbel, U B
1998-01-01
Hitherto, few environmental samples have been investigated by a 'full cycle rRNA analysis'. Here the results of in situ hybridization experiments with specific rRNA-targeted oligonucleotide probes developed on the basis of new sequences derived from a previously described comparative 16S rRNA analysis of nocardioform actinomycetes in activated sludge are reported. Application of the specific probes enabled identification and discrimination of the distinct populations of nocardioform actinomycetes in activated sludge. One of the specific probes (DLP) detected rod-shaped bacteria which were found in 13 of the 16 investigated sludge samples from various wastewater treatment plants, suggesting their importance in the wastewater treatment process. Another probe (GLP2) hybridized with typically branched filaments of nocardioforms mainly found in samples from enhanced biological phosphorus removal plants, suggesting that these bacteria are involved in sludge foaming. The combination of in situ hybridization with fluorescently labelled rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy improved the detection of nocardioform actinomycetes, which often showed only weak signals inside the activated-sludge flocs.
The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe
Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong
2017-01-01
Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666
Xu, R; Falardeau, J; Avis, T J; Tambong, J T
2016-02-01
The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.
Posada, Luisa F; Alvarez, Javier C; Hu, Chia-Hui; de-Bashan, Luz E; Bashan, Yoav
2016-09-01
Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.
Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-05-05
A magnetic fluorescent probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was prepared using CdTe QDs and Fe 3 O 4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe 3 O 4 @MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe 3 O 4 @MIPs were spherical with average diameter around 53nm, and a core-shell structure was well-shaped with several Fe 3 O 4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe 3 O 4 @MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λ em 598nm. The fluorescence of CdTe QDs/nano-Fe 3 O 4 @MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5μmolL -1 . The detection limit was 0.014μmolL -1 . The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe 3 O 4 @MIPs could be used as a probe to the detection of trace MG in fish samples. Copyright © 2018 Elsevier B.V. All rights reserved.
La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo
2016-01-01
A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN(-)) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu(2+) and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu(2+) complex can act as an effective OFF-ON type fluorescent probe for sensing CN(-) anion. Due to the strong binding affinity of CN(-) to Cu(2+), CN(-) can extract Cu(2+) from C-GGH-Cu(2+) complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu(2+) allowed detection of CN(-) in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN(-) in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN(-) towards other anions, including F(-), Cl(-), Br(-), I(-), SCN(-), PO4 (3-), N3 (-), NO3 (-), AcO(-), SO4 (2-), and CO3 (2-).
La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo
2016-01-01
A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO4 3−, N3 −, NO3 −, AcO−, SO4 2−, and CO3 2−. PMID:26881185
Fluorescence In Situ Hybridization Probe Validation for Clinical Use.
Gu, Jun; Smith, Janice L; Dowling, Patricia K
2017-01-01
In this chapter, we provide a systematic overview of the published guidelines and validation procedures for fluorescence in situ hybridization (FISH) probes for clinical diagnostic use. FISH probes-which are classified as molecular probes or analyte-specific reagents (ASRs)-have been extensively used in vitro for both clinical diagnosis and research. Most commercially available FISH probes in the United States are strictly regulated by the U.S. Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), the Centers for Medicare & Medicaid Services (CMS) the Clinical Laboratory Improvement Amendments (CLIA), and the College of American Pathologists (CAP). Although home-brewed FISH probes-defined as probes made in-house or acquired from a source that does not supply them to other laboratories-are not regulated by these agencies, they too must undergo the same individual validation process prior to clinical use as their commercial counterparts. Validation of a FISH probe involves initial validation and ongoing verification of the test system. Initial validation includes assessment of a probe's technical specifications, establishment of its standard operational procedure (SOP), determination of its clinical sensitivity and specificity, development of its cutoff, baseline, and normal reference ranges, gathering of analytics, confirmation of its applicability to a specific research or clinical setting, testing of samples with or without the abnormalities that the probe is meant to detect, staff training, and report building. Ongoing verification of the test system involves testing additional normal and abnormal samples using the same method employed during the initial validation of the probe.
Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro
2000-01-01
A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494
Guide to red fluorescent proteins and biosensors for flow cytometry.
Piatkevich, Kiryl D; Verkhusha, Vladislav V
2011-01-01
Since the discovery of the first red fluorescent protein (RFP), named DsRed, 12 years ago, a wide pallet of red-shifted fluorescent proteins has been cloned and biotechnologically developed into monomeric fluorescent probes for optical microscopy. Several new types of monomeric RFPs that change the emission wavelength either with time, called fluorescent timers, or after a brief irradiation with violet light, known as photoactivatable proteins, have been also engineered. Moreover, RFPs with a large Stokes shift of fluorescence emission have been recently designed. Because of their distinctive excitation and fluorescence detection conditions developed specifically for microscopy, these fluorescent probes can be suboptimal for flow cytometry. Here, we have selected and summarized the advanced orange, red, and far-red fluorescent proteins with the properties specifically required for the flow cytometry applications. Their effective brightness was calculated for the laser sources available for the commercial flow cytometers and sorters. Compatibility of the fluorescent proteins of different colors in a multiparameter flow cytometry was determined. Novel FRET pairs, utilizing RFPs, RFP-based intracellular biosensors, and their application to a high-throughput screening, are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Fluorescent diamond nanoparticle as a probe of intracellular traffic in primary neurons in culture
NASA Astrophysics Data System (ADS)
Le, Xuan Loc; Lepagnol-Bestel, Aude-Marie; Adam, Marie-Pierre; Thomas, Alice; Dantelle, Géraldine; Chang, Cheng-Chun; Mohan, Nitin; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel
2012-03-01
Neurons display dendritic spines plasticity and morphology anomalies in numerous psychiatric and neurodegenerative diseases. These changes are associated to abnormal dendritic traffic that can be evidenced by fluorescence microscopy. As a fluorescent probe we propose to use fluorescent diamond nanoparticles with size of < 50 nm. Color centers embedded inside the diamond nanoparticles are perfectly photostable emitters allowing for long-term tracking. Nanodiamond carbon surface is also well suited for biomolecule functionalization to target specific cellular compartments. We show that fluorescent nanodiamonds can be spontaneously internalized in neurons in culture and imaged by confocal and Total Internal Reflection (TIRF) microscopy with a high signal over background ratio.
Species-Level Identification of Orthopoxviruses with an Oligonucleotide Microchip
Lapa, Sergey; Mikheev, Maxim; Shchelkunov, Sergei; Mikhailovich, Vladimir; Sobolev, Alexander; Blinov, Vladimir; Babkin, Igor; Guskov, Alexander; Sokunova, Elena; Zasedatelev, Alexander; Sandakhchiev, Lev; Mirzabekov, Andrei
2002-01-01
A method for species-specific detection of orthopoxviruses pathogenic for humans and animals is described. The method is based on hybridization of a fluorescently labeled amplified DNA specimen with the oligonucleotide DNA probes immobilized on a microchip (MAGIChip). The probes identify species-specific sites within the crmB gene encoding the viral analogue of tumor necrosis factor receptor, one of the most important determinants of pathogenicity in this genus of viruses. The diagnostic procedure takes 6 h and does not require any sophisticated equipment (a portable fluorescence reader can be used). PMID:11880388
Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N
2016-10-01
A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Haiying; Yan, Ying; Ee, Xueping; Hunter, Daniel A; Akers, Walter J; Wood, Matthew D; Berezin, Mikhail Y
2016-12-01
Peripheral nerve injury evokes a complex cascade of chemical reactions including generation of molecular radicals. Conversely, the reactions within nerve induced by stress are difficult to directly detect or measure to establish causality. Monitoring these reactions in vivo would enable deeper understanding of the nature of the injury and healing processes. Here, we utilized near-infrared fluorescence molecular probes delivered via intra-neural injection technique to enable live, in vivo imaging of tissue response associated with nerve injury and stress. These initially quenched fluorescent probes featured specific sensitivity to hydroxyl radicals and become fluorescent upon encountering reactive oxygen species (ROS). Intraneurally delivered probes demonstrated rapid activation in injured rat sciatic nerve but minimal activation in normal, uninjured nerve. In addition, these probes reported activation within sciatic nerves of living rats after a stress caused by a pinprick stimulus to the abdomen. This imaging approach was more sensitive to detecting changes within nerves due to the induced stress than other techniques to evaluate cellular and molecular changes. Specifically, neither histological analysis of the sciatic nerves, nor the expression of pain and stress associated genes in dorsal root ganglia could provide statistically significant differences between the control and stressed groups. Overall, the results demonstrate a novel imaging approach to measure ROS in addition to the impact of ROS within nerve in live animals. Copyright © 2016 Elsevier Inc. All rights reserved.
Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi
2013-03-01
Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Lu, Haibin; Chandrasekar, Balakumaran; Oeljeklaus, Julian; Misas-Villamil, Johana C; Wang, Zheming; Shindo, Takayuki; Bogyo, Matthew; Kaiser, Markus; van der Hoorn, Renier A L
2015-08-01
Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins. © 2015 American Society of Plant Biologists. All Rights Reserved.
Wu, Xiaofeng; Li, Lihong; Shi, Wen; Gong, Qiuyu; Li, Xiaohua; Ma, Huimin
2016-01-19
Monoamine oxidase A (MAO-A) is known to widely exist in most cell lines in the body, and its dysfunction (unusually high or low levels of MAO-A) is thought to be responsible for several psychiatric and neurological disorders. Thus, a sensitive and selective method for evaluating the relative MAO-A levels in different live cells is urgently needed to better understand the function of MAO-A, but to our knowledge such a method is still lacking. Herein, we rationally design two new ratiometric fluorescence probes (1 and 2) that can sensitively and selectively detect MAO-A. The probes are constructed by incorporating a recognition group of propylamine into the fluorescent skeleton of 1,8-naphthalimide, and the detection mechanism is based on amine oxidation and β-elimination to release the fluorophore (4-hydroxy-N-butyl-1,8-naphthalimide), which is verified by HPLC analysis. Reaction of the probes with MAO-A produces a remarkable fluorescence change from blue to green, and the ratio of fluorescence intensity at 550 and 454 nm is directly proportional to the concentration of MAO-A in the ranges of 0.5-1.5 and 0.5-2.5 μg/mL with detection limits of 1.1 and 10 ng/mL (k = 3) for probes 1 and 2, respectively. Surprisingly, these probes show strong fluorescence responses to MAO-A but almost none to MAO-B (one of two isoforms of MAO), indicating superior ability to distinguish MAO-A from MAO-B. The high specificity of the probes for MAO-A over MAO-B is further supported by different inhibitor experiments. Moreover, probe 1 displays higher sensitivity than probe 2 and is thus investigated to image the relative MAO-A levels in different live cells, such as HeLa and NIH-3T3 cells. It is found that the concentration of endogenous MAO-A in HeLa cells is approximately 1.8 times higher than that in NIH-3T3 cells, which is validated by the result from an ELISA kit. Additionally, the proposed probes may find more uses in the specific detection of MAO-A between the two isoforms of MAO, thereby promoting our understanding of the behavior and function of MAO-A in living biosystems.
Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.
Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa
2013-01-01
Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121
Fluorescent kapakahines serve as non-toxic probes for live cell Golgi imaging.
Rocha, Danilo D; Espejo, Vinson R; Rainier, Jon D; La Clair, James J; Costa-Lotufo, Letícia V
2015-09-01
There is an ongoing need for fluorescent probes that specifically-target select organelles within mammalian cells. This study describes the development of probes for the selective labeling of the Golgi apparatus and offers applications for live cell and fixed cell imaging. The kapakahines, characterized by a common C(3)-N(1') dimeric tryptophan linkage, comprise a unique family of bioactive marine depsipeptide natural products. We describe the uptake and subcellular localization of fluorescently-labeled analogs of kapakahine E. Using confocal microscopy, we identify a rapid and selective localization within the Golgi apparatus. Comparison with commercial Golgi stains indicates a unique localization pattern, which differs from currently available materials, therein offering a new tool to monitor the Golgi in live cells without toxic side effects. This study identifies a fluorescent analog of kapakahine E that is rapidly uptaken in cells and localizes within the Golgi apparatus. The advance of microscopic methods is reliant on the parallel discovery of next generation molecular probes. This study describes the advance of stable and viable probe for staining the Golgi apparatus. Copyright © 2015 Elsevier Inc. All rights reserved.
Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT
2009-01-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539
Hao, Yuanqiang; Nguyen, Khac Hong; Zhang, Yintang; Zhang, Guan; Fan, Shengnan; Li, Fen; Guo, Chao; Lu, Yuanyuan; Song, Xiaoqing; Qu, Peng; Liu, You-Nian; Xu, Maotian
2018-01-01
A highly selective and ratiometric fluorescent probe for cyanide was rationally designed and synthesized. The probe comprises a fluorophore unit of naphthalimide and a CN - acceptor of methylated trifluoroacetamide group. For these previous reported trifluoroacetamide derivative-based cyanide chemosensors, the H-atom of amide adjacent to trifluoroacetyl group is susceptible to be attacked by various anions (CN - itself, F - , AcO - , et al.) and even the solvent molecule, which resulted in the bewildered reaction mechanism and poor selectivity of the assay. In this work, the susceptible H-atom of trifluoroacetamide was artfully substituted by alkyl group. Thus a highly specific fluorescent probe was developed for cyanide sensing. Upon the nucleophilic addition of cyanide anion to the carbonyl of trifluoroacetamide moiety of the probe, the ICT process of the probe was significantly enhanced and leading to a remarkable red shift in both absorption and emission spectra of the probe. This fluorescent assay showed a linear range of 1.0-80.0µM and a LOD (limit of detection) of 0.23µM. All the investigated interference have no influence on the sensing behavior of the probe toward cyanide. Moreover, by coating on TLC plate, the probe can be utilized for practical detection of trace cyanide in water samples. Copyright © 2017. Published by Elsevier B.V.
Ren, Xiao M; Guo, Liang-Hong
2012-04-17
Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions on experimental animals, and one of the proposed disruption mechanisms is the competitive binding of PBDE metabolites to TH transport proteins. In this report, a nonradioactive, site-specific fluorescein-thyroxine (F-T4) conjugate was designed and synthesized as a fluorescence probe to study the binding interaction of hydroxylated PBDEs to thyroxine-binding globulin (TBG) and transthyretin (TTR), two major TH transport proteins in human plasma. Compared with free F-T4, the fluorescence intensity of TTR-bound conjugate was enhanced by as much as 2-fold, and the fluorescence polarization value of TBG-bound conjugate increased by more than 20-fold. These changes provide signal modulation mechanisms for F-T4 as a fluorescence probe. Based on fluorescence quantum yield and lifetime measurements, the fluorescence intensity enhancement was likely due to the elimination of intramolecular fluorescence quenching of fluorescein by T4 after F-T4 was bound to TTR. In circular dichroism and intrinsic tryptophan fluorescence measurements, F-T4 induced similar spectroscopic changes of the proteins as T4 did, suggesting that F-T4 bound to the proteins at the T4 binding site. By using F-T4 as the fluorescence probe in competitive binding assays, 11 OH-PBDEs with different levels of bromination and different hydroxylation positions were assessed for their binding affinity with TBG and TTR, respectively. The results indicate that the binding affinity generally increased with bromine number and OH position also played an important role. 3-OH-BDE-47 and 3'-OH-BDE-154 bound to TTR and TBG even stronger, respectively, than T4. With rising environmental level and high bioaccumulation capability, PBDEs have the potential to disrupt thyroid homeostasis by competitive binding with TH transport proteins.
Yu, Fei; Guo, Menglin; Deng, Yabin; Lu, Yin; Chen, Lin; Huang, Ping; Li, Donghui
2016-01-01
We have found that a positively charged cationic copper phthalocyanine, Alcian blue (Alcian blue 8GX), can efficiently quench the fluorescence of an oppositely charged red fluorescent phthalocyanine compound with a matched molecular structure, tetrasulfonated aluminum phthalocyanine (AlS4Pc), because of the formation of an ion pair complex (AlS4Pc-Alcian blue 8GX) that exhibits almost no fluorescence. An investigation was carried out on the fluorescence recovery of AlS4Pc-Alcian blue 8GX caused by a series of anionic surfactants containing a sulfonic group (sodium dodecylbenzenesulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfate (SDS)). The results showed that SDBS exhibited a significant response, and the highest sensitivity among the surfactants. Due to its high efficiency of fluorescence quenching and the high level of fluorescence recovery, direct observes can even be performed by the naked eye. The results revealed that the Alcian blue 8GX-AlS4Pc ion-pair complex fluorescent probe only responded to SDBS in the low-concentration range. Based on the new founding, this study proposed a novel principle and method of fluorescence enhancement to specifically measure the concentration of SDBS, thereby achieving a highly sensitive and highly specific determination of SDBS. Under the optimal conditions, the fluorescence intensity (I(f)) of the system and the concentration of SDBS in the range of 1 × 10(-7) - 1 × 10(-5) mol/dm(3) exhibited a good linear relationship. This method is highly sensitive, and the operation is simple and rapid. It had been applied for the quantitative analysis of SDBS in environmental water, while achieving satisfactory results compared with those of the standard method. This study developed a new application of the fluorescent phthalocyanine compounds used as molecular probes in analytical sciences.
Imincan, Gülnur; Pei, Fen; Yu, Lijia; Jin, Hongwei; Zhang, Liangren; Yang, Xiaoda; Zhang, Lihe; Tang, XinJing
2016-04-19
2'-O-(1-Pyrenylmethyl)uridine modified oligoribonucleotides provide highly sensitive pyrene fluorescent probes for detecting specific nucleotide mutation of RNA targets. To develop more stable and cost-effective oligonucleotide probes, we investigated the local microenvironmental effects of nearby nucleobases on pyrene fluorescence in duplexes of RNAs and 2'-O-(1-pyrenylmethyl)uridine modified oligonucleotides. By incorporation of deoxyribonucleotides, ribonucleotides, 2'-MeO-nucleotides and 2'-F-nucleotides at both sides of 2'-O-(1-pyrenylmethyl)uridine (U(p)) in oligodeoxynucleotide probes, we synthesized a series of pyrene modified oligonucleotide probes. Their pyrene fluorescence emission spectra indicated that only two proximal nucleotides have a substantial effect on the pyrene fluorescence properties of these oligonucleotide probes hybridized with target RNA with an order of fluorescence sensitivity of 2'-F-nucleotides > 2'-MeO-nucleotides > ribonucleotides ≫ deoxyribonucleotides. While based on circular dichroism spectra, overall helix conformations (either A- or B-form) of the duplexes have marginal effects on the sensitivity of the probes. Instead, the local substitution reflected the propensity of the nucleotide sugar ring to adopt North type conformation and, accordingly, shifted their helix geometry toward a more A-type like conformation in local microenvironments. Thus, higher enhancement of pyrene fluorescence emission favored local A-type helix structures and more polar and hydrophobic environments (F > MeO > OH at 2' substitution) of duplex minor grooves of probes with the target RNA. Further dynamic simulation revealed that local microenvironmental effect of 2'-F-nucleotides or ribonucleotides was enough for pyrene moiety to move out of nucleobases to the minor groove of duplexes; in addition, 2'-F-nucleotide had less effect on π-stack of pyrene-modified uridine with upstream and downstream nucleobases. The present oligonucleotide probes successfully distinguished target RNA from single-mutated RNA analyte during an in vitro assay of RNA synthesis.
Rapid labeling of intracellular His-tagged proteins in living cells
Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A.; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe
2015-01-01
Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni2+-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni2+-NTA–based probes. Unfortunately, previous Ni-NTA–based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni2+ ions. The probe, driven by Ni2+-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells. PMID:25713372
Mahapatra, Ajit Kumar; Manna, Saikat Kumar; Maiti, Kalipada; Mondal, Sanchita; Maji, Rajkishor; Mandal, Debasish; Mandal, Sukhendu; Uddin, Md Raihan; Goswami, Shyamaprosad; Quah, Ching Kheng; Fun, Hoong-Kun
2015-02-21
Azodye-rhodamine hybrid colorimetric fluorescent probe (L) has been designed and synthesized. The structure of L has been established based on single crystal XRD. It has been shown to act as a selective turn-on fluorescent chemosensor for Pd(2+) with >40 fold enhancement by exhibiting red emission among the other 27 cations studied in aqueous ethanol. The coordination features of the species of recognition have been computationally evaluated by DFT methods and found to have a distorted tetrahedral Pd(2+) center in the binding core. The probe (L) has been shown to detect Pd up to 0.45 μM at pH 7.4. Furthermore, the probe can be used to image Pd(2+) in living cells.
Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells
NASA Astrophysics Data System (ADS)
Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En
2011-12-01
Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr11132a
Yan, Yuling; Petchprayoon, Chutima; Mao, Shu; Marriott, Gerard
2013-01-01
Optical switch probes undergo rapid and reversible transitions between two distinct states, one of which may fluoresce. This class of probe is used in various super-resolution imaging techniques and in the high-contrast imaging technique of optical lock-in detection (OLID) microscopy. Here, we introduce optimized optical switches for studies in living cells under standard conditions of cell culture. In particular, a highly fluorescent cyanine probe (Cy or Cy3) is directly or indirectly linked to naphthoxazine (NISO), a highly efficient optical switch that undergoes robust, 405/532 nm-driven transitions between a colourless spiro (SP) state and a colourful merocyanine (MC) state. The intensity of Cy fluorescence in these Cy/Cy3-NISO probes is reversibly modulated between a low and high value in SP and MC states, respectively, as a result of Förster resonance energy transfer. Cy/Cy3-NISO probes are targeted to specific proteins in living cells where defined waveforms of Cy3 fluorescence are generated by optical switching of the SP and MC states. Finally, we introduce a new imaging technique (called OLID-immunofluorescence microscopy) that combines optical modulation of Cy3 fluorescence from Cy3/NISO co-labelled antibodies within fixed cells and OLID analysis to significantly improve image contrast in samples having high background or rare antigens. PMID:23267183
Winn-Deen
1998-12-01
Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Gyoyeon; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon; Lee, Hansol
The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Ptmore » conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.« less
Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee
2017-03-01
This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.
Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin
2017-01-01
Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics. PMID:28117817
Mizukami, Shin; Hori, Yuichiro; Kikuchi, Kazuya
2014-01-21
The use of genetic engineering techniques allows researchers to combine functional proteins with fluorescent proteins (FPs) to produce fusion proteins that can be visualized in living cells, tissues, and animals. However, several limitations of FPs, such as slow maturation kinetics or issues with photostability under laser illumination, have led researchers to examine new technologies beyond FP-based imaging. Recently, new protein-labeling technologies using protein/peptide tags and tag-specific probes have attracted increasing attention. Although several protein-labeling systems are com mercially available, researchers continue to work on addressing some of the limitations of this technology. To reduce the level of background fluorescence from unlabeled probes, researchers have pursued fluorogenic labeling, in which the labeling probes do not fluoresce until the target proteins are labeled. In this Account, we review two different fluorogenic protein-labeling systems that we have recently developed. First we give a brief history of protein labeling technologies and describe the challenges involved in protein labeling. In the second section, we discuss a fluorogenic labeling system based on a noncatalytic mutant of β-lactamase, which forms specific covalent bonds with β-lactam antibiotics such as ampicillin or cephalosporin. Based on fluorescence (or Förster) resonance energy transfer and other physicochemical principles, we have developed several types of fluorogenic labeling probes. To extend the utility of this labeling system, we took advantage of a hydrophobic β-lactam prodrug structure to achieve intracellular protein labeling. We also describe a small protein tag, photoactive yellow protein (PYP)-tag, and its probes. By utilizing a quenching mechanism based on close intramolecular contact, we incorporated a turn-on switch into the probes for fluorogenic protein labeling. One of these probes allowed us to rapidly image a protein while avoiding washout. In the future, we expect that protein-labeling systems with finely designed probes will lead to novel methodologies that allow researchers to image biomolecules and to perturb protein functions.
Chen, Haiyan; Wan, Shunan; Zhu, Fenxia; Wang, Chuan; Cui, Sisi; Du, Changli; Ma, Yuxiang; Gu, Yueqing
2014-01-01
Bombesin (BBN), an analog of gastrin-releasing peptide (GRP), of which the receptors are over-expressed on various tumor cells, is able to bind to GRP receptor specifically. In this study, a near-infrared fluorescent dye (MPA) and polyethylene glycol (PEG) were conjugated to BBN analog to form BBN[7-14]-MPA and BBN[7-14]-SA-PEG-MPA. The successful synthesis of the two probes was proved by the characterization via sodium dodecylsulfate-polyacrylamide gel electrophoresis, infrared and optical spectra. Cellular uptakes studies indicated that BBN-based probes were mediated by gastrin-releasing peptide receptors (GRPR) on tumor cells and the PEG modified probe had higher affinity. The dynamic distribution and clearance investigations showed that the BBN-based probes were eliminated by the liver-kidney pathway. Furthermore, both of the BBN-based probes displayed tumor-targeting ability in GRPR over-expressed tumor-bearing mice. The PEG modified probe exhibited faster and higher tumor targeting capability than BBN[7-14]-MPA. The results implied that BBN[7-14]-SA-PEG-MPA could act as an effective fluorescence probe for tumor imaging. Copyright © 2014 John Wiley & Sons, Ltd.
Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania
2017-05-31
C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.
DNA sequencing using fluorescence background electroblotting membrane
Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.
1992-01-01
A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.
DNA sequencing using fluorescence background electroblotting membrane
Caldwell, K.D.; Chu, T.J.; Pitt, W.G.
1992-05-12
A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings
Imaging Lysosomal pH Alteration in Stressed Cells with a Sensitive Ratiometric Fluorescence Sensor.
Xue, Zhongwei; Zhao, Hu; Liu, Jian; Han, Jiahuai; Han, Shoufa
2017-03-24
The organelle-specific pH is crucial for cell homeostasis. Aberrant pH of lysosomes has been manifested in myriad diseases. To probe lysosome responses to cell stress, we herein report the detection of lysosomal pH changes with a dual colored probe (CM-ROX), featuring a coumarin domain with "always-on" blue fluorescence and a rhodamine-lactam domain activatable to lysosomal acidity to give red fluorescence. With sensitive ratiometric signals upon subtle pH changes, CM-ROX enables discernment of lysosomal pH changes in cells undergoing autophagy, cell death, and viral infection.
Rudolph, M G; Veit, T J; Reinstein, J
1999-12-01
Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments.
Rudolph, M. G.; Veit, T. J.; Reinstein, J.
1999-01-01
Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments. PMID:10631985
Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor
NASA Astrophysics Data System (ADS)
Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao
2017-09-01
The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Jurtshuk, R. J.; Blick, M.; Bresser, J.; Fox, G. E.; Jurtshuk, P. Jr
1992-01-01
A rapid, sensitive, inexpensive in situ hybridization technique, using 30-mer 16S rRNA probes, can specifically differentiate two closely related Bacillus spp., B. polymyxa and B. macerans. The 16S rRNA probes were labeled with a rhodamine derivative (Texas Red), and quantitative fluorescence measurements were made on individual bacterial cells. The microscopic fields analyzed were selected by phase-contrast microscopy, and the fluorescence imaging analyses were performed on 16 to 67 individual cells. The labeled 16S rRNA probe, POL, whose sequence was a 100% match with B. polymyxa 16S rRNA but only a 60% match with B. macerans 16S rRNA, gave quantitative fluorescence ratio measurements that were 34.8-fold higher for B. polymyxa cells than for B. macerans cells. Conversely, the labeled probe, MAC, which matched B. polymyxa 16S rRNA in 86.6% of its positions and B. macerans 16S rRNA in 100% of its positions, gave quantitative fluorescence measurements that were 59.3-fold higher in B. macerans cells than in B. polymyxa cells. Control probes, whose 16S rRNA sequence segment (P-M) was present in both B. polymyxa and B. macerans as well as a panprokaryotic probe (16S), having a 100% match with all known bacteria, hybridized equally well with both organisms. These latter hybridizations generated very high fluorescence signals, but their comparative fluorescence ratios (the differences between two organisms) were low. The control paneukaryotic probe (28S), which had less than 30% identity for both B. macerans and B. polymyxa, did not hybridize with either organism.
Lin, Chunshui; Cai, Zhixiong; Wang, Yiru; Zhu, Zhi; Yang, Chaoyong James; Chen, Xi
2014-07-15
A simple, rapid, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed using a loop DNA probe with low background noise. In this strategy, a loop DNA probe, which is the substrate for both ligation and digestion enzyme reaction, was designed. SYBR green I (SG I), a double-stranded specific dye, was applied for the readout fluorescence signal. Exonuclease I (Exo I) and exonuclease III (Exo III), sequence-independent nucleases, were selected to digest the loop DNA probe in order to minimize the background fluorescence signal. As a result, in the absence of ATP, the loop DNA was completely digested by Exo I and Exo III, leading to low background fluorescence owing to the weak electrostatic interaction between SG I and mononucleotides. On the other hand, ATP induced the ligation of the nicking site, and the sealed loop DNA resisted the digestion of Exo I and ExoIII, resulting in a remarkable increase of fluorescence response. Upon background noise reduction, the sensitivity of the ATP determination was improved significantly, and the detection limitation was found to be 1.2 pM, which is much lower than that in almost all the previously reported methods. This strategy has promise for wide application in the determination of ATP.
Ning, Dianhua; He, Changtian; Liu, Zhengjie; Liu, Cui; Wu, Qilong; Zhao, TingTing; Liu, Renyong
2017-05-21
Human telomerase RNA (hTR), which is one component of telomerase, was deemed to be a biomarker to monitor tumor cells due to its different expression levels in tumor cells and normal somatic cells. Thus far, plentiful fluorescent probes have been designed to investigate nucleic acids. However, most of them are limited since they are time-consuming, require professional operators and even result in false positive signals in the cellular environment. Herein, we report a dual-colored ratiometric-fluorescent oligonucleotide probe to achieve the reliable detection of human telomerase RNA in cell extracts. The probe is constructed using a dual-labeled fluorescent oligonucleotide hybridized with target-complemented Dabcyl-labeled oligonucleotide. In the presence of the target, the dual-labeled fluorescent oligonucleotide translates into a hairpin structure, which leads to the generation of the fluorescence resonance energy transfer (FRET) phenomenon under UV excitation. Compared to conventional methods, this strategy could effectively avoid false positive signals, and it not only possesses the advantages of simplicity and high specificity but also has the merits of signal stability and distinguishable color variation. Moreover, the quantitative assay of hTR would have a far-reaching impact on the telomerase mechanism and even tumor diagnosis research.
Janakipriya, Subramaniyan; Chereddy, Narendra Reddy; Korrapati, Purnasai; Thennarasu, Sathiah; Mandal, Asit Baran
2016-01-15
Synthesis and fluorescence turn-on behavior of a naphthalimide based probe is described. Selective interactions of trivalent cations Fe(3+), Al(3+) or Cr(3+) with probe 1 inhibit the PET operating in the probe, and thereby, permit the detection of these trivalent cations present in aqueous samples and live cells. Failure of other trivalent cations (Eu(3+), Gd(3+) and Nb(3+)) to inhibit the PET process in 1 demonstrates the role of chelating ring size vis-à-vis ionic radius in the selective recognition of specific metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.
Reaction-based small-molecule fluorescent probes for chemoselective bioimaging
Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.
2014-01-01
The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration. PMID:23174976
Samaniego Lopez, Cecilia; Hebe Martínez, Jimena; Uhrig, María Laura; Coluccio Leskow, Federico; Spagnuolo, Carla Cecilia
2018-04-25
A novel fluorescent molecular probe is reported, which is able to detect glycoproteins, especially mucins, with high sensitivity and with a turn-on response along with a large Stokes shift (>130 nm), within the biologically active window. The probe contains an aminotricarbocyanine as the fluorescent reporter with a linked benzoboroxole as the recognition unit, which operates through a dynamic covalent reaction between the boronic hemiester residue of the receptor and cis-diols of the analyte. The superior selectivity of the probe is displayed by the labeling of mucins present in Calu-3 cells. The new benzoboroxole fluorescent derivative gathers together key properties to make it a highly rated molecular probe: specificity, excellent solubility in water, and off-on near infrared emission. This probe is expected to be an excellent tool for imaging intracellular mucin to evaluate mucus-related diseases as well as a sensing strategy towards glycosylated structures with a high potential for theranostics approaches in biological samples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Syrejshchikova, T. I.; Gryzunov, Yu. A.; Smolina, N. V.; Komar, A. A.; Uzbekov, M. G.; Misionzhnik, E. J.; Maksimova, N. M.
2010-05-01
The efficiency of the therapy of psychiatric diseases is estimated using the fluorescence measurements of the conformational changes of human serum albumin in the course of medical treatment. The fluorescence decay curves of the CAPIDAN probe (N-carboxyphenylimide of the dimethylaminonaphthalic acid) in the blood serum are measured. The probe is specifically bound to the albumin drug binding sites and exhibits fluorescence as a reporter ligand. A variation in the conformation of the albumin molecule substantially affects the CAPIDAN fluorescence decay curve on the subnanosecond time scale. A subnanosecond pulsed laser or a Pico-Quant LED excitation source and a fast photon detector with a time resolution of about 50 ps are used for the kinetic measurements. The blood sera of ten patients suffering from depression and treated at the Institute of Psychiatry were preliminary clinically tested. Blood for analysis was taken from each patient prior to the treatment and on the third week of treatment. For ten patients, the analysis of the fluorescence decay curves of the probe in the blood serum using the three-exponential fitting shows that the difference between the amplitudes of the decay function corresponding to the long-lived (9 ns) fluorescence of the probe prior to and after the therapeutic procedure reliably differs from zero at a significance level of 1% ( p < 0.01).
NASA Astrophysics Data System (ADS)
Wakimoto, Tatsuro; Araga, Koichi; Katoh, Kenji
2018-03-01
As widely known, the addition of a specific type of surfactant to water reduces drag in a pipe flow. This effect is considered to be a result of the suppression of turbulent transition caused by the ordered structure of rod-like micelles that is referred to as a shear-induced structure (SIS). However, it is typically difficult to determine the SIS since it is necessary to noninvasively detect the SIS with several hundred nanometers in the actual moving flow. In this study, we used the fluorescence probe method to locally determine the SIS in a pipe flow. When hydrophobic fluorescence molecules are added to the surfactant solution, the fluorescence molecules are trapped in micelles. Thus, fluorescence intensity varies based on the change in the micellar structure. We verified the applicability of the fluorescence probe method to the SIS detection and determined the relationship between the micellar structure and the drag reduction in the pipe flow by simultaneously measuring the fluorescence intensity and pipe friction factor. The experimental result demonstrates that the SIS formation in the near-wall region is closely correlated with the drag reduction and suggests that the near-wall SIS suppresses the turbulent transition.
Gurkov, Anton; Sadovoy, Anton; Shchapova, Ekaterina; Teh, Cathleen; Meglinski, Igor; Timofeyev, Maxim
2017-01-01
In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo's physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity.
Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong
2015-09-15
A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Peng-Cheng; Fang, Hao; Xiong, Jing-Jing; Wu, Fang-Ying
2017-06-01
A new Al3+-specific fluorescent probe NQ was designed and synthesized from 2-hydroxy-1-naphthaldehyde and 2-aminoquinoline. Upon the addition of Al3+, the fluorescent intensity of NQ was significantly enhanced compared with other examined metal ions in aqueous solution. The result of a Job’s plot indicated the formation of a 1:1 complex between the probe and Al3+, and the possible binding mode of the system between NQ and Al3+ was clarified by IR analysis and 1H NMR titration. Moreover, other metal ions examined had little effect on the detection of Al3+. The detection limit of NQ for Al3+ detection was 1.98 μM, which is lower than the level (7.4 μM) in drinking water defined by the World Health Organization. In addition, the fluorescent probe NQ could be recyclable simply through treatment with a proper reagent such as F-, and could also be used for the detection of Al3+ in real samples.
Sakuma, Shinji; Yu, James Y H; Quang, Timothy; Hiwatari, Ken-Ichiro; Kumagai, Hironori; Kao, Stephanie; Holt, Alex; Erskind, Jalysa; McClure, Richard; Siuta, Michael; Kitamura, Tokio; Tobita, Etsuo; Koike, Seiji; Wilson, Kevin; Richards-Kortum, Rebecca; Liu, Eric; Washington, Kay; Omary, Reed; Gore, John C; Pham, Wellington
2015-03-01
Thomsen-Friedenreich (TF) antigen belongs to the mucin-type tumor-associated carbohydrate antigen. Notably, TF antigen is overexpressed in colorectal cancer (CRC) but is rarely expressed in normal colonic tissue. Increased TF antigen expression is associated with tumor invasion and metastasis. In this study, we sought to validate a novel nanobeacon for imaging TF-associated CRC in a preclinical animal model. We developed and characterized the nanobeacon for use with fluorescence colonoscopy. In vivo imaging was performed on an orthotopic rat model of CRC. Both white light and fluorescence colonoscopy methods were utilized to establish the ratio-imaging index for the probe. The nanobeacon exhibited specificity for TF-associated cancer. Fluorescence colonoscopy using the probe can detect lesions at the stage which is not readily confirmed by conventional visualization methods. Further, the probe can report the dynamic change of TF expression as tumor regresses during chemotherapy. Data from this study suggests that fluorescence colonoscopy can improve early CRC detection. Supplemented by the established ratio-imaging index, the probe can be used not only for early detection, but also for reporting tumor response during chemotherapy. Furthermore, since the data obtained through in vivo imaging confirmed that the probe was not absorbed by the colonic mucosa, no registered toxicity is associated with this nanobeacon. Taken together, these data demonstrate the potential of this novel probe for imaging TF antigen as a biomarker for the early detection and prediction of the progression of CRC at the molecular level. © 2014 UICC.
Theoretical Studies on Two-Photon Fluorescent Hg2+ Probes Based on the Coumarin-Rhodamine System.
Zhang, Yujin; Leng, Jiancai
2017-07-20
The development of fluorescent sensors for Hg 2+ has attracted much attention due to the well-known adverse effects of mercury on biological health. In the present work, the optical properties of two newly-synthesized Hg 2+ chemosensors based on the coumarin-rhodamine system (named Pro1 and Pro2) were systematically investigated using time-dependent density functional theory. It is shown that Pro1 and Pro2 are effective ratiometric fluorescent Hg 2+ probes, which recognize Hg 2+ by Förster resonance energy transfer and through bond energy transfer mechanisms, respectively. To further understand the mechanisms of the two probes, we have developed an approach to predict the energy transfer rate between the donor and acceptor. Using this approach, it can be inferred that Pro1 has a six times higher energy transfer rate than Pro2. Thus the influence of spacer group between the donor and acceptor on the sensing performance of the probe is demonstrated. Specifically, two-photon absorption properties of these two probes are calculated. We have found that both probes show significant two-photon responses in the near-infrared light region. However, only the maximum two-photon absorption cross section of Pro1 is greatly enhanced with the presence of Hg 2+ , indicating that Pro1 can act as a potential two-photon excited fluorescent probe for Hg 2+ . The theoretical investigations would be helpful to build a relationship between the structure and the optical properties of the probes, providing information on the design of efficient two-photon fluorescent sensors that can be used for biological imaging of Hg 2+ in vivo.
Detection of biological threats. A challenge for directed molecular evolution.
Petrenko, Valery A; Sorokulova, Iryna B
2004-08-01
The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.
Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide
Vemula, Venukumar; Ni, Zhixu; Fedorova, Maria
2015-01-01
Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids have been intensively studied and often associated with onset or progression of oxidative stress related disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to study their intracellular formation and spatial distribution. Carbonylated species are usually identified and quantified in cell lysates and body fluids after derivatization using specific chemical probes. However, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls followed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-distribution of carbonylated species and oxidized phospholipids was demonstrated. PMID:25974625
Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.
Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki
2009-01-01
A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.
NASA Astrophysics Data System (ADS)
Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian
1995-04-01
We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.
Fluorescent 6-amino-6-deoxyglycoconjugates for glucose transporter mediated bioimaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiangyin; Liu, Shengnan; Liu, Xinyu
Two novel fluorescent bioprobes, namely, 6N-Gly-Cy3 and 6N-Gly-Cy5, were designed and synthesized for real-time glucose transport imaging as well as potentially useful tracer for galactokinase metabolism. The structure of the bioprobes was fully characterized by {sup 1}H NMR, {sup 13}C NMR, IR, and HRMS. The fluorescence properties, glucose transporter (GLUT) specificity, and the quenching and safety profiles were studied. The cellular uptake of both bioprobes was competitively diminished by D-glucose, 2-deoxy-D-glucose and GLUT specific inhibitor in a dose-dependent manner in human colon cancer cells (HT29). Comparison study results revealed that the 6N-derived bioprobes are more useful for real-time imaging ofmore » cell-based glucose uptake than the structurally similar fluorescent tracer 6-NBDG which was not applicable under physiological conditions. The up to 96 h long-lasting quenching property of 6N-Gly-Cy5 in HT29 suggested the potential applcability of the probe for cell labeling in xenograft transplantation as well as in vivo animal imaging studies. - Highlights: • Cy-3 and Cy-5 derived fluorescent 6-amino-6-deoxyglycoconjugates were prepared for glucose transporter mediated bioimaging. • The cellular uptake of the probes was inhibited by natural GLUT substrates and inhibitor. • The probes are useful for real-time imaging of cell-based glucose uptake under physiological conditions. • The probes showed up to 96 h long-lasting quenching profile in labeled cancer cells.« less
Preparation and Characterization of Fluorescent Derivatives of Lysozyme
NASA Technical Reports Server (NTRS)
Smith, Lori; Pusey, Marc
1998-01-01
Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. However, its use in macromolecular crystal growth studies is hampered by the necessity of preparing fluorescent derivatives where the probe does not markedly affect the crystal packing. Alternatively, one can prepare derivatives of limited utility if it is known that they will not affect the specific goals of a given study. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme, covalently attaching fluorescent probes to two different sites on the protein molecule. The first site is the side chain carboxyl group of ASP 101. Amine containing probes such as lucifer yellow, cascade blue, and 5- (2-aminoethyl) aminonapthalene-l-sulfonic acid (EDANS) have been attached using a carbodiimide coupling procedure. ASP 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. This is supported by the fact that all such derivatives have been found to crystallize, with the crystals being fluorescent. Tetragonal crystals of the lucifer yellow derivative have been found to diffract to at least 1.9 A resolution. X-ray diffraction data has been acquired and we are now working on the structure of this derivative. The second group of derivatives is to the N-terminal amine group. The derivatization reaction is performed by using a succinimidyl ester of the probe to be attached. Fluorescent probes such as pyrene acetic acid, 5-carboxyfluorescein, and Oregon green have been attached to this site. We have had little success in crystallizing these derivatives, probably because this site is part of the contact region between the 43 helix chains. However, these sites do not interfere with formation of the 43 helices and the derivatives are suitable for study of their formation in solution. The derivatives are being characterized by steady state and lifetime fluorescence methods, and the presentation will discuss these results.
Schlitt, Katherine M; Millen, Andrea L; Wetmore, Stacey D; Manderville, Richard A
2011-03-07
Pyrrole- and indole-linked C(8)-deoxyguanosine nucleosides act as fluorescent reporters of H-bonding specificity. Their fluorescence is quenched upon Watson-Crick H-bonding to dC, while Hoogsteen H-bonding to G enhances emission intensity. The indole-linked probe is ∼ 10-fold brighter and shows promise as a fluorescent reporter of Hoogsteen base pairing.
Non-fused phospholes as fluorescent probes for imaging of lipid droplets in living cells
NASA Astrophysics Data System (ADS)
Öberg, Elisabet; Appelqvist, Hanna; Nilsson, K. Peter R.
2017-04-01
Molecular tools for fluorescent imaging of specific compartments in cells are essential for understanding the function and activity of cells. Here, we report the synthesis of a series of pyridyl- and thienyl-substituted phospholes and the evaluation of these dyes for fluorescent imaging of cells. The thienyl-substituted phospholes proved to be successful for staining of cultured normal and malignant cells due to their fluorescent properties and low toxicity. Co-staining experiments demonstrated that these probes target lipid droplets, which are, lipid-storage organelles found in the cytosol of nearly all cell types. Our findings confirm that thienyl-substituted phospholes can be utilized as fluorescent tools for vital staining of cells, and we foresee that these fluorescent dyes might be used in studies to unravel the roles that lipid droplets play in cellular physiology and their role in diseases.
Zeller, Perrine; Ploux, Olivier; Méjean, Annick
2016-03-01
Cyanobacteria contain pigments, which generate auto-fluorescence that interferes with fluorescence in situ hybridization (FISH) imaging of cyanobacteria. We describe simple chemical treatments using CuSO4 or H2O2 that significantly reduce the auto-fluorescence of Microcystis strains. These protocols were successfully applied in FISH experiments using 16S rRNA specific probes and filamentous cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Xa; Zhou, Bo; Zhao, Zilong; Hu, Zixi; Zhou, Sufang; Yang, Nuo; Huang, Yong; Zhang, Zhenghua; Su, Jing; Lan, Dan; Qin, Xue; Meng, Jinyu; Zheng, Duo; He, Jian; Huang, Xianing; Zhao, Jing; Zhang, Zhiyong; Tan, Weihong; Lu, Xiaoling; Zhao, Yongxiang
2016-12-01
It is a major clinical challenge for clinicians how to early find out minimal residual diseases (MRD) of leukemia. Here, we developed a smart detection system for MRD involving magnetic aptamer sgc8 probe (M-sgc8 probe) to capture CEM cells and rolling cycle amplification probe (RCA-sgc8 probe) to initiate RCA, producing a single-stranded tandem repeated copy of the circular template. The DNA products were hybridized with molecular beacon to generate the amplified fluorescence signal. An in vitro model to mimic MRD was established to evaluate the sensitivity of the smart detection system. The smart detection system was used to detect MRD in patients with T-ALL peri-chemotherapy, which could not only specifically captured T-ALL cells, but also significantly amplified fluorescence signals on them. The sensitivity was 1/20,000. These results indicate that the smart detection system with high specificity and sensitivity could more efficiently monitor the progress of T-ALL peri-chemotherapy.
Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L
2015-08-10
The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.
Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier
2018-05-20
Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa
2018-03-02
A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wenner, Brett R.; Douglass, Phillip; Shrestha, Suresh; Sharma, Bethel V.; Lai, Siyi; Madou, Marc J.; Daunert, Sylvia
2001-05-01
The genetically-modified binding proteins calmodulin, the phosphate binding protein, the sulfate binding protein, and the galactose/glucose binding protein have been successfully employed as biosensing elements for the detection of phenothiazines, phosphate, sulfate, and glucose, respectively. Mutant proteins containing unique cysteine residues were utilized in the site-specific labeling of environment-sensitive fluorescent probes. Changes in the environment of the probes upon ligand-induced conformational changes of the proteins result in changes in fluorescence intensity.
Nacheva, E P; Gribble, S; Andrews, K; Wienberg, J; Grace, C D
2000-10-15
We report the application of multi-color fluorescence in situ hydribidization (FISH) for bone marrow metaphase cell analysis of hematological malignancies using a sub-set of the human karyotype for chromosome painting. A combination of chromosome probes labeled with three haptens enabled the construction of a "painting probe" which detects seven different chromosomes. The probe was used to screen three chronic myeloid leukemia (CML) derived cell lines and ten CML patient bone marrow samples for aberrations, additional to the Ph rearrangement, that are associated with the onset of blast crisis of CML. This approach was shown to identify karyotype changes commonly seen by conventional karyotyping, and in addition revealed chromosome changes unresolved or undetected by conventional cytogenetic analysis. The seven-color painting probe provides a useful, fast, and reliable complementary tool for chromosome analysis, especially in cases with poor chromosome morphology. This is a simple approach, since the probes can be displayed in a standard red/green/blue format accessible to standard fluorescence microscopes and image-processing software. The proposed approach using panels of locus-specific probes as well as chromosome paints will be useful in all diagnostic routine environments where analysis is directed towards screening for genetic rearrangements and/or specific patterns of chromosome involvement with diagnostic/prognostic value.
Strategies in the design of small-molecule fluorescent probes for peptidases.
Chen, Laizhong; Li, Jing; Du, Lupei; Li, Minyong
2014-11-01
Peptidases, which can cleave specific peptide bonds in innumerable categories of substrates, usually present pivotal positions in protein activation, cell signaling and regulation as well as in the origination of amino acids for protein generation or application in other metabolic pathways. They are also involved in many pathological conditions, such as cancer, atherosclerosis, arthritis, and neurodegenerative disorders. This review article aims to conduct a wide-ranging survey on the development of small-molecule fluorescent probes for peptidases, as well as to realize the state of the art in the tailor-made probes for diverse types of peptidases. © 2014 Wiley Periodicals, Inc.
Ormeci, Banu; Linden, Karl G
2008-11-01
Fluorescence in situ hybridization (FISH) provides a unique tool to study micro-organisms associated with particles and flocs. FISH enables visual examination of micro-organisms while they are structurally intact and associated with particles. However, application of FISH to wastewater and sludge samples presents a specific set of problems. Wastewater samples generate high background fluorescence due to their organic and inorganic content making it difficult to differentiate a probe-conferred signal from naturally fluorescing particles with reasonable certainty. Furthermore, some of the FISH steps involve harsh treatment of samples, and are likely to disrupt the floc structure. This study developed a FISH protocol for studying micro-organisms that are associated with particles and flocs. The results indicate that choice of a proper fluorochrome and labeling technique is a key step in reducing the background fluorescence and non-specific binding, and increasing the intensity of the probe signal. Compared to other fluorochromes tested, CY3 worked very well and enabled the observation of particles and debris in red and probe signal from microbes in yellow. Fixation, hybridization, and washing steps disturbed the floc structure and particle-microbe association. Modifications to these steps were necessary, and were achieved by replacing centrifugation with filtration and employment of nylon filters. Microscope slides generated excellent quality images, but polycarbonate membrane filters performed better in preserving the floc structure.
NASA Astrophysics Data System (ADS)
Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao
2018-06-01
G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.
Beyond Fluorescent Proteins: Hybrid and Bioluminescent Indicators for Imaging Neural Activities.
Wang, Anqi; Feng, Jiesi; Li, Yulong; Zou, Peng
2018-04-18
Optical biosensors have been invaluable tools in neuroscience research, as they provide the ability to directly visualize neural activity in real time, with high specificity, and with exceptional spatial and temporal resolution. Notably, a majority of these sensors are based on fluorescent protein scaffolds, which offer the ability to target specific cell types or even subcellular compartments. However, fluorescent proteins are intrinsically bulky tags, often insensitive to the environment, and always require excitation light illumination. To address these limitations, there has been a proliferation of alternative sensor scaffolds developed in recent years, including hybrid sensors that combine the advantages of synthetic fluorophores and genetically encoded protein tags, as well as bioluminescent probes. While still in their early stage of development as compared with fluorescent protein-based sensors, these novel probes have offered complementary solutions to interrogate various aspects of neuronal communication, including transmitter release, changes in membrane potential, and the production of second messengers. In this Review, we discuss these important new developments with a particular focus on design strategies.
Chen, Jinyang; Liu, Yucheng; Ji, Xinghu; He, Zhike
2016-09-15
In this work, a versatile dumbbell molecular (DM) probe was designed and employed in the sensitively homogeneous bioassay. In the presence of target molecule, the DM probe was protected from the digestion of exonucleases. Subsequently, the protected DM probe specifically bound to the intercalation dye and resulted in obvious fluorescence signal which was used to determine the target molecule in return. This design allows specific and versatile detection of diverse targets with easy operation and no sophisticated fluorescence labeling. Integrating the idea of target-protecting DM probe with adenosine triphosphate (ATP) involved ligation reaction, the DM probe with 5'-end phosphorylation was successfully constructed for ATP detection, and the limitation of detection was found to be 4.8 pM. Thanks to its excellent selectivity and sensitivity, this sensing strategy was used to detect ATP spiked in human serum as well as cellular ATP. Moreover, the proposed strategy was also applied in the visual detection of ATP in droplet-based microfluidic platform with satisfactory results. Similarly, combining the principle of target-protecting DM probe with streptavidin (SA)-biotin interaction, the DM probe with 3'-end biotinylation was developed for selective and sensitive SA determination, which demonstrated the robustness and versatility of this design. Copyright © 2016 Elsevier B.V. All rights reserved.
Yan, Shengyong; Huang, Rong; Zhou, Yangyang; Zhang, Ming; Deng, Minggang; Wang, Xiaolin; Weng, Xiaocheng; Zhou, Xiang
2011-01-28
In this thrombin detection system, the bright fluorescence of TASPI is almost eliminated by the DNA aptamer TBA (turn-off); however, in the presence of thrombin, it specifically binds to TBA by folding unrestricted TBA into an anti-parallel G-quadruplex structure and then releasing TASPI molecules, resulting in vivid and facile fluorescence recovery (turn-on).
New fluorescent reagents specific for Ca{sup 2+}-binding proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Hail, Danya; Lemelson, Daniela; Israelson, Adrian
2012-09-14
Highlights: Black-Right-Pointing-Pointer New reagents specifically inhibit the activity of Ca{sup 2+}-dependent proteins. Black-Right-Pointing-Pointer FITC-Ru and EITC-Ru allow for mechanism-independent probing of Ca{sup 2+}-binding proteins. Black-Right-Pointing-Pointer Changes in reagents fluorescence allow characterization of protein Ca{sup 2+}-binding properties. -- Abstract: Ca{sup 2+} carries information pivotal to cell life and death via its interactions with specific binding sites in a protein. We previously developed a novel photoreactive reagent, azido ruthenium (AzRu), which strongly inhibits Ca{sup 2+}-dependent activities. Here, we synthesized new fluorescent ruthenium-based reagents containing FITC or EITC, FITC-Ru and EITC-Ru. These reagents were purified, characterized and found to specifically interact with andmore » markedly inhibit Ca{sup 2+}-dependent activities but not the activity of Ca{sup 2+}-independent reactions. In contrast to many reagents that serve as probes for Ca{sup 2+}, FITC-Ru and EITC-Ru are the first fluorescent divalent cation analogs to be synthesized and characterized that specifically bind to Ca{sup 2+}-binding proteins and inhibit their activity. Such reagents will assist in characterizing Ca{sup 2+}-binding proteins, thereby facilitating better understanding of the function of Ca{sup 2+} as a key bio-regulator.« less
A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.
Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen
2014-03-26
Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.
Carbon nanotubes as in vivo bacterial probes.
Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M
2014-09-17
With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.
Carbon nanotubes as in vivo bacterial probes
NASA Astrophysics Data System (ADS)
Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.
2014-09-01
With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.
Carbon Nanotubes as in vivo Bacterial Probes
Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.
2014-01-01
With the rise in antibiotic-resistant infections, noninvasive sensing of infectious diseases is increasingly important. Optical imaging, while safer and simpler, is less developed than other modalities like radioimaging; due to low availability of target-specific molecular probes. Here, we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F’-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4× enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08×, and higher signal amplification ~1.4×, compared to conventional dyes. We show the probe offers greater ~5.7× enhancement in imaging of S. aureus infective endocarditis. These biologically-functionalized, aqueous-dispersed, actively-targeted, modularly-tunable SWNT probes offer new avenues for exploration of deeply-buried infections. PMID:25230005
NASA Astrophysics Data System (ADS)
Hu, Fanghao
During the last decade, Raman microscopy is experiencing rapid development and increasingly applied in biological and medical systems. Especially, stimulated Raman scattering (SRS) microscopy, which significantly improves the sensitivity of Raman scattering through stimulated emission, has allowed direct visualization of many species that are previously challenging with conventional fluorescence imaging. Compared to fluorescence, SRS imaging requires no label or small label on the target molecule, thus with minimal perturbation to the molecule of interest. Moreover, Raman scattering is free from complicated photophysical and photochemical processes such as photobleaching, and has intrinsically narrower linewidth than fluorescence emission. This allows multiplexed Raman imaging with minimal spectral crosstalk and excellent photo-stability. To achieve the full potential of Raman microscopy, vibrational probes have been developed for Raman imaging. Multiple Raman probes with a few atoms in size are applied in Raman imaging with high sensitivity and specificity. An overview of both fluorescence and Raman microscopy and their imaging probes is given in Chapter 1 with a brief discussion on the SRS theory. Built on the current progress of Raman microscopy and vibrational probes, I write on my research in the development of carbon-deuterium, alkyne and nitrile probes for visualizing choline metabolism (Chapter 2), glucose uptake activity (Chapter 3), complex brain metabolism (Chapter 4) and polymeric nanoparticles (Chapter 5) in live cells and tissues, as well as the development of polyyne-based vibrational probes for super-multiplexed imaging, barcoding and analysis (Chapter 6).
Murray, James L.; Hu, Peixu; Shafer, David A.
2015-01-01
We have developed novel probe systems for real-time PCR that provide higher specificity, greater sensitivity, and lower cost relative to dual-labeled probes. The seven DNA Detection Switch (DDS)-probe systems reported here employ two interacting polynucleotide components: a fluorescently labeled probe and a quencher antiprobe. High-fidelity detection is achieved with three DDS designs: two internal probes (internal DDS and Flip probes) and a primer probe (ZIPR probe), wherein each probe is combined with a carefully engineered, slightly mismatched, error-checking antiprobe. The antiprobe blocks off-target detection over a wide range of temperatures and facilitates multiplexing. Other designs (Universal probe, Half-Universal probe, and MacMan probe) use generic components that enable low-cost detection. Finally, single-molecule G-Force probes employ guanine-mediated fluorescent quenching by forming a hairpin between adjacent C-rich and G-rich sequences. Examples provided show how these probe technologies discriminate drug-resistant Mycobacterium tuberculosis mutants, Escherichia coli O157:H7, oncogenic EGFR deletion mutations, hepatitis B virus, influenza A/B strains, and single-nucleotide polymorphisms in the human VKORC1 gene. PMID:25307756
NASA Astrophysics Data System (ADS)
Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao
2017-05-01
A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.
Cellular Oxygen and Nutrient Sensing in Microgravity Using Time-Resolved Fluorescence Microscopy
NASA Technical Reports Server (NTRS)
Szmacinski, Henryk
2003-01-01
Oxygen and nutrient sensing is fundamental to the understanding of cell growth and metabolism. This requires identification of optical probes and suitable detection technology without complex calibration procedures. Under this project Microcosm developed an experimental technique that allows for simultaneous imaging of intra- and inter-cellular events. The technique consists of frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM), a set of identified oxygen and pH probes, and methods for fabrication of microsensors. Specifications for electronic and optical components of FLIM instrumentation are provided. Hardware and software were developed for data acquisition and analysis. Principles, procedures, and representative images are demonstrated. Suitable lifetime sensitive oxygen, pH, and glucose probes for intra- and extra-cellular measurements of analyte concentrations have been identified and tested. Lifetime sensing and imaging have been performed using PBS buffer, culture media, and yeast cells as a model systems. Spectral specifications, calibration curves, and probes availability are also provided in the report.
The Development of Fluorescent Probes for Visualizing Intracellular Hydrogen Polysulfides.
Chen, Wei; Rosser, Ethan W; Matsunaga, Tetsuro; Pacheco, Armando; Akaike, Takaaki; Xian, Ming
2015-11-16
Endogenous hydrogen polysulfides (H2Sn; n>1) have been recognized as important regulators in sulfur-related redox biology. H2Sn can activate tumor suppressors, ion channels, and transcription factors with higher potency than H2S. Although H2Sn are drawing increasing attention, their exact mechanisms of action are still poorly understood. A major hurdle in this field is the lack of reliable and convenient methods for H2Sn detection. Herein we report a H2Sn-mediated benzodithiolone formation under mild conditions. This method takes advantage of the unique dual reactivity of H2Sn as both a nucleophile and an electrophile. Based on this reaction, three fluorescent probes (PSP-1, PSP-2, and PSP-3) were synthesized and evaluated. Among the probes prepared, PSP-3 showed a desirable off/on fluorescence response to H2Sn and high specificity. The probe was successfully applied in visualizing intracellular H2Sn. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoconversion in orange and red fluorescent proteins
Kremers, Gert-Jan; Hazelwood, Kristin L.; Murphy, Christopher S.; Davidson, Michael W.; Piston, David W.
2009-01-01
We report that photoconversion is fairly common among orange and red fluorescent proteins, as a screen of 12 variants yielded 8 that exhibit photoconversion. Specifically, three red fluorescent proteins can be switched into a green state, and two orange variants can be photoconverted to the far red. The orange highlighters are ideal for dual-probe highlighter applications, and they exhibit the most red-shifted excitation of all fluorescent protein described to date. PMID:19363494
Qiu, Xudong; Johnson, James R.; Wilson, Bradley S.; Gammon, Seth T.; Piwnica-Worms, David; Barnett, Edward M.
2014-01-01
Peptide probes for imaging retinal ganglion cell (RGC) apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA)-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in vivo imaging standard for functional evaluation of future probe analogues and provides a basis for extending this strategy into glaucoma-specific animal models. PMID:24586415
Werz, Emma; Korneev, Sergei; Montilla-Martinez, Malayko; Wagner, Richard; Hemmler, Roland; Walter, Claudius; Eisfeld, Jörg; Gall, Karsten; Rosemeyer, Helmut
2012-02-01
A novel technique is described which comprises a base-specific DNA duplex formation at a lipid bilayer-H(2) O-phase boundary layer. Two different probes of oligonucleotides both carrying a double-tailed lipid at the 5'-terminus were incorporated into stable artificial lipid bilayers separating two compartments (cis/trans-channel) of an optically transparent microfluidic sample carrier with perfusion capabilities. Both the cis- and trans-channels are filled with saline buffer. Injection of a cyanine-5-labeled target DNA sequence, which is complementary to only one of the oligonucleotide probes, into the cis-channel, followed by a thorough perfusion, leads to an immobilization of the labeled complementary oligonucleotide on the membrane as detected by single-molecule fluorescence spectroscopy and microscopy. In the case of fluorescent but non-complementary DNA sequences, no immobilized fluorescent oligonucleotide duplex could be detected on the membrane. This clearly verifies a specific duplex formation at the membrane interface. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Bis-reaction-trigger as a strategy to improve the selectivity of fluorescent probes.
Li, Dan; Cheng, Juan; Wang, Cheng-Kun; Ying, Huazhou; Hu, Yongzhou; Han, Feng; Li, Xin
2018-06-01
By the strategy of equipping a fluorophore with two reaction triggers that are tailored to the specific chemistry of peroxynitrite, we have developed a highly selective probe for detecting peroxynitrite in live cells. Sequential response by the two triggers enabled the probe to reveal various degrees of nitrosative stress in live cells via a sensitive emission colour change.
A fluorescent in situ hybridization assay has been developed for the detection of the human-pathogenic microsporidian, Encephalitozoon hellem, in water samples using epifluorescence microscopy. The assay employs a 19-nucleotide species-specific 6-carboxyfluorescein-labeled oligo...
Fang, Mingxi; Adhikari, Rashmi; Bi, Jianheng; Mazi, Wafa; Dorh, Nethaniah; Wang, Jianbo; Conner, Nathan; Ainsley, Jon; Karabencheva-Christova, Tatyana G; Luo, Fen-Tair; Tiwari, Ashutosh; Liu, Haiying
2017-12-28
We report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores. The fluorescent probes B and E can be applied to visualize pH changes by monitoring visible as well as near-infrared fluorescence changes. This helps avoid fluorescence imaging blind spots at neutral or basic pH, which typical pH fluorescent probes encounter. The probes exhibit high sensitivity to pH changes, excellent photostability, low auto-fluorescence background and good cell membrane permeability.
Wang, Zhihua; Teng, Xu; Lu, Chao
2015-03-17
Chemiluminescence (CL) probes for reactive oxygen species (ROS) are commonly based on a redox reaction between a CL reagent and ROS, leading to poor selectivity toward a specific ROS. The energy-matching rules in the chemiluminescence resonance energy transfer (CRET) process between a specific ROS donor and a suitable fluorescence dye acceptor is a promising method for the selective detection of ROS. Nevertheless, higher concentrations of fluorescence dyes can lead to the intractable aggregation-caused quenching effect, decreasing the CRET efficiency. In this report, we fabricated an orderly arranged structure of calcein-sodium dodecyl sulfate (SDS) molecules to improve the CRET efficiency between ONOOH* donor and calcein acceptor. Such orderly arranged calcein-SDS composites can distinguish peroxynitrite (ONOO(-)) from a variety of other ROS owing to the energy matching in the CRET process between ONOOH* donor and calcein acceptor. Under the optimal experimental conditions, ONOO(-) could be assayed in the range of 1.0-20.0 μM, and the detection limit for ONOO(-) [signal-to-noise ratio (S/N) = 3] was 0.3 μM. The proposed strategy has been successfully applied in both detecting ONOO(-) in cancer mouse plasma samples and monitoring the generation of ONOO(-) from 3-morpholinosydnonimine (SIN-1). Recoveries from cancer mouse plasma samples were in the range of 96-105%. The success of this work provides a unique opportunity to develop a CL tool to monitor ONOO(-) with high selectivity in a specific manner. Improvement of selectivity and sensitivity of CL probes holds great promise as a strategy for developing a wide range of probes for various ROS by tuning the types of fluorescence dyes.
Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin
2012-01-01
Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests. PMID:22539973
Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun
2017-06-15
With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.
Bhatta, Sushil Ranjan; Mondal, Bijan; Vijaykumar, Gonela; Thakur, Arunabha
2017-10-02
A unique turn-on fluorescent device based on a ferrocene-aminonaphtholate derivative specific for Hg 2+ cation was developed. Upon binding with Hg 2+ ion, the probe shows a dramatic fluorescence enhancement (the fluorescence quantum yield increases 58-fold) along with a large red shift of 68 nm in the emission spectrum. The fluorescence enhancement with a red shift may be ascribed to the combinational effect of C═N isomerization and an extended intramolecular charge transfer (ICT) mechanism. The response was instantaneous with a detection limit of 2.7 × 10 -9 M. Upon Hg 2+ recognition, the ferrocene/ferrocenium redox peak was anodically shifted by ΔE 1/2 = 72 mV along with a "naked eye" color change from faint yellow to pale orange for this metal cation. Further, upon protonation of the imine nitrogen, the present probe displays a high fluorescence output due to suppression of the C═N isomerization process. Upon deprotonation using strong base, the fluorescence steadily decreases, which indicates that H + and OH - can be used to regulate the off-on-off fluorescence switching of the present probe. Density functional theory studies revealed that the addition of acid leads to protonation of the imine N (according to natural bond orbital analysis), and the resulting iminium proton forms a strong H-bond (2.307 Å) with one of the triazole N atoms to form a five-membered ring, which makes the molecule rigid; hence, enhancement of the ICT process takes place, thereby leading to a fluorescence enhancement with a red shift. The unprecedented combination of H + , OH - , and Hg 2+ ions has been used to generate a molecular system exhibiting the INHIBIT-OR combinational logic operation.
Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.
2015-01-01
Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560
Development of tumor-targeted near infrared probes for fluorescence guided surgery.
Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S
2013-06-19
Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.
NASA Astrophysics Data System (ADS)
Wu, Zhiyuan; Shao, Pin; Zhang, Shaojuan; Ling, Xiaoxi; Bai, Mingfeng
2014-07-01
Cannabinoid CB2 receptors (CB2R) hold promise as therapeutic targets for treating diverse diseases, such as cancers, neurodegenerative diseases, pain, inflammation, osteoporosis, psychiatric disorders, addiction, and immune disorders. However, the fundamental role of CBR in the regulation of diseases remains unclear, largely due to a lack of reliable imaging tools for the receptors. The goal of this study was to develop a CBR-targeted molecular imaging probe and evaluate the specificity of the probe using human tumor cells that naturally overexpress CBR. To synthesize the CBR-targeted probe (NIR760-Q), a conjugable CBR ligand based on the quinolone structure was first prepared, followed by bioconjugation with a near-infrared (NIR) fluorescent dye, NIR760. In vitro fluorescence imaging and competitive binding studies showed higher uptake of NIR760-Q than free NIR760 dye in Jurkat human acute T-lymphoblastic leukemia cells. In addition, the high uptake of NIR760-Q was significantly inhibited by the blocking agent, 4-quinolone-3-carboxamide, indicating specific binding of NIR760-Q to the target receptors. These results indicate that the NIR760-Q has potential in diagnostic imaging of CBR positive cancers and elucidating the role of CBR in the regulation of disease progression.
A non-toxic fluorogenic dye for mitochondria labeling.
Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan
2013-11-01
Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with the understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. © 2013.
A Non-Toxic Fluorogenic Dye for Mitochondria Labeling
Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan
2013-01-01
Background Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. Methods A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. Results AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. Conclusions A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. General Significance The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. PMID:23850639
Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA
NASA Astrophysics Data System (ADS)
Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e.
2016-03-01
Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4- [4-(N-methyl)styrene] -benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2.
Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.
Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e
2016-03-05
Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. Copyright © 2015 Elsevier B.V. All rights reserved.
Peng, Tao; Bonamy, Ghislain M C; Glory-Afshar, Estelle; Rines, Daniel R; Chanda, Sumit K; Murphy, Robert F
2010-02-16
Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.
Nguyen, Minh Hong; Ojima, Yoshihiro; Sakka, Makiko; Sakka, Kazuo; Taya, Masahito
2014-10-01
Polysaccharides are major structural constituents to develop the three-dimensional architecture of Escherichia coli biofilms. In this study, confocal laser scanning microscopy was applied in combination with a fluorescent probe to analyze the location and arrangement of exopolysaccharide (EPSh) in microcolonies of E. coli K-12 derived strains, formed as biofilms on solid surfaces and flocs in the liquid phase. For this purpose, a novel fluorescent probe was constructed by conjugating a carbohydrate-binding module 3, from Paenibacillus curdlanolyticus, with the green fluorescence protein (GFP-CBM3). The GFP-CBM3 fused protein exhibited strong affinity to microcrystalline cellulose. Moreover, GFP-CBM3 specifically bound to cell-dense microcolonies in the E. coli biofilms, and to their flocs induced by bcsB overexpression. Therefore, the fused protein presents as a novel marker for EPSh produced by E. coli cells. Overexpression of bcsB was associated with abundant EPSh production and enhanced E. coli biofilm formation, which was similarly detectable by GFP-CBM3 probing. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian
2017-05-05
Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian
2017-05-01
Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.
Feng, Shumin; Liu, Dandan; Feng, Weiyong; Feng, Guoqiang
2017-03-21
Recently, the fluorescent detection of carbon monoxide (CO) in living cells has attracted great attention. However, due to the lack of effective ways to construct fluorescent CO probes, fluorescent detection of CO in living cells is still in its infancy. In this paper, we report for the first time the use of allyl ether as a reaction site for construction of fluorescent CO probes. By this way, two readily available allyl fluorescein ethers were prepared, which were found to be highly selective and sensitive probes for CO in the presence of PdCl 2 . These probes have the merits of good stability, good water-solubility, and rapid and distinct colorimetric and remarkable fluorescent turn-on signal changes. Moreover, a very low dose of these two probes can be used to detect and track CO in living cells, indicating that these two probes could be very promising biological tools for CO detection in living systems. Overall, this work provided not only two new promising fluorescent CO probes but also a new way to devise fluorescent CO probes.
Discovery of a novel calcium-sensitive fluorescent probe for α-ketoglutarate.
Gan, Lin-Lin; Chen, Lin-Hai; Nan, Fa-Jun
2017-12-01
α-Ketoglutarate (α-KG), a pivotal metabolite in energy metabolism, has been implicated in nonalcoholic fatty liver disease (NAFLD) and several cancers. It is recently proposed that plasma α-KG is a surrogate biomarker of NAFLD. Here, we report the development of a novel "turn-on" chemosensor for α-KG that contains a coumarin moiety as a fluorophore. Using benzothiazole-coumarin (BTC) as inspiration, we designed a probe for calcium ion recognition that possesses a unique fluorophore compared with previously reported probes for α-KG measurement. This chemosensor is based on the specific Schiff base reaction and the calcium ion recognition property of the widely used calcium indicator BTC. The probe was synthesized, and a series of parallel experiments were conducted to optimize the chemical recognition process. Compared to the initial weak fluorescence, a remarkable 7.6-fold enhancement in fluorescence intensity (I/I 0 at 495 nm) was observed for the conditions in which the probe (1 μmol/L), α-KG (50 μmol/L), and Ca 2+ (100 μmol/L) were incubated at 30 °C in EtOH. The probe displayed good selectivity for α-KG even in an environment with an abundance of amino acids and other interfering species such as glutaric acid. We determined that the quantitative detection range of α-KG in EtOH was between 5 and 50 μmol/L. Finally, probe in serum loaded with α-KG (10 mmol/L) showed a 7.4-fold fluorescence enhancement. In summary, a novel probe for detecting the biomarker α-KG through a typical Schiff base reaction has been discovered. With further optimization, this probe may be a good alternative for detecting the physiological metabolite α-KG.
Cui, Mengchao; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Liu, Boli; Saji, Hideo
2014-03-05
The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical brain is accepted as the main pathological hallmark of Alzheimer's disease (AD); however, early detection of AD still presents a challenge. With the assistance of molecular imaging techniques, imaging agents specifically targeting Aβ plaques in the brain may lead to the early diagnosis of AD. Herein, we report the design, synthesis, and evaluation of a series of smart near-infrared fluorescence (NIRF) imaging probes with donor-acceptor architecture bridged by a conjugated π-electron chain for Aβ plaques. The chemical structure of these NIRF probes is completely different from Congo Red and Thioflavin-T. Probes with a longer conjugated π system (carbon-carbon double bond) displayed maximum emission in PBS (>650 nm), which falls in the best range for NIRF probes. These probes were proved to have affinity to Aβ plaques in fluorescent staining of brain sections from an AD patient and double transgenic mice, as well as in an in vitro binding assay using Aβ(1-42) aggregates. One probe with high affinity (K(i) = 37 nM, K(d) = 27 nM) was selected for in vivo imaging. It can penetrate the blood-brain barrier of nude mice efficiently and is quickly washed out of the normal brain. Moreover, after intravenous injection of this probe, 22-month-old APPswe/PSEN1 mice exhibited a higher relative signal than control mice over the same period of time, and ex vivo fluorescent observations confirmed the existence of Aβ plaques. In summary, this probe meets most of the requirements for a NIRF contrast agent for the detection of Aβ plaques both in vitro and in vivo.
Ng, Sing Muk; Wong, Derrick Sing Nguong; Phung, Jane Hui Chiun; Chin, Suk Fun; Chua, Hong Siang
2013-11-15
Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun
2016-01-01
Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282
Pauli, Jutta; Licha, Kai; Berkemeyer, Janis; Grabolle, Markus; Spieles, Monika; Wegner, Nicole; Welker, Pia; Resch-Genger, Ute
2013-07-17
The rational design of bright optical probes and dye-biomolecule conjugates in the NIR-region requires fluorescent labels that retain their high fluorescence quantum yields when bound to a recognition unit or upon interaction with a target. Because hydrophilicity-controlled dye aggregation in conjunction with homo-FRET presents one of the major fluorescence deactivation pathways in dye-protein conjugates, fluorescent labels are required that enable higher labeling degrees with minimum dye aggregation. Aiming at a better understanding of the factors governing dye-dye interactions, we systematically studied the signal-relevant spectroscopic properties, hydrophilicity, and aggregation behavior of the novel xS-IDCC series of symmetric pentamethines equipped with two, four, and six sulfonic acid groups and selected conjugates of these dyes with IgG and the antibody cetuximab (ctx) directed against the cancer-related epidermal growth factor (EGF) receptor in comparison to the gold standard Cy5.5. With 6S-IDCC, which displays a molar absorption coefficient of 190 000 M(-1) cm(-1) and a fluorescence quantum yield (Φf) of 0.18 in aqueous media like PBS and nearly no aggregation, we could identify a fluorophore with a similarly good performance as Cy5.5. Bioconjugation of 6S-IDCC and Cy5.5 yielded highly emissive targeted probes with comparable Φf values of 0.29 for a dye-to-protein (D/P) ratio <1 and a reduced number of protein-bound dye aggregates in the case of 6S-IDCC. Binding studies of the ctx conjugates of both dyes performed by fluorescence microscopy and FACS revealed that the binding strength between the targeted probes and the EGF receptor at the cell membrane is independent of D/P ratio. These results underline the importance of an application-specific tuning of dye hydrophilicity for the design of bright fluorescent reporters and efficient optical probes. Moreover, we could demonstrate the potential of fluorescence spectroscopy to predict the size of fluorescence signals resulting for other fluorescence techniques such as FACS.
Hyperspectral small animal fluorescence imaging: spectral selection imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul
2008-02-01
Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.
Valle, Edith R; Henderson, Gemma; Janssen, Peter H; Cox, Faith; Alexander, Trevor W; McAllister, Tim A
2015-06-01
In this study, methanogen-specific coenzyme F420 autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.
NASA Astrophysics Data System (ADS)
Luo, Aoheng; Wang, Hongqing; Wang, Yuyuan; Huang, Qiao; Zhang, Qin
2016-11-01
A novel rhodamine-based dual probe Rh-2 for trivalent ferric ions (Fe3 +) was successfully designed and synthesized, which exhibited a highly sensitive and selective recognition towards Fe3 + with an enhanced fluorescence emission in methanol-water media (v/v = 7/3, pH = 7.2). The probe Rh-2 could be applied to the determination of Fe3 + with a linear range covering from 3.0 × 10- 7 to 1.4 × 10- 5 M and a detection limit of 1.24 × 10- 8 M. Meanwhile, the binding ratio of Rh-2 and Fe3 + was found to be 1:1. Most importantly, the fluorescence and color signal changes of the Rh-2 solution were specific to Fe3 + over other commonly coexistent metal ions. Moreover, the probe Rh-2 has been used to image Fe3 + in living cells with satisfying results.
NASA Astrophysics Data System (ADS)
Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian
2017-04-01
Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.
Yang, Xiaolan; Hu, Xiaolei; Xu, Bangtian; Wang, Xin; Qin, Jialin; He, Chenxiong; Xie, Yanling; Li, Yuanli; Liu, Lin; Liao, Fei
2014-06-17
A fluorometric titration approach was proposed for the calibration of the quantity of monoclonal antibody (mcAb) via the quench of fluorescence of tryptophan residues. It applied to purified mcAbs recognizing tryptophan-deficient epitopes, haptens nonfluorescent at 340 nm under the excitation at 280 nm, or fluorescent haptens bearing excitation valleys nearby 280 nm and excitation peaks nearby 340 nm to serve as Förster-resonance-energy-transfer (FRET) acceptors of tryptophan. Titration probes were epitopes/haptens themselves or conjugates of nonfluorescent haptens or tryptophan-deficient epitopes with FRET acceptors of tryptophan. Under the excitation at 280 nm, titration curves were recorded as fluorescence specific for the FRET acceptors or for mcAbs at 340 nm. To quantify the binding site of a mcAb, a universal model considering both static and dynamic quench by either type of probes was proposed for fitting to the titration curve. This was easy for fitting to fluorescence specific for the FRET acceptors but encountered nonconvergence for fitting to fluorescence of mcAbs at 340 nm. As a solution, (a) the maximum of the absolute values of first-order derivatives of a titration curve as fluorescence at 340 nm was estimated from the best-fit model for a probe level of zero, and (b) molar quantity of the binding site of the mcAb was estimated via consecutive fitting to the same titration curve by utilizing such a maximum as an approximate of the slope for linear response of fluorescence at 340 nm to quantities of the mcAb. This fluorometric titration approach was proved effective with one mcAb for six-histidine and another for penicillin G.
NASA Astrophysics Data System (ADS)
Bogyo, Matthew
2017-02-01
Proteases are enzymes that play pathogenic roles in many common human diseases such as cancer, asthma, arthritis, atherosclerosis and infection by pathogens. Tools to dynamically monitor their activity can be used as diagnostic agents, as imaging contrast agents for intra-operative image guidance and for the identification of novel classes of protease-targeted drugs. I will describe our efforts to design and synthesize small molecule probes that produce a fluorescent signal upon binding to a protease target. We have identified probes that show tumor-specific retention, fast activation kinetics, and rapid systemic distribution making them useful for real-time fluorescence guided tumor resection and other diagnostic imaging applications.
Excited-state solvation and proton transfer dynamics of DAPI in biomimetics and genomic DNA.
Banerjee, Debapriya; Pal, Samir Kumar
2008-08-14
The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.
Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Furukawa, Takako; Ukai, Yoshinori; Kurosawa, Yoshikazu; Saga, Tsuneo
2016-01-01
To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In) or indocyanine green (ICG). After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody. PMID:27030400
Fluorescent-protein-based probes: general principles and practices.
Ai, Hui-Wang
2015-01-01
An important application of fluorescent proteins is to derive genetically encoded fluorescent probes that can actively respond to cellular dynamics such as pH change, redox signaling, calcium oscillation, enzyme activities, and membrane potential. Despite the large diverse group of fluorescent-protein-based probes, a few basic principles have been established and are shared by most of these probes. In this article, the focus is on these general principles and strategies that guide the development of fluorescent-protein-based probes. A few examples are provided in each category to illustrate the corresponding principles. Since these principles are quite straightforward, others may adapt them to create fluorescent probes for their own interest. Hopefully, the development of the ever-growing family of fluorescent-protein-based probes will no longer be limited to a small number of laboratories specialized in senor development, leading to the situation that biological studies will be bettered assisted by genetically encoded sensors.
Mao, Pingdao; Ning, Yi; Li, Wenkai; Peng, Zhihui; Chen, Yongzhe; Deng, Le
2014-01-10
A simple, selective, sensitive and label-free fluorescent method for detecting trpS-harboring Salmonella typhimurium was developed in this study. This assay used the non-covalent interaction of single-stranded DNA (ssDNA) probes with SWNTs, since SWNTs can quench fluorescence. Fluorescence recovery (78% with 1.8 nM target DNA) was detected in the presence of target DNA as ssDNA probes detached from SWNTs hybridized with target DNA, and the resulting double-stranded DNA (dsDNA) intercalated with SYBR Green I (SG) dyes. The increasing fluorescence intensity reached 4.54-fold. In contrast, mismatched oligonucleotides (1- or 3-nt difference to the target DNA) did not contribute to significant fluorescent recovery, which demonstrated the specificity of the assay. The increasing fluorescence intensity increased 3.15-fold when purified PCR products containing complementary sequences of trpS gene were detected. These results confirmed the ability to use this assay for detecting real samples. Copyright © 2013 Elsevier Inc. All rights reserved.
A multimodal spectroscopy system for real-time disease diagnosis
NASA Astrophysics Data System (ADS)
Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.
2009-04-01
The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.
Duan, Zhiqiang; Zhang, Chunxian; Qiao, Yuchun; Liu, Fengjuan; Wang, Deyan; Wu, Mengfan; Wang, Ke; Lv, Xiaoxia; Kong, Xiangmu; Wang, Hua
2017-08-01
A polyhydric polymer-functionalized probe with enhanced aqueous solubility was designed initially by coupling 1-pyrenecarboxyaldehyde (Pyr) onto poly(vinyl alcohol) (PVA) via the one-step condensation reaction. Polyhydric PVA polymer chains could facilitate the Pyr fluorophore with largely improved aqueous solubility and especially strong cyan fluorescence. Importantly, the fluorescence of the PVA-Pyr probes could thereby be quenched specifically by Fe 3+ ions through the strong PVA-Fe 3+ interaction triggering the polymeric probe aggregation. Furthermore, a test strips-based fluorimetric method was developed with the stable and uniform probe distribution by taking advantage of the unique film-forming ability and the depression capacity of "coffee-stain" effects of PVA matrix. The as-developed test strips could allow for the rapid and visual detections of Fe 3+ ions simply by a dipping way, showing a linear concentration range of 5.00-300μM, with the detection limit of 0.73μM. Moreover, the proposed method was applied to the evaluation of Fe 3+ ions in natural water samples, showing the analysis performances better or comparable to those of current detection techniques. This test strips-based fluorimetric strategy promises the extensive applications for the rapid on-site monitoring of Fe 3+ ions in environmental water and the outdoor finding of the potential iron mines. Copyright © 2017 Elsevier B.V. All rights reserved.
Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik
2002-01-01
A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084
Li, Jianli; Kappler, Andreas; Obst, Martin
2013-01-01
Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141
Han, Yingying; Ding, Changqin; Zhou, Jie; Tian, Yang
2015-01-01
It is very essential to disentangle the complicated inter-relationship between pH and Cu in the signal transduction and homeostasis. To this end, reporters that can display distinct signals to pH and Cu are highly valuable. Unfortunately, there is still no report on the development of biosensors that can simultaneously respond to pH and Cu(2+), to the best of our knowledge. In this work, we developed a single fluorescent probe, AuNC@FITC@DEAC (AuNC, gold cluster; FITC, fluorescein isothiocyanate; DEAC, 7-diethylaminocoumarin-3-carboxylic acid), for biosensing of pH, Cu(2+), and pH/Cu(2+) with different ratiometric fluorescent signals. First, 2,2',2″-(2,2',2″-nitrilotris(ethane-2,1-diyl)tris((pyridin-2-yl-methyl)azanediyl))triethanethiol (TPAASH) was designed for specific recognition of Cu(2+), as well as for organic ligand to synthesize fluorescent AuNCs. Then, pH-sensitive molecule, FITC emitting at 518 nm, and inner reference molecule, DEAC with emission peak at 472 nm, were simultaneously conjugated on the surface of AuNCs emitting at 722 nm, thus, constructing a single fluorescent probe, AuNC@FITC@DEAC, to sensing pH, Cu(2+), and pH/Cu(2+) excited by 405 nm light. The developed probe exhibited high selectivity and accuracy for independent determination of pH and Cu(2+) against reactive oxygen species (ROS), other metal ions, amino acids, and even copper-containing proteins. The AuNC-based inorganic-organic probe with good cell-permeability and high biocompatibility was eventually applied in monitoring both pH and Cu(2+) and in understanding the interplaying roles of Cu(2+) and pH in live cells by ratiometric multicolor fluorescent imaging.
Lee, Hyeran; Akers, Walter J; Cheney, Philip P; Edwards, W Barry; Liang, Kexian; Culver, Joseph P; Achilefu, Samuel
2009-01-01
Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with (64)Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters k(cat) and K(M) of 0.55+/-0.01 s(-1) and 1.12+/-0.06 microM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled (64)Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.
NASA Astrophysics Data System (ADS)
Lee, Hyeran; Akers, Walter J.; Cheney, Philip P.; Edwards, W. Barry; Liang, Kexian; Culver, Joseph P.; Achilefu, Samuel
2009-07-01
Based on the capability of modulating fluorescence intensity by specific molecular events, we report a new multimodal optical-nuclear molecular probe with complementary reporting strategies. The molecular probe (LS498) consists of tetraazacyclododecanetetraacetic acid (DOTA) for chelating a radionuclide, a near-infrared fluorescent dye, and an efficient quencher dye. The two dyes are separated by a cleavable peptide substrate for caspase-3, a diagnostic enzyme that is upregulated in dying cells. LS498 is radiolabeled with 64Cu, a radionuclide used in positron emission tomography. In the native form, LS498 fluorescence is quenched until caspase-3 cleavage of the peptide substrate. Enzyme kinetics assay shows that LS498 is readily cleaved by caspase-3, with excellent enzyme kinetic parameters kcat and KM of 0.55+/-0.01 s-1 and 1.12+/-0.06 μM, respectively. In mice, the initial fluorescence of LS498 is ten-fold less than control. Using radiolabeled 64Cu-LS498 in a controlled and localized in-vivo model of caspase-3 activation, a time-dependent five-fold NIR fluorescence enhancement is observed, but radioactivity remains identical in caspase-3 positive and negative controls. These results demonstrate the feasibility of using radionuclide imaging for localizing and quantifying the distribution of molecular probes and optical imaging for reporting the functional status of diagnostic enzymes.
Licha, Kai; Welker, Pia; Weinhart, Marie; Wegner, Nicole; Kern, Sylvia; Reichert, Stefanie; Gemeinhardt, Ines; Weissbach, Carmen; Ebert, Bernd; Haag, Rainer; Schirner, Michael
2011-12-21
We present a highly selective approach for the targeting of inflammation with a multivalent polymeric probe. Dendritic polyglycerol was employed to synthesize a polyanionic macromolecular conjugate with a near-infrared fluorescent dye related to Indocyanine Green (ICG). On the basis of the dense assembly of sulfate groups which were generated from the polyol core, the resulting polyglycerol sulfate (molecular weight 12 kD with ~70 sulfate groups) targets factors of inflammation (IC(50) of 3-6 nM for inhibition of L-selectin binding) and is specifically transported into inflammatory cells. The in vivo accumulation studied by near-IR fluorescence imaging in an animal model of rheumatoid arthritis demonstrated fast and selective uptake which enabled the differentiation of diseased joints (score 1-3) with a 3.5-fold higher fluorescence level and a signal maximum at 60 min post injection. Localization in tissues using fluorescence histology showed that the conjugates are deposited in the inflammatory infiltrate in the synovial membrane, whereas nonsulfated control was not detected in association with disease. Hence, this type of polymeric imaging probe is an alternative to current bioconjugates and provides future options for targeted imaging and drug delivery.
Lajevardipour, Alireza; Chon, James W M; Chattopadhyay, Amitabha; Clayton, Andrew H A
2016-11-22
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C 6 -NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.
Murray, James L; Hu, Peixu; Shafer, David A
2014-11-01
We have developed novel probe systems for real-time PCR that provide higher specificity, greater sensitivity, and lower cost relative to dual-labeled probes. The seven DNA Detection Switch (DDS)-probe systems reported here employ two interacting polynucleotide components: a fluorescently labeled probe and a quencher antiprobe. High-fidelity detection is achieved with three DDS designs: two internal probes (internal DDS and Flip probes) and a primer probe (ZIPR probe), wherein each probe is combined with a carefully engineered, slightly mismatched, error-checking antiprobe. The antiprobe blocks off-target detection over a wide range of temperatures and facilitates multiplexing. Other designs (Universal probe, Half-Universal probe, and MacMan probe) use generic components that enable low-cost detection. Finally, single-molecule G-Force probes employ guanine-mediated fluorescent quenching by forming a hairpin between adjacent C-rich and G-rich sequences. Examples provided show how these probe technologies discriminate drug-resistant Mycobacterium tuberculosis mutants, Escherichia coli O157:H7, oncogenic EGFR deletion mutations, hepatitis B virus, influenza A/B strains, and single-nucleotide polymorphisms in the human VKORC1 gene. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro and in vivo
NASA Astrophysics Data System (ADS)
Stegehuis, Paulien L.; Boonstra, Martin C.; de Rooij, Karien E.; Powolny, François E.; Sinisi, Riccardo; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Vahrmeijer, Alexander L.; Dijkstra, Jouke; van de Giessen, Martijn
2015-03-01
Excision of the whole tumor is crucial, but remains difficult for many tumor types. Fluorescence lifetime imaging could be helpful intraoperative to differentiate normal from tumor tissue. In this study we investigated the difference in fluorescence lifetime imaging of indocyanine green coupled to cyclic RGD free in solution/serum or bound to integrins e.g. in tumors. The U87-MG glioblastoma cell line, expressing high integrin levels, was cultured to use in vitro and to induce 4 subcutaneous tumors in a-thymic mice (n=4). Lifetimes of bound and unbound probe were measured with an experimental time-domain single-photon avalanche diode array (time resolution <100ps). In vivo measurements were taken 30-60 minutes after intravenous injection, and after 24 hours. The in vitro lifetime of the fluorophores was similar at different concentrations (20, 50 and 100μM) and showed a statistically significant higher lifetime (p<0.001) of bound probe compared to unbound probe. In vivo, lifetimes of the fluorophores in tumors were significantly higher (p<0.001) than at the control site (tail) at 30-60 minutes after probe injection. Lifetimes after 24 hours confirmed tumor-specific binding (also validated by fluorescence intensity images). Based on the difference in lifetime imaging, it can be concluded that it is feasible to separate between bound and unbound probes in vivo.
Li, Ru-Dong; Wang, Qian; Yin, Bin-Cheng; Ye, Bang-Ce
2016-03-15
Developing direct and convenient methods for microRNAs (miRNAs) analysis is of great significance in understanding biological functions of miRNAs, and early diagnosis of cancers. We have developed a rapid, enzyme-free method for miRNA detection based on nanoparticle-assisted signal amplification coupling fluorescent metal nanoclusters as signal output. The proposed method involves two processes: target miRNA-mediated nanoparticle capture, which consists of magnetic microparticle (MMP) probe and CuO nanoparticle (NP) probe, and nanoparticle-mediated amplification for signal generation, which consists of fluorescent DNA-Cu/Ag nanocluster (NC) and 3-mercaptopropionic acid (MPA). In the presence of target miRNA, MMP probe and NP probe sandwich-capture the target miRNA via their respective complementary sequence. The resultant sandwich complex (MMP probe-miRNA-CuO NP probe) is separated using a magnetic field and further dissolved by acidolysis to turn CuO NP into a great amount of copper (II) ions (Cu(2+)). Cu(2+) could disrupt the interactions between thiol moiety of MPA and the fluorescent Cu/Ag NCs by preferentially reacting with MPA to form a disulfide compound as intermediate. By this way, the fluorescence emission of the DNA-Cu/Ag NCs in the presence of MPA increases upon the increasing concentration of Cu(2+), which is directly proportional to the amount of target miRNA. The proposed method allows quantitative detection of a liver-specific miR-221-5p in the range of 5 pM to 1000 pM with a detection limit of ~0.73 pM, and shows a good ability to discriminate single-base difference. Moreover, the detection assay can be applied to detect miRNA in cancerous cell lysates in excellent agreement with that from a commercial miRNA detection kit. Copyright © 2015 Elsevier B.V. All rights reserved.
Bai, Jian-Ying; Xie, Yu-Zhong; Wang, Chang-Jiang; Fang, Shu-Qing; Cao, Lin-Nan; Wang, Ling-Li; Jin, Jing-Yi
2018-05-28
As a structural analogue of pyridylthiazole, 2-(2-benzothiazoyl)-phenylethynylquinoline (QBT) was designed as a fluorescent probe for Hg(II) based on an intramolecular charge transfer (ICT) mechanism. The compound was synthesized in three steps starting from 6-bromo-2-methylquinoline, with moderate yield. Corresponding studies on the optical properties of QBT indicate that changes in the fluorescence ratio of QBT in response to Hg(II) could be quantified based on dual-emission changes. More specifically, the emission spectrum of QBT before and after interactions with Hg(II) exhibited a remarkable red shift of about 120 nm, which is rarely reported in ICT-based fluorescent sensors. Finally, QBT was applied in the two-channel imaging of Hg(II) in live HeLa cells.
Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells.
Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En
2012-01-07
Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging α(v)β(3) integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.
Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.
Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang
2016-10-01
The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ueno, Ryohei
2009-04-01
Fluorescent in situ hybridization (FISH) using taxon-specific, rRNA-targeted oligonucleotide probes is one of the most powerful tools for the rapid identification of harmful microorganisms. However, eukaryotic algal cells do not always allow FISH probes to permeate over their cell walls. Members of the pathogenic micro-algal genus Prototheca are characterized by their distinctive cell-wall component, sporopollenin, an extremely tough biopolymer that resists acid and alkaline hydrolysis, enzyme attack, and acetolysis. To our knowledge, there has been no report of the successful permeation by the oligonucleotide probes over the cell walls of unicellular green micro-algae, which contain sporopollenin. The DNA probes passed through the cell wall of Prototheca wickerhamii after treating the algal cells with cetyltrimethylammonium bromide (CTAB). Most cells in the middle logarithmic growth phase culture fluoresced when hybridized with the rRNA-targeted universal probe for eukaryotes, though individual cells included in this culture differed in the level of cell-wall vulnerability to attack by the polysaccharide-degrading enzyme, thus reflecting the different stages of the life cycle. This is the first report regarding the visualization of sporopollenin-containing, green micro-algal cells by FISH.
In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe
Zhao, Menglong; Dong, Lili; Liu, Zhuang; Yang, Shuohui
2018-01-01
Background Glypican-3 (GPC3) is highly expressed in most of the hepatocellular carcinomas (HCCs), even in small HCCs. It may be used as a potential biomarker for early detection of HCC. The aptamer is a promising targeting agent with unique advantages over antibody. This study was to introduce a novel GPC3 specific aptamer (AP613-1), to verify its specific binding property in vitro, and to evaluate its targeting efficiency in vivo by performing near-infrared (NIR) fluorescence imaging on an HCC xenograft model. Methods AP613-1 was generated from the systematic evolution of ligands by exponential enrichment. Flow cytometry and aptamer-based immunofluorescence imaging were performed to verify the binding affinity of AP613-1 to GPC3 in vitro. NIR Fluorescence images of nude mice with unilateral (n=12) and bilateral (n=4) subcutaneous xenograft tumors were obtained. Correlation between the tumor fluorescence intensities in vivo and ex vivo was analyzed. Results AP613-1 could specifically bind to GPC3 in vitro. In vivo and ex vivo tumors, fluorescence intensities were in excellent correlation (P<0.001, r=0.968). The fluorescence intensity is significantly higher in tumors given Alexa Fluor 750 (AF750) labeled AP613-1 than in those given AF750 labeled initial ssDNA library both in vivo (P<0.001) and ex vivo (P=0.022). In the mice with bilateral subcutaneous tumors injected with AF750 labeled AP613-1, Huh-7 tumors showed significantly higher fluorescence intensities than A549 tumors both in vivo (P=0.016) and ex vivo (P=0.004). Conclusions AP613-1 displays a specific binding affinity to GPC3 positive HCC. Fluorescently labeled AP613-1 could be used as an imaging probe to subcutaneous HCC in xenograft models. PMID:29675356
Fluorescent Probes for Single-Step Detection and Proteomic Profiling of Histone Deacetylases.
Xie, Yusheng; Ge, Jingyan; Lei, Haipeng; Peng, Bo; Zhang, Huatang; Wang, Danyang; Pan, Sijun; Chen, Ganchao; Chen, Lanfang; Wang, Yi; Hao, Quan; Yao, Shao Q; Sun, Hongyan
2016-12-07
Histone deacetylases (HDACs) play important roles in regulating various physiological and pathological processes. Developing fluorescent probes capable of detecting HDAC activity can help further elucidate the roles of HDACs in biology. In this study, we first developed a set of activity-based fluorescent probes by incorporating the Kac residue and the O-NBD group. Upon enzymatic removal of the acetyl group in the Kac residue, the released free amine reacted intramolecularly with the O-NBD moiety, resulting in turn-on fluorescence. These designed probes are capable of detecting HDAC activity in a continuous fashion, thereby eliminating the extra step of fluorescence development. Remarkably, the amount of turn-on fluorescence can be as high as 50-fold, which is superior to the existing one-step HDAC fluorescent probes. Inhibition experiments further proved that the probes can serve as useful tools for screening HDAC inhibitors. Building on these results, we moved on and designed a dual-purpose fluorescent probe by introducing a diazirine photo-cross-linker into the probe. The resulting probe was not only capable of reporting enzymatic activity but also able to directly identify and capture the protein targets from the complex cellular environment. By combining a fluorometric method and in-gel fluorescence scanning technique, we found that epigenetic readers and erasers can be readily identified and differentiated using a single probe. This is not achievable with traditional photoaffinity probes. In light of the prominent properties and the diverse functions of this newly developed probe, we envision that it can provide a robust tool for functional analysis of HDACs and facilitate future drug discovery in epigenetics.
Fluorescent carbohydrate probes for cell lectins
NASA Astrophysics Data System (ADS)
Galanina, Oxana; Feofanov, Alexei; Tuzikov, Alexander B.; Rapoport, Evgenia; Crocker, Paul R.; Grichine, Alexei; Egret-Charlier, Marguerite; Vigny, Paul; Le Pendu, Jacques; Bovin, Nicolai V.
2001-09-01
Fluorescein labeled carbohydrate (Glyc) probes were synthesized as analytical tools for the study of cellular lectins, i.e. SiaLe x-PAA-flu, Sia 2-PAA-flu, GlcNAc 2-PAA-flu, LacNAc-PAA-flu and a number of similar ones, with PAA a soluble polyacrylamide carrier. The binding of SiaLe x-PAA-flu was assessed using CHO cells transfected with E-selectin, and the binding of Sia 2-PAA-flu was assessed by COS cells transfected with siglec-9. In flow cytometry assays, the fluorescein probes demonstrated a specific binding to the lectin-transfected cells that was inhibited by unlabeled carbohydrate ligands. The intense binding of SiaLe x-PAA- 3H to the E-selectin transfected cells and the lack of binding to both native and permeabilized control cells lead to the conclusion that the polyacrylamide carrier itself and the spacer arm connecting the carbohydrate moiety with PAA did not contribute anymore to the binding. Tumors were obtained from nude mice by injection of CHO E-selectin or mock transfected cells. The fluorescent SiaLe x-PAA-flu probe could bind to the tumor sections from E-selectin positive CHO cells, but not from the control ones. Thus, these probes can be used to reveal specifically the carbohydrate binding sites on cells in culture as well as cells in tissue sections. The use of the confocal spectral imaging technique with Glyc-PAA-flu probes offered the unique possibility to detect lectins in different cells, even when the level of lectin expression was rather low. The confocal mode of spectrum recording provided an analysis of the probe localization with 3D submicron resolution. The spectral analysis (as a constituent part of the confocal spectral imaging technique) enabled interfering signals of the probe and intrinsic cellular fluorescence to be accurately separated, the distribution of the probe to be revealed and its local concentration to be measured.
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized. PMID:24648733
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field.
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized.
Precision-cut tissue chips as an in vitro toxicology system
Catania, J. M.; Pershing, A. M.; Gandolfi, A. J.
2007-01-01
Precision-cut tissue slices mimic specific organ toxicity because normal cellular heterogeneity and organ architecture are retained. To optimize the use of the smaller tissues of the mouse and to establish easy assays for tissue viability, a tissue chip based system was used to generate large numbers of samples from a single organ. Iodoacetamide (IAM), was used as a model toxicant, and assays for intracellular potassium (normalized to DNA content) were used to establish viability and toxicant susceptibility. Thereafter, assays that were more rapid and specific were pursued. Lysates from tissues incubated in 6-carboxyfluorescein fluoresced proportionately to concentrations of IAM, indicating disruption of cellular membranes. Similarly, FURA-2, a probe applied to lysates to measure calcium levels, fluoresced proportionately to IAM dosage. Monobromobimane, a fluorescent sulfhydryl probe, displayed a decrease in fluorescent intensity at higher IAM challenge; a finding confirmed with an absorbance assay with Ellman’s reagent. Importantly, the number of samples per organ/mouse was increased at least 3-fold and a significant time reduction per analysis was realized. PMID:17376647
Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao
2018-06-15
G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs. Copyright © 2018 Elsevier B.V. All rights reserved.
Peptide Probe for Crystalline Hydroxyapatite: In Situ Detection of Biomineralization
NASA Astrophysics Data System (ADS)
Cicerone, Marcus; Becker, Matthew; Simon, Carl; Chatterjee, Kaushik
2009-03-01
While cells template mineralization in vitro and in vivo, specific detection strategies that impart chemical and structural information on this process have proven elusive. Recently we have developed an in situ based peptide probe via phage display methods that is specific to crystalline hydroxyapatite (HA). We are using this in fluorescence based assays to characterize mineralization. One application being explored is the screening of tissue engineering scaffolds for their ability to support osteogenesis. Specifically, osteoblasts are being cultured in hydrogel scaffolds possessing property gradients to provide a test bed for the HA peptide probe. Hydrogel properties that support osteogenesis and HA deposition will be identified using the probe to demonstrate its utility in optimizing design of tissue scaffolds.
NASA Astrophysics Data System (ADS)
Wang, Ying; Hu, Yuehua; Wu, Tao; Zhang, Lihua; Liu, Hua; Zhou, Xiaoshun; Shao, Yong
2016-01-01
Removal of a damaged base in DNA produces an abasic site (AP site) nanocavity. If left un-repaired in vivo by the specific enzyme, this nanocavity will result in nucleotide mutation in the following DNA replication. Therefore, selective recognition of AP site nanocavity by small molecules is important for identification of such DNA damage and development of genetic drugs. In this work, we investigate the fluorescence behavior of isoquinoline alkaloids including palmatine (PAL), berberine (BER), epiberberine (EPI), jatrorrhizine (JAT), coptisine (COP), coralyne (COR), worenine (WOR), berberrubine (BEU), sanguinarine (SAN), chelerythrine (CHE), and nitidine (NIT) upon binding with the AP nanocavity. PAL is screened out as the most efficient fluorophore-switched probe to recognize the AP nanocavity over the fully matched DNA. Its fluorescence enhancement occurs for all of the AP nanocavity sequence environments, which has not been achieved by the previously used probes. The bridged π conjugation effect should partially contribute to the AP nanocavity-specific fluorescence, as opposed to the solvent effect. Due to the strong binding with the AP nanocavity, PAL will find wide applications in the DNA damage recognition and sensor development.
Global Profiling of Reactive Oxygen and Nitrogen Species in Biological Systems
Zielonka, Jacek; Zielonka, Monika; Sikora, Adam; Adamus, Jan; Joseph, Joy; Hardy, Micael; Ouari, Olivier; Dranka, Brian P.; Kalyanaraman, Balaraman
2012-01-01
Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants. PMID:22139901
Mawai, Kiran; Nathani, Sandip; Roy, Partha; Singh, U P; Ghosh, Kaushik
2018-05-08
A compartmental chemosensor probe HL has been designed and synthesized for the selective recognition of zinc ions over other transition metal ions via fluorescence "ON" strategy. The chemosensing behaviour of HL was demonstrated through fluorescence, absorption and NMR spectroscopic techniques. The molecular structure of the zinc complex derived from HL was determined by X-ray crystallography. A probable mechanism of this selective sensing behavior was described on the basis of spectroscopic results and theoretical studies by density functional theory (DFT). The biological applicability of the chemosensor HL was examined via cell imaging on HeLa cells. The HL-zinc complex served as a secondary fluorescent probe responding to the pyrophosphate anion specifically over other anions. The fluorescence enhancement of HL in association with Zn2+ ions was quenched in the presence of pyrophosphate (PPi). Thus, a dual response was established based on "OFF-ON-OFF" strategy for detection of both cation and anion. This phenomenon was utilized in the construction of a "INHIBIT" logic gate.
NASA Astrophysics Data System (ADS)
Clarke, James; Cheng, Kwan; Shindell, Orrin; Wang, Exing
We have designed and constructed a high-throughput electrofusion chamber and an incubator to fabricate Giant Unilamellar Vesicles (GUVs) consisting of high-melting lipids, low-melting lipids, cholesterol and both ordered and disordered phase sensitive fluorescent probes (DiIC12, dehydroergosterol and BODIPY-Cholesterol). GUVs were formed in a 3 stage pulse sequence electrofusion process with voltages ranging from 50mVpp to 2.2Vpp and frequencies from 5Hz to 10Hz. Steady state and time-correlated single-photon counting (TCSPC) fluorescence lifetime (FLIM) based confocal and/or multi-photon microscopic techniques were used to characterize phase separated lipid domains in GUVs. Confocal imaging measures the probe concentration and the chemical environment of the system. TCSPC techniques determine the chemical environment through the perturbation of fluorescent lifetimes of the probes in the system. The above techniques will be applied to investigate the protein-lipid interactions involving domain formation. Specifically, the mechanisms governing lipid domain formations in the above systems that mimic the lipid rafts in cells will be explored. Murchison Fellowship at Trinity University.
Synthesis and characterization of the fluorescent probes for the labeling of Microthrix parvicella.
Li, Songya; Fei, Xuening; Jiao, Xiumei; Lin, Dayong; Zhang, Baolian; Cao, Lingyun
2016-03-01
Although the fluorescent in situ hybridization (FISH) has been widely used to identify the Microthrix parvicella (M. parvicella), there are a few disadvantages and difficulties, such as complicated process, time consuming, etc. In this work, a series of fluorescent probes, which were modified by long-chain alkane with hydrophobic property and based on the property of M. parvicella utilizing long-chain fatty acids (LCFA), for the labeling of M. parvicella in bulking sludge were designed, synthesized, and characterized. The probes were characterized by ultraviolet-visible (UV-Vis) absorption spectra, fluorescence spectra, (1)H NMR spectra, and mass spectra, and the photostability and hydrophobic property of probes were investigated. All the results showed that the probes were quite stable and suitable for the fluorescent labeling. The probes had a large stoke shift of 98-137 nm, which was benefit for the fluorescent labeling. In the fluorescent labeling of M. parvicella by the synthesized probes, the probes had excellent labeling effects. By comparison of the images and the Image Pro Plus 6.0 analysis, the optimal concentration of the probes in the activated sludge sample for labeling was 0.010 mmol/L and the probe 3d had the best labeling. In addition, the effect of the duration time of probes was also investigated, and the results showed that the fluorescent intensity of probes hardly changed in a long period of time and it was suitable for labeling.
Universal Oligonucleotide Microarray for Sub-Typing of Influenza A Virus
Ryabinin, Vladimir A.; Kostina, Elena V.; Maksakova, Galiya A.; Neverov, Alexander A.; Chumakov, Konstantin M.; Sinyakov, Alexander N.
2011-01-01
A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1–H13, H15, H16) and neuraminidase (N1–N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus. PMID:21559081
Yang, Sunny Y; Amor, Souheila; Laguerre, Aurélien; Wong, Judy M Y; Monchaud, David
2017-05-01
The development of quadruplex-directed molecular diagnostic and therapy rely on mechanistic insights gained at both cellular and tissue levels by fluorescence imaging. This technique is based on fluorescent reporters that label cellular DNA and RNA quadruplexes to spatiotemporally address their complex cell biology. The photophysical characteristics of quadruplex probes usually dictate the modality of cell imaging by governing the selection of the light source (lamp, LED, laser), the optical light filters and the detection modality. Here, we report the characterizations of prototype from a new generation of quadruplex dye termed G4-REP (for quadruplex-specific red-edge probe) that provides fluorescence responses regardless of the excitation wavelength and modality (owing to the versatility gained through the red-edge effect), thus allowing for diverse applications and most imaging facilities. This is demonstrated by cell images (and associated quantifications) collected through confocal and multiphoton microscopy as well as through real-time live-cell imaging system over extended period, monitoring both non-cancerous and cancerous human cell lines. Our results promote a new way of designing versatile, efficient and convenient quadruplex-reporting dyes for tracking these higher-order nucleic acid structures in living human cells. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.
Visualizing the chain-flipping mechanism in fatty-acid biosynthesis
Beld, Joris; Cang, Hu; Burkart, Michael D.
2014-10-29
The acyl carrier protein (ACP) from fatty acid synthases sequesters elongating products within its hydrophobic core, but this dynamic mechanism remains poorly understood. In this paper, we exploited solvatochromic pantetheine probes attached to ACP that fluoresce when sequestered. The addition of a catalytic partner lures the cargo out of the ACP and into the active site of the enzyme, thus enhancing fluorescence to reveal the elusive chain-flipping mechanism. This activity was confirmed by the use of a dual solvatochromic cross-linking probe and solution-phase NMR spectroscopy. Finally, the chain-flipping mechanism was visualized by single-molecule fluorescence techniques, thus demonstrating specificity between themore » Escherichia coli ACP and its ketoacyl synthase catalytic partner KASII.« less
Richter, Johan C O; Haj-Hosseini, Neda; Hallbeck, Martin; Wårdell, Karin
2017-06-01
Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection. Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe. Fluorescence ratio medians (range 0 - 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as "none" (0.3, n=131), "weak" (1.6, n=34) and "strong" (5.4, n=28). Of 131 "none" points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe. The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin
2017-10-01
In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.
Tan, Hongliang; Tang, Gonge; Wang, Zhixiong; Li, Qian; Gao, Jie; Wu, Shimeng
2016-10-12
Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.
2015-03-01
Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.
NASA Astrophysics Data System (ADS)
Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.
2015-07-01
Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.
Readily Available Fluorescent Probe for Carbon Monoxide Imaging in Living Cells.
Feng, Weiyong; Liu, Dandan; Feng, Shumin; Feng, Guoqiang
2016-11-01
Carbon monoxide (CO) is an important gasotransmitter in living systems and its fluorescent detection is of particular interest. However, fluorescent detection of CO in living cells is still challenging due to lack of effective probes. In this paper, a readily available fluorescein-based fluorescent probe was developed for rapid detection of CO. This probe can be used to detect CO in almost wholly aqueous solution under mild conditions and shows high selectivity and sensitivity for CO with colorimetric and remarkable fluorescent turn-on signal changes. The detection limit of this probe for CO is as low as 37 nM with a linear range of 0-30 μM. More importantly, this probe (1 μM dose) can be conveniently used for fluorescent imaging CO in living cells.
Visualization of nucleic acids with synthetic exciton-controlled fluorescent oligonucleotide probes.
Wang, Dan Ohtan; Okamoto, Akimitsu
2015-01-01
Engineered probes to adapt new photochemical properties upon recognition of target nucleic acids offer powerful tools to DNA and RNA visualization technologies. Herein, we describe a rapid and effective visualization method of nucleic acids in both fixed and living cells with hybridization-sensitive fluorescent oligonucleotide probes. These probes are efficiently quenched in an aqueous environment due to the homodimeric, excitonic interactions between fluorophores but become highly fluorescent upon hybridization to DNA or RNA with complementary sequences. The fast hybridization kinetics and quick fluorescence activation of the new probes allow applications to simplify the conventional fluorescent in situ hybridization protocols and reduce the amount of time to process the samples. Furthermore, hybridization-sensitive fluorescence emission of the probes allows monitoring dynamic behaviors of RNA in living cells.
Study of probe-sample distance for biomedical spectra measurement.
Wang, Bowen; Fan, Shuzhen; Li, Lei; Wang, Cong
2011-11-02
Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.
Hydrophobic pocket targeting probes for enteroviruses
NASA Astrophysics Data System (ADS)
Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu
2015-10-01
Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content, the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content, the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells. Electronic supplementary information (ESI) available: Details of the synthesis of the probes, UV-Vis absorption spectra of the probe (2), PAGE separation and the absorption spectra of the gold labeled probe (3), details of the NMR experiments, determination of the cytotoxicity of the studied molecules, TEM micrographs of the gold labeled probe (3) with enteroviruses, live cell imaging of the fluorescent probe (4) in cells, and additional details of modeling of the hydrophobic pockets. See DOI: 10.1039/c5nr04139b
NASA Astrophysics Data System (ADS)
Cui, Peng; Jiang, Xuekai; Sun, Junyong; Zhang, Qiang; Gao, Feng
2017-06-01
A structurally simple, water-soluble rhodamine-derivatived fluorescent probe, which is responsive to acidic pH, was conveniently synthesized via a one-step condensation reaction of rhodamine B hydrazide and 4-formybenzene-1,3-disulfonate. As a stable and highly sensitive pH sensor, the probe displays an approximately 50-fold fluorescence enhancement over the pH range of 7.16-4.89 as the structure of probe changes from spirocyclic (weak fluorescent) to ring-open (strong fluorescent) with decreasing pH. The synthesized fluorescent probe is applied to the detection of pH changes in vitro and in vivo bioimaging of immortalized gastric cancer cells, with satisfactory results.
Sato, Akira; Unuma, Hiroto; Yamazaki, Yoji; Ebina, Keiichi
2018-06-01
The probes for detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to facilitate the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that a heptapeptide (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled through the ε-amino group of N-terminal Lys to fluorescein isothiocyanate (FITC), (FITC)KP6, can be useful as a fluorescent probe for specific detection of ox-LDL. In the present study, to develop a novel fluorescent peptide for specific detection of ox-LDL, we investigated the interaction (with ox-LDL) of an undecapeptide corresponding to positions 41 to 51 of a potent antimicrobial protein (royalisin, which consists of 51 residues; from royal jelly of honeybees), conjugated at the N-terminus to FITC in the presence of 6-amino-n-caproic acid (AC) linker, (FITC-AC)-royalisin P11, which contains both sequences, Phe-Lys-Asp and Asp-Lys-Tyr, similar to Tyr-Lys-Asp in (FITC)KP6. The (FITC-AC)-royalisin P11 bound with high specificity to ox-LDL in a dose-dependent manner, through the binding to major lipid components in ox-LDL (lysophosphatidylcholine and oxidized phosphatidylcholine). In contrast, a (FITC-AC)-shuffled royalisin P11 peptide, in which sequences Phe-Lys-Asp and Asp-Lys-Tyr were modified to Lys-Phe-Asp and Asp-Tyr-Lys, respectively, hardly bound to LDL and ox-LDL. These findings strongly suggest that (FITC-AC)-royalisin P11 may be an effective fluorescent probe for specific detection of ox-LDL and that royalisin from the royal jelly of honeybees may play a role in the treatment of atherosclerosis through the specific binding of the region at positions 41 to 51 to ox-LDL. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.
Hirabayashi, Kazuhisa; Hanaoka, Kenjiro; Egawa, Takahiro; Kobayashi, Chiaki; Takahashi, Shodai; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Ikegaya, Yuji; Nagano, Tetsuo; Urano, Yasuteru
2016-10-01
Fluorescence imaging of calcium ions (Ca(2+)) has become an essential technique for investigation of signaling pathways involving Ca(2+) as a second messenger. But, Ca(2+) signaling is involved in many biological phenomena, and therefore simultaneous visualization of Ca(2+) and other biomolecules (multicolor imaging) would be particularly informative. For this purpose, we set out to develop a fluorescent probe for Ca(2+) that would operate in a different color region (red) from that of probes for other molecules, many of which show green fluorescence, as exemplified by green fluorescent protein (GFP). We previously developed a red fluorescent probe for monitoring cytoplasmic Ca(2+) concentration, based on our established red fluorophore, TokyoMagenta (TM), but there remained room for improvement, especially as regards efficiency of introduction into cells. We considered that this issue was probably mainly due to limited water solubility of the probe. So, we designed and synthesized a red-fluorescent probe with improved water solubility. We confirmed that this Ca(2+) red-fluorescent probe showed high cell-membrane permeability with bright fluorescence. It was successfully applied to fluorescence imaging of not only live cells, but also brain slices, and should be practically useful for multicolor imaging studies of biological mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantum dots-based probes conjugated to Annexin V for photostable apoptosis detection and imaging
NASA Astrophysics Data System (ADS)
Le Gac, Séverine; Vermes, Istvan; van den Berg, Albert
2008-02-01
Quantum dots (Qdots) are nanoparticles exhibiting fluorescent properties that are widely applied for cell staining. We present here the development of quantum dots for specific targeting of apoptotic cells, for both apoptosis detection and staining of apoptotic "living" cells. These Qdots are functionalized with Annexin V, a 35-kDa protein that specifically interacts with the membrane of apoptotic cells: Annexin V recognizes and binds to phosphatidylserine (PS) moieties which are present on the outer membrane of apoptotic cells and not on this of healthy or necrotic cells. By using Annexin V, our Qdots probes are made specific for apoptotic cells. For that purpose, Qdots Streptavidin Conjugates are coupled to biotinylated Annexin V. Staining of apoptotic cells was checked using fluorescence and confocal microscopy techniques on nonfixed cells. It is shown here that Qdots are insensitive to bleaching after prolonged and frequent exposure as opposed to organic dyes and this makes them excellent candidates for time-lapse imaging purposes. We illustrate the application of our Qdots-based probes to continuously follow fast changes occurring on the membrane of apoptotic cells.
Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses.
Lacour, William; Adjili, Salim; Blaising, Julie; Favier, Arnaud; Monier, Karine; Mezhoud, Sarra; Ladavière, Catherine; Place, Christophe; Pécheur, Eve-Isabelle; Charreyre, Marie-Thérèse
2016-08-01
Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Slavik, Jan; Cimprich, Petr; Gregor, Martin; Smetana, Karel, Jr.
1997-12-01
The application possibilities of fluorescent probes have increased dramatically in the last few years. The main areas are as follows (Slavik, 1994, 1996, 1998). Intracellular ionic cell composition: There are selective ion-sensitive dyes for H+, Ca2+, Mg2+, K+, Na+, Fe3+, Cl-, Zn2+, Cd2+, Hg2+, Pb2+, Ba2+, La3+. Membrane potential: Using the so-called slow (Nernstian dyes) or electrochromic dyes one can assess the value of the transmembrane potential. Membrane fluidity: Fluorescent probes inform about the freedom of rotational and translational movement of membrane proteins and lipids. Selective labeling: Almost any object of interest inside the cell or on its surface can be selectively fluorescently labeled. There are dyes specific for DNA, RNA, oligonucleotides (FISH), Golgi, endoplasmic reticulum, mitochondria, vacuoles, cytoskeleton, etc. Using fluorescent dyes specific receptors may be localized, their conformational changes followed and the polarity of corresponding binding sites accessed. The endocytic pathway may be followed, enzymes and their local enzymatic activity localized. For really selective labeling fluorescent labeled antibodies exist. Imaging: One of the main advantages of fluorescence imaging is its versatility. It allow choice among ratio imaging in excitation, ratio imaging in emission and lifetime imaging. These approaches can be applied to both the classical wide-field fluorescence microscopy and to the laser confocal fluorescence microscopy, one day possibly to the scanning near field optical microscopy. Simultaneous application of several fluorescent dyes: The technical progress in both excitation sources and in detectors allows to extend the excitation deeper in the blue and ultraviolet side and the detection further in the NIR and IR. Consequently, up to 6 peaks in excitation and up to 6 peaks in emission can be followed without any substantial difficulties. Application of dyes such with longer fluorescence lifetimes such as rare earth dyes gives chance for the separated detection of another six peak pairs. The literature data on simultaneous applications of several fluorescent dyes are rare, usually it is only pH and calcium, pH and membrane potential or pH and cytoskeleton changes that are mentioned. Nevertheless, I am sure that in the near future it will be quite common to employ several fluorescent dyes simultaneously. So, in a few years, you may expect to be comfortably seated in an armchair in front of the monitor screen, sip your coffee and follow simultaneously several physiological parameters trying to find out new relations among them. In this respect the potential of fluorescent probes is unsurpassed if you just recall only the discovery of calcium waves and calcium spikes during the past years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.
2014-01-03
Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and ismore » therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.« less
2007-02-01
saponin (Calbiochem, San Diego, CA) in PBS. Results, Significance, Obstacles and Alternative Approaches: We have generated several different fluorescent...1 integrin antibody P4C10 (Life technologies ). We will conjugate the fluorescent probes to these functional blocking antibodies for live cell...characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int. J. Cancer. 62:552-558. 1995. 9. Wright GL Jr
Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity
Kwok, Showming; Lee, Claudia; Sánchez, Susana A.; Hazlett, Theodore L.; Gratton, Enrico; Hayashi, Yasunori
2008-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo. PMID:18302935
Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Vorobjev, Yuri N; Barthes, Nicolas P F; Michel, Benoît Y; Burger, Alain; Fedorova, Olga S
2014-01-01
Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified.
Vorobjev, Yuri N.; Barthes, Nicolas P. F.; Michel, Benoît Y.; Burger, Alain; Fedorova, Olga S.
2014-01-01
Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5′-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified. PMID:24925085
Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.
Peck, Evan M; Battles, Paul M; Rice, Douglas R; Roland, Felicia M; Norquest, Kathryn A; Smith, Bradley D
2016-05-18
A programmable pre-assembly method is described and shown to produce near-infrared fluorescent molecular probes with tunable multivalent binding properties. The modular assembly process threads one or two copies of a tetralactam macrocycle onto a fluorescent PEGylated squaraine scaffold containing a complementary number of docking stations. Appended to the macrocycle periphery are multiple copies of a ligand that is known to target a biomarker. The structure and high purity of each threaded complex was determined by independent spectrometric methods and also by gel electrophoresis. Especially helpful were diagnostic red-shift and energy transfer features in the absorption and fluorescence spectra. The threaded complexes were found to be effective multivalent molecular probes for fluorescence microscopy and in vivo fluorescence imaging of living subjects. Two multivalent probes were prepared and tested for targeting of bone in mice. A pre-assembled probe with 12 bone-targeting iminodiacetate ligands produced more bone accumulation than an analogous pre-assembled probe with six iminodiacetate ligands. Notably, there was no loss in probe fluorescence at the bone target site after 24 h in the living animal, indicating that the pre-assembled fluorescent probe maintained very high mechanical and chemical stability on the skeletal surface. The study shows how this versatile pre-assembly method can be used in a parallel combinatorial manner to produce libraries of near-infrared fluorescent multivalent molecular probes for different types of imaging and diagnostic applications, with incremental structural changes in the number of targeting groups, linker lengths, linker flexibility, and degree of PEGylation.
He, Huaizhen; Zhan, Yingzhuan; Zhang, Yanmin; Zhang, Jie; He, Langchong
2012-01-01
Two novel taspine diphenyl derivatives (Ta-dD) were designed and synthesized by introducing different coumarin fluorescent groups into the basic structure of Ta-dD. The main advantage of these two compounds is that they can be used as fluorescence probes and inhibitors simultaneously. In the present study, the fluorescent properties of the probes were measured and their inhibition of four breast cancer cell lines was tested. Different concentrations of the fluorescence probe were added to MCF-7 breast cancer cells for fluorescence imaging analysis under normal conditions. The results suggested that both of the new compounds have not only fluorescence but also the ability to inhibit effects on different breast cancer cell lines, which indicates their possible further use as dual functional fluorescence probes in tracer analysis. Copyright © 2011 John Wiley & Sons, Ltd.
Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin
2016-02-21
A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.
Recent patents on self-quenching DNA probes.
Knemeyer, Jens-Peter; Marmé, Nicole
2007-01-01
In this review, we report on patents concerning self-quenching DNA probes for assaying DNA during or after amplification as well as for direct assaying DNA or RNA, for example in living cells. Usually the probes consist of fluorescently labeled oligonucleotides whose fluorescence is quenched in the absence of the matching target DNA. Thereby the fluorescence quenching is based on fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), or electronically interactions between dye and quencher. However, upon hybridization to the target or after the degradation during a PCR, the fluorescence of the dye is restored. Although the presented probes were originally developed for use in homogeneous assay formats, most of them are also appropriate to improve surface-based assay methods. In particular we describe patents for self-quenching primers, self-quenching probes for TaqMan assays, probes based on G-quartets, Molecular Beacons, Smart Probes, and Pleiades Probes.
Chen, Jian-Bo; Zhang, Hui-Xian; Guo, Xiao-Feng; Wang, Hong; Zhang, Hua-Shan
2013-09-01
Fluorescent probes with larger Stokes shifts in the far-visible and near-infrared spectral region (600-900 nm) are more superior for cellular imaging and biological analysis due to avoiding light scattering interference, reducing autofluorescence from biological sample and encouraging deeper tissue penetration in vivo imaging. In this work, two bis-methoxyphenyl-BODIPY fluorescent probes for the detection of nitric oxide (NO) have been firstly synthesized. Under physiological conditions, these probes can react with NO to form the corresponding triazoles with 250- and 70-fold turn-on fluorescence emitting at 590 and 620 nm, respectively. Moreover, the triazole forms of these probes have large Stokes shifts of 38 nm, in contrast to 10 nm of existing BODIPY probes for NO. Excellent selectivity has been observed against other reactive oxygen/nitrogen species, ascorbic acid and biological matrix. After the evaluation of MTT assay, new fluorescent probes have been successfully applied to fluorescence imaging of NO released from RAW 264.7 macrophages by co-stimulation of lipopolysaccharide and interferon-γ. The experimental results indicate that our fluorescent probes can be powerful candidates for fluorescence imaging of NO due to the low background interference and high detection sensitivity.
CdTe/ZnS quantum dots as fluorescent probes for ammonium determination.
Yi, Kui-Yu
2016-06-01
Novel CdTe/ZnS quantum dot (QD) probes based on the quenching effect were proposed for the simple, rapid, and specific determination of ammonium in aqueous solutions. The QDs were modified using 3-mercaptopropionic acid, and the fluorescence responses of the CdTe/ZnS QD probes to ammonium were detected through regularity quenching. The quenching levels of the CdTe/ZnS QDs and ammonium concentration showed a good linear relationship between 4.0 × 10(-6) and 5.0 × 10(-4) mol/L; the detection limit was 3.0 × 10(-7) mol/L. Ammonium contents in synthetic explosion soil samples were measured to determine the practical applications of the QD probes and a probable quenching mechanism was described. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
SYTO probes: markers of apoptotic cell demise.
Wlodkowic, Donald; Skommer, Joanna
2007-10-01
As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD).
A new class of homogeneous nucleic acid probes based on specific displacement hybridization
Li, Qingge; Luan, Guoyan; Guo, Qiuping; Liang, Jixuan
2002-01-01
We have developed a new class of probes for homogeneous nucleic acid detection based on the proposed displacement hybridization. Our probes consist of two complementary oligodeoxyribonucleotides of different length labeled with a fluorophore and a quencher in close proximity in the duplex. The probes on their own are quenched, but they become fluorescent upon displacement hybridization with the target. These probes display complete discrimination between a perfectly matched target and single nucleotide mismatch targets. A comparison of double-stranded probes with corresponding linear probes confirms that the presence of the complementary strand significantly enhances their specificity. Using four such probes labeled with different color fluorophores, each designed to recognize a different target, we have demonstrated that multiple targets can be distinguished in the same solution, even if they differ from one another by as little as a single nucleotide. Double-stranded probes were used in real-time nucleic acid amplifications as either probes or as primers. In addition to its extreme specificity and flexibility, the new class of probes is simple to design and synthesize, has low cost and high sensitivity and is accessible to a wide range of labels. This class of probes should find applications in a variety of areas wherever high specificity of nucleic acid hybridization is relevant. PMID:11788731
Chagnon, Frédéric; Bourgouin, Alexandra; Lebel, Réjean; Bonin, Marc-André; Marsault, Eric; Lepage, Martin; Lesur, Olivier
2015-09-15
The pathophysiology of acute lung injury (ALI) is well characterized, but its real-time assessment at bedside remains a challenge. When patients do not improve after 1 wk despite supportive therapies, physicians have to consider open lung biopsy (OLB) to identify the process(es) at play. Sustained inflammation and inadequate repair are often observed in this context. OLB is neither easy to perform in a critical setting nor exempt from complications. Herein, we explore intravital endoscopic confocal fluorescence microscopy (ECFM) of the lung in vivo combined with the use of fluorescent smart probe(s) activated by myeloperoxidase (MPO). MPO is a granular enzyme expressed by polymorphonuclear neutrophils (PMNs) and alveolar macrophages (AMs), catalyzing the synthesis of hypoclorous acid, a by-product of hydrogen peroxide. Activation of these probes was first validated in vitro in relevant cells (i.e., AMs and PMNs) and on MPO-non-expressing cells (as negative controls) and then tested in vivo using three rat models of ALI and real-time intravital imaging with ECFM. Semiquantitative image analyses revealed that in vivo probe-related cellular/background fluorescence was associated with corresponding enhanced lung enzymatic activity and was partly prevented by specific MPO inhibition. Additional ex vivo phenotyping was performed, confirming that fluorescent cells were neutrophil elastase(+) (PMNs) or CD68(+) (AMs). This work is a first step toward "virtual biopsy" of ALI without OLB. Copyright © 2015 the American Physiological Society.
Specific binding of 15 HETE to lymphocytes. Effects on the fluidity of plasmatic membranes.
Mexmain, S; Gualde, N; Aldigier, J C; Motta, C; Chable-Rabinovitch, H; Rigaud, M
1984-01-01
Specific binding of mouse lymphocytes for 15 HETE was examined by incubating cells with [14C]-15 HETE, 1 X 10(-8) to 1 X 10(-10)M. It was observed that the specific binding of radiolabeled 15 HETE is a function of time, of temperature and is modified by Ca2+ and dithiothreitol. When a fluorescent probe was embedded in the phospholipid core of the lymphocyte membrane and its motion analysed by fluorescence polarization, it was observed that 15 HETE increases the viscosity of the plasmatic membrane.
Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Talukdar, Pinaki
2013-02-13
The design, synthesis and thiol sensing ability of chromenoquinoline-based fluorescent probes 4, 5 and 6 and are reported here. The relative position of the maleimide moiety was varied along the chromenoquinoline fluorophore to decrease the background fluorescence. Lower background fluorescence in probes 4 and 6 was rationalized by the smaller k(r)/k(nr) values compared to that of probe 5. An intramolecular charge transfer (ICT) mechanism was proposed for quenching and the extent was dependent on the position of the maleimide quencher. Fluorescent Off-On characteristics were evaluated by theoretical calculations. All probes were selective only towards thiol containing amino acids. Thiol sensing by probes 4 and 6 were much better compared to 5. Probe 4 displayed a better fluorescence response for less hindered thiol (185-, 223- and 156-fold for Hcy, Cys and GSH, respectively), while for probe 6, a higher enhancement in fluorescence was observed with more hindered thiols (180-, 205- and 245-fold for Hcy, Cys and GSH, respectively). The better response to bulkier thiol, GSH by probe 6 was attributed to the steric crowding at the C-4 position and bulkiness of the GSH group which force the succinimide unit to be in a nearly orthogonal conformation. This spatial arrangement was important in reducing the fluorescence quenching ability of the succinimide moiety. The application of probes 4, 5 and 6 was demonstrated by naked eye detection thiols using a 96-well plate system as well as by live-cell imaging.
Horobin, R W; Stockert, J C; Rashid-Doubell, F
2015-05-01
We discuss a variety of biological targets including generic biomembranes and the membranes of the endoplasmic reticulum, endosomes/lysosomes, Golgi body, mitochondria (outer and inner membranes) and the plasma membrane of usual fluidity. For each target, we discuss the access of probes to the target membrane, probe uptake into the membrane and the mechanism of selectivity of the probe uptake. A statement of the QSAR decision rule that describes the required physicochemical features of probes that enable selective staining also is provided, followed by comments on exceptions and limits. Examples of probes typically used to demonstrate each target structure are noted and decision rule tabulations are provided for probes that localize in particular targets; these tabulations show distribution of probes in the conceptual space defined by the relevant structure parameters ("parameter space"). Some general implications and limitations of the QSAR models for probe targeting are discussed including the roles of certain cell and protocol factors that play significant roles in lipid staining. A case example illustrates the predictive ability of QSAR models. Key limiting values of the head group hydrophilicity parameter associated with membrane-probe interactions are discussed in an appendix.
Oh, Gyungseok; Yoo, Su Woong; Jung, Yebin; Ryu, Yeon-Mi; Park, Youngrong; Kim, Sang-Yeob; Kim, Ki Hean; Kim, Sungjee; Myung, Seung-Jae; Chung, Euiheon
2014-05-01
Intravital imaging has provided molecular, cellular and anatomical insight into the study of tumor. Early detection and treatment of gastrointestinal (GI) diseases can be enhanced with specific molecular markers and endoscopic imaging modalities. We present a wide-field multi-channel fluorescence endoscope to screen GI tract for colon cancer using multiple molecular probes targeting matrix metalloproteinases (MMP) conjugated with quantum dots (QD) in AOM/DSS mouse model. MMP9 and MMP14 antibody (Ab)-QD conjugates demonstrate specific binding to colonic adenoma. The average target-to-background (T/B) ratios are 2.10 ± 0.28 and 1.78 ± 0.18 for MMP14 Ab-QD and MMP9 Ab-QD, respectively. The overlap between the two molecular probes is 67.7 ± 8.4%. The presence of false negative indicates that even more number of targeting could increase the sensitivity of overall detection given heterogeneous molecular expression in tumors. Our approach indicates potential for the screening of small or flat lesions that are precancerous.
Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors
NASA Astrophysics Data System (ADS)
Kumar, Anand T. N.; Carp, Stefan A.; Yang, Jing; Ross, Alana; Medarova, Zdravka; Ran, Chongzhao
2017-04-01
Although the development of tumor-targeted fluorescent probes is a major area of investigation, it will be several years before these probes are realized for clinical use. Here, we report an approach that employs indocyanine-green (ICG), a clinically approved, nontargeted dye, in conjunction with fluorescence lifetime (FLT) detection to provide high accuracy for tumor-tissue identification in mouse models of subcutaneous human breast and brain tmors. The improved performance relies on the distinct FLTs of ICG within tumors versus tissue autofluorescence and is further aided by the well-known enhanced permeability and retention of ICG in tumors and the clearance of ICG from normal tissue several hours after intravenous injection. We demonstrate that FLT detection can provide more than 98% sensitivity and specificity, and a 10-fold reduction in error rates compared to intensity-based detection. Our studies suggest the significant potential of FLT-contrast for accurate tumor-tissue identification using ICG and other targeted probes under development, both for intraoperative imaging and for ex-vivo margin assessment of surgical specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and themore » IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.« less
Chen, Xiancheng; Gan, Weidong; Ye, Qing; Yang, Jun; Guo, Hongqian; Li, Dongmei
2014-12-16
To explore the value of self-designed fluorescent in situ hybridization (FISH) polyclonal break-apart probes specific for TFE3 gene in the diagnosis of Xp11.2 translocation renal cell carcinoma. All tissue samples were collected from 2006 to 2013, including Xp11.2 translocation renal cell carcinoma (n = 10), renal clear cell carcinoma (n = 10) and renal papillary cell carcinoma (n = 10). FISH was conducted for paraffin-embedded tumor tissue sections with probes. The types of fluorescence were observed by fluorescent microscopy to determine the existence or non-existence of translocated TFE3 gene. All sections were successfully probed. The split red and green signals within a single nucleus were detected simultaneously in 9 cases of Xp11.2 translocation renal cell carcinoma as diagnosed by traditional pathological and immunohistochemical methods. And it was consistent with the initial diagnosis. Detection of fusion signal in 1/10 and negative FISH result did not conform to the initial diagnosis. The fluorescent types of renal clear cell carcinoma and renal papillary cell carcinoma were all fusion signals. FISH tests were negative for renal clear and papillary cell carcinomas. Xp11.2 translocation renal cell carcinomas diagnosed by traditional pathological and immunohistochemical methods are sometimes misdiagnosed. Detecting the translocation of TFE3 gene with FISH polyclonal break-apart probes is both accurate and reliable for diagnosing Xp11.2 translocation renal cell carcinoma.
Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo
2017-05-01
The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe 3 O 4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.
Guo, Jianchang; Mahurin, Shannon M; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W
2014-01-30
In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room-temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B (RhB) dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively charged sulforhodamine 640 (SR640) is slower than that of its positively charged counterpart rhodamine 6G (R6G). An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No significant dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are relatively independent of this solvent parameter.
Zhang, Wei; Ma, Zhao; Du, Lupei; Li, Minyong
2014-06-07
As the cardinal support of innumerable biological processes, biomacromolecules such as proteins, nucleic acids and polysaccharides are of importance to living systems. The key to understanding biological processes is to realize the role of these biomacromolecules in thte localization, distribution, conformation and interaction with other molecules. With the current development and adaptation of fluorescent technologies in biomedical and pharmaceutical fields, the fluorescence imaging (FLI) approach of using small-molecule fluorescent probes is becoming an up-to-the-minute method for the detection and monitoring of these imperative biomolecules in life sciences. However, conventional small-molecule fluorescent probes may provide undesirable results because of their intrinsic deficiencies such as low signal-to-noise ratio (SNR) and false-positive errors. Recently, small-molecule fluorescent probes with a photoinduced electron transfer (PET) "on/off" switch for biomacromolecules have been thoroughly considered. When recognized by the biomacromolecules, these probes turn on/off the PET switch and change the fluorescence intensity to present a high SNR result. It should be emphasized that these PET-based fluorescent probes could be advantageous for understanding the pathogenesis of various diseases caused by abnormal expression of biomacromolecules. The discussion of this successful strategy involved in this review will be a valuable guide for the further development of new PET-based small-molecule fluorescent probes for biomacromolecules.
Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi
2018-05-01
Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.
Yang, Jie; Hu, Wei; Li, Huirong; Hou, Hanna; Tu, Yi; Liu, Bo
2018-04-18
Two-photon microscopy imaging has been widely applied in biological imaging, but the development of two-photon absorption probes is obviously lagging behind in the development of imaging technology. In this paper, a two-photon fluorescent probe (1) based on pyrimidine 2-isothiocyanate has been designed and synthesized through a simple method for two-photon biological imaging. Probe 1 was able to couple effectively with the amino groups on biomolecules. To verify the reactivity of the isothiocyanate group on probe 1 and the amine groups on the biomolecules, d-glucosamine was chosen as a model biomolecule to conjugate with probe 1. The result showed that probe 1 could effectively conjugate with d-glucosamine to synthesize probe 2, and the yield of probe 2 was 83%. After conjugating with d-glucosamine, linear absorption spectra, single-photon fluorescence spectra, and two-photon fluorescence spectra of probes 1 and 2 did not present significant changes. Probes 1 and 2 exhibited high fluorescence quantum yields (0.71-0.79) in toluene and chloroform. They also exhibited different photo-physical properties in solvents with different polarities. The two-photon absorption cross-section of probe 1 was 953 GM in toluene. In addition, probe 1 could be effectively conjugated with transferrin, and the conjugated probe (Tf-1) could be transported into Hep G2 cells through a receptor-mediated process for biological imaging. These results demonstrate that such probes are expected to have great potential applications in two-photon fluorescence bioimaging.
Hirayama, Tasuku; Tsuboi, Hitomi; Niwa, Masato; Miki, Ayaji; Kadota, Satoki; Ikeshita, Yukie; Okuda, Kensuke; Nagasawa, Hideko
2017-07-01
Iron (Fe) species play a number of biologically and pathologically important roles. In particular, iron is a key element in oxygen sensing in living tissue where its metabolism is intimately linked with oxygen metabolism. Regulation of redox balance of labile iron species to prevent the generation of iron-catalyzed reactive oxygen species (ROS) is critical to survival. However, studies on the redox homeostasis of iron species are challenging because of a lack of a redox-state-specific detection method for iron, in particular, labile Fe 2+ . In this study, a universal fluorogenic switching system is established, which is responsive to Fe 2+ ion based on a unique N-oxide chemistry in which dialkylarylamine N-oxide is selectively deoxygenized by Fe 2+ to generate various fluorescent probes of Fe 2+ -CoNox-1 (blue), FluNox-1 (green), and SiRhoNox-1 (red). All the probes exhibited fluorescence enhancement against Fe 2+ with high selectivity both in cuvette and in living cells. Among the probes, SiRhoNox-1 showed an excellent fluorescence response with respect to both reaction rate and off/on signal contrast. Imaging studies were performed showing the intracellular redox equilibrium shift towards labile iron in response to reduced oxygen tension in living cells and 3D tumor spheroids using SiRhoNox-1, and it was found that the hypoxia induction of labile Fe 2+ is independent of iron uptake, hypoxia-induced signaling, and hypoxia-activated enzymes. The present studies demonstrate the feasibility of developing sensitive and specific fluorescent probes for Fe 2+ with refined photophysical characteristics that enable their broad application in the study of iron in various physiological and pathological conditions.
A label-free, fluorescence based assay for microarray
NASA Astrophysics Data System (ADS)
Niu, Sanjun
DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same intensity of excitation light. The fluorescence contrast is used to quantify the amount of probe-target hybridization. A mathematical model that considers multiple reflections and scattering is developed to explain the mechanism of the fluorescence contrast which depends on the thickness of the PS film. Scattering is the dominant factor that contributes to the contrast. The potential of this assay to detect single nucleotide polymorphism is also tested.
Novel DNA probes with low background and high hybridization-triggered fluorescence.
Lukhtanov, Eugeny A; Lokhov, Sergey G; Gorn, Vladimir V; Podyminogin, Mikhail A; Mahoney, Walt
2007-01-01
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5'-end and a non-fluorescent quencher at the 3'-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2-4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB-quencher interaction and concealment of the MGB moiety inside the minor groove.
Novel DNA probes with low background and high hybridization-triggered fluorescence
Lukhtanov, Eugeny A.; Lokhov, Sergey G.; Gorn, Vladimir V.; Podyminogin, Mikhail A.; Mahoney, Walt
2007-01-01
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove. PMID:17259212
Red-emitting fluorescent probe for detecting hypochlorite acid in vitro and in vivo.
Chen, Hong; Sun, Tao; Qiao, Xiao-Guang; Tang, Qian-Oian; Zhao, Shan-Chao; Zhou, Zhan
2018-06-12
Due to the importance of hypochlorous acid (HClO) in biological and industrial, development of fluorescent probes for HClO has been an active research area. Here, a new red-emitting ratiometric fluorescent probe (P) was synthesized and well defined characterization via NMR, HR-MS, and fluorescence spectrum, which serves as a selective and sensitive probe for ClO - group. The probe showed a ratiometric fluorescent response to hypochlorite at the emission intensities ratio (I 480 /I 612 ) increasing from 0.28 to 27.46. The emission intensities ratio (I 480 /I 612 ) was linearly enhanced (I 480 /I 612 = 0.064 X + 0.096) with the ClO - concentration range from 1 to 30 μM. The detection limitation for ClO - in aqueous solution is 0.47 μM. Moreover, this biocompatible red-emitting ratiometric fluorescent probe was utilized to the fluorescence imaging of ClO - in living cells and Zebrafish. Copyright © 2018. Published by Elsevier B.V.
Quantum-chemical investigations of spectroscopic properties of a fluorescence probe
NASA Astrophysics Data System (ADS)
Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.
2012-09-01
The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.
NASA Astrophysics Data System (ADS)
Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin
2017-08-01
A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu2 + ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu2 + ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu2 + to probe QP was found to be 2.12 × 104 M- 1. Further, the Cu2 + ensemble of probe QP was found to respond H2PO4- and HPO42 - among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu2 + cation and H2PO4- and HPO42 - anions in living cells.
Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin
2017-08-05
A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu 2+ ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu 2+ ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu 2+ to probe QP was found to be 2.12×10 4 M -1 . Further, the Cu 2+ ensemble of probe QP was found to respond H 2 PO 4 - and HPO 4 2- among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu 2+ cation and H 2 PO 4 - and HPO 4 2- anions in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A
2013-09-01
Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fluorescent Sensing of Fluoride in Cellular System
Jiao, Yang; Zhu, Baocun; Chen, Jihua; Duan, Xiaohong
2015-01-01
Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F- detection in the past decades. Traditional methods for the detection of F- including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F- are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F-, mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed and applied in the biomedicine field in the future. PMID:25553106
Kostina, E V; Gavrilova, E V; Riabinin, V A; Shchelkunov, S N; Siniakov, A N
2009-01-01
A kit of specific oligonucleotide primers and hybridization probes has been proposed to detect orthopoxviruses (OPV) and to discriminate human pathogenic viruses, such as variola virus and monkey virus by real-time polymerase chain reaction (PCR). For real-time PCR, the following pairs of fluorophore and a fluorescence quencher were used: TAMRA-BHQ2 for genus-specific probes and FAM-BHQ1 for species-specific ones (variola virus, monkeypox virus, ectomelia virus). The specificity of this assay was tested on 38 strains of 6 OPV species and it was 100%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yuan, E-mail: guoyuan@nwu.edu.cn; Institut de Chimie Organique et Analytique, Université d’Orléans, 45067 Orléans Cedex 2; An, Jing
2015-03-15
Graphical abstract: Visual fluorescence emission of probe 3a. - Highlights: • Five novel coumarin-based fluorescent probes were developed. • A reasonable reaction mechanism was proposed and verified. • All the probes showed excellent optical properties. - Abstract: In this work, five novel coumarin-based fluorescent probes for mercury ions were developed. The recognition of mercury ions was performed via the mercury(II)-promoted desulfurization of the probes and a reasonable reaction mechanism was proposed and verified by thin layer chromatography (TLC), {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and fluorescence intensity measurements. All the probes showed excellent optical properties and exclusively distinguishmore » mercury ions from various metal ions in aqueous solutions at pH 7.4. The linear response of the fluorescence emission intensity for all the probes to the concentration of mercury ions was obtained over a wide range of 0.06–1.5 μM (0.06–0.9 μM for probe 3e). In addition, the biological toxicity and the confocal fluorescence images of probe 3a were also tested on MCF-7 cells.« less
Vegesna, Giri K; Sripathi, Srinivas R; Zhang, Jingtuo; Zhu, Shilei; He, Weilue; Luo, Fen-Tair; Jahng, Wan Jin; Frost, Megan; Liu, Haiying
2013-05-22
A highly water-soluble BODIPY dye bearing electron-rich o-diaminophenyl groups at 2,6-positions was prepared as a highly sensitive and selective fluorescent probe for detection of nitric oxide (NO) in living cells. The fluorescent probe displays an extremely weak fluorescence with fluorescence quantum yield of 0.001 in 10 mM phosphate buffer (pH 7.0) in the absence of NO as two electron-rich o-diaminophenyl groups at 2,6-positions significantly quench the fluorescence of the BODIPY dye via photoinduced electron transfer mechanism. The presence of NO in cells enhances the dye fluorescence dramatically. The fluorescent probe demonstrates excellent water solubility, membrane permeability, and compatibility with living cells for sensitive detection of NO.
A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell
NASA Astrophysics Data System (ADS)
Liu, Wei-Yong; Li, Hai-Ying; Lv, Hong-Shui; Zhao, Bao-Xiang; Miao, Jun-Ying
We describe the development of a rhodamine chromene-based turn-on fluorescence probe to monitor the intracellular Cu2+ level in living cells. The new fluorescent probe with a chlorine group in chromene moiety exhibits good membrane-permeable property than previous reported because the predicted lipophilicity of present probe 4 is stronger than that of methoxyl substituted probe in our previous work (CLogP of 4: 8.313, CLogP of methoxyl substituted probe: 7.706), and a fluorescence response toward Cu2+ under physiological conditions with high sensitivity and selectivity, and facilitates naked-eye detection of Cu2+. The fluorescence intensity was remarkably increased upon the addition of Cu2+ within 1 or 2 min, while the other sixteen metal ions caused no significant effect.
Wang, Fengyang; Feng, Chongchong; Lu, Linlin; Xu, Zhiai; Zhang, Wen
2017-07-01
Herein, a ratiometric turn-on fluorescent probe for sensitive detection of biothiols was designed. The probe consisted of two parts: one was rhodamine B serving as a fluorescence reference, and the other was coumarin derivative as the responsive fluorophore with an acrylate group for biothiols recognition. The response was based on the mechanism of Michael addition and intramolecular cyclization reaction, and the probe showed ratiometric and sensitive response to biothiols. Especially, the detection limit of this probe for cysteine was found to be 0.13μΜ. More importantly, the probe showed the advantage of fast response, of which the fluorescence intensity can reach the maximum within 10min. The ratiometric fluorescent probe has been successfully applied for the determination of biothiols in fetal bovine serum samples and the result was in good agreement with that tested by Ellman method. Copyright © 2017. Published by Elsevier B.V.
Spectral unmixing of multi-color tissue specific in vivo fluorescence in mice
NASA Astrophysics Data System (ADS)
Zacharakis, Giannis; Favicchio, Rosy; Garofalakis, Anikitos; Psycharakis, Stylianos; Mamalaki, Clio; Ripoll, Jorge
2007-07-01
Fluorescence Molecular Tomography (FMT) has emerged as a powerful tool for monitoring biological functions in vivo in small animals. It provides the means to determine volumetric images of fluorescent protein concentration by applying the principles of diffuse optical tomography. Using different probes tagged to different proteins or cells, different biological functions and pathways can be simultaneously imaged in the same subject. In this work we present a spectral unmixing algorithm capable of separating signal from different probes when combined with the tomographic imaging modality. We show results of two-color imaging when the algorithm is applied to separate fluorescence activity originating from phantoms containing two different fluorophores, namely CFSE and SNARF, with well separated emission spectra, as well as Dsred- and GFP-fused cells in F5-b10 transgenic mice in vivo. The same algorithm can furthermore be applied to tissue-specific spectroscopy data. Spectral analysis of a variety of organs from control, DsRed and GFP F5/B10 transgenic mice showed that fluorophore detection by optical systems is highly tissue-dependent. Spectral data collected from different organs can provide useful insight into experimental parameter optimisation (choice of filters, fluorophores, excitation wavelengths) and spectral unmixing can be applied to measure the tissue-dependency, thereby taking into account localized fluorophore efficiency. Summed up, tissue spectral unmixing can be used as criteria in choosing the most appropriate tissue targets as well as fluorescent markers for specific applications.
Hydrophobic pocket targeting probes for enteroviruses.
Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu
2015-11-07
Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content, the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.
Qian, Yunxia; Liu, Hongmei; Tan, Haijian; Yang, Qingmin; Zhang, Shuchen; Han, Lingui; Yi, Xuegang; Huo, Li; Zhao, Hongchi; Wu, Yonggang; Bai, Libin; Ba, Xinwu
2017-05-01
A potential real-time imaging water-soluble fluorescent polymer (P3) is facilely prepared via one-pot method. For P3, tetraphenylethene unit serves as the fluorescent unit, poly(acryloyl ethylene diamine) (a kind of polyelectrolyte) with specific degree of polymerization acts as water-soluble part. 1 H-NMR, gel permeation chromatography (GPC), UV-vis spectroscopy, photoluminescence (PL), and confocal laser scanning microscopy are undertaken to characterize the structure and property of P3. The results of wash-free cellular imaging show that the signal-to-noise ratio is high as the concentration of P3 is 50 μg mL -1 . In addition, the pH-responsive and Cd 2+ -responsive are also investigated in this paper. The results coming from pH-responsive show that P3 solution displays significant fluorescence under near neutral. And the result from the cellular imaging shows that intracellular fluorescence intensity enhances with the augment of concentration of Cd 2+ , which reveals that P3 can give a hint to resolve the dilemma of traditional fluorescent dyes used as living cellular fluorescent probe. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Melnikov, A. G.; Dyachuk, O. A.; Melnikov, G. V.
2015-03-01
We have studied the processes of quenching of photoexcited states of fluorescent probes and quenching of the fluorescence of the chromophores of human serum albumin (HSA) by heavy metal ions (HM): cations Tl+, Pb2+, Cu2+, Cd2+, and the anion of iodine (I-). We used the dye from xanthene series - eosin as a fluorescent probe. By quenching of the fluorescence of protein chromophores we found an influence of HM on the structure of proteins, resulting in a shift of the peak of the fluorescence of HSA tryptophanyl. This can be explained by proteins denaturation under the influence of heavy metals and penetration of water into the inner environment of HSA tryptophan. It was established that the constant of the quenching of the probe phosphorescence is much higher than the fluorescence, which is explained by significantly longer lifetime of the photoexcited states of fluorescent probes in the triplet state than in the singlet.
Determination of ethambutol by a sensitive fluorescent probe
NASA Astrophysics Data System (ADS)
Wu, Wen-Ying; Yang, Ji-Yuan; Du, Li-Ming; Wu, Hao; Li, Chang-Feng
2011-08-01
The competitive reaction between ethambutol and two fluorescent probes (i.e., berberine and palmatine) for occupancy of the cucurbit[7]uril (CB[7]) cavity was studied by spectrofluorometry. The CB[7] reacts with these probes to form stable complexes, and the fluorescence intensity of the complexes is greatly enhanced. In addition, the excitation and emission wavelengths of their complexes moved to wavelengths of 343 nm and 495 nm, respectively. However, the addition of ethambutol dramatically quenches the fluorescence intensity of the two complexes. Accordingly, a couple of new fluorescence quenching methods for the determination of ethambutol were established. The methods can be applied for quantifying ethambutol. A linear relationship between the fluorescence quenching values (Δ F) and ethambutol concentration exists in the range of 5.0-1000.0 ng mL -1, with a correlation coefficient ( r) of 0.9997. The detection limit is 1.7 ng mL -1. The fluorescent probe of berberine has higher sensitivity than palmatine. This paper also discusses the mechanism of fluorescence indicator probes.
Fluorescent signatures for variable DNA sequences
Rice, John E.; Reis, Arthur H.; Rice, Lisa M.; Carver-Brown, Rachel K.; Wangh, Lawrence J.
2012-01-01
Life abounds with genetic variations writ in sequences that are often only a few hundred nucleotides long. Rapid detection of these variations for identification of genetic diseases, pathogens and organisms has become the mainstay of molecular science and medicine. This report describes a new, highly informative closed-tube polymerase chain reaction (PCR) strategy for analysis of both known and unknown sequence variations. It combines efficient quantitative amplification of single-stranded DNA targets through LATE-PCR with sets of Lights-On/Lights-Off probes that hybridize to their target sequences over a broad temperature range. Contiguous pairs of Lights-On/Lights-Off probes of the same fluorescent color are used to scan hundreds of nucleotides for the presence of mutations. Sets of probes in different colors can be combined in the same tube to analyze even longer single-stranded targets. Each set of hybridized Lights-On/Lights-Off probes generates a composite fluorescent contour, which is mathematically converted to a sequence-specific fluorescent signature. The versatility and broad utility of this new technology is illustrated in this report by characterization of variant sequences in three different DNA targets: the rpoB gene of Mycobacterium tuberculosis, a sequence in the mitochondrial cytochrome C oxidase subunit 1 gene of nematodes and the V3 hypervariable region of the bacterial 16 s ribosomal RNA gene. We anticipate widespread use of these technologies for diagnostics, species identification and basic research. PMID:22879378
In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment.
Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir
2014-07-01
Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in vivo fluorescence lifetime imaging with HER2-targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pretreatment size. Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (∼0.13 ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment), the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03 ns. The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. ©2014 American Association for Cancer Research.
In-vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment
Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir
2015-01-01
Purpose Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in-vivo fluorescence lifetime imaging with HER2 targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. Experimental Design HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice, bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pre-treatment size. Results Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (~0.13ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment) the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03ns. Conclusions The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in-vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. PMID:24671949
In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.
Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao
2017-08-01
Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.
Li, Jiayao; Henry, Etienne; Wang, Lanmei; Delelis, Olivier; Wang, Huan; Simon, Françoise; Tauc, Patrick; Brochon, Jean-Claude; Zhao, Yunlong; Deprez, Eric
2012-01-01
Fatty acid-binding proteins (FABPs) are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression), the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS), a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16), respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities of several fatty acids closely parallel their prevalences in the hepatopancreas of C. quadricarinatus as measured under specific diet conditions. PMID:23284658
Xiao, Xianjin; Wu, Tongbo; Xu, Lei; Chen, Wei
2017-01-01
Abstract Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89–311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment. PMID:28201758
Sinha, Sougata; Dey, Gourab; Kumar, Sunil; Mathew, Jomon; Mukherjee, Trinetra; Mukherjee, Subhrakanti; Ghosh, Subrata
2013-11-27
Structure-interaction/fluorescence relationship studies led to the development of a small chemical library of Zn(2+)-specific cysteamine-based molecular probes. The probe L5 with higher excitation/emission wavelengths, which absorbs in the visible region and emits in the green, was chosen as a model imaging material for biological studies. After successful imaging of intracellular zinc in four different kinds of cells including living organisms, plant, and animal cells, in vivo imaging potential of L5 was evaluated using plant systems. In vivo imaging of translocation of zinc through the stem of a small herb with a transparent stem, Peperomia pellucida, confirmed the stability of L5 inside biological systems and the suitability of L5 for real-time analysis. Similarly, fluorescence imaging of zinc in gram sprouts revealed the efficacy of the probe in the detection and localization of zinc in cereal crops. This imaging technique will help in knowing the efficiency of various techniques used for zinc enrichment of cereal crops. Computational analyses were carried out to better understand the structure, the formation of probe-Zn(2+) complexes, and the emission properties of these complexes.
Liu, Xingfen; Ouyang, Lan; Cai, Xiaohui; Huang, Yanqin; Feng, Xiaomiao; Fan, Quli; Huang, Wei
2013-03-15
Sensitive, reliable, and simple detection of sequence-specific DNA-binding proteins (DBP) is of paramount importance in the area of proteomics, genomics, and biomedicine. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, visual, quantitative, and "turn-on" detection of DBP. A Förster resonance energy transfer (FRET) assay utilizing a cationic conjugated polymer (CCP) and an intercalating dye was designed to detect a key transcription factor, nuclear factor-kappa B (NF-κB), the model target. A series of label-free DNA probes bearing one or two protein-binding sites (PBS) were used to identify the target protein specifically. The binding DBP protects the probe from digestion by exonuclease III, resulting in high efficient FRET due to the high affinity between the intercalating dye and duplex DNA, as well as strong electrostatic interactions between the CCP and DNA probe. By using label-free hairpin DNA or double-stranded DNA containing two PBS as probe, we could detect as low as 1 pg/μL of NF-κB in HeLa nuclear extracts, which is 10000-fold more sensitive than the previously reported methods. The approach also allows naked-eye detection by observing fluorescent color of solutions with the assistance of a hand-held UV lamp. Additionally, a less than 10% relative standard deviation was obtained, which offers a new platform for superior precision, low-cost, and simple detection of DBP. The features of our optical biosensor shows promising potential for early diagnosis of many diseases and high-throughput screening of new drugs targeted to DNA-binding proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications.
Kaur, Matinder; Choi, Dong Hoon
2015-01-07
The development of fluorescent probes for the detection of biologically relevant species is a burgeoning topic in the field of supramolecular chemistry. A number of available dyes such as rhodamine, coumarin, fluorescein, and cyanine have been employed in the design and synthesis of new fluorescent probes. However, diketopyrrolopyrrole (DPP) and its derivatives have a distinguished role in supramolecular chemistry for the design of fluorescent dyes. DPP dyes offer distinctive advantages relative to other organic dyes, including high fluorescence quantum yields and good light and thermal stability. Significant advancements have been made in the development of new fluorescent probes based on DPP in recent years as a result of tireless research efforts by the chemistry scientific community. In this tutorial review, we highlight the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications. This review is targeted toward providing the readers with deeper understanding for the future design of DPP-based fluorogenic probes for chemical and biological applications.
Highly stable red-emitting polymer dots for cellular imaging
NASA Astrophysics Data System (ADS)
Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Thachoth Chandran, Hrisheekesh; Lee, Chun-Sing
2017-07-01
Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P3HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P3HT Pdots a promising fluorescent probe material for bioimaging.
Highly stable red-emitting polymer dots for cellular imaging.
Chelora, Jipsa; Zhang, Jinfeng; Chen, Rui; Chandran, Hrisheekesh Thachoth; Lee, Chun-Sing
2017-07-14
Polymer dots (Pdots) have emerged as a new type of fluorescent probe material for biomedical applications and have attracted great interest due to their excellent optical properties and biocompatability. In this work, we report on a red-emitting P 3 HT Pdot fluorescent probe for intracellular bioimaging. The as-prepared Pdot fluorescent probe exhibits good stability and has a large Stokes shift (121 nm) compared to molecules in tetrahydrofuran (THF). Furthermore, the probe shows low cytotoxicity, broad absorption spectrum, resistance against photodegradation, and good water dispersibility. These advantageous characteristics make P 3 HT Pdots a promising fluorescent probe material for bioimaging.
Fluorescent triplex-forming DNA oligonucleotides labeled with a thiazole orange dimer unit
Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu
2013-01-01
Fluorescent probes for the detection of a double-stranded DNA were prepared by labeling a triplex-forming DNA oligonucleotide with a thiazole orange (TO) dimer unit. They belong to ECHO (exciton-controlled hybridization-sensitive fluorescent oligonucleotide) probes which we have previously reported. The excitonic interaction between the two TO molecules was expected to effectively suppress the background fluorescence of the probes. The applicability of the ECHO probes for the detection of double-stranded DNA was confirmed by examining the thermal stability and photophysical and kinetic properties of the DNA triplexes formed by the ECHO probes. PMID:23445822
Fluorescent probes and nanoparticles for intracellular sensing of pH values
NASA Astrophysics Data System (ADS)
Shi, Wen; Li, Xiaohua; Ma, Huimin
2014-12-01
Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.
Li, Song-Jiao; Fu, Ya-Jun; Li, Chun-Yan; Li, Yong-Fei; Yi, Lan-Hua; Ou-Yang, Juan
2017-11-22
Cysteine (Cys) is involved in cellular growth and Cys deficiency is related with many diseases. So far, a number of fluorescent probes have been constructed for the detection of Cys successfully. However, the probes are difficult to discriminate Cys from Hcy and the emission wavelength of the probes is in ultraviolet or visible range. Herein, a NIR fluorescent probe named NIR-BODIPY-Ac is synthesized and used to detect Cys. The emission wavelength of the probe is at 708 nm that belongs to near-infrared (NIR) region by attaching indolium to BODIPY core, which is suitable for bioimaging in vivo. Moreover, the probe exhibits high fluorescence quantum yield (Φ = 0.51) after the addition of Cys and high sensitivity toward Cys with 81-fold fluorescence enhancement. The linear range of the probe for Cys covers from 0.2 to 30 μM with a detection limit of 0.05 μM. Furthermore, the probe shows high selectivity towards Cys owing to the fact that there is more fast reaction rate between the probe and Cys than that of Hcy. In particular, the NIR fluorescent probe is applied for the detection of exogenous and endogenous Cys in biological samples such as cell, tissue and mouse with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.
Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie
2015-06-01
Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.
Maruyama, Kohei; Takeyama, Haruko; Nemoto, Etsuo; Tanaka, Tsuyoshi; Yoda, Kiyoshi; Matsunaga, Tadashi
2004-09-20
Single nucleotide polymorphism (SNP) detection for aldehyde dehydrogenase 2 (ALDH2) gene based on DNA thermal dissociation curve analysis was successfully demonstrated using an automated system with bacterial magnetic particles (BMPs) by developing a new method for avoiding light scattering caused by nanometer-size particles when using commercially available fluorescent dyes such as FITC, Cy3, and Cy5 as labeling chromophores. Biotin-labeled PCR products in ALDH2, two allele-specific probes (Cy3-labeled detection probe for ALDH2*1 and Cy5-labeled detection probe for ALDH2*2), streptavidin-immobilized BMPs (SA-BMPs) were simultaneously mixed. The mixture was denatured at 70 degrees C for 3 min, cooled slowly to 25 degrees C, and incubated for 10 min, allowing the DNA duplex to form between Cy3- or Cy5-labeled detection probes and biotin-labeled PCR products on SA-BMPs. Then duplex DNA-BMP complex was heated to 58 degrees C, a temperature determined by dissociation curve analysis and a dissociated single-base mismatched detection probe was removed at the same temperature under precise control. Furthermore, fluorescence signal from the detection probe was liberated into the supernatant from completely matched duplex DNA-BMP complex by heating to 80 degrees C and measured. In the homozygote target DNA (ALDH2*1/*1 and ALDH2*2/*2), the fluorescence signals from single-base mismatched were decreased to background level, indicating that mismatched hybridization was efficiently removed by the washing process. In the heterozygote target DNA (ALDH2*1/*2), each fluorescence signals was at a similar level. Therefore, three genotypes of SNP in ALDH2 gene were detected using the automated detection system with BMPs. Copyright 2004 Wiley Periodicals, Inc.
Miao, Yang-Bao; Ren, Hong-Xia; Gan, Ning; Zhou, You; Cao, Yuting; Li, Tianhua; Chen, Yinji
2016-07-27
In this work, a novel homogeneous and signal "off-on" aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in "off" state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the "off" signal of SSB/L-QD tracer into "on" state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, Yanpeng; Fu, Jiaxin; Yao, Kun; Song, Qianqian; Xu, Kuoxi; Pang, Xiaobin
2018-03-01
A quinoline-based fluorescence probe has been prepared and characterized. Probe 1 showed a selective sensing ability for Al3 + and Fe3 + ions through fluorescence enhancement response at 515 nm when it was excited at 360 nm. In the presence of Fe3 + ion, probe 1 exhibited a detection limit of 2.10 × 10- 6 M. As for Al3 +, its detection limit of 3.58 × 10- 7 M was significantly lower than the highest limit of Al3 + in drinking water recommended by the WHO (7.41 μM), representing a rare example in reported fluorescent probe for Al3 + ion. The fluorescence microscopy experiments have demonstrated that probe 1 could be used in live cells for the detection of Al3 + and Fe3 + ions.
Photoelectrocyclization as an activation mechanism for organelle-specific live-cell imaging probes.
Tran, Mai N; Chenoweth, David M
2015-05-26
Photoactivatable fluorophores are useful tools in live-cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle-specific live-cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water-soluble, non-cytotoxic, cell-permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre-activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single-cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single- or multi-cell labeling experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design strategies of fluorescent probes for selective detection among biothiols.
Niu, Li-Ya; Chen, Yu-Zhe; Zheng, Hai-Rong; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng
2015-10-07
Simple thiol derivatives, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and the fluorescent probes to detect such thiols in vivo selectively with high sensitivity and fast response times are critical for understanding their numerous functions. However, the similar structures and reactivities of these thiols pose considerable challenges to the development of such probes. This review focuses on various strategies for the design of fluorescent probes for the selective detection of biothiols. We classify the fluorescent probes for discrimination among biothiols according to reaction types between the probes and thiols such as cyclization with aldehydes, conjugate addition-cyclization with acrylates, native chemical ligation, and aromatic substitution-rearrangement.
GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronn, M.T.; Miyada, C.G.; Fucini, R.V.
1994-09-01
GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by amore » sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.« less
Stanton, Michael; Cronin, Michelle; Lehouritis, Panos; Tangney, Mark
2015-01-01
The feasibility of utilising bacteria as vectors for gene therapy is becoming increasingly recognised. This is primarily due to a number of intrinsic properties of bacteria such as their tumour targeting capabilities, their ability to carry large genetic or protein loads and the availability of well-established genetic engineering tools for a range of common lab strains. However, a number of issues relating to the use of bacteria as vectors for gene therapy need to be addressed in order for the field to progress. Amongst these is the need for the development of non-invasive detection/imaging systems for bacteria within a living host. In vivo optical imaging has advanced preclinical research greatly, and typically involves engineering of bacteria with genetic expression constructs for luminescence (e.g. the lux operon) or fluorescent proteins (GFP etc.). This requirement for genetic modification can be restrictive, where engineering is not experimentally appropriate or technologically feasible (e.g. due to lack of suitable engineering tools). We describe a novel strategy exploiting endogenous bacterial enzymatic activity to specifically activate an exogenously administered fluorescent imaging probe. The red shifted, quenched fluorophore CytoCy5S is reduced to a fluorescent form by bacterial-specific nitroreductase (NTR) enzymes. NTR enzymes are present in a wide range of bacterial genera and absent in mammalian systems, permitting highly specific detection of Gram-negative and Gram-positive bacteria in vivo. In this study, dose-responsive bacterial-specific signals were observed in vitro from all genera examined - E. coli, Salmonella, Listeria, Bifidobacterium and Clostridium difficile. Examination of an NTR-knockout strain validated the enzyme specificity of the probe. In vivo whole-body imaging permitted specific, dose-responsive monitoring of bacteria over time in various infection models, and no toxicity to bacteria or host was observed. This study demonstrates the concept of exploiting innate NTR activity as a reporting strategy for wild-type bacteria using optical imaging, while the concept may also be extended to NTR-specific probes for use with other imaging modalities.
Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji
2011-01-01
We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.
High specificity ZnO quantum dots for diagnosis and treatment in bacterial infection
NASA Astrophysics Data System (ADS)
Zhang, Min; Qian, Zhiyu; Gu, Yueqing
2016-03-01
Early diagnosis and effective treatment of bacterial infection has become increasingly important. Herein, we developed a fluorescent nano-probe MPA@ZnO-PEP by conjugating SiO2-stabilized ZnO quantum dot (ZnO@SiO2) with bacteria-targeting peptide PEP, which was encapsulated with MPA, a near infrared (NIR) dye. The nanoprobe MPA@ZnO-PEP showed excellent fluorescence property and could specifically distinguish bacterial infection from sterile inflammation both in vitro and in vivo. The favorable biocompatability of MPA@ZnO-PEP was verified by MTT assay. This probe was further modified with antibiotic methicillin to form the theranostic nanoparticle MPA/Met@ZnO-PEP with amplified antibacterial activity. These results promised the great potential of MPA@ZnO-PEP for efficient non-invasive early diagnosis of bacterial infections and effective bacterial-targeting therapy.
NASA Astrophysics Data System (ADS)
Miao, Zheng; Ren, Gang; Liu, Hongguang; Jiang, Lei; Cheng, Zhen
2010-05-01
Affibody protein is an engineered protein scaffold with a three-helical bundle structure. Affibody molecules of small size (7 kD) have great potential for targeting overexpressed cancer biomarkers in vivo. To develop an Affibody-based molecular probe for in vivo optical imaging of epidermal growth factor receptor (EGFR) positive tumors, an anti-EGFR Affibody molecule, Ac-Cys-ZEGFR:1907 (7 kD), is site-specifically conjugated with a near-IR fluorescence dye, Cy5.5-mono-maleimide. Using fluorescent microscopy, the binding specificity of the probe Cy5.5-ZEGFR:1907 is checked by a high-EGFR-expressing A431 cell and low-EGFR-expressing MCF7 cells. The binding affinity of Cy5.5-ZEGFR:1907 (KD) to EGFR is 43.6+/-8.4 nM, as determined by flow cytometry. For an in vivo imaging study, the probe shows fast tumor targeting and good tumor contrast as early as 0.5 h postinjection (p.i.) for A431 tumors, while MCF7 tumors are barely visible. An ex vivo imaging study also demonstrates that Cy5.5-ZEGFR:1907 has high tumor, liver, and kidney uptakes at 24 h p.i.. In conclusion, Cy5.5-ZEGFR:1907 shows good affinity and high specificity to the EGFR. There is rapid achievement of good tumor-to-normal-tissue contrasts of Cy5.5-ZEGFR:1907, thus demonstrating its potential for EGFR-targeted molecular imaging of cancers.
Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan
2012-07-01
In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30 s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.
Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue
2015-08-21
In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.
NASA Astrophysics Data System (ADS)
Li, Mengling; Wang, Hong; Zhang, Xian; Zhang, Hua-shan
2004-03-01
A new fluorescent probe, 1,3,5,7-tetramethyl-8-(4'-aminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza- s-indacence (TMABODIPY) has been developed for the determination of trace nitrite in terms of the reaction of nitrite with TMABODIPY first in acidic solution and then in alkaline solution to form diazotate, a stable and highly fluorescent reagent. The method offered the advantage of specificity, sensitivity and simplicity. The linear calibration range for nitrite was 8-300 nmol l -1 s with a 3 σ detection limit of 0.65 nmol l -1. The proposed method has been applied to monitor the trace nitrite in drinking water and vegetable without extraction.
NASA Astrophysics Data System (ADS)
Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling
2016-03-01
Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (<114nm), high two-photon absorption cross sections (up to 2,800 GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.
Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes.
Paës, Gabriel; Habrant, Anouck; Ossemond, Jordane; Chabbert, Brigitte
2017-01-01
The lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information. Poplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate-dextrans of 20 and 70 kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose-hemicellulose collapse. Evaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.
A near-infrared fluorescent probe for rapid detection of carbon monoxide in living cells.
Yan, Liqiang; Nan, Ding; Lin, Cheng; Wan, Yi; Pan, Qiang; Qi, Zhengjian
2018-09-05
A near-infrared (NIR) and colorimetric fluorescent probe system was developed for Carbon Monoxide (CO) via a Pd 0 -mediated Tsuji-Trost reaction. In this probe, phenoxide anion formation (DPCO - ) was acted as the signal unit and an allyl carbonate group was used as the recognition unit. This non-fluorescent probe molecule can release the relevant fluorophore after conversion of Pd 2+ to Pd 0 by CO. The probe system including probe 1 and Pd 2+ can be used for "naked-eye" detection of CO, and exhibited high selectivity to CO over various other sensing objects. More importantly, the probe system has great potential for fluorescence imaging of intracellular CO in living cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Imaging dynamic redox processes with genetically encoded probes.
Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P
2014-08-01
Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.
Gadkar, Vijay J; Goldfarb, David M; Gantt, Soren; Tilley, Peter A G
2018-04-03
Loop-mediated isothermal amplification (LAMP) is an isothermal nucleic acid amplification (iNAAT) technique known for its simplicity, sensitivity and speed. Its low-cost feature has resulted in its wide scale application, especially in low resource settings. The major disadvantage of LAMP is its heavy reliance on indirect detection methods like turbidity and non-specific dyes, which often leads to the detection of false positive results. In the present work, we have developed a direct detection approach, whereby a labelled loop probe quenched in its unbound state, fluoresces only when bound to its target (amplicon). Henceforth, referred to as Fluorescence of Loop Primer Upon Self Dequenching-LAMP (FLOS-LAMP), it allows for the sequence-specific detection of LAMP amplicons. The FLOS-LAMP concept was validated for rapid detection of the human pathogen, Varicella-zoster virus, from clinical samples. The FLOS-LAMP had a limit of detection of 500 copies of the target with a clinical sensitivity and specificity of 96.8% and 100%, respectively. The high level of specificity is a major advance and solves one of the main shortcomings of the LAMP technology, i.e. false positives. Self-quenching/de-quenching probes were further used with other LAMP primer sets and different fluorophores, thereby demonstrating its versatility and adaptability.
Swiatkowska, Angelika; Kosman, Joanna; Juskowiak, Bernard
2016-01-05
Spectral properties and G-quadruplex folding ability of fluorescent oligonucleotide probes at the cationic dioctadecyldimethylammonium bromide (DODAB) monolayer interface are reported. Two oligonucleotides, a 19-mer bearing thrombin binding aptamer sequence and a 21-mer with human telomeric sequence, were end-labeled with fluorescent groups (FAM and TAMRA) to give FRET probes F19T and F21T, respectively. The probes exhibited abilities to fold into a quadruplex structure and to bind metal cations (Na(+) and K(+)). Fluorescence spectra of G-quadruplex FRET probes at the monolayer interface are reported for the first time. Investigations included film balance measurements (π-A isotherms) and fluorescence spectra recording using a fiber optic accessory interfaced with a spectrofluorimeter. The effect of the presence of DODAB monolayer, metal cations and the surface pressure of monolayer on spectral behavior of FRET probes were examined. Adsorption of probe at the cationic monolayer interface resulted in the FRET signal enhancement even in the absence of metal cations. Variation in the monolayer surface pressure exerted rather modest effect on the spectral properties of probes. The fluorescence energy transfer efficiency of monolayer adsorbed probes increased significantly in the presence of sodium or potassium ion in subphase, which indicated that the probes retained their cation binding properties when adsorbed at the monolayer interface. Copyright © 2015 Elsevier B.V. All rights reserved.
BSA Au clusters as a probe for enhanced fluorescence detection using multipulse excitation scheme.
Raut, Sangram L; Rich, Ryan; Fudala, Rafal; Kokate, R; Kimball, J D; Borejdo, Julian; Vishwanatha, Jamboor K; Gryczynski, Zygmunt; Gryczynski, Ignacy
2014-01-01
Although BSA Au clusters fluoresce in red region (λmax: 650 nm), they are of limited use due to low fluorescence quantum yield (~6%). Here we report an enhanced fluorescence imaging application of fluorescent bio-nano probe BSA Au clusters using multipulse excitation scheme. Multipulse excitation takes advantage of long fluorescence lifetime (> 1 µs) of BSA Au clusters and enhances its fluorescence intensity 15 times over short lived cellular auto-fluorescence. Moreover we have also shown that by using time gated detection strategy signal (fluorescence of BSA Au clusters) to noise (auto-fluorescence) ratio can be increased by 30 fold. Thereby with multipulse excitation long lifetime probes can be used to develop biochemical assays and perform optical imaging with zero background.
Wang, Kang-Nan; Chao, Xi-Juan; Liu, Bing; Zhou, Dan-Jie; He, Liang; Zheng, Xiao-Hui; Cao, Qian; Tan, Cai-Ping; Zhang, Chen; Mao, Zong-Wan
2018-03-08
Two cationic molecular rotors, 1 and 2, capable of real-time cell-cycle imaging by specifically dynamic monitoring of nucleolus and chromosome changes were developed. A further study shows that fluorescence enhancements in the nucleolus and chromosome are attributed to a combination effect of interaction with nucleic acid and high condensation of the nucleolus and chromosome.
Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes.
Xu, Wang; Zeng, Zebing; Jiang, Jian-Hui; Chang, Young-Tae; Yuan, Lin
2016-10-24
Principle has it that even the most advanced super-resolution microscope would be futile in providing biological insight into subcellular matrices without well-designed fluorescent tags/probes. Developments in biology have increasingly been boosted by advances of chemistry, with one prominent example being small-molecule fluorescent probes that not only allow cellular-level imaging, but also subcellular imaging. A majority, if not all, of the chemical/biological events take place inside cellular organelles, and researchers have been shifting their attention towards these substructures with the help of fluorescence techniques. This Review summarizes the existing fluorescent probes that target chemical/biological events within a single organelle. More importantly, organelle-anchoring strategies are described and emphasized to inspire the design of new generations of fluorescent probes, before concluding with future prospects on the possible further development of chemical biology. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying
2016-01-01
Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4’- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells. PMID:27547822
Redox-Responsive Fluorescent Probes with Different Design Strategies.
Lou, Zhangrong; Li, Peng; Han, Keli
2015-05-19
In an aerobic organism, reactive oxygen species (ROS) are an inevitable metabolic byproduct. Endogenously produced ROS have a significant role in physiological processes, but excess ROS can cause oxidative stress and can damage tissue. Cells possess elaborate mechanisms to regulate their internal redox status. The intracellular redox homeostasis plays an essential role in maintaining cellular function. However, moderate alterations in redox balance can accompany major transitions in a cell's life cycle. Because of the role of ROS in physiology and in pathology, researchers need new tools to study redox chemistry in biological systems.In recent years, researchers have made remarkable progress in developing new, highly sensitive and selective fluorescent probes that respond to redox changes, and in this Account we highlight related research, primarily from our own group. We present an overview of the design, photophysical properties, and fluorescence transduction mechanisms of reported molecules that probe redox changes. We have designed and synthesized a series of fluorescent probes for redox cycles in biological systems relying on the active center of glutathione peroxidase (GPx). We have also constructed probes based on the oxidation and reduction of hydroquinone and of 2,2,6,6-tetramethylpiperidinooxy (TEMPO). Most of these probes exhibit high sensitivity and good selectivity, absorb in the near-infrared, and respond rapidly. Such probes are useful for confocal fluorescence microscopy, a dynamic imaging technique that could allow researchers to observe biologically important ROS and antioxidants in real time. This technique and these probes provide potentially useful tools for exploring the generation, transport, physiological function, and pathogenic mechanisms of ROS and antioxidants.We also describe features that could improve the properties of redox-responsive fluorescent probes: greater photostability; rapid, dynamic, cyclic and ratiometric responses; and broader absorption in the near-IR region. In addition, fluorescent probes that include organochalcogens such as selenium and tellurium show promise for a new class of fluorescent redox probes that are both chemically stable and robustly reversible. However, further investigations of the chemical and fluorescence transduction mechanisms of selenium-based probes in response to ROS are needed.
In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe.
Zheng, Linfeng; Li, Kangan; Han, Yuedong; Wei, Wei; Zheng, Sujuan; Zhang, Guixiang
2014-11-01
Neuroimaging plays a pivotal role in clinical practice. Currently, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and positron emission tomography (PET) are applied in the clinical setting as neuroimaging modalities. There is no optimal imaging modality for clinical peripheral nerve imaging even though fluorescence/bioluminescence imaging has been used for preclinical studies on the nervous system. Some studies have shown that molecular and cellular MRI (MCMRI) can be used to visualize and image the cellular and molecular level of the nervous system. Other studies revealed that there are different pathological/molecular changes in the proximal and distal sites after peripheral nerve injury (PNI). Therefore, we hypothesized that in vivo peripheral nerve targets can be imaged using MCMRI with specific MRI probes. Specific probes should have higher penetrability for the blood-nerve barrier (BNB) in vivo. Here, a functional nanometre MRI probe that is based on nerve-specific proteins as targets, specifically, using a molecular antibody (mAb) fragment conjugated to iron nanoparticles as an MRI probe, was constructed for further study. The MRI probe allows for imaging the peripheral nerve targets in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging.
Chyan, Wen; Raines, Ronald T
2018-06-20
Fluorogenic probes, small-molecule sensors that unmask brilliant fluorescence upon exposure to specific stimuli, are powerful tools for chemical biology. Those probes that respond to enzymatic activity illuminate the complex dynamics of biological processes at a level of spatiotemporal detail and sensitivity unmatched by other techniques. Here, we review recent advances in enzyme-activated fluorogenic probes for biological imaging. We organize our survey by enzyme classification, with emphasis on fluorophore masking strategies, modes of enzymatic activation, and the breadth of current and future applications. Key challenges such as probe selectivity and spectroscopic requirements are described alongside of therapeutic, diagnostic, and theranostic opportunities.
Li, Ying; Liu, Weimin; Zhang, Panpan; Zhang, Hongyan; Wu, Jiasheng; Ge, Jiechao; Wang, Pengfei
2017-04-15
A fluorescent probe (1) for distinguishing amongst biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), is developed based on different cascade reactions. The key design feature of fluorescent probe 1 is the integration of two potential reaction groups for the thiol and amino groups of biothiols in one molecule. By reacting with the halogen atom and α, β-unsaturated malonitrile in probe 1, Cys, Hcy and GSH can generate a total of three main products with distinct photophysical properties. Probe 1 shows a strong fluorescence turn-on response to Cys with blue-green emission by using an excitation wavelength of 390nm. At an excitation wavelength of 500nm, probe 1 responds to GSH over Cys and Hcy and emits strong orange fluorescence. The discrimination of biothiols can be demonstrated by cell imaging experiments, indicating that probe 1 can be a useful tool for the selective imaging of Cys and GSH in living cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Lei, Kepeng; Sun, Mingtai; Du, Libo; Zhang, Xiaojie; Yu, Huan; Wang, Suhua; Hayat, Tasawar; Alsaedi, Ahmed
2017-08-01
The sensitive and selective fluorescence probe for hydroxyl radical analysis is of significance because hydroxyl radical plays key roles in many physiological and pathological processes. In this work, a novel organic fluorescence molecular probe OHP for hydroxyl radical is synthesized by a two-step route. The probe employs 4-bora-3a,4a-diaza-s-indacene (difluoroboron dipyrromethene, BODIPY) as the fluorophore and possesses relatively high fluorescence quantum yields (77.14%). Hydroxyl radical can rapidly react with the probe and quench the fluorescence in a good linear relationship (R 2 =0.9967). The limit of detection is determined to be as low as 11nM. In addition, it has been demonstrated that the probe has a good stability against pH and light illumination, low cytotoxicity and high biocompatibility. Cell culture experimental results show that the probe OHP is sensitive and selective for imaging and tracking endogenous hydroxyl radical in live cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates
Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.
2013-01-01
Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521
Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong
2017-12-01
Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.
Sun, Yulong; Ip, Philbert; Chakrabartty, Avijit
2017-09-03
Immunofluorescence is a common method used to visualize subcellular compartments and to determine the localization of specific proteins within a tissue sample. A great hindrance to the acquisition of high quality immunofluorescence images is endogenous autofluorescence of the tissue caused by aging pigments such as lipofuscin or by common sample preparation processes such as aldehyde fixation. This protocol describes how background fluorescence can be greatly reduced through photobleaching using white phosphor light emitting diode (LED) arrays prior to treatment with fluorescent probes. The broad-spectrum emission of white phosphor LEDs allow for bleaching of fluorophores across a range of emission peaks. The photobleaching apparatus can be constructed from off-the-shelf components at very low cost and offers an accessible alternative to commercially available chemical quenchers. A photobleaching pre-treatment of the tissue followed by conventional immunofluorescence staining generates images free of background autofluorescence. Compared to established chemical quenchers which reduced probe as well as background signals, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. Although photobleaching requires more time for pre-treatment, higher intensity LED arrays may be used to reduce photobleaching time. This simple method can potentially be applied to a variety of tissues, particularly postmitotic tissues that accumulate lipofuscin such as the brain and cardiac or skeletal muscles.
Jiang, Yang; Gong, Yuanzheng; Rubenstein, Joel H; Wang, Thomas D; Seibel, Eric J
2017-04-01
Multimodal endoscopy using fluorescence molecular probes is a promising method of surveying the entire esophagus to detect cancer progression. Using the fluorescence ratio of a target compared to a surrounding background, a quantitative value is diagnostic for progression from Barrett's esophagus to high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC). However, current quantification of fluorescent images is done only after the endoscopic procedure. We developed a Chan-Vese-based algorithm to segment fluorescence targets, and subsequent morphological operations to generate background, thus calculating target/background (T/B) ratios, potentially to provide real-time guidance for biopsy and endoscopic therapy. With an initial processing speed of 2 fps and by calculating the T/B ratio for each frame, our method provides quasireal-time quantification of the molecular probe labeling to the endoscopist. Furthermore, an automatic computer-aided diagnosis algorithm can be applied to the recorded endoscopic video, and the overall T/B ratio is calculated for each patient. The receiver operating characteristic curve was employed to determine the threshold for classification of HGD/EAC using leave-one-out cross-validation. With 92% sensitivity and 75% specificity to classify HGD/EAC, our automatic algorithm shows promising results for a surveillance procedure to help manage esophageal cancer and other cancers inspected by endoscopy.
Arrigucci, Riccardo; Bushkin, Yuri; Radford, Felix; Lakehal, Karim; Vir, Pooja; Pine, Richard; Martin, December; Sugarman, Jeffrey; Zhao, Yanlin; Yap, George S; Lardizabal, Alfred A; Tyagi, Sanjay; Gennaro, Maria Laura
2017-01-01
We describe a flow-cytometry-based protocol for intracellular mRNA measurements in nonadherent mammalian cells using fluorescence in situ hybridization (FISH) probes. The method, which we call FISH-Flow, allows for high-throughput multiparametric measurements of gene expression, a task that was not feasible with earlier, microscopy-based approaches. The FISH-Flow protocol involves cell fixation, permeabilization and hybridization with a set of fluorescently labeled oligonucleotide probes. In this protocol, surface and intracellular protein markers can also be stained with fluorescently labeled antibodies for simultaneous protein and mRNA measurement. Moreover, a semiautomated, single-tube version of the protocol can be performed with a commercially available cell-wash device that reduces cell loss, operator time and interoperator variability. It takes ~30 h to perform this protocol. An example of FISH-Flow measurements of cytokine mRNA induction by ex vivo stimulation of primed T cells with specific antigens is described. PMID:28518171
Live imaging of apoptotic cells in zebrafish
van Ham, Tjakko J.; Mapes, James; Kokel, David; Peterson, Randall T.
2010-01-01
Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.—Van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. PMID:20601526
Liang, Meijuan; Ren, Yi; Zhang, Haijuan; Ma, Yunxia; Niu, Xiaoying; Chen, Xingguo
2017-09-01
Heteroatom-doped carbon nanoparticles (CNPs) have attracted considerable attention due to an effective improvement in their intrinsic properties. Here, a facile and simple synthesis of nitrogen, boron co-doped carbon nanoparticles (NB-CNPs) from a sole precursor, 3-aminophenylboronic acid, was performed via a one-step solid-phase approach. Because of the presence of boronic acid, NB-CNPs can be used directly as a fluorescent probe for glucose. Based on a boronic acid-triggered specific reaction, we developed a simple NB-CNP probe without surface modification for the detection of glucose. When glucose was introduced, the fluorescence of NB-CNPs was suppressed through a surface-quenching states mechanism. Obvious fluorescence quenching allowed the highly sensitive determination of glucose with a limit of detection of 1.8 μM. Moreover, the proposed method has been successfully used to detect glucose in urine from people with diabetes, suggesting potential application in sensing glucose. Copyright © 2017 John Wiley & Sons, Ltd.
Optical imaging probes in oncology
Martelli, Cristina; Dico, Alessia Lo; Diceglie, Cecilia; Lucignani, Giovanni; Ottobrini, Luisa
2016-01-01
Cancer is a complex disease, characterized by alteration of different physiological molecular processes and cellular features. Keeping this in mind, the possibility of early identification and detection of specific tumor biomarkers by non-invasive approaches could improve early diagnosis and patient management. Different molecular imaging procedures provide powerful tools for detection and non-invasive characterization of oncological lesions. Clinical studies are mainly based on the use of computed tomography, nuclear-based imaging techniques and magnetic resonance imaging. Preclinical imaging in small animal models entails the use of dedicated instruments, and beyond the already cited imaging techniques, it includes also optical imaging studies. Optical imaging strategies are based on the use of luminescent or fluorescent reporter genes or injectable fluorescent or luminescent probes that provide the possibility to study tumor features even by means of fluorescence and luminescence imaging. Currently, most of these probes are used only in animal models, but the possibility of applying some of them also in the clinics is under evaluation. The importance of tumor imaging, the ease of use of optical imaging instruments, the commercial availability of a wide range of probes as well as the continuous description of newly developed probes, demonstrate the significance of these applications. The aim of this review is providing a complete description of the possible optical imaging procedures available for the non-invasive assessment of tumor features in oncological murine models. In particular, the characteristics of both commercially available and newly developed probes will be outlined and discussed. PMID:27145373
Tang, Yonghe; Lee, Dayoung; Wang, Jiaoliang; Li, Guanhan; Yu, Jinghua; Lin, Weiying; Yoon, Juyoung
2015-08-07
Recently, the strategy of protection-deprotection of functional groups has been widely employed to design fluorescent probes, as the protection-deprotection of functional groups often induces a marked change in electronic properties. Significant advances have been made in the development of analyte-responsive fluorescent probes based on the protection-deprotection strategy. In this tutorial review, we highlight the representative examples of small-molecule based fluorescent probes for bioimaging, which are operated via the protection-deprotection of key functional groups such as aldehyde, hydroxyl, and amino functional groups reported from 2010 to 2014. The discussion includes the general protection-deprotection methods for aldehyde, hydroxyl, or amino groups, as well as the design strategies, sensing mechanisms, and deprotection modes of the representative fluorescent imaging probes applied to bio-imaging.
Dual-Reactable Fluorescent Probes for Highly Selective and Sensitive Detection of Biological H2 S.
Wei, Chao; Wang, Runyu; Zhang, Changyu; Xu, Guoce; Li, Yanyan; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen
2016-05-06
Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with a variety of biological functions. Development of fluorescent probes for highly selective and sensitive detection of H2 S is necessary. We show here that dual-reactable fluorescent H2 S probes could react with higher selectivity than single-reactable probes. One of the dual-reactable probes gives more than 4000-fold turn-on response when reacting with H2 S, the largest response among fluorescent H2 S probes reported thus far. In addition, the probe could be used for high-throughput enzymatic assays and for the detection of Cys-induced H2 S in cells and in zebrafish. These dual-reactable probes hold potential for highly selective and sensitive detection of H2 S in biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yujin; Leng, Jiancai; Hu, Wei
2018-04-25
In the present work, we systematically investigate the sensing abilities of two recently literature-reported two-photon fluorescent NO probes, i.e., the o-phenylenediamine derivative of Nile Red and the p-phenylenediamine derivative of coumarin. The recognition mechanisms of these probes are studied by using the molecular orbital classifying method, which demonstrates the photoinduced electron transfer process. In addition, we have designed two new probes by swapping receptor units present on fluorophores, i.e., the p-phenylenediamine derivative of Nile Red and the o-phenylenediamine derivative of coumarin. However, it illustrates that only the latter has ability to function as off-on typed fluorescent probe for NO. More importantly, calculations on the two-photon absorption properties of the probes demonstrate that both receptor derivatives of coumarin possess larger TPA cross-sections than Nile Red derivatives, which makes a better two photon fluorescent probe. Our theoretical investigations reveal that the underlying mechanism satisfactorily explain the experimental results, providing a theoretical basis on the structure-property relationships which is beneficial to developing new two-photon fluorescent probes for NO.
DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.
Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui
2014-10-15
An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.
Lin, Dan; Gong, Xiu-li; Li, Wei; Guo, Xin-bing; Zhu, Yi-wen; Huang, Ying
2008-02-01
To establish a highly sensitive and specific dual-color fluorescence in situ hybridization (D-FISH) method used for chromosomal localization of foreign genes in double transgenic mice. Two strains of double transgenic mice were used in this experiment, one was integrated with the herpes simplex virus thymidine kinase (HSV-tk) and the enhanced green fluorescence protein (eGFP), the other was with the short hairpin RNA interference(RNAi) and beta(654). Splenic cells cultured in vitro were arrested in metaphase by colchicine and hybridized with digoxigenin-labeled and biotinylated DNA probes, then detected by rhodamine-conjugated avidin and FITC-conjugated anti-digoxigenin. Dual-color fluorescence signals were detected on the same metaphase in both transgenic mice strains. In HSV-tk/eGFP double transgenic mice, strong green fluorescence for HSV-tk and red for eGFP were observed and localized at 2E5-G3 and 8A2-A4 respectively. In beta(654)/RNAi mice, beta(654) was detected as red fluorescence on chromosome 7D3-E2, and RNAi showed random integration on chromosomes. It was detected as green fluorescence on chromosome 12B1 in one mouse, while on 1E2.3-1F and 3A3 in the other. Highly sensitive and specific D-FISH method was established using the self-prepared DNA probes, and chromosomal localization of the foreign genes was also performed in combination with G-banding in double transgenic mice. This technology will facilitate the researches in transgenic animals and gene therapy models.
Datinská, Vladimíra; Klepárník, Karel; Belšánová, Barbora; Minárik, Marek; Foret, František
2018-05-09
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a non-complementary strands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng
2018-01-01
A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.
Oliveira, Kenneth; Procop, Gary W.; Wilson, Deborah; Coull, James; Stender, Henrik
2002-01-01
A new fluorescence in situ hybridization (FISH) method with peptide nucleic acid (PNA) probes for identification of Staphylococcus aureus directly from positive blood culture bottles that contain gram-positive cocci in clusters (GPCC) is described. The test (the S. aureus PNA FISH assay) is based on a fluorescein-labeled PNA probe that targets a species-specific sequence of the 16S rRNA of S. aureus. Evaluations with 17 reference strains and 48 clinical isolates, including methicillin-resistant and methicillin-susceptible S. aureus species, coagulase-negative Staphylococcus species, and other clinically relevant and phylogenetically related bacteria and yeast species, showed that the assay had 100% sensitivity and 96% specificity. Clinical trials with 87 blood cultures positive for GPCC correctly identified 36 of 37 (97%) of the S. aureus-positive cultures identified by standard microbiological methods. The positive and negative predictive values were 100 and 98%, respectively. It is concluded that this rapid method (2.5 h) for identification of S. aureus directly from blood culture bottles that contain GPCC offers important information for optimal antibiotic therapy. PMID:11773123
Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela
2017-10-18
Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.
Yuan, Mao-Sen; Wang, Qi; Wang, Wenji; Wang, Dong-En; Wang, Junru; Wang, Jinyi
2014-03-21
Fluoride anion (F(-)) significantly affects chemical, biological, and environmental processes. Fluoride recognition and detection have received increasing attention. Convenient, effective, and sensitive fluorescent probes for F(-) should urgently be designed and synthesized. In this study, we describe a strategy for constructing two triarylborane-based fluoride fluorescent probes: 2,7,12-tri(2-(5-(dimesitylboryl)thiophen-2-yl)ethynyl)-5,5',10,10',15,15'-hexaethyltruxene (C3B3) with π-3A (acceptor) configuration and 2,7-di(N,N-diphenylamino)-12-(5-(dimesitylboryl)thiophen-2-yl)-5,5',10,10',15,15'-hexaethyltruxene (N2SB) with 2D (donor)-π-A configuration. The loss of color of the tetrahydrofuran solution of these probes from greenish yellow suggests that they can conveniently monitor F(-) at a low concentration (10 μM) free of apparatus. The different structural features of these probes varied their fluorescent responses to F(-). The single-photon fluorescence intensity of C3B3 declined to 90% upon the addition of 4.5 equivalents of F(-) to its tetrahydrofuran solution. However, the single-photon fluorescence intensity of N2SB was enhanced six-fold upon addition of 2.5 equivalents of the F(-). Under the experimental conditions, the detection limits of the two probes for F(-) can reach 12-13 μM (C3B3) and 3-5 μM (N2SB). The ability of the two probes in detecting F(-) in their toluene solutions in the two-photon mode was also investigated. The sensitive two-photon fluorescence responses of both probes make them excellent two-photon fluorescence probes.
Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe
NASA Astrophysics Data System (ADS)
Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.
2016-03-01
Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.
A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells.
Zhang, Jingtuo; Li, Cong; Dutta, Colina; Fang, Mingxi; Zhang, Shuwei; Tiwari, Ashutosh; Werner, Thomas; Luo, Fen-Tair; Liu, Haiying
2017-05-22
A novel near-infrared fluorescent probe for β-galactosidase has been developed based on a hemicyanine skeleton, which is conjugated with a d-galactose residue via a glycosidic bond. The probe serves as a substrate of β-galactosidase and displays rapid and sensitive turn-on fluorescent responses to β-galactosidase in aqueous solution. A 12.8-fold enhancement of fluorescence intensity at 703 nm was observed after incubation of 10 nM of β-galactosidase with 5 μM probe for 10 min. The probe can sensitively detect as little as 0.1 nM of β-galactosidase and shows linear responses to the enzyme concentration below 1.4 nM. The kinetic study showed that the probe has high binding affinity to β-galactosidase with K m = 3.6 μM. The probe was used to detect β-galactosidase in living cells by employing the premature cell senescence model. The probe exhibited strong fluorescent signals in senescent cells but not in normal cells, which demonstrates that the probe is able to detect the endogenous senescence-associated β-galactosidase in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Microlensed dual-fiber probe for depth-resolved fluorescence measurements
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo
2011-07-01
We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.
Imaging the environment of green fluorescent protein.
Suhling, Klaus; Siegel, Jan; Phillips, David; French, Paul M W; Lévêque-Fort, Sandrine; Webb, Stephen E D; Davis, Daniel M
2002-01-01
An emerging theme in cell biology is that cell surface receptors need to be considered as part of supramolecular complexes of proteins and lipids facilitating specific receptor conformations and distinct distributions, e.g., at the immunological synapse. Thus, a new goal is to develop bioimaging that not only locates proteins in live cells but can also probe their environment. Such a technique is demonstrated here using fluorescence lifetime imaging of green fluorescent protein (GFP). We first show, by time-correlated single-photon counting, that the fluorescence decay of GFP depends on the local refractive index. This is in agreement with the Strickler Berg formula, relating the Einstein A and B coefficients for absorption and spontaneous emission in molecules. We then quantitatively image, by wide-field time-gated fluorescence lifetime imaging, the refractive index of the environment of GFP. This novel approach paves the way for imaging the biophysical environment of specific GFP-tagged proteins in live cells. PMID:12496126
Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua
2017-01-01
It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Hong; Zhang, Peisheng; Tian, Yong; Zhang, Yuan; Yang, Heping; Chen, Shu; Zeng, Rongjin; Long, Yunfei; Chen, Jian
2018-04-30
A simple and readily available fluorescent probe is needed for the real-time monitoring of endogenous cysteine (Cys) levels in living cells, as such a probe could be used to study the role of Cys in related diseases. Herein, we report the first fluorescent probe based on carbon dots (CDs-FITA) for the selective and ratiometric imaging of endogenous Cys in live cells. In this ratiometric fluorescent probe, a fluorescein derivative (FITA) that recognizes Cys is covalently linked to the surfaces of carbon dots (CDs); employing CDs greatly improves the water solubility of the probe. Acrylate on FITA is selectively cleaved by Cys in aqueous solution under mild conditions, leading to a dramatic increase in the fluorescence from fluorescein. The probe therefore allows the highly selective ratiometric fluorescent detection of Cys even in the presence of various interferents. The as-prepared CDs-FITA showed excellent performance when applied to detect Cys in blood serum. In addition, due to its negligible cytotoxicity, the CDs-FITA can also be utilized for the real-time monitoring of endogenous cysteine (Cys) levels in living cells. Graphical abstract Illustration of the CD-based probe for Cys imaging in living cells.
Zhang, Yujin; Hu, Wei
2017-01-25
Nonlinear optical properties of a series of newly-synthesized molecular fluorescent probes for Hg 2+ containing the same acceptor (rhodamine group) are analyzed by using time-dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes' optical properties in the absence and presence of Hg 2+ . These compounds show drastic changes in their photoabsorption and photoemission properties when they react with Hg 2+ , indicating that they are excellent candidates for ratiometric and colorimetric fluorescent chemosensors. Most importantly, the energy donor moiety is found to play a dominant role in sensing performance of these probes. Two-photon absorption cross sections of the compounds are increased with the presence of Hg 2+ , which theoretically suggests the possibility of the probes to be two-photon fluorescent Hg 2+ sensors. Moreover, analysis of molecular orbitals is presented to explore responsive mechanism of the probes, where the fluorescence resonant energy transfer process is theoretically demonstrated. Our results elucidate the available experimental measurements. This work provides guidance for designing efficient two-photon fluorescent probes that are geared towards biological and chemical applications.
Yu, Tingting; Sun, Ping; Hu, Yijie; Ji, Yinggang; Zhou, Hongping; Zhang, Baowei; Tian, Yupeng; Wu, Jieying
2016-12-15
A simple-molecule fluorescence probe L has been designed, synthesized and characterized, which shows high selectivity and sensitivity for the main group magnesium ion through fluorescence "turn-on" response in ethanol solution, and no interference from calcium ion in particular. Detection limit of probe L is 1.47×10(-6) M and the rapid response could reach about 15-20s. The recognition mechanism has been established by fluorescence spectra, (1)H NMR study. Moreover, probe L presents a great photostability, low toxicity and cellular permeability, then we have carried out fluorescent bio-imaging of the probe L for magnesium ions in HeLa cells, which showed that probe L could be utilized to detect the intracellular magnesium ion. Furthermore, it is successfully used as a magnesium ion developer in plant tissues, which shows that it not only can be well tracking the transport of magnesium ion but also make a corresponding fluorescence response to different concentrations magnesium ion. These results would make this probe a great potential application for detecting Mg(2+) in biological system. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Yueying; Lu, Xiaohui; Su, Fengxia; Wang, Limei; Liu, Chenghui; Duan, Xinrui; Li, Zhengping
2015-12-15
Most of practical methods for detection of single nucleotide polymorphism (SNP) need at least two steps: amplification (usually by PCR) and detection of SNP by using the amplification products. Ligase chain reaction (LCR) can integrate the amplification and allele discrimination in one step. However, the detection of LCR products still remains a great challenge for highly sensitive and quantitative SNP detection. Herein, a simple but robust strategy for real-time fluorescence LCR has been developed for highly sensitive and quantitative SNP detection. A pair of LCR probes are firstly labeled with a fluorophore and a quencher, respectively. When the pair of LCR probes are ligated in LCR, the fluorophore will be brought close to the quencher, and thus, the fluorescence will be specifically quenched by fluorescence resonance energy transfer (FRET). The decrease of fluorescence intensity resulted from FRET can be real-time monitored in the LCR process. With the proposed real-time fluorescence LCR assay, 10 aM DNA targets or 100 pg genomic DNA can be accurately determined and as low as 0.1% mutant DNA can be detected in the presence of a large excess of wild-type DNA, indicating the high sensitivity and specificity. The real-time measuring does not require the detection step after LCR and gives a wide dynamic range for detection of DNA targets (from 10 aM to 1 pM). As LCR has been widely used for detection of SNP, DNA methylation, mRNA and microRNA, the real-time fluorescence LCR assay shows great potential for various genetic analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Thurber, Greg M; Figueiredo, Jose L; Weissleder, Ralph
2009-11-30
Complete surgical resection of neoplasia remains one of the most efficient tumor therapies. However, malignant cell clusters are often left behind during surgery due to the inability to visualize and differentiate them against host tissue. Here we establish the feasibility of multicolor fluorescent intravital live microscopy (FILM) where multiple cellular and/or unique tissue compartments are stained simultaneously and imaged in real time. Theoretical simulations of imaging probe localization were carried out for three agents with specificity for cancer cells, stromal host response, or vascular perfusion. This transport analysis gave insight into the probe pharmacokinetics and tissue distribution, facilitating the experimental design and allowing predictions to be made about the localization of the probes in other animal models and in the clinic. The imaging probes were administered systemically at optimal time points based on the simulations, and the multicolor FILM images obtained in vivo were then compared to conventional pathological sections. Our data show the feasibility of real time in vivo pathology at cellular resolution and molecular specificity with excellent agreement between intravital and traditional in vitro immunohistochemistry. Multicolor FILM is an accurate method for identifying malignant tissue and cells in vivo. The imaging probes distributed in a manner similar to predictions based on transport principles, and these models can be used to design future probes and experiments. FILM can provide critical real time feedback and should be a useful tool for more effective and complete cancer resection.
He, Longwei; Yang, Xueling; Xu, Kaixin; Kong, Xiuqi
2017-01-01
Biothiols, which have a close network of generation and metabolic pathways among them, are essential reactive sulfur species (RSS) in the cells and play vital roles in human physiology. However, biothiols possess highly similar chemical structures and properties, resulting in it being an enormous challenge to simultaneously discriminate them from each other. Herein, we develop a unique fluorescent probe (HMN) for not only simultaneously distinguishing Cys/Hcy, GSH, and H2S from each other, but also sequentially sensing Cys/Hcy/GSH and H2S using a multi-channel fluorescence mode for the first time. When responding to the respective biothiols, the robust probe exhibits multiple sets of fluorescence signals at three distinct emission bands (blue-green-red). The new probe can also sense H2S at different concentration levels with changes of fluorescence at the blue and red emission bands. In addition, the novel probe HMN is able to discriminate and sequentially sense biothiols in biological environments via three-color fluorescence imaging. We expect that the development of the robust probe HMN will provide a powerful strategy to design fluorescent probes for the discrimination and sequential detection of biothiols, and offer a promising tool for exploring the interrelated roles of biothiols in various physiological and pathological conditions. PMID:28989659
Jiao, Xiumei; Fei, Xuening; Li, Songya; Lin, Dayong; Ma, Huaji; Zhang, Baolian
2017-01-01
In this study, two novel fluorescent probes, probe A and probe B were designed, synthesized and characterized, based on Microthrix parvicella (M. parvicella) preferring to utilize long-chain fatty acid (LCFA), for the labeling of M. parvicella in activated sludge. The molecular structure of probe A and probe B include long-chain alkane and LCFA, respectively. The results indicated that probe A and probe B had a large stokes shift of 118 nm and 120 nm and high quantum yield of 0.1043 and 0.1058, respectively, which were significantly helpful for the fluorescent labeling. As probe A was more stable than probe B in activated sludge, and the fluorescence intensity keep stable during 24 h, probe A was more suitable for labeling M. parvicella in situ. In addition, through the Image Pro Plus 6 (IPP 6) analysis, a quantitative relationship was established between sludge volume index (SVI) and integral optical density (IOD) of the labeled M. parvicella in activated sludge samples. The relationship between IOD and SVI conforms to Logistic curve (R2 = 0.94). PMID:28773166
Adegoke, Oluwasesan; Forbes, Patricia B C
2015-03-03
The pathological and physiological effects of reactive oxygen and nitrogen species (ROS/RNS) have instigated increasing awareness in the scientific field with respect to the development of suitable probes for their detection. Among the various probes developed to date, semiconductor quantum dots (QDs) fluorescent probes have attracted significant attention. The unfavourable properties of ROS/RNS with respect to their detection, such as their short lifetimes and the competitive presence of various endogenous reactive species, capable of interfering with the probe in biological matrices, have hindered the effective performance of most probes as well as complicating the design of suitable probes. The development of novel QD fluorescent probes capable of circumventing these problems is thus, of scientific interest. In this review, we highlight the challenges faced, pros and cons and published developments to date, with respect to QD fluorescent probes for ROS/RNS such as H2O2, O2(·-), ·OH, HOCl, NO and ONOO(-). Copyright © 2014 Elsevier B.V. All rights reserved.
Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James
2012-07-03
Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.
Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus
2015-02-11
Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.
Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar
2009-01-01
Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242
A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging.
Specht, Elizabeth A; Braselmann, Esther; Palmer, Amy E
2017-02-10
Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.
Kleinbaum, Daniel J; Miller, Gregory P; Kool, Eric T
2010-06-16
Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is the undesired reaction with water and other cellular nucleophiles. Here, we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectures, all possessing two fluorescence quencher/leaving groups (dabsylate groups), were synthesized and evaluated for templated reaction with nucleophile (phosphorothioate) probes both in vitro and in intact bacterial cells. All three DD probe designs provided substantially better initial quenching than a single-Dabsyl control. In isothermal templated reactions in vitro, double displacement probes yielded considerably lower background signal than previous single displacement probes; investigation into the mechanism revealed that one dabsylate acts as a sacrificial leaving group, reacting nonspecifically with water, but yielding little signal because another quencher group remains. Templated reaction with the specific nucleophile probe is required to activate a signal. The double displacement probes provided a ca. 80-fold turn-on signal and yielded a 2-4-fold improvement in signal/background over single Dabsyl probes. The best-performing probe architecture was demonstrated in a two-color, FRET-based two-allele discrimination system in vitro and was shown to be capable of discriminating between two closely related species of bacteria differing by a single nucleotide at an rRNA target site.
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
O-GlcNAcase Fragment Discovery with Fluorescence Polarimetry.
Borodkin, Vladimir S; Rafie, Karim; Selvan, Nithya; Aristotelous, Tonia; Navratilova, Iva; Ferenbach, Andrew T; van Aalten, Daan M F
2018-05-18
The attachment of the sugar N-acetyl-D-glucosamine (GlcNAc) to specific serine and threonine residues on proteins is referred to as protein O-GlcNAcylation. O-GlcNAc transferase (OGT) is the enzyme responsible for carrying out the modification, while O-GlcNAcase (OGA) reverses it. Protein O-GlcNAcylation has been implicated in a wide range of cellular processes including transcription, proteostasis, and stress response. Dysregulation of O-GlcNAc has been linked to diabetes, cancer, and neurodegenerative and cardiovascular disease. OGA has been proposed to be a drug target for the treatment of Alzheimer's and cardiovascular disease given that increased O-GlcNAc levels appear to exert a protective effect. The search for specific, potent, and drug-like OGA inhibitors with bioavailability in the brain is therefore a field of active research, requiring orthogonal high-throughput assay platforms. Here, we describe the synthesis of a novel probe for use in a fluorescence polarization based assay for the discovery of inhibitors of OGA. We show that the probe is suitable for use with both human OGA, as well as the orthologous bacterial counterpart from Clostridium perfringens, CpOGA, and the lysosomal hexosaminidases HexA/B. We structurally characterize CpOGA in complex with a ligand identified from a fragment library screen using this assay. The versatile synthesis procedure could be adapted for making fluorescent probes for the assay of other glycoside hydrolases.
Chen, Quansheng; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin
2016-09-28
Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF4:Yb/Ho/Gd and NaYF4:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF4 nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001-0.1 ng ml(-1) with the limit of detection (LOD) of 0.001 ng ml(-1). Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Multiple pathogen biomarker detection using an encoded bead array in droplet PCR.
Periyannan Rajeswari, Prem Kumar; Soderberg, Lovisa M; Yacoub, Alia; Leijon, Mikael; Andersson Svahn, Helene; Joensson, Haakan N
2017-08-01
We present a droplet PCR workflow for detection of multiple pathogen DNA biomarkers using fluorescent color-coded Luminex® beads. This strategy enables encoding of multiple singleplex droplet PCRs using a commercially available bead set of several hundred distinguishable fluorescence codes. This workflow provides scalability beyond the limited number offered by fluorescent detection probes such as TaqMan probes, commonly used in current multiplex droplet PCRs. The workflow was validated for three different Luminex bead sets coupled to target specific capture oligos to detect hybridization of three microorganisms infecting poultry: avian influenza, infectious laryngotracheitis virus and Campylobacter jejuni. In this assay, the target DNA was amplified with fluorescently labeled primers by PCR in parallel in monodisperse picoliter droplets, to avoid amplification bias. The color codes of the Luminex detection beads allowed concurrent and accurate classification of the different bead sets used in this assay. The hybridization assay detected target DNA of all three microorganisms with high specificity, from samples with average target concentration of a single DNA template molecule per droplet. This workflow demonstrates the possibility of increasing the droplet PCR assay detection panel to detect large numbers of targets in parallel, utilizing the scalability offered by the color-coded Luminex detection beads. Copyright © 2017. Published by Elsevier B.V.
Preparation, Characterization and Application of Optical Switch Probes.
Petchprayoon, Chutima; Marriott, Gerard
2010-08-01
Optical switches represent a new class of molecular probe with applications in high contrast imaging and optical manipulation of protein interactions. Small molecule, organic optical switches based on nitrospirobenzopyran (NitroBIPS) and their reactive derivatives and conjugates undergo efficient, rapid and reversible, orthogonal optically-driven transitions between a colorless spiro (SP) state and a colored merocyanine (MC) state. The excited MC-state also emits fluorescence, which serves as readout of the state of the switch. Defined optical perturbations of SP and MC generate a defined waveform of MC-fluorescence that can be isolated against unmodulated background signals by using a digital optical lock-in detection approach or to control specific dipolar interactions on proteins. The protocols describe general procedures for the synthesis and spectroscopic characterization of NitroBIPS and specifically labeled conjugates along with methods for the manipulation of dipolar interactions on proteins and imaging of the MC-state of NitroBIPS within living cells.
Shakibaie, Fardad; Walsh, Laurence J
2016-11-01
Deposits of subgingival calculus on the root surfaces of the teeth are difficult to detect with conventional methods such as tactile probing. This study compared the performance of a 655-nm wavelength laser fluorescence (LF) system (DIAGNOdent Classic with a periodontal tip) with conventional periodontal probing under defined conditions in a laboratory simulation, using an experienced examiner. Models with a total of 30 extracted teeth with varying levels of subgingival deposits scattered on their root surfaces were prepared, and silicone impression material applied to replicate periodontal soft tissues. The models were located in a phantom head, and the presence of subgingival calculus recorded at 8 points per tooth (240 sites), then the entire scoring process repeated after 1 and 2 weeks. The optimal LF threshold was determined as a fluorescence score of 7 using Receiver Operating Characteristic curves. When compared the gold standard of direct microscopic examination of roots, LF was more sensitive, specific, and accurate than tactile probing (68.3 vs. 51.7 %; 92.1 vs. 67.8; and 80.2 vs. 59.8 %, respectively), and was also more reproducible (Cohen kappa 0.60 vs. 0.39). These data support the concept of using LF as an adjunct to clinical diagnosis.
Chen, Hsiang-Jung; Chew, Chee Ying; Chang, En-Hao; Tu, Yu-Wei; Wei, Li-Yu; Wu, Bo-Han; Chen, Chien-Hung; Yang, Ya-Ting; Huang, Su-Chin; Chen, Jen-Kun; Chen, I-Chia; Tan, Kui-Thong
2018-04-18
In this paper, we present a novel charge-free fluorescence-switchable near-infrared (IR) dye based on merocyanine for target specific imaging. In contrast to the typical bathochromic shift approach by extending π-conjugation, the bathochromic shift of our merocyanine dye to the near-IR region is due to an unusual S- cis diene conformer. This is the first example where a fluorescent dye adopts the stable S- cis conformation. In addition to the novel bathochromic shift mechanism, the dye exhibits fluorescence-switchable properties in response to polarity and viscosity. By incorporating a protein-specific ligand to the dye, the probes (for SNAP-tag and hCAII proteins) exhibited dramatic fluorescence increase (up to 300-fold) upon binding with its target protein. The large fluorescence enhancement, near-IR absorption/emission, and charge-free scaffold enabled no-wash and site-specific imaging of target proteins in living cells and in vivo with minimum background fluorescence. We believe that our unconventional approach for a near-IR dye with the S- cis diene conformation can lead to new strategies for the design of near-IR dyes.
Mehndiratta, Mohit; Palanichamy, Jayanth Kumar; Ramalingam, Pradeep; Pal, Arnab; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad
2008-12-01
Quantitative real-time PCR (qPCR) is a standard method used for quantification of specific gene expression. This utilizes either dsDNA binding dyes or probe based chemistry. While dsDNA binding dyes have the advantage of low cost and flexibility, fluorescence due to primer dimers also interferes with the fluorescence of the specific product. Sometimes it is difficult, if not impossible, to standardize conditions and redesign primers in such a way that only specific fluorescence of the products of test and reference genes are acquired. Normally, the fluorescence acquisition in qPCR using dsDNA binding dyes is done during the melting phase of the PCR at a temperature between the melting points of primer dimers and the specific product. We have modified the protocol to acquire fluorescence during the hybridization phase. This significantly increased the signal-to-noise ratio and enabled the use of dsDNA binding dyes for mRNA quantification in situations where it was not possible when measurement was done in the melting phase. We have demonstrated it for three mRNAs, E6, E7, and DNMT1 with beta-actin as the reference gene, and for two miRNAs. This modification broadens the scope of qPCR using dsDNA binding dyes.
Panda, Koustubh; Chawla-Sarkar, Mamta; Santos, Cecile; Koeck, Thomas; Erzurum, Serpil C; Parkinson, John F; Stuehr, Dennis J
2005-07-19
The study of nitric-oxide synthase (NOS) physiology is constrained by the lack of suitable probes to detect NOS in living cells or animals. Here, we characterized a fluorescent inducible NOS (iNOS) inhibitor called PIF (pyrimidine imidazole FITC) and examined its utility for microscopic imaging of iNOS in living cells. PIF binding to iNOS displayed high affinity, isoform selectivity, and heme specificity, and was essentially irreversible. PIF was used to successfully image iNOS expressed in RAW264.7 cells, HEK293T cells, human A549 epithelial cells, and freshly obtained human lung epithelium. PIF was used to estimate a half-life for iNOS of 1.8 h in HEK293T cells. Our work reveals that fluorescent probes like PIF will be valuable for studying iNOS cell biology and in understanding the pathophysiology of diseases that involve dysfunctional iNOS expression.
Triazole-based Zn²⁺-specific molecular marker for fluorescence bioimaging.
Sinha, Sougata; Mukherjee, Trinetra; Mathew, Jomon; Mukhopadhyay, Subhra K; Ghosh, Subrata
2014-04-25
Fluorescence bioimaging potential, both in vitro and in vivo, of a yellow emissive triazole-based molecular marker has been investigated and demonstrated. Three different kinds of cells, viz Bacillus thuringiensis, Candida albicans, and Techoma stans pollen grains were used to investigate the intracellular zinc imaging potential of 1 (in vitro studies). Fluorescence imaging of translocation of zinc through the stem of small herb, Peperomia pellucida, having transparent stem proved in vivo bioimaging capability of 1. This approach will enable in screening cell permeability and biostability of a newly developed probe. Similarly, the current method for detection and localization of zinc in Gram seed sprouts could be an easy and potential alternative of the existing analytical methods to investigate the efficiency of various strategies applied for increasing zinc-content in cereal crops. The probe-zinc ensemble has efficiently been applied for detecting phosphate-based biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Röder, Christoph; König, Helmut; Fröhlich, Jürgen
2007-09-01
Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.
Li, Wei; Jiang, Wei; Wang, Lei
2016-10-12
In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples.
Wang, Jialin; Wang, Hao; Hao, Yanfeng; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo
2018-10-01
A novel fluorescent probe 3'-hydroxy-3-oxo-3H-spiro [isobenzofuran-1,9'-xanthene]-6'-yl-2,4-dinitrobenzenesulfonate (probe 1) was designed and synthesized as a visual sensor for the detection of cysteine levels in milk and water samples. The addition of cysteine to the solution of probe 1 resulted in an increase in fluorescence intensity and color change, from light yellow to yellow-green. The distinct color response indicated that probe 1 could be used as a visual sensor for cysteine. Cysteine can be detected quantitatively at concentrations between 0 and 400 μM and the detection limit of the fluorescence response to the probe was 6.5 μM. This suggests that probe 1 could be used as a signaling tool to determine the cysteine levels in samples, such as milk and water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sun, Yulong; Chakrabartty, Avi
2016-12-01
Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.
Jiang, Huie; Liu, Yan; Luo, Weifang; Wang, Yujiao; Tang, Xiaoliang; Dou, Wei; Cui, Yumei; Liu, Weisheng
2018-07-19
A two-photon fluorescent probe for Cu 2+ and S 2- has been strategically prepared with naphthalimide derivative platform (NPE) covalently grafted onto the surface of magnetic core-shell Fe 3 O 4 @SiO 2 nanoparticles. The probe (NPE-Fe 3 O 4 @SiO 2 ) exhibits selective response to Cu 2+ with enhanced fluorescence and efficient separation of Cu 2+ with external magnetic field. The consequent product NPE-Fe 3 O 4 @SiO 2 -Cu of NPE-Fe 3 O 4 @SiO 2 and Cu 2+ can work as an excellent sensor for S 2- by removing Cu 2+ from the complex with fluorescence decreased, recovering the fluorescence of the probe. Therefore, the constituted Off-On-Off type fluorescence monitoring system means the probe is resumable. Moreover, the probe has been used to quantitatively detect Cu 2+ and S 2- with low detection limits, which are 0.28 μM and 0.12 μM, respectively. Furthermore, the probe shows low cytotoxicity and excellent membrane permeability, which has been successfully applied for monitoring Cu 2+ and S 2- in living cells and imaging Cu 2+ in deep-tissue with two-photon excited fluorescence. Copyright © 2018. Published by Elsevier B.V.
Feng, Weiyong; Li, Meixing; Sun, Yao; Feng, Guoqiang
2017-06-06
Selenocysteine (Sec) is the 21st naturally occurring amino acid and has emerged as an important sensing target in recent years. However, fluorescent detection of Sec in living systems is challenging. To date, very few fluorescent Sec probes have been reported and most of them respond fluorescence to Sec in the visible region. In this paper, a very promising near-infrared fluorescent probe for Sec was developed. This probe works in aqueous solution over a wide pH range under mild conditions and can be used for rapid, highly selective and sensitive detection of Sec with significant near-infrared fluorescent turn-on signal changes. In addition, it features a remarkable large Stokes shift (192 nm) and a low detection limit (60 nM) for Sec with a wide linear range (0-70 μM). Moreover, this probe can be conveniently used to detect Sec in serum samples, living cells, and animals, indicating it holds great promise for biological applications.
NASA Astrophysics Data System (ADS)
Guo, Ping; Liu, Lijuan; Shi, Qian; Yin, Chunyan; Shi, Xuefang
2017-02-01
A fluorescent and colorimetric pH probe based on a rhodamine 6G derivative, RP1, was designed and synthesized. The probe was based on the pH induced change in the structure between the spirocyclic (non-fluorescent, colorless) and quinoid (fluorescent, pink) forms of rhodamine 6G. The effect of the acid concentration on the fluorescence "off-on" behaviors of RP1 was investigated. RP1 was fluorescent in the pH range of 1.1-3.1 and has a pKa value of 2.08 (±0.07). Thus RP1 should be useful for studies in strongly acidic environments. Possible interferences from fourteen common metal ions were tested and excluded showing the excellent selectivity of the probe. Finally, the probe exhibits an intense color change at pH values lower than 3.1 which makes it useful for naked-eye pH detection.
Aventín, Anna; Espadaler, Montserrat; Casas, Sílvia; Duarte, José; Nomdedéu, Josep; Sierra, Jorge
2002-04-15
We describe two cases of acute myelomonocytic leukemia with eosinophilia (AML-M4Eo) that were diagnosed with an inv(16)(p13q22) based on conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH) technique using a chromosome 16p arm specific paint probe. Additional FISH analysis with a dual-color CBFB DNA probe showed that the 3' portion of the CBFB gene was translocated to chromosome 10p13 in the first patient and 1p36 in the other. These two cases indicate that some inv(16)(p13q22) identified by CC and FISH with chromosome arm-specific painting probe may represent cases of inversion-associated translocation. We suggest that all cases with inv(16)(p13q22) should be investigated by FISH with appropriate probes for a possible translocation of 16q22-->qter to another chromosome.
Li, Xutian; Yin, Yue; Deng, Junjie; Zhong, Huixian; Tang, Jian; Chen, Zhi; Yang, Liting; Ma, Li-Jun
2016-07-01
A new rhodamine B-benzofurazan based fluorescent probe (1) for Fe(3+) and Hg(2+) was synthesized. In aqueous solution containing 30% (v/v) ethanol, probe 1 shows a high selective fluorescent enhancement recognition to Fe(3+) with a binding ratio of 1:1 (probe 1: Fe(3+)), when the concentration of Fe(3+) is less than that of the probe. When the concentration of Fe(3+) is higher than that of the probe, it shows fluorescent "turn-on" response to Fe(3+) by opening the rhodamine spirolactam with a binding ratio of 1:2 (probe 1: Fe(3+)). Furthermore, probe 1 displays a high selectivity and a hypersensitivity (detection limit is 4.4nM) to Hg(2+) with a binding ratio of 1:1 in ethanol. NMR and UV-vis experiments indicate that the different fluorescent recognition signals to Fe(3+) and Hg(2+) are derived from different binding modes of 1-Fe(3+) and 1-Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yan; Zhang, Zhifang; Zhang, Ya; Yu, Cong
2018-06-01
We have established a real-time and label-free fluorescence turn-on strategy for protease activity detection and inhibitor screening via peptide-induced aggregation-caused quenching of a perylene probe. Because of electrostatic interactions and high hydrophilicity, poly-l-glutamic acid sodium salt (PGA; a negatively charged peptide) could induce aggregation of a positively charged perylene probe (probe 1) and the monomer fluorescence of probe 1 was effectively quenched. After a protease was added, PGA was enzymatically hydrolyzed into small fragments and probe 1 disaggregated. The fluorescence recovery of probe 1 was found to be proportional to the concentration of protease in the range from 0 to 1 mU/ml. The detection limit was down to 0.1 mU/ml. In the presence of a protease inhibitor, protease activity was inhibited and fluorescence recovery reduced. Moreover, we demonstrated the potential application of our method in a complex mixture sample including 1% human serum. Our method is simple, fast and cost effective. Copyright © 2018 John Wiley & Sons, Ltd.
Woda, Marcia; Mathew, Anuja
2015-01-01
Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702
NASA Astrophysics Data System (ADS)
Zhou, Xi; Wang, Yujiao; Peng, Qi; Liu, Weisheng
2017-12-01
A multifunctional fluorescent probe BHN-Fe3O4@SiO2 nanostructure for Fe3+ was designed and developed. It has a good selective response to Fe3+ with fluorescence quenching and can be recycled using an external magnetic field. With adding EDTA (2.5 × 10-5 M) to the consequent product Fe3+-BHN-Fe3O4@SiO2, Fe3+ can be removed from the complex, and its fluorescence probing ability recovers, which means that this constituted on-off type fluorescence probe could be reversed and reused. At the same time, the probe has been successfully applied for quantitatively detecting Fe3+ in a linear mode with a low limit of detection 1.25 × 10-8 M. Furthermore, the BHN-Fe3O4@SiO2 nanostructure probe is successfully used to detect Fe3+ in living HeLa cells, which shows its great potential in bioimaging detection.
Deng, Huaifu; Wang, Hui; Wang, Mengzhe; Li, Zibo; Wu, Zhanhong
2015-08-03
Overexpression of neurotensin receptors (NTRs) has been suggested to play important roles in the growth and survival of a variety of tumor types. The aim of this study is to develop a dual-modality probe (64Cu -DOTA-NT-Cy5.5) for imaging NTR1 expression in vivo with both positron emission tomography (PET) and fluorescence. In this approach, the thiol group and N terminal amino group of neurotensin analogue (Cys-NT) were chemically modified with Cy5.5 dye and DOTA chelator, respectively. After radiolabeling with 64Cu, the resulting probe (64Cu-DOTA-NT-Cy5.5) was evaluated in NTR1 positive HT-29 tumor model. Small animal PET quantification analysis demonstrated that the tumor uptake was 1.91±0.22 and 1.79±0.16%ID/g at 1 and 4 h postinjection (p.i.), respectively. The tumor-to-muscle ratio was 17.44±3.25 at 4 h p.i. based on biodistribution. Receptor specificity was confirmed by the successful blocking experiment at 4 h p.i. (0.42±0.05%ID/g). In parallel with PET experiment, fluorescence imaging was also performed, which demonstrated prominent tumor uptake in HT-29 model. As a proof of concept, an imaging guided surgery was performed to the fluorescent moiety of this probe and could provide potential surgery guidance for NTR positive patients. In summary, our results clearly indicated that the dual-modality probe, 64Cu-DOTA-NT-Cy5.5, could serve as a promising agent to image NTR positive tumors in vivo.
Yunlong, Bai; Hao, Huang; Kai, Yang; Hong, Tang
2014-10-01
To investigate in situ visualization using near-infrared quantum dots (QDs) conjugated with arginine- glycine-aspartic acid (ROD) peptide fluorescent probes in oral squamous cell carcinoma (08CC). QDs with emission wavelength of 800 nm (QD800) were conjugated with RGD peptides to produce QD800-RGD fluorescent probes. Human OSCC cell line BcaCD885 was inoculated in nude mice cheeks to establish OSCC mouse models. Frozen BcaCD885 tumor slices were immunofluorescence double stained by using QD800-RGD and CD105 monoclonal antibody and were observed using a laser scanning confocal microscope. QD800-RGD was injected into the OSCC models through the tail veins, and the in situ visualization was analyzed at different time points. The mice were sacrificed 12 h after injection to isolate tumors for the ex vivo analysis of probe localization in the tumors. QD800-RGD specifically targeted the integrin avβ3 expressed in the endothelial cells of tumor angiogenic vessels in vitro and in vivo, producing clear tumor fluorescence images after intravenous injection. The most complete tumor images with maximal signal-to-noise ratios were observed 0.5 h to 6 h after injection of the probe and significantly reduced 9 h after the injection. However, the tumor image was still clearly visible at 12 h. Using intravenously injected QD800-RGD generates high quality OSCC images when integrin avβ3, which is expressed in the endothelial cells of tumor angiogenic vessels, is used as the target. The technique offers great potential in the diagnosis and individual treatment of OSCC.
Fluorescence studies with DNA probes: dynamic aspects of DNA structure and DNA-protein interactions
NASA Astrophysics Data System (ADS)
Millar, David P.; Carver, Theodore E.
1994-08-01
Time-resolved fluorescence measurements of optical probes incorporated at specific sites in DNA provides a new approach to studies of DNA structure and DNA:protein interactions. This approach can be used to study complex multi-state behavior, such as the folding of DNA into alternative higher order structures or the transfer of DNA between multiple binding sites on a protein. In this study, fluorescence anisotropy decay of an internal dansyl probe attached to 17/27-mer oligonucleotides was used to monitor the distribution of DNA 3' termini bound at either the polymerase of 3' to 5' exonuclease sites of the Klenow fragment of DNA polymerase I. Partitioning of the primer terminus between the two active sites of the enzyme resulted in a heterogeneous probe environment, reflected in the associative behavior of the fluorescence anisotropy decay. Analysis of the anisotropy decay with a two state model of solvent-exposed and protein-associated dansyl probes was used to determine the fraction of DNA bound at each site. We examined complexes of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus caused a 3-fold increase in the equilibrium partitioning of DNA into the exonuclease site, while two or more consecutive G:G mismatches caused the DNA to bind exclusively at the exonuclease site, with a partitioning constant at least 250- fold greater than that of the corresponding matched DNA sequence. Internal single mismatches located up to four bases from the primer terminus produced larger effects than the same mismatch at the primer terminus. These results provide insight into the recognition mechanisms that enable DNA polymerases to proofread misincorporated bases during DNA replication.
Fu, Jingni; Ding, Changqin; Zhu, Anwei; Tian, Yang
2016-08-07
Intracellular pH plays a vital role in cell biology, including signal transduction, ion transport and homeostasis. Herein, a ratiometric fluorescent silica probe was developed to detect intracellular pH values. The pH sensitive dye fluorescein isothiocyanate isomer I (FITC), emitting green fluorescence, was hybridized with reference dye rhodamine B (RB), emitting red fluorescence, as a dual-emission fluorophore, in which RB was embedded in a silica core of ∼40 nm diameter. Moreover, to prevent fluorescence resonance energy transfer between FITC and RB, FITC was grafted onto the surface of core-shell silica colloidal particles with a shell thickness of 10-12 nm. The nanoprobe exhibited dual emission bands centered at 517 and 570 nm, under single wavelength excitation of 488 nm. RB encapsulated in silica was inert to pH change and only served as reference signals for providing built-in correction to avoid environmental effects. Moreover, FITC (λem = 517 nm) showed high selectivity toward H(+) against metal ions and amino acids, leading to fluorescence variation upon pH change. Consequently, variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor. The specific nanoprobe showed good linearity with pH variation in the range of 6.0-7.8. It can be noted that the fluorescent silica probe demonstrated good water dispersibility, high stability and low cytotoxicity. Accordingly, imaging and biosensing of pH variation was successfully achieved in HeLa cells.
Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo
2018-01-01
A new reaction-based fluorescent probe 6-cyanonaphthalen-2-yl-2,4- dinitrobenzenesulfonate (probe 1) was designed and synthesized for detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence increased accompanied by a visual color change from colorless to yellow. Importantly, this distinct color response indicates that probe 1 could be used as a visual tool for detection of H 2 S. H 2 S can be detected quantitatively in the concentration range 0 to 25 μM and the detection limit was 30 nM. Moreover, probe 1 was successfully used as a sensor to determine H 2 S levels in red wine and beer. Fluorescent probe 1 could be employed as a visible sensor for H 2 S. Probe 1 could be used to detect H 2 S quantitatively in food simple. © 2017 Institute of Food Technologists®.
Near infrared lasers in flow cytometry.
Telford, William G
2015-07-01
Technology development in flow cytometry has closely tracked laser technology, the light source that flow cytometers almost exclusively use to excite fluorescent probes. The original flow cytometers from the 1970s and 1980s used large water-cooled lasers to produce only one or two laser lines at a time. Modern cytometers can take advantage of the revolution in solid state laser technology to use almost any laser wavelength ranging from the ultraviolet to the near infrared. Commercial cytometers can now be equipped with many small solid state lasers, providing almost any wavelength needed for cellular analysis. Flow cytometers are now equipped to analyze 20 or more fluorescent probes simultaneously, requiring multiple laser wavelengths. Instrument developers are now trying to increase this number by designing fluorescent probes that can be excited by laser wavelength at the "edges" of the visible light range, in the near ultraviolet and near-infrared region. A variety of fluorescent probes have been developed that excite with violet and long wavelength ultraviolet light; however, the near-infrared range (660-800 nm) has yet seen only exploitation in flow cytometry. Fortunately, near-infrared laser diodes and other solid state laser technologies appropriate for flow cytometry have been in existence for some time, and can be readily incorporated into flow cytometers to accelerate fluorescent probe development. The near infrared region represents one of the last "frontiers" to maximize the number of fluorescent probes that can be analyzed by flow cytometry. In addition, near infrared fluorescent probes used in biomedical tracking and imaging could also be employed for flow cytometry with the correct laser wavelengths. This review describes the available technology, including lasers, fluorescent probes and detector technology optimal for near infrared signal detection. Published by Elsevier Inc.
Morgan, M Thomas; Bagchi, Pritha; Fahrni, Christoph J
2011-10-12
Due to the lipophilicity of the metal-ion receptor, previously reported Cu(I)-selective fluorescent probes form colloidal aggregates, as revealed by dynamic light scattering. To address this problem, we have developed a hydrophilic triarylpyrazoline-based fluorescent probe, CTAP-2, that dissolves directly in water and shows a rapid, reversible, and highly selective 65-fold fluorescence turn-on response to Cu(I) in aqueous solution. CTAP-2 proved to be sufficiently sensitive for direct in-gel detection of Cu(I) bound to the metallochaperone Atox1, demonstrating the potential for cation-selective fluorescent probes to serve as tools in metalloproteomics for identifying proteins with readily accessible metal-binding sites.
Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging
Zhang, Ming; Chakraborty, Subhasish K.; Sampath, Padma; Rojas, Juan J.; Hou, Weizhou; Saurabh, Saumya; Thorne, Steve H.; Bruchez, Marcel P.; Waggoner, Alan S.
2015-01-01
Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule–based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter–tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene. PMID:26348895
Fluorescent probes for real-time measurement of nitric oxide in living cells.
Li, Huili; Wan, Ajun
2015-11-07
Nitric oxide (NO) is an important signaling molecule in biology. Both NO excess and insufficiency have been implicated in numerous physiological and pathological conditions. In order to study the diverse biological roles of NO in cells and tissues, many techniques have been developed for assaying NO. Recently, new generations of fluorescent probes have become indispensible tools for the study of NO biology because of their sensitivity, selectivity, spatiotemporal resolution, and experimental feasibility. Rational application of these probes in the study requires the understanding of the molecular mechanism that the probes are involved in. In this review, we will present an arsenal of fluorescent probes used to detect NO in living cells and animal tissues. We will also discuss the molecular mechanisms, actualities and prospects of fluorescent probes in detecting NO in cell biology.
A new azine derivative colorimetric and fluorescent dual-channel probe for cyanide detection
NASA Astrophysics Data System (ADS)
Yu, Bin; Li, Chun-Yu; Sun, Yin-Xia; Jia, Hao-Ran; Guo, Jian-Qiang; Li, Jing
2017-09-01
A novel azine derivative colorimetric and fluorescent dual-channel probe salicylaldehyde hydrazine-3,5-dibromosalicylaldehyde (1) has been designed, synthesized and characterized. The probe 1 is confirmed to have especial selectivity and good sensitivity on detecting CN- via UV-vis absorption and fluorescence spectrum in aqueous solution (H2O/DMSO, 1:4, v/v). This colorimetric and fluorescent dual-channel probe response to CN- owed to the deprotonation process and established the mechanism by using 1H NMR spectroscopy. Further researches showed that the detection limit of the probe 1 to CN- anions is 8.01 × 10- 9 M, significantly lower than the maximum level 1.9 × 10- 6 M in potable water from WHO guidelines.
Zhang, Jian; Lv, Yanlin; Zhang, Wei; Ding, Hui; Liu, Rongji; Zhao, Yongsheng; Zhang, Guangjin; Tian, Zhiyuan
2016-01-01
A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing. Copyright © 2015 Elsevier B.V. All rights reserved.
A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell.
Ma, Junbao; Li, Wenqi; Li, Juanjuan; Shi, Rongguang; Yin, Gui; Wang, Ruiyong
2018-05-15
A novel pH-dependent two-photon fluorescent molecular probe ABMP has been prepared based on the fluorophore of 2, 4, 6-trisubstituted pyridine. The probe has an absorption wavelength at 354 nm and corresponding emission wavelength at 475 nm with the working pH range from 2.20 to 7.00, especially owning a good liner response from pH = 2.40 to pH = 4.00. ABMP also has excellent reversibility, photostability and selectivity which promotes its ability in analytical application. The probe can be excited with a two-photon fluorescence microscopy and the fluorescence cell imaging indicated that the probe can distinguish Hela cancer cells out of normal cells with a two-photon fluorescence microscopy which suggested its potential application in tumor cell detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming
2018-05-01
Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Fujii, T; Taguchi, Y; Saiki, T; Nagasaka, Y
2012-12-01
A novel local temperature measurement method using fluorescence near-field optics thermal nanoscopy (Fluor-NOTN) has been developed. Fluor-NOTN enables nanoscale temperature measurement in situ by detecting the temperature-dependent fluorescence lifetime of CdSe quantum dots (QDs). In this paper, we report a novel triple-tapered near-field optical fiber probe that can increase the temperature measurement sensitivity of Fluor-NOTN. The performance of the proposed probe was numerically evaluated by the finite difference time domain method. Due to improvements in both the throughput and collection efficiency of near-field light, the sensitivity of the proposed probe was 1.9 times greater than that of typical double-tapered probe. The proposed shape of the triple-tapered core was successfully fabricated utilizing a geometrical model. The detected signal intensity of dried layers of QDs was greater by more than two orders than that of auto-fluorescence from the fiber core. In addition, the near-field fluorescence lifetime of the QDs and its temperature dependence were successfully measured by the fabricated triple-tapered near-field optical fiber probe. These measurement results verified the capability of the proposed triple-tapered near-field optical fiber probe to improve the collection efficiency of near-field fluorescence.
Highly selective and rapidly responsive fluorescent probe for hydrogen sulfide detection in wine.
Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Liu, Yongguo; Sun, Baoguo
2018-08-15
A new fluorescent probe 6-(2, 4-dinitrophenoxy)-2-naphthonitrile (probe 1) was designed and synthesized for the selective detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence turn-on alongside a visual color change from colorless to light yellow. Importantly, this distinct color response indicated that probe 1 could be used as a visual sensor for H 2 S. Moreover, probe 1 was successfully used as a signal tool to determine the H 2 S levels in beer and red wine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interface of physics and biology: engineering virus-based nanoparticles for biophotonics.
Wen, Amy M; Infusino, Melissa; De Luca, Antonio; Kernan, Daniel L; Czapar, Anna E; Strangi, Giuseppe; Steinmetz, Nicole F
2015-01-21
Virus-based nanoparticles (VNPs) have been used for a wide range of applications, spanning basic materials science and translational medicine. Their propensity to self-assemble into precise structures that offer a three-dimensional scaffold for functionalization has led to their use as optical contrast agents and related biophotonics applications. A number of fluorescently labeled platforms have been developed and their utility in optical imaging demonstrated, yet their optical properties have not been investigated in detail. In this study, two VNPs of varying architectures were compared side-by-side to determine the impact of dye density, dye localization, conjugation chemistry, and microenvironment on the optical properties of the probes. Dyes were attached to icosahedral cowpea mosaic virus (CPMV) and rod-shaped tobacco mosaic virus (TMV) through a range of chemistries to target particular side chains displayed at specific locations around the virus. The fluorescence intensity and lifetime of the particles were determined, first using photochemical experiments on the benchtop, and second in imaging experiments using tissue culture experiments. The virus-based optical probes were found to be extraordinarily robust under ultrashort, pulsed laser light conditions with a significant amount of excitation energy, maintaining structural and chemical stability. The most effective fluorescence output was achieved through dye placement at optimized densities coupled to the exterior surface avoiding conjugated ring systems. Lifetime measurements indicate that fluorescence output depends not only on spacing the fluorophores, but also on dimer stacking and configurational changes leading to radiationless relaxation-and these processes are related to the conjugation chemistry and nanoparticle shape. For biological applications, the particles were also examined in tissue culture, from which it was found that the optical properties differed from those found on the benchtop due to effects from cellular processes and uptake kinetics. Data indicate that fluorescent cargos are released in the endolysosomal compartment of the cell targeted by the virus-based optical probes. These studies provide insight into the optical properties and fates of fluorescent proteinaceous imaging probes. The cellular release of cargo has implications not only for virus-based optical probes, but also for drug delivery and release systems.
DeLong, Edward F.; Taylor, Lance Trent; Marsh, Terence L.; Preston, Christina M.
1999-01-01
Fluorescent in situ hybridization (FISH) using rRNA-specific oligonucleotide probes has emerged as a popular technique for identifying individual microbial cells. In natural samples, however, the signal derived from fluor-labeled oligonucleotide probes often is undetectable above background fluorescence in many cells. To circumvent this difficulty, we applied fluorochrome-labeled polyribonucleotide probes to identify and enumerate marine planktonic archaea and bacteria. The approach greatly enhanced the sensitivity and applicability of FISH with seawater samples, allowing confident identification and enumeration of planktonic cells to ocean depths of 3,400 m. Quantitative whole-cell hybridization experiments using these probes accounted for 90 to 100% of the total 4′,6-diamidino-2-phenylindole (DAPI)-stained cells in most samples. As predicted in a previous study (R. Massana, A. E. Murray, C. M. Preston, and E. F. DeLong, Appl. Environ. Microbiol. 63:50–56, 1997), group I and II marine archaea predominate in different zones in the water column, with maximal cell densities of 105/ml. The high cell densities of archaea, extending from surface waters to abyssal depths, suggest that they represent a large and significant fraction of the total picoplankton biomass in coastal ocean waters. The data also show that the vast majority of planktonic prokaryotes contain significant numbers of ribosomes, rendering them easily detectable with polyribonucleotide probes. These results imply that the majority of planktonic cells visualized by DAPI do not represent lysed cells or “ghosts,” as was suggested in a previous report. PMID:10584017
[REAL TIME POLYMERASE CHAIN REACTION IN TULAREMIA LABORATORY DIAGNOSTICS].
Kormilitsyna, M I; Mescheryakova, I S; Mikhailova, T V; Dobrovolsky, A A
2015-01-01
Enhancement of tularemia laboratory diagnostics by F. tularensis DNA determination in blood sera of patients using real time polymerase chain reaction (RT-PCR). 39 blood sera of patients obtained during transmissive epidemic outbreak of tularemia in Khanty-Mansiysk in 2013 were studied in agglutination reaction, passive hemagglutination, RT-PCR. Specific primers and fluorescent probes were used: ISFTu2F/R+ISFTu2P, Tu14GF/R+tul4-PR2. Advantages of using RT-PCR for early diagnostics of tularemia, when specific antibodies are not detected using traditional immunologic methods, were established. Use of a combination of primers and ISFTu2F/R+ISFTu2P probe allowed to detect F. tularensis DNA in 100% of sera, whereas Tul4G F/R+tul4-PR2 combination--92% of sera. The data were obtained when DNA was isolated from sera using "Proba Rapid" express method. Clinical-epidemiologic diagnosis oftularemia was confirmed by both immune-serologic and RT-PCR methods when sera were studied 3-4 weeks after the onset of the disease. RT-PCR with ISFTu2F/R primers and fluorescent probe ISFTu2P, having high sensitivity and specificity, allows to determine F. tularensis DNA in blood sera of patients at both the early stage and 3-4 weeks after the onset of the disease.
Dong, Junyang; Hu, Jianfeng; Baigude, Huricha; Zhang, Hao
2018-01-02
A novel ferrocenyl-naphthalimide multichannel probe 1 was designed and synthesized using a facile method. The color of the solution containing probe 1 changed from yellow to colorless upon the addition of Cu 2+ or Hg 2+ . Interestingly, probe 1 exhibited highly selective fluorescent turn-on for Cu 2+ and turn-off for Hg 2+ in aqueous solution. Probe 1 was an electrochemical Cu 2+ and Hg 2+ ion sensor, in which the Fc/Fc + redox couple was significantly shifted (ΔE 1/2 = 178 mV and ΔE 1/2 = 53 mV, respectively) upon complexation. Therefore, probe 1 can act as a naked-eye chemosensor, as well as an electrochemical and a fluorescent probe for Cu 2+ and Hg 2+ . Furthermore, this is the first reported probe that can be used for the bifunctional fluorescent detection of intracellular Cu 2+ and Hg 2+ by fluorescent imaging studies. These characteristics give this probe considerable potential in the study and analysis of Cu 2+ and Hg 2+ in complex biosystems.
Nakamura, Akinobu; Takigawa, Kazumasa; Kurishita, Yasutaka; Kuwata, Keiko; Ishida, Manabu; Shimoda, Yasushi; Hamachi, Itaru; Tsukiji, Shinya
2014-06-11
We report a general strategy to create small-molecule fluorescent probes for the nucleus in living cells. Our strategy is based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest. Using this approach, simple fluorescein, BODIPY, and rhodamine dyes were readily converted to novel turn-on fluorescent nucleus-imaging probes.
Zhang, Yujin; Hu, Wei
2017-01-01
Nonlinear optical properties of a series of newly-synthesized molecular fluorescent probes for Hg2+ containing the same acceptor (rhodamine group) are analyzed by using time-dependent density functional theory in combination with analytical response theory. Special emphasis is placed on evolution of the probes’ optical properties in the absence and presence of Hg2+. These compounds show drastic changes in their photoabsorption and photoemission properties when they react with Hg2+, indicating that they are excellent candidates for ratiometric and colorimetric fluorescent chemosensors. Most importantly, the energy donor moiety is found to play a dominant role in sensing performance of these probes. Two-photon absorption cross sections of the compounds are increased with the presence of Hg2+, which theoretically suggests the possibility of the probes to be two-photon fluorescent Hg2+ sensors. Moreover, analysis of molecular orbitals is presented to explore responsive mechanism of the probes, where the fluorescence resonant energy transfer process is theoretically demonstrated. Our results elucidate the available experimental measurements. This work provides guidance for designing efficient two-photon fluorescent probes that are geared towards biological and chemical applications. PMID:28772466
NASA Astrophysics Data System (ADS)
Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin
2018-06-01
Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.
Lin, Hao; Yang, Haitao; Huang, Shuai; Wang, Fujia; Wang, Dong-Mei; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing
2018-04-18
Caspase-1 is a key player in pyroptosis and inflammation. Caspase-1 inhibition is found to be beneficial to various diseases. Coumarin-originated natural products have an anti-inflammation function, but their direct inhibition effect to caspase-1 remains unexplored. To evaluate their interactions, the widely used commercial coumarin-based probe (Ac-YVAD-AMC) is not suitable, as the background signal from coumarin-originated natural products could interfere with the screening results. Therefore, fluorescent probes using a large Stokes shift could help solve this problem. In this work, we chose the fluorophore of tetraphenylethylene-thiophene (TPETH) with aggregation-induced emission characteristics and a large Stokes shift of about 200 nm to develop a molecular probe. Bioconjugation between TPETH and hydrophilic peptides (DDYVADC) through a thiol-ene reaction generated a light-up probe, C1-P3. The probe has little background signal in aqueous media and exerts a fluorescent turn-on effect in the presence of caspase-1. Moreover, when evaluating the inhibition potency of coumarin-originated natural products, the new probe could generate a true and objective result but not for the commercial probe (Ac-YVAD-AMC), which is evidenced by HPLC analysis. The quick light-up response and accurate screening results make C1-P3 very useful in fundamental study and inhibitior screening toward caspase-1.
NASA Astrophysics Data System (ADS)
Lv, Hongshui; Sun, Haiyan; Wang, Shoujuan; Kong, Fangong
2018-05-01
A novel dicyanoisophorone based fluorescent probe HP was developed to detect hydrazine. Upon the addition of hydrazine, probe HP displayed turn-on fluorescence in the red region with a large Stokes shift (180 nm). This probe exhibited high selectivity and high sensitivity to hydrazine in solution. The detection limit of HP was found to be 3.26 ppb, which was lower than the threshold limit value set by USEPA (10 ppb). Moreover, the probe was successfully applied to detect hydrazine in different water samples and living cells.
Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.
Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng
2015-10-07
To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-01-01
A new Gadolinium(III)–coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F−) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r1). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields. PMID:27999298
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-12-16
A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.
Hu, Yanling; Yang, Donlgliang; Yang, Chen; Feng, Ning; Shao, Zhouwei; Zhang, Lei; Wang, Xiaodong; Weng, Lixing; Luo, Zhimin; Wang, Lianhui
2018-04-11
A novel fluorescent "off-on" probe based on carbon nitride (C₃N₄) nanoribbons was developed for citrate anion (C₆H₅O₇ 3- ) detection. The fluorescence of C₃N₄ nanoribbons can be quenched by Cu 2+ and then recovered by the addition of C₆H₅O₇ 3- , because the chelation between C₆H₅O₇ 3- and Cu 2+ blocks the electron transfer between Cu 2+ and C₃N₄ nanoribbons. The turn-on fluorescent sensor using this fluorescent "off-on" probe can detect C₆H₅O₇ 3- rapidly and selectively, showing a wide detection linear range (1~400 μM) and a low detection limit (0.78 μM) in aqueous solutions. Importantly, this C₃N₄ nanoribbon-based "off-on" probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C₆H₅O₇ 3- in HeLa cells.
Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.
2015-01-01
Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379
FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
Yuan, Lin; Lin, Weiying; Zheng, Kaibo; Zhu, Sasa
2013-07-16
Fluorescence imaging has emerged as a powerful tool for monitoring biomolecules within the context of living systems with high spatial and temporal resolution. Researchers have constructed a large number of synthetic intensity-based fluorescent probes for bio-imaging. However, intensity-based fluorescent probes have some limitations: variations in probe concentration, probe environment, and excitation intensity may influence the fluorescence intensity measurements. In principle, the use of ratiometric fluorescent probes can alleviate this shortcoming. Förster resonance energy transfer (FRET) is one of the most widely used sensing mechanisms for ratiometric fluorescent probes. However, the development of synthetic FRET probes with favorable photophysical properties that are also suitable for biological imaging applications remains challenging. In this Account, we review the rational design and biological applications of synthetic FRET probes, focusing primarily on studies from our laboratory. To construct useful FRET probes, it is a pre-requisite to develop a FRET platform with favorable photophysical properties. The design criteria of a FRET platform include (1) well-resolved absorption spectra of the donor and acceptor, (2) well-separated emission spectra of the donor and acceptor, (3) donors and acceptors with comparable brightness, (4) rigid linkers, and (5) near-perfect efficiency in energy transfer. With an efficient FRET platform in hand, it is then necessary to modulate the donor-acceptor distance or spectral overlap integral in an analyte-dependent fashion for development of FRET probes. Herein, we emphasize our most recent progress on the development of FRET probes by spectral overlap integral, in particular by changing the molar absorption coefficient of the donor dyes such as rhodamine dyes, which undergo unique changes in the absorption profiles during the ring-opening and -closing processes. Although partial success has been obtained in design of first-generation rhodamine-based FRET probes via modulation of acceptor molar absorption coefficient, further improvements in terms of versatility, sensitivity, and synthetic accessibility are required. To address these issues with the first-generation rhodamine-based FRET probes, we have proposed a strategy for the design of second-generation probes. As a demonstration, we have developed FRET imaging probes for diverse targets including Cu²⁺, NO, HOCl, cysteine, and H₂O₂. This discussion of the methods for successfully designing synthetic FRET probes underscores the rational basis for further development of new FRET probes as a molecular toolbox for probing and manipulating a wide variety of biomolecules in living systems.
Switalska, Angelika; Kierzek, Ryszard; Dembska, Anna; Juskowiak, Bernard
2017-12-01
The design, synthesis, and spectral properties of four pyrene labeled oligonucleotide probes with G-quadruplex structure (Tel22-Tpy, Tel22-Upy, Tel22-6Upy, Tel22-18Upy) based on the 22-mer human telomeric sequence (Tel22) have been reported. Pyrene labels in the form of ethynylpyrenyldeoxyuridine have been inserted efficiently into oligodeoxynucleotides probes using phosphoramidite chemistry. The probes exhibited abilities to fold into G-quadruplex structures and to bind metal cations (Na + and K + ). Folding properties of probes and their spectral behavior were examined by recording the UV-vis, fluorescence, and CD spectra as well as by analyzing melting profiles. Fluorescence characteristics and G-quadruplex folding of probes were also studied at the interface of cationic dioctadecyldimethylammonium bromide (DODAB) monolayer. Investigations included film balance measurements (π-A isotherms) and fluorescence spectra recording using a fiber optic accessory interfaced with a spectrofluorimeter. Copyright © 2017 Elsevier B.V. All rights reserved.