Estimating the actual subject-specific genetic correlations in behavior genetics.
Molenaar, Peter C M
2012-10-01
Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.
Hill, W David
2018-04-01
Intelligence and educational attainment are strongly genetically correlated. This relationship can be exploited by Multi-Trait Analysis of GWAS (MTAG) to add power to Genome-wide Association Studies (GWAS) of intelligence. MTAG allows the user to meta-analyze GWASs of different phenotypes, based on their genetic correlations, to identify association's specific to the trait of choice. An MTAG analysis using GWAS data sets on intelligence and education was conducted by Lam et al. (2017). Lam et al. (2017) reported 70 loci that they described as 'trait specific' to intelligence. This article examines whether the analysis conducted by Lam et al. (2017) has resulted in genetic information about a phenotype that is more similar to education than intelligence.
Zambon, Carlo-Federico; Prayer-Galetti, Tommaso; Basso, Daniela; Padoan, Andrea; Rossi, Elisa; Secco, Silvia; Pelloso, Michela; Fogar, Paola; Navaglia, Filippo; Moz, Stefania; Zattoni, Filiberto; Plebani, Mario
2012-10-01
Of serum prostate specific antigen variability 40% depends on inherited factors. We ascertained whether the knowledge of KLK3 genetics would enhance prostate specific antigen diagnostic performance in patients with clinical suspicion of prostate cancer. We studied 1,058 men who consecutively underwent prostate biopsy for clinical suspicion of prostate cancer. At histology prostate cancer was present in 401 cases and absent in 657. Serum total prostate specific antigen and the free-to-total prostate specific antigen ratio were determined. Four polymorphisms of the KLK3 gene (rs2569733, rs2739448, rs925013 and rs2735839) and 1 polymorphism of the SRD5A2 gene (rs523349) were studied. The influence of genetics on prostate specific antigen variability was evaluated by multivariate linear regression analysis. The performance of total prostate specific antigen and the free-to-total prostate specific antigen ratio alone or combined with a genetically based patient classification were defined by ROC curve analyses. For prostate cancer diagnosis the free-to-total prostate specific antigen ratio index alone (cutoff 11%) was superior to total prostate specific antigen (cutoff 4 ng/ml) and to free-to-total prostate specific antigen ratio reflex testing (positive predictive value 61%, 43% and 54%, respectively). Prostate specific antigen correlated with KLK3 genetics (rs2735839 polymorphism p = 0.001, and rs2569733, rs2739448 and rs925013 haplotype combination p = 0.003). In patients with different KLK3 genetics 2 optimal free-to-total prostate specific antigen ratio cutoffs (11% and 14.5%) were found. For free-to-total prostate specific antigen ratio values between 11% and 14.5% the prostate cancer probability ranged from 30.0% to 47.4% according to patient genetics. The free-to-total prostate specific antigen ratio is superior to total prostate specific antigen for prostate cancer diagnosis, independent of total prostate specific antigen results. Free-to-total prostate specific antigen ratio findings below 11% are positively associated with prostate cancer and those above 14.5% are negatively associated with prostate cancer, while the interpretation of those between 11% and 14.5% is improved by patient KLK3 genetic analysis. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Zwingerman, Nora; Medina-Rivera, Alejandra; Kassam, Irfahan; Wilson, Michael D.; Morange, Pierre-Emmanuel; Trégouët, David-Alexandre; Gagnon, France
2017-01-01
Background Thrombin activatable fibrinolysis inhibitor (TAFI), encoded by the Carboxypeptidase B2 gene (CPB2), is an inhibitor of fibrinolysis and plays a role in the pathogenesis of venous thrombosis. Experimental findings support a functional role of genetic variants in CPB2, while epidemiological studies have been unable to confirm associations with risk of venous thrombosis. Sex-specific effects could underlie the observed inconsistent associations between CPB2 genetic variants and venous thrombosis. Methods A comprehensive literature search was conducted for associations between Ala147Thr and Thr325Ile variants with venous thrombosis. Authors were contacted to provide sex-specific genotype counts from their studies. Combined and sex-specific random effects meta-analyses were used to estimate a pooled effect estimate for primary and secondary genetic models. Results A total of 17 studies met the inclusion criteria. A sex-specific meta-analysis applying a dominant model supported a protective effect of Ala147Thr on venous thrombosis in females (OR = 0.81, 95%CI: 0.68,0.97; p = 0.018), but not in males (OR = 1.06, 95%CI:0.96–1.16; p = 0.263). The Thr325Ile did not show a sex-specific effect but showed variation in allele frequencies by geographic region. A subgroup analysis of studies in European countries showed decreased risk, with a recessive model (OR = 0.83, 95%CI:0.71–0.97, p = 0.021) for venous thrombosis. Conclusions A comprehensive literature review, including unpublished data, provided greater statistical power for the analyses and decreased the likelihood of publication bias influencing the results. Sex-specific analyses explained apparent discrepancies across genetic studies of Ala147Thr and venous thrombosis. While, careful selection of genetic models based on population genetics, evolutionary and biological knowledge can increase power by decreasing the need to adjust for testing multiple models. PMID:28552956
Zwingerman, Nora; Medina-Rivera, Alejandra; Kassam, Irfahan; Wilson, Michael D; Morange, Pierre-Emmanuel; Trégouët, David-Alexandre; Gagnon, France
2017-01-01
Thrombin activatable fibrinolysis inhibitor (TAFI), encoded by the Carboxypeptidase B2 gene (CPB2), is an inhibitor of fibrinolysis and plays a role in the pathogenesis of venous thrombosis. Experimental findings support a functional role of genetic variants in CPB2, while epidemiological studies have been unable to confirm associations with risk of venous thrombosis. Sex-specific effects could underlie the observed inconsistent associations between CPB2 genetic variants and venous thrombosis. A comprehensive literature search was conducted for associations between Ala147Thr and Thr325Ile variants with venous thrombosis. Authors were contacted to provide sex-specific genotype counts from their studies. Combined and sex-specific random effects meta-analyses were used to estimate a pooled effect estimate for primary and secondary genetic models. A total of 17 studies met the inclusion criteria. A sex-specific meta-analysis applying a dominant model supported a protective effect of Ala147Thr on venous thrombosis in females (OR = 0.81, 95%CI: 0.68,0.97; p = 0.018), but not in males (OR = 1.06, 95%CI:0.96-1.16; p = 0.263). The Thr325Ile did not show a sex-specific effect but showed variation in allele frequencies by geographic region. A subgroup analysis of studies in European countries showed decreased risk, with a recessive model (OR = 0.83, 95%CI:0.71-0.97, p = 0.021) for venous thrombosis. A comprehensive literature review, including unpublished data, provided greater statistical power for the analyses and decreased the likelihood of publication bias influencing the results. Sex-specific analyses explained apparent discrepancies across genetic studies of Ala147Thr and venous thrombosis. While, careful selection of genetic models based on population genetics, evolutionary and biological knowledge can increase power by decreasing the need to adjust for testing multiple models.
29 CFR 1635.3 - Definitions specific to GINA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for adults using genetic analysis to determine the risk of conditions such as cystic fibrosis, sickle...; (vii) DNA testing to detect genetic markers that are associated with information about ancestry; and... Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION GENETIC INFORMATION...
El Shanti, Hatem; Chouchane, Lotfi; Badii, Ramin; Gallouzi, Imed Eddine; Gasparini, Paolo
2015-11-14
In 2013 both Saudi Arabia and Qatar launched genome projects with the aim of providing information for better diagnosis, treatment and prevention of diseases and, ultimately to realize personalized medicine by sequencing hundred thousands samples. These population based genome activities raise a series of relevant ethical, legal and social issues general, related to the specific population structure as well as to the Islamic perspective on genomic analysis and genetic testing. To contribute to the debate, the Authors after reviewing the existing literature and taking advantage of their professional experience in the field and in the geographic area, discuss and provide their opinions. In particular, the Authors focus on the impact of consanguinity on population structure and disease frequency in the Arab world, on genetic testing and genomic analysis (i.e. technical aspects, impact, etc.) and on their regulations. A comparison between the Islamic perspective and the ethical, social and legal issues raised in other population contexts is also carried. In conclusion, this opinion article with an up-to-date contribution to the discussion on the relevance and impact of genomic analysis and genetic testing in the Arab world, might help in producing specific national guidelines on genetic testing and genomic analysis and help accelerate the implementation and roll out of genome projects in Muslim countries and more specifically in Qatar, and other countries of the Gulf.
Structure-function analysis of genetically defined neuronal populations.
Groh, Alexander; Krieger, Patrik
2013-10-01
Morphological and functional classification of individual neurons is a crucial aspect of the characterization of neuronal networks. Systematic structural and functional analysis of individual neurons is now possible using transgenic mice with genetically defined neurons that can be visualized in vivo or in brain slice preparations. Genetically defined neurons are useful for studying a particular class of neurons and also for more comprehensive studies of the neuronal content of a network. Specific subsets of neurons can be identified by fluorescence imaging of enhanced green fluorescent protein (eGFP) or another fluorophore expressed under the control of a cell-type-specific promoter. The advantages of such genetically defined neurons are not only their homogeneity and suitability for systematic descriptions of networks, but also their tremendous potential for cell-type-specific manipulation of neuronal networks in vivo. This article describes a selection of procedures for visualizing and studying the anatomy and physiology of genetically defined neurons in transgenic mice. We provide information about basic equipment, reagents, procedures, and analytical approaches for obtaining three-dimensional (3D) cell morphologies and determining the axonal input and output of genetically defined neurons. We exemplify with genetically labeled cortical neurons, but the procedures are applicable to other brain regions with little or no alterations.
Kassir, Yona; Stuart, David T
2017-01-01
The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.
Copy number analysis reveals a novel multiexon deletion of the COLQ gene in congenital myasthenia.
Wang, Wei; Wu, Yanhong; Wang, Chen; Jiao, Jinsong; Klein, Christopher J
2016-12-01
Congenital myasthenic syndrome (CMS) is genetically and clinically heterogeneous. 1 Despite a considerable number of causal genes discovered, many patients are left without a specific diagnosis after genetic testing. The presumption is that novel genes yet to be discovered will account for the majority of such patients. However, it is also possible that we are neglecting a type of genetic variation: copy number changes (>50 bp) as causal for some of these patients. Next-generation sequencing (NGS) can simultaneously screen all known causal genes 2 and is increasingly being validated to have a potential to identify copy number changes. 3 We present a CMS case who did not receive a genetic diagnosis from previous Sanger sequencing, but through a novel copy number analysis algorithm integrated into our targeted NGS panel, we discovered a novel copy number mutation in the COLQ gene and made a genetic diagnosis. This discovery expands the genotype-phenotype correlation of CMS, leads to improved genetic counsel, and allows for specific pharmacologic treatment. 1 .
Genetic imprint of the Mongol: signal from phylogeographic analysis of mitochondrial DNA.
Cheng, Baoweng; Tang, Wenru; He, Li; Dong, Yongli; Lu, Jing; Lei, Yunping; Yu, Haijing; Zhang, Jiali; Xiao, Chunjie
2008-01-01
Mitochondrial deoxyribonucleic acid (DNA) from 201 unrelated Mongolian individuals in the three different regions was analyzed. The Mongolians took the dominant East Asian-specific haplogroups, and some European-prevalent haplogroups were detected. The East Asians-specific haplogroups distributed from east to west in decreasing frequencies, and the European-specific haplogroups distributed conversely. These genetic data suggest that the Mongolian empire played an important role in the maternal genetic admixture across Mongolians and even Central Asian populations, whereas the Silk Road might have contributed little in the admixture between the East Asians and the Europeans.
Genetic and epigenetic variation in the lineage specification of regulatory T cells
Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y
2015-01-01
Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014
GENETIC DIVERSITY OF STREAM FISH IN THE MID-ATLANTIC INTEGRATED ASSESSMENT AREA
In this report, we describe the results of research to assess the genetics of three stream fish species in the Mid-Atlantic region. This research had three specific goals. First, we sought to examine the utility of genetic analysis for purposes of taxonomic identification. Bioa...
The Genetic Privacy Act and commentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annas, G.J.; Glantz, L.H.; Roche, P.A.
1995-02-28
The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. Therefore, to effectively protect genetic privacy unauthorized collection and analysis of individually identifiable DNA must be prohibited. As a result, the premise of the Act is that no stranger should have or control identifiable DNA samples or genetic information about an individual unless that individual specifically authorizes the collection of DNA samples for the purpose of genetic analysis, authorized the creation of that private information, andmore » has access to and control over the dissemination of that information.« less
Bohra, Abhishek; Saxena, Rachit K; Gnanesh, B N; Saxena, Kulbhushan; Byregowda, M; Rathore, Abhishek; Kavikishor, P B; Cook, Douglas R; Varshney, Rajeev K
2012-10-01
Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750 kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6 cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059 cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24 %. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.
Beaton, Derek; Dunlop, Joseph; Abdi, Hervé
2016-12-01
For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis
2018-01-01
activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is regarded a...Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA Jane Buckner...IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in
In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis
2018-01-01
player in the activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is...for RA (IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell ...Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA
ERIC Educational Resources Information Center
McGrew, Susan G.; Peters, Brittany R.; Crittendon, Julie A.; Veenstra-VanderWeele, Jeremy
2012-01-01
Genetic testing is recommended for patients with ASD; however specific recommendations vary by specialty. American Academy of Pediatrics and American Academy of Neurology guidelines recommend G-banded karyotype and Fragile X DNA. The American College of Medical Genetics recommends Chromosomal Microarray Analysis (CMA). We determined the yield of…
Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica
2018-03-31
This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and major depression. © 2018 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Olah, Eva; Balogh, Erzsebet; Pajor, Laszlo; Jakab, Zsuzsanna
2011-03-01
A nationwide study was started in 1993 to provide genetic diagnosis for all newly diagnosed childhood ALL cases in Hungary using cytogenetic examination, DNA-index determination, FISH (aneuploidy, ABL/BCR, TEL/AML1) and molecular genetic tests (ABL/BCR, MLL/AF4, TEL/AML1). Aim of the study was to assess the usefulness of different genetic methods, to study the frequency of various aberrations and their prognostic significance. Results were synthesized for genetic subgrouping of patients. To assess the prognostic value of genetic aberrations overall and event-free survival of genetic subgroups were compared using Kaplan-Meier method. Prognostic role of aberrations was investigated by multivariate analysis (Cox's regression) as well in comparison with other factors (age, sex, major congenital abnormalities, initial WBC, therapy, immunophenotype). Five hundred eighty-eight ALL cases were diagnosed between 1993-2002. Cytogenetic examination was performed in 537 (91%) (success rate 73%), DNA-index in 265 (45%), FISH in 74 (13%), TEL/AML1 RT-PCR in 219 (37%) cases producing genetic diagnosis in 457 patients (78%). Proportion of subgroups with good prognosis in prae-B-cell ALL was lower than expected: hyperdiploidB 18% (73/400), TEL/AML1+ 9% (36/400). Univariate analysis showed significantly better 5-year EFS in TEL/AML1+ (82%) and hyperdiploidB cases (78%) than in tetraploid (44%) or pseudodiploid (52%) subgroups. By multivariate analysis main negative prognostic factors were: congenital abnormalities, high WBC, delay in therapy, specific translocations. Complementary use of each of genetic methods used is necessary for reliable genetic diagnosis according to the algorithm presented. Specific genetic alterations proved to be of prognostic significance.
Zhou, L X; Xiao, Y; Xia, W; Yang, Y D
2015-12-08
Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.
SimHap GUI: an intuitive graphical user interface for genetic association analysis.
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-12-25
Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.
Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko
2016-08-15
Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Weier, Heinz -Ulrich G
2015-08-04
Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.
ERIC Educational Resources Information Center
Eley, Thalia C.; Rijsdijk, Fruhling V.; Perrin, Sean; O'Connor, Thomas G.; Bolton, Derek
2008-01-01
Background: Comorbidity amongst anxiety disorders is very common in children as in adults and leads to considerable distress and impairment, yet is poorly understood. Multivariate genetic analyses can shed light on the origins of this comorbidity by revealing whether genetic or environmental risks for one disorder also influence another. We…
Genetic subpopulation structuring and its implications in a mature eastern white pine stand
Samuel E. Nijensohn; Paul G. Schaberg; Gary J. Hawley; Donald H. DeHayes; Donald H. DeHayes
2005-01-01
We examined patterns of genetic structuring within a mature eastern white pine (Pinus strobus L.) forest, using geographic information system (GIS)-based data and maps that combined genetic (isozyme analysis of 46 loci) and other tree-specific information (e.g., size, growth, age, and location) for 220 trees in Jericho, Vermont. Interconnections between genotypic...
Hughes, Travis; Adler, Adam; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Williams, Adrienne; Langefeld, Carl D; Gilkeson, Gary S; Sanchez, Elena; Martin, Javier; Boackle, Susan A; Stevens, Anne M; Alarcón, Graciela S; Niewold, Timothy B; Brown, Elizabeth E; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Reveille, John D; Criswell, Lindsey A; Vilá, Luis M; Jacob, Chaim O; Gaffney, Patrick M; Moser, Kathy L; Vyse, Timothy J; Alarcón-Riquelme, Marta E; James, Judith A; Tsao, Betty P; Scofield, R Hal; Harley, John B; Richardson, Bruce C; Sawalha, Amr H
2012-05-01
Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci. A total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex-gene interaction was further validated using parametric and non-parametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients. A significantly higher cumulative genetic risk for SLE was observed in men than in women. (P=4.52x10-8) A significant sex-gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men. The data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.
Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis.
Diego, Vincent P; de Chaves, Raquel Nichele; Blangero, John; de Souza, Michele Caroline; Santos, Daniel; Gomes, Thayse Natacha; dos Santos, Fernanda Karina; Garganta, Rui; Katzmarzyk, Peter T; Maia, José A R
2015-08-01
The objective of this study is to present a model to estimate sex-specific genetic effects on physical activity (PA) levels and sedentary behaviour (SB) using three generation families. The sample consisted of 100 families covering three generations from Portugal. PA and SB were assessed via the International Physical Activity Questionnaire short form (IPAQ-SF). Sex-specific effects were assessed by genotype-by-sex interaction (GSI) models and sex-specific heritabilities. GSI effects and heterogeneity were tested in the residual environmental variance. SPSS 17 and SOLAR v. 4.1 were used in all computations. The genetic component for PA and SB domains varied from low to moderate (11% to 46%), when analyzing both genders combined. We found GSI effects for vigorous PA (p = 0.02) and time spent watching television (WT) (p < 0.001) that showed significantly higher additive genetic variance estimates in males. The heterogeneity in the residual environmental variance was significant for moderate PA (p = 0.02), vigorous PA (p = 0.006) and total PA (p = 0.001). Sex-specific heritability estimates were significantly higher in males only for WT, with a male-to-female difference in heritability of 42.5 (95% confidence interval: 6.4, 70.4). Low to moderate genetic effects on PA and SB traits were found. Results from the GSI model show that there are sex-specific effects in two phenotypes, VPA and WT with a stronger genetic influence in males.
Rapid Genetic Analysis of Epithelial-Mesenchymal Signaling During Hair Regeneration
Zhen, Hanson H.; Oro, Anthony E.
2013-01-01
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models. PMID:23486463
Population-specific genetic modification of Huntington's disease in Venezuela.
Chao, Michael J; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C; Li, Hong; Roach, Jared C; Hood, Leroy; Wexler, Nancy S; Jardim, Laura B; Holmans, Peter; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E; Gusella, James F; Lee, Jong-Min
2018-05-01
Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2-21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies.
Population-specific genetic modification of Huntington's disease in Venezuela
Chao, Michael J.; Kim, Kyung-Hee; Shin, Jun Wan; Lucente, Diane; Wheeler, Vanessa C.; Li, Hong; Roach, Jared C.; Hood, Leroy; Jardim, Laura B.; Jones, Lesley; Orth, Michael; Kwak, Seung; MacDonald, Marcy E.; Gusella, James F.
2018-01-01
Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect. The Venezuelan HD subjects develop motor symptoms earlier than their European counterparts, implying the potential for population-specific modifiers. The main Venezuelan HD family inherits HTT haplotype hap.03, which differs subtly at the sequence level from European HD hap.03, suggesting a different ancestral origin but not explaining the earlier age at onset in these Venezuelans. GWA analysis of the Venezuelan HD cluster suggests both population-specific and population-shared genetic modifiers. Genome-wide significant signals at 7p21.2–21.1 and suggestive association signals at 4p14 and 17q21.2 are evident only in Venezuelan HD, but genome-wide significant association signals at the established European chromosome 15 modifier locus are improved when Venezuelan HD data are included in the meta-analysis. Venezuelan-specific association signals on chromosome 7 center on SOSTDC1, which encodes a bone morphogenetic protein antagonist. The corresponding SNPs are associated with reduced expression of SOSTDC1 in non-Venezuelan tissue samples, suggesting that interaction of reduced SOSTDC1 expression with a population-specific genetic or environmental factor may be responsible for modification of HD onset in Venezuela. Detection of population-specific modification in Venezuelan HD supports the value of distinct disease populations in revealing novel aspects of a disease and population-relevant therapeutic strategies. PMID:29750799
The emerging potential for network analysis to inform precision cancer medicine.
Ozturk, Kivilcim; Dow, Michelle; Carlin, Daniel E; Bejar, Rafael; Carter, Hannah
2018-06-14
Precision cancer medicine promises to tailor clinical decisions to patients using genomic information. Indeed, successes of drugs targeting genetic alterations in tumors, such as imatinib that targets BCR-ABL in chronic myelogenous leukemia, have demonstrated the power of this approach. However biological systems are complex, and patients may differ not only by the specific genetic alterations in their tumor, but by more subtle interactions among such alterations. Systems biology and more specifically, network analysis, provides a framework for advancing precision medicine beyond clinical actionability of individual mutations. Here we discuss applications of network analysis to study tumor biology, early methods for N-of-1 tumor genome analysis and the path for such tools to the clinic. Copyright © 2018. Published by Elsevier Ltd.
Votintseva, A A; Filatov, D A
2011-01-01
The population-genetic processes leading to the genetic degeneration of non-recombining regions have mainly been studied in animal and plant sex chromosomes. Here, we report population genetic analysis of the processes in the non-recombining mating-type-specific regions of the smut fungus Microbotryum violaceum. M. violaceum has A1 and A2 mating types, determined by mating-type-specific ‘sex chromosomes' that contain 1–2 Mb long non-recombining regions. If genetic degeneration were occurring, then one would expect reduced DNA polymorphism in the non-recombining regions of this fungus. The analysis of DNA diversity among 19 M. violaceum strains, collected across Europe from Silene latifolia flowers, revealed that (i) DNA polymorphism is relatively low in all 20 studied loci (π∼0.15%), (ii) it is not significantly different between the two mating-type-specific chromosomes nor between the non-recombining and recombining regions, (iii) there is substantial population structure in M. violaceum populations, which resembles that of its host species, S. latifolia, and (iv) there is significant linkage disequilibrium, suggesting that widespread selfing in this species results in a reduction of the effective recombination rate across the genome. We hypothesise that selfing-related reduction of recombination across the M. violaceum genome negates the difference in the level of DNA polymorphism between the recombining and non-recombining regions, and may possibly lead to similar levels of genetic degeneration in the mating-type-specific regions of the non-recombining ‘sex chromosomes' and elsewhere in the genome. PMID:21081967
Sultana, Nasrin; Igawa, Takeshi; Islam, Mohammed Mafizul; Hasan, Mahmudul; Alam, Mohammad Shafiqul; Komaki, Shohei; Kawamura, Kensuke; Khan, Md Mukhlesur Rahman; Sumida, Masayuki
2017-03-17
The five frog species of the genus Hoplobatrachus are widely distributed in Asia and Africa, with Asia being considered the genus' origin. However, the evolutionary relationships of Asian Hoplobatrachus species remain ambiguous. Additionally, genetic diversity and fundamental differentiation processes within species have not been studied. We conducted molecular phylogenetic analysis on Asian Hoplobatrachus frogs and population genetic analysis on H. tigerinus in Bangladesh using the mitochondrial CYTB gene and 21 microsatellite markers. The resultant phylogenetic tree revealed monophyly in each species, notwithstanding the involvement of cryptic species in H. chinensis and H. tigerinus, which are evident from the higher genetic divergence between populations. Bayesian inference of population structure revealed genetic divergence between western and eastern H. tigerinus populations in Bangladesh, suggesting restricted gene flow caused by barriers posed by major rivers. However, genetic distances among populations were generally low. A discrete population is located in the low riverine delta region, which likely reflects long-distance dispersal. These results strongly suggest that the environment specific to this river system has maintained the population structure of H. tigerinus in this region.
MetaGenyo: a web tool for meta-analysis of genetic association studies.
Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro
2017-12-16
Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .
Boronnikova, S V; Kalendar', R N
2010-01-01
Species-specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm' region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP-markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.
Mahoney, J. Matthew; Taroni, Jaclyn; Martyanov, Viktor; Wood, Tammara A.; Greene, Casey S.; Pioli, Patricia A.; Hinchcliff, Monique E.; Whitfield, Michael L.
2015-01-01
Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a patients underlying genetic risk. PMID:25569146
Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.
2018-01-01
Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869
Allele-specific suppression as a tool to study protein-protein interactions in bacteria.
Manson, M D
2000-01-01
Suppression analysis is well suited to study the interactions of gene products. It offers the advantage of simplicity for any organism for which a convenient genetic system has been developed, which holds for a wide spectrum of bacteria and an ever-increasing number of unicellular as well as complex eukaryotes. No other method provides as much information about the functional relationships of biological macromolecules. The intrinsic value of suppression analysis is enhanced by advances in genomics and in biophysical techniques for investigating the properties of nucleic acids and proteins, such as X-ray crystallography, liquid and solid-state nuclear magnetic resonance, electron spin labeling, and isothermal calorimetry. These approaches confirm and complement whatever is revealed by genetics. Despite these sterling qualities, suppression analysis has its dangers, less in execution than in conceptualization of experiments and interpretation of data. A consistent nomenclature is essential for a uniform and widespread understanding of the results. Familiarity with the genetic background and idiosyncracies of the organism studied is critical in avoiding extraneous phenomena that can affect the outcome. Finally, it is imperative not to underestimate potentially bizarre and improbable consequences that can transpire when rigorous genetic selection is maintained for an appreciable length of time. The article begins with a somewhat pedagogical discussion of genetic terminology. It then moves on to the necessary precautions to observe while planning and conducting suppression analysis. The remainder of the article considers different manifestations of suppression: bypass suppression; gradients of suppression; suppression by relaxed specificity; allele-specific "suppression at a distance"; and true conformational suppression. The treatment is not exhaustive, but representative examples have been gleaned from the recent bacterial literature. Copyright 2000 Academic Press.
SimHap GUI: An intuitive graphical user interface for genetic association analysis
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-01-01
Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877
A roadmap for the genetic analysis of renal aging
Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron
2015-01-01
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736
Huang, Chunqiong; Liu, Guodao; Bai, Changjun; Wang, Wenqiang
2014-10-21
Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260-1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53-0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars.
Giardine, Belinda; Borg, Joseph; Higgs, Douglas R; Peterson, Kenneth R; Philipsen, Sjaak; Maglott, Donna; Singleton, Belinda K; Anstee, David J; Basak, A Nazli; Clark, Barnaby; Costa, Flavia C; Faustino, Paula; Fedosyuk, Halyna; Felice, Alex E; Francina, Alain; Galanello, Renzo; Gallivan, Monica V E; Georgitsi, Marianthi; Gibbons, Richard J; Giordano, Piero C; Harteveld, Cornelis L; Hoyer, James D; Jarvis, Martin; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N; Papadopoulos, Petros; Pavlovic, Sonja; Perseu, Lucia; Radmilovic, Milena; Riemer, Cathy; Satta, Stefania; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John S; Wiemann, Claudia; Zukic, Branka; Chui, David H K; Wajcman, Henri; Hardison, Ross C; Patrinos, George P
2011-03-20
We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.
Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies
2014-01-01
Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects limited to a specific epilepsy subtype. Future genetic analyses might benefit from both lumping (ie, grouping of epilepsy types together) or splitting (ie, analysis of specific clinical subtypes). Funding International League Against Epilepsy and multiple governmental and philanthropic agencies. PMID:25087078
Ryu, Dongchan; Ryu, Jihye; Lee, Chaeyoung
2016-05-01
A genome-wide association study (GWAS) was conducted to examine genetic associations of common autosomal nucleotide variants with sex in a Korean population with 4183 males and 4659 females. Nine genetic association signals were identified in four intragenic and five intergenic regions (P<5 × 10(-8)). Further analysis with an independent data set confirmed two intragenic association signals in the genes encoding protein phosphatase 1, regulatory subunit 12B (PPP1R12B, intron 12, rs1819043) and dynein, axonemal, heavy chain 11 (DNAH11, intron 61, rs10255013), which are directly involved in the reproductive system. This study revealed autosomal genetic variants associated with sex ratio by GWAS for the first time. This implies that genetic variants in proximity to the association signals may influence sex-specific selection and contribute to sex ratio variation. Further studies are required to reveal the mechanisms underlying sex-specific selection.
Investigation of Genetic Variation Underlying Central Obesity amongst South Asians.
Scott, William R; Zhang, Weihua; Loh, Marie; Tan, Sian-Tsung; Lehne, Benjamin; Afzal, Uzma; Peralta, Juan; Saxena, Richa; Ralhan, Sarju; Wander, Gurpreet S; Bozaoglu, Kiymet; Sanghera, Dharambir K; Elliott, Paul; Scott, James; Chambers, John C; Kooner, Jaspal S
2016-01-01
South Asians are 1/4 of the world's population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10-6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans.
Investigation of Genetic Variation Underlying Central Obesity amongst South Asians
Scott, William R.; Zhang, Weihua; Loh, Marie; Tan, Sian-Tsung; Lehne, Benjamin; Afzal, Uzma; Peralta, Juan; Saxena, Richa; Ralhan, Sarju; Wander, Gurpreet S.; Bozaoglu, Kiymet; Sanghera, Dharambir K.; Elliott, Paul; Scott, James; Chambers, John C.; Kooner, Jaspal S.
2016-01-01
South Asians are 1/4 of the world’s population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10−6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans. PMID:27195708
[Detection of genetically modified soy (Roundup-Ready) in processed food products].
Hagen, M; Beneke, B
2000-01-01
In this study, the application of a qualitative and a quantitative method of analysis to detect genetically modified RR-Soy (Roundup-Ready Soy) in processed foods is described. A total of 179 various products containing soy such as baby food and diet products, soy drinks and desserts, tofu and tofu products, soy based meat substitutes, soy protein, breads, flour, granules, cereals, noodles, soy bean sprouts, fats and oils as well as condiments were investigated following the pattern of the section 35 LMBG-method L 23.01.22-1. The DNA was extracted from the samples and analysed using a soybean specific lectin gene PCR as well as a PCR, specific for the genetic modification. Additional, by means of PCR in combination with fluorescence-detection (TaqMan 5'-Nuclease Assay), suspicious samples were subjected to a real-time quantification of the percentage of genetically modified RR-Soy. The methods of analysis proved to be extremely sensitive and specific in regard to the food groups checked. The fats and oils, as well as the condiments were the exceptions in which amplifiable soy DNA could not be detected. The genetic modification of RR-Soy was detected in 34 samples. Eight of these samples contained more than 1% of RR-Soy. It is necessary to determine the percentage of transgenic soy in order to assess whether genetically modified ingredients were deliberately added, or whether they were caused by technically unavoidable contamination (for example during transportation and processing).
Host Genetic and Environmental Effects on Mouse Cecum Microbiota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A
2012-01-01
The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived frommore » a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.« less
Han, Lide; Yang, Jian; Zhu, Jun
2007-06-01
A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.
Beauchaine, Theodore P; Constantino, John N
2017-09-11
In psychopathology research, endophenotypes are a subset of biomarkers that indicate genetic vulnerability independent of clinical state. To date, an explicit expectation is that endophenotypes be specific to single disorders. We evaluate this expectation considering recent advances in psychiatric genetics, recognition that transdiagnostic vulnerability traits are often more useful than clinical diagnoses in psychiatric genetics, and appreciation for etiological complexity across genetic, neural, hormonal and environmental levels of analysis. We suggest that the disorder-specificity requirement of endophenotypes be relaxed, that neural functions are preferable to behaviors as starting points in searches for endophenotypes, and that future research should focus on interactive effects of multiple endophenotypes on complex psychiatric disorders, some of which are 'phenocopies' with distinct etiologies.
An economic evaluation of a genetic screening program for Tay-Sachs disease.
Nelson, W B; Swint, J M; Caskey, C T
1978-01-01
The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives. PMID:418675
Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef
2016-04-30
Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. Copyright © 2015 Elsevier Ltd. All rights reserved.
An economic evaluation of a genetic screening program for Tay-Sachs disease.
Nelson, W B; Swint, J M; Caskey, C T
1978-03-01
The resolution of policy questions relating to medical genetic screening programs will not be without considerable difficulty. Examples include such issues as the optimal degree of screening program expansion, the relative values of screening for different genetic diseases, the appropriate sources of program funding (public vs. private), and the relative value of funding expanded genetic screening programs vs. research directed toward elimination of genetic traits themselves. Information on the net impact of the relevant alternatives is greatly needed, and this need will increase if the National Genetics Act receives funding approval. We have provided what is hopefully a contribution toward this end. While our analysis pertains to a specific disease and a specific screening program for that disease, the methodology is readily generalizable to other genetic diseases, as well as programs of any size or structure. Hopefully, this will serve to stimulate further research efforts that we believe are needed for the objective consideration of resource allocation alternatives.
Wang, Hui; Drake, Thomas A; Lusis, Aldons J
2006-01-01
The integration of expression profiling with linkage analysis has increasingly been used to identify genes underlying complex phenotypes. The effects of gender on the regulation of many physiological traits are well documented; however, “genetical genomic” analyses have not yet addressed the degree to which their conclusions are affected by sex. We constructed and densely genotyped a large F2 intercross derived from the inbred mouse strains C57BL/6J and C3H/HeJ on an apolipoprotein E null (ApoE−/−) background. This BXH.ApoE−/− population recapitulates several “metabolic syndrome” phenotypes. The cross consists of 334 animals of both sexes, allowing us to specifically test for the dependence of linkage on sex. We detected several thousand liver gene expression quantitative trait loci, a significant proportion of which are sex-biased. We used these analyses to dissect the genetics of gonadal fat mass, a complex trait with sex-specific regulation. We present evidence for a remarkably high degree of sex-dependence on both the cis and trans regulation of gene expression. We demonstrate how these analyses can be applied to the study of the genetics underlying gonadal fat mass, a complex trait showing significantly female-biased heritability. These data have implications on the potential effects of sex on the genetic regulation of other complex traits. PMID:16462940
Genetic and Biochemical Diversity among Valeriana jatamansi Populations from Himachal Pradesh
Singh, Sunil Kumar; Katoch, Rajan; Kapila, Rakesh Kumar
2015-01-01
Valeriana jatamansi Jones is an important medicinal plant that grows wild in Himachal Pradesh, India. Molecular and biochemical diversity among 13 natural populations from Himachal Pradesh was assessed using RAPD and GC-MS to know the extent of existing variation. A total of seven genetically diverse groups have been identified based on RAPD analysis which corroborated well with the analysis based on chemical constituents. The essential oil yield ranged from 0.6% to 1.66% (v/w). A negative correlation between patchouli alcohol and viridiflorol, the two major valued constituents, limits the scope of their simultaneous improvement. However, other few populations like Chamba-II and Kandi-I were found promising for viridiflorol and patchouli alcohol, respectively. The analysis of chemical constitution of oil of the populations from a specific region revealed predominance of specific constituents indicating possibility of their collection/selection for specific end uses like phytomedicines. The prevalence of genetically diverse groups along with sufficient chemical diversity in a defined region clearly indicates the role of ecology in the maintenance of evolution of this species. Sufficient molecular and biochemical diversity detected among natural populations of this species will form basis for the future improvement. PMID:25741533
Feng, Hui; Gupta, Bhavna; Wang, Meilian; Zheng, Wenqi; Zheng, Li; Zhu, Xiaotong; Yang, Yimei; Fang, Qiang; Luo, Enjie; Fan, Qi; Tsuboi, Takafumi; Cao, Yaming; Cui, Liwang
2015-12-01
The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright's fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV.
Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu
2016-04-11
Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
[Comparative analysis of the genetic structure of Red Polish cattle in Poland and the Ukraine].
Oblap, R V; Zvezhkhovski, L; Ivanchenko, E V; Glazko, V I
2002-01-01
Comparative analysis of genetic structure of two groups of Red Polish cattle, which reproduce in Poland and Ukraine, was made. Six molecular-genetic markers (kappa-casein, beta-lactoglobulin, leptin, myostatin, growth hormone, and pituitary-specific transcription factor Pit-I) were tested by PCR-RFLP. No significant differences between the considered intrabreed groups were found. High frequency of some alleles (Csn kappa B, Blg B, and Gh L) related to the important productivity traits were observed. The rare alleles in some genes were revealed. The obtained results are evidence of the unique characteristics of the investigated breed.
Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.
Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E
2014-05-01
Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.
The commercialization of human genetic information and related circumstances within Turkish law.
Memiş, Tekin
2011-01-01
Today, human genetic information is used for commercial purposes as well. This means, based on the case, the direct or indirect commercialization of genetic information. In this study, this specific issue is analyzed in light of the new legal regulations as to the subject in the Turkish Law. Specifically, this study focuses on the issue of whether the commercialization of genetic information is allowed under the Turkish Law. This study also attempts to clarify the issue of whether there is any limitations for the commercialization of genetic information in the Turkish Law provided that the commercialization of genetic information is permitted. Prior to this legal analysis, the problems of the legal ownership for genetic information and of whether genetic information should be considered as an organ of human body is discussed. Accordingly, relevant Turkish laws and regulations are individually analyzed within this context. In the mean time legal regulations of some countries in this respect are taken into account with a comparative approach. In the end a general evaluation and suggestions are provided to the reader.
Assessing the genetic overlap between BMI and cognitive function
Marioni, R E; Yang, J; Dykiert, D; Mõttus, R; Campbell, A; Ibrahim-Verbaas, Carla A; Bressler, Jan; Debette, Stephanie; Schuur, Maaike; Smith, Albert V; Davies, Gail; Bennett, David A; Deary, Ian J; Ikram, M Arfan; Launer, Lenore J; Fitzpatrick, Annette L; Seshadri, Sudha; van Duijn, Cornelia M; Mosely Jr, Thomas H; Davies, G; Hayward, C; Porteous, D J; Visscher, P M; Deary, I J
2016-01-01
Obesity and low cognitive function are associated with multiple adverse health outcomes across the life course. They have a small phenotypic correlation (r=−0.11; high body mass index (BMI)−low cognitive function), but whether they have a shared genetic aetiology is unknown. We investigated the phenotypic and genetic correlations between the traits using data from 6815 unrelated, genotyped members of Generation Scotland, an ethnically homogeneous cohort from five sites across Scotland. Genetic correlations were estimated using the following: same-sample bivariate genome-wide complex trait analysis (GCTA)–GREML; independent samples bivariate GCTA–GREML using Generation Scotland for cognitive data and four other samples (n=20 806) for BMI; and bivariate LDSC analysis using the largest genome-wide association study (GWAS) summary data on cognitive function (n=48 462) and BMI (n=339 224) to date. The GWAS summary data were also used to create polygenic scores for the two traits, with within- and cross-trait prediction taking place in the independent Generation Scotland cohort. A large genetic correlation of −0.51 (s.e. 0.15) was observed using the same-sample GCTA–GREML approach compared with −0.10 (s.e. 0.08) from the independent-samples GCTA–GREML approach and −0.22 (s.e. 0.03) from the bivariate LDSC analysis. A genetic profile score using cognition-specific genetic variants accounts for 0.08% (P=0.020) of the variance in BMI and a genetic profile score using BMI-specific variants accounts for 0.42% (P=1.9 × 10−7) of the variance in cognitive function. Seven common genetic variants are significantly associated with both traits at P<5 × 10−5, which is significantly more than expected by chance (P=0.007). All these results suggest there are shared genetic contributions to BMI and cognitive function. PMID:26857597
Integrating evolutionary and functional approaches to infer adaptation at specific loci.
Storz, Jay F; Wheat, Christopher W
2010-09-01
Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.
Park, Kyung-Ae; Park, Yeon-Hwan; Suh, Min-Hee; Choi-Kwon, Smi
2015-09-01
Differing lifestyle, nutritional, and genetic factors may lead to a differing stiffness index (SI) determined by quantitative ultrasound in elderly men and women. The purpose of this study was to determine SI and the gender-specific factors associated with low SI in a Korean elderly cohort. This was a cross-sectional descriptive study identifying the gender-specific factors related to SI in 252 men and women aged 65 years and greater from local senior centers in Seoul, Korea between January and February 2009. The mean SI of elderly men was significantly higher than that of the women's. A multiple regression analysis reveals that age, nutritional status, and physical activity were predictive factors of lower SI in men, whereas age, alcohol consumption, educational level, and genetic polymorphism were predictive factors for elderly women. Low SI was common in both elderly men and women. We found gender differences in factors linked to low SI. In multiple regression analysis, nutritional status and physical activity were more important factors in men, whereas alcohol consumption, educational level, and genetic polymorphism were significant factors predicting low SI in women. Gender-specific modifiable risk factors associated with low SI should be considered when developing osteoporosis prevention programs for the elderly. Copyright © 2015. Published by Elsevier B.V.
Matana, Antonela; Popović, Marijana; Boutin, Thibaud; Torlak, Vesela; Brdar, Dubravka; Gunjača, Ivana; Kolčić, Ivana; Boraska Perica, Vesna; Punda, Ante; Polašek, Ozren; Hayward, Caroline; Barbalić, Maja; Zemunik, Tatijana
2018-04-18
Autoimmune thyroid diseases (AITD) are multifactorial endocrine diseases most frequently accompanied by Tg and TPO autoantibodies. Both antibodies have a higher prevalence in females and act under a strong genetic influence. To identify novel variants underlying thyroid antibody levels, we performed GWAS meta-analysis on the plasma levels of TgAb and TPOAb in three Croatian cohorts, as well as gender specific GWAS and a bivariate analysis. No significant association was detected with the level of TgAb and TPOAb in the meta-analysis of GWAS or bivariate results for all individuals. The bivariate analysis in females only revealed a genome-wide significant association for the locus near GRIN3A (rs4457391, P = 7.76 × 10 -9 ). The same locus had borderline association with TPOAb levels in females (rs1935377, P = 8.58 × 10 -8 ). In conclusion, we identified a novel gender specific locus associated with TgAb and TPOAb levels. Our findings provide a novel insight into genetic and gender differences associated with thyroid antibodies. Copyright © 2018 Elsevier Inc. All rights reserved.
Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.
2016-01-01
Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816
Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama.
Kim, Soo-Jin; Ka, Sojeong; Ha, Jung-Woo; Kim, Jaemin; Yoo, DongAhn; Kim, Kwondo; Lee, Hak-Kyo; Lim, Dajeong; Cho, Seoae; Hanotte, Olivier; Mwai, Okeyo Ally; Dessie, Tadelle; Kemp, Stephen; Oh, Sung Jong; Kim, Heebal
2017-05-12
Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied. We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N'Dama cattle. We analysed genetic variation patterns in N'Dama from the genomes of 101 cattle breeds including 48 samples of five indigenous African cattle breeds and 53 samples of various commercial breeds. Analysis of SNP variances between cattle breeds using wMI, XP-CLR, and XP-EHH detected genes containing N'Dama-specific genetic variants and their potential associations. Functional annotation analysis revealed that these genes are associated with ossification, neurological and immune system. Particularly, the genes involved in bone formation indicate that local adaptation of N'Dama may engage in skeletal growth as well as immune systems. Our results imply that N'Dama might have acquired distinct genotypes associated with growth and regulation of regional diseases including trypanosomiasis. Moreover, this study offers significant insights into identifying genetic signatures for natural and artificial selection of diverse African cattle breeds.
Huang, Chunqiong; Liu, Guodao; Bai, Changjun; Wang, Wenqiang
2014-01-01
Although Cynodon dactylon (C. dactylon) is widely distributed in China, information on its genetic diversity within the germplasm pool is limited. The objective of this study was to reveal the genetic variation and relationships of 430 C. dactylon accessions collected from 22 Chinese provinces using sequence-related amplified polymorphism (SRAP) markers. Fifteen primer pairs were used to amplify specific C. dactylon genomic sequences. A total of 481 SRAP fragments were generated, with fragment sizes ranging from 260–1800 base pairs (bp). Genetic similarity coefficients (GSC) among the 430 accessions averaged 0.72 and ranged from 0.53–0.96. Cluster analysis conducted by two methods, namely the unweighted pair-group method with arithmetic averages (UPGMA) and principle coordinate analysis (PCoA), separated the accessions into eight distinct groups. Our findings verify that Chinese C. dactylon germplasms have rich genetic diversity, which is an excellent basis for C. dactylon breeding for new cultivars. PMID:25338051
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-02-13
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia
2014-01-01
SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293
Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...
2014-02-01
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less
ERIC Educational Resources Information Center
Stark, Sandra Kathleen
2013-01-01
Developmental dyslexia is a specific impairment of reading ability in the presence of normal intelligence and adequate reading instruction. Current research has linked dyslexia to genetic underpinnings, which are identifiable. Furthermore, there are cognitive processes that are influenced by unique genetically programmed neural networks that…
Manzanero, Silvia; Kozlovskaia, Maria; Vlahovich, Nicole
2018-01-01
Background With the increasing capacity for remote collection of both data and samples for medical research, a thorough assessment is needed to determine the association of population characteristics and recruitment methodologies with response rates. Objective The aim of this research was to assess population representativeness in a two-stage study of health and injury in recreational runners, which consisted of an epidemiological arm and genetic analysis. Methods The cost and success of various classical and internet-based methods were analyzed, and demographic representativeness was assessed for recruitment to the epidemiological survey, reported willingness to participate in the genetic arm of the study, actual participation, sample return, and approval for biobank storage. Results A total of 4965 valid responses were received, of which 1664 were deemed eligible for genetic analysis. Younger age showed a negative association with initial recruitment rate, expressed willingness to participate in genetic analysis, and actual participation. Additionally, female sex was associated with higher initial recruitment rates, and ethnic origin impacted willingness to participate in the genetic analysis (all P<.001). Conclusions The sharp decline in retention through the different stages of the study in young respondents suggests the necessity to develop specific recruitment and retention strategies when investigating a young, physically active population. PMID:29792293
Guernet, Alexis; Mungamuri, Sathish Kumar; Cartier, Dorthe; Sachidanandam, Ravi; Jayaprakash, Anitha; Adriouch, Sahil; Vezain, Myriam; Charbonnier, Françoise; Rohkin, Guy; Coutant, Sophie; Yao, Shen; Ainani, Hassan; Alexandre, David; Tournier, Isabelle; Boyer, Olivier; Aaronson, Stuart A; Anouar, Youssef; Grumolato, Luca
2016-08-04
Intratumor genetic heterogeneity underlies the ability of tumors to evolve and adapt to different environmental conditions. Using CRISPR/Cas9 technology and specific DNA barcodes, we devised a strategy to recapitulate and trace the emergence of subpopulations of cancer cells containing a mutation of interest. We used this approach to model different mechanisms of lung cancer cell resistance to EGFR inhibitors and to assess effects of combined drug therapies. By overcoming intrinsic limitations of current approaches, CRISPR-barcoding also enables investigation of most types of genetic modifications, including repair of oncogenic driver mutations. Finally, we used highly complex barcodes inserted at a specific genome location as a means of simultaneously tracing the fates of many thousands of genetically labeled cancer cells. CRISPR-barcoding is a straightforward and highly flexible method that should greatly facilitate the functional investigation of specific mutations, in a context that closely mimics the complexity of cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Knapp, M; Seuchter, S A; Baur, M P
1994-01-01
It is believed that the main advantage of affected sib-pair tests is that their application requires no information about the underlying genetic mechanism of the disease. However, here it is proved that the mean test, which can be considered the most prominent of the affected sib-pair tests, is equivalent to lod score analysis for an assumed recessive mode of inheritance, irrespective of the true mode of the disease. Further relationships of certain sib-pair tests and lod score analysis under specific assumed genetic modes are investigated.
Genetic counseling in the era of molecular diagnostics.
Traas, Anne M; Casal, Margret; Haskins, Mark; Henthorn, Paula
2006-08-01
Veterinarians with an interest in theriogenology will often be asked by small animal clients for advice concerning hereditary diseases in their breeds. Many new DNA-based tests for analysis of genetic diseases and traits (e.g. coat color) are now available for use by both breeders and veterinarians. With appropriate interpretation, these tests can be invaluable tools in a breeding program. For example, they can be used to produce animals free of specific diseases, to quickly eliminate a disease from an entire breed, or to select for specific traits in breeding stock. Selection strategies that do not take into account maintaining genetic diversity of the breed may be detrimental and reduce the potential for future improvement.
Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.
Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako
2013-04-01
PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.
Karim, M Rezaul; Moore, Adrian W
2011-11-07
Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).
Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.
2015-01-01
Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486
Dumas, Marc-Emmanuel; Domange, Céline; Calderari, Sophie; Martínez, Andrea Rodríguez; Ayala, Rafael; Wilder, Steven P; Suárez-Zamorano, Nicolas; Collins, Stephan C; Wallis, Robert H; Gu, Quan; Wang, Yulan; Hue, Christophe; Otto, Georg W; Argoud, Karène; Navratil, Vincent; Mitchell, Steve C; Lindon, John C; Holmes, Elaine; Cazier, Jean-Baptiste; Nicholson, Jeremy K; Gauguier, Dominique
2016-09-30
The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. We used systematic metabotyping by 1 H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.
Zhu, Zhaozhong; Anttila, Verneri; Smoller, Jordan W; Lee, Phil H
2018-01-01
Advances in recent genome wide association studies (GWAS) suggest that pleiotropic effects on human complex traits are widespread. A number of classic and recent meta-analysis methods have been used to identify genetic loci with pleiotropic effects, but the overall performance of these methods is not well understood. In this work, we use extensive simulations and case studies of GWAS datasets to investigate the power and type-I error rates of ten meta-analysis methods. We specifically focus on three conditions commonly encountered in the studies of multiple traits: (1) extensive heterogeneity of genetic effects; (2) characterization of trait-specific association; and (3) inflated correlation of GWAS due to overlapping samples. Although the statistical power is highly variable under distinct study conditions, we found the superior power of several methods under diverse heterogeneity. In particular, classic fixed-effects model showed surprisingly good performance when a variant is associated with more than a half of study traits. As the number of traits with null effects increases, ASSET performed the best along with competitive specificity and sensitivity. With opposite directional effects, CPASSOC featured the first-rate power. However, caution is advised when using CPASSOC for studying genetically correlated traits with overlapping samples. We conclude with a discussion of unresolved issues and directions for future research.
Heritabilities of Facial Measurements and Their Latent Factors in Korean Families
Kim, Hyun-Jin; Im, Sun-Wha; Jargal, Ganchimeg; Lee, Siwoo; Yi, Jae-Hyuk; Park, Jeong-Yeon; Sung, Joohon; Cho, Sung-Il; Kim, Jong-Yeol; Kim, Jong-Il; Seo, Jeong-Sun
2013-01-01
Genetic studies on facial morphology targeting healthy populations are fundamental in understanding the specific genetic influences involved; yet, most studies to date, if not all, have been focused on congenital diseases accompanied by facial anomalies. To study the specific genetic cues determining facial morphology, we estimated familial correlations and heritabilities of 14 facial measurements and 3 latent factors inferred from a factor analysis in a subset of the Korean population. The study included a total of 229 individuals from 38 families. We evaluated a total of 14 facial measurements using 2D digital photographs. We performed factor analysis to infer common latent variables. The heritabilities of 13 facial measurements were statistically significant (p < 0.05) and ranged from 0.25 to 0.61. Of these, the heritability of intercanthal width in the orbital region was found to be the highest (h2 = 0.61, SE = 0.14). Three factors (lower face portion, orbital region, and vertical length) were obtained through factor analysis, where the heritability values ranged from 0.45 to 0.55. The heritability values for each factor were higher than the mean heritability value of individual original measurements. We have confirmed the genetic influence on facial anthropometric traits and suggest a potential way to categorize and analyze the facial portions into different groups. PMID:23843774
Clifton, D.R.; Rodriguez, R.J.
1997-01-01
A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.
Clifton, D.R.; Rodriguez, R.J.
1997-01-01
A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.
From ecology to base pairs: nursing and genetic science.
Williams, J K; Tripp-Reimer, T
2001-07-01
With the mapping of the human genome has come the opportunity for nursing research to explore topics of concern to the maintenance, restoration, and attainment of genetic-related health. Initially, nursing research on genetic topics originated primarily from physical anthropology and from a clinical, disease-focused perspective. Nursing research subsequently focused on psychosocial aspects of genetic conditions for individuals and their family members. As findings emerge from current human genome discovery, new programs of genetic nursing research are originating from a biobehavioral interface, ranging from the investigations of the influence of specific molecular changes on gene function to social/ethical issues of human health and disease. These initiatives reflect nursing's response to discoveries of gene mutations related to phenotypic expression in both clinical and community-based populations. Genetic research programs are needed that integrate or adapt theoretical and methodological advances in epidemiology, family systems, anthropology, and ethics with those from nursing. Research programs must address not only populations with a specific disease but also community-based genetic health care issues. As genetic health care practice evolves, so will opportunities for research by nurses who can apply genetic concepts and interventions to improve the health of the public. This article presents an analysis of the evolution of genetic nursing research and challengesfor the future.
Applying Quantitative Genetic Methods to Primate Social Behavior
Brent, Lauren J. N.
2013-01-01
Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839
RAPD-SCAR marker and genetic relationship analysis of three Demodex species (Acari: Demodicidae).
Zhao, Ya-E; Wu, Li-Ping
2012-06-01
For a long time, classification of Demodex mites has been mainly based on their hosts and phenotype characteristics. The study was the first to conduct molecular identification and genetic relationship analysis for six isolates of three Demodex species by random amplified polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) marker. Totally, 239 DNA fragments were amplified from six Demodex isolates with 10 random primers in RAPD, of which 165 were polymorphic. Using a single primer, at least five fragments and at most 40 in the six isolates were amplified, whereas within a single isolate, a range of 35-49 fragments were amplified. DNA fingerprints of primers CZ 1-9 revealed intra- and interspecies difference in six Demodex isolates, whereas primer CZ 10 only revealed interspecies difference. The genetic distance and dendrogram showed the intraspecific genetic distances were closer than the interspecific genetic distances. The interspecific genetic distances of Demodex folliculorum and Demodex canis (0.7931-0.8140) were shorter than that of Demodex brevis and D. canis (0.8182-0.8987). The RAPD-SCAR marker displayed primer CZ 10 could be applied to identify the three Demodex species. The 479-bp fragment was specific for D. brevis, and the 261-bp fragment was specific for D. canis. The conclusion was that the RAPD-SCAR multi-marker was effective in molecular identification of three Demodex species. The genetic relationship between D. folliculorum and D. canis was nearer than that between D. folliculorum and D. brevis.
McGue, Matt; Iacono, William G.
2017-01-01
In a recent comprehensive investigation, we largely failed to identify significant genetic markers associated with P3 amplitude or to corroborate previous associations between P3 and specific single nucleotide polymorphisms (SNPs) or genes. In the present study we extended this line of investigation to examine time-frequency (TF) activity and intertrial phase coherence (ITPC) in the P3 time window, both of which are associated with P3 amplitude. Previous genome-wide research has reported associations between P3-related theta and delta activity and individual genetic variants. A large, population-based sample of 4211 subjects, comprising male and female adolescent twins and their parents, was genotyped for 527,828 single nucleotide polymorphisms (SNPs), from which over six million SNPs were accurately imputed. Heritability estimates were greater for TF energy than ITPC, whether based on biometric models or the combined influence of all measured SNPs (derived from genome-wide complex trait analysis). The magnitude of overlap in the specific SNPs associated with delta energy and ITPC and P3 amplitude was significant. A genome-wide analysis of all SNPs, accompanied by an analysis of approximately 17,600 genes, indicated a region of chromosome 2 around TEKT4 that was significantly associated with theta ITPC. Analysis of candidate SNPs and genes previously reported to be associated with P3 or related phenotypes yielded one association surviving correction for multiple tests: between theta energy and CRHR1. However, we did not obtain significant associations for SNPs implicated in previous genome-wide studies of TF measures. Identifying specific genetic variants associated with P3 amplitude remains a challenge. PMID:27871913
Current genetic methodologies in the identification of disaster victims and in forensic analysis.
Ziętkiewicz, Ewa; Witt, Magdalena; Daca, Patrycja; Zebracka-Gala, Jadwiga; Goniewicz, Mariusz; Jarząb, Barbara; Witt, Michał
2012-02-01
This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).
Wohlers, Anton E
2010-09-01
This paper examines whether national differences in political culture add an explanatory dimension to the formulation of policy in the area of biotechnology, especially with respect to genetically modified food. The analysis links the formulation of protective regulatory policies governing genetically modified food to both country and region-specific differences in uncertainty tolerance levels and risk perceptions in the United States, Canada, and European Union. Based on polling data and document analysis, the findings illustrate that these differences matter. Following a mostly opportunistic risk perception within an environment of high tolerance for uncertainty, policymakers in the United States and Canada modified existing regulatory frameworks that govern genetically modified food in their respective countries. In contrast, the mostly cautious perception of new food technologies and low tolerance for uncertainty among European Union member states has contributed to the creation of elaborate and stringent regulatory policies governing genetically modified food.
Genetic analysis of circulating tumor cells in pancreatic cancer patients: A pilot study.
Görner, Karin; Bachmann, Jeannine; Holzhauer, Claudia; Kirchner, Roland; Raba, Katharina; Fischer, Johannes C; Martignoni, Marc E; Schiemann, Matthias; Alunni-Fabbroni, Marianna
2015-07-01
Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far. Copyright © 2015. Published by Elsevier Inc.
Genetic analysis of growth curves for a woody perennial species, Pinus taeda L.
D.P. Gwaze; F.E. Bridgwater; C.G. Williams
2002-01-01
Inheritance of growth curves is critical for understanding evolutionary change and formulating efficient breeding plans, yet has received limited attention. Growth curves, like other characters that change in concert with development, often have higher heritability than age-specific traits. This study compared genetic parameters of height-growth curves with those of...
USDA-ARS?s Scientific Manuscript database
Genomics applications in durum (Triticum durum Desf.) wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for ...
[Genetic mutation databases: stakes and perspectives for orphan genetic diseases].
Humbertclaude, V; Tuffery-Giraud, S; Bareil, C; Thèze, C; Paulet, D; Desmet, F-O; Hamroun, D; Baux, D; Girardet, A; Collod-Béroud, G; Khau Van Kien, P; Roux, A-F; des Georges, M; Béroud, C; Claustres, M
2010-10-01
New technologies, which constantly become available for mutation detection and gene analysis, have contributed to an exponential rate of discovery of disease genes and variation in the human genome. The task of collecting and documenting this enormous amount of data in genetic databases represents a major challenge for the future of biological and medical science. The Locus Specific Databases (LSDBs) are so far the most efficient mutation databases. This review presents the main types of databases available for the analysis of mutations responsible for genetic disorders, as well as open perspectives for new therapeutic research or challenges for future medicine. Accurate and exhaustive collection of variations in human genomes will be crucial for research and personalized delivery of healthcare. Copyright © 2009 Elsevier Masson SAS. All rights reserved.
Comprehensive analysis of the mutation spectrum in 301 German ALS families.
Müller, Kathrin; Brenner, David; Weydt, Patrick; Meyer, Thomas; Grehl, Torsten; Petri, Susanne; Grosskreutz, Julian; Schuster, Joachim; Volk, Alexander E; Borck, Guntram; Kubisch, Christian; Klopstock, Thomas; Zeller, Daniel; Jablonka, Sibylle; Sendtner, Michael; Klebe, Stephan; Knehr, Antje; Günther, Kornelia; Weis, Joachim; Claeys, Kristl G; Schrank, Berthold; Sperfeld, Anne-Dorte; Hübers, Annemarie; Otto, Markus; Dorst, Johannes; Meitinger, Thomas; Strom, Tim M; Andersen, Peter M; Ludolph, Albert C; Weishaupt, Jochen H
2018-04-12
Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions. Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families. 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1 , whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes. We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Pugi, Jakob; Carcao, Manuel; Drury, Luke J; Langer, Jacob C
2018-05-01
Laparoscopic partial splenectomy (LPS) theoretically maintains long-term splenic immune function for children with hereditary spherocytosis (HS). Our goal was to review our results after LPS and to determine if specific genetic mutations influence outcome. All children with HS undergoing LPS between 2005 and 2016 were reviewed. Thirty-one children underwent LPS (16 male) at a median age of 9 (range 2-18) years. All experienced an increase in hemoglobin and decrease in reticulocyte count early after LPS and at last follow-up. Twenty-two were sent for genetic analysis. Mutations in α-spectrin, β-spectrin, and Ankyrin were identified in 6, 5, and 11 patients, respectively. Gene mutation was not correlated with complications, perioperative transfusion, length of hospital stay, or median hemoglobin, platelet, or reticulocyte counts. Three children required completion splenectomy at 10.9, 6.9, and 3.2years post-LPS, each with a different gene mutation. LPS is effective in reversing anemia and reducing reticulocytosis. So far less than 10% have required completion splenectomy, and those children did benefit from delaying the risks of asplenia. In this preliminary analysis, genetic mutation did not influence outcome after LPS. A larger multicenter study is necessary to further investigate potential correlations with specific genetic mutations. Prognosis Study. IV. Copyright © 2018. Published by Elsevier Inc.
IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS
Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...
Plaiasu, Vasilica; Ochiana, Diana; Motei, Gabriela; Anca, Ioana; Georgescu, Adrian
2010-07-01
Patau syndrome (trisomy 13) is one of the most common chromosomal anomalies clinically characterized by the presence of numerous malformations with a limited survival rate for most cases. Babies are usually identified at birth and the diagnosis is confirmed with genetic testing. In this review we outline the clinical and cytogenetic aspects of trisomy 13 and associated phenotypes for 5 cases analyzed in the last 3 years, referred to our Clinical Genetics Department. For each child cytogenetic analysis was performed to determine the genetic variant; also, the patients were investigated for other associated malformations (cardiac, cerebral, renal, ocular anomalies). All 5 cases presented multiple malformations, including some but not all signs of the classical clinical triad suggestive of Patau syndrome. The cytogenetic investigation confirmed for each case the suspected diagnosis and also indicated the specific genetic variant, this being a valuable information for the genetic counselling of the families. The application of genetic analysis can increase diagnosis and prognosis accuracy and have an impact on clinical management.
Intention to communicate BRCA1/BRCA2 genetic test results to the family.
Barsevick, Andrea M; Montgomery, Susan V; Ruth, Karen; Ross, Eric A; Egleston, Brian L; Bingler, Ruth; Malick, John; Miller, Suzanne M; Cescon, Terrence P; Daly, Mary B
2008-04-01
Guided by the theory of planned behavior, this analysis explores the communication skills of women who had genetic testing for BRCA1 and BRCA2. The key outcome was intention to tell test results to adult first-degree relatives. The theory predicts that global and specific attitudes, global and specific perceived social norms, and perceived control will influence the communication of genetic test results. A logistic regression model revealed that global attitude (p < .05), specific social influence (p < .01), and perceived control (p < .05) were significant predictors of intention to tell. When gender and generation of relatives were added to the regression, participants were more likely to convey genetic test results to female than to male relatives (p < .05) and were also more likely to communicate test results to children (p < .01) or siblings (p < .05) than to parents. However, this association depended on knowing the relative's opinion of genetic testing. Intention to tell was lowest among participants who did not know their relative's opinion. These results extend the theory of planned behavior by showing that gender and generation influence intention when the relative's opinion is unknown. (c) 2008 APA, all rights reserved.
Shen, X L; Zhang, Y M; Xue, J Y; Li, M M; Lin, Y B; Sun, X Q; Hang, Y Y
2016-04-25
Non-heading Chinese cabbage [Brassica rapa var. chinensis (Linnaeus) Kitamura] is a popular vegetable and is also used as a medicinal plant in traditional Chinese medicine. Fragrant Bok Choy is a unique accession of non-heading Chinese cabbage and a product of geographic indication certified by the Ministry of Agriculture of China, which is noted for its rich aromatic flavor. However, transitional and overlapping morphological traits can make it difficult to distinguish this accession from other non-heading Chinese cabbages. This study aimed to develop a molecular method for efficient identification of Fragrant Bok Choy. Genetic diversity analysis, based on inter-simple sequence repeat molecular markers, was conducted for 11 non-heading Chinese cabbage accessions grown in the Yangtze River Delta region. Genetic similarity coefficients between the 11 accessions ranged from 0.5455 to 0.8961, and the genetic distance ranged from 0.0755 to 0.4475. Cluster analysis divided the 11 accessions into two major groups. The primer ISSR-840 amplified a fragment specific for Fragrant Bok Choy. A pair of specific sequence-characterized amplified region (SCAR) primers based on this fragment amplified a target band in Fragrant Bok Choy individuals, but no band was detected in individuals of other accessions. In conclusion, this study has developed an efficient strategy for authentication of Fragrant Bok Choy. The SCAR marker described here will facilitate the conservation and utilization of this unique non-heading Chinese cabbage germplasm resource.
Evaluation of genetic diversity and population structure of West-Central Indian cattle breeds.
Shah, Tejas M; Patel, Jaina S; Bhong, Chandrakant D; Doiphode, Aakash; Umrikar, Uday D; Parmar, Shivnandan S; Rank, Dharamshibhai N; Solanki, Jitendra V; Joshi, Chaitanya G
2013-08-01
Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.
Ørstavik, Ragnhild E.; Kendler, Kenneth S.; Røysamb, Espen; Czajkowski, Nikolai; Tambs, Kristian; Reichborn-Kjennerud, Ted
2012-01-01
One of the main controversies with regard to depressive personality disorder (DPD) concerns the co-occurrence with the established DSM-IV personality disorders (PDs). The main aim of this study was to examine to what extent DPD and the DSM-IV PDs share genetic and environmental risk factors, using multivariate twin modeling. The DSM-IV Structured Interview for Personality was applied to 2,794 young adult twins. Paranoid PD from Cluster A, borderline PD from Cluster B, and all three PDs from Cluster C were independently and significantly associated with DPD in multiple regression analysis. The genetic correlations between DPD and the other PDs were strong (.53–.83), while the environmental correlations were moderate (.36–.40). Close to 50% of the total variance in DPD was disorder specific. However, only 5% was due to disorder-specific genetic factors, indicating that a substantial part of the genetic vulnerability to DPD also increases the vulnerability to other PDs. PMID:22686231
Ørstavik, Ragnhild E; Kendler, Kenneth S; Røysamb, Espen; Czajkowski, Nikolai; Tambs, Kristian; Reichborn-Kjennerud, Ted
2012-06-01
One of the main controversies with regard to depressive personality disorder (DPD) concerns the co-occurrence with the established DSM-IV personality disorders (PDs). The main aim of this study was to examine to what extent DPD and the DSM-IV PDs share genetic and environmental risk factors, using multivariate twin modeling. The DSM-IV Structured Interview for Personality was applied to 2,794 young adult twins. Paranoid PD from Cluster A, borderline PD from Cluster B, and all three PDs from Cluster C were independently and significantly associated with DPD in multiple regression analysis. The genetic correlations between DPD and the other PDs were strong (.53-.83), while the environmental correlations were moderate (.36-.40). Close to 50% of the total variance in DPD was disorder specific. However, only 5% was due to disorder-specific genetic factors, indicating that a substantial part of the genetic vulnerability to DPD also increases the vulnerability to other PDs.
Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia.
Ocampo, Clara B; Wesson, Dawn M
2004-10-01
This study evaluated if the Aedes aegypti population in the city of Cali, Colombia was composed of genetically distinct local populations with different levels of insecticide resistance and dengue vector competence. Insecticide resistance was assayed biochemically and was associated with varying levels of mixed-function oxidases and non-specific esterases. The genes encoding those enzymes were under selective pressure from insecticides used to suppress Ae. aegypti populations. Vector competence showed heterogeneity among the vector populations ranging from 19% to 60%. Population genetic analysis of random amplified polymorphic DNA-polymerase chain reaction products, expressed as genetic distance, Wright's F(st), and migration rate (Nm), demonstrated moderate genetic differentiation among Ae. aegypti from four sites (F(st) = 0.085). The results from all characteristics evaluated in the study demonstrated spatial and temporal variation between Ae. aegypti populations. At any specific time, the local populations of Ae. aegypti were genetically differentiated and unique with respect to insecticide resistance and vector competence. Both characteristics changed independently.
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM1
Liu, Li; Lei, Jing; Roeder, Kathryn
2016-01-01
While studies show that autism is highly heritable, the nature of the genetic basis of this disorder remains illusive. Based on the idea that highly correlated genes are functionally interrelated and more likely to affect risk, we develop a novel statistical tool to find more potentially autism risk genes by combining the genetic association scores with gene co-expression in specific brain regions and periods of development. The gene dependence network is estimated using a novel partial neighborhood selection (PNS) algorithm, where node specific properties are incorporated into network estimation for improved statistical and computational efficiency. Then we adopt a hidden Markov random field (HMRF) model to combine the estimated network and the genetic association scores in a systematic manner. The proposed modeling framework can be naturally extended to incorporate additional structural information concerning the dependence between genes. Using currently available genetic association data from whole exome sequencing studies and brain gene expression levels, the proposed algorithm successfully identified 333 genes that plausibly affect autism risk. PMID:27134692
The genetic and environmental aetiology of spatial, mathematics and general anxiety
Malanchini, Margherita; Rimfeld, Kaili; Shakeshaft, Nicholas G.; Rodic, Maja; Schofield, Kerry; Selzam, Saskia; Dale, Philip S.; Petrill, Stephen A.; Kovas, Yulia
2017-01-01
Individuals differ in their level of general anxiety as well as in their level of anxiety towards specific activities, such as mathematics and spatial tasks. Both specific anxieties correlate moderately with general anxiety, but the aetiology of their association remains unexplored. Moreover, the factor structure of spatial anxiety is to date unknown. The present study investigated the factor structure of spatial anxiety, its aetiology, and the origins of its association with general and mathematics anxiety in a sample of 1,464 19-21-year-old twin pairs from the UK representative Twins Early Development Study. Participants reported their general, mathematics and spatial anxiety as part of an online battery of tests. We found that spatial anxiety is a multifactorial construct, including two components: navigation anxiety and rotation/visualization anxiety. All anxiety measures were moderately heritable (30% to 41%), and non-shared environmental factors explained the remaining variance. Multivariate genetic analysis showed that, although some genetic and environmental factors contributed to all anxiety measures, a substantial portion of genetic and non-shared environmental influences were specific to each anxiety construct. This suggests that anxiety is a multifactorial construct phenotypically and aetiologically, highlighting the importance of studying anxiety within specific contexts. PMID:28220830
The genetic and environmental aetiology of spatial, mathematics and general anxiety.
Malanchini, Margherita; Rimfeld, Kaili; Shakeshaft, Nicholas G; Rodic, Maja; Schofield, Kerry; Selzam, Saskia; Dale, Philip S; Petrill, Stephen A; Kovas, Yulia
2017-02-21
Individuals differ in their level of general anxiety as well as in their level of anxiety towards specific activities, such as mathematics and spatial tasks. Both specific anxieties correlate moderately with general anxiety, but the aetiology of their association remains unexplored. Moreover, the factor structure of spatial anxiety is to date unknown. The present study investigated the factor structure of spatial anxiety, its aetiology, and the origins of its association with general and mathematics anxiety in a sample of 1,464 19-21-year-old twin pairs from the UK representative Twins Early Development Study. Participants reported their general, mathematics and spatial anxiety as part of an online battery of tests. We found that spatial anxiety is a multifactorial construct, including two components: navigation anxiety and rotation/visualization anxiety. All anxiety measures were moderately heritable (30% to 41%), and non-shared environmental factors explained the remaining variance. Multivariate genetic analysis showed that, although some genetic and environmental factors contributed to all anxiety measures, a substantial portion of genetic and non-shared environmental influences were specific to each anxiety construct. This suggests that anxiety is a multifactorial construct phenotypically and aetiologically, highlighting the importance of studying anxiety within specific contexts.
Fan, Lihua; Shuai, Jiangbing; Zeng, Ruoxue; Mo, Hongfei; Wang, Suhua; Zhang, Xiaofeng; He, Yongqiang
2017-12-01
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kujur, Alice; Upadhyaya, Hari D.; Shree, Tanima; Bajaj, Deepak; Das, Shouvik; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20–0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9–39.7%) associated with three agronomic traits, which were mapped within <1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (~15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement. PMID:25942004
Vallejo-Cordoba, Belinda; González-Córdova, Aarón F
2010-07-01
This review presents an overview of the applicability of CE in the analysis of chemical and biological contaminants involved in emerging food safety issues. Additionally, CE-based genetic analyzers' usefulness as a unique tool in food traceability verification systems was presented. First, analytical approaches for the determination of melamine and specific food allergens in different foods were discussed. Second, natural toxin analysis by CE was updated from the last review reported in 2008. Finally, the analysis of prion proteins associated with the "mad cow" crises and the application of CE-based genetic analyzers for meat traceability were summarized.
Glazko, V I; Zelenaia, L B; Iasinetskaia, N A
1997-01-01
The investigation of genetic interrelation between a number of Artiodactyla and Perissodactyla species with the use of different types of molecular-genetic markers (proteins, RAPD-PCR) were carried out. The marker-specific features of interspecific relations and their similarities on the groups of markers of both types were revealed. The distinctions between interspecies genetic relations and ones estimated from the phylogeny on the determined group of different types of markers were observed. It was supposed that these discrepancies may be related with common selection factors and involving this marker group in selection in some species.
Manzanero, Silvia; Kozlovskaia, Maria; Vlahovich, Nicole; Hughes, David C
2018-05-23
With the increasing capacity for remote collection of both data and samples for medical research, a thorough assessment is needed to determine the association of population characteristics and recruitment methodologies with response rates. The aim of this research was to assess population representativeness in a two-stage study of health and injury in recreational runners, which consisted of an epidemiological arm and genetic analysis. The cost and success of various classical and internet-based methods were analyzed, and demographic representativeness was assessed for recruitment to the epidemiological survey, reported willingness to participate in the genetic arm of the study, actual participation, sample return, and approval for biobank storage. A total of 4965 valid responses were received, of which 1664 were deemed eligible for genetic analysis. Younger age showed a negative association with initial recruitment rate, expressed willingness to participate in genetic analysis, and actual participation. Additionally, female sex was associated with higher initial recruitment rates, and ethnic origin impacted willingness to participate in the genetic analysis (all P<.001). The sharp decline in retention through the different stages of the study in young respondents suggests the necessity to develop specific recruitment and retention strategies when investigating a young, physically active population. ©Silvia Manzanero, Maria Kozlovskaia, Nicole Vlahovich, David C Hughes. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2018.
Conomos, Matthew P.; Laurie, Cecelia A.; Stilp, Adrienne M.; Gogarten, Stephanie M.; McHugh, Caitlin P.; Nelson, Sarah C.; Sofer, Tamar; Fernández-Rhodes, Lindsay; Justice, Anne E.; Graff, Mariaelisa; Young, Kristin L.; Seyerle, Amanda A.; Avery, Christy L.; Taylor, Kent D.; Rotter, Jerome I.; Talavera, Gregory A.; Daviglus, Martha L.; Wassertheil-Smoller, Sylvia; Schneiderman, Neil; Heiss, Gerardo; Kaplan, Robert C.; Franceschini, Nora; Reiner, Alex P.; Shaffer, John R.; Barr, R. Graham; Kerr, Kathleen F.; Browning, Sharon R.; Browning, Brian L.; Weir, Bruce S.; Avilés-Santa, M. Larissa; Papanicolaou, George J.; Lumley, Thomas; Szpiro, Adam A.; North, Kari E.; Rice, Ken; Thornton, Timothy A.; Laurie, Cathy C.
2016-01-01
US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness. PMID:26748518
Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy
2007-02-21
An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.
Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng
2016-01-01
As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.
Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges
2018-01-01
Schizophrenia (SZ) is a heritable brain disease originating from a complex interaction of genetic and environmental factors. The genes underpinning the neurobiology of SZ are largely unknown but recent data suggest strong evidence for genetic variations, such as single nucleotide polymorphisms, making the brain vulnerable to the risk of SZ. Structural and functional brain mapping of these genetic variations are essential for the development of agents and tools for better diagnosis, treatment and prevention of SZ. Addressing this, neuroimaging methods in combination with genetic analysis have been increasingly used for almost 20 years. So-called imaging genetics, the opportunities of this approach along with its limitations for SZ research will be outlined in this invited paper. While the problems such as reproducibility, genetic effect size, specificity and sensitivity exist, opportunities such as multivariate analysis, development of multisite consortia for large-scale data collection, emergence of non-candidate gene (hypothesis-free) approach of neuroimaging genetics are likely to contribute to a rapid progress for gene discovery besides to gene validation studies that are related to SZ. PMID:29324666
Kamara, D; Gyenai, K B; Geng, T; Hammade, H; Smith, E J
2007-01-01
The turkey is second only to the chicken in importance as an agriculturally important poultry species. Unlike the chicken, however, genetic studies of the turkey continue to be limited. For example, to date, many genomic investigations have been conducted to characterize genetic relationships between commercial (CO) and non-CO chicken breeds, whereas the nature of the genetic relatedness between CO and heritage turkeys remains unknown. The objective of the current research was to use microsatellites to analyze the genetic relatedness between CO and heritage domestic turkeys including Narragansett, Bourbon Red, Blue Slate, Spanish Black, and Royal Palm. Primer pairs specific for 10 previously described turkey microsatellite markers were used. The phylogenetic analysis showed that the Blue Slate, Bourbon Red, and Narragansett were genetically closely related to the CO strain, with a Nei distance of 0.30, and the Royal Palm and Spanish Black were the least related to the CO strain, with Nei distances of 0.41 and 0.40, respectively. The present work provides a foundation for the basis of using heritage turkeys to genetically improve CO populations by introgression.
From Genetics to Genomics: A Short Introduction for Pediatric Neurologists.
Neubauer, Bernd A; Lemke, Johannes R
2016-01-01
It is estimated that in humans approximately 50% of all 22500 genes are needed for the development and maintenance of the nervous system. The introduction of high-throughput technology in genetic analysis has therefore major implications, not only for the investigation of specific disease entities but also for the diagnostic workup of single individuals with neurologic disorders of genetic origin. A short primer for clinicians is presented, addressing aspects of current developments in medical genomics. Significant findings of the last years are exemplified in an educational manner to provide a basic understanding of disease mechanisms that were unraveled by recent genomic analysis. Georg Thieme Verlag KG Stuttgart · New York.
Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar
2014-10-03
Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.
Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle
2018-06-25
Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
Shan, X H; Li, Y D; Liu, X M; Wu, Y; Zhang, M Z; Guo, W L; Liu, B; Yuan, Y P
2012-08-17
We analyzed genetic diversity and population genetic structure of four artificial populations of wild barley (Hordeum brevisubulatum); 96 plants collected from the Songnen Prairie in northeastern China were analyzed using amplified fragment length polymorphism (AFLP), specific-sequence amplified polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) markers. Indices of (epi-)genetic diversity, (epi-)genetic distance, gene flow, genotype frequency, cluster analysis, PCA analysis and AMOVA analysis generated from MSAP, AFLP and SSAP markers had the same trend. We found a high level of correlation in the artificial populations between MSAP, SSAP and AFLP markers by the Mantel test (r > 0.8). This is incongruent with previous findings showing that there is virtually no correlation between DNA methylation polymorphism and classical genetic variation; the high level of genetic polymorphism could be a result of epigenetic regulation. We compared our results with data from natural populations. The population diversity of the artificial populations was lower. However, different from what was found using AFLP and SSAP, based on MSAP results the methylation polymorphism of the artificial populations was not significantly reduced. This leads us to suggest that the DNA methylation pattern change in H. brevisubulatum populations is not only related to DNA sequence variation, but is also regulated by other controlling systems.
Marian, Ali J.; van Rooij, Eva; Roberts, Robert
2016-01-01
This is the first of 2 review papers on genetics and genomics appearing as part of the series on “omics.” Genomics pertains to all components of an organism’s genes, whereas genetics involves analysis of a specific gene(s) in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. PMID:28007145
Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D
1989-01-01
The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.
Meece, J.K.; Anderson, J.L.; Fisher, M.C.; Henk, D.A.; Sloss, Brian L.; Reed, K.D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n = 112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and ??-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species. ?? 2011, American Society for Microbiology.
Meece, Jennifer K.; Anderson, Jennifer L.; Fisher, Matthew C.; Henk, Daniel A.; Sloss, Brian L.; Reed, Kurt D.
2011-01-01
Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n=112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and α-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species.
Hafler, Brian P
2017-03-01
Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Bayes factors based on robust TDT-type tests for family trio design.
Yuan, Min; Pan, Xiaoqing; Yang, Yaning
2015-06-01
Adaptive transmission disequilibrium test (aTDT) and MAX3 test are two robust-efficient association tests for case-parent family trio data. Both tests incorporate information of common genetic models including recessive, additive and dominant models and are efficient in power and robust to genetic model specifications. The aTDT uses information of departure from Hardy-Weinberg disequilibrium to identify the potential genetic model underlying the data and then applies the corresponding TDT-type test, and the MAX3 test is defined as the maximum of the absolute value of three TDT-type tests under the three common genetic models. In this article, we propose three robust Bayes procedures, the aTDT based Bayes factor, MAX3 based Bayes factor and Bayes model averaging (BMA), for association analysis with case-parent trio design. The asymptotic distributions of aTDT under the null and alternative hypothesis are derived in order to calculate its Bayes factor. Extensive simulations show that the Bayes factors and the p-values of the corresponding tests are generally consistent and these Bayes factors are robust to genetic model specifications, especially so when the priors on the genetic models are equal. When equal priors are used for the underlying genetic models, the Bayes factor method based on aTDT is more powerful than those based on MAX3 and Bayes model averaging. When the prior placed a small (large) probability on the true model, the Bayes factor based on aTDT (BMA) is more powerful. Analysis of a simulation data about RA from GAW15 is presented to illustrate applications of the proposed methods.
Kumar, Mahadeo; Kumar, Sharad
2014-11-01
Molecular genetic analysis was performed using random amplified polymorphic DNA (RAPD) on three commonly used laboratory bred rodent genera viz. mouse (Mus musculus), rat (Rattus norvegicus) and guinea pig (Cavia porcellus) as sampled from the breeding colony maintained at the Animal Facility, CSIR-Indian Institute of Toxicology Research, Lucknow. In this study, 60 samples, 20 from each genus, were analyzed for evaluation of genetic structure of rodent stocks based on polymorphic bands using RAPD markers. Thirty five random primers were assessed for RAPD analysis. Out of 35, only 20 primers generated a total of 56.88% polymorphic bands among mice, rats and guinea pigs. The results revealed significantly variant and distinct fingerprint patterns specific to each of the genus. Within-genera analysis, the highest (89.0%) amount of genetic homogeneity was observed in mice samples and the least (79.3%) were observed in guinea pig samples. The amount of genetic homogeneity was observed very high within all genera. The average genetic diversity index observed was low (0.045) for mice and high (0.094) for guinea pigs. The inter-generic distances were maximum (0.8775) between mice and guinea pigs; and the minimum (0.5143) between rats and mice. The study proved that the RAPD markers are useful as genetic markers for assessment of genetic structure as well as inter-generic variability assessments.
Inter Individual Variations of the Fish Skin Microbiota: Host Genetics Basis of Mutualism?
Boutin, Sébastien; Sauvage, Christopher; Bernatchez, Louis; Audet, Céline; Derome, Nicolas
2014-01-01
The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL) associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis), combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs). Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens. PMID:25068850
Inter individual variations of the fish skin microbiota: host genetics basis of mutualism?
Boutin, Sébastien; Sauvage, Christopher; Bernatchez, Louis; Audet, Céline; Derome, Nicolas
2014-01-01
The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL) associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis), combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs). Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens.
Meta-analysis of genetic variants associated with human exceptional longevity
Sebastiani, Paola; Bae1, Harold; Sun, Fangui X.; Andersen, Stacy L.; Daw, E. Warwick; Malovini, Alberto; Kojima, Toshio; Hirose, Nobuyoshi; Schupf, Nicole; Puca, Annibale; Perls, Thomas T
2013-01-01
Despite evidence from family studies that there is a strong genetic influence upon exceptional longevity, relatively few genetic variants have been associated with this trait. One reason could be that many genes individually have such weak effects that they cannot meet standard thresholds of genome wide significance, but as a group in specific combinations of genetic variations, they can have a strong influence. Previously we reported that such genetic signatures of 281 genetic markers associated with about 130 genes can do a relatively good job of differentiating centenarians from non-centenarians particularly if the centenarians are 106 years and older. This would support our hypothesis that the genetic influence upon exceptional longevity increases with older and older (and rarer) ages. We investigated this list of markers using similar genetic data from 5 studies of centenarians from the USA, Europe and Japan. The results from the meta-analysis show that many of these variants are associated with survival to these extreme ages in other studies. Since many centenarians compress morbidity and disability towards the end of their lives, these results could point to biological pathways and therefore new therapeutics to increase years of healthy lives in the general population. PMID:24244950
Ostergren, Jenny E; Dingel, Molly J; McCormick, Jennifer B; Koenig, Barbara A
2015-01-01
The cost of addiction in the United States, in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Because the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. The authors conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the United States and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. The authors raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. This analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research.
Ostergren, Jenny E.; Dingel, Molly J.; McCormick, Jennifer B.; Koenig, Barbara A.
2015-01-01
The cost of addiction in the U.S., in combination with a host of new tools and techniques, has fueled an explosion of genetic research on addiction. Since the media has the capacity to reflect and influence public perception, there is a need to examine how treatments and preventive approaches projected to emerge from addiction genetic research are presented to the public. We conducted a textual analysis of 145 news articles reporting on genetic research on addiction from popular print media in the U.S., and from popular news and medical internet sites. In articles that report on prevention, the media emphasize vaccine development and identifying individuals at genetic risk through population screening. Articles that emphasize treatment often promote current pharmaceutical solutions and highlight the possibility of tailoring treatments to specific genetic variants. We raise concerns about the tendency of this coverage to focus on the benefits of pharmaceutical treatments and genetic-based approaches to prevention while neglecting or downplaying potential risks and ethical issues. Our analysis suggests a need for more balanced, evidence-based media reporting on the potential outcomes of genetic research. PMID:25806781
Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W; Grubert, Fabian; Candille, Sophie I; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L; Tang, Hua; Ricci, Emiliano; Snyder, Michael P
2015-11-01
Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. © 2015 Cenik et al.; Published by Cold Spring Harbor Laboratory Press.
Handler, Alfred M; Beeman, Richard W
2003-01-01
USDA-ARS scientists have made important contributions to the molecular genetic analysis of agriculturally important insects, and have been in the forefront of using this information for the development of new pest management strategies. Advances have been made in the identification and analysis of genetic systems involved in insect development, reproduction and behavior which enable the identification of new targets for control, as well as the development of highly specific insecticidal products. Other studies have been on the leading edge of developing gene transfer technology to better elucidate these biological processes though functional genomics and to develop new transgenic strains for biological control. Important contributions have also been made to the development and use of molecular markers and methodologies to identify and track insect populations. The use of molecular genetic technology and strategies will become increasingly important to pest management as genomic sequencing information becomes available from important pest insects, their targets and other associated organisms.
Kanchanaketu, T; Sangduen, N; Toojinda, T; Hongtrakul, V
2012-04-13
Genetic analysis of 56 samples of Jatropha curcas L. collected from Thailand and other countries was performed using the methylation-sensitive amplification polymorphism (MSAP) technique. Nine primer combinations were used to generate MSAP fingerprints. When the data were interpreted as amplified fragment length polymorphism (AFLP) markers, 471 markers were scored. All 56 samples were classified into three major groups: γ-irradiated, non-toxic and toxic accessions. Genetic similarity among the samples was extremely high, ranging from 0.95 to 1.00, which indicated very low genetic diversity in this species. The MSAP fingerprint was further analyzed for DNA methylation polymorphisms. The results revealed differences in the DNA methylation level among the samples. However, the samples collected from saline areas and some species hybrids showed specific DNA methylation patterns. AFLP data were used, together with methylation-sensitive AFLP (MS-AFLP) data, to construct a phylogenetic tree, resulting in higher efficiency to distinguish the samples. This combined analysis separated samples previously grouped in the AFLP analysis. This analysis also distinguished some hybrids. Principal component analysis was also performed; the results confirmed the separation in the phylogenetic tree. Some polymorphic bands, involving both nucleotide and DNA methylation polymorphism, that differed between toxic and non-toxic samples were identified, cloned and sequenced. BLAST analysis of these fragments revealed differences in DNA methylation in some known genes and nucleotide polymorphism in chloroplast DNA. We conclude that MSAP is a powerful technique for the study of genetic diversity for organisms that have a narrow genetic base.
Human Facial Shape and Size Heritability and Genetic Correlations.
Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A
2017-02-01
The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.
Bailey-Wilson, Joan E.; Brennan, Jennifer S.; Bull, Shelley B; Culverhouse, Robert; Kim, Yoonhee; Jiang, Yuan; Jung, Jeesun; Li, Qing; Lamina, Claudia; Liu, Ying; Mägi, Reedik; Niu, Yue S.; Simpson, Claire L.; Wang, Libo; Yilmaz, Yildiz E.; Zhang, Heping; Zhang, Zhaogong
2012-01-01
Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large numbers of potential predictors. PMID:22128066
Valkonen, Mira; Ruusuvuori, Pekka; Kartasalo, Kimmo; Nykter, Matti; Visakorpi, Tapio; Latonen, Leena
2017-01-01
Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis and research. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue with all its variables. On the other hand, understanding connections between genetic alterations and histological attributes requires development of enhanced analysis methods suitable also for small sample sizes. Here, we set out to develop computational methods for early detection and distinction of prostate cancer-related pathological alterations. We use analysis of features from HE stained histological images of normal mouse prostate epithelium, distinguishing the descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model separating the early pathological lesions provoked by these genetic alterations. This work offers a set of computational methods for separation of early neoplastic lesions in the prostates of model mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological characteristics. The results obtained show that separation between different spatial locations within the organ, as well as classification between histologies linked to different genetic backgrounds, can be performed with very high specificity and sensitivity. PMID:28317907
Unique volatolomic signatures of TP53 and KRAS in lung cells
Davies, M P A; Barash, O; Jeries, R; Peled, N; Ilouze, M; Hyde, R; Marcus, M W; Field, J K; Haick, H
2014-01-01
Background: Volatile organic compounds (VOCs) are potential biomarkers for cancer detection in breath, but it is unclear if they reflect specific mutations. To test this, we have compared human bronchial epithelial cell (HBEC) cell lines carrying the KRASV12 mutation, knockdown of TP53 or both with parental HBEC cells. Methods: VOC from headspace above cultured cells were collected by passive sampling and analysed by thermal desorption gas chromatography mass spectrometry (TD-GC–MS) or sensor array with discriminant factor analysis (DFA). Results: In TD-GC–MS analysis, individual compounds had limited ability to discriminate between cell lines, but by applying DFA analysis combinations of 20 VOCs successfully discriminated between all cell types (accuracies 80–100%, with leave-one-out cross validation). Sensor array detection DFA demonstrated the ability to discriminate samples based on their cell type for all comparisons with accuracies varying between 77% and 93%. Conclusions: Our results demonstrate that minimal genetic changes in bronchial airway cells lead to detectable differences in levels of specific VOCs identified by TD-GC–MS or of patterns of VOCs identified by sensor array output. From the clinical aspect, these results suggest the possibility of breath analysis for detection of minimal genetic changes for earlier diagnosis or for genetic typing of lung cancers. PMID:25051409
Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L
2016-01-01
Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.
GDA, a web-based tool for Genomics and Drugs integrated analysis.
Caroli, Jimmy; Sorrentino, Giovanni; Forcato, Mattia; Del Sal, Giannino; Bicciato, Silvio
2018-05-25
Several major screenings of genetic profiling and drug testing in cancer cell lines proved that the integration of genomic portraits and compound activities is effective in discovering new genetic markers of drug sensitivity and clinically relevant anticancer compounds. Despite most genetic and drug response data are publicly available, the availability of user-friendly tools for their integrative analysis remains limited, thus hampering an effective exploitation of this information. Here, we present GDA, a web-based tool for Genomics and Drugs integrated Analysis that combines drug response data for >50 800 compounds with mutations and gene expression profiles across 73 cancer cell lines. Genomic and pharmacological data are integrated through a modular architecture that allows users to identify compounds active towards cancer cell lines bearing a specific genomic background and, conversely, the mutational or transcriptional status of cells responding or not-responding to a specific compound. Results are presented through intuitive graphical representations and supplemented with information obtained from public repositories. As both personalized targeted therapies and drug-repurposing are gaining increasing attention, GDA represents a resource to formulate hypotheses on the interplay between genomic traits and drug response in cancer. GDA is freely available at http://gda.unimore.it/.
Pitaksakulrat, Opal; Webster, Bonnie L; Webster, Joanne P; Laha, Thewarach; Saijuntha, Weerachai; Lamberton, Poppy H L; Kiatsopit, Nadda; Andrews, Ross H; Petney, Trevor N; Sithithaworn, Paiboon
2018-04-19
The liver fluke Opisthorchis viverrini sensu lato causes serious public-health problems in Northeast Thailand and Southeast Asian countries. A hypothesis has been proposed that O. viverrini represents a species complex with varying levels of genetic differentiation in Thailand and Lao PDR. This study aimed to clarify whether O. viverrini populations can be genetically divided into separate taxa. We collected O. viverrini s.l. from eight different locations in Lao PDR and Thailand. The results of nad1, cox1, CF-int6, Pm-int9, ITS2 and 28S rDNA sequence analysis revealed that sub-structuring occurred between the eight populations. We found that O. viverrini s.l. from Sakon Nakhon (SK), Thailand, shows significant genetic differentiation (P < .05) from all other isolates from different localities in Thailand and Lao PDR. This was supported by haplotype and phylogenetic tree analyses in which the SK isolate was separated from all other isolates. This suggests that O. viverrini s.l. from SK is a cryptic species. The data, however, also confirm the association between genetic groups of O. viverrini s.l. and specific wetland systems, and raise important questions regarding the epidemiological significance of these genetic differences. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Xiaolong; Thannhauser, T. W.; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E.; Gray, Stewart M.
2008-01-01
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F2 progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F2 genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission. PMID:17959668
Yang, Xiaolong; Thannhauser, T W; Burrows, Mary; Cox-Foster, Diana; Gildow, Fred E; Gray, Stewart M
2008-01-01
Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector specificity results from the vector aphids having the functional components of the receptor-mediated endocytotic pathways to allow virus to transverse the gut and salivary tissues. Studies of F(2) progeny from crosses of vector and nonvector genotypes of S. graminum showed that virus transmission efficiency is a heritable trait regulated by multiple genes acting in an additive fashion and that gut- and salivary gland-associated factors are not genetically linked. Utilizing two-dimensional difference gel electrophoresis to compare the proteomes of vector and nonvector parental and F(2) genotypes, four aphid proteins (S4, S8, S29, and S405) were specifically associated with the ability of S. graminum to transmit CYDV-RPV. The four proteins were coimmunoprecipitated with purified RPV, indicating that the aphid proteins are capable of binding to virus. Analysis by mass spectrometry identified S4 as a luciferase and S29 as a cyclophilin, both of which have been implicated in macromolecular transport. Proteins S8 and S405 were not identified from available databases. Study of this unique genetic system coupled with proteomic analysis indicated that these four virus-binding aphid proteins were specifically inherited and conserved in different generations of vector genotypes and suggests that they play a major role in regulating polerovirus transmission.
'Genetics is not the issue': insurers on genetics and life insurance.
Van Hoyweghen, Ine; Horstman, Klasien; Schepers, Rita
2005-04-01
This article offers an analysis of the way private insurers deal with the issue of genetics and insurance. Drawing on specific written insurance sources, a reconstruction is made of internal debates on genetics and insurance within the private insurance world in Europe and the United States. The article starts by analyzing the way insurers initially framed the issue of genetics. It proceeds by showing how ideas with respect to this issue developed beyond public policy debates in the nineties. Although not a strictly linear development, a trend towards a change in perspective can be demonstrated: at the beginning most insurance companies took another stance than they do nowadays. The article concludes by questioning the effect of these changes within the insurance world for the definition of the problem with respect to genetics and insurance. Does taking into account the public concerns around genetics also include taking genetics as a public problem?
Freitas, Ferdinando B; Esteves, Aida; Piedade, João; Parreira, Ricardo
2013-02-01
The most efficient method for HIV-1 genetic characterization involves full-genome sequencing, but the associated costs, technical features, and low throughput preclude it from being routinely used for the analysis of large numbers of viral strains. Multiregion hybridization assays (MHA) represent an alternative for a consistent genetic analysis of large numbers of viral strains. Classically, MHA rely on the amplification by real-time PCR of several regions scattered along the HIV-1 genome, and on their characterization with clade-specific TaqMan probes (also known as hydrolysis probes). In this context, the aim of our study was the development of a technical variant of an MHA (vMHA(B/G/02)) for genotyping the most prevalent genetic forms of HIV-1 circulating in Portugal. Different sets of primers were designed for universal and clade-specific amplifications of several sections of the viral genome: gag, pol(Pr), pol(RT), vpu, env(gp120), and env(gp41). vMHA(B/G/02) was implemented using a real-time PCR-based approach, with detection dependent on the use of SYBR Green I. As an alternative, a technically less demanding strategy based on conventional PCR and agarose gel analysis of the reaction products was also developed. This method performed with overall good sensitivity and specificity (>91%) when a convenience sample of 45 plasma-derived HIV-1 strains was analyzed. Apart from the detection of subtype B, G, CRF02_AG, and CRF14_BG viruses, several unique B/G recombinant were also detected. Curiously, recombinant viruses including CRF02_AG sequences were not detected in the group of samples analyzed.
Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico
2015-01-01
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886
García Amez, Javier
2006-01-01
The genetic data is Spain is not regulated specifically, rather, we must look at the regulation on the protection of data of a personal nature. This is turn, establishes a series of general principles to apply to any type of data. Analysing this with other regulations that are dispersed both in the national and international regulations, we can deduce the rights and obligations in this field. This highlights the fact that one can't dispose of the genetic data in the same manner as the personal data.
Yerges, Laura M.; Klei, Lambertus; Cauley, Jane A.; Roeder, Kathryn; Kammerer, Candace M.; Moffett, Susan P.; Ensrud, Kristine E.; Nestlerode, Cara S.; Marshall, Lynn M.; Hoffman, Andrew R.; Lewis, Cora; Lang, Thomas F.; Barrett-Connor, Elizabeth; Ferrell, Robert E.; Orwoll, Eric S.
2009-01-01
Genetics is a well-established but poorly understood determinant of BMD. Whereas some genetic variants may influence BMD throughout the body, others may be skeletal site specific. We initially screened for associations between 4608 tagging and potentially functional single nucleotide polymorphisms (SNPs) in 383 candidate genes and femoral neck and lumbar spine volumetric BMD (vBMD) measured from QCT scans among 862 community-dwelling white men ≥65 yr of age in the Osteoporotic Fractures in Men Study (MrOS). The most promising SNP associations (p < 0.01) were validated by genotyping an additional 1156 white men from MrOS. This analysis identified 8 SNPs in 6 genes (APC, DMP1, FGFR2, FLT1, HOXA, and PTN) that were associated with femoral neck vBMD and 13 SNPs in 7 genes (APC, BMPR1B, FOXC2, HOXA, IGFBP2, NFATC1, and SOST) that were associated with lumbar spine vBMD in both genotyping samples (p < 0.05). Although most associations were specific to one skeletal site, SNPs in the APC and HOXA gene regions were associated with both femoral neck and lumbar spine BMD. This analysis identifies several novel and robust genetic associations for volumetric BMD, and these findings in combination with other data suggest the presence of genetic loci for volumetric BMD that are at least to some extent skeletal-site specific. PMID:19453261
PLAIASU, Vasilica; OCHIANA, Diana; MOTEI, Gabriela; ANCA, Ioana; GEORGESCU, Adrian
2010-01-01
ABSTRACT Introduction: Patau syndrome (trisomy 13) is one of the most common chromosomal anomalies clinically characterized by the presence of numerous malformations with a limited survival rate for most cases. Babies are usually identified at birth and the diagnosis is confirmed with genetic testing. Materials and methods: In this review we outline the clinical and cytogenetic aspects of trisomy 13 and associated phenotypes for 5 cases analyzed in the last 3 years, referred to our Clinical Genetics Department. For each child cytogenetic analysis was performed to determine the genetic variant; also, the patients were investigated for other associated malformations (cardiac, cerebral, renal, ocular anomalies). Discussion: All 5 cases presented multiple malformations, including some but not all signs of the classical clinical triad suggestive of Patau syndrome. The cytogenetic investigation confirmed for each case the suspected diagnosis and also indicated the specific genetic variant, this being a valuable information for the genetic counselling of the families. Conclusion: The application of genetic analysis can increase diagnosis and prognosis accuracy and have an impact on clinical management. PMID:21977150
Bureau, Alexandre; Duchesne, Thierry
2015-12-01
Splitting extended families into their component nuclear families to apply a genetic association method designed for nuclear families is a widespread practice in familial genetic studies. Dependence among genotypes and phenotypes of nuclear families from the same extended family arises because of genetic linkage of the tested marker with a risk variant or because of familial specificity of genetic effects due to gene-environment interaction. This raises concerns about the validity of inference conducted under the assumption of independence of the nuclear families. We indeed prove theoretically that, in a conditional logistic regression analysis applicable to disease cases and their genotyped parents, the naive model-based estimator of the variance of the coefficient estimates underestimates the true variance. However, simulations with realistic effect sizes of risk variants and variation of this effect from family to family reveal that the underestimation is negligible. The simulations also show the greater efficiency of the model-based variance estimator compared to a robust empirical estimator. Our recommendation is therefore, to use the model-based estimator of variance for inference on effects of genetic variants.
Kinnunen, Tarja K.
2014-01-01
Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease. PMID:25054285
Wojcik, Sonja M; Tantra, Martesa; Stepniak, Beata; Man, Kwun-Nok M; Müller-Ribbe, Katja; Begemann, Martin; Ju, Anes; Papiol, Sergi; Ronnenberg, Anja; Gurvich, Artem; Shin, Yong; Augustin, Iris; Brose, Nils; Ehrenreich, Hannelore
2013-07-24
Anxiety disorders and substance abuse, including benzodiazepine use disorder, frequently occur together. Unfortunately, treatment of anxiety disorders still includes benzodiazepines, and patients with an existing comorbid benzodiazepine use disorder or a genetic susceptibility for benzodiazepine use disorder may be at risk of adverse treatment outcomes. The identification of genetic predictors for anxiety disorders, and especially for benzodiazepine use disorder, could aid the selection of the best treatment option and improve clinical outcomes. The brain-specific angiogenesis inhibitor I-associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) protein family of synaptic regulators of neurotransmitter exocytosis, with a striking expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 in mice leads to enhanced seizure propensity and increased anxiety, with the latter being more pronounced in female than in male animals. We hypothesized that genetic variation in human BAIAP3 may also be associated with anxiety. By using a phenotype-based genetic association study, we identified two human BAIAP3 single-nucleotide polymorphism risk genotypes (AA for rs2235632, TT for rs1132358) that show a significant association with anxiety in women and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we found that male, but not female, Baiap3 knockout (KO) mice develop tolerance to diazepam more quickly than control animals. Analysis of cultured Baiap3 KO hypothalamus slices revealed an increase in basal network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is gender specifically associated with anxiety and benzodiazepine use disorder, and the analysis of Baiap3/BAIAP3-related functions may help elucidate mechanisms underlying the development of both disorders.
Wojcik, Sonja M; Tantra, Martesa; Stepniak, Beata; Man, Kwun-nok M; Müller-Ribbe, Katja; Begemann, Martin; Ju, Anes; Papiol, Sergi; Ronnenberg, Anja; Gurvich, Artem; Shin, Yong; Augustin, Iris; Brose, Nils; Ehrenreich, Hannelore
2013-01-01
Anxiety disorders and substance abuse, including benzodiazepine use disorder, frequently occur together. Unfortunately, treatment of anxiety disorders still includes benzodiazepines, and patients with an existing comorbid benzodiazepine use disorder or a genetic susceptibility for benzodiazepine use disorder may be at risk of adverse treatment outcomes. The identification of genetic predictors for anxiety disorders, and especially for benzodiazepine use disorder, could aid the selection of the best treatment option and improve clinical outcomes. The brain-specific angiogenesis inhibitor I–associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) protein family of synaptic regulators of neurotransmitter exocytosis, with a striking expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 in mice leads to enhanced seizure propensity and increased anxiety, with the latter being more pronounced in female than in male animals. We hypothesized that genetic variation in human BAIAP3 may also be associated with anxiety. By using a phenotype-based genetic association study, we identified two human BAIAP3 single-nucleotide polymorphism risk genotypes (AA for rs2235632, TT for rs1132358) that show a significant association with anxiety in women and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we found that male, but not female, Baiap3 knockout (KO) mice develop tolerance to diazepam more quickly than control animals. Analysis of cultured Baiap3 KO hypothalamus slices revealed an increase in basal network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is gender specifically associated with anxiety and benzodiazepine use disorder, and the analysis of Baiap3/BAIAP3-related functions may help elucidate mechanisms underlying the development of both disorders. PMID:23698091
Hobbelt, Anne H; Siland, Joylene E; Geelhoed, Bastiaan; Van Der Harst, Pim; Hillege, Hans L; Van Gelder, Isabelle C; Rienstra, Michiel
2017-02-01
Atrial fibrillation (AF) may present variously in time, and AF may progress from self-terminating to non-self-terminating AF, and is associated with impaired prognosis. However, predictors of AF types are largely unexplored. We investigate the clinical, biomarker, and genetic predictors of development of specific types of AF in a community-based cohort. We included 8042 individuals (319 with incident AF) of the PREVEND study. Types of AF were compared, and multivariate multinomial regression analysis determined associations with specific types of AF. Mean age was 48.5 ± 12.4 years and 50% were men. The types of incident AF were ascertained based on electrocardiograms; 103(32%) were classified as AF without 2-year recurrence, 158(50%) as self-terminating AF, and 58(18%) as non-self-terminating AF. With multivariate multinomial logistic regression analysis, advancing age (P< 0.001 for all three types) was associated with all AF types, male sex was associated with AF without 2-year recurrence and self-terminating AF (P= 0.031 and P= 0.008, respectively). Increasing body mass index and MR-proANP were associated with both self-terminating (P= 0.009 and P< 0.001) and non-self-terminating AF (P= 0.003 and P< 0.001). The only predictor associated with solely self-terminating AF is prescribed anti-hypertensive treatment (P= 0.019). The following predictors were associated with non-self-terminating AF; lower heart rate (P= 0.018), lipid-lowering treatment prescribed (P= 0.009), and eGFR <60 mL/min/1.73 m2 (P= 0.006). Three known AF-genetic variants (rs6666258, rs6817105, and rs10821415) were associated with self-terminating AF. We found clinical, biomarker and genetic predictors of specific types of incident AF in a community-based cohort. The genetic background seems to play a more important role than modifiable risk factors in self-terminating AF.
Than, Minh T; Kudlow, Brian A; Han, Min
2013-06-01
Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic "enhancer" approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It also suggests that compromising other aspects of gene expression, along with miRISC, can be an effective approach to reveal miRNA functions in specific tissues under specific physiological conditions.
O’Connor, David; Enshaei, Amir; Bartram, Jack; Hancock, Jeremy; Harrison, Christine J.; Hough, Rachael; Samarasinghe, Sujith; Schwab, Claire; Vora, Ajay; Wade, Rachel; Moppett, John; Moorman, Anthony V.; Goulden, Nick
2018-01-01
Purpose Minimal residual disease (MRD) and genetic abnormalities are important risk factors for outcome in acute lymphoblastic leukemia. Current risk algorithms dichotomize MRD data and do not assimilate genetics when assigning MRD risk, which reduces predictive accuracy. The aim of our study was to exploit the full power of MRD by examining it as a continuous variable and to integrate it with genetics. Patients and Methods We used a population-based cohort of 3,113 patients who were treated in UKALL2003, with a median follow-up of 7 years. MRD was evaluated by polymerase chain reaction analysis of Ig/TCR gene rearrangements, and patients were assigned to a genetic subtype on the basis of immunophenotype, cytogenetics, and fluorescence in situ hybridization. To examine response kinetics at the end of induction, we log-transformed the absolute MRD value and examined its distribution across subgroups. Results MRD was log normally distributed at the end of induction. MRD distributions of patients with distinct genetic subtypes were different (P < .001). Patients with good-risk cytogenetics demonstrated the fastest disease clearance, whereas patients with high-risk genetics and T-cell acute lymphoblastic leukemia responded more slowly. The risk of relapse was correlated with MRD kinetics, and each log reduction in disease level reduced the risk by 20% (hazard ratio, 0.80; 95% CI, 0.77 to 0.83; P < .001). Although the risk of relapse was directly proportional to the MRD level within each genetic risk group, absolute relapse rate that was associated with a specific MRD value or category varied significantly by genetic subtype. Integration of genetic subtype–specific MRD values allowed more refined risk group stratification. Conclusion A single threshold for assigning patients to an MRD risk group does not reflect the response kinetics of the different genetic subtypes. Future risk algorithms should integrate genetics with MRD to accurately identify patients with the lowest and highest risk of relapse. PMID:29131699
Winkler, Thomas W; Justice, Anne E; Graff, Mariaelisa; Barata, Llilda; Feitosa, Mary F; Chu, Su; Czajkowski, Jacek; Esko, Tõnu; Fall, Tove; Kilpeläinen, Tuomas O; Lu, Yingchang; Mägi, Reedik; Mihailov, Evelin; Pers, Tune H; Rüeger, Sina; Teumer, Alexander; Ehret, Georg B; Ferreira, Teresa; Heard-Costa, Nancy L; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M; Jansen, Rick; Westra, Harm-Jan; White, Charles C; Absher, Devin; Ahluwalia, Tarunveer S; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L; de Craen, Anton J M; Bis, Joshua C; Bonnefond, Amélie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W K; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jackson, Anne U; Jacobs, Kevin B; Johansson, Åsa; Kaakinen, Marika; Kleber, Marcus E; Lahti, Jari; Mateo Leach, Irene; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A F; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L; Montasser, May E; Müller, Gabriele; Müller-Nurasyid, Martina; Nolte, Ilja M; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W; Renström, Frida; Rizzi, Federica; Rose, Lynda M; Ryan, Kathy A; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stančáková, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P; Vandenput, Liesbeth; van der Laan, Sander W; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L; Wang, Sophie R; Wang, Zhaoming; Wild, Sarah H; Willenborg, Christina; Wilson, James F; Wong, Andrew; Yang, Jian; Yengo, Loïc; Yerges-Armstrong, Laura M; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A; Bakker, Stephan J L; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blüher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L; Boyd, Heather A; Bruinenberg, Marcel; Buchman, Aron S; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S; Claudi-Boehm, Simone; Cole, John; Collins, Francis S; de Geus, Eco J C; de Groot, Lisette C P G M; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G; Friedrich, Nele; Gejman, Pablo V; Gigante, Bruna; Glorioso, Nicola; Go, Alan S; Gottesman, Omri; Gräßler, Jürgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T; Heath, Andrew C; Henders, Anjali K; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G; Hui, Jennie; Husemoen, Lise L; Hutri-Kähönen, Nina; Hysi, Pirro G; Illig, Thomas; De Jager, Philip L; Jalilzadeh, Shapour; Jørgensen, Torben; Jukema, J Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T; Kratzer, Wolfgang; Krüger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J; Leander, Karin; Lindström, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stéphane; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Magnusson, Patrik K; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W; Morris, Andrew P; Narisu, Narisu; Nelis, Mari; Ong, Ken K; Palotie, Aarno; Pérusse, Louis; Pichler, Irene; Pilia, Maria G; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M; Rice, Treva K; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R; Sarzynski, Mark A; Scholtens, Salome; Scott, Robert A; Scott, William R; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P Eline; Smit, Jan H; Sparsø, Thomas H; Stirrups, Kathleen; Stolk, Ronald P; Stringham, Heather M; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tönjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J; Völker, Uwe; Vohl, Marie-Claude; Vonk, Judith M; Waldenberger, Melanie; Walker, Ryan W; Wennauer, Roman; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F; Zillikens, M Carola; van Dijk, Suzanne C; van Schoor, Natasja M; Asselbergs, Folkert W; de Bakker, Paul I W; Beckmann, Jacques S; Beilby, John; Bennett, David A; Bergman, Richard N; Bergmann, Sven; Böger, Carsten A; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Bornstein, Stefan R; Bottinger, Erwin P; Bouchard, Claude; Chambers, John C; Chanock, Stephen J; Chasman, Daniel I; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G; Evans, Denis A; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W; Froguel, Philippe; Gansevoort, Ron T; Gieger, Christian; Grönberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliövaara, Markku; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V; Hveem, Kristian; James, Alan L; Jordan, Joanne M; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A L M; Kivimaki, Mika; Knekt, Paul B; Koistinen, Heikki A; Kooner, Jaspal S; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G; Laakso, Markku; Lakka, Timo A; Lehtimäki, Terho; Lettre, Guillaume; Levinson, Douglas F; Lind, Lars; Lokki, Marja-Liisa; Mäntyselkä, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D; Moll, Frans L; Murray, Jeffrey C; Musk, Arthur W; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Oostra, Ben A; Palmer, Lyle J; Pankow, James S; Pasterkamp, Gerard; Pedersen, Nancy L; Pedersen, Oluf; Penninx, Brenda W; Perola, Markus; Peters, Annette; Polašek, Ozren; Pramstaller, Peter P; Psaty, Bruce M; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M; Rioux, John D; Rivadeneira, Fernando; Rotter, Jerome I; Rudan, Igor; den Ruijter, Hester M; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E H; Shuldiner, Alan R; Sinisalo, Juha; Snieder, Harold; Sørensen, Thorkild I A; Spector, Tim D; Staessen, Jan A; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; Verbeek, André L M; Vermeulen, Sita H; Viikari, Jorma S; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Waeber, Gérard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J; Cupples, L Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E; Rao, D C; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Berndt, Sonja I; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S; Groop, Leif C; Hunter, David J; Ingelsson, Erik; Kaplan, Robert C; McCarthy, Mark I; Mohlke, Karen L; O'Connell, Jeffrey R; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Hirschhorn, Joel N; Lindgren, Cecilia M; Heid, Iris M; North, Kari E; Borecki, Ingrid B; Kutalik, Zoltán; Loos, Ruth J F
2015-10-01
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
Feitosa, Mary F.; Chu, Su; Czajkowski, Jacek; Esko, Tõnu; Fall, Tove; Kilpeläinen, Tuomas O.; Lu, Yingchang; Mägi, Reedik; Mihailov, Evelin; Pers, Tune H.; Rüeger, Sina; Teumer, Alexander; Ehret, Georg B.; Ferreira, Teresa; Heard-Costa, Nancy L.; Karjalainen, Juha; Lagou, Vasiliki; Mahajan, Anubha; Neinast, Michael D.; Prokopenko, Inga; Simino, Jeannette; Teslovich, Tanya M.; Jansen, Rick; Westra, Harm-Jan; White, Charles C.; Absher, Devin; Ahluwalia, Tarunveer S.; Ahmad, Shafqat; Albrecht, Eva; Alves, Alexessander Couto; Bragg-Gresham, Jennifer L.; de Craen, Anton J. M.; Bis, Joshua C.; Bonnefond, Amélie; Boucher, Gabrielle; Cadby, Gemma; Cheng, Yu-Ching; Chiang, Charleston W. K.; Delgado, Graciela; Demirkan, Ayse; Dueker, Nicole; Eklund, Niina; Eiriksdottir, Gudny; Eriksson, Joel; Feenstra, Bjarke; Fischer, Krista; Frau, Francesca; Galesloot, Tessel E.; Geller, Frank; Goel, Anuj; Gorski, Mathias; Grammer, Tanja B.; Gustafsson, Stefan; Haitjema, Saskia; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jackson, Anne U.; Jacobs, Kevin B.; Johansson, Åsa; Kaakinen, Marika; Kleber, Marcus E.; Lahti, Jari; Leach, Irene Mateo; Lehne, Benjamin; Liu, Youfang; Lo, Ken Sin; Lorentzon, Mattias; Luan, Jian'an; Madden, Pamela A. F.; Mangino, Massimo; McKnight, Barbara; Medina-Gomez, Carolina; Monda, Keri L.; Montasser, May E.; Müller, Gabriele; Müller-Nurasyid, Martina; Nolte, Ilja M.; Panoutsopoulou, Kalliope; Pascoe, Laura; Paternoster, Lavinia; Rayner, Nigel W.; Renström, Frida; Rizzi, Federica; Rose, Lynda M.; Ryan, Kathy A.; Salo, Perttu; Sanna, Serena; Scharnagl, Hubert; Shi, Jianxin; Smith, Albert Vernon; Southam, Lorraine; Stančáková, Alena; Steinthorsdottir, Valgerdur; Strawbridge, Rona J.; Sung, Yun Ju; Tachmazidou, Ioanna; Tanaka, Toshiko; Thorleifsson, Gudmar; Trompet, Stella; Pervjakova, Natalia; Tyrer, Jonathan P.; Vandenput, Liesbeth; van der Laan, Sander W; van der Velde, Nathalie; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Verweij, Niek; Vlachopoulou, Efthymia; Waite, Lindsay L.; Wang, Sophie R.; Wang, Zhaoming; Wild, Sarah H.; Willenborg, Christina; Wilson, James F.; Wong, Andrew; Yang, Jian; Yengo, Loïc; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Andersson, Ehm A.; Bakker, Stephan J. L.; Baldassarre, Damiano; Banasik, Karina; Barcella, Matteo; Barlassina, Cristina; Bellis, Claire; Benaglio, Paola; Blangero, John; Blüher, Matthias; Bonnet, Fabrice; Bonnycastle, Lori L.; Boyd, Heather A.; Bruinenberg, Marcel; Buchman, Aron S; Campbell, Harry; Chen, Yii-Der Ida; Chines, Peter S.; Claudi-Boehm, Simone; Cole, John; Collins, Francis S.; de Geus, Eco J. C.; de Groot, Lisette C. P. G. M.; Dimitriou, Maria; Duan, Jubao; Enroth, Stefan; Eury, Elodie; Farmaki, Aliki-Eleni; Forouhi, Nita G.; Friedrich, Nele; Gejman, Pablo V.; Gigante, Bruna; Glorioso, Nicola; Go, Alan S.; Gottesman, Omri; Gräßler, Jürgen; Grallert, Harald; Grarup, Niels; Gu, Yu-Mei; Broer, Linda; Ham, Annelies C.; Hansen, Torben; Harris, Tamara B.; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew T.; Heath, Andrew C.; Henders, Anjali K.; Hernandez, Dena; Hillege, Hans; Holmen, Oddgeir; Hovingh, Kees G; Hui, Jennie; Husemoen, Lise L.; Hutri-Kähönen, Nina; Hysi, Pirro G.; Illig, Thomas; De Jager, Philip L.; Jalilzadeh, Shapour; Jørgensen, Torben; Jukema, J. Wouter; Juonala, Markus; Kanoni, Stavroula; Karaleftheri, Maria; Khaw, Kay Tee; Kinnunen, Leena; Kittner, Steven J.; Koenig, Wolfgang; Kolcic, Ivana; Kovacs, Peter; Krarup, Nikolaj T.; Kratzer, Wolfgang; Krüger, Janine; Kuh, Diana; Kumari, Meena; Kyriakou, Theodosios; Langenberg, Claudia; Lannfelt, Lars; Lanzani, Chiara; Lotay, Vaneet; Launer, Lenore J.; Leander, Karin; Lindström, Jaana; Linneberg, Allan; Liu, Yan-Ping; Lobbens, Stéphane; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Magnusson, Patrik K.; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Montgomery, Grant W.; Morris, Andrew P.; Narisu, Narisu; Nelis, Mari; Ong, Ken K.; Palotie, Aarno; Pérusse, Louis; Pichler, Irene; Pilia, Maria G.; Pouta, Anneli; Rheinberger, Myriam; Ribel-Madsen, Rasmus; Richards, Marcus; Rice, Kenneth M.; Rice, Treva K.; Rivolta, Carlo; Salomaa, Veikko; Sanders, Alan R.; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Scott, William R.; Sebert, Sylvain; Sengupta, Sebanti; Sennblad, Bengt; Seufferlein, Thomas; Silveira, Angela; Slagboom, P. Eline; Smit, Jan H.; Sparsø, Thomas H.; Stirrups, Kathleen; Stolk, Ronald P.; Stringham, Heather M.; Swertz, Morris A; Swift, Amy J.; Syvänen, Ann-Christine; Tan, Sian-Tsung; Thorand, Barbara; Tönjes, Anke; Tremblay, Angelo; Tsafantakis, Emmanouil; van der Most, Peter J.; Völker, Uwe; Vohl, Marie-Claude; Vonk, Judith M.; Waldenberger, Melanie; Walker, Ryan W.; Wennauer, Roman; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Wright, Alan F.; Zillikens, M. Carola; van Dijk, Suzanne C.; van Schoor, Natasja M.; Asselbergs, Folkert W.; de Bakker, Paul I. W.; Beckmann, Jacques S.; Beilby, John; Bennett, David A.; Bergman, Richard N.; Bergmann, Sven; Böger, Carsten A.; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Bornstein, Stefan R.; Bottinger, Erwin P.; Bouchard, Claude; Chambers, John C.; Chanock, Stephen J.; Chasman, Daniel I.; Cucca, Francesco; Cusi, Daniele; Dedoussis, George; Erdmann, Jeanette; Eriksson, Johan G.; Evans, Denis A.; de Faire, Ulf; Farrall, Martin; Ferrucci, Luigi; Ford, Ian; Franke, Lude; Franks, Paul W.; Froguel, Philippe; Gansevoort, Ron T.; Gieger, Christian; Grönberg, Henrik; Gudnason, Vilmundur; Gyllensten, Ulf; Hall, Per; Hamsten, Anders; van der Harst, Pim; Hayward, Caroline; Heliövaara, Markku; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hu, Frank; Huikuri, Heikki V.; Hveem, Kristian; James, Alan L.; Jordan, Joanne M.; Jula, Antti; Kähönen, Mika; Kajantie, Eero; Kathiresan, Sekar; Kiemeney, Lambertus A. L. M.; Kivimaki, Mika; Knekt, Paul B.; Koistinen, Heikki A.; Kooner, Jaspal S.; Koskinen, Seppo; Kuusisto, Johanna; Maerz, Winfried; Martin, Nicholas G; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Lettre, Guillaume; Levinson, Douglas F.; Lind, Lars; Lokki, Marja-Liisa; Mäntyselkä, Pekka; Melbye, Mads; Metspalu, Andres; Mitchell, Braxton D.; Moll, Frans L.; Murray, Jeffrey C.; Musk, Arthur W.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Oostra, Ben A.; Palmer, Lyle J; Pankow, James S.; Pasterkamp, Gerard; Pedersen, Nancy L.; Pedersen, Oluf; Penninx, Brenda W.; Perola, Markus; Peters, Annette; Polašek, Ozren; Pramstaller, Peter P.; Psaty, Bruce M.; Qi, Lu; Quertermous, Thomas; Raitakari, Olli T.; Rankinen, Tuomo; Rauramaa, Rainer; Ridker, Paul M.; Rioux, John D.; Rivadeneira, Fernando; Rotter, Jerome I.; Rudan, Igor; den Ruijter, Hester M.; Saltevo, Juha; Sattar, Naveed; Schunkert, Heribert; Schwarz, Peter E. H.; Shuldiner, Alan R.; Sinisalo, Juha; Snieder, Harold; Sørensen, Thorkild I. A.; Spector, Tim D.; Staessen, Jan A.; Stefania, Bandinelli; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tardif, Jean-Claude; Tremoli, Elena; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Verbeek, André L. M.; Vermeulen, Sita H.; Viikari, Jorma S.; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Waeber, Gérard; Walker, Mark; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Zeggini, Eleftheria; Chakravarti, Aravinda; Clegg, Deborah J.; Cupples, L. Adrienne; Gordon-Larsen, Penny; Jaquish, Cashell E.; Rao, D. C.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Berndt, Sonja I.; Boehnke, Michael; Deloukas, Panos; Fox, Caroline S.; Groop, Leif C.; Hunter, David J.; Ingelsson, Erik; Kaplan, Robert C.; McCarthy, Mark I.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Heid, Iris M.; North, Kari E.; Borecki, Ingrid B.; Kutalik, Zoltán; Loos, Ruth J. F.
2015-01-01
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape. PMID:26426971
The behavioral genetics of nonhuman primates: Status and prospects.
Rogers, Jeffrey
2018-01-01
The complexity and diversity of primate behavior have long attracted the attention of ethologists, psychologists, behavioral ecologists, and neuroscientists. Recent studies have advanced our understanding of the nature of genetic influences on differences in behavior among individuals within species. A number of analyses have focused on the genetic analysis of behavioral reactions to specific experimental tests, providing estimates of the degree of genetic control over reactivity, and beginning to identify the genes involved. Substantial progress is also being made in identifying genetic factors that influence the structure and function of the primate brain. Most of the published studies on these topics have examined either cercopithecines or chimpanzees, though a few studies have addressed these questions in other primate species. One potentially important line of research is beginning to identify the epigenetic processes that influence primate behavior, thus revealing specific cellular and molecular mechanisms by which environmental experiences can influence gene expression or gene function relevant to behavior. This review summarizes many of these studies of non-human primate behavioral genetics. The primary focus is on analyses that address the nature of the genes and genetic processes that affect differences in behavior among individuals within non-human primate species. Analyses of between species differences and potential avenues for future research are also discussed. © 2018 American Association of Physical Anthropologists.
HAFLER, BRIAN P.
2017-01-01
Purpose Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. Methods A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. Results Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. Conclusion Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies. PMID:27753762
USDA-ARS?s Scientific Manuscript database
Meiotic recombination is a major driving force in promoting genetic and phenotypic variations in sexually reproducing organisms. Although PRDM9 is known to modulate the binding-specificity and location of recombination hotspots in humans and mice, its role, especially in domesticated animals like ca...
Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao
2017-09-27
Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.
Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John
2013-01-01
Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549
Smith, Jennifer A; Zhao, Wei; Yasutake, Kalyn; August, Carmella; Ratliff, Scott M; Faul, Jessica D; Boerwinkle, Eric; Chakravarti, Aravinda; Diez Roux, Ana V; Gao, Yan; Griswold, Michael E; Heiss, Gerardo; Kardia, Sharon L R; Morrison, Alanna C; Musani, Solomon K; Mwasongwe, Stanford; North, Kari E; Rose, Kathryn M; Sims, Mario; Sun, Yan V; Weir, David R; Needham, Belinda L
2017-12-18
Inter-individual variability in blood pressure (BP) is influenced by both genetic and non-genetic factors including socioeconomic and psychosocial stressors. A deeper understanding of the gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals that are genetically susceptible to high BP in specific social contexts. In this study, we used a genomic region-based method for longitudinal analysis, Longitudinal Gene-Environment-Wide Interaction Studies (LGEWIS), to evaluate the effects of interactions between known socioeconomic/psychosocial and genetic risk factors on systolic and diastolic BP in four large epidemiologic cohorts of European and/or African ancestry. After correction for multiple testing, two interactions were significantly associated with diastolic BP. In European ancestry participants, outward/trait anger score had a significant interaction with the C10orf107 genomic region ( p = 0.0019). In African ancestry participants, depressive symptom score had a significant interaction with the HFE genomic region ( p = 0.0048). This study provides a foundation for using genomic region-based longitudinal analysis to identify subgroups of the population that may be at greater risk of elevated BP due to the combined influence of genetic and socioeconomic/psychosocial risk factors.
Schregel, Julia; Kopatz, Alexander; Eiken, Hans Geir; Swenson, Jon E; Hagen, Snorre B
2017-01-01
The degree of gene flow within and among populations, i.e. genetic population connectivity, may closely track demographic population connectivity. Alternatively, the rate of gene flow may change relative to the rate of dispersal. In this study, we explored the relationship between genetic and demographic population connectivity using the Scandinavian brown bear as model species, due to its pronounced male dispersal and female philopatry. Thus, we expected that females would shape genetic structure locally, whereas males would act as genetic mediators among regions. To test this, we used eight validated microsatellite markers on 1531 individuals sampled noninvasively during country-wide genetic population monitoring in Sweden and Norway from 2006 to 2013. First, we determined sex-specific genetic structure and substructure across the study area. Second, we compared genetic differentiation, migration/gene flow patterns, and spatial autocorrelation results between the sexes both within and among genetic clusters and geographic regions. Our results indicated that demographic connectivity was not a reliable indicator of genetic connectivity. Among regions, we found no consistent difference in long-term gene flow and estimated current migration rates between males and females. Within regions/genetic clusters, only females consistently displayed significant positive spatial autocorrelation, indicating male-biased small-scale dispersal. In one cluster, however, males showed a dispersal pattern similar to females. The Scandinavian brown bear population has experienced substantial recovery over the last decades; however, our results did not show any changes in its large-scale population structure compared to previous studies, suggesting that an increase in population size and dispersal of individuals does not necessary lead to increased genetic connectivity. Thus, we conclude that both genetic and demographic connectivity should be estimated, so as not to make false assumptions about the reality of wildlife populations.
Potential of SNP markers for the characterization of Brazilian cassava germplasm.
de Oliveira, Eder Jorge; Ferreira, Cláudia Fortes; da Silva Santos, Vanderlei; de Jesus, Onildo Nunes; Oliveira, Gilmara Alvarenga Fachardo; da Silva, Maiane Suzarte
2014-06-01
High-throughput markers, such as SNPs, along with different methodologies were used to evaluate the applicability of the Bayesian approach and the multivariate analysis in structuring the genetic diversity in cassavas. The objective of the present work was to evaluate the diversity and genetic structure of the largest cassava germplasm bank in Brazil. Complementary methodological approaches such as discriminant analysis of principal components (DAPC), Bayesian analysis and molecular analysis of variance (AMOVA) were used to understand the structure and diversity of 1,280 accessions genotyped using 402 single nucleotide polymorphism markers. The genetic diversity (0.327) and the average observed heterozygosity (0.322) were high considering the bi-allelic markers. In terms of population, the presence of a complex genetic structure was observed indicating the formation of 30 clusters by DAPC and 34 clusters by Bayesian analysis. Both methodologies presented difficulties and controversies in terms of the allocation of some accessions to specific clusters. However, the clusters suggested by the DAPC analysis seemed to be more consistent for presenting higher probability of allocation of the accessions within the clusters. Prior information related to breeding patterns and geographic origins of the accessions were not sufficient for providing clear differentiation between the clusters according to the AMOVA analysis. In contrast, the F ST was maximized when considering the clusters suggested by the Bayesian and DAPC analyses. The high frequency of germplasm exchange between producers and the subsequent alteration of the name of the same material may be one of the causes of the low association between genetic diversity and geographic origin. The results of this study may benefit cassava germplasm conservation programs, and contribute to the maximization of genetic gains in breeding programs.
Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum.
Castillo, Daniel; Middelboe, Mathias
2016-12-01
Bacteriophages infecting the fish pathogen Flavobacterium psychrophilum can potentially be used to prevent and control outbreaks of this bacterium in salmonid aquaculture. However, the application of bacteriophages in disease control requires detailed knowledge on their genetic composition. To explore the diversity of F. pyschrophilum bacteriophages, we have analyzed the complete genome sequences of 17 phages isolated from two distant geographic areas (Denmark and Chile), including the previously characterized temperate bacteriophage 6H. Phage genome size ranged from 39 302 to 89 010 bp with a G+C content of 27%-32%. None of the bacteriophages isolated in Denmark contained genes associated with lysogeny, whereas the Chilean isolates were all putative temperate phages and similar to bacteriophage 6H. Comparative genome analysis showed that phages grouped in three different genetic clusters based on genetic composition and gene content, indicating a limited genetic diversity of F. psychrophilum-specific bacteriophages. However, amino acid sequence dissimilarity (25%) was found in putative structural proteins, which could be related to the host specificity determinants. This study represents the first analysis of genomic diversity and composition among bacteriophages infecting the fish pathogen F. psychrophilum and discusses the implications for the application of phages in disease control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The humankind genome: from genetic diversity to the origin of human diseases.
Belizário, Jose E
2013-12-01
Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-Man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H-H; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B; Adair, Linda S; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; Chen, Yii-Der Ida; Shu, Xiao-Ou; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars G; Nielsen, Jonas Bille; Tse, Hung-Fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Kathiresan, Sekar; Mohlke, Karen L; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-12-01
Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used an exome array to examine protein-coding genetic variants in 47,532 East Asian individuals. We identified 255 variants at 41 loci that reached chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After a meta-analysis including >300,000 European samples, we identified an additional nine novel loci. Sixteen genes were identified by protein-altering variants in both East Asians and Europeans, and thus are likely to be functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci.
Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J.; Wu, Ying; Zhang, He; Zhou, Wei; Li, Jun; Tang, Clara Sze-man; Dorajoo, Rajkumar; Li, Huaixing; Long, Jirong; Guo, Xiuqing; Xu, Ming; Spracklen, Cassandra N.; Chen, Yang; Liu, Xuezhen; Zhang, Yan; Khor, Chiea Chuen; Liu, Jianjun; Sun, Liang; Wang, Laiyuan; Gao, Yu-Tang; Hu, Yao; Yu, Kuai; Wang, Yiqin; Cheung, Chloe Yu Yan; Wang, Feijie; Huang, Jianfeng; Fan, Qiao; Cai, Qiuyin; Chen, Shufeng; Shi, Jinxiu; Yang, Xueli; Zhao, Wanting; Sheu, Wayne H.-H.; Cherny, Stacey Shawn; He, Meian; Feranil, Alan B.; Adair, Linda S.; Gordon-Larsen, Penny; Du, Shufa; Varma, Rohit; da Chen, Yii-Der I; Shu, XiaoOu; Lam, Karen Siu Ling; Wong, Tien Yin; Ganesh, Santhi K.; Mo, Zengnan; Hveem, Kristian; Fritsche, Lars; Nielsen, Jonas Bille; Tse, Hung-fat; Huo, Yong; Cheng, Ching-Yu; Chen, Y. Eugene; Zheng, Wei; Tai, E Shyong; Gao, Wei; Lin, Xu; Huang, Wei; Abecasis, Goncalo; Consortium, GLGC; Kathiresan, Sekar; Mohlke, Karen L.; Wu, Tangchun; Sham, Pak Chung; Gu, Dongfeng; Willer, Cristen J
2017-01-01
Most genome-wide association studies have been conducted in European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we examined protein-coding genetic variants in 47,532 East Asian individuals using an exome array. We identified 255 variants at 41 loci reaching chip-wide significance, including 3 novel loci and 14 East Asian-specific coding variant associations. After meta-analysis with > 300,000 European samples, we identified an additional 9 novel loci. The same 16 genes were identified by the protein-altering variants in both East Asians and Europeans, likely pointing to the functional genes. Our data demonstrate that most of the low-frequency or rare coding variants associated with lipids are population-specific, and that examining genomic data across diverse ancestries may facilitate the identification of functional genes at associated loci. PMID:29083407
Rasigade, Jean-Philippe; Barbier, Maxime; Dumitrescu, Oana; Pichat, Catherine; Carret, Gérard; Ronnaux-Baron, Anne-Sophie; Blasquez, Ghislaine; Godin-Benhaim, Christine; Boisset, Sandrine; Carricajo, Anne; Jacomo, Véronique; Fredenucci, Isabelle; Pérouse de Montclos, Michèle; Flandrois, Jean-Pierre; Ader, Florence; Supply, Philip; Lina, Gérard; Wirth, Thierry
2017-01-01
The transmission dynamics of tuberculosis involves complex interactions of socio-economic and, possibly, microbiological factors. We describe an analytical framework to infer factors of epidemic success based on the joint analysis of epidemiological, clinical and pathogen genetic data. We derive isolate-specific, genetic distance-based estimates of epidemic success, and we represent success-related time-dependent concepts, namely epidemicity and endemicity, by restricting analysis to specific time scales. The method is applied to analyze a surveillance-based cohort of 1,641 tuberculosis patients with minisatellite-based isolate genotypes. Known predictors of isolate endemicity (older age, native status) and epidemicity (younger age, sputum smear positivity) were identified with high confidence (P < 0.001). Long-term epidemic success also correlated with the ability of Euro-American and Beijing MTBC lineages to cause active pulmonary infection, independent of patient age and country of origin. Our results demonstrate how important insights into the transmission dynamics of tuberculosis can be gained from active surveillance data. PMID:28349973
Cluster analysis reveals subclinical subgroups with shared autistic and schizotypal traits.
Ford, Talitha C; Apputhurai, Pragalathan; Meyer, Denny; Crewther, David P
2018-07-01
Autism and schizophrenia spectrum research is typically based on coarse diagnostic classification, which overlooks individual variation within clinical groups. This method limits the identification of underlying cognitive, genetic and neural correlates of specific symptom dimensions. This study, therefore, aimed to identify homogenous subclinical subgroups of specific autistic and schizotypal traits dimensions, that may be utilised to establish more effective diagnostic and treatment practices. Latent profile analysis of subscale scores derived from an autism-schizotypy questionnaire, completed by 1678 subclinical adults aged 18-40 years (1250 females), identified a local optimum of eight population clusters: High, Moderate and Low Psychosocial Difficulties; High, Moderate and Low Autism-Schizotypy; High Psychosis-Proneness; and Moderate Schizotypy. These subgroups represent the convergent and discriminant dimensions of autism and schizotypy in the subclinical population, and highlight the importance of examining subgroups of specific symptom characteristics across these spectra in order to identify the underlying genetic and neural correlates that can be utilised to advance diagnostic and treatment practices. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of forward genetics in Toxoplasma gondii
Sibley, L. David
2009-01-01
The development of forward genetics as a functional system in Toxoplasma gondii spanned more than three decades from the mid-1970s until now. The initial demonstration of experimental genetics relied on chemically-induced drug resistant mutants that were crossed by co-infecting cats, collecting oocysts, sporulating and hatching progeny in vitro. To capitalize on this, genetic markers were employed to develop linkage maps by tracking inheritance through experimental crosses. In all, three generations of genetic maps were developed to define the chromosomes, estimate recombination rates, and provide a system for linkage analysis. Ultimately this genetic map would become the foundation for the assembly of the T. gondii genome, which was derived from whole genome shotgun sequencing, into a chromosome-centric view. Finally, application of forward genetics to multigenic biological traits showed the potential to map and identify specific genes that control complex phenotypes including virulence. PMID:19254720
Evidence of a genetic link between endometriosis and ovarian cancer.
Lee, Alice W; Templeman, Claire; Stram, Douglas A; Beesley, Jonathan; Tyrer, Jonathan; Berchuck, Andrew; Pharoah, Paul P; Chenevix-Trench, Georgia; Pearce, Celeste Leigh
2016-01-01
To evaluate whether endometriosis-associated genetic variation affects risk of ovarian cancer. Pooled genetic analysis. University hospital. Genetic data from 46,176 participants (15,361 ovarian cancer cases and 30,815 controls) from 41 ovarian cancer studies. None. Endometriosis-associated genetic variation and ovarian cancer. There was significant evidence of an association between endometriosis-related genetic variation and ovarian cancer risk, especially for the high-grade serous and clear cell histotypes. Overall we observed 15 significant burden statistics, which was three times more than expected. By focusing on candidate regions from a phenotype associated with ovarian cancer, we have shown a clear genetic link between endometriosis and ovarian cancer that warrants further follow-up. The functional significance of the identified regions and SNPs is presently uncertain, though future fine mapping and histotype-specific functional analyses may shed light on the etiologies of both gynecologic conditions. Copyright © 2016. Published by Elsevier Inc.
‘Generalist genes’ and mathematics in 7-year-old twins
Kovas, Y.; Harlaar, N.; Petrill, S. A.; Plomin, R.
2009-01-01
Mathematics performance at 7 years as assessed by teachers using UK national curriculum criteria has been found to be highly heritable. For almost 3000 pairs of 7-year-old same-sex twins, we used multivariate genetic analysis to investigate the extent to which these genetic effects on mathematics performance overlap with genetic effects on reading and general intelligence (g) as predicted by the ‘generalist genes’ hypothesis. We found substantial genetic overlap between mathematics and reading (genetic correlation=0.74) and between mathematics and g (0.67). These findings support the ‘generalist genes’ hypothesis that most of the genes that contribute to individual differences in mathematics are the same genes that affect reading and g. Nonetheless, the genetic correlations are less than unity and about a third of the genetic variance on mathematics is independent of reading and g, suggesting that there are also some genes whose effects are specific to mathematics. PMID:19319204
Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs
Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.
2012-01-01
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571
Yannic, G; Basset, P; Hausser, J
2008-09-01
Using one male-inherited, one female-inherited and eight biparentally inherited markers, we investigate the population genetic structure of the Valais shrew (Sorex antinorii) in the Swiss Alps. Bayesian analysis on autosomal microsatellites suggests a clear genetic differentiation between two groups of populations. This geographically based structure is consistent with two separate postglacial recolonization routes of the species into Switzerland from Italian refugia after the last Pleistocene glaciations. Sex-specific markers also confirm genetic structuring among western and eastern areas, since very few haplotypes for either Y chromosome or mtDNA genome are shared between the two regions. Overall, these results suggest that two already well-differentiated genetic lineages colonized the Swiss Alps and came into secondary contact in the Rhône Valley. Low level of admixture between the two lineages is likely explained by the mountainous landscape structure of lateral valleys orthogonal to the main Rhône valley.
Born to Lead? A Twin Design and Genetic Association Study of Leadership Role Occupancy*
De Neve, Jan-Emmanuel; Mikhaylov, Slava; Dawes, Christopher T.; Christakis, Nicholas A.; Fowler, James H.
2013-01-01
We address leadership emergence and the possibility that there is a partially innate predisposition to occupy a leadership role. Employing twin design methods on data from the National Longitudinal Study of Adolescent Health, we estimate the heritability of leadership role occupancy at 24%. Twin studies do not point to specific genes or neurological processes that might be involved. We therefore also conduct association analysis on the available genetic markers. The results show that leadership role occupancy is associated with rs4950, a single nucleotide polymorphism (SNP) residing on a neuronal acetylcholine receptor gene (CHRNB3). We replicate this family-based genetic association result on an independent sample in the Framingham Heart Study. This is the first study to identify a specific genotype associated with the tendency to occupy a leadership position. The results suggest that what determines whether an individual occupies a leadership position is the complex product of genetic and environmental influences; with a particular role for rs4950. PMID:23459689
Shaffer, Lisa G; Ramirez, Christina J; Phelps, Patricia; Aviram, Maya; Walczak, Marta; Bar-Gal, Gila Kahila; Ballif, Blake C
2017-01-01
Genetic diseases occur in breeds used for law enforcement. As important team members, dogs are expected to operate at peak performance for several years and are significant investments for both the initial purchase and extensive, specialized training. Previous studies have not focused on causes for retirement or euthanasia as genetic (inherited) versus acquired (environmental). We performed direct mutational analysis for breed-specific conditions on samples from 304 dogs including 267 law enforcement (122 US, 87 Israeli, and 58 Polish) and 37 search and rescue dogs. Genetic testing identified 29% (n = 89) of the dogs tested to be carriers of a genetic mutation and 6% (n = 19) to be at risk for a debilitating inherited condition that may eventually impair the dog's ability to work. At-risk dogs included Labrador Retrievers (n = 4) with exercise-induced collapse, Bloodhounds (n = 2) with degenerative myelopathy (DM), and German Shepherd dogs with DM (n = 12) or leukocyte adhesion deficiency, type III (n = 1). A substantial number of working dogs were shown to be at risk for genetic conditions that may shorten the dog's career. The loss of dogs, due to early retirement or euthanasia, as a result of preventable genetic conditions has an emotional cost to handlers and financial cost to service organizations that can be avoided with genetic screening prior to breeding, buying, or training. © 2018 S. Karger AG, Basel.
Genetic Signatures of Exceptional Longevity in Humans
Sebastiani, Paola; Solovieff, Nadia; DeWan, Andrew T.; Walsh, Kyle M.; Puca, Annibale; Hartley, Stephen W.; Melista, Efthymia; Andersen, Stacy; Dworkis, Daniel A.; Wilk, Jemma B.; Myers, Richard H.; Steinberg, Martin H.; Montano, Monty; Baldwin, Clinton T.; Hoh, Josephine; Perls, Thomas T.
2012-01-01
Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity. PMID:22279548
Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.
McNally, Elizabeth M; Puckelwartz, Megan J
2015-01-01
With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.
Large-scale replication and heterogeneity in Parkinson disease genetic loci
Ioannidis, John P.A.; Aasly, Jan O.; Annesi, Grazia; Brice, Alexis; Van Broeckhoven, Christine; Bertram, Lars; Bozi, Maria; Crosiers, David; Clarke, Carl; Facheris, Maurizio; Farrer, Matthew; Garraux, Gaetan; Gispert, Suzana; Auburger, Georg; Vilariño-Güell, Carles; Hadjigeorgiou, Georgios M.; Hicks, Andrew A.; Hattori, Nobutaka; Jeon, Beom; Lesage, Suzanne; Lill, Christina M.; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E.; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D.; Morrison, Karen E.; Opala, Grzegorz; Pramstaller, Peter P.; Pichler, Irene; Park, Sung Sup; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A.; Stefanis, Leonidas; Stockton, Joanne D.; Satake, Wataru; Silburn, Peter A.; Theuns, Jessie; Tan, Eng-King; Toda, Tatsushi; Tomiyama, Hiroyuki; Uitti, Ryan J.; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius; Krüger, Rejko
2012-01-01
Objective: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. Methods: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. Results: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. Conclusion: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667 PMID:22786590
Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants
Menon, Ramkumar; Pearce, Brad; Velez, Digna R; Merialdi, Mario; Williams, Scott M; Fortunato, Stephen J; Thorsen, Poul
2009-01-01
Objective To study pathophysiologic pathways in spontaneous preterm birth and possibly the racial disparity associating with maternal and fetal genetic variations, using bioinformatics tools. Methods A large scale candidate gene association study was performed on 1442 SNPs in 130 genes in a case (preterm birth < 36 weeks) control study (term birth > 37 weeks). Both maternal and fetal DNA from Caucasians (172 cases and 198 controls) and 279 African-Americans (82 cases and 197 controls) were used. A single locus association (genotypic) analysis followed by hierarchical clustering was performed, where clustering was based on p values for significant associations within each race. Using Ingenuity Pathway Analysis (IPA) software, known pathophysiologic pathways in both races were determined. Results From all SNPs entered into the analysis, the IPA mapped genes to specific disease functions. Gene variants in Caucasians were implicated in disease functions shared with other known disorders; specifically, dermatopathy, inflammation, and hematological disorders. This may reflect abnormal cervical ripening and decidual hemorrhage. In African-Americans inflammatory pathways were the most prevalent. In Caucasians, maternal gene variants showed the most prominent role in disease functions, whereas in African Americans it was fetal variants. The IPA software was used to generate molecular interaction maps that differed between races and also between maternal and fetal genetic variants. Conclusion Differences at the genetic level revealed distinct disease functions and operational pathways in African Americans and Caucasians in spontaneous preterm birth. Differences in maternal and fetal contributions in pregnancy outcome are also different between African Americans and Caucasians. These results present a set of explicit testable hypotheses regarding genetic associations with preterm birth in African Americans and Caucasians PMID:19527514
2013-01-01
Background Cerebellar abiotrophy (CA) is a rare but significant disease in Arabian horses caused by progressive death of the Purkinje cells resulting in cerebellar ataxia characterized by a typical head tremor, jerky head movements and lack of menace response. The specific role of magnetic resonance imaging (MRI) to support clinical diagnosis has been discussed. However, as yet MR imaging has only been described in one equine CA case. The role of MR morphometry in this regard is currently unknown. Due to the hereditary nature of the disease, genetic testing can support the diagnosis of CA. Therefore, the objective of this study was to perform MR morphometric analysis and genetic testing in four CA-affected Arabian horses and one German Riding Pony with purebred Arabian bloodlines in the third generation. Results CA was diagnosed pathohistologically in the five affected horses (2 months - 3 years) supported by clinical signs, necropsy, and genetic testing which confirmed the TOE1:g.2171G>A SNP genotype A/A in all CA-affected horses. On MR images morphometric analysis of the relative cerebellar size and relative cerebellar cerebrospinal fluid (CSF) space were compared to control images of 15 unaffected horses. It was demonstrated that in MR morphometric analyses, CA affected horses displayed a relatively smaller cerebellum compared to the entire brain mass than control animals (P = 0.0088). The relative cerebellar CSF space was larger in affected horses (P = 0.0017). Using a cut off value of 11.0% for relative cerebellar CSF space, the parameter differentiated between CA-affected horses and controls with a sensitivity of 100% and a specificity of 93.3%. Conclusions In conclusion, morphometric MRI and genetic analysis could be helpful to support the diagnosis of CA in vivo. PMID:23702154
Large-scale replication and heterogeneity in Parkinson disease genetic loci.
Sharma, Manu; Ioannidis, John P A; Aasly, Jan O; Annesi, Grazia; Brice, Alexis; Van Broeckhoven, Christine; Bertram, Lars; Bozi, Maria; Crosiers, David; Clarke, Carl; Facheris, Maurizio; Farrer, Matthew; Garraux, Gaetan; Gispert, Suzana; Auburger, Georg; Vilariño-Güell, Carles; Hadjigeorgiou, Georgios M; Hicks, Andrew A; Hattori, Nobutaka; Jeon, Beom; Lesage, Suzanne; Lill, Christina M; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D; Morrison, Karen E; Opala, Grzegorz; Pramstaller, Peter P; Pichler, Irene; Park, Sung Sup; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A; Stefanis, Leonidas; Stockton, Joanne D; Satake, Wataru; Silburn, Peter A; Theuns, Jessie; Tan, Eng-King; Toda, Tatsushi; Tomiyama, Hiroyuki; Uitti, Ryan J; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius; Krüger, Rejko
2012-08-14
Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78-0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14-1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I(2) estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity.
Phenotypic and genetic structure of traits delineating personality disorder.
Livesley, W J; Jang, K L; Vernon, P A
1998-10-01
The evidence suggests that personality traits are hierarchically organized with more specific or lower-order traits combining to form more generalized higher-order traits. Agreement exists across studies regarding the lower-order traits that delineate personality disorder but not the higher-order traits. This study seeks to identify the higher-order structure of personality disorder by examining the phenotypic and genetic structures underlying lower-order traits. Eighteen lower-order traits were assessed using the Dimensional Assessment of Personality Disorder-Basic Questionnaire in samples of 656 personality disordered patients, 939 general population subjects, and a volunteer sample of 686 twin pairs. Principal components analysis yielded 4 components, labeled Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity, that were similar across the 3 samples. Multivariate genetic analyses also yielded 4 genetic and environmental factors that were remarkably similar to the phenotypic factors. Analysis of the residual heritability of the lower-order traits when the effects of the higher-order factors were removed revealed a substantial residual heritable component for 12 of the 18 traits. The results support the following conclusions. First, the stable structure of traits across clinical and nonclinical samples is consistent with dimensional representations of personality disorders. Second, the higher-order traits of personality disorder strongly resemble dimensions of normal personality. This implies that a dimensional classification should be compatible with normative personality. Third, the residual heritability of the lower-order traits suggests that the personality phenotypes are based on a large number of specific genetic components.
Qiu, Jingya; Moore, Jason H; Darabos, Christian
2016-05-01
Genome-wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog literature, we compiled a database of 2,800 ancestry-specific SNPs associated with T2DM and 70 other related traits. Manual data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P-value, but does not consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples from study populations of mixed ancestry. Analysis of all-inclusive data can be misleading, as not all SNPs are transferable across diverse populations. We used ancestry data to construct ancestry-specific human phenotype networks (HPN) centered on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the 27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry-specific nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our ancestry-specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations. Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and personalized medicine. © 2016 The Authors. *Genetic Epidemiology Published by Wiley Periodicals, Inc.
McInerney-Leo, Aideen M; Marshall, Mhairi S; Gardiner, Brooke; Coucke, Paul J; Van Laer, Lut; Loeys, Bart L; Summers, Kim M; Symoens, Sofie; West, Jennifer A; West, Malcolm J; Paul Wordsworth, B; Zankl, Andreas; Leo, Paul J; Brown, Matthew A; Duncan, Emma L
2013-01-01
Osteogenesis imperfecta (OI) and Marfan syndrome (MFS) are common Mendelian disorders. Both conditions are usually diagnosed clinically, as genetic testing is expensive due to the size and number of potentially causative genes and mutations. However, genetic testing may benefit patients, at-risk family members and individuals with borderline phenotypes, as well as improving genetic counseling and allowing critical differential diagnoses. We assessed whether whole exome sequencing (WES) is a sensitive method for mutation detection in OI and MFS. WES was performed on genomic DNA from 13 participants with OI and 10 participants with MFS who had known mutations, with exome capture followed by massive parallel sequencing of multiplexed samples. Single nucleotide polymorphisms (SNPs) and small indels were called using Genome Analysis Toolkit (GATK) and annotated with ANNOVAR. CREST, exomeCopy and exomeDepth were used for large deletion detection. Results were compared with the previous data. Specificity was calculated by screening WES data from a control population of 487 individuals for mutations in COL1A1, COL1A2 and FBN1. The target capture of five exome capture platforms was compared. All 13 mutations in the OI cohort and 9/10 in the MFS cohort were detected (sensitivity=95.6%) including non-synonymous SNPs, small indels (<10 bp), and a large UTR5/exon 1 deletion. One mutation was not detected by GATK due to strand bias. Specificity was 99.5%. Capture platforms and analysis programs differed considerably in their ability to detect mutations. Consumable costs for WES were low. WES is an efficient, sensitive, specific and cost-effective method for mutation detection in patients with OI and MFS. Careful selection of platform and analysis programs is necessary to maximize success. PMID:24501682
Fan, Yan; Zhang, Chenglin; Wu, Wendan; He, Wei; Zhang, Li; Ma, Xiao
2017-10-16
Indigofera pseudotinctoria Mats is an agronomically and economically important perennial legume shrub with a high forage yield, protein content and strong adaptability, which is subject to natural habitat fragmentation and serious human disturbance. Until now, our knowledge of the genetic relationships and intraspecific genetic diversity for its wild collections is still poor, especially at small spatial scales. Here amplified fragment length polymorphism (AFLP) technology was employed for analysis of genetic diversity, differentiation, and structure of 364 genotypes of I. pseudotinctoria from 15 natural locations in Wushan Montain, a highly structured mountain with typical karst landforms in Southwest China. We also tested whether eco-climate factors has affected genetic structure by correlating genetic diversity with habitat features. A total of 515 distinctly scoreable bands were generated, and 324 of them were polymorphic. The polymorphic information content (PIC) ranged from 0.694 to 0.890 with an average of 0.789 per primer pair. On species level, Nei's gene diversity ( H j ), the Bayesian genetic diversity index ( H B ) and the Shannon information index ( I ) were 0.2465, 0.2363 and 0.3772, respectively. The high differentiation among all sampling sites was detected ( F ST = 0.2217, G ST = 0.1746, G' ST = 0.2060, θ B = 0.1844), and instead, gene flow among accessions ( N m = 1.1819) was restricted. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. The population genetic structure resolved by the UPGMA tree, principal coordinate analysis, and Bayesian-based cluster analyses irrefutably grouped all accessions into two distinct clusters, i.e., lowland and highland groups. This structure pattern may indicate joint effects by the neutral evolution and natural selection. Restricted N m was observed across all accessions, and genetic barriers were detected between adjacent accessions due to specifically geographical landform.
Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.
2013-01-01
Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121
The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations
Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns
2015-01-01
Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253
Genetic conversion of a fungal plant pathogen to a non-pathogenic, endophytic mutualist
Freeman, Stanley; Rodriguez, Rusty J.
1993-01-01
The filamentous fungal ascomycete Colletotrichum magna causes anthracnose in cucurbit plants. Isolation of a nonpathogenic mutant of this species (path-1) resulted in maintained wild-type levels of in vitro sporulation, spore adhesion, appressorial formation, and infection. Path-1 grew throughout host tissues as an endophyte and retained the wild-type host range, which indicates that the genetics involved in pathogenicity and host specificity are distinct. Prior infection with path-1 protected plants from disease caused by Colletotrichum and Fusarium.Genetic analysis of a cross between path-1 and wild-type strains indicated mutation of a single locus.
Casellas, J; Cañas-Álvarez, J J; González-Rodríguez, A; Puig-Oliveras, A; Fina, M; Piedrafita, J; Molina, A; Díaz, C; Baró, J A; Varona, L
2017-02-01
Transmission ratio distortion (TRD) is the departure from the expected Mendelian ratio in offspring, a poorly investigated biological phenomenon in livestock species. Given the current availability of specific parametric methods for the analysis of segregation data, this study focused on the screening of TRD in 602 402 single nucleotide polymorphisms covering all autosomal chromosomes in seven Spanish beef cattle breeds. On average, 0.13% (n = 786) and 0.01% (n = 29) of genetic markers evidenced sire- or dam-specific TRD respectively. There were no single nucleotide polymorphisms accounting for both sire- and dam-specific TRD at the same time, and only one marker (rs43147474) accounted for (sire-specific) TRD in all seven breeds. It must be noted that rs43147474 is located in the fourth intronic region of the GTP-binding protein 10 gene, and this locus has been previously linked to the maintenance of mitochondria and nucleolar architectures. Alternatively, other candidate genes surround this hot-spot for sire-specific TRD in the cattle genome, and they are related to embryonic and postnatal lethality as well as prostate cancer, among others. This research characterized the distribution of TRD in the bovine genome, highlighting heterogeneous results when comparing across breeds. © 2016 Stichting International Foundation for Animal Genetics.
Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J; Krueger, Gerald G; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T S; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L; Qureshi, Abrar A; de Bakker, Paul I W; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun
2015-04-23
Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations.
DNA origami-based shape IDs for single-molecule nanomechanical genotyping
NASA Astrophysics Data System (ADS)
Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai
2017-04-01
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.
DNA origami-based shape IDs for single-molecule nanomechanical genotyping
Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai
2017-01-01
Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level. PMID:28382928
Yin, Xianyong; Low, Hui Qi; Wang, Ling; Li, Yonghong; Ellinghaus, Eva; Han, Jiali; Estivill, Xavier; Sun, Liangdan; Zuo, Xianbo; Shen, Changbing; Zhu, Caihong; Zhang, Anping; Sanchez, Fabio; Padyukov, Leonid; Catanese, Joseph J.; Krueger, Gerald G.; Duffin, Kristina Callis; Mucha, Sören; Weichenthal, Michael; Weidinger, Stephan; Lieb, Wolfgang; Foo, Jia Nee; Li, Yi; Sim, Karseng; Liany, Herty; Irwan, Ishak; Teo, Yikying; Theng, Colin T. S.; Gupta, Rashmi; Bowcock, Anne; De Jager, Philip L.; Qureshi, Abrar A.; de Bakker, Paul I. W.; Seielstad, Mark; Liao, Wilson; Ståhle, Mona; Franke, Andre; Zhang, Xuejun; Liu, Jianjun
2015-01-01
Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations. PMID:25903422
L-type Voltage-Gated Calcium Channels in Conditioned Fear: A Genetic and Pharmacological Analysis
ERIC Educational Resources Information Center
McKinney, Brandon C.; Sze, Wilson; White, Jessica A.; Murphy, Geoffrey G.
2008-01-01
Using pharmacological approaches, others have suggested that L-type voltage-gated calcium channels (L-VGCCs) mediate both consolidation and extinction of conditioned fear. In the absence of L-VGCC isoform-specific antagonists, we have begun to investigate the subtype-specific role of LVGCCs in consolidation and extinction of conditioned fear…
Methods to study maternal regulation of germ cell specification in zebrafish
Kaufman, O.H.; Marlow, F.L.
2016-01-01
The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489
Friedman, Naomi P.; Miyake, Akira; Robinson, JoAnn L.; Hewitt, John K.
2011-01-01
We examined whether self-restraint in early childhood predicted individual differences in three executive functions (EFs; inhibiting prepotent responses, updating working memory, and shifting task sets) in late adolescence in a sample of ~950 twins. At ages 14, 20, 24, and 36 months, the children were shown an attractive toy and told not to touch it for 30 seconds. Latency to touch the toy increased with age, and latent class growth modeling distinguished two groups of children that differed in their latencies to touch the toy at all 4 time points. Using confirmatory factor analysis, the three EFs (measured with latent variables at age 17 years) were decomposed into a Common EF factor (isomorphic to response inhibition ability) and two factors specific to updating and shifting, respectively. Less restrained children had significantly lower scores on the Common EF factor, equivalent scores on the Updating-specific factor, and higher scores on the Shifting-specific factor than the more restrained children. The less restrained group also had lower IQ scores, but this effect was entirely mediated by the EF components. Twin models indicated that the associations were primarily genetic in origin for the Common EF variable but split between genetics and nonshared environment for the Shifting-specific variable. These results suggest a biological relation between individual differences in self-restraint and EFs, one that begins early in life and persists into late adolescence. PMID:21668099
Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria
2003-12-15
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.
[The muzzle and biochemical genetic markers as supplementary breed characteristics in cattle].
Tarasiuk, S I; Glazko, V I; Trofimenko, A L
1997-01-01
The comparative analysis of characteristics of three different cattle breeds (Brown Carpathian, Pinzgauer, Red Polish) on the 5 molecular-genetic markers and 5 muzzle dermatoglyphic types was carried out. It was indicated, that one characteristic can not be use as a breed-specific one but only their complex. The main aspect of search of this complex is the use of characteristics which mark different structure-functional systems of whole organism.
Couto, Ana Rita; Parreira, Bruna; Thomson, Russell; Soares, Marta; Power, Deborah M; Stankovich, Jim; Armas, Jácome Bruges; Brown, Matthew A
2017-01-01
Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P =0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4 , were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients ( P =0.03). Four variants were identified in LEMD3 , and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified.
Couto, Ana Rita; Parreira, Bruna; Thomson, Russell; Soares, Marta; Power, Deborah M; Stankovich, Jim; Armas, Jácome Bruges; Brown, Matthew A
2017-01-01
Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P=0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4, were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients (P=0.03). Four variants were identified in LEMD3, and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified. PMID:29104755
Demography of Genotypes: Failure of the Limited Life-Span Paradigm in Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Curtsinger, James W.; Fukui, Hidenori H.; Townsend, David R.; Vaupel, James W.
1992-10-01
Experimental systems that are amenable to genetic manipulation can be used to address fundamental questions about genetic and nongenetic determinants of longevity. Analysis of large cohorts of ten genotypes of Drosophila melanogaster raised under conditions that favored extended survival has revealed variation between genotypes in both the slope and location of age-specific mortality curves. More detailed examination of a single genotype showed that the mortality trajectory was best fit by a two-stage Gompertz model, with no age-specific increase in mortality rates beyond 30 days after emergence. These results are contrary to the limited life-span paradigm, which postulates well-defined, genotype-specific limits on life-span and brief periods of intense and rapidly accelerating mortality rates at the oldest ages.
Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.
2017-01-01
Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s). PMID:29259610
Moore, K L; Mrode, R; Coffey, M P
2017-10-01
Visual Image analysis (VIA) of carcass traits provides the opportunity to estimate carcass primal cut yields on large numbers of slaughter animals. This allows carcases to be better differentiated and farmers to be paid based on the primal cut yields. It also creates more accurate genetic selection due to high volumes of data which enables breeders to breed cattle that better meet the abattoir specifications and market requirements. In order to implement genetic evaluations for VIA primal cut yields, genetic parameters must first be estimated and that was the aim of this study. Slaughter records from the UK prime slaughter population for VIA carcass traits was available from two processing plants. After edits, there were 17 765 VIA carcass records for six primal cut traits, carcass weight as well as the EUROP conformation and fat class grades. Heritability estimates after traits were adjusted for age ranged from 0.32 (0.03) for EUROP fat to 0.46 (0.03) for VIA Topside primal cut yield. Adjusting the VIA primal cut yields for carcass weight reduced the heritability estimates, with estimates of primal cut yields ranging from 0.23 (0.03) for Fillet to 0.29 (0.03) for Knuckle. Genetic correlations between VIA primal cut yields adjusted for carcass weight were very strong, ranging from 0.40 (0.06) between Fillet and Striploin to 0.92 (0.02) between Topside and Silverside. EUROP conformation was also positively correlated with the VIA primal cuts with genetic correlation estimates ranging from 0.59 to 0.84, whereas EUROP fat was estimated to have moderate negative correlations with primal cut yields, estimates ranged from -0.11 to -0.46. Based on these genetic parameter estimates, genetic evaluation of VIA primal cut yields can be undertaken to allow the UK beef industry to select carcases that better meet abattoir specification and market requirements.
Midorikawa, G E O; Pinheiro, M R R; Vidigal, B S; Arruda, M C; Costa, F F; Pappas, G J; Ribeiro, S G; Freire, F; Miller, R N G
2008-07-01
The aim of this study was to determine the genetic variability in Aspergillus flavus populations from Brazil nut and cashew and develop a polymerase chain reaction (PCR) detection method. Chomatography analysis of 48 isolates identified 36 as aflatoxigenic (75%). One hundred and forty-one DNA bands were generated with 11 random amplified polymorphic DNA (RAPD) primers and analysed via unweighted pair group analysis, using arithmetic means (UPGMA). Isolates grouped according to host, with differentiation of those from A. occidentale also according to geographical origin. Aspergillus flavus-specific PCR primers ASPITSF2 and ASPITSR3 were designed from ribosomal DNA internal transcribed spacers (ITS 1 and 2), and an internal amplification control was developed, to prevent false negative results. Specificity to only A. flavus was confirmed against DNA from additional aspergilli and other fungi. RAPD-based characterization differentiated isolates according to plant host. The PCR primer pair developed showed specificity to A. flavus, with a detection limit of 10 fg. Genetic variability observed in A. flavus isolates from two Brazilian agroecosystems suggested reproductive isolation. The PCR detection method developed for A. flavus represents progress towards multiplex PCR detection of aflatoxigenic and nonaflatoxigenic strains in Hazard Analysis Critical Control Point systems.
Hu, Chih-Yi; Tsai, You-Zen; Lin, Shun-Fu
2014-12-01
Tea (Camellia sinensis) is an important economic crop in Taiwan. Particularly, two major commercial types of tea (Paochong tea and Oolong tea) which are produced in Taiwan are famous around the world, and they must be manufactured with specific cultivars. Nevertheless, many elite cultivars have been illegally introduced to foreign countries. Because of the lower cost, large amount of "Taiwan-type tea" are produced and imported to Taiwan, causing a dramatic damage in the tea industry. It is very urgent to develop the stable, fast and reliable DNA markers for fingerprinting tea cultivars in Taiwan and protecting intellectual property rights for breeders. Furthermore, genetic diversity and phylogenetic relationship evaluations of tea germplasm in Taiwan are imperative for parental selection in the cross-breeding program and avoidance of genetic vulnerability. Two STS and 37 CAPS markers derived from cytoplasmic genome and ESTs of tea have been developed in this study providing a useful tool for distinguishing all investigated germplasm. For identifying 12 prevailing tea cultivars in Taiwan, five core markers, including each one of mitochondria and chloroplast, and three nuclear markers, were developed. Based on principal coordinate analysis and cluster analysis, 55 tea germplasm in Taiwan were divided into three groups: sinensis type (C. sinensis var. sinensis), assamica type (C. sinensis var. assamica) and Taiwan wild species (C. formosensis). The result of genetic diversity analysis revealed that both sinensis (0.44) and assamica (0.41) types had higher genetic diversity than wild species (0.25). The close genetic distance between the first (Chin-Shin-Oolong) and the third (Shy-Jih-Chuen) prevailing cultivars was found, and many recently released varieties are the descents of Chin-Shin-Oolong. This implies the potential risk of genetic vulnerability for tea cultivation in Taiwan. We have successfully developed a tool for tea germplasm discrimination and genetic diversity analysis, as well as a set of core markers for effective identification of prevailing cultivars in Taiwan. According to the results of phylogenetic analysis on prevailing tea cultivars, it is necessary to broaden genetic diversity from wild species or plant introduction in future breeding programs.
Exploring science teachers' pedagogical content knowledge in the teaching of genetics in Swaziland
NASA Astrophysics Data System (ADS)
Mthethwa-Kunene, Khetsiwe Eunice Faith
Recent trends show that learners' enrolment and performance in science at secondary school level is dwindling. Some science topics including genetics in biology are said to be difficult for learners to learn and thus they perform poorly in examinations. Teacher knowledge base, particularly topic-specific pedagogical content knowledge (PCK), has been identified by many researchers as an important factor that is linked with learner understanding and achievement in science. This qualitative study was an attempt to explore the PCK of four successful biology teachers and how they developed it in the context of teaching genetics. The purposive sampling technique was employed to select the participating teachers based on their schools' performance in biology public examinations and recommendations by science specialists and school principals. Pedagogical content knowledge was used as a theoretical framework for the study, which guided the inquiry in data collection, analysis and discussion of the research findings. The study adopted the case study method and various sources of evidence including concept maps, lesson plans, pre-lesson interviews, lesson observations, post-teaching teacher questionnaire, post-lesson interviews and document analysis were used to collect data on teachers' PCK as well as how PCK was assumed to have developed. The data were analysed in an attempt to determine the individual teachers' school genetics' content knowledge, related knowledge of instructional strategies and knowledge of learners' preconceptions and learning difficulties. The analysis involved an iterative process of coding data into PCK categories of content knowledge, pedagogical knowledge and knowledge of learners' preconceptions and learning difficulties. The findings of the study indicate that the four successful biology teachers generally have the necessary content knowledge of school genetics, used certain topic-specific instructional strategies, but lacked knowledge of genetics-related learners' preconceptions and learning difficulties despite having taught the topic for many years. There were some instructional deficits in their approaches and techniques in teaching genetics. The teachers failed to use physical models, teacher demonstration and/or learner experimentation in their lessons (or include them in their lesson plans) to assist learners in visualizing or internalizing the genetics concepts or processes located at the sub-microscopic level. The teachers' PCK in genetics teaching was assumed to have developed mainly through formal university education programmes, classroom teaching experiences, peer support and participation in in-service workshops. The implications for biology teacher education are also discussed.
[Landscape and ecological genomics].
Tetushkin, E Ia
2013-10-01
Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment.
Population structure in Japanese rice population
Yamasaki, Masanori; Ideta, Osamu
2013-01-01
It is essential to elucidate genetic diversity and relationships among even related individuals and populations for plant breeding and genetic analysis. Since Japanese rice breeding has improved agronomic traits such as yield and eating quality, modern Japanese rice cultivars originated from narrow genetic resource and closely related. To resolve the population structure and genetic diversity in Japanese rice population, we used a total of 706 alleles detected by 134 simple sequence repeat markers in a total of 114 cultivars composed of 94 improved varieties and 20 landraces, which are representative and important for Japanese rice breeding. The landraces exhibit greater gene diversity than improved lines, suggesting that landraces can provide additional genetic diversity for future breeding. Model-based Bayesian clustering analysis revealed six subgroups and admixture situation in the cultivars, showing good agreement with pedigree information. This method could be superior to phylogenetic method in classifying a related population. The leading Japanese rice cultivar, Koshihikari is unique due to the specific genome constitution. We defined Japanese rice diverse sets that capture the maximum number of alleles for given sample sizes. These sets are useful for a variety of genetic application in Japanese rice cultivars. PMID:23641181
Heritability of mandibular cephalometric variables in twins with completed craniofacial growth.
Šidlauskas, Mantas; Šalomskienė, Loreta; Andriuškevičiūtė, Irena; Šidlauskienė, Monika; Labanauskas, Žygimantas; Vasiliauskas, Arūnas; Kupčinskas, Limas; Juzėnas, Simonas; Šidlauskas, Antanas
2016-10-01
To determine genetic and environmental impact on mandibular morphology using lateral cephalometric analysis of twins with completed mandibular growth and deoxyribonucleic acid (DNA) based zygosity determination. The 39 cephalometric variables of 141 same gender adult pair of twins were analysed. Zygosity was determined using 15 specific DNA markers and cervical vertebral maturation method was used to assess completion of the mandibular growth. A genetic analysis was performed using maximum likelihood genetic structural equation modelling (GSEM). The genetic heritability estimates of angular variables describing horizontal mandibular position in relationship to cranial base and maxilla were considerably higher than in those describing vertical position. The mandibular skeletal cephalometric variables also showed high heritability estimates with angular measurements being considerably higher than linear ones. Results of this study indicate that the angular measurements representing mandibular skeletal morphology (mandibular form) have greater genetic determination than the linear measurements (mandibular size). The shape and sagittal position of the mandible is under stronger genetic control, than is its size and vertical relationship to cranial base. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil
2016-11-17
Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends' preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors.
Griffin, Matt J.; Quiniou, Sylvie M.; Cody, Theresa; Tabuchi, Maki; Ware, Cynthia; Cipriano, Rocco C.; Mauel, Michael J.; Soto, Esteban
2013-01-01
Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G + C content demonstrated 56.4% G + C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.
Array comparative genome hybridization in patients with developmental delay: two example cases.
Hancarova, Miroslava; Drabova, Jana; Zmitkova, Zuzana; Vlckova, Marketa; Hedvicakova, Petra; Novotna, Drahuse; Vlckova, Zdenka; Vejvalkova, Sarka; Marikova, Tatana; Sedlacek, Zdenek
2012-02-15
Developmental delay is often a predictor of mental retardation (MR) or autism, two relatively frequent developmental disorders severely affecting intellectual and social functioning. The causes of these conditions remain unknown in most patients. They have a strong genetic component, but the specific genetic defects can only be identified in a fraction of patients. Recent developments in genomics supported the establishment of the causal link between copy number variants in the genomes of some patients and their affection. One of the techniques suitable for this analysis is array comparative genome hybridization, which can be used both for detailed mapping of chromosome rearrangements identified by classical cytogenetics and for the identification of novel submicroscopic gains or losses of genetic material. We illustrate the power of this approach in two patients. Patient 1 had a cytogenetically visible deletion of chromosome X and the molecular analysis was used to specify the gene content of the deletion and the prognosis of the child. Patient 2 had a seemingly normal karyotype and the analysis revealed a small recurrent deletion of chromosome 1 likely to be responsible for his phenotype. However, the genetic dissection of MR and autism is complicated by high heterogeneity of the genetic aberrations among patients and by broad variability of phenotypic effects of individual genetic defects. Copyright © 2010 Elsevier B.V. All rights reserved.
Heritability of circulating growth factors involved in the angiogenesis in healthy human population.
Pantsulaia, I; Trofimov, S; Kobyliansky, E; Livshits, G
2004-09-21
The present study examined the extent of genetic and environmental influences on the populational variation of circulating growth factors (VEGF, EGF) involved in angiogenesis in healthy and ethnically homogeneous Caucasian families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 478 healthy individuals aged 18-75 years. Quantitative genetic analysis showed that the VEGF and EGF variation was appreciably attributable to genetic effects, with heritability estimates of 79.9% and 48.4%, respectively. Yet, common environmental factors, shared by members of the same household, also played a significant role (P < 0.01) and explained between 20.1% and 32.6% of the variation. The present study additionally examined the covariations between these molecules and either transforming growth factor-beta 1 (TGF-beta 1) or tissue inhibitors of matrix metalloproteinases 1 (TIMP-1), likewise relevant for angiogenesis. Bivariate analysis revealed significant phenotypic correlations (P < 0.002) between all pairs of variables, thus indicating the possible existence of common genetic and environmental factors. The analysis suggested that the pleiotropic genetic effects were consistently the primary (or even the sole) source of correlation between all pairs of studied molecules. The results of our study affirm the existence of specific and common genetic pathways that commonly determine the greater part of the circulating variation of these molecules.
AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae
Song, Giltae; Dickins, Benjamin J. A.; Demeter, Janos; Engel, Stacia; Dunn, Barbara; Cherry, J. Michael
2015-01-01
The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community. PMID:25781462
The Genomic Revolution and Beliefs about Essential Racial Differences: A Backdoor to Eugenics?
Phelan, Jo C.; Link, Bruce G.; Feldman, Naumi M.
2014-01-01
Could the explosion of genetic research in recent decades affect our conceptions of race? In Backdoor to Eugenics, Duster argues that reports of specific racial differences in genetic bases of disease, in part because they are presented as objective facts whose social implications are not readily apparent, may heighten public belief in more pervasive racial differences. We tested this hypothesis with a multi-method study. A content analysis showed that news articles discussing racial differences in genetic bases of disease increased significantly between 1985 and 2008 and were significantly less likely than non–health-related articles about race and genetics to discuss social implications. A survey experiment conducted with a nationally representative sample of 559 adults found that a news-story vignette reporting a specific racial difference in genetic risk for heart attacks (the Backdoor Vignette) produced significantly greater belief in essential racial differences than did a vignette portraying race as a social construction or a no-vignette condition. The Backdoor Vignette produced beliefs in essential racial differences that were virtually identical to those produced by a vignette portraying race as a genetic reality. These results suggest that an unintended consequence of the genomic revolution may be the reinvigoration of age-old beliefs in essential racial differences. PMID:24855321
Herrera, Carlos M; Bazaga, Pilar
2010-08-01
*In plants, epigenetic variations based on DNA methylation are often heritable and could influence the course of evolution. Before this hypothesis can be assessed, fundamental questions about epigenetic variation remain to be addressed in a real-world context, including its magnitude, structuring within and among natural populations, and autonomy in relation to the genetic context. *Extent and patterns of cytosine methylation, and the relationship to adaptive genetic divergence between populations, were investigated for wild populations of the southern Spanish violet Viola cazorlensis (Violaceae) using the methylation-sensitive amplified polymorphism (MSAP) technique, a modification of the amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation. *The genome of V. cazorlensis plants exhibited extensive levels of methylation, and methylation-based epigenetic variation was structured into distinct between- and within- population components. Epigenetic differentiation of populations was correlated with adaptive genetic divergence revealed by a Bayesian population-genomic analysis of AFLP data. Significant associations existed at the individual genome level between adaptive AFLP loci and the methylation state of methylation-susceptible MSAP loci. *Population-specific, divergent patterns of correlated selection on epigenetic and genetic individual variation could account for the coordinated epigenetic-genetic adaptive population differentiation revealed by this study.
A threshold model of content knowledge transfer for socioscientific argumentation
NASA Astrophysics Data System (ADS)
Sadler, Troy D.; Fowler, Samantha R.
2006-11-01
This study explores how individuals make use of scientific content knowledge for socioscientific argumentation. More specifically, this mixed-methods study investigates how learners apply genetics content knowledge as they justify claims relative to genetic engineering. Interviews are conducted with 45 participants, representing three distinct groups: high school students with variable genetics knowledge, college nonscience majors with little genetics knowledge, and college science majors with advanced genetics knowledge. During the interviews, participants advance positions concerning three scenarios dealing with gene therapy and cloning. Arguments are assessed in terms of the number of justifications offered as well as justification quality, based on a five-point rubric. Multivariate analysis of variance results indicate that college science majors outperformed the other groups in terms of justification quality and frequency. Argumentation does not differ among nonscience majors or high school students. Follow-up qualitative analyses of interview responses suggest that all three groups tend to focus on similar, sociomoral themes as they negotiate socially complex, genetic engineering issues, but that the science majors frequently reference specific science content knowledge in the justification of their claims. Results support the Threshold Model of Content Knowledge Transfer, which proposes two knowledge thresholds around which argumentation quality can reasonably be expected to increase. Research and educational implications of these findings are discussed.
Vuoksimaa, Eero; Panizzon, Matthew S; Chen, Chi-Hua; Fiecas, Mark; Eyler, Lisa T; Fennema-Notestine, Christine; Hagler, Donald J; Fischl, Bruce; Franz, Carol E; Jak, Amy; Lyons, Michael J; Neale, Michael C; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S
2015-08-01
Total gray matter volume is associated with general cognitive ability (GCA), an association mediated by genetic factors. It is expectable that total neocortical volume should be similarly associated with GCA. Neocortical volume is the product of thickness and surface area, but global thickness and surface area are unrelated phenotypically and genetically in humans. The nature of the genetic association between GCA and either of these 2 cortical dimensions has not been examined. Humans possess greater cognitive capacity than other species, and surface area increases appear to be the primary driver of the increased size of the human cortex. Thus, we expected neocortical surface area to be more strongly associated with cognition than thickness. Using multivariate genetic analysis in 515 middle-aged twins, we demonstrated that both the phenotypic and genetic associations between neocortical volume and GCA are driven primarily by surface area rather than thickness. Results were generally similar for each of 4 specific cognitive abilities that comprised the GCA measure. Our results suggest that emphasis on neocortical surface area, rather than thickness, could be more fruitful for elucidating neocortical-GCA associations and identifying specific genes underlying those associations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Resolving the Etiology of Atopic Disorders by Genetic Analysis of Racial Ancestry
Gupta, Jayanta; Johansson, Elisabet; Bernstein, Jonathan A.; Chakraborty, Ranajit; Khurana Hershey, Gurjit K.; Rothenberg, Marc E.; Mersha, Tesfaye B.
2016-01-01
Atopic dermatitis (AD), food allergy (FA), allergic rhinitis (AR) and asthma are common atopic disorders of complex etiology. The frequently observed “atopic march” from early AD to asthma and/or AR later in life as well as the extensive comorbidity of atopic disorders, suggests common causal mechanisms in addition to distinct ones. Indeed, both disease-specific and shared genomic regions exist for atopic disorders. Their prevalence also varies among races; for example, AD and asthma have a higher prevalence in African-Americans when compared to European-Americans. Whether this disparity stems from true genetic or race-specific environmental risk factors or both is unknown. Thus far, the majority of the genetic studies on atopic diseases have utilized populations of European ancestry, limiting their generalizability. Large cohort initiatives and new analytic methods such as admixture mapping are currently being employed to address this knowledge gap. Here we discuss the unique and shared genetic risk factors for atopic disorders in the context of ancestry variations, and the promise of high-throughput “-omics” based systems biology approach in providing greater insight to deconstruct into their genetic and non-genetic etiologies. Future research will also focus on deep phenotyping and genotyping of diverse racial ancestry, gene-environment, and gene-gene interactions. PMID:27297995
Multiple Myeloma Genomics: A Systematic Review.
Weaver, Casey J; Tariman, Joseph D
2017-08-01
This integrative review describes the genomic variants that have been found to be associated with poor prognosis in patients diagnosed with multiple myeloma (MM). Second, it identifies MM genetic and genomic changes using next-generation sequencing, specifically whole-genome sequencing or exome sequencing. A search for peer-reviewed articles through PubMed, EBSCOhost, and DePaul WorldCat Libraries Worldwide yielded 33 articles that were included in the final analysis. The most commonly reported genetic changes were KRAS, NRAS, TP53, FAM46C, BRAF, DIS3, ATM, and CCND1. These genetic changes play a role in the pathogenesis of MM, prognostication, and therapeutic targets for novel therapies. MM genetics and genomics are expanding rapidly; oncology nurse clinicians must have basic competencies in genetics and genomics to help patients understand the complexities of genetic and genomic alterations and be able to refer patients to appropriate genomic professionals if needed. Copyright © 2017 Elsevier Inc. All rights reserved.
A Model Program for Translational Medicine in Epilepsy Genetics
Smith, Lacey A.; Ullmann, Jeremy F. P.; Olson, Heather E.; El Achkar, Christelle M.; Truglio, Gessica; Kelly, McKenna; Rosen-Sheidley, Beth; Poduri, Annapurna
2017-01-01
Recent technological advances in gene sequencing have led to a rapid increase in gene discovery in epilepsy. However, the ability to assess pathogenicity of variants, provide functional analysis, and develop targeted therapies has not kept pace with rapid advances in sequencing technology. Thus, although clinical genetic testing may lead to a specific molecular diagnosis for some patients, test results often lead to more questions than answers. As the field begins to focus on therapeutic applications of genetic diagnoses using precision medicine, developing processes that offer more than equivocal test results is essential. The success of precision medicine in epilepsy relies on establishing a correct genetic diagnosis, analyzing functional consequences of genetic variants, screening potential therapeutics in the preclinical laboratory setting, and initiating targeted therapy trials for patients. We describe the structure of a comprehensive, pediatric Epilepsy Genetics Program that can serve as a model for translational medicine in epilepsy. PMID:28056630
Current Evidence and Insights about Genetics in Thoracic Aorta Disease
Muneretto, Claudio
2013-01-01
Thoracic aortic aneurysms have been historically considered to be caused by etiologic factors similar to those implied in abdominal aortic aneurysms. However, during the past decade, there has been increasing evidence that almost 20% of thoracic aortic aneurysms may be associated with a genetic disease, often within a syndromic or familial disorder. Moreover, the presence of congenital anomalies, such as bicuspid aortic valve, may have a unique common genetic underlying cause. Finally, also sporadic forms have been found to be potentially associated with genetic disorders, as highlighted by the analysis of rare variants and expression of specific microRNAs. We therefore sought to perform a comprehensive review of the role of genetic causes in the development of thoracic aortic aneurysms, by analyzing in detail the current evidence of genetic alterations in syndromes such as Marfan, Loeys-Dietz, and Ehler-Danlos, familial or sporadic forms, or forms associated with bicuspid aortic valve. PMID:24453931
Young, Erin E.; Costigan, Michael; Herbert, Teri A.; Lariviere, William R.
2013-01-01
Prior genetic correlation analysis of 22 heritable behavioral measures of nociception and hypersensitivity in the mouse identified five genetically distinct pain types. In the present study, we reanalyzed that dataset and included the results of an additional nine assays of nociception and hypersensitivity to: 1) replicate the previously identified five pain types; 2) test whether any of the newly added pain assays represent novel genetically distinct pain types; 3) test the level of genetic relatedness among nine commonly employed neuropathic pain assays. Multivariate analysis of pairwise correlations between assays shows that the newly added zymosan-induced heat hypersensitivity assay does not conform to the two previously identified groups of heat hypersensitivity assays and cyclophosphamide-induced cystitis, the first organ-specific visceral pain model examined, is genetically distinct from other inflammatory assays. The four included mechanical hypersensitivity assays are genetically distinct, and do not comprise a single pain type as previously reported. Among the nine neuropathic pain assays including autotomy, chemotherapy, nerve ligation and spared nerve injury assays, at least four genetically distinct types of neuropathic sensory abnormalities were identified, corresponding to differences in nerve injury method. In addition, two itch assays and Comt genotype were compared to the expanded set of nociception and hypersensitivity assays. Comt genotype was strongly related only to spontaneous inflammatory nociception assays. These results indicate the priority for continued investigation of genetic mechanisms in several assays newly identified to represent genetically distinct pain types. PMID:24071598
Mendes, Álvaro; Paneque, Milena; Sousa, Liliana; Clarke, Angus; Sequeiros, Jorge
2016-01-01
Supporting consultands to communicate risk information with their relatives is key to obtaining the full benefits of genetic health care. To understand how health-care professionals address this issue in clinical practice and what interventions are used specifically to assist consultands in their communication of genetic information to appropriate relatives, we conducted a systematic review. Four electronic databases and four subject-specific journals were searched for papers published, in English, between January 1997 and May 2014. Of 2926 papers identified initially, 14 papers met the inclusion criteria for the review and were heterogeneous in design, setting and methods. Thematic data analysis has shown that dissemination of information within families is actively encouraged and supported by professionals. Three overarching themes emerged: (1) direct contact from genetic services: sending letters to relatives of mutation carriers; (2) professionals' encouragement of initially reluctant consultands to share relevant information with at-risk relatives and (3) assisting consultands in communicating genetic information to their at-risk relatives, which included as subthemes (i) psychoeducational guidance and (ii) written information aids. Findings suggest that professionals' practice and interventions are predicated on the need to proactively encourage family communication. We discuss this in the context of what guidance of consultands by professionals might be appropriate, as best practices to facilitate family communication, and of the limits to non-directiveness in genetic counselling. PMID:26264439
Mendes, Álvaro; Paneque, Milena; Sousa, Liliana; Clarke, Angus; Sequeiros, Jorge
2016-03-01
Supporting consultands to communicate risk information with their relatives is key to obtaining the full benefits of genetic health care. To understand how health-care professionals address this issue in clinical practice and what interventions are used specifically to assist consultands in their communication of genetic information to appropriate relatives, we conducted a systematic review. Four electronic databases and four subject-specific journals were searched for papers published, in English, between January 1997 and May 2014. Of 2926 papers identified initially, 14 papers met the inclusion criteria for the review and were heterogeneous in design, setting and methods. Thematic data analysis has shown that dissemination of information within families is actively encouraged and supported by professionals. Three overarching themes emerged: (1) direct contact from genetic services: sending letters to relatives of mutation carriers; (2) professionals' encouragement of initially reluctant consultands to share relevant information with at-risk relatives and (3) assisting consultands in communicating genetic information to their at-risk relatives, which included as subthemes (i) psychoeducational guidance and (ii) written information aids. Findings suggest that professionals' practice and interventions are predicated on the need to proactively encourage family communication. We discuss this in the context of what guidance of consultands by professionals might be appropriate, as best practices to facilitate family communication, and of the limits to non-directiveness in genetic counselling.
Han, Chang S; Dingemanse, Niels J
2017-10-11
Empirical studies imply that sex-specific genetic architectures can resolve evolutionary conflicts between males and females, and thereby facilitate the evolution of sexual dimorphism. Sex-specificity of behavioural genetic architectures has, however, rarely been considered. Moreover, as the expression of genetic (co)variances is often environment-dependent, general inferences on sex-specific genetic architectures require estimates of quantitative genetics parameters under multiple conditions. We measured exploration and aggression in pedigreed populations of southern field crickets ( Gryllus bimaculatus ) raised on either naturally balanced (free-choice) or imbalanced (protein-deprived) diets. For each dietary condition, we measured for each behavioural trait (i) level of sexual dimorphism, (ii) level of sex-specificity of survival selection gradients, (iii) level of sex-specificity of additive genetic variance, and (iv) strength of the cross-sex genetic correlation. We report here evidence for sexual dimorphism in behaviour as well as sex-specificity in the expression of genetic (co)variances as predicted by theory. The additive genetic variances of exploration and aggression were significantly greater in males compared with females. Cross-sex genetic correlations were highly positive for exploration but deviating (significantly) from one for aggression; findings were consistent across dietary treatments. This suggests that genetic architectures characterize the sexually dimorphic focal behaviours across various key environmental conditions in the wild. Our finding also highlights that sexual conflict can be resolved by evolving sexually independent genetic architectures. © 2017 The Author(s).
Whole Genome Analysis of a Wine Yeast Strain
Hauser, Nicole C.; Fellenberg, Kurt; Gil, Rosario; Bastuck, Sonja; Hoheisel, Jörg D.
2001-01-01
Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples. PMID:18628902
Developmental neurogenetics of sexual dimorphism in Aedes aegypti
Duman-Scheel, Molly; Syed, Zainulabeuddin
2015-01-01
Sexual dimorphism, a poorly understood but crucial aspect of vector mosquito biology, encompasses sex-specific physical, physiological, and behavioral traits related to mosquito reproduction. The study of mosquito sexual dimorphism has largely focused on analysis of the differences between adult female and male mosquitoes, particularly with respect to sex-specific behaviors related to disease transmission. However, sexually dimorphic behaviors are the products of differential gene expression that initiates during development and therefore must also be studied during development. Recent technical advancements are facilitating functional genetic studies in the dengue vector Aedes aegypti, an emerging model for mosquito development. These methodologies, many of which could be extended to other non-model insect species, are facilitating analysis of the development of sexual dimorphism in neural tissues, particularly the olfactory system. These studies are providing insight into the neurodevelopmental genetic basis for sexual dimorphism in vector mosquitoes. PMID:26949699
Advancing epilepsy treatment through personalized genetic zebrafish models.
Griffin, A; Krasniak, C; Baraban, S C
2016-01-01
With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts. © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
Jang, K L; Vernon, P A; Livesley, W J
2000-06-01
This study seeks to estimate the extent to which a common genetic and environmental basis is shared between (i) traits delineating specific aspects of antisocial personality and alcohol misuse, and (ii) childhood family environments, traits delineating broad domains of personality pathology and alcohol misuse. Postal survey data were collected from monozygotic and dizygotic twin pairs. Twin pairs were recruited from Vancouver, British Columbia and London, Ontario, Canada using newspaper advertisements, media stories and twin clubs. Data obtained from 324 monozygotic and 335 dizygotic twin pairs were used to estimate the extent to which traits delineating specific antisocial personality traits and alcohol misuse shared a common genetic and environmental aetiology. Data from 81 monozygotic and 74 dizygotic twin pairs were used to estimate the degree to which traits delineating personality pathology, childhood family environment and alcohol misuse shared a common aetiology. Current alcohol misuse and personality pathology were measured using scales contained in the self-report Dimensional Assessment of Personality Pathology. Perceptions of childhood family environment were measured using the self-report Family Environment Scale. Multivariate genetic analyses showed that a subset of traits delineating components of antisocial personality (i.e. grandiosity, attention-seeking, failure to adopt social norms, interpersonal violence and juvenile antisocial behaviours) are influenced by genetic factors in common to alcohol misuse. Genetically based perceptions of childhood family environment had little relationship with alcohol misuse. Heritable personality factors that influence the perception of childhood family environment play only a small role in the liability to alcohol misuse. Instead, liability to alcohol misuse is related to genetic factors common a specific subset of antisocial personality traits describing conduct problems, narcissistic and stimulus-seeking behaviour.
Endelman, Jeffrey B; Carley, Cari A Schmitz; Bethke, Paul C; Coombs, Joseph J; Clough, Mark E; da Silva, Washington L; De Jong, Walter S; Douches, David S; Frederick, Curtis M; Haynes, Kathleen G; Holm, David G; Miller, J Creighton; Muñoz, Patricio R; Navarro, Felix M; Novy, Richard G; Palta, Jiwan P; Porter, Gregory A; Rak, Kyle T; Sathuvalli, Vidyasagar R; Thompson, Asunta L; Yencho, G Craig
2018-05-01
As one of the world's most important food crops, the potato ( Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive ( G ), digenic dominant ( D ), and additive × additive epistatic ( G # G ) effects were calculated using 3895 markers, and the numerator relationship matrix ( A ) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F 1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm. Copyright © 2018 by the Genetics Society of America.
Internet addiction and its facets: The role of genetics and the relation to self-directedness.
Hahn, Elisabeth; Reuter, Martin; Spinath, Frank M; Montag, Christian
2017-02-01
A growing body of research focuses on problematic behavior patterns related to the use of the Internet to identify contextual as well as individual risk factors of this new phenomenon called Internet addiction (IA). IA can be described as a multidimensional syndrome comprising aspects such as craving, development of tolerance, loss of control and negative consequences. Given that previous research on other addictive behaviors showed substantial heritability, it can be expected that the vulnerability to IA may also be due to a person's genetic predisposition. However, it is questionable whether distinct components of IA have different etiologies. Using data from a sample of adult monozygotic and dizygotic twins and non-twin siblings (N=784 individuals, N=355 complete pairs, M=30.30years), we investigated the magnitude of genetic and environmental influences on generalized IA as well as on specific facets such as excessive use, self-regulation, preference for online social interaction or negative consequences. To explain the heritability in IA, we further examined the relation to Self-Directedness as potential mediating source. Results showed that relative contributions of genetic influences vary considerable for different components of IA. For generalized IA factors, individual differences could be explained by shared and non-shared environmental influences while genetic influences did not play a role. For specific facets of IA and private Internet use in hours per week, heritability estimates ranged between 21% and 44%. Bivariate analysis indicated that Self-Directedness accounted for 20% to 65% of the genetic variance in specific IA facets through overlapping genetic pathways. Implications for future research are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meta-analysis of sex-specific genome-wide association studies.
Magi, Reedik; Lindgren, Cecilia M; Morris, Andrew P
2010-12-01
Despite the success of genome-wide association studies, much of the genetic contribution to complex human traits is still unexplained. One potential source of genetic variation that may contribute to this "missing heritability" is that which differs in magnitude and/or direction between males and females, which could result from sexual dimorphism in gene expression. Such sex-differentiated effects are common in model organisms, and are becoming increasingly evident in human complex traits through large-scale male- and female-specific meta-analyses. In this article, we review the methodology for meta-analysis of sex-specific genome-wide association studies, and propose a sex-differentiated test of association with quantitative or dichotomous traits, which allows for heterogeneity of allelic effects between males and females. We perform detailed simulations to compare the power of the proposed sex-differentiated meta-analysis with the more traditional "sex-combined" approach, which is ambivalent to gender. The results of this study highlight only a small loss in power for the sex-differentiated meta-analysis when the allelic effects of the causal variant are the same in males and females. However, over a range of models of heterogeneity in allelic effects between genders, our sex-differentiated meta-analysis strategy offers substantial gains in power, and thus has the potential to discover novel loci contributing effects to complex human traits with existing genome-wide association data. © 2010 Wiley-Liss, Inc.
Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS.
Kim, Nora Chung; Andrews, Peter C; Asselbergs, Folkert W; Frost, H Robert; Williams, Scott M; Harris, Brent T; Read, Cynthia; Askland, Kathleen D; Moore, Jason H
2012-07-28
It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO). We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs). Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA) method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, 'Regulation of Cellular Component Organization and Biogenesis', a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, 'Actin Cytoskeleton', a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Pathway analysis of pairwise genetic associations in two GWAS of sporadic ALS revealed a set of genes involved in cellular component organization and actin cytoskeleton, more specifically, that were not reported by prior GWAS. However, prior biological studies have implicated actin cytoskeleton in ALS and other motor neuron diseases. This study supports the idea that pathway-level analysis of GWAS data may discover important associations not revealed using conventional one-SNP-at-a-time approaches.
Genetic determinants of prepubertal and pubertal growth and development.
Thomis, Martine A; Towne, Bradford
2006-12-01
This article surveys the current general understanding of genetic influences on within- and between-population variation in growth and development in the context of establishing an International Growth Standard for Preadolescent and Adolescent Children. Traditional genetic epidemiologic analysis methods are reviewed, and evidence from family studies for genetic effects on different measures of growth and development is then presented. Findings from linkage and association studies seeking to identify specific genomic locations and allelic variants of genes influencing variation in growth and maturation are then summarized. Special mention is made of the need to study the interactions between genes and environments. At present, specific genes and polymorphisms contributing to variation in growth and maturation are only beginning to be identified. Larger genetic epidemiologic studies are needed in different parts of the world to better explore population differences in gene frequencies and gene-environment interactions. As advances continue to be made in molecular and statistical genetic methods, the genetic architecture of complex processes, including those of growth and development, will become better elucidated. For now, it can only be concluded that although the fundamental genetic underpinnings of the growth and development of children worldwide are likely to be essentially the same, there are also likely to be differences between populations in the frequencies of allelic gene variants that influence growth and maturation and in the nature of gene-environment interactions. This does not necessarily preclude an international growth reference, but it does have important implications for the form that such a reference might ultimately take.
Sea ice occurrence predicts genetic isolation in the Arctic fox.
Geffen, Eli; Waidyaratne, Sitara; Dalén, Love; Angerbjörn, Anders; Vila, Carles; Hersteinsson, Pall; Fuglei, Eva; White, Paula A; Goltsman, Michael; Kapel, Christian M O; Wayne, Robert K
2007-10-01
Unlike Oceanic islands, the islands of the Arctic Sea are not completely isolated from migration by terrestrial vertebrates. The pack ice connects many Arctic Sea islands to the mainland during winter months. The Arctic fox (Alopex lagopus), which has a circumpolar distribution, populates numerous islands in the Arctic Sea. In this study, we used genetic data from 20 different populations, spanning the entire distribution of the Arctic fox, to identify barriers to dispersal. Specifically, we considered geographical distance, occurrence of sea ice, winter temperature, ecotype, and the presence of red fox and polar bear as nonexclusive factors that influence the dispersal behaviour of individuals. Using distance-based redundancy analysis and the BIOENV procedure, we showed that occurrence of sea ice is the key predictor and explained 40-60% of the genetic distance among populations. In addition, our analysis identified the Commander and Pribilof Islands Arctic populations as genetically unique suggesting they deserve special attention from a conservation perspective.
Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi
2017-01-01
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Irradiation influence on the detection of genetic-modified soybeans
NASA Astrophysics Data System (ADS)
Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.
2004-09-01
Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.
Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.
Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua
2016-01-01
Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS in Taiwan. The results will be informative for the government when considering offering screening for LS in patients newly diagnosed with CRC.
Qian, Wei; Fan, Guiyan; Liu, Dandan; Zhang, Helong; Wang, Xiaowu; Wu, Jian; Xu, Zhaosheng
2017-04-04
Cultivated spinach (Spinacia oleracea L.) is one of the most widely cultivated types of leafy vegetable in the world, and it has a high nutritional value. Spinach is also an ideal plant for investigating the mechanism of sex determination because it is a dioecious species with separate male and female plants. Some reports on the sex labeling and localization of spinach in the study of molecular markers have surfaced. However, there have only been two reports completed on the genetic map of spinach. The lack of rich and reliable molecular markers and the shortage of high-density linkage maps are important constraints in spinach research work. In this study, a high-density genetic map of spinach based on the Specific-locus Amplified Fragment Sequencing (SLAF-seq) technique was constructed; the sex-determining gene was also finely mapped. Through bio-information analysis, 50.75 Gb of data in total was obtained, including 207.58 million paired-end reads. Finally, 145,456 high-quality SLAF markers were obtained, with 27,800 polymorphic markers and 4080 SLAF markers were finally mapped onto the genetic map after linkage analysis. The map spanned 1,125.97 cM with an average distance of 0.31 cM between the adjacent marker loci. It was divided into 6 linkage groups corresponding to the number of spinach chromosomes. Besides, the combination of Bulked Segregation Analysis (BSA) with SLAF-seq technology(super-BSA) was employed to generate the linkage markers with the sex-determining gene. Combined with the high-density genetic map of spinach, the sex-determining gene X/Y was located at the position of the linkage group (LG) 4 (66.98 cM-69.72 cM and 75.48 cM-92.96 cM), which may be the ideal region for the sex-determining gene. A high-density genetic map of spinach based on the SLAF-seq technique was constructed with a backcross (BC 1 ) population (which is the highest density genetic map of spinach reported at present). At the same time, the sex-determining gene X/Y was mapped to LG4 with super-BSA. This map will offer a suitable basis for further study of spinach, such as gene mapping, map-based cloning of Specific genes, quantitative trait locus (QTL) mapping and marker-assisted selection (MAS). It will also provide an efficient reference for studies on the mechanism of sex determination in other dioecious plants.
Genetic manipulation and monitoring of autophagy in Drosophila.
Neufeld, Thomas P
2008-01-01
Drosophila melanogaster provides a model system useful for many aspects of the study of autophagy in vivo. These include testing and validation of genes potentially involved in autophagy, discovery of novel genes through genetic screening for mutations that affect autophagy, and analysis of potential roles of autophagy in specific developmental or physiological processes. In recent years, a number of techniques and transgenic and mutant fly strains have been developed to facilitate autophagy analysis in this system. Here, protocols are described for activating or inhibiting autophagy in Drosophila, and for examining the progression of autophagy in vivo through imaging-based assays. The goal of this chapter is to provide a resource both for autophagy investigators with limited familiarity with fly genetics, as well as for experienced Drosophila biologists who wish to test for connections between autophagy and a given gene, pathway or process.
Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.
Mason, Annaliese S; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A P; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N
2016-02-01
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. Copyright © 2016 by the Genetics Society of America.
Kottyan, Leah C; Davis, Benjamin P; Sherrill, Joseph D; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M; Kohram, Mojtaba; Stucke, Emily M; Kemme, Katherine A; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A; Pesek, Robbie D; Vickery, Brian P; Fleischer, David M; Lindbad, Robert; Sampson, Hugh A; Mukkada, Vincent A; Putnam, Phil E; Abonia, J Pablo; Martin, Lisa J; Harley, John B; Rothenberg, Marc E
2014-08-01
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in EoE cases of European ancestry and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replicating association of the 5q22 locus (meta-analysis P=1.9×10(-16)), we identified an association at 2p23 spanning CAPN14 (P=2.5×10(-10)). CAPN14 was specifically expressed in the esophagus, was dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to interleukin (IL)-13, and was located in an epigenetic hotspot modified by IL-13. Genes neighboring the top 208 EoE-associated sequence variants were enriched for esophageal expression, and multiple loci for allergic sensitization were associated with EoE susceptibility (4.8×10(-2)
Kottyan, Leah C.; Davis, Benjamin P.; Sherrill, Joseph D.; Liu, Kan; Rochman, Mark; Kaufman, Kenneth; Weirauch, Matthew T.; Vaughn, Samuel; Lazaro, Sara; Rupert, Andrew M.; Kohram, Mojtaba; Stucke, Emily M.; Kemme, Katherine A.; Magnusen, Albert; He, Hua; Dexheimer, Phillip; Chehade, Mirna; Wood, Robert A.; Pesek, Robbie D.; Vickery, Brian P.; Fleischer, David M.; Lindbad, Robert; Sampson, Hugh A.; Mukkada, Vince; Putnam, Phil E.; Abonia, J. Pablo; Martin, Lisa J.; Harley, John B.; Rothenberg, Marc E.
2014-01-01
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10−16), we identified association at 2p23 (encoding CAPN14, p = 2.5×10−10). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10−2 < p < 5.1×10−11). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14. PMID:25017104
Functional annotation of HOT regions in the human genome: implications for human disease and cancer
Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie
2015-01-01
Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy. PMID:26113264
Functional annotation of HOT regions in the human genome: implications for human disease and cancer.
Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie
2015-06-26
Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy.
Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder
Cardno, Alastair G.
2014-01-01
There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant. PMID:24567502
Carpenter, Jennifer A; Hadfield, Jarrod D; Bangham, Jenny; Jiggins, Francis M
2012-04-01
Genetic correlations between parasite resistance and other traits can act as an evolutionary constraint and prevent a population from evolving increased resistance. For example, previous studies have found negative genetic correlations between host resistance and life-history traits. In invertebrates, the level of resistance often depends on the combination of the host and parasite genotypes, and in this study, we have investigated whether such specific resistance also acts as an evolutionary constraint. We measured the resistance of different genotypes of the fruit fly Drosophila melanogaster to different genotypes of a naturally occurring pathogen, the sigma virus. Using a multitrait analysis, we examine whether genetic covariances alter the potential to select for general resistance against all of the different viral genotypes. We found large amounts of heritable variation in resistance, and evidence for specific interactions between host and parasite, but these interactions resulted in little constraint on Drosophila evolving greater resistance. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Solovenchuk, L L; Arshavskiĭ, V V
1988-05-01
Clearly definable polymorphism of hemisphere interrelations represented by three phenotypes was established by the method of EEG cross-correlation analysis. Each phenotype of the three, representing polymorphism, is characterized by marked specificity of perception and the processing of information, which determines certain integral physiological characteristics of individuals. Phenotype frequencies in aboriginal and new-come populations of the North-East of the USSR differ significantly. In comparison with the inhabitants, Moscow Russians of Magadan are significantly closer to aboriginal population, judging by their frequency distribution, and this may be due to the strategy specificity in adaptation of populations to environmental conditions. Significant difference in phenotype frequencies is shown in representatives of both sexes, this being more pronounced in the aboriginal population. The establishment of interhemispheric reaction type by approx. 10th year of individual's life is confirmed. Phenotype frequency correlations, depending on parental phenotype, were analyzed in children. The role of genetic and environmental factors in manifestation of the hemisphere relationship type is discussed. Rationality of the population analysis of hemisphere asymmetry types is grounded, according to the study of behavioural genetics and population adaptation.
Population and allelic variation of A-to-I RNA editing in human transcriptomes.
Park, Eddie; Guo, Jiguang; Shen, Shihao; Demirdjian, Levon; Wu, Ying Nian; Lin, Lan; Xing, Yi
2017-07-28
A-to-I RNA editing is an important step in RNA processing in which specific adenosines in some RNA molecules are post-transcriptionally modified to inosines. RNA editing has emerged as a widespread mechanism for generating transcriptome diversity. However, there remain significant knowledge gaps about the variation and function of RNA editing. In order to determine the influence of genetic variation on A-to-I RNA editing, we integrate genomic and transcriptomic data from 445 human lymphoblastoid cell lines by combining an RNA editing QTL (edQTL) analysis with an allele-specific RNA editing (ASED) analysis. We identify 1054 RNA editing events associated with cis genetic polymorphisms. Additionally, we find that a subset of these polymorphisms is linked to genome-wide association study signals of complex traits or diseases. Finally, compared to random cis polymorphisms, polymorphisms associated with RNA editing variation are located closer spatially to their respective editing sites and have a more pronounced impact on RNA secondary structure. Our study reveals widespread cis variation in RNA editing among genetically distinct individuals and sheds light on possible phenotypic consequences of such variation on complex traits and diseases.
Vissers, K; De Jongh, R; Hoffmann, V; Heylen, R; Crul, B; Meert, T
2003-12-01
It is important to know the factors that will influence animal models of neuropathic pain. A good reproducibility and predictability in different strains of animals for a given test increases the clinical relevance and possible targeting. An obligatory requirement for enabling comparisons of results of different origin is a meticulous definition of the specific sensitivities of a model for neuropathic pain and a description of the test conditions. Factors influencing neuropathic pain behavior can be subdivided in external and internal factors. The most important external factors are; timing of the measurement of pain after induction of neuropathy, circadian rhythms, seasonal influences, air humidity, influence of order of testing, diet, social variables, housing and manipulation, cage density, sexual activity, external stress factors, and influences of the experimenter. The internal factors are related to the type of animal, its genetic background, gender, age, and the presence of homeostatic adaptation mechanisms to specific situations or stress. In practice, the behavioral presentations to pain depend on the combination of genetic and environmental factors such as accepted social behavior. It also depends on the use of genetic manipulation of the animals such as in transgenic animals. These make the interpretation of data even more difficult. Differences of pain behavior between in- and outbred animals will be better understood by using modern analysis techniques. Substrains of animals with a high likelihood for developing neuropathic pain make the unraveling of specific pathophysiological mechanisms possible. Concerning the effect of stress on pain, it is important to differentiate between external and internal stress such as social coping behavior. The individual dealing with this stress is species sensitive, and depends on the genotype and the social learning. In the future, histo-immunological and genetic analysis will highlight similarities of the different pathophysiological mechanisms of pain between different species and human subjects. The final objective for the study of pain is to describe the genetics of the eliciting pain mechanisms in humans and to look for correlations with the knowledge from basic research. Therefore, it is necessary to know the genetic evolution of the different mechanisms in chronic pain. In order to be able to control the clinical predictability of a putative treatment the evolutionary pharmacogenomic structure of specific transmitters and receptors must be clarified.
Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu
2013-12-01
Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.
Verkhivker, Gennady M
2016-01-01
The human protein kinome presents one of the largest protein families that orchestrate functional processes in complex cellular networks, and when perturbed, can cause various cancers. The abundance and diversity of genetic, structural, and biochemical data underlies the complexity of mechanisms by which targeted and personalized drugs can combat mutational profiles in protein kinases. Coupled with the evolution of system biology approaches, genomic and proteomic technologies are rapidly identifying and charactering novel resistance mechanisms with the goal to inform rationale design of personalized kinase drugs. Integration of experimental and computational approaches can help to bring these data into a unified conceptual framework and develop robust models for predicting the clinical drug resistance. In the current study, we employ a battery of synergistic computational approaches that integrate genetic, evolutionary, biochemical, and structural data to characterize the effect of cancer mutations in protein kinases. We provide a detailed structural classification and analysis of genetic signatures associated with oncogenic mutations. By integrating genetic and structural data, we employ network modeling to dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using biophysical simulations and analysis of protein structure networks, we show that conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR kinase that are linked with the ligand-mediated changes in the residue interaction networks and global network properties of key residues that are responsible for structural stability of specific functional states. A strong network dependency on high centrality residues in the conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to a broad spectrum of mutations and the emergence of drug resistance. Our study offers a systems-based perspective on drug design by unravelling complex relationships between robustness of targeted kinase genes and binding specificity of targeted kinase drugs. We discuss how these approaches can exploit advances in chemical biology and network science to develop novel strategies for rationally tailored and robust personalized drug therapies.
ERIC Educational Resources Information Center
Royston, R.; Howlin, P.; Waite, J.; Oliver, C.
2017-01-01
Individuals with specific genetic syndromes associated with intellectual disability (ID), such as Williams syndrome (WS), are at increased risk for developing anxiety disorders. A systematic literature review identified sixteen WS papers that could generate pooled prevalence estimates of anxiety disorders for WS. A meta-analysis compared these…
Qiu, Jingya; Darabos, Christian
2016-01-01
ABSTRACT Genome‐wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog literature, we compiled a database of 2,800 ancestry‐specific SNPs associated with T2DM and 70 other related traits. Manual data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P‐value, but does not consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples from study populations of mixed ancestry. Analysis of all‐inclusive data can be misleading, as not all SNPs are transferable across diverse populations. We used ancestry data to construct ancestry‐specific human phenotype networks (HPN) centered on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the 27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry‐specific nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our ancestry‐specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations. Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and personalized medicine. PMID:27061195
Gurling, H
1986-01-01
It is argued that further research to achieve more detailed diagnostic systems in many psychiatric disorders is unlikely to be productive without taking genetic effects into account. Even when this is done, for example when carrying out segregation analysis to determine a mode of genetic transmission, mental illnesses often pose specific problems that preclude accurate analysis. Because techniques in molecular biology and genetics have made it possible to study gene effects in human disease systematically it should now be possible to specify the genes that are involved. When this has been achieved then a diagnostic system based on genetic causation can develop. This will have the advantage of helping to pinpoint environmental factors more accurately. Specific strategies will need to be adopted to overcome uncertain modes of inheritance, incomplete or non-penetrance of disease alleles and disease heterogeneity. Highly speculative hypotheses can be put forward for a locus causing Alzheimer's disease on a portion of the long arm of chromosome 21. For autism it is plausible that there is a disease locus at or near the fragile X site on the X chromosome. A locus for manic depression has been very tentatively mapped using DNA markers to chromosome 11 and in a small proportion of families DNA markers have also shown some evidence for X linkage. Schizophrenia does not seem to be associated with any favoured loci. Candidate genes for schizophrenia include those encoding dopamine, other neurotransmitter receptors or enzymes and various neuropeptides such as enkephalin and beta endorphin.
Species delimitation and conservation genetics of the Canarian endemic Bethencourtia (Asteraceae).
Rodríguez-Rodríguez, Priscila; Pérez de Paz, Pedro Luis; Sosa, Pedro A
2018-04-01
Bethencourtia Choisy ex Link is an endemic genus of the Canary Islands and comprises three species. Bethencourtia hermosae and Bethencourtia rupicola are restricted to La Gomera, while Bethencourtia palmensis is present in Tenerife and La Palma. Despite the morphological differences previously found between the species, there are still taxonomic incongruities in the group, with evident consequences for its monitoring and conservation. The objectives of this study were to define the species differentiation, perform population genetic analysis and propose conservation strategies for Bethencourtia. To achieve these objectives, we characterized 10 polymorphic SSR markers. Eleven natural populations (276 individuals) were analyzed (three for B. hermosae, five for B. rupicola and three for B. palmensis). The results obtained by AMOVA, PCoA and Bayesian analysis on STRUCTURE confirmed the evidence of well-structured groups corresponding to the three species. At the intra-specific level, B. hermosae and B. rupicola did not show a clear population structure, while B. palmensis was aggregated according to island of origin. This is consistent with self-incompatibility in the group and high gene flow within species. Overall, the genetic diversity of the three species was low, with expected heterozygosity values of 0.302 (B. hermosae), 0.382 (B. rupicola) and 0.454 (B. palmensis). Recent bottleneck events and a low number of individuals per population are probably the causes of the low genetic diversity. We consider that they are naturally rare species associated with specific habitats. The results given in this article will provide useful information to assist in conservation genetics programs for this endemic genus.
He, J X; Jiang, Y F
2017-08-06
Hereditary cancer is caused by specific pathogenic gene mutations. Early detection and early intervention are the most effective ways to prevent and control hereditary cancer. High-throughput sequencing based genetic testing technology (NGS) breaks through the restrictions of pedigree analysis, provide a convenient and efficient method to detect and diagnose hereditary cancer. Here, we introduce the mechanism of hereditary cancer, summarize, discuss and prospect the application of NGS and other genetic tests in the diagnosis of hereditary retinoblastoma, hereditary breast and ovarian cancer syndrome, hereditary colorectal cancer and other complex and rare hereditary tumors.
Microstructure and tuber properties of potato varieties with different genetic profiles.
Romano, Annalisa; Masi, Paolo; Aversano, Riccardo; Carucci, Francesca; Palomba, Sara; Carputo, Domenico
2018-01-15
The objectives of this research were to study tuber starch characteristics and chemical - thermal properties of 21 potato varieties, and to determine their genetic diversity through SSR markers. Starch granular size varied among samples, with a wide diameter distribution (5-85μm), while granule shapes were similar. Differential Scanning Calorimeter analysis showed that the transition temperatures (69°C-74°C) and enthalpies of gelatinization (0.9J/g-3.8J/g) of tubers were also variety dependent. SSR analysis allowed the detection of 157 alleles across all varieties, with an average value of 6.8 alleles per locus. Variety-specific alleles were also identified. SSR-based cluster analysis revealed that varieties with interesting quality attributes were distributed among all clusters and sub-clusters, suggesting that the genetic basis of traits analyzed may differ among our varieties. The information obtained in this study may be useful to identify and develop varieties with slowly digestible starch. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of airborne genetically modified maize pollen by real-time PCR.
Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc
2012-09-01
The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.
Xavier, Alencar; Jarquin, Diego; Howard, Reka; Ramasubramanian, Vishnu; Specht, James E; Graef, George L; Beavis, William D; Diers, Brian W; Song, Qijian; Cregan, Perry B; Nelson, Randall; Mian, Rouf; Shannon, J Grover; McHale, Leah; Wang, Dechun; Schapaugh, William; Lorenz, Aaron J; Xu, Shizhong; Muir, William M; Rainey, Katy M
2018-02-02
Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations. Copyright © 2018 Xavier et al.
2013-01-01
Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software tools. Conclusions FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes of sequencing data for the study of rare genetic variants and their influence on phenotypes. PMID:23441864
Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.
Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles
2018-02-12
Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.
Mahmodi, Farshid; Kadir, J. B.; Puteh, A.; Pourdad, S. S.; Nasehi, A.; Soleimani, N.
2014-01-01
Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5–19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers. PMID:25288981
Huang, Xueqing; Ding, Jia; Effgen, Sigi; Turck, Franziska; Koornneef, Maarten
2013-08-01
Shoot branching is a major determinant of plant architecture. Genetic variants for reduced stem branching in the axils of cauline leaves of Arabidopsis were found in some natural accessions and also at low frequency in the progeny of multiparent crosses. Detailed genetic analysis using segregating populations derived from backcrosses with the parental lines and bulked segregant analysis was used to identify the allelic variation controlling reduced stem branching. Eight quantitative trait loci (QTLs) contributing to natural variation for reduced stem branching were identified (REDUCED STEM BRANCHING 1-8 (RSB1-8)). Genetic analysis showed that RSB6 and RSB7, corresponding to flowering time genes FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), epistatically regulate stem branching. Furthermore, FLOWERING LOCUS T (FT), which corresponds to RSB8 as demonstrated by fine-mapping, transgenic complementation and expression analysis, caused pleiotropic effects not only on flowering time, but, in the specific background of active FRI and FLC alleles, also on the RSB trait. The consequence of allelic variation only expressed in late-flowering genotypes revealed novel and thus far unsuspected roles of several genes well characterized for their roles in flowering time control. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea
2017-07-13
Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta-analyses stratified by ethnicity. Our review and meta-analysis will update and add to the existing research in this field. By not restricting the scope of the review to a specific drug, genetic variant, or toxicity outcome, we hope to synthesise data for associations between genetic variants and anti-tuberculosis drug-related toxicity outcomes that have previously not been summarised in systematic reviews, and consequently, add to the knowledge base of the pharmacogenetics of anti-tuberculosis drugs. PROSPERO CRD42017068448.
Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi
2015-02-09
Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.
[Diabetes and predictive medicine--parallax of the present time].
Rybka, J
2010-04-01
Predictive genetics uses genetic testing to estimate the risk in asymptomatic persons. Since in the case of multifactorial diseases predictive genetic analysis deals with findings which allow wider interpretation, it has a higher predictive value in expressly qualified diseases (monogenous) with high penetration compared to multifactorial (polygenous) diseases with high participation of environmental factors. In most "civilisation" (multifactorial) diseases including diabetes, heredity and environmental factors do not play two separate, independent roles. Instead, their interactions play a principal role. The new classification of diabetes is based on the implementation of not only ethiopathogenetic, but also genetic research. Diabetes mellitus type 1 (DM1T) is a polygenous multifactorial disease with the genetic component carrying about one half of the risk, the non-genetic one the other half. The study of the autoimmune nature of DM1T in connection with genetic analysis is going to bring about new insights in DM1T prediction. The author presents new pieces of knowledge on molecular genetics concerning certain specific types of diabetes. Issues relating to heredity in diabetes mellitus type 2 (DM2T) are even more complex. The disease has a polygenous nature, and the phenotype of a patient with DM2T, in addition to environmental factors, involves at least three, perhaps even tens of different genetic variations. At present, results at the genom-wide level appear to be most promising. The current concept of prediabetes is a realistic foundation for our prediction and prevention of DM2T. A multifactorial, multimarker approach based on our understanding of new pathophysiological factors of DM2T, tries to outline a "map" of prediabetes physiology, and if these tests are combined with sophisticated methods of genetic forecasting of DM2T, this may represent a significant step in our methodology of diabetes prediction. So far however, predictive genetics is limited by the interpretation of genetic predisposition and individualisation of the level of risk. There is no doubt that interpretation calls for co-operation with clinicians, while results of genetic analyses should presently be not uncritically overestimated. Predictive medicine, however, unquestionably fulfills the preventive focus of modern medicine, and genetic analysis is a perspective diagnostic method.
Aragam, Nagesh; Wang, Ke-Sheng; Pan, Yue
2011-10-01
Major depressive disorder (MDD) is a universally prevalent, genetic, and environment dependent mental condition that disables people of every culture, race, gender, and age. While the gender differences for MDD have been widely reported in literature, few genome-wide analyses of gender differences have been reported to date. We conducted a genome-wide association analysis of gender differences for MDD using the Netherlands NESDA and NTR population-based samples (1726 cases and 1630 controls). PLINK software was used to analyze the genome-wide association data of Perlegen 600 K SNP Chips. We identified 40 male-specific and 56 female-specific MDD associated SNPs with P-values less than 10(-4). The best male-specific SNP was rs9352774 (P=2.26 × 10(-6)) within LGSN gene while the best female-specific SNP was rs2715148 (P=5.64 × 10(-7)) within PCLO gene. We also found 38 SNPs showing gene × gender interactions in influencing MDD (P<10(-4)). The best SNP was rs12692709 (P=5.75 × 10(-6)) near FIGN gene at 2q24.3 while the next best SNP was rs11039588 (P=1.16 × 10(-5)) within OR4B1 gene. The findings from this study need be replicated in other populations. These results provide genetic basis for gender differences in MDD and will serve as a resource for replication in other populations to elucidate the potential role of these genetic variants in MDD. Copyright © 2011 Elsevier B.V. All rights reserved.
Albuquerque, Érika V S; Bezerra, Caroline A; Romero, Juan V; Valencia, Jorge W A; Valencia-Jiménez, Arnubio; Pimenta, Lucas M; Barbosa, Aulus E A D; Silva, Maria C M; Meneguim, Ana M; Sá, Maria Eugênia L; Engler, Gilbert; de Almeida-Engler, Janice; Fernandez, Diana; Grossi-de-Sá, Maria F
Genetic transformation of coffee ( Coffea spp.), the second most traded commodity worldwide, is an alternative approach to introducing features that cannot be introgressed by traditional crossings. The transgenic stability, heritability and quantitative and spatial expression patterns of the seed-specific promoter phytohemagglutinin (PHA-L) from Phaseolus vulgaris were characterized in genetically modified C. arabica expressing the α-amylase inhibitor-1 ( α-AI1 ) gene. The α-AI1 inhibitor shows considerable activity toward digestive enzymes of the coffee berry borer (CBB) Hypothenemus hampei . This insect pest expends its life cycle almost entirely in coffee berries. Transgene containment in the fruit is important to meeting food and environmental safety requirements for releasing genetically modified (GM) crops. PCR analysis of T2 coffee plants showed a Mendelian single-copy segregation pattern. Ectopic transgene expression was only detected in coffee grains, as demonstrated by reverse transcription-PCR analysis of different plant tissues. An intense immunocytochemical signal associated with α-AI1 protein expression was localized to endospermic cells. In addition, a delay in the larval development of CBB was observed after challenging transgenic coffee seeds with the insect. These results indicate that the PHA-L promoter might be a useful tool in coffee for the seed-specific expression of genes related to coffee bean productivity, quality and pest protection. The biotechnological applicability of the α-AI1 gene for controlling CBB is also discussed. This work is the first report showing a seed-specific transgene expression in coffee plants.
NASA Astrophysics Data System (ADS)
Bakar, Mohamad-Azam Akmal Abu; Rovie-Ryan, Jeffrine Japning; Ampeng, Ahmad; Yaakop, Salmah; Nor, Shukor Md; Md-Zain, Badrul Munir
2018-04-01
Mousedeer is one of the primitive mammals that can be found mainly in Southeast-Asia region. There are two species of mousedeer in Malaysia which are Tragulus kanchil and Tragulus napu. Both species can be distinguish by size, coat coloration, and throat pattern but clear diagnosis still cannot be found. The objective of the study is to show the genetic distance relationship between T. kanchil and T. napu and their population based on mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and D-loop region. There are 42 sample of mousedeer were used in this study collected by PERHILITAN from different locality. Another 29 D-loop sequence were retrieved from Genbank for comparative analysis. All sample were amplified using universal primer and species-specific primer for COI and D-loop genes via PCR process. The amplified sequences were analyzed to determine genetic distance of T. kanchil and T. napu. From the analysis, the average genetic distance between T. kanchil and T. napu based on locus COI and D-loop were 0.145 and 0.128 respectively. The genetic distance between populations of T. kanchil based on locus COI was between 0.003-0.013. For locus D-loop, genetic distance analysis showed distance in relationship between west-coast populations to east-coast population of T. kanchil. COI and D-loop mtDNA region provided a clear picture on the relationship within the mousedeer species. Last but not least, conservation effort toward protecting this species can be done by study the molecular genetics and prevent the extinction of this species.
Population and genomic lessons from genetic analysis of two Indian populations.
Juyal, Garima; Mondal, Mayukh; Luisi, Pierre; Laayouni, Hafid; Sood, Ajit; Midha, Vandana; Heutink, Peter; Bertranpetit, Jaume; Thelma, B K; Casals, Ferran
2014-10-01
Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.
Gasca-Salas, Carmen; Masellis, Mario; Khoo, Edwin; Shah, Binit B; Fisman, David; Lang, Anthony E; Kleiner-Fisman, Galit
2016-01-01
Mutations in granulin (PGRN) and tau (MAPT), and hexanucleotide repeat expansions near the C9orf72 genes are the most prevalent genetic causes of frontotemporal lobar degeneration. Although behavior, language and movement presentations are common, the relationship between genetic subgroup and movement disorder phenomenology is unclear. We conducted a systematic review and meta-analysis of the literature characterizing the spectrum and prevalence of movement disorders in genetic frontotemporal lobar degeneration. Electronic databases were searched using terms related to frontotemporal lobar degeneration and movement disorders. Articles were included when cases had a proven genetic cause. Study-specific prevalence estimates for clinical features were transformed using Freeman-Tukey arcsine transformation, allowing for pooled estimates of prevalence to be generated using random-effects models. The mean age at onset was earlier in those with MAPT mutations compared to PGRN (p<0.001) and C9orf72 (p = 0.024). 66.5% of subjects had an initial non-movement presentation that was most likely a behavioral syndrome (35.7%). At any point during the disease, parkinsonism was the most common movement syndrome reported in 79.8% followed by progressive supranuclear palsy (PSPS) and corticobasal (CBS) syndromes in 12.2% and 10.7%, respectively. The prevalence of movement disorder as initial presentation was higher in MAPT subjects (35.8%) compared to PGRN subjects (10.1). In those with a non-movement presentation, language disorder was more common in PGRN subjects (18.7%) compared to MAPT subjects (5.4%). This represents the first systematic review and meta-analysis of the occurrence of movement disorder phenomenology in genetic frontotemporal lobar degeneration. Standardized prospective collection of clinical information in conjunction with genetic characterization will be crucial for accurate clinico-genetic correlation.
Gasca-Salas, Carmen; Masellis, Mario; Khoo, Edwin; Shah, Binit B.; Fisman, David; Lang, Anthony E.; Kleiner-Fisman, Galit
2016-01-01
Background Mutations in granulin (PGRN) and tau (MAPT), and hexanucleotide repeat expansions near the C9orf72 genes are the most prevalent genetic causes of frontotemporal lobar degeneration. Although behavior, language and movement presentations are common, the relationship between genetic subgroup and movement disorder phenomenology is unclear. Objective We conducted a systematic review and meta-analysis of the literature characterizing the spectrum and prevalence of movement disorders in genetic frontotemporal lobar degeneration. Methods Electronic databases were searched using terms related to frontotemporal lobar degeneration and movement disorders. Articles were included when cases had a proven genetic cause. Study-specific prevalence estimates for clinical features were transformed using Freeman-Tukey arcsine transformation, allowing for pooled estimates of prevalence to be generated using random-effects models. Results The mean age at onset was earlier in those with MAPT mutations compared to PGRN (p<0.001) and C9orf72 (p = 0.024). 66.5% of subjects had an initial non-movement presentation that was most likely a behavioral syndrome (35.7%). At any point during the disease, parkinsonism was the most common movement syndrome reported in 79.8% followed by progressive supranuclear palsy (PSPS) and corticobasal (CBS) syndromes in 12.2% and 10.7%, respectively. The prevalence of movement disorder as initial presentation was higher in MAPT subjects (35.8%) compared to PGRN subjects (10.1). In those with a non-movement presentation, language disorder was more common in PGRN subjects (18.7%) compared to MAPT subjects (5.4%). Summary This represents the first systematic review and meta-analysis of the occurrence of movement disorder phenomenology in genetic frontotemporal lobar degeneration. Standardized prospective collection of clinical information in conjunction with genetic characterization will be crucial for accurate clinico-genetic correlation. PMID:27100392
Noormohammadi, Z; Samadi-Molayousefi, H; Sheidai, M
2012-03-19
Wild olive (O. europaea ssp cuspidata) plants grow in various regions of Iran and are expected to have considerable genetic diversity due to adaptation to the various environmental conditions. We examined the genetic diversity of four populations of wild olive growing in Hormozgan Province located in southern Iran by using 30 RAPDs and 10 ISSR markers. The mean value of polymorphism for RAPD loci was 73.71%, while the value for ISSR loci was 81.74%. The Keshar population had the highest value of intra-population polymorphism for both RAPD and ISSR loci (66.86 and 62.71%, respectively), while the Tudar population had the lowest values (20.35 and 28.81%, respectively). Similarly, the highest and lowest number of effective alleles, Shannon index and Nei's genetic diversity were also found for these two populations. The highest value of H(pop)/H(sp) within population genetic diversity for RAPD and ISSR loci was found for the Keshar population (H(pop) = 0.85 and H(sp) = 0.90). OPA04-750, OPA13-650 and OPA02-350 RAPD bands were specific for Tudar, Bondon and Keshar populations, respectively, while no specific ISSR bands were observed. Analysis of molecular variance as well as the pairwise F(ST) test showed significant differences for RAPD and ISSR markers among the populations. The NJ and UPGMA trees also separated the wild olive populations from each other, indicating their genetic distinctness. UPGMA clustering of the four wild olive populations placed the Tudar population far from the other populations; Keshar and Bokhoon population samples revealed more similarity and were grouped together. We conclude that there is high genetic diversity among O. europaea ssp cuspidata populations located in southern Iran. We also found RAPD and ISSR markers to be useful molecular tools to discriminate and evaluate genetic variations in wild olive trees.
BAIAP2 is related to emotional modulation of human memory strength.
Luksys, Gediminas; Ackermann, Sandra; Coynel, David; Fastenrath, Matthias; Gschwind, Leo; Heck, Angela; Rasch, Bjoern; Spalek, Klara; Vogler, Christian; Papassotiropoulos, Andreas; de Quervain, Dominique
2014-01-01
Memory performance is the result of many distinct mental processes, such as memory encoding, forgetting, and modulation of memory strength by emotional arousal. These processes, which are subserved by partly distinct molecular profiles, are not always amenable to direct observation. Therefore, computational models can be used to make inferences about specific mental processes and to study their genetic underpinnings. Here we combined a computational model-based analysis of memory-related processes with high density genetic information derived from a genome-wide study in healthy young adults. After identifying the best-fitting model for a verbal memory task and estimating the best-fitting individual cognitive parameters, we found a common variant in the gene encoding the brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) that was related to the model parameter reflecting modulation of verbal memory strength by negative valence. We also observed an association between the same genetic variant and a similar emotional modulation phenotype in a different population performing a picture memory task. Furthermore, using functional neuroimaging we found robust genotype-dependent differences in activity of the parahippocampal cortex that were specifically related to successful memory encoding of negative versus neutral information. Finally, we analyzed cortical gene expression data of 193 deceased subjects and detected significant BAIAP2 genotype-dependent differences in BAIAP2 mRNA levels. Our findings suggest that model-based dissociation of specific cognitive parameters can improve the understanding of genetic underpinnings of human learning and memory.
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.
Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele
2014-01-01
Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions. PMID:24905464
DNA and dispersal models highlight constrained connectivity in a migratory marine megavertebrate
Naro-Maciel, Eugenia; Hart, Kristen M.; Cruciata, Rossana; Putman, Nathan F.
2016-01-01
Population structure and spatial distribution are fundamentally important fields within ecology, evolution, and conservation biology. To investigate pan-Atlantic connectivity of globally endangered green turtles (Chelonia mydas) from two National Parks in Florida, USA, we applied a multidisciplinary approach comparing genetic analysis and ocean circulation modeling. The Everglades (EP) is a juvenile feeding ground, whereas the Dry Tortugas (DT) is used for courtship, breeding, and feeding by adults and juveniles. We sequenced two mitochondrial segments from 138 turtles sampled there from 2006-2015, and simulated oceanic transport to estimate their origins. Genetic and ocean connectivity data revealed northwestern Atlantic rookeries as the major natal sources, while southern and eastern Atlantic contributions were negligible. However, specific rookery estimates differed between genetic and ocean transport models. The combined analyses suggest that post-hatchling drift via ocean currents poorly explains the distribution of neritic juveniles and adults, but juvenile natal homing and population history likely play important roles. DT and EP were genetically similar to feeding grounds along the southern US coast, but highly differentiated from most other Atlantic groups. Despite expanded mitogenomic analysis and correspondingly increased ability to detect genetic variation, no significant differentiation between DT and EP, or among years, sexes or stages was observed. This first genetic analysis of a North Atlantic green turtle courtship area provides rare data supporting local movements and male philopatry. The study highlights the applications of multidisciplinary approaches for ecological research and conservation.
Genetic variation associated with cardiovascular risk in autoimmune diseases
Perrotti, Pedro P.; Aterido, Adrià; Fernández-Nebro, Antonio; Cañete, Juan D.; Ferrándiz, Carlos; Tornero, Jesús; Gisbert, Javier P.; Domènech, Eugeni; Fernández-Gutiérrez, Benjamín; Gomollón, Fernando; García-Planella, Esther; Fernández, Emilia; Sanmartí, Raimon; Gratacós, Jordi; Martínez-Taboada, Víctor Manuel; Rodríguez-Rodríguez, Luís; Palau, Núria; Tortosa, Raül; Corbeto, Mireia L.; Lasanta, María L.; Marsal, Sara; Julià, Antonio
2017-01-01
Autoimmune diseases have a higher prevalence of cardiovascular events compared to the general population. The objective of this study was to investigate the genetic basis of cardiovascular disease (CVD) risk in autoimmunity. We analyzed genome-wide genotyping data from 6,485 patients from six autoimmune diseases that are associated with a high socio-economic impact. First, for each disease, we tested the association of established CVD risk loci. Second, we analyzed the association of autoimmune disease susceptibility loci with CVD. Finally, to identify genetic patterns associated with CVD risk, we applied the cross-phenotype meta-analysis approach (CPMA) on the genome-wide data. A total of 17 established CVD risk loci were significantly associated with CVD in the autoimmune patient cohorts. From these, four loci were found to have significantly different genetic effects across autoimmune diseases. Six autoimmune susceptibility loci were also found to be associated with CVD risk. Genome-wide CPMA analysis identified 10 genetic clusters strongly associated with CVD risk across all autoimmune diseases. Two of these clusters are highly enriched in pathways previously associated with autoimmune disease etiology (TNFα and IFNγ cytokine pathways). The results of this study support the presence of specific genetic variation associated with the increase of CVD risk observed in autoimmunity. PMID:28982122
Lu, Cairui; Zou, Changsong; Zhang, Youping; Yu, Daoqian; Cheng, Hailiang; Jiang, Pengfei; Yang, Wencui; Wang, Qiaolian; Feng, Xiaoxu; Prosper, Mtawa Andrew; Guo, Xiaoping; Song, Guoli
2015-02-06
Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes. A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available. Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.
The genetic causes of male factor infertility: a review.
O'Flynn O'Brien, Katherine L; Varghese, Alex C; Agarwal, Ashok
2010-01-01
To illustrate the necessity for an enhanced understanding of the genetic basis of male factor infertility, to present a comprehensive synopsis of these genetic elements, and to review techniques being utilized to produce new insights in fertility research. Male factor infertility is a complex disorder that affects a large sector of the population; however, many of its etiologies are unknown. By elucidating the underlying genetic basis of infertile phenotypes, it may be possible to discover the causes of infertility and determine effective treatments for patients. The PubMed database was consulted for the most relevant papers published in the last 3 years pertaining to male factor infertility using the keywords "genetics" and "male infertility." Advances have been made in the characterization of the roles of specific genes, but further research is necessary before these results can be used as guidelines for diagnosing and treating male factor infertility. The accurate transmission of epigenetic information also has considerable influence on fertility in males and on the fertility of their offspring. Analysis of the genetic factors that impact male factor infertility will provide valuable insights into the creation of targeted treatments for patients and the determination of the causes of idiopathic infertility. Novel technologies that analyze the influence of genetics from a global perspective may lead to further developments in the understanding of the etiology of male factor infertility through the identification of specific infertile phenotype signatures. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Saito, Megumi; Okumura, Kazuhiro; Miura, Ikuo; Wakana, Shigeharu; Kominami, Ryo; Wakabayashi, Yuichi
2014-01-01
Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development. PMID:25077764
Adaptive transmission disequilibrium test for family trio design.
Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning
2009-01-01
The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.
Genetic diversity of 38 insertion-deletion polymorphisms in Jewish populations.
Ferragut, J F; Pereira, R; Castro, J A; Ramon, C; Nogueiro, I; Amorim, A; Picornell, A
2016-03-01
Population genetic data of 38 non-coding biallelic autosomal indels are reported for 466 individuals, representing six populations with Jewish ancestry (Ashkenazim, Mizrahim, Sephardim, North African, Chuetas and Bragança crypto-Jews). Intra-population diversity and forensic parameters values showed that this set of indels was highly informative for forensic applications in the Jewish populations studied. Genetic distance analysis demonstrated that this set of markers efficiently separates populations from different continents, but does not seem effective for molecular anthropology studies in Mediterranean region. Finally, it is important to highlight that although the genetic distances between Jewish populations were small, significant differences were observed for Chuetas and Bragança Jews, and therefore, specific databases must be used for these populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Complex Genetics of Behavior: BXDs in the Automated Home-Cage.
Loos, Maarten; Verhage, Matthijs; Spijker, Sabine; Smit, August B
2017-01-01
This chapter describes a use case for the genetic dissection and automated analysis of complex behavioral traits using the genetically diverse panel of BXD mouse recombinant inbred strains. Strains of the BXD resource differ widely in terms of gene and protein expression in the brain, as well as in their behavioral repertoire. A large mouse resource opens the possibility for gene finding studies underlying distinct behavioral phenotypes, however, such a resource poses a challenge in behavioral phenotyping. To address the specifics of large-scale screening we describe how to investigate: (1) how to assess mouse behavior systematically in addressing a large genetic cohort, (2) how to dissect automation-derived longitudinal mouse behavior into quantitative parameters, and (3) how to map these quantitative traits to the genome, deriving loci underlying aspects of behavior.
Conservation implications of the genetic diversity of Gymnospermium microrrhynchum in Korea.
Lee, S H; Yeon, M H; Shim, J K
2016-10-24
Gymnospermium microrrhynchum (Berberidaceae) is an ephemeral perennial herb with a limited distributional range in the Baekdudaegan mountain areas of the Korean Peninsula, and is designated a rare plant by the Korean Forest Service. Information about its genetic variation and structure is important for developing successful conservation strategies. To investigate the genetic variation within and among seven G. microrrhynchum populations, random amplified polymorphic DNA data were obtained for 207 individuals. The populations exhibited relatively low genetic diversity: the percentage of polymorphic bands (PPB) ranged from 32.1 to 66.7% (mean = 51.4%) and Nei's gene diversity (H E ) ranged from 0.116 to 0.248 (mean = 0.188). However, genetic diversity at the species level was relatively high (PPB = 98.7%, H E = 0.349). An analysis of molecular variance revealed high differentiation among populations (Φ ST = 0.6818), but the low gene flow value (N m = 0.117) suggests a low level of gene exchange occurs among populations. Principal coordinates analysis revealed that individuals were separated according to population. The high level of genetic differentiation and restricted gene flow among G. microrrhynchum populations, which resulted from their isolation in alpine areas after the Ice Age, indicates that it is essential to protect and manage all populations, rather than focus on specific populations, in order to maintain the genetic diversity of this species.
Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C
2015-01-01
Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175
Maca-Meyer, N; Villar, J; Pérez-Méndez, L; Cabrera de León, A; Flores, C
2004-11-01
Classical, mitochondrial DNA (mtDNA) and Y chromosome markers have been used to examine the genetic admixture in present day inhabitants of the Canary Islands. In this study, we report the analysis of ten autosomal Alu insertion polymorphisms in 364 samples from the seven main islands of the Archipelago, and their comparison to continental samples. The detection of population-specific alleles from the Iberian Peninsula and Northwest Africa, as well as their affinities on the basis of genetic distances and principal component analysis, support a clear link between these populations. Coincident with previous results, the Canarian gene pool can be distinguished as being halfway between those of its putative parents, although with a major Iberian contribution (62-78%). Both the substantial Northwest African contribution (23-38%), and the minor sub-Saharan African input (3%), suggest that the genetic legacy from the aborigines and slaves still persists in the Canary Islanders.
Molecular pathology and genetics of gastrointestinal neuroendocrine tumours.
Lewis, Mark A; Yao, James C
2014-02-01
Neuroendocrine tumours (NETs) of the luminal gastrointestinal tract and pancreas are increasing in incidence and prevalence. Prior assumptions about the benign nature of 'carcinoids' and the clinical importance of distinguishing functional vs. nonfunctional tumours are being overturned through greater understanding of disease behaviour and heterogeneity. This review highlights the most contemporary genetic and molecular insights into gastroenteropancreatic NETs. Biomarkers such as neuron-specific enolase or chromogranin A could be supplemented or supplanted by PCR-based analysis of NET genes detectable in the blood transcriptome. Conventional pathology, including Ki67 testing, could be enhanced with immunohistochemistry and exome analysis. Prognostic markers and/or putative therapeutic targets uncovered through recent studies include heparanase, Id, ATM, SRC, EGFR, hsp90 and PDGFR. After a long-standing paucity of options for conventional cytotoxic therapy, the comprehension and treatment of gastroenteropancreatic NETs has been enriched by advancements in taxonomy, molecular pathology and genetic/epigenetic testing.
CRISPR/Cas9 and genome editing in Drosophila.
Bassett, Andrew R; Liu, Ji-Long
2014-01-20
Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Traditional techniques for generating genetic mutations in most organisms have relied on selection from large pools of randomly induced mutations for those of particular interest, or time-consuming gene targeting by homologous recombination. Drosophila melanogaster has always been at the forefront of genetic analysis, and application of these new genome editing techniques to this organism will revolutionise our approach to performing analysis of gene function in the future. We discuss the recent techniques that apply the CRISPR/Cas9 system to Drosophila, highlight potential uses for this technology and speculate upon the future of genome engineering in this model organism. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Evolution of Human Genetic Studies of Cleft Lip and Cleft Palate
Marazita, Mary L.
2013-01-01
Orofacial clefts (OFCs)—primarily cleft lip and cleft palate—are among the most common birth defects in all populations worldwide, and have notable population, ethnicity, and gender differences in birth prevalence. Interest in these birth defects goes back centuries, as does formal scientific interest; scientists often used OFCs as examples or evidence during paradigm shifts in human genetics, and have also used virtually every new method of human genetic analysis to deepen our understanding of OFC. This review traces the evolution of human genetic investigations of OFC, highlights the specific insights gained about OFC through the years, and culminates in a review of recent key OFC genetic findings resulting from the powerful tools of the genomics era. Notably, OFC represents a major success for genome-wide approaches, and the field is poised for further breakthroughs in the near future. PMID:22703175
Barazani, Oz; Keren-Keiserman, Alexandra; Westberg, Erik; Hanin, Nir; Dag, Arnon; Ben-Ari, Giora; Fragman-Sapir, Ori; Tugendhaft, Yizhar; Kerem, Zohar; Kadereit, Joachim W
2016-12-13
Naturally growing populations of olive trees are found in the Mediterranean garrigue and maquis in Israel. Here, we used the Simple Sequence Repeat (SSR) genetic marker technique to investigate whether these represent wild var. sylvestris. Leaf samples were collected from a total of 205 trees at six sites of naturally growing olive populations in Israel. The genetic analysis included a multi-locus lineage (MLL) analysis, Rousset's genetic distances, Fst values, private alleles, other diversity values and a Structure analysis. The analyses also included scions and suckers of old cultivated olive trees, for which the dominance of one clone in scions (MLL1) and a second in suckers (MLL7) had been shown earlier. The majority of trees from a Judean Mts. population and from one population from the Galilee showed close genetic similarity to scions of old cultivated trees. Different from that, site-specific and a high number of single occurrence MLLs were found in four olive populations from the Galilee and Carmel which also were genetically more distant from old cultivated trees, had relatively high genetic diversity values and higher numbers of private alleles. Whereas in two of these populations MLL7 (and partly MLL1) were found in low frequency, the two other populations did not contain these MLLs and were very similar in their genetic structure to suckers of old cultivated olive trees that originated from sexual reproduction. The genetic distinctness from old cultivated olive trees, particularly of one population from Galilee and one from Carmel, suggests that trees at these sites might represent wild var. sylvestris. The similarity in genetic structure of these two populations with the suckers of old cultivated trees implies that wild trees were used as rootstocks. Alternatively, trees at these two sites may be remnants of old cultivated trees in which the scion-derived trunk died and was replaced by suckers. However, considering landscape and topographic environment at the two sites this second interpretation is less likely.
Thul, Sanjog T; Srivastava, Ankit K; Singh, Subhash C; Shanker, Karuna
2011-09-01
A method was developed based on multiple approaches wherein DNA and chemical analysis was carried out toward differentiation of important species of Sida complex that is being used for commercial preparation. Isolated DNA samples were successfully performed through PCR amplification using ISSR markers and degree of genetic diversity among the different species of Sida is compared with that of chemical diversity. For genetic fingerprint investigation, selected 10 ISSR primers generating reproducible banding patterns were used. Among the total of 63 amplicons, 62 were recorded as polymorphic, genetic similarity index deduced from ISSR profiles ranged from 12 to 51%. Based on similarity index, S. acuta and S. rhombifolia found to be most similar (51%). High number of species-specific bands played pivotal role to delineate species at genetic level. Investigation based on HPTLC fingerprints analysis revealed 23 bands representing to characteristic chemicals and similarity index ranged from 73 to 91%. Prominent distinguishable bands were observed only in S. acuta, while S. cordifolia and S. rhombifolia shared most bands making them difficult to identify on chemical fingerprint basis. This report summarizes the genotypic and chemotypic diversity and the use of profiles for authentication of species of Sida complex.
Kremen, William S; Prom-Wormley, Elizabeth; Panizzon, Matthew S; Eyler, Lisa T; Fischl, Bruce; Neale, Michael C; Franz, Carol E; Lyons, Michael J; Pacheco, Jennifer; Perry, Michele E; Stevens, Allison; Schmitt, J Eric; Grant, Michael D; Seidman, Larry J; Thermenos, Heidi W; Tsuang, Ming T; Eisen, Seth A; Dale, Anders M; Fennema-Notestine, Christine
2010-01-15
The impact of genetic and environmental factors on human brain structure is of great importance for understanding normative cognitive and brain aging as well as neuropsychiatric disorders. However, most studies of genetic and environmental influences on human brain structure have either focused on global measures or have had samples that were too small for reliable estimates. Using the classical twin design, we assessed genetic, shared environmental, and individual-specific environmental influences on individual differences in the size of 96 brain regions of interest (ROIs). Participants were 474 middle-aged male twins (202 pairs; 70 unpaired) in the Vietnam Era Twin Study of Aging (VETSA). They were 51-59 years old, and were similar to U.S. men in their age range in terms of sociodemographic and health characteristics. We measured thickness of cortical ROIs and volume of other ROIs. On average, genetic influences accounted for approximately 70% of the variance in the volume of global, subcortical, and ventricular ROIs and approximately 45% of the variance in the thickness of cortical ROIs. There was greater variability in the heritability of cortical ROIs (0.00-0.75) as compared with subcortical and ventricular ROIs (0.48-0.85). The results did not indicate lateralized heritability differences or greater genetic influences on the size of regions underlying higher cognitive functions. The findings provide key information for imaging genetic studies and other studies of brain phenotypes and endophenotypes. Longitudinal analysis will be needed to determine whether the degree of genetic and environmental influences changes for different ROIs from midlife to later life.
QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep
Poissant, J; Davis, C S; Malenfant, R M; Hogg, J T; Coltman, D W
2012-01-01
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep. PMID:21847139
Detection and traceability of genetically modified organisms in the food production chain.
Miraglia, M; Berdal, K G; Brera, C; Corbisier, P; Holst-Jensen, A; Kok, E J; Marvin, H J P; Schimmel, H; Rentsch, J; van Rie, J P P F; Zagon, J
2004-07-01
Both labelling and traceability of genetically modified organisms are current issues that are considered in trade and regulation. Currently, labelling of genetically modified foods containing detectable transgenic material is required by EU legislation. A proposed package of legislation would extend this labelling to foods without any traces of transgenics. These new legislations would also impose labelling and a traceability system based on documentation throughout the food and feed manufacture system. The regulatory issues of risk analysis and labelling are currently harmonised by Codex Alimentarius. The implementation and maintenance of the regulations necessitates sampling protocols and analytical methodologies that allow for accurate determination of the content of genetically modified organisms within a food and feed sample. Current methodologies for the analysis of genetically modified organisms are focused on either one of two targets, the transgenic DNA inserted- or the novel protein(s) expressed- in a genetically modified product. For most DNA-based detection methods, the polymerase chain reaction is employed. Items that need consideration in the use of DNA-based detection methods include the specificity, sensitivity, matrix effects, internal reference DNA, availability of external reference materials, hemizygosity versus homozygosity, extrachromosomal DNA, and international harmonisation. For most protein-based methods, enzyme-linked immunosorbent assays with antibodies binding the novel protein are employed. Consideration should be given to the selection of the antigen bound by the antibody, accuracy, validation, and matrix effects. Currently, validation of detection methods for analysis of genetically modified organisms is taking place. In addition, new methodologies are developed, including the use of microarrays, mass spectrometry, and surface plasmon resonance. Challenges for GMO detection include the detection of transgenic material in materials with varying chromosome numbers. The existing and proposed regulatory EU requirements for traceability of genetically modified products fit within a broader tendency towards traceability of foods in general and, commercially, towards products that can be distinguished from each other. Traceability systems document the history of a product and may serve the purpose of both marketing and health protection. In this framework, segregation and identity preservation systems allow for the separation of genetically modified and non-modified products from "farm to fork". Implementation of these systems comes with specific technical requirements for each particular step of the food processing chain. In addition, the feasibility of traceability systems depends on a number of factors, including unique identifiers for each genetically modified product, detection methods, permissible levels of contamination, and financial costs. In conclusion, progress has been achieved in the field of sampling, detection, and traceability of genetically modified products, while some issues remain to be solved. For success, much will depend on the threshold level for adventitious contamination set by legislation. Copryright 2004 Elsevier Ltd.
Utilization of genetic tests: analysis of gene-specific billing in Medicare claims data.
Lynch, Julie A; Berse, Brygida; Dotson, W David; Khoury, Muin J; Coomer, Nicole; Kautter, John
2017-08-01
We examined the utilization of precision medicine tests among Medicare beneficiaries through analysis of gene-specific tier 1 and 2 billing codes developed by the American Medical Association in 2012. We conducted a retrospective cross-sectional study. The primary source of data was 2013 Medicare 100% fee-for-service claims. We identified claims billed for each laboratory test, the number of patients tested, expenditures, and the diagnostic codes indicated for testing. We analyzed variations in testing by patient demographics and region of the country. Pharmacogenetic tests were billed most frequently, accounting for 48% of the expenditures for new codes. The most common indications for testing were breast cancer, long-term use of medications, and disorders of lipid metabolism. There was underutilization of guideline-recommended tumor mutation tests (e.g., epidermal growth factor receptor) and substantial overutilization of a test discouraged by guidelines (methylenetetrahydrofolate reductase). Methodology-based tier 2 codes represented 15% of all claims billed with the new codes. The highest rate of testing per beneficiary was in Mississippi and the lowest rate was in Alaska. Gene-specific billing codes significantly improved our ability to conduct population-level research of precision medicine. Analysis of these data in conjunction with clinical records should be conducted to validate findings.Genet Med advance online publication 26 January 2017.
Messai, Habib; Farman, Muhammad; Sarraj-Laabidi, Abir; Hammami-Semmar, Asma; Semmar, Nabil
2016-01-01
Background. Olive oils (OOs) show high chemical variability due to several factors of genetic, environmental and anthropic types. Genetic and environmental factors are responsible for natural compositions and polymorphic diversification resulting in different varietal patterns and phenotypes. Anthropic factors, however, are at the origin of different blends’ preparation leading to normative, labelled or adulterated commercial products. Control of complex OO samples requires their (i) characterization by specific markers; (ii) authentication by fingerprint patterns; and (iii) monitoring by traceability analysis. Methods. These quality control and management aims require the use of several multivariate statistical tools: specificity highlighting requires ordination methods; authentication checking calls for classification and pattern recognition methods; traceability analysis implies the use of network-based approaches able to separate or extract mixed information and memorized signals from complex matrices. Results. This chapter presents a review of different chemometrics methods applied for the control of OO variability from metabolic and physical-chemical measured characteristics. The different chemometrics methods are illustrated by different study cases on monovarietal and blended OO originated from different countries. Conclusion. Chemometrics tools offer multiple ways for quantitative evaluations and qualitative control of complex chemical variability of OO in relation to several intrinsic and extrinsic factors. PMID:28231172
Szczecińska, Monika
2016-01-01
Background Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population’s ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population’s adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). Methods The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. Results SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and ΦPT for SSR (20%) and ΦPT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. Conclusions The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs. PMID:27833793
USDA-ARS?s Scientific Manuscript database
Background: Number of functional teats is an important trait in commercial swine production. As litter size increases, the number of teats must also increase to supply nutrition to all piglets. Therefore, a genome-wide association analysis was conducted to identify genomic regions that affect this ...
Gemenetzi, M; Yang, Y; Lotery, A J
2012-01-01
Glaucoma is a common, complex, heterogenous disease and it constitutes the major cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is the most common type of glaucoma in all populations. Most of the molecular mechanisms leading to POAG development are still unknown. Gene mutations in various populations have been identified by genetic studies and a genetic basis for glaucoma pathogenesis has been established. Linkage analysis and association studies are genetic approaches in the investigation of the genetic basis of POAG. Genome-wide association studies (GWAS) are more powerful compared with linkage analysis in discovering genes of small effect that might contribute to the development of the disease. POAG links to at least 20 genetic loci, but only 2 genes identified in these loci, myocilin and optineurin, are considered as well-established glaucoma-causing genes, whereas the role of other loci, genes, and variants implicated in the development of POAG remains controversial. Gene mutations associated with POAG result in retinal ganglion cell death, which is the common outcome of pathogenetic mechanisms in glaucoma. In future, if the sensitivity and specificity of genotyping increases, it may be possible to screen individuals routinely for disease susceptibility. This review is an update on the latest progress of genetic studies associated with POAG. It emphasizes the correlation of recent achievements in genetics with glaucoma pathophysiology, glaucoma treatment perspectives, and the possibility of future prevention of irreversible visual loss caused by the disease. PMID:22173078
A Multivariate Twin Study of the DSM-IV Criteria for Antisocial Personality Disorder
Kendler, Kenneth S.; Aggen, Steven H.; Patrick, Christopher J.
2012-01-01
BACKGROUND Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). METHODS Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4,291 twins (including both members of 1,647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. RESULTS Phenotypic factor analysis produced evidence for 2 correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. CONCLUSION From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. PMID:21762879
Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M
2012-01-01
Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.
Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter
2014-09-28
New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.
Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Cvrković, Tatjana; Toševski, Ivo
2018-01-01
The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno’s ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1–1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1–3.3%). PMID:29738577
Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Mitrović, Milana; Cvrković, Tatjana; Toševski, Ivo; Jović, Jelena
2018-01-01
The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno's ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1-1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1-3.3%).
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Su, Lining; Wang, Chunjie; Zheng, Chenqing; Wei, Huiping; Song, Xiaoqing
2018-04-13
Parkinson's disease (PD) is a long-term degenerative disease that is caused by environmental and genetic factors. The networks of genes and their regulators that control the progression and development of PD require further elucidation. We examine common differentially expressed genes (DEGs) from several PD blood and substantia nigra (SN) microarray datasets by meta-analysis. Further we screen the PD-specific genes from common DEGs using GCBI. Next, we used a series of bioinformatics software to analyze the miRNAs, lncRNAs and SNPs associated with the common PD-specific genes, and then identify the mTF-miRNA-gene-gTF network. Our results identified 36 common DEGs in PD blood studies and 17 common DEGs in PD SN studies, and five of the genes were previously known to be associated with PD. Further study of the regulatory miRNAs associated with the common PD-specific genes revealed 14 PD-specific miRNAs in our study. Analysis of the mTF-miRNA-gene-gTF network about PD-specific genes revealed two feed-forward loops: one involving the SPRK2 gene, hsa-miR-19a-3p and SPI1, and the second involving the SPRK2 gene, hsa-miR-17-3p and SPI. The long non-coding RNA (lncRNA)-mediated regulatory network identified lncRNAs associated with PD-specific genes and PD-specific miRNAs. Moreover, single nucleotide polymorphism (SNP) analysis of the PD-specific genes identified two significant SNPs, and SNP analysis of the neurodegenerative disease-specific genes identified seven significant SNPs. Most of these SNPs are present in the 3'-untranslated region of genes and are controlled by several miRNAs. Our study identified a total of 53 common DEGs in PD patients compared with healthy controls in blood and brain datasets and five of these genes were previously linked with PD. Regulatory network analysis identified PD-specific miRNAs, associated long non-coding RNA and feed-forward loops, which contribute to our understanding of the mechanisms underlying PD. The SNPs identified in our study can determine whether a genetic variant is associated with PD. Overall, these findings will help guide our study of the complex molecular mechanism of PD.
Syngal, Sapna; Brand, Randall E; Church, James M; Giardiello, Francis M; Hampel, Heather L; Burt, Randall W
2015-02-01
This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient's informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer.
Syngal, Sapna; Brand, Randall E.; Church, James M.; Giardiello, Francis M.; Hampel, Heather L.; Burt, Randall W.
2015-01-01
This guideline presents recommendations for the management of patients with hereditary gastrointestinal cancer syndromes. The initial assessment is the collection of a family history of cancers and premalignant gastrointestinal conditions and should provide enough information to develop a preliminary determination of the risk of a familial predisposition to cancer. Age at diagnosis and lineage (maternal and/or paternal) should be documented for all diagnoses, especially in first- and second-degree relatives. When indicated, genetic testing for a germline mutation should be done on the most informative candidate(s) identified through the family history evaluation and/or tumor analysis to confirm a diagnosis and allow for predictive testing of at-risk relatives. Genetic testing should be conducted in the context of pre- and post-test genetic counseling to ensure the patient's informed decision making. Patients who meet clinical criteria for a syndrome as well as those with identified pathogenic germline mutations should receive appropriate surveillance measures in order to minimize their overall risk of developing syndrome-specific cancers. This guideline specifically discusses genetic testing and management of Lynch syndrome, familial adenomatous polyposis (FAP), attenuated familial adenomatous polyposis (AFAP), MUTYH-associated polyposis (MAP), Peutz–Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, serrated (hyperplastic) polyposis syndrome, hereditary pancreatic cancer, and hereditary gastric cancer. PMID:25645574
Bezdjian, Serena; Tuvblad, Catherine; Wang, Pan; Raine, Adrian; Baker, Laura A
2014-11-01
In the present study, we investigated genetic and environmental effects on motor impulsivity from childhood to late adolescence using a longitudinal sample of twins from ages 9 to 18 years. Motor impulsivity was assessed using errors of commission (no-go errors) in a visual go/no-go task at 4 time points: ages 9-10, 11-13, 14-15, and 16-18 years. Significant genetic and nonshared environmental effects on motor impulsivity were found at each of the 4 waves of assessment with genetic factors explaining 22%-41% of the variance within each of the 4 waves. Phenotypically, children's average performance improved across age (i.e., fewer no-go errors during later assessments). Multivariate biometric analyses revealed that common genetic factors influenced 12%-40% of the variance in motor impulsivity across development, whereas nonshared environmental factors common to all time points contributed to 2%-52% of the variance. Nonshared environmental influences specific to each time point also significantly influenced motor impulsivity. Overall, results demonstrated that although genetic factors were critical to motor impulsivity across development, both common and specific nonshared environmental factors played a strong role in the development of motor impulsivity across age. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Roux, Simon; Enault, Francois; Ravet, Viviane; Colombet, Jonathan; Bettarel, Yvan; Auguet, Jean-Christophe; Bouvier, Thierry; Lucas-Staat, Soizick; Vellet, Agnès; Prangishvili, David; Forterre, Patrick; Debroas, Didier; Sime-Ngando, Telesphore
2016-03-01
Microbial communities from hypersaline ponds, dominated by halophilic archaea, are considered specific of such extreme conditions. The associated viral communities have accordingly been shown to display specific features, such as similar morphologies among different sites. However, little is known about the genetic diversity of these halophilic viral communities across the Earth. Here, we studied viral communities in hypersaline ponds sampled on the coast of Senegal (8-36% of salinity) using metagenomics approach, and compared them with hypersaline viromes from Australia and Spain. The specificity of hyperhalophilic viruses could first be demonstrated at a community scale, salinity being a strong discriminating factor between communities. For the major viral group detected in all samples (Caudovirales), only a limited number of halophilic Caudovirales clades were highlighted. These clades gather viruses from different continents and display consistent genetic composition, indicating that they represent related lineages with a worldwide distribution. Non-tailed hyperhalophilic viruses display a greater rate of gene transfer and recombination, with uncharacterized genes conserved across different kind of viruses and plasmids. Thus, hypersaline viral communities around the world appear to form a genetically consistent community that are likely to harbour new genes coding for enzymes specifically adapted to these environments. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Douglas, M G; Butow, R A
1976-04-01
Products of mitochondrial protein synthesis in yeast have been labeled in vivo with 35SO42-. More than 20 polypeptide species fulfilling the criteria of mitochondrial translation products have been detected by analysis on sodium dodecyl sulfate-exponential polyacrylamide slab gels. A comparison of mitochondrial translation products in two wild-type strains has revealed variant forms of some polypeptide species which show genetic behavior consistent with the location of their structural genes on mtDNA. Our results demonstrate the feasibility of performing genetic analysis on putative gene products of mtDNA in wild-type yeast by direct examination of the segregation and recombination behavior of specific polypeptide species.
Zadoks, Ruth; van Leeuwen, Willem; Barkema, Herman; Sampimon, Otlis; Verbrugh, Henri; Schukken, Ynte Hein; van Belkum, Alex
2000-01-01
Thirty-eight bovine mammary Staphylococcus aureus isolates from diverse clinical, temporal, and geographical origins were genotyped by pulsed-field gel electrophoresis (PFGE) after SmaI digestion of prokaryotic DNA and by means of binary typing using 15 strain-specific DNA probes. Seven pulsed-field types and four subtypes were identified, as were 16 binary types. Concordant delineation of genetic relatedness was documented by both techniques, yet based on practical and epidemiological considerations, binary typing was the preferable method. Genotypes of bovine isolates were compared to 55 previously characterized human S. aureus isolates through cluster analysis of binary types. Genetic clusters containing strains of both human and bovine origin were found, but bacterial genotypes were predominantly associated with a single host species. Binary typing proved an excellent tool for comparison of S. aureus strains, including methicillin-resistant S. aureus, derived from different host species and from different databases. For 28 bovine S. aureus isolates, detailed clinical observations in vivo were compared to strain typing results in vitro. Associations were found between distinct genotypes and severity of disease, suggesting strain-specific bacterial virulence. Circumstantial evidence furthermore supports strain-specific routes of bacterial dissemination. We conclude that PFGE and binary typing can be successfully applied for genetic analysis of S. aureus isolates from bovine mammary secretions. Binary typing in particular is a robust and simple method and promises to become a powerful tool for strain characterization, for resolution of clonal relationships of bacteria within and between host species, and for identification of sources and transmission routes of bovine S. aureus. PMID:10790124
Genetic relationships among seven sections of genus Arachis studied by using SSR markers
2010-01-01
Background The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis. Results The average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea. Conclusion A set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences among species. The present study provides strong support based on both genomic and genic markers, probably for the first time, on relationships of A. monticola and A. hypogaea as well as on the most probable donor of A and B-genomes of cultivated groundnut. PMID:20089171
Nair, Vadakkemuriyil Divya; Raj, Rajan Pillai Dinesh; Panneerselvam, Rajaram; Gopi, Ragupathi
2014-01-01
Genetic, morphological and chemical variations of ten natural populations of Rauvolfia serpentina Benth. Ex. Kurtz. from Southern Western Ghats of India were assessed using RAPD markers reserpine content and morphological traits. An estimate of genetic diversity and differentiation between genotypes of breeding germplasm is of key importance for its improvement. Populations were collected from different geographical regions. Data obtained through three different methods were compared and the correlation among them was estimated. Statistical analysis showed significant differences for all horticultural characteristics among the accessions suggesting that selection for relevant characteristics could be possible. Variation in the content of Reserpine ranges from 0.192 g/100 g (population from Tusharagiri) to 1.312 g/100 g (population from Aryankavu). A high diversity within population and high genetic differentiation among them based on RAPDs were revealed caused both by habitat fragmentation of the low size of most populations and the low level of gene flow among them. The UPGMA dendrogram and PCA analysis based on reserpine content yielded higher separation among populations indicated specific adaptation of populations into clusters each of them including populations closed to their geographical origin. Genetic, chemical and morphological data were correlated based on Mantel test. Given the high differentiation among populations conservation strategies should take into account genetic diversity and chemical variation levels in relation to bioclimatic and geographic location of populations. Our results also indicate that RAPD approach along with horticultural analysis seemed to be best suited for assessing with high accuracy the genetic relationships among distinct R. serpentina accessions. © 2013.
Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis
Mason, Annaliese S.; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E.; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A. P.; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N.
2016-01-01
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. PMID:26614742
Microchip method for the enrichment of specific DNA sequences
Mirzabekov, A.D.; Lysov, Y.P.; Shick, V.V.; Dubiley, S.A.
1998-12-22
A method for enriching specific genetic material sequences is provided, whereby oligonucleotide molecules complementary to the desired genetic material is first used to isolate the genetic material from a first source of genomic material. Then the genetic material is used as a label to isolate similar genetic sequences from other sources. 4 figs.
Microchip method for the enrichment of specific DNA sequences
Mirzabekov, Andrei Darievich; Lysov, Yuri Petrovich; Shick, Valentine Vladimirovich; Dubiley, Svetlana Alekseevna
1998-01-01
A method for enriching specific genetic material sequences is provided, whereby oligonucleotide molecules complementary to the desired genetic material is first used to isolate the genetic material from a first source of genomic material. Then the genetic material is used as a label to isolate similar genetic sequences from other sources.
Molecular inversion probe assay for allelic quantitation
Ji, Hanlee; Welch, Katrina
2010-01-01
Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872
A Genetic Linkage Map for Cattle
Bishop, M. D.; Kappes, S. M.; Keele, J. W.; Stone, R. T.; Sunden, SLF.; Hawkins, G. A.; Toldo, S. S.; Fries, R.; Grosz, M. D.; Yoo, J.; Beattie, C. W.
1994-01-01
We report the most extensive physically anchored linkage map for cattle produced to date. Three-hundred thirteen genetic markers ordered in 30 linkage groups, anchored to 24 autosomal chromosomes (n = 29), the X and Y chromosomes, four unanchored syntenic groups and two unassigned linkage groups spanning 2464 cM of the bovine genome are summarized. The map also assigns 19 type I loci to specific chromosomes and/or syntenic groups and four cosmid clones containing informative microsatellites to chromosomes 13, 25 and 29 anchoring syntenic groups U11, U7 and U8, respectively. This map provides the skeletal framework prerequisite to development of a comprehensive genetic map for cattle and analysis of economic trait loci (ETL). PMID:7908653
Pathogenesis of autism: a patchwork of genetic causes
Grigorenko, Elena L
2009-01-01
Autism spectrum disorders (ASDs) are relatively infrequent but are devastating developmental conditions characterized by marked deficiencies in social, communicative and other behavioral domains. It has been known for a substantial period of time that these disorders are genetic in nature. However, elucidating the specific mechanisms of these disorders has been difficult. A major reason for such difficulty is the recognized genetic heterogeneity of ASDs. Specifically, many genetic mechanisms related to structural variations in the genome have been reported as possible genetic causes of these disorders. This review briefly exemplifies these genetic mechanisms, presents a concise overview of the evidence for the genetic basis of ASDs and provides an appraisal of the specific structural genetic variants thought to contribute to the pathogenesis of these complex disorders. PMID:19953194
De Spiegelaere, Ward; Philippé, Jan; Vervisch, Karen; Verhofstede, Chris; Malatinkova, Eva; Kiselinova, Maja; Trypsteen, Wim; Bonczkowski, Pawel; Vogelaers, Dirk; Callens, Steven; Ruelle, Jean; Kabeya, Kabamba; De Wit, Stephane; Van Acker, Petra; Van Sandt, Vicky; Emonds, Marie-Paule; Coucke, Paul; Sermijn, Erica; Vandekerckhove, Linos
2015-01-01
Abacavir is a nucleoside reverse transcriptase inhibitor used as part of combination antiretroviral therapy in HIV-1-infected patients. Because this drug can cause a hypersensitivity reaction that is correlated with the presence of the HLA-B*57:01 allotype, screening for the presence of HLA-B*57:01 is recommended before abacavir initiation. Different genetic assays have been developed for HLA-B*57:01 screening, each with specific sensitivity, turnaround time and assay costs. Here, a new real-time PCR (qPCR) based analysis is described and compared to sequence specific primer PCR with capillary electrophoresis (SSP PCR CE) on 149 patient-derived samples, using sequence specific oligonucleotide hybridization combined with high resolution SSP PCR as gold standard. In addition to these PCR based methods, a complementary approach was developed using flow cytometry with an HLA-B17 specific monoclonal antibody as a pre-screening assay to diminish the number of samples for genetic testing. All three assays had a maximum sensitivity of >99. However, differences in specificity were recorded, i.e. 84.3%, 97.2% and >99% for flow cytometry, qPCR and SSP PCR CE respectively. Our data indicate that the most specific and sensitive of the compared methods is the SSP PCR CE. Flow cytometry pre-screening can substantially decrease the number of genetic tests for HLA-B*57:01 typing in a clinical setting.
Smith, Rachel A.; Wienke, Sara E.; Baker, Michelle K.
2013-01-01
Married adults are increasingly exposed to test results that indicate an increased genetic risk for adult-onset conditions. For example, a SERPINA1 mutation, associated with alpha-1 antitrypsin deficiency (AATD), predisposes affected individuals to diseases such as chronic obstructive pulmonary disease (COPD) and cancer, which are often detected in adulthood. Married adults are likely to discuss genetic test results with their spouses, and interpersonal research suggests that spouses’ communication patterns differ. Latent class analysis was used to identify subgroups of spousal communication patterns about AATD results from a sample of married adults in the Alpha-1 Research Registry (N = 130). A five-class model was identified, and the subgroups were consistent with existing spousal-communication typologies. This study also showed that genetic beliefs (e.g., genetic stigma), emotions, and experiences (e.g., insurance difficulties) covaried with membership in particular subgroups. Understanding these differences can serve as the foundation for the creation of effective, targeted communications interventions to address the specific needs and conversational patterns of different kinds of couples. PMID:24177906
Functional Analysis With a Barcoder Yeast Gene Overexpression System
Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.
2012-01-01
Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238
Porter, Joseph J; Mehl, Ryan A
2018-01-01
Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.
Martin, Richard M.; Geybels, Milan S.; Stanford, Janet L.; Shui, Irene; Eeles, Rosalind; Easton, Doug; Kote‐Jarai, Zsofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G.; Travis, Ruth C; Neal, David; Pashayan, Nora; Khaw, Kay‐Tee; Blot, William; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon‐Albright, Lisa; Brenner, Hermann; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Donovan, Jenny; Munafò, Marcus R.
2016-01-01
Coffee consumption has been shown in some studies to be associated with lower risk of prostate cancer. However, it is unclear if this association is causal or due to confounding or reverse causality. We conducted a Mendelian randomisation analysis to investigate the causal effects of coffee consumption on prostate cancer risk and progression. We used two genetic variants robustly associated with caffeine intake (rs4410790 and rs2472297) as proxies for coffee consumption in a sample of 46,687 men of European ancestry from 25 studies in the PRACTICAL consortium. Associations between genetic variants and prostate cancer case status, stage and grade were assessed by logistic regression and with all‐cause and prostate cancer‐specific mortality using Cox proportional hazards regression. There was no clear evidence that a genetic risk score combining rs4410790 and rs2472297 was associated with prostate cancer risk (OR per additional coffee increasing allele: 1.01, 95% CI: 0.98,1.03) or having high‐grade compared to low‐grade disease (OR: 1.01, 95% CI: 0.97,1.04). There was some evidence that the genetic risk score was associated with higher odds of having nonlocalised compared to localised stage disease (OR: 1.03, 95% CI: 1.01, 1.06). Amongst men with prostate cancer, there was no clear association between the genetic risk score and all‐cause mortality (HR: 1.00, 95% CI: 0.97,1.04) or prostate cancer‐specific mortality (HR: 1.03, 95% CI: 0.98,1.08). These results, which should have less bias from confounding than observational estimates, are not consistent with a substantial effect of coffee consumption on reducing prostate cancer incidence or progression. PMID:27741566
Olsson, Mia; Tintle, Linda; Kierczak, Marcin; Perloski, Michele; Tonomura, Noriko; Lundquist, Andrew; Murén, Eva; Fels, Max; Tengvall, Katarina; Pielberg, Gerli; Dufaure de Citres, Caroline; Dorso, Laetitia; Abadie, Jérôme; Hanson, Jeanette; Thomas, Anne; Leegwater, Peter; Hedhammar, Åke; Lindblad-Toh, Kerstin; Meadows, Jennifer R. S.
2013-01-01
Autoinflammatory disease (AID) manifests from the dysregulation of the innate immune system and is characterised by systemic and persistent inflammation. Clinical heterogeneity leads to patients presenting with one or a spectrum of phenotypic signs, leading to difficult diagnoses in the absence of a clear genetic cause. We used separate genome-wide SNP analyses to investigate five signs of AID (recurrent fever, arthritis, breed specific secondary dermatitis, otitis and systemic reactive amyloidosis) in a canine comparative model, the pure bred Chinese Shar-Pei. Analysis of 255 DNA samples revealed a shared locus on chromosome 13 spanning two peaks of association. A three-marker haplotype based on the most significant SNP (p<2.6×10−8) from each analysis showed that one haplotypic pair (H13-11) was present in the majority of AID individuals, implicating this as a shared risk factor for all phenotypes. We also noted that a genetic signature (F ST) distinguishing the phenotypic extremes of the breed specific Chinese Shar-Pei thick and wrinkled skin, flanked the chromosome 13 AID locus; suggesting that breed development and differentiation has played a parallel role in the genetics of breed fitness. Intriguingly, a potential modifier locus for amyloidosis was revealed on chromosome 14, and an investigation of candidate genes from both this and the chromosome 13 regions revealed significant (p<0.05) renal differential expression in four genes previously implicated in kidney or immune health (AOAH, ELMO1, HAS2 and IL6). These results illustrate that phenotypic heterogeneity need not be a reflection of genetic heterogeneity, and that genetic modifiers of disease could be masked if syndromes were not first considered as individual clinical signs and then as a sum of their component parts. PMID:24130694
Varela, Miguel A; Curtis, Helen J; Douglas, Andrew GL; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew JA
2016-01-01
Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets. PMID:25990798
Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A
2016-02-01
Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.
Pappas, Derek J; Marin, Wesley; Hollenbach, Jill A; Mack, Steven J
2016-03-01
Bridging ImmunoGenomic Data-Analysis Workflow Gaps (BIGDAWG) is an integrated data-analysis pipeline designed for the standardized analysis of highly-polymorphic genetic data, specifically for the HLA and KIR genetic systems. Most modern genetic analysis programs are designed for the analysis of single nucleotide polymorphisms, but the highly polymorphic nature of HLA and KIR data require specialized methods of data analysis. BIGDAWG performs case-control data analyses of highly polymorphic genotype data characteristic of the HLA and KIR loci. BIGDAWG performs tests for Hardy-Weinberg equilibrium, calculates allele frequencies and bins low-frequency alleles for k×2 and 2×2 chi-squared tests, and calculates odds ratios, confidence intervals and p-values for each allele. When multi-locus genotype data are available, BIGDAWG estimates user-specified haplotypes and performs the same binning and statistical calculations for each haplotype. For the HLA loci, BIGDAWG performs the same analyses at the individual amino-acid level. Finally, BIGDAWG generates figures and tables for each of these comparisons. BIGDAWG obviates the error-prone reformatting needed to traffic data between multiple programs, and streamlines and standardizes the data-analysis process for case-control studies of highly polymorphic data. BIGDAWG has been implemented as the bigdawg R package and as a free web application at bigdawg.immunogenomics.org. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System
Kellner, Ronny; Vollmeister, Evelyn; Feldbrügge, Michael; Begerow, Dominik
2011-01-01
The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities. PMID:22242007
Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia
2010-03-01
The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.
Y chromosome STR typing in crime casework.
Roewer, Lutz
2009-01-01
Since the beginning of the nineties the field of forensic Y chromosome analysis has been successfully developed to become commonplace in laboratories working in crime casework all over the world. The ability to identify male-specific DNA renders highly variable Y-chromosomal polymorphisms, the STR sequences, an invaluable addition to the standard panel of autosomal loci used in forensic genetics. The male-specificity makes the Y chromosome especially useful in cases of male/female cell admixture, namely in sexual assault cases. On the other hand, the haploidy and patrilineal inheritance complicates the interpretation of a Y-STR match, because male relatives share for several generations an identical Y-STR profile. Since paternal relatives tend to live in the geographic and cultural territory of their ancestors, the Y chromosome analysis has a potential to make inferences on the population of origin of a given DNA profile. This review addresses the fields of application of Y chromosome haplotyping, the interpretation of results, databasing efforts and population genetics aspects.
Bhatti, Shahzad; Aslamkhan, M; Abbas, Sana; Attimonelli, Marcella; Aydin, Hikmet Hakan; de Souza, Erica Martinha Silva
2017-09-01
Due to its geo strategic position at the crossroad of Asia, Pakistan has gained crucial importance of playing its pivotal role in subsequent human migratory events, both prehistoric and historic. This human movement became possible through an ancient overland network of trails called "The Silk Route" linking Asia Minor, Middle East China, Central Asia and Southeast Asia. This study was conducted to analyze complete mitochondrial control region samples of 100 individuals of four major Pashtun tribes namely, Bangash, Khattak, Mahsuds and Orakzai in the province of Khyber Pakhtunkhwa, Pakistan. All Pashtun tribes revealed high genetic diversity which is comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis and phylogenetic analysis. The results revealed that Pashtun are the composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasive movements and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroups M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Moreover, we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) pointed to a genetic connection of Jewish conglomeration in Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.
Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W
2017-07-01
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Tansey, Katherine E; Guipponi, Michel; Perroud, Nader; Bondolfi, Guido; Domenici, Enrico; Evans, David; Hall, Stephanie K; Hauser, Joanna; Henigsberg, Neven; Hu, Xiaolan; Jerman, Borut; Maier, Wolfgang; Mors, Ole; O'Donovan, Michael; Peters, Tim J; Placentino, Anna; Rietschel, Marcella; Souery, Daniel; Aitchison, Katherine J; Craig, Ian; Farmer, Anne; Wendland, Jens R; Malafosse, Alain; Holmans, Peter; Lewis, Glyn; Lewis, Cathryn M; Stensbøl, Tine Bryan; Kapur, Shitij; McGuffin, Peter; Uher, Rudolf
2012-01-01
It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10(-8)). No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10(-8)) were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.
Liu, Dajiang J; Leal, Suzanne M
2012-10-05
Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner's curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner's curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
149 HCV AND lymphoma: Genetic and epigenetic factors
Zignego, AL; Gragnani, L; Fognani, E; Piluso, A
2014-01-01
Over 180 million people worldwide are chronically infected with the hepatitis C virus (HCV). HCV infection is a major cause for hepatocellular carcinoma (HCC), moreover the association with B-cell lymphoproliferative disorders (LPDs) like mixed cryoglobulinemia (MC) or B-cell non-Hodgkin lymphoma (B-NHL) is undisputed. The mechanisms by which HCV contributes to LPD development are still poorly understood. Available data suggest that the viral infection may induce LPDs through a multifactorial and multistep process that involves the sustained activation of B cells, the abnormal and prolonged B cell survival, and genetic and/or epigenetic factors. Concerning genetic factors, different authors reported an association between specific HLA clusters or B-cell activating factor promoter genotype and a higher risk of developing MC and lymphoma. In addition, the results of a large, ongoing genome wide association study (GWAS) will probably allow the identification of specific genetic profile of HCV patients with LPDs. Furthermore, microRNAs (miRNAs) can give a major contribution to the pathogenesis of several neoplastic, lymphoproliferative diseases and it is conceivable their involvement in the pathogenesis of HCV-related LPDs. We recently showed that specific miRNAs were differently modulated in PBMCs from HCV patients who developed MC and/or NHL. In addition, HCV patients who developed HCC, showed a differential miRNAs regulation. In conclusion, available data suggest that the genetic/epigenetic analysis of HCV-related cancerogenesis is of great usefulness in both the pathogenetic and clinical/translational areas possibly allowing the definition of diagnostic/prognostic markers for early detection of lymphatic or hepatic cancer.
Inbreeding Depression and Male Survivorship in Drosophila: Implications for Senescence Theory
Swindell, William R.; Bouzat, Juan L.
2006-01-01
The extent to which inbreeding depression affects longevity and patterns of survivorship is an important issue from several research perspectives, including evolutionary biology, conservation biology, and the genetic analysis of quantitative traits. However, few previous inbreeding depression studies have considered longevity as a focal life-history trait. We maintained laboratory populations of Drosophila melanogaster at census population sizes of 2 and 10 male-female pairs for up to 66 generations and performed repeated assays of male survivorship throughout this time period. On average, significant levels of inbreeding depression were observed for median life span and age-specific mortality. For age-specific mortality, the severity of inbreeding depression increased over the life span. We found that a baseline inbreeding load of 0.307 lethal equivalents per gamete affected age-specific mortality, and that this value increased at a rate of 0.046 per day of the life span. With respect to some survivorship parameters, the differentiation of lineages was nonlinear with respect to the inbreeding coefficient, which suggested that nonadditive genetic variation contributed to variation among lineages. These findings provide insights into the genetic basis of longevity as a quantitative trait and have implications regarding the mutation-accumulation evolutionary explanation of senescence. PMID:16204222
Genetics of solvent-producing clostridia. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Specific Aims 1 and 2 of the original project proposal were specifically addressed during this project period. This involved the development of the pCAK1 phagemid delivery vector, refinement of the C. acetobutylicum electroporation protocol, selection and characterization of the engB cellulase gene from C. cellulovorans and the introduction and successful expression of this heterologous engB gene from C. cellulovorans in C. acetobutylicum. The successful expression of a heterologous engB gene from C. cellulovorans in C. acetobutylicum ATCC 824 has important industrial significance for the utilization of cellulose by this ABE fermentation microorganism. Conversion efficiency testing of the developed recombinant strainsmore » in batch and continuous culture (Specific Aim 3) will be carried out once suitable strains have been developed which can utilize cellulose as sole carbon source. The functionality of pCAK1 in the E. coli host system, especially in generating ssDNA, in the absence of impairing E. coli cell viability, together with successful introduction of pCAK1 into C. acetobutylicum and C. perfringens is the basis for the construction of a M13-like genetic system for the genus Clostridium and is expected to allow for more sophisticated molecular genetic analysis of this genus.« less
Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N.; Jones, Byron C.; Lu, Lu; Wang, Xusheng
2018-01-01
Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses. PMID:29674951
Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses
Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso
2011-01-01
Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320
Morrison, Jack; Watts, Giles; Hobbs, Glyn; Dawnay, Nick
2018-04-01
Field based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now possible for enforcement officers to generate a crime scene DNA profile which can then be matched to a reference or database profile. The introduction of these novel genetic platforms also allows for further development of new molecular assays aimed at answering the more traditional questions relating to body fluid identity and species detection. The current drive for field-based molecular tools is in response to the needs of the criminal justice system and enforcement agencies, and promises a step-change in how forensic evidence is processed. However, the adoption of such systems by the law enforcement community does not represent a new strategy in the way forensic science has integrated previous novel approaches. Nor do they automatically represent a threat to the quality control and assurance practices that are central to the field. This review examines the historical need and subsequent research and developmental breakthroughs in field-based forensic analysis over the past two decades with particular focus on genetic methods Emerging technologies from a range of scientific fields that have potential applications in forensic analysis at the crime scene are identified and associated issues that arise from the shift from laboratory into operational field use are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Gender Differences in Genetic Risk Profiles for Cardiovascular Disease
Silander, Kaisa; Saarela, Olli; Ripatti, Samuli; Auro, Kirsi; Karvanen, Juha; Kulathinal, Sangita; Niemelä, Matti; Ellonen, Pekka; Vartiainen, Erkki; Jousilahti, Pekka; Saarela, Janna; Kuulasmaa, Kari; Evans, Alun; Perola, Markus; Salomaa, Veikko; Peltonen, Leena
2008-01-01
Background Cardiovascular disease (CVD) incidence, complications and burden differ markedly between women and men. Although there is variation in the distribution of lifestyle factors between the genders, they do not fully explain the differences in CVD incidence and suggest the existence of gender-specific genetic risk factors. We aimed to estimate whether the genetic risk profiles of coronary heart disease (CHD), ischemic stroke and the composite end-point of CVD differ between the genders. Methodology/Principal Findings We studied in two Finnish population cohorts, using the case-cohort design the association between common variation in 46 candidate genes and CHD, ischemic stroke, CVD, and CVD-related quantitative risk factors. We analyzed men and women jointly and also conducted genotype-gender interaction analysis. Several allelic variants conferred disease risk for men and women jointly, including rs1801020 in coagulation factor XII (HR = 1.31 (1.08–1.60) for CVD, uncorrected p = 0.006 multiplicative model). Variant rs11673407 in the fucosyltransferase 3 gene was strongly associated with waist/hip ratio (uncorrected p = 0.00005) in joint analysis. In interaction analysis we found statistical evidence of variant-gender interaction conferring risk of CHD and CVD: rs3742264 in the carboxypeptidase B2 gene, p(interaction) = 0.009 for CHD, and rs2774279 in the upstream stimulatory factor 1 gene, p(interaction) = 0.007 for CHD and CVD, showed strong association in women but not in men, while rs2069840 in interleukin 6 gene, p(interaction) = 0.004 for CVD, showed strong association in men but not in women (uncorrected p-values). Also, two variants in the selenoprotein S gene conferred risk for ischemic stroke in women, p(interaction) = 0.003 and 0.007. Importantly, we identified a larger number of gender-specific effects for women than for men. Conclusions/Significance A false discovery rate analysis suggests that we may expect half of the reported findings for combined gender analysis to be true positives, while at least third of the reported genotype-gender interaction results are true positives. The asymmetry in positive findings between the genders could imply that genetic risk loci for CVD are more readily detectable in women, while for men they are more confounded by environmental/lifestyle risk factors. The possible differences in genetic risk profiles between the genders should be addressed in more detail in genetic studies of CVD, and more focus on female CVD risk is also warranted in genome-wide association studies. PMID:18974842
Chen, Kaixu; Ablimit, Abdurahman; Ling, Fengjun; Wu, Weiwei; Shan, Wenjuan; Qin, Wenbei; Keweier, Tuerhong; Zuo, Hongli; Zhang, Fuchun; Ma, Zhenghai; Zheng, Xiufen
2014-01-01
The Keriyan people live in an isolated village in the Taklimakan Desert in Xinjiang, Western China. The origin and migration of the Keriyans remains unclear. We studied paternal and maternal genetic variance through typing Y-STR loci and sequencing the complete control region of the mtDNA and compared them with other adjacent populations. Data show that the Keriyan have relatively low genetic diversity on both the paternal and maternal lineages and possess both European and Asian specific haplogroups, indicating Keriyan is an admixture population of West and East. There is a gender-bias in the extent of contribution from Europe vs. Asia to the Keriyan gene pool. Keriyans have more genetic affinity to Uyghurs than to Tibetans. The Keriyan are not the descendants of the Guge Tibetans.
The genetics of pre-eclampsia and other hypertensive disorders of pregnancy
Williams, Paula J.; Broughton Pipkin, Fiona
2011-01-01
Hypertension is the most frequent medical complication occurring during pregnancy. In this chapter, we aim to address the genetic contribution to these disorders, with specific focus on pre-eclampsia. The pathogenic mechanisms underlying pre-eclampsia remain to be elucidated; however, immune maladaptation, inadequate placental development and trophoblast invasion, placental ischaemia, oxidative stress and thrombosis are all thought to represent key factors in the development of disease. Furthermore, all of these components have genetic factors that may be involved in the pathogenic changes occurring. The familial nature of pre-eclampsia has been known for many years and, as such, extensive genetic research has been carried out in this area using strategies that include candidate gene studies and linkage analysis. Interactions between fetal and maternal genotypes, the effect of environmental factors, and epistasis will also be considered. PMID:21429808
A practical guide to environmental association analysis in landscape genomics.
Rellstab, Christian; Gugerli, Felix; Eckert, Andrew J; Hancock, Angela M; Holderegger, Rolf
2015-09-01
Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next-generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced-representation sequencing, candidate-gene approaches, linearity of allele-environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies. © 2015 John Wiley & Sons Ltd.
An efficient Bayesian meta-analysis approach for studying cross-phenotype genetic associations
Majumdar, Arunabha; Haldar, Tanushree; Bhattacharya, Sourabh; Witte, John S.
2018-01-01
Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy). For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes) that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC) technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package ‘CPBayes’ implementing the proposed method. PMID:29432419
Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments
Gifford, Miriam L.; Banta, Joshua A.; Katari, Manpreet S.; Hulsmans, Jo; Chen, Lisa; Ristova, Daniela; Tranchina, Daniel; Purugganan, Michael D.; Coruzzi, Gloria M.; Birnbaum, Kenneth D.
2013-01-01
Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment. PMID:24039603
A genomic view of food-related and probiotic Enterococcus strains
Suárez, Nadia; Hormigo, Ricardo; Fadda, Silvina; Saavedra, Lucila
2017-01-01
Abstract The study of enterococcal genomes has grown considerably in recent years. While special attention is paid to comparative genomic analysis among clinical relevant isolates, in this study we performed an exhaustive comparative analysis of enterococcal genomes of food origin and/or with potential to be used as probiotics. Beyond common genetic features, we especially aimed to identify those that are specific to enterococcal strains isolated from a certain food-related source as well as features present in a species-specific manner. Thus, the genome sequences of 25 Enterococcus strains, from 7 different species, were examined and compared. Their phylogenetic relationship was reconstructed based on orthologous proteins and whole genomes. Likewise, markers associated with a successful colonization (bacteriocin genes and genomic islands) and genome plasticity (phages and clustered regularly interspaced short palindromic repeats) were investigated for lifestyle specific genetic features. At the same time, a search for antibiotic resistance genes was carried out, since they are of big concern in the food industry. Finally, it was possible to locate 1617 FIGfam families as a core proteome universally present among the genera and to determine that most of the accessory genes code for hypothetical proteins, providing reasonable hints to support their functional characterization. PMID:27773878
Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho
2005-08-12
We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.
The genetic architecture of maize (Zea mays L.) kernel weight determination.
Alvarez Prado, Santiago; López, César G; Senior, M Lynn; Borrás, Lucas
2014-09-18
Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. Copyright © 2014 Alvarez Prado et al.
Liscum, E.; Hangarter, R. P.
1993-01-01
Hypocotyls of dark-grown Arabidopsis seedlings exhibit strong negative gravitropism, whereas in red light, gravitropism is strongly reduced. Red/far-red light-pulse experiments and analysis of specific phytochrome-deficient mutants indicate that the red-absorbing (Pr) form of phytochrome B regulates normal hypocotyl gravitropism in darkness, and depletion of Pr by photoconversion to the far-red-absorbing form attenuates hypocotyl gravitropism. These studies provide genetic evidence that the Pr form of phytochrome has an active function in plant development. PMID:12231913
2006-07-01
Jeffrey S. S., Botstein D ., Brown P . O. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet., 23: 41-46, 1999 3...Duggan D . J., Bittner M., Chen Y., Meltzer P ., Trent J. M. Expression profiling using cDNA microarrays. Nat. Genet., 21: 10-14, 1999 4. Oh J. M...1999 5. Golub T. R., Slonim D . K., Tamayo P ., Huard C., Gaasenbeek M., Mesirov J. P ., Coller H., Loh M. L., Downing J. R., Caligiuri M. A
Tillmar, Andreas O; Kling, Daniel; Butler, John M; Parson, Walther; Prinz, Mechthild; Schneider, Peter M; Egeland, Thore; Gusmão, Leonor
2017-07-01
Forensic genetic laboratories perform an increasing amount of genetic analyses of the X chromosome, in particular to solve complex cases of kinship analysis. For some biological relationships X-chromosomal markers can be more informative than autosomal markers, and there are a large number of markers, methods and databases that have been described for forensic use. Due to their particular mode of inheritance, and their physical location on a single chromosome, some specific considerations are required when estimating the weight of evidence for X-chromosomal marker DNA data. The DNA Commission of the International Society for Forensic Genetics (ISFG) hereby presents guidelines and recommendations for the use of X-chromosomal markers in kinship analysis with a special focus on the biostatistical evaluation. Linkage and linkage disequilibrium (association of alleles) are of special importance for such evaluations and these concepts and the implications for likelihood calculations are described in more detail. Furthermore it is important to use appropriate computer software that accounts for linkage and linkage disequilibrium among loci, as well as for mutations. Even though some software exist, there is still a need for further improvement of dedicated software. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-channel acoustic recording and automated analysis of Drosophila courtship songs
2013-01-01
Background Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs. Results Our novel hardware design enables recording of low amplitude sounds in most laboratory environments. We demonstrate the power of this system by collecting, segmenting and analyzing over 18 hours of courtship song from 75 males from five wild-type strains of Drosophila melanogaster. Our analysis reveals previously undetected modulation of courtship song features and extensive natural genetic variation for most components of courtship song. Despite having a large dataset with sufficient power to detect subtle modulations of song, we were unable to identify previously reported periodic rhythms in the inter-pulse interval of song. We provide detailed instructions for assembling the hardware and for using our open-source segmentation software. Conclusions Analysis of a large dataset of acoustic signals from Drosophila melanogaster provides novel insight into the structure and dynamics of species-specific courtship songs. Our new system for recording and analyzing fly acoustic signals should therefore greatly accelerate future studies of the genetics, neurobiology and evolution of courtship song. PMID:23369160
Benyamin, Beben; He, Ji; Zhao, Qiongyi; Gratten, Jacob; Garton, Fleur; Leo, Paul J; Liu, Zhijun; Mangelsdorf, Marie; Al-Chalabi, Ammar; Anderson, Lisa; Butler, Timothy J; Chen, Lu; Chen, Xiang-Ding; Cremin, Katie; Deng, Hong-Weng; Devine, Matthew; Edson, Janette; Fifita, Jennifer A; Furlong, Sarah; Han, Ying-Ying; Harris, Jessica; Henders, Anjali K; Jeffree, Rosalind L; Jin, Zi-Bing; Li, Zhongshan; Li, Ting; Li, Mengmeng; Lin, Yong; Liu, Xiaolu; Marshall, Mhairi; McCann, Emily P; Mowry, Bryan J; Ngo, Shyuan T; Pamphlett, Roger; Ran, Shu; Reutens, David C; Rowe, Dominic B; Sachdev, Perminder; Shah, Sonia; Song, Sharon; Tan, Li-Jun; Tang, Lu; van den Berg, Leonard H; van Rheenen, Wouter; Veldink, Jan H; Wallace, Robyn H; Wheeler, Lawrie; Williams, Kelly L; Wu, Jinyu; Wu, Xin; Yang, Jian; Yue, Weihua; Zhang, Zong-Hong; Zhang, Dai; Noakes, Peter G; Blair, Ian P; Henderson, Robert D; McCombe, Pamela A; Visscher, Peter M; Xu, Huji; Bartlett, Perry F; Brown, Matthew A; Wray, Naomi R; Fan, Dongsheng
2017-09-20
Cross-ethnic genetic studies can leverage power from differences in disease epidemiology and population-specific genetic architecture. In particular, the differences in linkage disequilibrium and allele frequency patterns across ethnic groups may increase gene-mapping resolution. Here we use cross-ethnic genetic data in sporadic amyotrophic lateral sclerosis (ALS), an adult-onset, rapidly progressing neurodegenerative disease. We report analyses of novel genome-wide association study data of 1,234 ALS cases and 2,850 controls. We find a significant association of rs10463311 spanning GPX3-TNIP1 with ALS (p = 1.3 × 10 -8 ), with replication support from two independent Australian samples (combined 576 cases and 683 controls, p = 1.7 × 10 -3 ). Both GPX3 and TNIP1 interact with other known ALS genes (SOD1 and OPTN, respectively). In addition, GGNBP2 was identified using gene-based analysis and summary statistics-based Mendelian randomization analysis, although further replication is needed to confirm this result. Our results increase our understanding of genetic aetiology of ALS.Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease. Here, Wray and colleagues identify association of the GPX3-TNIP1 locus with ALS using cross-ethnic meta-analyses.
Genetic approaches in comparative and evolutionary physiology
Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore
2015-01-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111
Genetic approaches in comparative and evolutionary physiology.
Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore
2015-08-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.
Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease.
Krall, Paola; Pineda, Cristina; Ruiz, Patricia; Ejarque, Laia; Vendrell, Teresa; Camacho, Juan Antonio; Mendizábal, Santiago; Oliver, Artur; Ballarín, José; Torra, Roser; Ars, Elisabet
2014-02-01
Genetic diagnosis of autosomal recessive polycystic kidney disease (ARPKD) is challenging due to the length and allelic heterogeneity of the PKHD1 gene. Mutations appear to be clustered at specific exons, depending on the geographic origin of the patient. We aimed to identify the PKHD1 exons most likely mutated in Spanish ARPKD patients. Mutation analysis was performed in 50 ARPKD probands and nine ARPKD-suspicious patients by sequencing PKHD1 exons arranged by their reported mutation frequency. Haplotypes containing the most frequent mutations were analyzed. Other PKD genes (HNF1B, PKD1, PKD2) were sequenced in PKHD1-negative cases. Thirty-six different mutations (concentrated in 24 PKHD1 exons) were detected, giving a mutation detection rate of 86%. The screening of five exons (58, 32, 34, 36, 37) yielded a 54% chance of detecting one mutation; the screening of nine additional exons (3, 9, 39, 61, 5, 22, 26, 41, 57) increased the chance to 76%. The c.9689delA mutation was present in 17 (34%) patients, all of whom shared the same haplotype. Two HNF1B mutations and one PKD1 variant were detected in negative cases. Establishing a PKHD1 exon mutation profile in a specific population and starting the analysis with the most likely mutated exons might significantly enhance the efficacy of genetic testing in ARPKD. Analysis of other PKD genes might be considered, especially in suspicious cases.
Auld, Stuart K. J. R; Edel, Kai H.; Little, Tom J.
2013-01-01
In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. PMID:23025616
Duarte, Olívia M P; Gaiotto, Fernanda A; Costa, Marco A
2014-01-01
Stingless bees are important pollinators that are severely threatened by anthropic interference, resulting in a strong population decline. Scaptotrigona xanthotricha has a wide distribution in the Atlantic Rainforest, ranging from the northeastern state of Bahia to Santa Catarina in southern Brazil. To understand the genetic structure of S. xanthotricha, 12 species-specific microsatellite loci were analyzed in 42 colonies sampled throughout the species range. The results indicated 5 distinct clusters throughout the sampled area with high rates of genetic diversity, and the greatest diversity was found in southern Bahia. Greater differentiation was observed between samples from the extremes of the distribution, with an F ST value of 0.189 between cluster 1 and 5. The genetic differentiation analysis for all loci had an F ST value of 0.113, a result that is consistent with the analysis of molecular variance, which revealed 7.72% of the variation occurring between groups. The Mantel correlation between a genetic differentiation matrix and a geographic distance matrix (r = 0.184, P = 0.043) indicated a tendency toward increased differentiation with increased distance. This study revealed the profile of differentiation and distribution of genetic diversity in this species and indicates parameters that should be considered in future taxonomic revisions and activities for its management and conservation. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis
NASA Astrophysics Data System (ADS)
Qiao, Hongjin; Liu, Xiangquan; Zhang, Xijia; Jiang, Haibin; Wang, Jiying; Zhang, Limin
2013-03-01
Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa, Rhizostomatidae). One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations. The polymorphic ratio, Shannon's diversity index and average heterozygosity were 70.3%, 0.346 and 0.228 for the white hatchery population, 74.3%, 0.313, and 0.201 for the red hatchery population, 79.3%, 0.349, and 0.224 for the Jiangsu wild population, and 74.9%, 0.328 and 0.210 for the Penglai wild population, respectively. Thus, all populations had a relatively high level of genetic diversity. A specific band was identified that could separate the white from the red hatchery population. There was 84.85% genetic differentiation within populations. Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided. For the hatchery populations, the white and red populations clustered separately; however, for the wild populations, Penglai and Jiangsu populations clustered together. The genetic diversity at the clone level was also determined. Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations, which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing. These findings will benefit the artificial seeding and conservation of the germplasm resources.
Siani, Merav; Assaraf, Orit Ben-Zvi
2016-10-01
The aim of this study is to draw a picture of the concerns that guide the decision making of Israeli religious undergraduate students and the complex considerations they take into account while facing the need to have genetic testing or to attend a genetic counseling session. We examined how the religious affiliation of the students influences their perceptions toward genetics and how these are expressed. Qualitative data were collected from 51 semi-structured interviews with students, in which recurring themes were identified using 'thematic analysis.' The codes from the thematic analysis were obtained according to 'grounded theory'. Our results show that religious undergraduate students' decision making in these issues is influenced by factors that fall under three main categories: knowledge and perceptions, values, and norms. In order to include all the components of influence, we created the Triple C model: "Culture influences Choices towards genetic Counseling" which aims to generalize the complex decision making considerations that we detected. Our model places religion, as part of culture, as its central point of influence that impacts all three of the main categories we detected. It also traces the bidirectional influences that each of these main categories have on one another. Using this model may help identify the sociocultural differences between different types of patients, helping genetic counselors to better assist them in addressing their genetic status by tailoring the counseling more specifically to the patient's cultural uniqueness.
Juskevicius, D; Lorber, T; Gsponer, J; Perrina, V; Ruiz, C; Stenner-Liewen, F; Dirnhofer, S; Tzankov, A
2016-12-01
Recurrences of diffuse large B-cell lymphomas (DLBCL) result in significant morbidity and mortality, but their underlying genetic and biological mechanisms are unclear. Clonal relationship in DLBCL relapses so far is mostly addressed by the investigation of immunoglobulin (IG) rearrangements, therefore, lacking deeper insights into genome-wide lymphoma evolution. We studied mutations and copy number aberrations in 20 paired relapsing and 20 non-relapsing DLBCL cases aiming to test the clonal relationship between primaries and relapses to track tumors' genetic evolution and to investigate the genetic background of DLBCL recurrence. Three clonally unrelated DLBCL relapses were identified (15%). Also, two distinct patterns of genetic evolution in clonally related relapses were detected as follows: (1) early-divergent/branching evolution from a common progenitor in 6 patients (30%), and (2) late-divergent/linear progression of relapses in 11 patients (65%). Analysis of recurrent genetic events identified potential early drivers of lymphomagenesis (KMT2D, MYD88, CD79B and PIM1). The most frequent relapse-specific events were additional mutations in KMT2D and alterations of MEF2B. SOCS1 mutations were exclusive to non-relapsing DLBCL, whereas primaries of relapsing DLBCL more commonly displayed gains of 10p15.3-p12.1 containing the potential oncogenes PRKCQ, GATA3, MLLT10 and ABI1. Altogether, our study expands the knowledge on clonal relationship, genetic evolution and mutational basis of DLBCL relapses.
Hilker, Rikke; Helenius, Dorte; Fagerlund, Birgitte; Skytthe, Axel; Christensen, Kaare; Werge, Thomas M; Nordentoft, Merete; Glenthøj, Birte
2017-04-01
Early age at illness onset has been viewed as an important liability marker for schizophrenia, which may be associated with an increased genetic vulnerability. A twin approach can be valuable, because it allows for the investigation of specific illness markers in individuals with a shared genetic background. We linked nationwide registers to identify a cohort of twin pairs born in Denmark from 1951 to 2000 (N=31,524 pairs), where one or both twins had a diagnosis in the schizophrenia spectrum. We defined two groups consisting of; N=788 twin pairs (affected with schizophrenia spectrum) and a subsample of N=448 (affected with schizophrenia). Survival analysis was applied to investigate the effect of age at illness onset. We found that early age at illness onset compared to later onset in the first diagnosed twin can be considered a major risk factor for developing schizophrenia in the second twin. Additionally, we found that the stronger genetic component in MZ twins compared to DZ twins is manifested in the proximity of assigned diagnosis within pairs. Early onset schizophrenia could be linked to a more severe genetic predisposition, indicating that age might be perceived as a clinical marker for genetic vulnerability for the illness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Luiselli, D; Simoni, L; Tarazona-Santos, E; Pastor, S; Pettener, D
2000-09-01
A sample of 141 Quechua-speaking individuals of the population of Tayacaja, in the Peruvian Central Andes, was typed for the following 16 genetic systems: ABO, Rh, MNSs, P, Duffy, AcP1, EsD, GLOI, PGM1, AK, 6-PGD, Hp, Gc, Pi, C3, and Bf. The genetic structure of the population was analyzed in relation to the allele frequencies available for other South Amerindian populations, using a combination of multivariate and multivariable techniques. Spatial autocorrelation analysis was performed independently for 13 alleles to identify patterns of gene flow in South America as a whole and in more specific geographic regions. We found a longitudinal cline for the AcP1*a and EsD*1 alleles which we interpreted as the result of an ancient longitudinal expansion of a putative ancestral population of modern Amerindians. Monmonnier's algorithm, used to identify areas of sharp genetic discontinuity, suggested a clear east-west differentiation of native South American populations, which was confirmed by analysis of the distribution of genetic distances. We suggest that this pattern of genetic structures is the consequence of the independent peopling of western and eastern South America or to low levels of gene flow between these regions, related to different environmental and demographic histories. Copyright 2000 Wiley-Liss, Inc.
Peixoto-Junior, R F; Creste, S; Landell, M G A; Nunes, D S; Sanguino, A; Campos, M F; Vencovsky, R; Tambarussi, E V; Figueira, A
2014-09-26
Brown rust (causal agent Puccinia melanocephala) is an important sugarcane disease that is responsible for large losses in yield worldwide. Despite its importance, little is known regarding the genetic diversity of this pathogen in the main Brazilian sugarcane cultivation areas. In this study, we characterized the genetic diversity of 34 P. melanocephala isolates from 4 Brazilian states using loci identified from an enriched simple sequence repeat (SSR) library. The aggressiveness of 3 isolates from major sugarcane cultivation areas was evaluated by inoculating an intermediately resistant and a susceptible cultivar. From the enriched library, 16 SSR-specific primers were developed, which produced scorable alleles. Of these, 4 loci were polymorphic and 12 were monomorphic for all isolates evaluated. The molecular characterization of the 34 isolates of P. melanocephala conducted using 16 SSR loci revealed the existence of low genetic variability among the isolates. The average estimated genetic distance was 0.12. Phenetic analysis based on Nei's genetic distance clustered the isolates into 2 major groups. Groups I and II included 18 and 14 isolates, respectively, and both groups contained isolates from all 4 geographic regions studied. Two isolates did not cluster with these groups. It was not possible to obtain clusters according to location or state of origin. Analysis of disease severity data revealed that the isolates did not show significant differences in aggressiveness between regions.
The Relationship Between Burnout and Occupational Stress in Genetic Counselors.
Johnstone, Brittney; Kaiser, Amy; Injeyan, Marie C; Sappleton, Karen; Chitayat, David; Stephens, Derek; Shuman, Cheryl
2016-08-01
Burnout represents a critical disruption in an individual's relationship with work, resulting in a state of exhaustion in which one's occupational value and capacity to perform are questioned. Burnout can negatively affect an individual's personal life, as well as employers in terms of decreased work quality, patient/client satisfaction, and employee retention. Occupational stress is a known contributor to burnout and occurs as a result of employment requirements and factors intrinsic to the work environment. Empirical research examining genetic counselor-specific burnout is limited; however, existing data suggests that genetic counselors are at increased risk for burnout. To investigate the relationship between occupational stress and burnout in genetic counselors, we administered an online survey to members of three genetic counselor professional organizations. Validated measures included the Maslach Burnout Inventory-General Survey (an instrument measuring burnout on three subscales: exhaustion, cynicism, and professional efficacy) and the Occupational Stress Inventory-Revised (an instrument measuring occupational stress on 14 subscales). Of the 353 respondents, more than 40 % had either considered leaving or left their job role due to burnout. Multiple regression analysis yielded significant predictors for burnout risk. The identified sets of predictors account for approximately 59 % of the variance in exhaustion, 58 % of the variance in cynicism, and 43 % of the variance in professional efficacy. Our data confirm that a significant number of genetic counselors experience burnout and that burnout is correlated with specific aspects of occupational stress. Based on these findings, practice and research recommendations are presented.
Wang, Zheng; Malanoski, Anthony P; Lin, Baochuan; Kidd, Carolyn; Long, Nina C; Blaney, Kate M; Thach, Dzung C; Tibbetts, Clark; Stenger, David A
2008-01-01
Background Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e. human rhinoviruses (HRV) and enteroviruses (HEV) which are frequent causes of FRI. Resequencing Pathogen Microarray technology has demonstrated potential for differential diagnosis of several respiratory pathogens simultaneously, but a high confidence design method to select probes for genetically diverse viruses is lacking. Results Using HRV and HEV as test cases, we assess a general design strategy for detecting and serotyping genetically diverse viruses. A minimal number of probe sequences (26 for HRV and 13 for HEV), which were potentially capable of detecting all serotypes of HRV and HEV, were determined and implemented on the Resequencing Pathogen Microarray RPM-Flu v.30/31 (Tessarae RPM-Flu). The specificities of designed probes were validated using 34 HRV and 28 HEV strains. All strains were successfully detected and identified at least to species level. 33 HRV strains and 16 HEV strains could be further differentiated to serotype level. Conclusion This study provides a fundamental evaluation of simultaneous detection and differential identification of genetically diverse RNA viruses with a minimal number of prototype sequences. The results demonstrated that the newly designed RPM-Flu v.30/31 can provide comprehensive and specific analysis of HRV and HEV samples which implicates that this design strategy will be applicable for other genetically diverse viruses. PMID:19046445
Distel, Marijn A; Trull, Timothy J; Willemsen, Gonneke; Vink, Jacqueline M; Derom, Catherine A; Lynskey, Michael; Martin, Nicholas G; Boomsma, Dorret I
2009-12-15
Recently, the nature of personality disorders and their relationship with normal personality traits has received extensive attention. The five-factor model (FFM) of personality, consisting of the personality traits neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, is one of the proposed models to conceptualize personality disorders as maladaptive variants of continuously distributed personality traits. The present study examined the phenotypic and genetic association between borderline personality and FFM personality traits. Data were available for 4403 monozygotic twins, 4425 dizygotic twins, and 1661 siblings from 6140 Dutch, Belgian, and Australian families. Broad-sense heritability estimates for neuroticism, agreeableness, conscientiousness, extraversion, openness to experience, and borderline personality were 43%, 36%, 43%, 47%, 54%, and 45%, respectively. Phenotypic correlations between borderline personality and the FFM personality traits ranged from .06 for openness to experience to .68 for neuroticism. Multiple regression analyses showed that a combination of high neuroticism and low agreeableness best predicted borderline personality. Multivariate genetic analyses showed the genetic factors that influence individual differences in neuroticism, agreeableness, conscientiousness, and extraversion account for all genetic liability to borderline personality. Unique environmental effects on borderline personality, however, were not completely shared with those for the FFM traits (33% is unique to borderline personality). Borderline personality shares all genetic variation with neuroticism, agreeableness, conscientiousness, and extraversion. The unique environmental influences specific to borderline personality may cause individuals with a specific pattern of personality traits to cross a threshold and develop borderline personality.
Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.
Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong
2014-04-01
Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.
A multivariate twin study of the DSM-IV criteria for antisocial personality disorder.
Kendler, Kenneth S; Aggen, Steven H; Patrick, Christopher J
2012-02-01
Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4291 twins (including both members of 1647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. Phenotypic factor analysis produced evidence for two correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Spurdle, A. B.; Jenkins, T.
1996-01-01
The Lemba are a southern African Bantu-speaking population claiming Jewish ancestry. Allele frequencies at four different Y-specific polymorphic loci, as well as extended-haplotype frequencies that included data from several loci, were analyzed in an attempt to establish the genetic affinities and origins of the Lemba. The results suggest that > or = 50% of the Lemba Y chromosomes are Semitic in origin, approximately 40% are Negroid, and the ancestry of the remainder cannot be resolved. These Y-specific genetic findings are consistent with Lemba oral tradition, and analysis of the history of Jewish people and their association with Africa indicates that the historical facts are not incompatible with theories concerning the origin of the Lemba. PMID:8900243
Pi, Liqun; Li, Xiang; Cao, Yiwei; Wang, Canhua; Pan, Liangwen; Yang, Litao
2015-04-01
Reference materials are important in accurate analysis of genetically modified organism (GMO) contents in food/feeds, and development of novel reference plasmid is a new trend in the research of GMO reference materials. Herein, we constructed a novel multi-targeting plasmid, pSOY, which contained seven event-specific sequences of five GM soybeans (MON89788-5', A2704-12-3', A5547-127-3', DP356043-5', DP305423-3', A2704-12-5', and A5547-127-5') and sequence of soybean endogenous reference gene Lectin. We evaluated the specificity, limit of detection and quantification, and applicability of pSOY in both qualitative and quantitative PCR analyses. The limit of detection (LOD) was as low as 20 copies in qualitative PCR, and the limit of quantification (LOQ) in quantitative PCR was 10 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and Lectin assays were higher than 90%, and the squared regression coefficients (R(2)) were more than 0.999. The quantification bias varied from 0.21% to 19.29%, and the relative standard deviations were from 1.08% to 9.84% in simulated samples analysis. All the results demonstrated that the developed multi-targeting plasmid, pSOY, was a credible substitute of matrix reference materials, and could be used as a reliable reference calibrator in the identification and quantification of multiple GM soybean events.
Schnell, Christian; Shahmoradi, Ali; Wichert, Sven P; Mayerl, Steffen; Hagos, Yohannes; Heuer, Heike; Rossner, Moritz J; Hülsmann, Swen
2015-01-01
Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex.
Specific Abilities May Increment Psychometric g for High Ability Populations
2016-04-14
tend to sort themselves into jobs that are commensurate with their ability level ( McCormick , DeNisi, & Staw, 1979; McCormick , Jeanneret, & Mecham...of Genetic Psychology, 153, 229-230. Specific abilities, g, & high ability populations 14 McCormick , E. J., DeNisi, A. S., & Shaw, J. B... McCormick , E. J., Jeanneret, P. R., & Mecham, R. C. (1972). A study of job characteristics and job dimensions as based on the Position Analysis Questionnaire
Validation of a next-generation sequencing assay for clinical molecular oncology.
Cottrell, Catherine E; Al-Kateb, Hussam; Bredemeyer, Andrew J; Duncavage, Eric J; Spencer, David H; Abel, Haley J; Lockwood, Christina M; Hagemann, Ian S; O'Guin, Stephanie M; Burcea, Lauren C; Sawyer, Christopher S; Oschwald, Dayna M; Stratman, Jennifer L; Sher, Dorie A; Johnson, Mark R; Brown, Justin T; Cliften, Paul F; George, Bijoy; McIntosh, Leslie D; Shrivastava, Savita; Nguyen, Tudung T; Payton, Jacqueline E; Watson, Mark A; Crosby, Seth D; Head, Richard D; Mitra, Robi D; Nagarajan, Rakesh; Kulkarni, Shashikant; Seibert, Karen; Virgin, Herbert W; Milbrandt, Jeffrey; Pfeifer, John D
2014-01-01
Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Molecular reclassification of Crohn's disease: a cautionary note on population stratification.
Maus, Bärbel; Jung, Camille; Mahachie John, Jestinah M; Hugot, Jean-Pierre; Génin, Emmanuelle; Van Steen, Kristel
2013-01-01
Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn's disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn's disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals.
Molecular Reclassification of Crohn’s Disease: A Cautionary Note on Population Stratification
Maus, Bärbel; Jung, Camille; Mahachie John, Jestinah M.; Hugot, Jean-Pierre; Génin, Emmanuelle; Van Steen, Kristel
2013-01-01
Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn’s disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn’s disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals. PMID:24147066
Alvarenga, Janaína Sousa Campos; Ligeiro, Carla Maia; Gontijo, Célia Maria Ferreira; Cortes, Sofia; Campino, Lenea; Vago, Annamaria Ravara; Melo, Maria Norma
2012-01-01
Background Visceral Leishmaniasis (VL) caused by species from the Leishmania donovani complex is the most severe form of the disease, lethal if untreated. VL caused by Leishmania infantum is a zoonosis with an increasing number of human cases and millions of dogs infected in the Old and the New World. In this study, L. infantum (syn. L.chagasi) strains were isolated from human and canine VL cases. The strains were obtained from endemic areas from Brazil and Portugal and their genetic polymorphism was ascertained using the LSSP-PCR (Low-Stringency Single Specific Primer PCR) technique for analyzing the kinetoplastid DNA (kDNA) minicircles hypervariable region. Principal Findings KDNA genetic signatures obtained by minicircle LSSP-PCR analysis of forty L. infantum strains allowed the grouping of strains in several clades. Furthermore, LSSP-PCR profiles of L. infantum subpopulations were closely related to the host origin (human or canine). To our knowledge this is the first study which used this technique to compare genetic polymorphisms among strains of L. infantum originated from both the Old and the New World. Conclusions LSSP-PCR profiles obtained by analysis of L. infantum kDNA hypervariable region of parasites isolated from human cases and infected dogs from Brazil and Portugal exhibited a genetic correlation among isolates originated from the same reservoir, human or canine. However, no association has been detected among the kDNA signatures and the geographical origin of L. infantum strains. PMID:22912862
Atrial Fibrillation Genetic Risk and Ischemic Stroke Mechanisms.
Lubitz, Steven A; Parsons, Owen E; Anderson, Christopher D; Benjamin, Emelia J; Malik, Rainer; Weng, Lu-Chen; Dichgans, Martin; Sudlow, Cathie L; Rothwell, Peter M; Rosand, Jonathan; Ellinor, Patrick T; Markus, Hugh S; Traylor, Matthew
2017-06-01
Atrial fibrillation (AF) is a leading cause of cardioembolic stroke, but the relationship between AF and noncardioembolic stroke subtypes are unclear. Because AF may be unrecognized, and because AF has a substantial genetic basis, we assessed for predisposition to AF across ischemic stroke subtypes. We examined associations between AF genetic risk and Trial of Org 10172 in Acute Stroke Treatment stroke subtypes in 2374 ambulatory individuals with ischemic stroke and 5175 without from the Wellcome Trust Case-Control Consortium 2 using logistic regression. We calculated AF genetic risk scores using single-nucleotide polymorphisms associated with AF in a previous independent analysis across a range of preselected significance thresholds. There were 460 (19.4%) individuals with cardioembolic stroke, 498 (21.0%) with large vessel, 474 (20.0%) with small vessel, and 814 (32.3%) individuals with strokes of undetermined cause. Most AF genetic risk scores were associated with stroke, with the strongest association ( P =6×10 - 4 ) attributed to scores of 944 single-nucleotide polymorphisms (each associated with AF at P <1×10 - 3 in a previous analysis). Associations between AF genetic risk and stroke were enriched in the cardioembolic stroke subset (strongest P =1.2×10 - 9 , 944 single-nucleotide polymorphism score). In contrast, AF genetic risk was not significantly associated with noncardioembolic stroke subtypes. Comprehensive AF genetic risk scores were specific for cardioembolic stroke. Incomplete workups and subtype misclassification may have limited the power to detect associations with strokes of undetermined pathogenesis. Future studies are warranted to determine whether AF genetic risk is a useful biomarker to enhance clinical discrimination of stroke pathogeneses. © 2017 American Heart Association, Inc.
Lauber, Chris
2012-01-01
Virus taxonomy has received little attention from the research community despite its broad relevance. In an accompanying paper (C. Lauber and A. E. Gorbalenya, J. Virol. 86:3890–3904, 2012), we have introduced a quantitative approach to hierarchically classify viruses of a family using pairwise evolutionary distances (PEDs) as a measure of genetic divergence. When applied to the six most conserved proteins of the Picornaviridae, it clustered 1,234 genome sequences in groups at three hierarchical levels (to which we refer as the “GENETIC classification”). In this study, we compare the GENETIC classification with the expert-based picornavirus taxonomy and outline differences in the underlying frameworks regarding the relation of virus groups and genetic diversity that represent, respectively, the structure and content of a classification. To facilitate the analysis, we introduce two novel diagrams. The first connects the genetic diversity of taxa to both the PED distribution and the phylogeny of picornaviruses. The second depicts a classification and the accommodated genetic diversity in a standardized manner. Generally, we found striking agreement between the two classifications on species and genus taxa. A few disagreements concern the species Human rhinovirus A and Human rhinovirus C and the genus Aphthovirus, which were split in the GENETIC classification. Furthermore, we propose a new supergenus level and universal, level-specific PED thresholds, not reached yet by many taxa. Since the species threshold is approached mostly by taxa with large sampling sizes and those infecting multiple hosts, it may represent an upper limit on divergence, beyond which homologous recombination in the six most conserved genes between two picornaviruses might not give viable progeny. PMID:22278238
Fogue, Pythagore Soubgwi; Njiokou, Flobert; Simo, Gustave
2017-01-01
Despite the economic impact of trypanosome infections, few investigations have been undertaken on the population genetics and transmission dynamics of animal trypanosomes. In this study, microsatellite markers were used to investigate the population genetics of Trypanosoma congolense “forest type”, with the ultimate goal of understanding its transmission dynamics between tsetse flies and domestic animals. Blood samples were collected from pigs, sheep, goats and dogs in five villages in Fontem, South-West region of Cameroon. In these villages, tsetse were captured, dissected and their mid-guts collected. DNA was extracted from blood and tsetse mid-guts and specific primers were used to identify T. congolense “forest type”. All positive samples were genetically characterized with seven microsatellite markers. Genetic analyses were performed on samples showing single infections of T. congolense “forest type”. Of the 299 blood samples, 137 (46%) were infected by T. congolense “forest type”. About 3% (54/1596) of tsetse fly mid-guts were infected by T. congolense “forest type”. Of 182 samples with T. congolense “forest type”, 52 were excluded from the genetic analysis. The genetic analysis on the 130 remaining samples revealed polymorphism within and between subpopulations of the target trypanosome. The dendrogram of genetic similarities was subdivided into two clusters and three sub-clusters, indicating one major and several minor genotypes of T. congolense “forest type” in tsetse and domestic animals. The low FSTvalues suggest low genetic differentiation and no sub-structuration within subpopulations. The same T. congolense genotypes appear to circulate in tsetse and domestic animals. PMID:29261481
Lauber, Chris; Gorbalenya, Alexander E
2012-04-01
Virus taxonomy has received little attention from the research community despite its broad relevance. In an accompanying paper (C. Lauber and A. E. Gorbalenya, J. Virol. 86:3890-3904, 2012), we have introduced a quantitative approach to hierarchically classify viruses of a family using pairwise evolutionary distances (PEDs) as a measure of genetic divergence. When applied to the six most conserved proteins of the Picornaviridae, it clustered 1,234 genome sequences in groups at three hierarchical levels (to which we refer as the "GENETIC classification"). In this study, we compare the GENETIC classification with the expert-based picornavirus taxonomy and outline differences in the underlying frameworks regarding the relation of virus groups and genetic diversity that represent, respectively, the structure and content of a classification. To facilitate the analysis, we introduce two novel diagrams. The first connects the genetic diversity of taxa to both the PED distribution and the phylogeny of picornaviruses. The second depicts a classification and the accommodated genetic diversity in a standardized manner. Generally, we found striking agreement between the two classifications on species and genus taxa. A few disagreements concern the species Human rhinovirus A and Human rhinovirus C and the genus Aphthovirus, which were split in the GENETIC classification. Furthermore, we propose a new supergenus level and universal, level-specific PED thresholds, not reached yet by many taxa. Since the species threshold is approached mostly by taxa with large sampling sizes and those infecting multiple hosts, it may represent an upper limit on divergence, beyond which homologous recombination in the six most conserved genes between two picornaviruses might not give viable progeny.
Genetic Variation within a Lotic Population of Janthinobacterium lividum
Saeger, Jennifer L.; Hale, Alan B.
1993-01-01
An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (π) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested. PMID:16348995
Genetic Variation within a Lotic Population of Janthinobacterium lividum.
Saeger, J L; Hale, A B
1993-07-01
An understanding of the genetic variation within and between populations should allow scientists to address many problems, including those associated with endangered species and the release of genetically modified organisms into the environment. With respect to microorganisms, the release of genetically engineered microorganisms is likely to increase dramatically given the current growth in the bioremediation industry. In this study, genetic variation within a lotic, bacterial population of Janthinobacterium lividum was measured with restriction fragment length polymorphism analysis. Chromosomal DNA from 10 Kettle Creek (Hawk Mountain Sanctuary, Kempton, Pa.) J. lividum isolates was digested with six restriction endonucleases and probed with a 7.5-kb pKK3535 fragment containing the E. coli rrnB rRNA operon. Genetic variation, as measured in terms of nucleotide diversity, was high within the population. The 0.0781 value for genetic variation was especially high given the conservative nature of the genetic probe. The average percent similarity among isolates within the population was 67.25%. Pairwise comparisons of nucleotide diversity values (pi) and similarity coefficients (F) yielded values ranging from 0.0032 to 0.1816 and 0.3363 to 0.9808, respectively. Putative clonemates were not present within the group of isolates; however, all isolates shared 14 fragments across a spectrum of six restriction enzymes. The presence of these common fragments indicates that restriction fragment length polymorphism analysis may provide population- or species-specific diagnostic markers for J. lividum. Data that suggest a plume effect with respect to the downstream movement of J. lividum are also presented. An increase in genetic variation within groups of isolates along the longitudinal gradient of Kettle Creek is also suggested.
Men, Qiulei; Xue, Guoxi; Mu, Dan; Hu, Qingling; Huang, Minyi
2017-01-01
Dendrolimus kikuchii Matsumura, 1927 is a serious forest pest causing great damage to coniferous trees in China. Despite its economic importance, the population genetics of this pest are poorly known. We used three mitochondrial genes (COI, COII and Cytb) to investigate the genetic diversity and genetic differentiation of 15 populations collected from the main distribution regions of D. kikuchii in China. Populations show high haplotype and nucleotide diversity. Haplotype network and phylogenetic analysis divides the populations into three major clades, the central and southeastern China (CC+SEC) clade, the eastern China (EC) clade, and the southwestern China (SWC) clade. Populations collected from adjacent localities share the same clade, which is consistent with the strong relationship of isolation by distance (r = 0.74824, P = 0.00001). AMOVA analysis indicated that the major portion of this molecular genetic variation is found among the three groups of CC+SEC, EC and SWC (61.26%). Of 105 pairwise FST comparisons, 93 show high genetic differentiation. Populations of Puer (PE), Yangshuo (YS) and Leishan (LS) are separated from other populations by a larger genetic distance. Distributions of pairwise differences obtained with single and combined gene data from the overall populations are multimodal, suggesting these populations had no prior population expansion in southern China. The nonsignificant neutral test on the basis of Tajima' D and Fu's Fs, and the lack of a star-shaped haplotype network together with the multiple haplotypes support this hypothesis. Pleistocene climatic fluctuations, combined with the host specificity to Pinus species, made these regions of south China into a refuge for D. kikuchii. The high level of population genetic structuring is related to their weak flight capacity, their variations of life history and the geographic distance among populations.
USDA-ARS?s Scientific Manuscript database
In order to characterize the evolutionary adaptations of avian paramyxovirus 1 (APMV-1) genomes, we have compared codon usage and codon adaptation indexes among groups of Newcastle disease viruses that differ in biological, ecological, and genetic characteristics. We have used available GenBank com...
The Language Phenotype of Children and Adolescents with Noonan Syndrome
ERIC Educational Resources Information Center
Pierpont, Elizabeth I.; Weismer, Susan Ellis; Roberts, Amy E.; Tworog-Dube, Erica; Pierpont, Mary Ella; Mendelsohn, Nancy J.; Seidenberg, Mark S.
2010-01-01
Purpose: This study presents an analysis of language skills in individuals with Noonan syndrome (NS), an autosomal dominant genetic disorder. We investigated whether the language impairments affecting some individuals arise from deficits specifically within the linguistic system or whether they are associated with cognitive, perceptual, and motor…
Latent Class Subtyping of Attention-Deficit/Hyperactivity Disorder and Comorbid Conditions
ERIC Educational Resources Information Center
Acosta, Maria T.; Castellanos, F. Xavier; Bolton, Kelly L.; Balog, Joan Z.; Eagen, Patricia; Nee, Linda; Jones, Janet; Palacio, Luis; Sarampote, Christopher; Russell, Heather F.; Berg, Kate; Arcos-Burgos, Mauricio; Muenke, Maximilian
2008-01-01
The study attempts to carry out latent class analysis (LCA) in a sample of 1010 individuals, some with Attention-Deficit/Hyperactivity disorder (ADHD) and others normal. Results indicate that LCA can feasibly allow the combination of externalizing and internalizing symptoms for future tests regarding specific genetic risk factors.
A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis
Yu, Haiyang; Artomov, Mykyta; Brähler, Sebastian; Stander, M. Christine; Shamsan, Ghaidan; Sampson, Matthew G.; White, J. Michael; Kretzler, Matthias; Jain, Sanjay; Winkler, Cheryl A.; Mitra, Robi D.; Daly, Mark J.; Shaw, Andrey S.
2016-01-01
Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes. PMID:26901816
Genomic atlas of the human plasma proteome.
Sun, Benjamin B; Maranville, Joseph C; Peters, James E; Stacey, David; Staley, James R; Blackshaw, James; Burgess, Stephen; Jiang, Tao; Paige, Ellie; Surendran, Praveen; Oliver-Williams, Clare; Kamat, Mihir A; Prins, Bram P; Wilcox, Sheri K; Zimmerman, Erik S; Chi, An; Bansal, Narinder; Spain, Sarah L; Wood, Angela M; Morrell, Nicholas W; Bradley, John R; Janjic, Nebojsa; Roberts, David J; Ouwehand, Willem H; Todd, John A; Soranzo, Nicole; Suhre, Karsten; Paul, Dirk S; Fox, Caroline S; Plenge, Robert M; Danesh, John; Runz, Heiko; Butterworth, Adam S
2018-06-01
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.
Hill, William G
2014-01-01
Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives' performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher's infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with "genomic selection" is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas.
Takahashi, Kazuo H
2015-11-01
Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist. © 2015 John Wiley & Sons Ltd.
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia
2016-10-03
The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.
A meta-analysis of heritability of cognitive aging: minding the "missing heritability" gap.
Reynolds, Chandra A; Finkel, Deborah
2015-03-01
The etiologies underlying variation in adult cognitive performance and cognitive aging have enjoyed much attention in the literature, but much of that attention has focused on broad factors, principally general cognitive ability. The current review provides meta-analyses of age trends in heritability of specific cognitive abilities and considers the profile of genetic and environmental factors contributing to cognitive aging to address the 'missing heritability' issue. Our findings, based upon evaluating 27 reports in the literature, indicate that verbal ability demonstrated declining heritability, after about age 60, as did spatial ability and perceptual speed more modestly. Trends for general memory, working memory, and spatial ability generally indicated stability, or small increases in heritability in mid-life. Equivocal results were found for executive function. A second meta-analysis then considered the gap between twin-based versus SNP-based heritability derived from population-based GWAS studies. Specifically, we considered twin correlation ratios to agnostically re-evaluate biometrical models across age and by cognitive domain. Results modestly suggest that nonadditive genetic variance may become increasingly important with age, especially for verbal ability. If so, this would support arguments that lower SNP-based heritability estimates result in part from uncaptured non-additive influences (e.g., dominance, gene-gene interactions), and possibly gene-environment (GE) correlations. Moreover, consistent with longitudinal twin studies of aging, as rearing environment becomes a distal factor, increasing genetic variance may result in part from nonadditive genetic influences or possible GE correlations. Sensitivity to life course dynamics is crucial to understanding etiological contributions to adult cognitive performance and cognitive aging.
Olschwang, S.; Boisson, C.; Thomas, G.
2001-01-01
INTRODUCTION—Germline mutations of the STK11/LKB1 tumour suppressor gene (19p13.3) are responsible for Peutz-Jeghers syndrome (PJS), a rare genetic disorder, which is dominantly inherited. In addition to the typical hamartomatous gastrointestinal polyps and perioral pigmented lesions, PJS is also associated with the development of tumours in various sites. No specific follow up has yet been evaluated for gene carriers. Furthermore, genetic heterogeneity has been reported, which makes genetic counselling difficult. METHODS—We report here the analysis of the STK11/LKB1 locus in a series of 34 PJS families, combining the search for mutations and rearrangements in the coding sequence, allele specific expression tests, and linkage studies. RESULTS—Germline deleterious mutation of the STK11/LKB1 gene were identified in 70% of cases. The hypothesis of a second PJS locus was reinforced and PJS families could be divided into two groups on the basis of the presence or absence of an identified STK11/LKB1 alteration. Analysis of clinical data indicates that the cancer associated risk is markedly different in the two groups. PJS patients with no identified STK11/LKB1 mutation are at major risk for proximal biliary adenocarcinoma, an infrequent tumour in the general population. CONCLUSION—Up to 30% of PJS patients are caused by mutation in an unidentified gene that confers high susceptibility to cancer development. Keywords: Peutz-Jeghers disease; genetic heterogeneity; cancer predisposition; risk estimation PMID:11389158
Plunkett-Rondeau, Jevon; Hyland, Katherine; Dasgupta, Shoumita
2015-11-01
Advances in genomic technologies are transforming medical practice, necessitating the expertise of genomically-literate physicians. This study examined 2013-2014 trends in genetics curricula in US and Canadian medical schools to ascertain whether and how curricula are keeping pace with this rapid evolution. Medical genetics course directors received a 60-item electronic questionnaire covering curriculum design, assessment, remediation of failing grades, and inclusion of specific topics. The response rate was 74%. Most schools teach the majority of genetics during the first 2 years, with an increase in the number of integrated curricula. Only 26% reported formal genetics teaching during years 3 and 4, and most respondents felt the amount of time spent on genetics was insufficient preparation for clinical practice. Most participants are using the Association of Professors of Human and Medical Genetics Core Curriculum(1) as a guide. Topics recently added include personalized medicine (21%) and direct-to-consumer testing (18%), whereas eugenics (17%), linkage analysis (16%), and evolutionary genetics (15%) have been recently eliminated. Remediation strategies were heterogeneous across institutions. These findings provide an important update on how genetics and genomics is taught at US and Canadian medical schools. Continuous improvement of educational initiatives will aid in producing genomically-literate physicians.
A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds
Kijas, James W.; Townley, David; Dalrymple, Brian P.; Heaton, Michael P.; Maddox, Jillian F.; McGrath, Annette; Wilson, Peter; Ingersoll, Roxann G.; McCulloch, Russell; McWilliam, Sean; Tang, Dave; McEwan, John; Cockett, Noelle; Oddy, V. Hutton; Nicholas, Frank W.; Raadsma, Herman
2009-01-01
The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability. PMID:19270757
Spanagel, Rainer
2013-01-01
Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.
The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders
Smoller, Jordan W
2016-01-01
Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories—posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders—for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene–environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research. PMID:26321314
2012-01-01
Background For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields. PMID:22862891
Regional differentiation among populations of the Diamondback terrapin (Malaclemys terrapin)
Hart, Kristen M.; Hunter, Margaret E.; King, Tim L.
2014-01-01
The Diamondback terrapin (Malaclemys terrapin) is a brackish-water turtle species whose populations have been fragmented due to anthropogenic activity such as development of coastal habitat and entrapment in commercial blue crab (Callinectes sapidus) fishing gear. Genetic analyses can improve conservation efforts for the long-term protection of the species. We used microsatellite DNA analysis to investigate levels of gene flow among and genetic variability within 21 geographically separate collections of the species distributed from Massachusetts to Texas. Quantified levels of genetic variability (allelic diversity, genotypic frequencies, and heterozygosity) revealed three zones of genetic discontinuity, resulting in four discrete populations: Northeast Atlantic, Coastal Mid-Atlantic, Florida and Texas/Louisiana. The average number of alleles and expected heterozygosity for the four genetic clusters were NA = 6.54 and HE = 0.050, respectively. However, the geographic boundaries of the populations did not correspond to accepted terrapin subspecies limits. Our results illuminate not only the need to sample terrapins in additional sites, specifically in the southeast, but also the necessity for allowing uninterrupted gene flow among population groupings to preserve current levels of genetic diversity.
Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K
2015-04-01
Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.
Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation.
Charoy, Camille; Dinvaut, Sarah; Chaix, Yohan; Morlé, Laurette; Sanyas, Isabelle; Bozon, Muriel; Kindbeiter, Karine; Durand, Bénédicte; Skidmore, Jennifer M; De Groef, Lies; Seki, Motoaki; Moons, Lieve; Ruhrberg, Christiana; Martin, James F; Martin, Donna M; Falk, Julien; Castellani, Valerie
2017-06-22
The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry.
Prenatal diagnosis and genetic analysis of double trisomy 48,XXX,+18.
Chen, C P; Chern, S R; Yeh, L F; Chen, W L; Chen, L F; Wang, W
2000-09-01
Prenatal diagnosis of simultaneous occurrence of double trisomy involving chromosomes 18 and X is extremely rare. We report on the prenatal diagnosis, genetic analysis and clinical manifestations of a fetus with both trisomy 18 and trisomy X. A 26-year-old, para 1 woman was referred for genetic counselling at 36 weeks' gestation with the sonographic findings of intrauterine growth retardation (IUGR), polyhydramnios, ventricular septal defect, and an enlarged cisterna magna. Both cordocentesis and amniocentesis revealed a consistent karyotype of 48,XXX,+18. Quantitative fluorescent polymerase chain reaction using polymorphic small tandem repeat markers specific for chromosomes 18 and X rapidly determined that both aneuploidies arose as a result of non-disjunction in maternal meiosis II. Our case shows that two non-disjunction events can occur not only in the same parent, but also in the same cell division. Our case also shows that double trisomy, 48,XXX,+18, can demonstrate an enlarged cisterna magna, IUGR and polyhydramnios in prenatal ultrasound. Copyright 2000 John Wiley & Sons, Ltd.
Mah, In Kyoung
2017-01-01
For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements—a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis. PMID:29068314
Zannella, Carmela; Carucci, Francesca; Aversano, Riccardo; Prohaska, Thomas; Vingiani, Simona; Carputo, Domenico; Adamo, Paola
2017-12-15
A fingerprinting strategy based on genetic (simple sequence repeat) and geochemical (multielement and 87 Sr/ 86 Sr ratio) analysis was tested to prove the geographical origin of high-quality Italian products "White Asparagus from Bassano del Grappa" and "Green Pistachio from Bronte". Genetic analysis generated many polymorphic alleles and different specific amplified fragments in both agriproducts. In addition, a core set of markers was defined. According to variability within production soils and products, potential candidate elements linking asparagus (Zn, P, Cr, Mg, B, K) and pistachio (Mn, P, Cr, Mg, Ti, B, K, Sc, S) to the production areas were identified. The Sr isotopic signature was an excellent marker when Italian asparagus was compared with literature data for Hungarian and Peruvian asparagus. This work reinforces the use of Sr isotope composition in the soil bioavailable fraction, as assessed by 1mol/L NH 4 NO 3 , to distinguish white asparagus and pistachio originating from different geographical areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vidunas, Eugene; Mathews, Antony; Weaver, Michele; Cai, Ping; Koh, Eun Hee; Patel-Brown, Sujata; Yuan, Hailey; Zheng, Zi-Rong; Carriere, Marjolaine; Johnson, J Erik; Lotvin, Jason; Moran, Justin
2016-07-01
A recombinant Clostridium difficile expression system was used to produce genetically engineered toxoids A and B as immunogens for a prophylactic vaccine against C. difficile-associated disease. Although all known enzymatic activities responsible for cytotoxicity were genetically abrogated, the toxoids exhibited residual cytotoxic activity as measured in an in vitro cell-based cytotoxicity assay. The residual cytotoxicity was eliminated by treating the toxoids with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. Mass spectrometry and amino acid analysis of the EDC-inactivated toxoids identified crosslinks, glycine adducts, and β-alanine adducts. Surface plasmon resonance analysis demonstrated that modifications resulting from the chemical treatment did not appreciably affect recognition of epitopes by both toxin A- and B-specific neutralizing monoclonal antibodies. Compared to formaldehyde-inactivated toxoids, the EDC/N-hydroxysuccinimide-inactivated toxoids exhibited superior stability in solution with respect to reversion of cytotoxic activity. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
"Am I carrier?" The patient's lived experience of thrombophilia genetic screening and its outcome.
Graffigna, Guendalina; Leone, Daniela; Vegni, Elena
2014-01-01
How do patients with thrombophilia experience a physician's request to undergo a genetic test? How do they experience the test outcome? To answer these questions, we conducted an interpretative phenomenological analysis study, based on 10 in-depth interviews with patients who underwent genetic testing for thrombophilia in Italy, half with positive and half with negative results. The experience of undergoing genetic screening for thrombophilia plays an important role in reconfiguring patients' signification of their illness experience. A positive outcome becomes a cue to reorganize in a more adaptive way the illness meaning at the cognitive and emotive levels, whereas a negative outcome appears more distressing and confusing. As a clinical implication of the study, clinicians should consider communicating carefully with the patients regardless from the positive/negative test results and they should explore the patient's specific reaction and understanding of test result.
Next generation sequencing--implications for clinical practice.
Raffan, Eleanor; Semple, Robert K
2011-01-01
Genetic testing in inherited disease has traditionally relied upon recognition of the presenting clinical syndrome and targeted analysis of genes known to be linked to that syndrome. Consequently, many patients with genetic syndromes remain without a specific diagnosis. New 'next-generation' sequencing (NGS) techniques permit simultaneous sequencing of enormous amounts of DNA. A slew of research publications have recently demonstrated the tremendous power of these technologies in increasing understanding of human genetic disease. These approaches are likely to be increasingly employed in routine diagnostic practice, but the scale of the genetic information yielded about individuals means that caution must be exercised to avoid net harm in this setting. Use of NGS in a research setting will increasingly have a major but indirect beneficial impact on clinical practice. However, important technical, ethical and social challenges need to be addressed through informed professional and public dialogue before it finds its mature niche as a direct tool in the clinical diagnostic armoury.
Auld, Stuart K J R; Edel, Kai H; Little, Tom J
2012-10-01
In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Age-Related Differences and Heritability of the Perisylvian Language Networks.
Budisavljevic, Sanja; Dell'Acqua, Flavio; Rijsdijk, Frühling V; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M; Murphy, Declan G; Craig, Michael C; Catani, Marco
2015-09-16
Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9-40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. Copyright © 2015 Budisavljevic et al.
Age-Related Differences and Heritability of the Perisylvian Language Networks
Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.
2015-01-01
Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9–40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. SIGNIFICANCE STATEMENT Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. PMID:26377454
Toward an Integration of Cognitive and Genetic Models of Risk for Depression
Gibb, Brandon E.; Beevers, Christopher G.; McGeary, John E.
2012-01-01
There is growing interest in integrating cognitive and genetic models of depression risk. We review two ways in which these models can be meaningfully integrated. First, information-processing biases may represent intermediate phenotypes for specific genetic influences. These genetic influences may represent main effects on specific cognitive processes or may moderate the impact of environmental influences on information-processing biases. Second, cognitive and genetic influences may combine to increase reactivity to environmental stressors, increasing risk for depression in a gene × cognition × environment model of risk. There is now growing support for both of these ways of integrating cognitive and genetic models of depression risk. Specifically, there is support for genetic influences on information-processing biases, particularly the link between 5-HTTLPR and attentional biases, from both genetic association and gene × environment (G × E) studies. There is also initial support for gene × cognition × environment models of risk in which specific genetic influences contribute to increased reactivity to environmental influences. We review this research and discuss important areas of future research, particularly the need for larger samples that allow for a broader examination of genetic and epigenetic influences as well as the combined influence of variability across a number of genes. PMID:22920216
Poissant, Jocelyn; Wilson, Alastair J; Coltman, David W
2010-01-01
The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations (r(MF)) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r(MF) differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r(MF) and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r(MF) is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r(MF) and SD.
Li, Si-Fa; Tang, Shou-Jie; Cai, Wan-Qi
2010-04-01
The NEW GIFT Nile tilapia (Oreochromis niloticus niloticus L.) is a nationally certificated new strain selected over 14 years and 9 generations from the base strain of GIFT Nile tilapia, introduced in 1994. This new variety has been extended in most of areas of China. The management of genetically improved strains, including the genetic markers for identification is needed urgently. RAPD analysis was conducted and their conversion to SCAR markers was developed. From NEW GIFT Nile tilapia, two strain-specific RAPD bands, S(304 )(624 bp ) and S(36 )(568 bp ) were identified. The strain-specific RAPD bands were gel-purified, cloned, and sequenced. Locus-specific primers were then designed to amplify the strain-specific bands. PCR amplification was conducted to test the variations in allele frequencies of two converted SCAR markers among the NEW GIFT Nile tilapia and its base strains, as well as 7 additional farmed strains worldwide. The frequency of SCAR marker I (553 bp) was 85.7% in NEW GIFT Nile tilapia, but 16.7% in the base strain. The frequency of SCAR marker II (558 bp) was 91.4% in NEW GIFT Nile tilapia, but 0% - 70% in the 7 other strains. In order to confirm the utility of these two markers, an examination was conducted for a wild population from Egypt, resulted the frequency of SCAR I and II was 10% and 70%, respectively, much lower than that of New GIFT strain. The increase in allele frequency of these two SCAR markers suggests that these markers might be genetically linked to the quantitative trait loci (QTL) underlining the performance traits by long term selection, and indicate the bright potential of SCAR marker technology for tracking generations during selection progress and for distinguishing among genetically improved strain and other strains.
Haralambieva, Iana H.; Ovsyannikova, Inna G.; Umlauf, Benjamin J.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.
2014-01-01
Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-value<0.20. In conclusion, our findings strongly point to genetic variants/genes, involved in antiviral sensing and antiviral control, as critical determinants, differentially modulating the adaptive immune responses to live attenuated measles vaccine in Caucasians and African-Americans. PMID:21939710
Prior, Steven J; Roth, Stephen M; Wang, Xiaojing; Kammerer, Candace; Miljkovic-Gacic, Iva; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M
2007-10-01
The aim of this study was to estimate the heritability of and environmental contributions to skeletal muscle phenotypes (appendicular lean mass and calf muscle cross-sectional area) in subjects of African descent and to determine whether heritability estimates are impacted by sex or age. Body composition was measured by dual-energy X-ray absorptiometry and computed tomography in 444 men and women aged 18 yr and older (mean: 43 yr) from eight large, multigenerational Afro-Caribbean families (family size range: 21-112). Using quantitative genetic methods, we estimated heritability and the association of anthropometric, lifestyle, and medical variables with skeletal muscle phenotypes. In the overall group, we estimated the heritability of lean mass and calf muscle cross-sectional area (h(2) = 0.18-0.23, P < 0.01) and contribution of environmental factors to these phenotypes (r(2) = 0.27-0.55, P < 0.05). In our age-specific analysis, the heritability of leg lean mass was lower in older vs. younger individuals (h(2) = 0.05 vs. 0.23, respectively, P = 0.1). Sex was a significant covariate in our models (P < 0.001), although sex-specific differences in heritability varied depending on the lean mass phenotype analyzed. High genetic correlations (rho(G) = 0.69-0.81; P < 0.01) between different lean mass measures suggest these traits share a large proportion of genetic components. Our results demonstrate the heritability of skeletal muscle traits in individuals of African heritage and that heritability may differ as a function of sex and age. As the loss of skeletal muscle mass is related to metabolic abnormalities, disability, and mortality in older individuals, further research is warranted to identify specific genetic loci that contribute to these traits in general and in a sex- and age-specific manner.
Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.
Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju
2017-04-27
Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By means of network and pathway-based methodology, we explored the pathogenetic mechanism underlying AD at a systems biology level. Results from our work could provide valuable clues for understanding the molecular mechanism underlying AD. In addition, the framework proposed in this study could be used to investigate the pathological molecular network and genes relevant to other complex diseases or phenotypes.
Population genetic evidence for sex-specific dispersal in an inbred social spider.
Smith, Deborah R; Su, Yong-Chao; Berger-Tal, Reut; Lubin, Yael
2016-08-01
Dispersal in most group-living species ensures gene flow among groups, but in cooperative social spiders, juvenile dispersal is suppressed and colonies are highly inbred. It has been suggested that such inbred sociality is advantageous in the short term, but likely to lead to extinction or reduced speciation rates in the long run. In this situation, very low levels of dispersal and gene flow among colonies may have unusually important impacts on fitness and persistence of social spiders. We investigated sex-specific differences in dispersal and gene flow among colonies, as reflected in the genetic structure within colonies and populations of the African social spider Stegodyphus dumicola Pocock, 1898 (Eresidae). We used DNA fingerprinting and mtDNA sequence data along with spatial mapping of colonies to compare male and female patterns of relatedness within and among colonies at three study sites. Samples were collected during and shortly after the mating season to detect sex-specific dispersal. Distribution of mtDNA haplotypes was consistent with proliferation of social nests by budding and medium- to long-distance dispersal by ballooning females. Analysis of molecular variance and spatial autocorrelation analyses of AFLPs showed high levels of genetic similarity within colonies, and STRUCTURE analyses revealed that the number of source populations contributing to colonies ranged from one to three. We also showed significant evidence of male dispersal among colonies at one site. These results support the hypothesis that in social spiders, genetic cohesion among populations is maintained by long-distance dispersal of female colony founders. Genetic diversity within colonies is maintained by colony initiation by multiple dispersing females, and adult male dispersal over short distances. Male dispersal may be particularly important in maintaining gene flow among colonies in local populations.
Comparative isolation and genetic diversity of Arcobacter sp. from fish and the coastal environment.
Rathlavath, S; Kumar, S; Nayak, B B
2017-07-01
Arcobacter species are emerging food-borne and water-borne human pathogens associated mostly with food animals and their environment. The present study was aimed to isolate Arcobacter species from fish, shellfish and coastal water samples using two methods and to determine their genetic diversity. Of 201 samples of fish, shellfish and water samples analysed, 66 (32·8%) samples showed the presence of Arcobacter DNA from both Arcobacter enrichment broth and Bolton broth. Arcobacters were isolated from 58 (87·8%) and 38 (57·5%) of Arcobacter DNA-positive samples using Arcobacter blood agar and Preston blood agar, respectively. Arcobacter sp. identified by biochemical tests were further analysed by a genus-specific PCR, followed by a multiplex-PCR and 16S rRNA-RFLP. From both the methods, four different Arcobacter species namely Arcobacter butzleri, Arcobacter skirrowii, Arcobacter mytili and Arcobacter defluvii were isolated, of which A. butzleri was the predominant species. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint analysis revealed that the arcobacters isolated in this study were genetically very diverse and no specific genotype was found associated with a specific source (seafood or water). Since pathogenic arcobacters are not known to be natural inhabitants of coastal marine environment, identifying the sources of contamination will be crucial for effective management of this problem. Arcobacter sp. are emerging food- and water-borne human pathogens. In this study, comparison of two selective media suggested Arcobacter blood agar to be more efficient in yielding Arcobacter sp. from seafood. Furthermore, the isolation of Arcobacter sp. such as Arcobacter butzleri, A. skirrowii, A. mytili and A. defluvii from seafood suggests diverse sources of contamination of seafood by Arcobacter sp. Analysis of enterobacterial repetitive intergenic consensus sequence-PCR patterns of A. butzleri showed high genetic diversity and lack of clonality among the isolates. Arcobacter contamination of seafood is an emerging issue both from seafood safety and seafood trade point of view. © 2017 The Society for Applied Microbiology.
2014-01-01
Background Individuals with a personal or family history of cancer, can opt for genetic counseling and DNA-testing. Approximately 25% of these individuals experience clinically relevant levels of psychosocial distress, depression and/or anxiety after counseling. These problems are frequently left undetected by genetic counselors. The aim of this study is to evaluate the efficacy of a cancer genetics-specific screening questionnaire for psychosocial problems, the ‘Psychosocial Aspects of Hereditary Cancer (PAHC) questionnaire’ together with the Distress Thermometer, in: (1) facilitating personalized counselor-counselee communication; (2) increasing counselors’ awareness of their counselees’ psychosocial problems; and (3) facilitating the management of psychosocial problems during and after genetic counseling. Methods This multicenter, randomized controlled trial will include 264 individuals undergoing cancer genetic counseling in two family cancer clinics in the Netherlands. Participants will be randomized to either: (1) an intervention group that completes the PAHC questionnaire, the results of which are made available to the genetic counselor prior to the counseling session; or (2) a control group that completes the PAHC questionnaire, but without feedback being given to the genetic counselor. The genetic counseling sessions will be audiotaped for content analysis. Additionally, study participants will be asked to complete questionnaires at baseline, three weeks after the initial counseling session, and four months after a telephone follow-up counseling session. The genetic counselors will be asked to complete questionnaires at the start of and at completion of the study, as well as a checklist directly after each counseling session. The questionnaires/checklists of the study include items on communication during genetic counseling, counselor awareness of their clients’ psychosocial problems, the (perceived) need for professional psychosocial support, cancer worries, general distress, specific psychosocial problems, satisfaction with care received, and experience using the PAHC questionnaire. Discussion This study will provide empirical evidence regarding the efficacy of a relatively brief psychosocial screening questionnaire in terms of facilitating personalized communication, increasing counselors’ awareness, and optimizing management of psychosocial problems in the cancer genetic counseling setting. Trial registration This study is registered at the Netherlands Trial Register (NTR3205) and ClinicalTrials.gov (NCT01562431). PMID:24428912
Eijzenga, Willem; Aaronson, Neil K; Kluijt, Irma; Sidharta, Grace N; Hahn, Daniela Ee; Ausems, Margreet Gem; Bleiker, Eveline Ma
2014-01-15
Individuals with a personal or family history of cancer, can opt for genetic counseling and DNA-testing. Approximately 25% of these individuals experience clinically relevant levels of psychosocial distress, depression and/or anxiety after counseling. These problems are frequently left undetected by genetic counselors. The aim of this study is to evaluate the efficacy of a cancer genetics-specific screening questionnaire for psychosocial problems, the 'Psychosocial Aspects of Hereditary Cancer (PAHC) questionnaire' together with the Distress Thermometer, in: (1) facilitating personalized counselor-counselee communication; (2) increasing counselors' awareness of their counselees' psychosocial problems; and (3) facilitating the management of psychosocial problems during and after genetic counseling. This multicenter, randomized controlled trial will include 264 individuals undergoing cancer genetic counseling in two family cancer clinics in the Netherlands. Participants will be randomized to either: (1) an intervention group that completes the PAHC questionnaire, the results of which are made available to the genetic counselor prior to the counseling session; or (2) a control group that completes the PAHC questionnaire, but without feedback being given to the genetic counselor. The genetic counseling sessions will be audiotaped for content analysis. Additionally, study participants will be asked to complete questionnaires at baseline, three weeks after the initial counseling session, and four months after a telephone follow-up counseling session. The genetic counselors will be asked to complete questionnaires at the start of and at completion of the study, as well as a checklist directly after each counseling session. The questionnaires/checklists of the study include items on communication during genetic counseling, counselor awareness of their clients' psychosocial problems, the (perceived) need for professional psychosocial support, cancer worries, general distress, specific psychosocial problems, satisfaction with care received, and experience using the PAHC questionnaire. This study will provide empirical evidence regarding the efficacy of a relatively brief psychosocial screening questionnaire in terms of facilitating personalized communication, increasing counselors' awareness, and optimizing management of psychosocial problems in the cancer genetic counseling setting. This study is registered at the Netherlands Trial Register (NTR3205) and ClinicalTrials.gov (NCT01562431).
Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson
2010-07-01
Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.
Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive-Compulsive, and Hoarding Symptoms.
Zilhão, Nuno R; Smit, Dirk J; Boomsma, Dorret I; Cath, Danielle C
2016-01-01
Hoarding, obsessive-compulsive disorder (OCD), and Tourette's disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV data to explore genetic relationships between tic disorders and OCD, have only found very modest if any shared genetic variation. Our aim was to extend current knowledge on the genetic structure underlying hoarding, OC symptoms (OCS), and lifetime tic symptoms and, in a trivariate analysis, assess the degree of common and unique genetic factors contributing to the etiology of these disorders. Data have been gathered from participants in the Netherlands Twin Register comprising a total of 5293 individuals from a sample of adult monozygotic (n = 2460) and dizygotic (n = 2833) twin pairs (mean age 33.61 years). The data on Hoarding, OCS, and tic symptoms were simultaneously analyzed in Mplus. A liability threshold model was fitted to the twin data, analyzing heritability of phenotypes and of their comorbidity. Following the criteria for a probable clinical diagnosis in all phenotypes, 6.8% of participants had a diagnosis of probable hoarding disorder (HD), 6.3% of OCS, and 12.8% of any probable lifetime tic disorder. Genetic factors explained 50.4, 70.1, and 61.1% of the phenotypic covariance between hoarding-OCS, hoarding-tics, and OCS-tics, respectively. Substantial genetic correlations were observed between hoarding and OCS (0.41), hoarding and tics (0.35), and between OCS and tics (0.37). These results support the contribution of genetic factors in the development of these disorders and their comorbidity. Furthermore, tics were mostly influenced by specific environmental factors unshared with OCS and HD.
Conrad, Melissa D.; Gorman, Andrew W.; Schillinger, Julia A.; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E.; Carlton, Jane M.
2012-01-01
Background Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Methodology/Principal Findings Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Conclusions/Significance Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease. PMID:22479659
Regularized rare variant enrichment analysis for case-control exome sequencing data.
Larson, Nicholas B; Schaid, Daniel J
2014-02-01
Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.
The Utility of Stage-specific Mid-to-late Drosophila Follicle Isolation
Spracklen, Andrew J.; Tootle, Tina L.
2013-01-01
Drosophila oogenesis or follicle development has been widely used to advance the understanding of complex developmental and cell biologic processes. This methods paper describes how to isolate mid-to-late stage follicles (Stage 10B-14) and utilize them to provide new insights into the molecular and morphologic events occurring during tight windows of developmental time. Isolated follicles can be used for a variety of experimental techniques, including in vitro development assays, live imaging, mRNA expression analysis and western blot analysis of proteins. Follicles at Stage 10B (S10B) or later will complete development in culture; this allows one to combine genetic or pharmacologic perturbations with in vitro development to define the effects of such manipulations on the processes occurring during specific periods of development. Additionally, because these follicles develop in culture, they are ideally suited for live imaging studies, which often reveal new mechanisms that mediate morphological events. Isolated follicles can also be used for molecular analyses. For example, changes in gene expression that result from genetic perturbations can be defined for specific developmental windows. Additionally, protein level, stability, and/or posttranslational modification state during a particular stage of follicle development can be examined through western blot analyses. Thus, stage-specific isolation of Drosophila follicles provides a rich source of information into widely conserved processes of development and morphogenesis. PMID:24326735
Implications of sex-specific selection for the genetic basis of disease.
Morrow, Edward H; Connallon, Tim
2013-12-01
Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.
McLoughlin, Gráinne; Ronald, Angelica; Kuntsi, Jonna; Asherson, Philip; Plomin, Robert
2007-12-01
Attention deficit hyperactivity disorder (ADHD) is a common, complex and highly heritable disorder, characterised by inattentive, impulsive and overactive behaviour. Evidence for the heritability of ADHD measures in twin population samples has come from the analysis of total scores that combine inattentive and hyperactive-impulsive symptoms subscales. This study investigated, in a community sample, the aetiology of ADHD-like traits and the aetiological overlap between the two dimensions that define the ADHD disorder. Parents of 6,222 approximately 8-year-old twin pairs from the Twins Early Development Study (TEDS) population sample completed the two subscales of the Conners' 18-item DSMIV checklist, a screening instrument for ADHD symptoms. Both subscales were highly heritable (hyperactive-impulsive: 88%; inattentive: 79%). Bivariate genetic modelling indicated substantial genetic overlap between the two components; however, there were significant independent genetic effects. These findings suggest that many genes associated with the hyperactivity-impulsivity dimension will also be associated with the inattentive dimension but that there is significant genetic heterogeneity as well. These results provide genetic support for combining the two behavioural dimensions that define ADHD, but also suggest that some symptom-specific genes will also be identified.
High-performance single cell genetic analysis using microfluidic emulsion generator arrays.
Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T; Mathies, Richard A
2010-04-15
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex polymerase chain reaction (PCR). Microfabricated emulsion generator array (MEGA) devices containing 4, 32, and 96 channels are developed to confer a flexible capability of generating up to 3.4 x 10(6) nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed and the beads are pooled and rapidly analyzed by multicolor flow cytometry. Using Escherichia coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1/10(5). This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations.
Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed
2014-01-01
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292
Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed
2014-01-01
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.
High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays
Zeng, Yong; Novak, Richard; Shuga, Joe; Smith, Martyn T.; Mathies, Richard A.
2010-01-01
High-throughput genetic and phenotypic analysis at the single cell level is critical to advance our understanding of the molecular mechanisms underlying cellular function and dysfunction. Here we describe a high-performance single cell genetic analysis (SCGA) technique that combines high-throughput microfluidic emulsion generation with single cell multiplex PCR. Microfabricated emulsion generator array (MEGA) devices containing 4, 32 and 96 channels are developed to confer a flexible capability of generating up to 3.4 × 106 nanoliter-volume droplets per hour. Hybrid glass-polydimethylsiloxane diaphragm micropumps integrated into the MEGA chips afford uniform droplet formation, controlled generation frequency, and effective transportation and encapsulation of primer functionalized microbeads and cells. A multiplex single cell PCR method is developed to detect and quantify both wild type and mutant/pathogenic cells. In this method, microbeads functionalized with multiple forward primers targeting specific genes from different cell types are used for solid-phase PCR in droplets. Following PCR, the droplets are lysed, the beads are pooled and rapidly analyzed by multi-color flow cytometry. Using E. coli bacterial cells as a model, we show that this technique enables digital detection of pathogenic E. coli O157 cells in a high background of normal K12 cells, with a detection limit on the order of 1:105. This result demonstrates that multiplex SCGA is a promising tool for high-throughput quantitative digital analysis of genetic variation in complex populations. PMID:20192178
Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population from Argentina
Schurr, Theodore G.; Dulik, Matthew C.; Cafaro, Thamara A.; Suarez, María F.
2013-01-01
Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK. PMID:24040292
Schurr, Theodore G; Dulik, Matthew C; Cafaro, Thamara A; Suarez, María F; Urrets-Zavalia, Julio A; Serra, Horacio M
2013-01-01
To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.
Genetic diversity analysis of tree peony germplasm using iPBS markers.
Duan, Y B; Guo, D L; Guo, L L; Wei, D F; Hou, X G
2015-07-06
We examined the genetic diversity of 10 wild species (populations) and 55 varieties of tree peony using inter-primer binding site (iPBS) markers. From a total of 36 iPBS primers, 16 were selected based on polymorphic amplification. The number of bands amplified by each primer ranged from 9 to 19, with an average of 12.88 bands per primer. The length of bands ranged from 100 to 2000 bp, concentrated at 200 to 1800 bp. Sixteen primers amplified 206 bands in total, of which 173 bands were polymorphic with a polymorphism ratio of 83.98%. Each primer amplified 10.81 polymorphic bands on average. The data were then used to construct a phylogenetic tree using unweighted pair group method with arithmetic mean methods. Clustering analysis showed that the genetic relationships among the varieties were not only related to the genetic background or geographic origin, but also to the flowering phase, flower color, and flower type. Our data also indicated that iPBS markers were useful tools for classifying tree peony germplasms and for tree peony breeding, and the specific bands were helpful for molecular identification of tree peony varieties.
Current molecular genetics strategies for the diagnosis of lysosomal storage disorders.
Giugliani, Roberto; Brusius-Facchin, Ana-Carolina; Pasqualim, Gabriela; Leistner-Segal, Sandra; Riegel, Mariluce; Matte, Ursula
2016-01-01
Lysosomal storage disorders (LSDs) are a group of almost 50 monogenic diseases characterized by mutations causing deficiency of lysosomal enzymes or non-enzyme proteins involved in transport across the lysosomal membrane, protein maturation or lysosomal biogenesis. Usually, affected patients are normal at birth and have a progressive and severe disease with high morbidity and reduced life expectancy. The overall incidence of LSDs is usually estimated as 1:5000, but newborn screening studies are indicating that it could be much higher. Specific therapies were already developed for selected LSDs, making the timely and correct diagnosis very important for successful treatment and also for genetic counseling. In most LSD cases the biochemical techniques provide a reliable diagnosis. However, the identification of pathogenic mutations by genetic analysis is being increasingly recommended to provide additional information. In this paper we discuss the conventional methods for genetic analysis used in the LSDs [restriction fragment length polymorphism (RFLP), amplification-refractory mutation system (ARMS), single strand conformation polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC), real-time polymerase chain reaction, high resolution melting (HRM), multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing] and also the newer approaches [massive parallel sequencing, array comparative genomic hybridization (CGH)].
Kiper, Ilkser Erdem; Bloomer, Paulette; Borsa, Philippe; Hoareau, Thierry Bernard
2018-02-01
Rabbitfishes are reef-associated fishes that support local fisheries throughout the Indo-West Pacific region. Sound management of the resource requires the development of molecular tools for appropriate stock delimitation of the different species in the family. Microsatellite markers were developed for the cordonnier, Siganus sutor, and their potential for cross-amplification was investigated in 12 congeneric species. A library of 792 repeat-containing sequences was built. Nineteen sets of newly developed primers, and 14 universal finfish microsatellites were tested in S. sutor. Amplification success of the 19 Siganus-specific markers ranged from 32 to 79% in the 12 other Siganus species, slightly decreasing when the genetic distance of the target species to S. sutor increased. Seventeen of these markers were polymorphic in S. sutor and were further assayed in S. luridus, S. rivulatus, and S. spinus, of which respectively 9, 10 and 8 were polymorphic. Statistical power analysis and an analysis of molecular variance showed that subtle genetic differentiation can be detected using these markers, highlighting their utility for the study of genetic diversity and population genetic structure in rabbitfishes.
Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H
2012-05-01
Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.
Sun, Xiao; Wu, Zhaomin; Cao, Qingjiu; Qian, Ying; Liu, Yong; Yang, Binrang; Chang, Suhua; Yang, Li; Wang, Yufeng
2018-05-16
As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.
Jabbar, Abdul; Gasser, Robin B
2013-07-01
Adult tapeworms of the genus Echinococcus (family Taeniidae) occur in the small intestines of carnivorous definitive hosts and are transmitted to particular intermediate mammalian hosts, in which they develop as fluid-filled larvae (cysts) in internal organs (usually lung and liver), causing the disease echinococcosis. Echinococcus species are of major medical importance and also cause losses to the meat and livestock industries, mainly due to the condemnation of infected offal. Decisions regarding the treatment and control of echinococcosis rely on the accurate identification of species and population variants (strains). Conventional, phenetic methods for specific identification have some significant limitations. Despite advances in the development of molecular tools, there has been limited application of mutation scanning methods to species of Echinococcus. Here, we briefly review key genetic markers used for the identification of Echinococcus species and techniques for the analysis of genetic variation within and among populations, and the diagnosis of echinococcosis. We also discuss the benefits of utilizing mutation scanning approaches to elucidate the population genetics and epidemiology of Echinococcus species. These benefits are likely to become more evident following the complete characterization of the genomes of E. granulosus and E. multilocularis.
Bayesian linkage and segregation analysis: factoring the problem.
Matthysse, S
2000-01-01
Complex segregation analysis and linkage methods are mathematical techniques for the genetic dissection of complex diseases. They are used to delineate complex modes of familial transmission and to localize putative disease susceptibility loci to specific chromosomal locations. The computational problem of Bayesian linkage and segregation analysis is one of integration in high-dimensional spaces. In this paper, three available techniques for Bayesian linkage and segregation analysis are discussed: Markov Chain Monte Carlo (MCMC), importance sampling, and exact calculation. The contribution of each to the overall integration will be explicitly discussed.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307
NASA Astrophysics Data System (ADS)
Suzuki, Noriaki
Genetically engineered proteins for inorganics (GEPIs) belong to a new class of polypeptides that are designed to have specific affinities to inorganic materials. A "gold binding protein (GBP)" was chosen as a model protein for GEPIs to study the molecular origins of binding specificity to gold using Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). TOF-SIMS, a surface-sensitive analytical instrument with extremely high mass resolutions, provides information on specific amino acid-surface interactions. We used "principal component analysis (PCA)" to analyze the data. We also introduced a new multivariate technique, "hierarchical cluster analysis (HCA)" to organize the data into meaningful structures by measuring a degree of "similarity" and "dissimilarity" of the data. This report discusses a combined use of PCA and HCA to elucidate the binding specificity of GBP to Au. Based on the knowledge gained from TOF-SIMS measurements, we further investigated the nature of the interaction between selected amino acids and noble metal surfaces by using X-ray photoelectron spectroscopy (XPS). We developed a unique capability to introduce water vapor during the adsorption of a single amino acid and applied this method to study the intrinsic nature of sidechain/Au interactions. To further apply this unique research protocol, we characterized another type of GEPI, "quartz binding protein (QBP)," to identify the possible binding sites. This thesis research aims to provide experimental protocols for analyzing short peptide-substrate interface from complex spectroscopic data by using multivariate analysis techniques.
Stokes, Paul R A; Shotbolt, Paul; Mehta, Mitul A; Turkheimer, Eric; Benecke, Aaf; Copeland, Caroline; Turkheimer, Federico E; Lingford-Hughes, Anne R; Howes, Oliver D
2013-02-01
Striatal dopamine function is important for normal personality, cognitive processes and behavior, and abnormalities are linked to a number of neuropsychiatric disorders. However, no studies have examined the relative influence of genetic inheritance and environmental factors in determining striatal dopamine function. Using [18F]-DOPA positron emission tomography (PET), we sought to determine the heritability of presynaptic striatal dopamine function by comparing variability in uptake values in same sex monozygotic (MZ) twins to dizygotic (DZ) twins. Nine MZ and 10 DZ twin pairs underwent high-resolution [18F]-DOPA PET to assess presynaptic striatal dopamine function. Uptake values for the overall striatum and functional striatal subdivisions were determined by a Patlak analysis using a cerebellar reference region. Heritability, shared environmental effects and non-shared individual-specific effects were estimated using a region of interest (ROI) analysis and a confirmatory parametric analysis. Overall striatal heritability estimates from the ROI and parametric analyses were 0.44 and 0.33, respectively. We found a distinction between striatal heritability in the functional subdivisions, with the greatest heritability estimates occurring in the sensorimotor striatum and the greatest effect of individual-specific environmental factors in the limbic striatum. Our results indicate that variation in overall presynaptic striatal dopamine function is determined by a combination of genetic factors and individual-specific environmental factors, with familial environmental effects having no effect. These findings underline the importance of individual-specific environmental factors for striatal dopaminergic function, particularly in the limbic striatum, with implications for understanding neuropsychiatric disorders such as schizophrenia and addictions.
Stokes, Paul R A; Shotbolt, Paul; Mehta, Mitul A; Turkheimer, Eric; Benecke, Aaf; Copeland, Caroline; Turkheimer, Federico E; Lingford-Hughes, Anne R; Howes, Oliver D
2013-01-01
Striatal dopamine function is important for normal personality, cognitive processes and behavior, and abnormalities are linked to a number of neuropsychiatric disorders. However, no studies have examined the relative influence of genetic inheritance and environmental factors in determining striatal dopamine function. Using [18F]-DOPA positron emission tomography (PET), we sought to determine the heritability of presynaptic striatal dopamine function by comparing variability in uptake values in same sex monozygotic (MZ) twins to dizygotic (DZ) twins. Nine MZ and 10 DZ twin pairs underwent high-resolution [18F]-DOPA PET to assess presynaptic striatal dopamine function. Uptake values for the overall striatum and functional striatal subdivisions were determined by a Patlak analysis using a cerebellar reference region. Heritability, shared environmental effects and non-shared individual-specific effects were estimated using a region of interest (ROI) analysis and a confirmatory parametric analysis. Overall striatal heritability estimates from the ROI and parametric analyses were 0.44 and 0.33, respectively. We found a distinction between striatal heritability in the functional subdivisions, with the greatest heritability estimates occurring in the sensorimotor striatum and the greatest effect of individual-specific environmental factors in the limbic striatum. Our results indicate that variation in overall presynaptic striatal dopamine function is determined by a combination of genetic factors and individual-specific environmental factors, with familial environmental effects having no effect. These findings underline the importance of individual-specific environmental factors for striatal dopaminergic function, particularly in the limbic striatum, with implications for understanding neuropsychiatric disorders such as schizophrenia and addictions. PMID:23093224
Introduction to focus issue: quantitative approaches to genetic networks.
Albert, Réka; Collins, James J; Glass, Leon
2013-06-01
All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.
Introduction to Focus Issue: Quantitative Approaches to Genetic Networks
NASA Astrophysics Data System (ADS)
Albert, Réka; Collins, James J.; Glass, Leon
2013-06-01
All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.
Whiley, Phillip J.; Parsons, Michael T.; Leary, Jennifer; Tucker, Kathy; Warwick, Linda; Dopita, Belinda; Thorne, Heather; Lakhani, Sunil R.; Goldgar, David E.; Brown, Melissa A.; Spurdle, Amanda B.
2014-01-01
Rare exonic, non-truncating variants in known cancer susceptibility genes such as BRCA1 and BRCA2 are problematic for genetic counseling and clinical management of relevant families. This study used multifactorial likelihood analysis and/or bioinformatically-directed mRNA assays to assess pathogenicity of 19 BRCA1 or BRCA2 variants identified following patient referral to clinical genetic services. Two variants were considered to be pathogenic (Class 5). BRCA1:c.4484G> C(p.Arg1495Thr) was shown to result in aberrant mRNA transcripts predicted to encode truncated proteins. The BRCA1:c.122A>G(p.His41Arg) RING-domain variant was found from multifactorial likelihood analysis to have a posterior probability of pathogenicity of 0.995, a result consistent with existing protein functional assay data indicating lost BARD1 binding and ubiquitin ligase activity. Of the remaining variants, seven were determined to be not clinically significant (Class 1), nine were likely not pathogenic (Class 2), and one was uncertain (Class 3).These results have implications for genetic counseling and medical management of families carrying these specific variants. They also provide additional multifactorial likelihood variant classifications as reference to evaluate the sensitivity and specificity of bioinformatic prediction tools and/or functional assay data in future studies. PMID:24489791
Green supplier selection: a new genetic/immune strategy with industrial application
NASA Astrophysics Data System (ADS)
Kumar, Amit; Jain, Vipul; Kumar, Sameer; Chandra, Charu
2016-10-01
With the onset of the 'climate change movement', organisations are striving to include environmental criteria into the supplier selection process. This article hybridises a Green Data Envelopment Analysis (GDEA)-based approach with a new Genetic/Immune Strategy for Data Envelopment Analysis (GIS-DEA). A GIS-DEA approach provides a different view to solving multi-criteria decision making problems using data envelopment analysis (DEA) by considering DEA as a multi-objective optimisation problem with efficiency as one objective and proximity of solution to decision makers' preferences as the other objective. The hybrid approach called GIS-GDEA is applied here to a well-known automobile spare parts manufacturer in India and the results presented. User validation developed based on specific set of criteria suggests that the supplier selection process with GIS-GDEA is more practical than other approaches in a current industrial scenario with multiple decision makers.
[Analysis on genetic polymorphism of 5 STR loci selected from X chromosome].
Liu, Qi-ji; Gong, Yao-qin; Zhang, Xi-yu; Gao, Gui-min; Li, Jiang-xia; Guo, Yi-shou
2005-02-01
To select short tandem repeats(STR) from X chromosome. STR is a universal genetic marker that has changeable polymorphism and stable heredity in human genome. It is a specific DNA segment composed of 2-6 base pairs as its core sequence. It is an ideal DNA marker used in linkage analysis and gene mapping. In this study, 8 short tandem repeats were selected from two genomic clones on X chromosome by using BCM Search Launcher. Primers amplifying the STR loci were designed by using Primer 3.0 according to the unique sequence flanking the STRs. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five of these STRs were polymorphic. Chi-square test indicated that the distribution of genotypes agreed with Hardy-Weinberg equilibrium (P>0.05). Five polymorphic short tandem repeats have been identified on chromosome X and will be useful for linkage analysis and gene mapping.
Speciation in Western Scrub-Jays, Haldane’s rule, and genetic clines in secondary contact
2014-01-01
Background Haldane’s Rule, the tendency for the heterogametic sex to show reduced fertility in hybrid crosses, can obscure the signal of gene flow in mtDNA between species where females are heterogametic. Therefore, it is important when studying speciation and species limits in female-heterogametic species like birds to assess the signature of gene flow in the nuclear genome as well. We studied introgression of microsatellites and mtDNA across a secondary contact zone between coastal and interior lineages of Western Scrub-Jays (Aphelocoma californica) to test for a signature of Haldane’s Rule: a narrower cline of introgression in mtDNA compared to nuclear markers. Results Our initial phylogeographic analysis revealed that there is only one major area of contact between coastal and interior lineages and identified five genetic clusters with strong spatial structuring: Pacific Slope, Interior US, Edwards Plateau (Texas), Northern Mexico, and Southern Mexico. Consistent with predictions from Haldane’s Rule, mtDNA showed a narrower cline than nuclear markers across a transect through the hybrid zone. This result is not being driven by female-biased dispersal because neutral diffusion analysis, which included estimates of sex-specific dispersal rates, also showed less diffusion of mtDNA. Lineage-specific plumage traits were associated with nuclear genetic profiles for individuals in the hybrid zone, indicating that these differences are under genetic control. Conclusions This study adds to a growing list of studies that support predictions of Haldane’s Rule using cline analysis of multiple loci of differing inheritance modes, although alternate hypotheses like selection on different mtDNA types cannot be ruled out. That Haldane’s Rule appears to be operating in this system suggests a measure of reproductive isolation between the Pacific Slope and interior lineages. Based on a variety of evidence from the phenotype, ecology, and genetics, we recommend elevating three lineages to species level: A. californica (Pacific Slope); A. woodhouseii (Interior US plus Edwards Plateau plus Northern Mexico); A. sumichrasti (Southern Mexico). The distinctive Edwards Plateau population in Texas, which was monophyletic in mtDNA except for one individual, should be studied in greater detail given habitat threat. PMID:24938753
Mano, Junichi; Shigemitsu, Natsuki; Futo, Satoshi; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Furui, Satoshi; Kitta, Kazumi
2009-01-14
We developed a novel type of real-time polymerase chain reaction (PCR) array with TaqMan chemistry as a platform for the comprehensive and semiquantitative detection of genetically modified (GM) crops. Thirty primer-probe sets for the specific detection of GM lines, recombinant DNA (r-DNA) segments, endogenous reference genes, and donor organisms were synthesized, and a 96-well PCR plate was prepared with a different primer-probe in each well as the real-time PCR array. The specificity and sensitivity of the array were evaluated. A comparative analysis with the data and publicly available information on GM crops approved in Japan allowed us to assume the possibility of unapproved GM crop contamination. Furthermore, we designed a Microsoft Excel spreadsheet application, Unapproved GMO Checker version 2.01, which helps process all the data of real-time PCR arrays for the easy assumption of unapproved GM crop contamination. The spreadsheet is available free of charge at http://cse.naro.affrc.go.jp/jmano/index.html .
2018-01-01
Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described. PMID:29849913
Kirkpatrick, Robert M; McGue, Matt; Iacono, William G
2015-03-01
The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES-an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research.
Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.
2015-01-01
The present study of general cognitive ability attempts to replicate and extend previous investigations of a biometric moderator, family-of-origin socioeconomic status (SES), in a sample of 2,494 pairs of adolescent twins, non-twin biological siblings, and adoptive siblings assessed with individually administered IQ tests. We hypothesized that SES would covary positively with additive-genetic variance and negatively with shared-environmental variance. Important potential confounds unaddressed in some past studies, such as twin-specific effects, assortative mating, and differential heritability by trait level, were found to be negligible. In our main analysis, we compared models by their sample-size corrected AIC, and base our statistical inference on model-averaged point estimates and standard errors. Additive-genetic variance increased with SES—an effect that was statistically significant and robust to model specification. We found no evidence that SES moderated shared-environmental influence. We attempt to explain the inconsistent replication record of these effects, and provide suggestions for future research. PMID:25539975
Tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group.
Andreani, N A; Martino, M E; Fasolato, L; Carraro, L; Montemurro, F; Mioni, R; Bordin, P; Cardazzo, B
2014-05-01
The Pseudomonas fluorescens group comprises several closely related species that are involved in food contamination and spoilage. Specifically, the interest in P. fluorescens as a spoiler of dairy products increased after the cases of "blue mozzarella" that occurred in Italy in 2010. A Multilocus Sequence Typing (MLST) scheme was developed and applied to characterise 136 isolates (reference strains and food borne isolates) at strain level, to reveal the genetic relationships among them and to disclose any possible genetic clustering of phenotypic markers involved in food spoilage (protease, lipase, lecithinase activities and pigmented or fluorescent molecule production). The production of dark blue diffusible pigment was evaluated on several bacterial culture media and directly on mozzarella cheese. The MLST scheme provided precise genotyping at the strain level, and the population analyses of the concatenated sequences allowed major taxa to be defined. This approach was revealed to be suitable for tracking the strains according to their origin, such as dairy plants or food matrices. The genetic analysis revealed the presence of a connection between the blue pigment production and a specific phylogenetic cluster. The development of the online database specific to the P. fluorescens group (http://pubmlst.org/pfluorescens) will facilitate the application of the scheme and the sharing of the data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reprint of 'Tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group'.
Andreani, N A; Martino, M E; Fasolato, L; Carraro, L; Montemurro, F; Mioni, R; Bordin, P; Cardazzo, B
2015-02-01
The Pseudomonas fluorescens group comprises several closely related species that are involved in food contamination and spoilage. Specifically, the interest in P. fluorescens as a spoiler of dairy products increased after the cases of "blue mozzarella" that occurred in Italy in 2010. A Multilocus Sequence Typing (MLST) scheme was developed and applied to characterise 136 isolates (reference strains and food borne isolates) at strain level, to reveal the genetic relationships among them and to disclose any possible genetic clustering of phenotypic markers involved in food spoilage (protease, lipase, lecithinase activities and pigmented or fluorescent molecule production). The production of dark blue diffusible pigment was evaluated on several bacterial culture media and directly on mozzarella cheese. The MLST scheme provided precise genotyping at the strain level, and the population analyses of the concatenated sequences allowed major taxa to be defined. This approach was revealed to be suitable for tracking the strains according to their origin, such as dairy plants or food matrices. The genetic analysis revealed the presence of a connection between the blue pigment production and a specific phylogenetic cluster. The development of the online database specific to the P. fluorescens group (http://pubmlst.org/pfluorescens) will facilitate the application of the scheme and the sharing of the data. Copyright © 2014. Published by Elsevier Ltd.
Chen, Xiaoyun; Wang, Xiaofu; Jin, Nuo; Zhou, Yu; Huang, Sainan; Miao, Qingmei; Zhu, Qing; Xu, Junfeng
2012-11-07
Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%−0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops.
Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.
Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-08-14
Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.
Ras oncogenes in oral cancer: the past 20 years.
Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo
2012-05-01
Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.
ISSR, ERIC and RAPD techniques to detect genetic diversity in the aphid pathogen Pandora neoaphidis.
Tymon, Anna M; Pell, Judith K
2005-03-01
The entomopathogenic fungus Pandora neoaphidis is an important natural enemy of aphids. ISSR, ERIC (Enterobacterial Repetitive Intergenic Consensus) and RAPD PCR-based DNA fingerprint analyses were undertaken to study intra-specific variation amongst 30 isolates of P. neoaphidis worldwide, together with six closely related species of Entomophthorales. All methods yielded scorable binary characters, and distance matrices were constructed from both individual and combined data sets. Neighbour-joining was used to construct consensus phylogenetic trees which showed that although P. neoaphidis isolates were highly polymorphic they separated into a monophyletic group compared with the other Entomophthorales tested. Three distinct subclades were found, with UK isolates occupying two of these. No specific correlation with aphid host species was established for any of the isolates apart from those in one cluster which contained isolates obtained from nettle aphid, Microlophium carnosum. ERIC, ISSR and RAPD analysis allowed the rapid genetic characterisation and differentiation of isolates with the generation of potential isolate- and cluster specific-diagnostic DNA markers.
Chorlian, David B.; Rangaswamy, Madhavi; Manz, Niklas; Wang, Jen-Chyong; Dick, Danielle; Almasy, Laura; Bauer, Lance; Bucholz, Kathleen; Foroud, Tatiana; Hesselbrock, Victor; Kang, Sun J.; Kramer, John; Kuperman, Sam; Nurnberger, John; Rice, John; Schuckit, Marc; Tischfield, Jay; Edenberg, Howard J.; Goate, Alison; Bierut, Laura; Porjesz, Bernice
2013-01-01
Discrete time survival analysis (DTSA) was used to assess the age-specific association of event related oscillations (EROs) and CHRM2 gene variants on the onset of regular alcohol use and alcohol dependence. The subjects were 2938 adolescents and young adults ages 12 to 25. Results showed that the CHRM2 gene variants and ERO risk factors had hazards which varied considerably with age. The bulk of the significant age-specific associations occurred in those whose age of onset was under 16. These associations were concentrated in those subjects who at some time took an illicit drug. These results are consistent with studies which associate greater rates of alcohol dependence among those who begin drinking at an early age. The age specificity of the genetic and neurophysiological factors is consistent with recent studies of adolescent brain development, which locate an interval of heightened vulnerability to substance use disorders in the early to mid teens. PMID:23963516
Schmoock, Gernot; Ehricht, Ralf; Melzer, Falk; Rassbach, Astrid; Scholz, Holger C; Neubauer, Heinrich; Sachse, Konrad; Mota, Rinaldo Aparecido; Saqib, Muhammad; Elschner, Mandy
2009-01-01
We developed a rapid oligonucleotide microarray assay based on genetic markers for the accurate identification and differentiation of Burkholderia (B.) mallei and Burkholderia pseudomallei, the agents of glanders and melioidosis, respectively. These two agents were clearly identified using at least 4 independent genetic markers including 16S rRNA gene, fliC, motB and also by novel species-specific target genes, identified by in silico sequence analysis. Specific hybridization signal profiles allowed the detection and differentiation of up to 10 further Burkholderia spp., including the closely related species Burkholderia thailandensis and Burkholderia-like agents, such as Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia vietnamiensis, Burkholderia ambifaria, and Burkholderia gladioli, which are often associated with cystic fibrosis (CF) lung disease. The assay was developed using the easy-to-handle and economical ArrayTube (AT) platform. A representative strain panel comprising 44 B. mallei, 32 B. pseudomallei isolates, and various Burkholderia type strains were examined to validate the test. Assay specificity was determined by examination of 40 non-Burkholderia strains.
Lotta, Luca A; Scott, Robert A; Sharp, Stephen J; Burgess, Stephen; Luan, Jian'an; Tillin, Therese; Schmidt, Amand F; Imamura, Fumiaki; Stewart, Isobel D; Perry, John R B; Marney, Luke; Koulman, Albert; Karoly, Edward D; Forouhi, Nita G; Sjögren, Rasmus J O; Näslund, Erik; Zierath, Juleen R; Krook, Anna; Savage, David B; Griffin, Julian L; Chaturvedi, Nishi; Hingorani, Aroon D; Khaw, Kay-Tee; Barroso, Inês; McCarthy, Mark I; O'Rahilly, Stephen; Wareham, Nicholas J; Langenberg, Claudia
2016-11-01
Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.
Congenital abnormalities of the osseous spine: a radiological approach.
Vanhoenacker, F M; De Schepper, A M; Parizel, P M
2005-01-01
The spine may act as a useful window to the diagnosis of many congenital malformations syndromes and skeletal dysplasias. However, radiological identification of these syndromes remains a difficult task, because there are so many syndromes and dysplasias to remember. Moreover, many spinal abnormalities are non-specific and there is much overlap between different genetic and congenital disorders. Consequently, many radiologists cringe when these topics are discussed. The purpose of this short review is to provide the general radiologist a workable primer for systematic analysis of spinal abnormalities encountered in genetic disorders, which may be helpful in (differential) diagnosis.
Hamoy, I G; Santos, E J M; Santos, S E B
2008-01-22
The aim of the present study was the development of a multiplex genotyping panel of eight microsatellite markers of Arapaima gigas, previously described. Specific primer pairs were developed, each one of them marked with either FAM-6, HEX or NED. The amplification conditions using the new primers were standardized for a single reaction. The results obtained demonstrate high heterozygosity (average of 0.69) in a Lower Amazon population. The multiplex system described can thus be considered a fast, efficient and inexpensive method for the investigation of genetic variability in Arapaima populations.
General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies
Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong
2013-01-01
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515
Automated Monitoring and Analysis of Social Behavior in Drosophila
Dankert, Heiko; Wang, Liming; Hoopfer, Eric D.; Anderson, David J.; Perona, Pietro
2009-01-01
We introduce a method based on machine vision for automatically measuring aggression and courtship in Drosophila melanogaster. The genetic and neural circuit bases of these innate social behaviors are poorly understood. High-throughput behavioral screening in this genetically tractable model organism is a potentially powerful approach, but it is currently very laborious. Our system monitors interacting pairs of flies, and computes their location, orientation and wing posture. These features are used for detecting behaviors exhibited during aggression and courtship. Among these, wing threat, lunging and tussling are specific to aggression; circling, wing extension (courtship “song”) and copulation are specific to courtship; locomotion and chasing are common to both. Ethograms may be constructed automatically from these measurements, saving considerable time and effort. This technology should enable large-scale screens for genes and neural circuits controlling courtship and aggression. PMID:19270697
Heritability of specific language impairment depends on diagnostic criteria.
Bishop, D V M; Hayiou-Thomas, M E
2008-04-01
Heritability estimates for specific language impairment (SLI) have been inconsistent. Four twin studies reported heritability of 0.5 or more, but a recent report from the Twins Early Development Study found negligible genetic influence in 4-year-olds. We considered whether the method of ascertainment influenced results and found substantially higher heritability if SLI was defined in terms of referral to speech and language pathology services than if defined by language test scores. Further analysis showed that presence of speech difficulties played a major role in determining whether a child had contact with services. Childhood language disorders that are identified by population screening are likely to have a different phenotype and different etiology from clinically referred cases. Genetic studies are more likely to find high heritability if they focus on cases who have speech difficulties and who have been referred for intervention.
Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium® HD SNP BeadChip.
Miller, Joshua M; Festa-Bianchet, Marco; Coltman, David W
2018-01-01
Elucidating the genetic basis of fitness-related traits is a major goal of molecular ecology. Traits subject to sexual selection are particularly interesting, as non-random mate choice should deplete genetic variation and thereby their evolutionary benefits. We examined the genetic basis of three sexually selected morphometric traits in bighorn sheep ( Ovis canadensis ): horn length, horn base circumference, and body mass. These traits are of specific concern in bighorn sheep as artificial selection through trophy hunting opposes sexual selection. Specifically, horn size determines trophy status and, in most North American jurisdictions, if an individual can be legally harvested. Using between 7,994-9,552 phenotypic measures from the long-term individual-based study at Ram Mountain (Alberta, Canada), we first showed that all three traits are heritable ( h 2 = 0.15-0.23). We then conducted a genome-wide association study (GWAS) utilizing a set of 3,777 SNPs typed in 76 individuals using the Ovine Infinium ® HD SNP BeadChip. We found suggestive association for body mass at a single locus (OAR9_91647990). The absence of strong associations with SNPs suggests that the traits are likely polygenic. These results represent a step forward for characterizing the genetic architecture of fitness related traits in sexually dimorphic ungulates.
Huang, Yen-Tsung; Liang, Liming; Moffatt, Miriam F; Cookson, William O C M; Lin, Xihong
2015-07-01
Genome-wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP-only method for testing genetic associations. We conduct a family-based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful. © 2015 WILEY PERIODICALS, INC.
Burgess, Kelly R; Carmany, Erin P; Trepanier, Angela M
2016-02-01
Growing demand for and limited geographic access to genetic counseling services is increasing the need for alternative service delivery models (SDM) like telephone genetic counseling (TGC). Little research has been done on genetic counselors' perspectives of the practice of TGC. We created an anonymous online survey to assess whether telephone genetic counselors believed the tasks identified in the ABGC (American Board of Genetic Counseling) Practice Analysis were performed similarly or differently in TGC compared to in person genetic counseling (IPGC). If there were differences noted, we sought to determine the nature of the differences and if additional training might be needed to address them. Eighty eight genetic counselors with experience in TGC completed some or all of the survey. Respondents identified differences in 13 (14.8%) of the 88 tasks studied. The tasks identified as most different in TGC were: "establishing rapport through verbal and nonverbal interactions" (60.2%; 50/83 respondents identified the task as different), "recognizing factors affecting the counseling interaction" (47.8%; 32/67), "assessing client/family emotions, support, etc." (40.1%; 27/66) and "educating clients about basic genetic concepts" (35.6%; 26/73). A slight majority (53.8%; 35/65) felt additional training was needed to communicate information without visual aids and more effectively perform psychosocial assessments. In summary, although a majority of genetic counseling tasks are performed similarly between TGC and IPGC, TGC counselors recognize that specific training in the TGC model may be needed to address the key differences.
Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu
2016-12-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.
Yadav, Anupama; Dhole, Kaustubh
2016-01-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852
Choi, Min-Koo; Shin, Ho Jung; Choi, Young-Lim; Deng, Jian-Wei; Shin, Jae-Gook; Song, Im-Sook
2011-01-01
The purpose of this study was to investigate the effect of genetic variations in organic anion-transporting polypeptide 1B1 (OATP1B1) and Na(+)/taurocholate co-transporting polypeptide (NTCP) on the uptake of various statins having different affinities for these transporters. The functional activities and simultaneous expression of NTCP and OATP1B1 were confirmed by the uptake of taurocholate and estrone-3-sulphate as representative substrates for NTCP and OATP1B1, respectively, and by an immunofluorescence analysis. The substrate specificities of NTCP and OATP1B1 for statins and the effects of genetic variations on the uptake of rosuvastatin, pitavastatin, and atorvastatin were measured. Based on the K(m) values and intrinsic clearances of the three statins, pitavastatin was taken up more efficiently than rosuvastatin and atorvastatin by OATP1B1. Consequently, the cellular accumulation of pitavastatin was modulated according to the genetic variation of OATP1B1 (OATP1B1*15), rather than NTCP*2. In contrast, NTCP*2 displayed greater transport of atorvastatin and rosuvastatin, compared with NTCP wild type. Thus, the measurements of decreased rosuvastatin and atorvastatin transport by OATP1B1*15 were confounded by the presence of NTCP and its genetic variant, NTCP*2. In conclusion, the functional consequences of genetic variants of NTCP and OATP1B1 may be different for various statins, depending on the substrate specificity of the OATP1B1 and NTCP transporters.
NASA Astrophysics Data System (ADS)
Bay, Annick; Mayer, Alexandre
2014-09-01
The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.
NASA Astrophysics Data System (ADS)
Puig, Blanca; Ageitos, Noa; Jiménez-Aleixandre, María Pilar
2017-12-01
There is emerging interest on the interactions between modelling and argumentation in specific contexts, such as genetics learning. It has been suggested that modelling might help students understand and argue on genetics. We propose modelling gene expression as a way to learn molecular genetics and diseases with a genetic component. The study is framed in Tiberghien's (2000) two worlds of knowledge, the world of "theories & models" and the world of "objects & events", adding a third component, the world of representations. We seek to examine how modelling and argumentation interact and connect the three worlds of knowledge while modelling gene expression. It is a case study of 10th graders learning about diseases with a genetic component. The research questions are as follows: (1) What argumentative and modelling operations do students enact in the process of modelling gene expression? Specifically, which operations allow connecting the three worlds of knowledge? (2) What are the interactions between modelling and argumentation in modelling gene expression? To what extent do these interactions help students connect the three worlds of knowledge and modelling gene expression? The argumentative operation of using evidence helps students to relate the three worlds of knowledge, enacted in all the connections. It seems to be a relationship among the number of interactions between modelling and argumentation, the connections between world of knowledge and students' capacity to develop a more sophisticated representation. Despite this is a case study, this approach of analysis reveals potentialities for a deeper understanding of learning genetics though scientific practices.
Goudenège, David; Labreuche, Yannick; Krin, Evelyne; Ansquer, Dominique; Mangenot, Sophie; Calteau, Alexandra; Médigue, Claudine; Mazel, Didier; Polz, Martin F; Le Roux, Frédérique
2013-01-01
Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo. PMID:23739050
Fan, Jean; Lee, Hae-Ock; Lee, Soohyun; Ryu, Da-Eun; Lee, Semin; Xue, Catherine; Kim, Seok Jin; Kim, Kihyun; Barkas, Nikolas; Park, Peter J; Park, Woong-Yang; Kharchenko, Peter V
2018-06-13
Characterization of intratumoral heterogeneity is critical to cancer therapy, as presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss-of-heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct underlying subclonal architecture. Examining several tumor types, we show that HoneyBADGER is effective at identifying deletion, amplifications, and copy-neutral loss-of-heterozygosity events, and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Surprisingly, other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure, and were likely driven by alternative, non-clonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer. Published by Cold Spring Harbor Laboratory Press.
Global Genomic Analysis of Prostate, Breast and Pancreatic Cancer
2012-10-01
fever virus (Lauck et al. 2011). The success of transposon-based genomic library construction for genomic analyses suggests that it should be possible...2011. Novel, divergent simian hemorrhagic Fever viruses in a wild ugandan red colobus Gertz et al. 140 Genome Research www.genome.org Cold Spring...2009. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5: e1000569. doi: 10.1371
Traylor, Matthew; Farrall, Martin; Holliday, Elizabeth G; Sudlow, Cathie; Hopewell, Jemma C; Cheng, Yu-Ching; Fornage, Myriam; Ikram, M Arfan; Malik, Rainer; Bevan, Steve; Thorsteinsdottir, Unnur; Nalls, Mike A; Longstreth, WT; Wiggins, Kerri L; Yadav, Sunaina; Parati, Eugenio A; DeStefano, Anita L; Worrall, Bradford B; Kittner, Steven J; Khan, Muhammad Saleem; Reiner, Alex P; Helgadottir, Anna; Achterberg, Sefanja; Fernandez-Cadenas, Israel; Abboud, Sherine; Schmidt, Reinhold; Walters, Matthew; Chen, Wei-Min; Ringelstein, E Bernd; O'Donnell, Martin; Ho, Weang Kee; Pera, Joanna; Lemmens, Robin; Norrving, Bo; Higgins, Peter; Benn, Marianne; Sale, Michele; Kuhlenbäumer, Gregor; Doney, Alexander S F; Vicente, Astrid M; Delavaran, Hossein; Algra, Ale; Davies, Gail; Oliveira, Sofia A; Palmer, Colin N A; Deary, Ian; Schmidt, Helena; Pandolfo, Massimo; Montaner, Joan; Carty, Cara; de Bakker, Paul I W; Kostulas, Konstantinos; Ferro, Jose M; van Zuydam, Natalie R; Valdimarsson, Einar; Nordestgaard, Børge G; Lindgren, Arne; Thijs, Vincent; Slowik, Agnieszka; Saleheen, Danish; Paré, Guillaume; Berger, Klaus; Thorleifsson, Gudmar; Hofman, Albert; Mosley, Thomas H; Mitchell, Braxton D; Furie, Karen; Clarke, Robert; Levi, Christopher; Seshadri, Sudha; Gschwendtner, Andreas; Boncoraglio, Giorgio B; Sharma, Pankaj; Bis, Joshua C; Gretarsdottir, Solveig; Psaty, Bruce M; Rothwell, Peter M; Rosand, Jonathan; Meschia, James F; Stefansson, Kari; Dichgans, Martin; Markus, Hugh S
2012-01-01
Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS). PMID:23041239
Liu, Chan; Zeng, Liangbin; Zhu, Siyuan; Wu, Lingqing; Wang, Yanzhou; Tang, Shouwei; Wang, Hongwu; Zheng, Xia; Zhao, Jian; Chen, Xiaorong; Dai, Qiuzhong; Liu, Touming
2017-11-15
Plentiful bast fiber, a high crude protein content, and vigorous vegetative growth make ramie a popular fiber and forage crop. Here, we report the draft genome of ramie, along with a genomic comparison and evolutionary analysis. The draft genome contained a sequence of approximately 335.6 Mb with 42,463 predicted genes. A high-density genetic map with 4,338 single nucleotide polymorphisms (SNPs) was developed and used to anchor the genome sequence, thus, creating an integrated genetic and physical map containing a 58.2-Mb genome sequence and 4,304 molecular markers. A genomic comparison identified 1,075 unique gene families in ramie, containing 4,082 genes. Among these unique genes, five were cellulose synthase genes that were specifically expressed in stem bark, and 3 encoded a WAT1-related protein, suggesting that they are probably related to high bast fiber yield. An evolutionary analysis detected 106 positively selected genes, 22 of which were related to nitrogen metabolism, indicating that they are probably responsible for the crude protein content and vegetative growth of domesticated varieties. This study is the first to characterize the genome and develop a high-density genetic map of ramie and provides a basis for the genetic and molecular study of this crop. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.