Matti, J.C.; Morton, D.M.; Langenheim, V.E.
2015-01-01
Geologic information contained in the El Casco database is general-purpose data applicable to land-related investigations in the earth and biological sciences. The term “general-purpose” means that all geologic-feature classes have minimal information content adequate to characterize their general geologic characteristics and to interpret their general geologic history. However, no single feature class has enough information to definitively characterize its properties and origin. For this reason the database cannot be used for site-specific geologic evaluations, although it can be used to plan and guide investigations at the site-specific level.
The application of automatic recognition techniques in the Apollo 9 SO-65 experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.
1970-01-01
A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.
Geophysics of Martian Periglacial Processes
NASA Technical Reports Server (NTRS)
Mellon, Michael T.
2004-01-01
Through the examination of small-scale geologic features potentially related to water and ice in the martian subsurface (specifically small-scale polygonal ground and young gully-like features), determine the state, distribution and recent history of subsurface water and ice on Mars. To refine existing models and develop new models of near-surface water and ice, and develop new insights about the nature of water on Mars as manifested by these geologic features. Through an improved understanding of potentially water-related geologic features, utilize these features in addressing questions about where to best search for present day water and what space craft may encounter that might facilitate or inhibit the search for water.
A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization
Zuo, Renguang
2016-01-01
This paper reports a nonlinear controlling function of geological features on magmatic–hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε−(De−a), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cεa−2. When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines. PMID:27255794
A nonlinear controlling function of geological features on magmatic-hydrothermal mineralization.
Zuo, Renguang
2016-06-03
This paper reports a nonlinear controlling function of geological features on magmatic-hydrothermal mineralization, and proposes an alternative method to measure the spatial relationships between geological features and mineral deposits using multifractal singularity theory. It was observed that the greater the proximity to geological controlling features, the greater the number of mineral deposits developed, indicating a nonlinear spatial relationship between these features and mineral deposits. This phenomenon can be quantified using the relationship between the numbers of mineral deposits N(ε) of a D-dimensional set and the scale of ε. The density of mineral deposits can be expressed as ρ(ε) = Cε(-(De-a)), where ε is the buffer width of geological controlling features, De is Euclidean dimension of space (=2 in this case), a is singularity index, and C is a constant. The expression can be rewritten as ρ = Cε(a-2). When a < 2, there is a significant spatial correlation between specific geological features and mineral deposits; lower a values indicate a more significant spatial correlation. This nonlinear relationship and the advantages of this method were illustrated using a case study from Fujian Province in China and a case study from Baguio district in Philippines.
The application of geography markup language (GML) to the geological sciences
NASA Astrophysics Data System (ADS)
Lake, Ron
2005-11-01
GML 3.0 became an adopted specification of the Open Geospatial Consortium (OGC) in January 2003, and is rapidly emerging as the world standard for the encoding, transport and storage of all forms of geographic information. This paper looks at the application of GML to one of the more challenging areas of automated geography, namely the geological sciences. Specific features of GML of interest to geologists are discussed and then illustrated through a series of geological case studies. We conclude the paper with a discussion of anticipated geological web services that GML will enable. GML is written in XML and makes use of XML Schema for extensibility. It can be used both to represent or model geographic objects and to transport them across the Internet. In this way it serves as the foundation for all manner of geographic web services. Unlike vertical application grammars such as LandXML, GML was intended to define geographic application languages, and hence is applicable to any geographic domain including forestry, environmental sciences, geology and oceanography. This paper provides a review of the basic features of GML that are fundamental to the geological sciences including geometry, coverages, observations, reference systems and temporality. These constructs are then employed in a series of simple geological case studies including structural geological description, surficial geology, representation of geological time scales, mineral occurrences, geohazards and geochemical reconnaissance.
A generalized geologic map of Mars
NASA Technical Reports Server (NTRS)
Carr, M. H.; Masursky, H.; Saunders, R. S.
1973-01-01
A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.
FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)
,
2006-01-01
PLEASE NOTE: This now-approved 'FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)' officially supercedes its earlier (2000) Public Review Draft version (see 'Earlier Versions of the Standard' below). In August 2006, the Digital Cartographic Standard for Geologic Map Symbolization was officially endorsed by the Federal Geographic Data Committee (FGDC) as the national standard for the digital cartographic representation of geologic map features (FGDC Document Number FGDC-STD-013-2006). Presented herein is the PostScript Implementation of the standard, which will enable users to directly apply the symbols in the standard to geologic maps and illustrations prepared in desktop illustration and (or) publishing software. The FGDC Digital Cartographic Standard for Geologic Map Symbolization contains descriptions, examples, cartographic specifications, and notes on usage for a wide variety of symbols that may be used on typical, general-purpose geologic maps and related products such as cross sections. The standard also can be used for different kinds of special-purpose or derivative map products and databases that may be focused on a specific geoscience topic (for example, slope stability) or class of features (for example, a fault map). The standard is scale-independent, meaning that the symbols are appropriate for use with geologic mapping compiled or published at any scale. It will be useful to anyone who either produces or uses geologic map information, whether in analog or digital form. Please be aware that this standard is not intended to be used inflexibly or in a manner that will limit one's ability to communicate the observations and interpretations gained from geologic mapping. In certain situations, a symbol or its usage might need to be modified in order to better represent a particular feature on a geologic map or cross section. This standard allows the use of any symbol that doesn't conflict with others in the standard, provided that it is clearly explained on the map and in the database. In addition, modifying the size, color, and (or) lineweight of an existing symbol to suit the needs of a particular map or output device also is permitted, provided that the modified symbol's appearance is not too similar to another symbol on the map. Be aware, however, that reducing lineweights below .125 mm (.005 inch) may cause symbols to plot incorrectly if output at higher resolutions (1800 dpi or higher). For guidelines on symbol usage, as well as on color design and map labeling, please refer to the standard's introductory text. Also found there are informational sections covering concepts of geologic mapping and some definitions of geologic map features, as well as sections on the newly defined concepts and terminology for the scientific confidence and locational accuracy of geologic map features. More information on both the past development and the future maintenance of the FGDC Digital Cartographic Standard for Geologic Map Symbolization can be found at the FGDC Geologic Data Subcommittee website (http://ngmdb.usgs.gov/fgdc_gds/). Earlier Versions of the Standard
Landslide inventory for the Little North Santiam River Basin, Oregon
Sobieszczyk, Steven
2010-01-01
This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).
Summary of an integrated ERTS-1 project and its results at the Missouri Geological Survey
NASA Technical Reports Server (NTRS)
Martin, J. A.; Allen, W. H.; Rath, D. L.; Rueff, A.
1974-01-01
Use of the ERTS imagery involved the recognition and interpretation of various ground patterns. Analysis and application are tied to ongoing programs. Specific studies utilizing the imagery and NASA aircraft photography are: a statewide lake and dam inventory; assessment of flooding and floodprone areas along the Missouri portion of the Mississippi and Missouri Rivers; land-use classification for several counties; structural features in selected areas; and Pleistocene features in northern Missouri. Though it has been suggested that repetitive coverage is not necessary for geologic studies, it is this specific feature along with the synoptic view of large portions of the State that provided the potential for the utilization of the ERTS imagery in Missouri. Other State agencies, Departments of Conservation, Agriculture, and Community Affairs, have expressed interest in the potential application of ERTS data in their respective fields.
The Geological Susceptibility of Induced Earthquakes in the Duvernay Play
NASA Astrophysics Data System (ADS)
Pawley, Steven; Schultz, Ryan; Playter, Tiffany; Corlett, Hilary; Shipman, Todd; Lyster, Steven; Hauck, Tyler
2018-02-01
Presently, consensus on the incorporation of induced earthquakes into seismic hazard has yet to be established. For example, the nonstationary, spatiotemporal nature of induced earthquakes is not well understood. Specific to the Western Canada Sedimentary Basin, geological bias in seismogenic activation potential has been suggested to control the spatial distribution of induced earthquakes regionally. In this paper, we train a machine learning algorithm to systemically evaluate tectonic, geomechanical, and hydrological proxies suspected to control induced seismicity. Feature importance suggests that proximity to basement, in situ stress, proximity to fossil reef margins, lithium concentration, and rate of natural seismicity are among the strongest model predictors. Our derived seismogenic potential map faithfully reproduces the current distribution of induced seismicity and is suggestive of other regions which may be prone to induced earthquakes. The refinement of induced seismicity geological susceptibility may become an important technique to identify significant underlying geological features and address induced seismic hazard forecasting issues.
NASA Astrophysics Data System (ADS)
Giles, A. N.; Wilkie, K. M.
2008-12-01
Photo-projects have long been utilized as a way of getting students in introductory geology courses to apply what they have learned in lecture to the outcrop and landscape. While the projects have many benefits, we have found that with large-format classes of 200+ students, where a mandatory field trip is logistically impossible, many problems can arise. One problem has been that of consistent and timely grading, which can be addressed by a project that can be turned in throughout the course of the semester and by utilizing a grading rubric. Also, in many cases, students simply take photographs of "scenery" and then try to identify features/processes with little thought as to whether that particular feature/process can occur in that geologic setting (such as identifying features as having a glacial origin in a non-glaciated terrain.) These types of problem can be attributed to the student's lack of knowledge of the geology of the area within which the photographs were taken and having little to no field instruction. Many of these problems can be addressed by utilizing a term project that combines elements of both research and the traditional photo project. The student chooses a specific area/region (i.e. a national park) that the student will/has actually visit(ed) and is then required to do background research before attempting to identify features and processes in photographs they have taken from the area. Here we present details of such a project that involves students performing research activities in three stages: The history/geologic setting of the area, the specific lithology of the area, and then the hydrology of the area, with each being completed at specified times throughout the semester. The final stage is the photo project component where the student identifies and interprets the features/processes in photographs from the area. The research provides the student with a framework within which they can identify and interpret the features/processes that are likely to be seen in their area.
ERIC Educational Resources Information Center
Kelly, Gregory J.; Takao, Allison
2002-01-01
Examines university oceanography students' use of evidence in writing considering the relative epistemic status of propositions comprising student' written texts. Defines the epistemic levels by discipline-specific geological constructs from descriptions of data, to identification of features, to relational aspects of features, to theoretical…
Semantics-informed cartography: the case of Piemonte Geological Map
NASA Astrophysics Data System (ADS)
Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico
2016-04-01
In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially correlated through the whole region and described using the GeoSciML vocabularies. A hierarchical schema is provided for the Piemonte Geological Map that gives the parental relations between several orders of GeologicUnits referring to mostly recurring geological objects and main GeologicEvents, in a logical framework compliant with GeoSciML and INSPIRE data models. The classification criteria and the Hierarchy Schema used to define the GEOPiemonteMap Legend, as well as the intended meanings of the geological concepts used to achieve the overall classification schema, are explicitly described in several WikiGeo pages (implemented by "MediaWiki" open source software, https://www.mediawiki.org/wiki/MediaWiki). Moreover, a further step toward a formal classification of the contents (both data and interpretation) of the GEOPiemonteMap was triggered, by setting up an ontological framework, named "OntoGeonous", in order to achieve a thorough semantic characterization of the Map.
Landslide deposit boundaries for the Little North Santiam River Basin, Oregon
Sobieszczyk, Steven
2010-01-01
This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey.Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).
Mashburn, Shana L.; Winton, Kimberly T.
2010-01-01
This CD-ROM contains spatial datasets that describe natural and anthropogenic features and county-level estimates of agricultural pesticide use and pesticide data for surface-water, groundwater, and biological specimens in the state of Oklahoma. County-level estimates of pesticide use were compiled from the Pesticide National Synthesis Project of the U.S. Geological Survey, National Water-Quality Assessment Program. Pesticide data for surface water, groundwater, and biological specimens were compiled from U.S. Geological Survey National Water Information System database. These spatial datasets that describe natural and manmade features were compiled from several agencies and contain information collected by the U.S. Geological Survey. The U.S. Geological Survey datasets were not collected specifically for this compilation, but were previously collected for projects with various objectives. The spatial datasets were created by different agencies from sources with varied quality. As a result, features common to multiple layers may not overlay exactly. Users should check the metadata to determine proper use of these spatial datasets. These data were not checked for accuracy or completeness. If a question of accuracy or completeness arise, the user should contact the originator cited in the metadata.
Locating potential biosignatures on Europa from surface geology observations.
Figueredo, Patricio H; Greeley, Ronald; Neuer, Susanne; Irwin, Louis; Schulze-Makuch, Dirk
2003-01-01
We evaluated the astrobiological potential of the major classes of geologic units on Europa with respect to possible biosignatures preservation on the basis of surface geology observations. These observations are independent of any formational model and therefore provide an objective, though preliminary, evaluation. The assessment criteria include high mobility of material, surface concentration of non-ice components, relative youth, textural roughness, and environmental stability. Our review determined that, as feature classes, low-albedo smooth plains, smooth bands, and chaos hold the highest potential, primarily because of their relative young age, the emplacement of low-viscosity material, and indications of material exchange with the subsurface. Some lineaments and impact craters may be promising sites for closer study despite the comparatively lower astrobiological potential of their classes. This assessment will be expanded by multidisciplinary examination of the potential for habitability of specific features.
Airborne remote sensors applied to engineering geology and civil works design investigations
NASA Technical Reports Server (NTRS)
Gelnett, R. H.
1975-01-01
The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.
Toward digital geologic map standards: a progress report
Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.
1992-01-01
Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial data transfer. It will require separate specifications of digital cartographic quality relating to positional accuracy and ranges of measured and interpreted values such as geologic age and rock composition. Provisional digital geologic map standards will be published for trial implementation. After approximately two years, when comments on the proposed standards have been solicited and modifications made, formal adoption of the standards will be recommended. Widespread acceptance of the new standards will depend on their applicability to the broadest range of earth-science map products and their adaptability to changing cartographic technology.
NASA Astrophysics Data System (ADS)
Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco
2016-04-01
Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the SimpleLithology CGI vocabulary and aligned as a subclass of the Substance class in NASA SWEET ontology), and 3) an ontology of the MappedFeatures (as defined in the Representation sub-taxonomy of the NASA SWEET ontology). The latter correspond to the concrete elements of the map, with their geometry (polygons, lines) and geographical coordinates. The ontology model has been developed by taking into account applications primarily concerning the needs of geological mapping; nevertheless, the model is general enough to be applied to other contexts. In particular, we show how the automatic reasoning capabilities of the ontology system can be employed in tasks of unit definition and input filling of the map database and for supporting geologists in thematic re-classification of the map instances (e.g. for coloring tasks). ---------------------------------------- [1] http://www.geosciml.org [2] http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf [3] http://www.cgi-iugs.org/tech_collaboration/geoscience_terminology_working_group.html [4] https://www.seegrid.csiro.au/subversion/CGI_CDTGVocabulary/trunk/OwlWork/CGI_Lithology.owl [5] We are currently neglecting the encoding of the geologic events, left as a future work. [6] http://resource.geosciml.org/vocabulary/cgi/201211/ [7] Web site: https://sweet.jpl.nasa.gov, Di Giuseppe et al., 2013, SWEET ontology coverage for earth system sciences, http://www.ics.uci.edu/~ndigiuse/Nicholas_DiGiuseppe/Research_files/digiuseppe14.pdf; S. Barahmand et al. 2009, A Survey on SWEET Ontologies and their Applications, http://www-scf.usc.edu/~taheriya/reports/csci586-report.pdf
NASA Astrophysics Data System (ADS)
Rogers, L. D.; Valderrama Graff, P.; Bandfield, J. L.; Christensen, P. R.; Klug, S. L.; Deva, B.; Capages, C.
2007-12-01
The Mars Public Mapping Project is a web-based education and public outreach tool developed by the Mars Space Flight Facility at Arizona State University. This tool allows the general public to identify and map geologic features on Mars, utilizing Thermal Emission Imaging System (THEMIS) visible images, allowing public participation in authentic scientific research. In addition, participants are able to rate each image (based on a 1 to 5 star scale) to help build a catalog of some of the more appealing and interesting martian surface features. Once participants have identified observable features in an image, they are able to view a map of the global distribution of the many geologic features they just identified. This automatic feedback, through a global distribution map, allows participants to see how their answers compare to the answers of other participants. Participants check boxes "yes, no, or not sure" for each feature that is listed on the Mars Public Mapping Project web page, including surface geologic features such as gullies, sand dunes, dust devil tracks, wind streaks, lava flows, several types of craters, and layers. Each type of feature has a quick and easily accessible description and example image. When a participant moves their mouse over each example thumbnail image, a window pops up with a picture and a description of the feature. This provides a form of "on the job training" for the participants that can vary with their background level. For users who are more comfortable with Mars geology, there is also an advanced feature identification section accessible by a drop down menu. This includes additional features that may be identified, such as streamlined islands, valley networks, chaotic terrain, yardangs, and dark slope streaks. The Mars Public Mapping Project achieves several goals: 1) It engages the public in a manner that encourages active participation in scientific research and learning about geologic features and processes. 2) It helps to build a mappable database that can be used by researchers (and the public in general) to quickly access image based data that contains particular feature types. 3) It builds a searchable database of images containing specific geologic features that the public deem to be visually appealing. Other education and public outreach programs at the Mars Space Flight Facility, such as the Rock Around the World and the Mars Student Imaging Project, have shown an increase in demand for programs that allow "kids of all ages" to participate in authentic scientific research. The Mars Public Mapping Project is a broadly accessible program that continues this theme by building a set of activities that is useful for both the public and scientists.
Geosites and geoheritage representations - a cartographic approach
NASA Astrophysics Data System (ADS)
Rocha, Joao; Brilha, José
2016-04-01
In recent years, the increasing awareness of the importance of nature conservation, particularly towards the protection, conservation and promotion of geological sites, has resulted in a wide range of scientific studies. In a certain way, the majority of geodiversity studies, geoconservation strategies and geosites inventories and geoheritage assessment projects will use, on a particular stage, a cartographic representation - a map - of the most relevant geological and geomorphological features within the area of analyses. A wide range of geosite maps and geological heritage maps have been produced but, so far, a widely accepted conceptual cartographic framework with a specific symbology for cartographic representation has not been created. In this work we debate the lack of a systematic and conceptual framework to support geoheritage and geosite mapping. It is important to create a widely accepted conceptual cartographic framework with a specific symbology to be used within maps dedicated to geoheritage and geosites. We propose a cartographic approach aiming the conceptualization and the definition of a nomenclature and symbology system to be used on both geosite and geoheritage maps. We define a symbology framework for geosite and geoheritage mapping addressed to general public and to secondary school students, in order to be used as geotouristic and didactic tools, respectively. Three different approaches to support the definition of the symbology framework were developed: i) symbols to correlate geosites with the geological time scale; ii) symbols related to each one of the 27 geological frameworks defined in the Portuguese geoheritage inventory; iii) symbols to represent groups of geosites that share common geological and geomorphological features. The use of these different symbols in a map allows a quick understanding of a set of relevant information, in addition to the usual geographical distribution of geosites in a certain area.
NASA Astrophysics Data System (ADS)
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Onoe, Hironori; Mok, Chin Man W.; Wen, Jet-Chau; Huang, Shao-Yang; Wang, Wenke
2017-04-01
Hydraulic tomography (HT) has become a mature aquifer test technology over the last two decades. It collects nonredundant information of aquifer heterogeneity by sequentially stressing the aquifer at different wells and collecting aquifer responses at other wells during each stress. The collected information is then interpreted by inverse models. Among these models, the geostatistical approaches, built upon the Bayesian framework, first conceptualize hydraulic properties to be estimated as random fields, which are characterized by means and covariance functions. They then use the spatial statistics as prior information with the aquifer response data to estimate the spatial distribution of the hydraulic properties at a site. Since the spatial statistics describe the generic spatial structures of the geologic media at the site rather than site-specific ones (e.g., known spatial distributions of facies, faults, or paleochannels), the estimates are often not optimal. To improve the estimates, we introduce a general statistical framework, which allows the inclusion of site-specific spatial patterns of geologic features. Subsequently, we test this approach with synthetic numerical experiments. Results show that this approach, using conditional mean and covariance that reflect site-specific large-scale geologic features, indeed improves the HT estimates. Afterward, this approach is applied to HT surveys at a kilometer-scale-fractured granite field site with a distinct fault zone. We find that by including fault information from outcrops and boreholes for HT analysis, the estimated hydraulic properties are improved. The improved estimates subsequently lead to better prediction of flow during a different pumping test at the site.
Blue Marble Matches: Using Earth for Planetary Comparisons
NASA Technical Reports Server (NTRS)
Graff, Paige Valderrama
2009-01-01
Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.
Need for new sensors to map lithologic units
Rowan, Lawrence C.; Barringer, Anthony R.
1980-01-01
One of the most important contributions that remote sensing can make to mineral energy explorations to provide data from satellites to augment regional geological mapping. Geologic maps, which show information on the subsurface, are the main basis for formulating models of resource genesis that guide exploration. However, conventional compilation procedures are time-consuming and therefore often slow the pace of exploration, especially in large, inaccessible areas. Landsat Multispectral Scanner (MSS) images have been applied to a wide variety of specific geological problems, including discrimination of lithologic and delineation of previously unrecognized tectonic features. However, these lithologic distinctions are based on brightness, spectral reflectance, and, less commonly, the morphology of the unit, which in the wavelength region of MSS images are only rarely diagnostic of specific mineralogical content. Limonite is the only lithological material that can be identified be analyzing MSS spectral radiance.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2014-12-01
This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.
Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy
2010-01-01
Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.
Chirico, P.G.; Moran, T.W.
2011-01-01
This dataset contains a collection of 24 folders, each representing a specific U.S. Geological Survey area of interest (AOI; fig. 1), as well as datasets for AOI subsets. Each folder includes the extent, contours, Digital Elevation Model (DEM), and hydrography of the corresponding AOI, which are organized into feature vector and raster datasets. The dataset comprises a geographic information system (GIS), which is available upon request from the USGS Afghanistan programs Web site (http://afghanistan.cr.usgs.gov/minerals.php), and the maps of the 24 areas of interest of the USGS AOIs.
NASA Astrophysics Data System (ADS)
Klose, C. D.; Giese, R.; Löw, S.; Borm, G.
Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock fracturing than compression wave velocities. The velocity ratios indicate the mica content and the water content of the rocks.
Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.
2008-01-01
Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical significance. Cultural resources include fishponds, petroglyphs and a heiau (religious site). The fishponds are also recognized as exceptional birding areas and are important wetlands for migratory birds. The ocean and reef have been designated as a Marine Area Reserve, where green sea turtles commonly come ashore to rest. The park is also a valuable recreational resource, with approximately 4 km of coastline and a protective cove ideal for snorkeling and swimming. KAHO park boundaries extend beyond the mean high tide line and include the adjacent marine environment. An accompanying report for KAHO presents the results of benthic habitat mapping of the offshore waters, from the shoreline to approximately 40 m water depth. Ground-water quality and potential downslope impacts created by development around the park are of concern to Park management.
Database of the Geology and Thermal Activity of Norris Geyser Basin, Yellowstone National Park
Flynn, Kathryn; Graham Wall, Brita; White, Donald E.; Hutchinson, Roderick A.; Keith, Terry E.C.; Clor, Laura; Robinson, Joel E.
2008-01-01
This dataset contains contacts, geologic units and map boundaries from Plate 1 of USGS Professional Paper 1456, 'The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming.' The features are contained in the Annotation, basins_poly, contours, geology_arc, geology_poly, point_features, and stream_arc feature classes as well as a table of geologic units and their descriptions. This dataset was constructed to produce a digital geologic map as a basis for studying hydrothermal processes in Norris Geyser Basin. The original map does not contain registration tic marks. To create the geodatabase, the original scanned map was georegistered to USGS aerial photographs of the Norris Junction quadrangle collected in 1994. Manmade objects, i.e. roads, parking lots, and the visitor center, along with stream junctions and other hydrographic features, were used for registration.
Geologic coal assessment: The interface with economics
Attanasi, E.D.
2001-01-01
Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.
OneGeology-Europe and the new EC Directive INSPIRE - A matter of semantic subtlety?
NASA Astrophysics Data System (ADS)
Asch, K.
2009-04-01
The EC INSPIRE Directive which came into force in May 2007 set out how the Member States of the European Union would describe, discover and provide access to spatial environmental data in a harmonised way. Amongst the data sets specified in INSPIRE is geology. A fundamental question is just what is meant by ‘geology'? The question must be answered, and in some detail, if the intentions of the INSPIRE Directive to provide consistency of access are to be realised The Directive itself provides very little constraint on this definition. In it geology is described as "Geology characterised according to composition and structure. Includes bedrock, aquifers and geomorphology". The challenge for the EC and its Member States - more specifically for the geological survey community - is to convert this single line into a precise and practical specification that will deliver the outcomes intended by INSPIRE. The geological survey community is attempting to develop this specification through two complementary routes. Theme Working Groups - a generic procedure adopted by the EC that will start in May 2009 - and a new EC eContentplus project, OneGeology-Europe. Within OneGeology-Europe is a Work Package whose task is to deliver a semantic specification of "geology" at 1:1 million scale. While the initial reaction of some would be to question whether defining geology at this scale poses any significant challenges the reality is somewhat different. Fundamental questionsare: Should we specify the geology at the surface or restrict it to "bedrock" geology? Do we attempt to define the rocks chronostratigraphically, or by their lithology, perhaps even by the more regional lithostratigraphy or by genetic aspect? To what extent do we include tectonic features? How to cope with th ecomplexity of metamorphic rocks etc? These are only some of the high level questions - the devil, however, comes in the detail. How should we deal with the classification of the Pre-Cambrian rocks? What approach should we adopt to hypabyssal rocks? There are many more to approach and of course already existing vocabulararies, definitions and classifications need to be taken into account. Compounding these questions is the fact that in the absence of accepted international standards, almost every national geological survey has adopted different standards; standards which they are reluctant to concede. This presentation will outline the issues and challenges facing the geological community to define the geological classification of the OneGeology-Europe project while considering the future requirements of the EC INSPIRE Directive and provides an update on the progress in meeting those challenges.
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
GeoSciML and EarthResourceML Update, 2012
NASA Astrophysics Data System (ADS)
Richard, S. M.; Commissionthe Management; Application Inte, I.
2012-12-01
CGI Interoperability Working Group activities during 2012 include deployment of services using the GeoSciML-Portrayal schema, addition of new vocabularies to support properties added in version 3.0, improvements to server software for deploying services, introduction of EarthResourceML v.2 for mineral resources, and collaboration with the IUSS on a markup language for soils information. GeoSciML and EarthResourceML have been used as the basis for the INSPIRE Geology and Mineral Resources specifications respectively. GeoSciML-Portrayal is an OGC GML simple-feature application schema for presentation of geologic map unit, contact, and shear displacement structure (fault and ductile shear zone) descriptions in web map services. Use of standard vocabularies for geologic age and lithology enables map services using shared legends to achieve visual harmonization of maps provided by different services. New vocabularies have been added to the collection of CGI vocabularies provided to support interoperable GeoSciML services, and can be accessed through http://resource.geosciml.org. Concept URIs can be dereferenced to obtain SKOS rdf or html representations using the SISSVoc vocabulary service. New releases of the FOSS GeoServer application greatly improve support for complex XML feature schemas like GeoSciML, and the ArcGIS for INSPIRE extension implements similar complex feature support for ArcGIS Server. These improved server implementations greatly facilitate deploying GeoSciML services. EarthResourceML v2 adds features for information related to mining activities. SoilML provides an interchange format for soil material, soil profile, and terrain information. Work is underway to add GeoSciML to the portfolio of Open Geospatial Consortium (OGC) specifications.
The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt
Schaber, G.G.; McCauley, J.F.; Breed, C.S.
1997-01-01
Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat images by a relatively thin, but extensive blanket of blow sand. Basement rock units and associated fractures at the Bir Safsaf are clearly delineated using C- and L-band SAR images. The detectability of most geologic features depend primarily on radar frequency. The SIR-C/X-SAR data also provide recommendations about the utility of certain radar configurations for geologic and paleoenvironmental reconnaissance in deserts.
Thamke, Joanna N.; Reynolds, Mitchell W.
2000-01-01
The Generalized Bedrock Geologic Map of the Helena Area, West-Central Montana (plate 1 in the report) provides an intermediate-scale overview of bedrock in the Helena area. The geologic map has been compiled at a scale of 1:100,000 from the most widely available sources of geologic map information (see index to geologic mapping on pl. 1). That information has been updated by M.W. Reynolds for this report with more recent geologic mapping and field revision of published maps. All well locations and all bedrock units penetrated during drilling have been confirmed on geologic maps at the largest scale available. Source geologic maps are all at scales larger than 1:100,000 scale. Care has been taken to ensure accurate representation of the original geology at the compilation scale. However, positional accuracy of some features might be somewhat diminished at the smaller scale of the base map when compared with the original data source. Also, line thicknesses for contacts and faults necessarily assume a greater width, relative to the real geologic feature, at the scale of the generalized map than on any original map. The map is not intended for large-scale, site-specific detailed planning. Bedrock units throughout the Helena area are generally covered by young surficial deposits such as alluvium, colluvium, glacial debris, or windblown sediment. Thickness of such deposits varies from veneers through which the underlying bedrock is clearly discernible to major thicknesses that conceal all underlying bedrock and structure. Boundaries of major accumulations of surficial deposits are attributed separately from bedrock contacts. These boundaries should not be considered precise at the map scale or at larger scales. Boundaries shown may be less accurate positionally than bedrock contacts and faults because (1) surficial deposits commonly thin to a knife edge; (2) different mappers will interpret the edge differently when drawing a boundary; or (3) the original geologic map maker was concerned principally with bedrock units and structure and thus overlooked, or did not originally map as consistently, some surficial deposits. Veneers of surficial sediment, when saturated, can be local sources of recharge to underlying bedrock. Use of the generalized map to define their distribution does not substitute for site specific mapping of such deposits. Specific knowledge is needed to determine the water-bearing properties of the geologic units at and surrounding a site because the units, including the igneous and metamorphic rocks, have internal differences in stratigraphy, composition, mineralogy and grain size or crystallinity. These differences, together with structural imprints such as faults, folds, and the spacing, orientation, degree of openness of fractures, and extent and type of mineral filling in fractures and faults, all affect the ability of rocks to store and transmit water.
Encoding of Geological knowledge in the GeoPiemonte Map Data Base
NASA Astrophysics Data System (ADS)
Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia
2017-04-01
In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled vocabularies and concepts derived from NASA SWEET ontology (3) (4) (5). At the state of the art the GeoPiemonte Map informative system is thus suitable for integration in trans-national Data Infrastructures and/or WebMap Services that require interoperability and harmonised semantic approaches. References (1)http://www.geosciml.org/geosciml/4.0/documentation/html/ - GeoSciML Data Model - (2)http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0.pdf - INSPIRE DS Technical Guidelines (3)http://resource.geosciml.org/vocabulary/cgi/201211/simplelithology.html (4)http://resource.geosciml.org/vocabulary/cgi/ - CGI GTWG controlled vocabularies repository (5) SWEET (Semantic Web for Earth and Environmental Terminology), http://www.sweet.jpl.nasa.govAppel Piana et al., 2017a. Geology of Piemonte Region (NW Italy, Alps-Apennines junction zone). Journal of Maps, in press. Piana et al., 2017b. The Geodatabase of the Piemonte Geological Map: conceptual design for knowledge encoding. ROL Soc. Geol. It., in press.
Recurrent intraplate tectonism in the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoback, M.D.; Hamilton, R.M.; Crone, A.J.
1980-08-29
For the first time, New Madrid seismicity can be linked to specific structural features that have been reactivated through geologic time. Extensive seismic reflection profiling reveals major faults coincident with the main earthquake trends in the area and with structural deformation apparently caused by repeated episodes of igneous activity.
Satellite observations of temporal terrestrial features
NASA Technical Reports Server (NTRS)
Rabchevsky, G. A.
1972-01-01
The application of satellite data to earth resources and environmental studies and the effects of resolution of the photographs and imagery are discussed. The nature of the data acquired by manned space flight and unmanned satellites is described. Specific applications of remotely sensed data for oceanography, hydrology, geography, and geology are examined.
NASA Astrophysics Data System (ADS)
Paganelli, F.; Schubert, G.; Lopes, R. M. C.; Malaska, M.; Le Gall, A. A.; Kirk, R. L.
2016-12-01
The current SAR data coverage on Titan encompasses several areas in which multiple radar passes are present and overlapping, providing additional information to aid the interpretation of geological and structural features. We exploit the different combinations of look direction and variable incidence angle to examine Cassini Synthetic Aperture RADAR (SAR) data using the Principal Component Analysis (PCA) technique and high-resolution radiometry, as a tool to aid in the interpretation of geological and structural features. Look direction and variable incidence angle is of particular importance in the analysis of variance in the images, which aid in the perception and identification of geological and structural features, as extensively demonstrated in Earth and planetary examples. The PCA enhancement technique uses projected non-ortho-rectified SAR imagery in order to maintain the inherent differences in scattering and geometric properties due to the different look directions, while enhancing the geometry of surface features. The PC2 component provides a stereo view of the areas in which complex surface features and structural patterns can be enhanced and outlined. We focus on several areas of interest, in older and recently acquired flybys, in which evidence of geological and structural features can be enhanced and outlined in the PC1 and PC2 components. Results of this technique provide enhanced geometry and insights into the interpretation of the observed geological and structural features, thus allowing a better understanding towards the geology and tectonics on Titan.
Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, P.A.; Thomas, J.M.; Brock, M.L.
1980-06-01
A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, andmore » (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.« less
NASA Astrophysics Data System (ADS)
Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.
2013-12-01
Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the aftershocks appear to cluster near areas with cross-cutting geologic features such as Jurassic diabase dikes. These associations suggest that local variations in rock density and/or rheology may have contributed to modifications of local stress regimes in a manner encouraging localized seismicity associated with the Mw5.8 event and its aftershocks. Such associations are comparable to results of previous studies recognizing correspondences between seismicity and features such as intrusive bodies and failed rifts in the New Madrid seismic zone and elsewhere. To explore whether similar correspondences may have occurred in the past, we use regional gravity and magnetic data to consider possible relations between historical earthquakes and comparable geologic features elsewhere in the central Virginia seismic zone.
Volcanic features of Hawaii. A basis for comparison with Mars
NASA Technical Reports Server (NTRS)
Carr, M. H.; Greeley, R.
1980-01-01
Despite the difference in size Martian and Hawaiian volcanoes have numerous characteristics in common. Specific features such as lava channels, collapsed lava tubes, levees and flow fronts, all very common in Hawaii, are also abundant on the flanks of some of the Martian volcanoes. Striking differences also exist, such as the apparent lack of radial rift zones on some Martian volcanoes and the paucity of cinder and spatter cones. Some of the best photographs of Martian and Hawaiian volcanic features are presented. Descriptive legends are provided for each picture. An overview of the geological processes and structures depicted is included.
Wilderness for science: pros and cons of using wilderness areas for biological research
Diana L. Six; Paul Alaback; Robert A. Winfree; Delia Snyder; Anne Hagele
2000-01-01
Research is one of the intended purposes of wilderness. The Wilderness Act states that âwilderness may contain ecological, geological, or other features of scientific, educational, scenic, or historical value.â This session specifically focuses on the pros and cons of conducting research in wilderness.
NASA Technical Reports Server (NTRS)
Carr, M. H.; Baum, W. A.; Blasius, K. R.; Briggs, G. A.; Cutts, J. A.; Duxbury, T. C.; Greeley, R.; Guest, J.; Masursky, H.; Smith, B. A.
1980-01-01
Images acquired by the Viking orbiters, beginning in 1976 are presented. The pictures represent only a small fraction of the many thousands taken, and were chosen to illustrate the diverse geology of Mars and its atmospheric phenomena. Specific topics discussed include the Viking mission and its objectives, a brief comparison of Earth and Mars, and surface features of Mars including the great equatorial canyons, channels, volcanic and deformational features, and craters. Martian moons, surface processes, polar regions, and the Martian atmosphere are also covered.
Geologic results of the TMS survey over Mt. Emmons, Colorado. [Thematic Mapper Simulator
NASA Technical Reports Server (NTRS)
Rickman, D. L.; Sadowski, R. M.
1985-01-01
In 1981, NASA conducted with an American company a cooperative study, involving the use of Thematic Mapper Simulator (TMS) data. The study was concerned with an area near Crested Butte, Colorado, which contains a known, but unmined, major molybdenum deposit. Detailed ground observations in the Mt. Emmons area demonstrated that the imagery was extremely effective for detection of geologically significant features. The imagery specifically delineated areas of ferric iron staining, seritization, and hornfelized rock. Attention is given to data acquisition and data processing, field work in 1982 and in 1983, the integration of gravity data, and costs.
NASA Astrophysics Data System (ADS)
Habibi, Tahereh; Ruban, Dmitry A.
2017-09-01
The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.
43 CFR 8223.0-5 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... threatened or endangered plant or animal species; (4) A typical representation of common geologic, soil, or water features; or (5) Outstanding or unusual geologic, soil, or water features. (b) [Reserved] ...
43 CFR 8223.0-5 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... threatened or endangered plant or animal species; (4) A typical representation of common geologic, soil, or water features; or (5) Outstanding or unusual geologic, soil, or water features. (b) [Reserved] ...
43 CFR 8223.0-5 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... threatened or endangered plant or animal species; (4) A typical representation of common geologic, soil, or water features; or (5) Outstanding or unusual geologic, soil, or water features. (b) [Reserved] ...
43 CFR 8223.0-5 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... threatened or endangered plant or animal species; (4) A typical representation of common geologic, soil, or water features; or (5) Outstanding or unusual geologic, soil, or water features. (b) [Reserved] ...
Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona
Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey
2011-01-01
A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.
Structural lineaments of Gaspe from ERTS imagery
NASA Technical Reports Server (NTRS)
Steffensen, R.
1973-01-01
A test study was conducted to assess the value of ERTS images for mapping geologic features of the Gaspe Peninsula, Quebec. The specific objectives of the study were: 1) to ascertain the best procedure to follow in order to obtain valuable geologic data as a result of interpretation; and 2) to indicate in which way these data could relate to mineral exploration. Of the four spectral bands of the Multispectral scanner, the band from 700 to 800 nanometers, which seems to possess the best informational content for geologic study, was selected for analysis. The original ERTS image at a scale of 1:3,700,000 was enlarged about 15 times and reproduced on film. Geologically meaningful lines, called structural lineaments, were outlined and classified according to five categories: morpho-lithologic boundaries, morpho-lithologic lineaments, fault traces, fracture zones and undefined lineaments. Comparison with the geologic map of Gaspe shows that morpho-lithologic boundaries correspond to contacts between regional stratigraphic units. Morpholithologic lineaments follow bedding trends, whereas fracture traces appear as sets of parallel lineaments, intersecting at high angles the previous category of lineaments. Fault traces mark more precisely the location of faults already mapped and spot the presence of presumable faults, not indicated on the geologic map.
Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.
2008-01-01
Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I (also known as Kamehameha the Great) and is often associated with the founding of the Hawaiian Kingdom (Greene, 1993). The temple was constructed to incur the favor of the king's personal war god Kuka'ilimoku during the time that Kamehameha I waged several battles in an attempt to extend his control over all the Hawaiian Islands. The park is also the site of the older Mailekini Heiau, which was used by the ancestors of Kamehameha I, and an offshore, submerged temple, Hale O Kapuni Heiau, that was dedicated to the shark god. The park occupies the scenic Hill of the Whale overlooking Kawaihae Bay and Pelekane Beach. The seaward-sloping lands of PUHE lie at the convergence of lava flows formed by both Mauna Kea and Kohala Volcanoes. The park coastline is mostly rocky, with the exception of a small beach developed at the north boundary where an intermittent stream enters the sea. The park is bounded to the north by Kawaihae Harbor, to the south by Samuel M. Spencer Beach Park, and to the west by a broad submerged reef. The adjacent reef area is discussed in detail in the accompanying report by Cochran and others (2006). They mapped from the shoreline to depths of approximately 40 m, where the shelf drops off to a sand-covered bottom. PUHE park boundaries extend only to the mean high-tide line, however, landscape impacts created by development around the park are of concern to Park management.
NASA Technical Reports Server (NTRS)
de Wet, A. P.; Bleacher, J. E.; Garry, W. B.
2012-01-01
Water has clearly played an important part in the geological evolution of Mars. There are many features on Mars that were almost certainly formed by fluvial processes -- for example, the channels Kasei Valles and Ares Vallis in the Chryse Planitia area of Mars are almost certainly fluvial features. On the other hand, there are many channel features that are much more difficult to interpret -- and have been variously attributed to volcanic and fluvial processes. Clearly unraveling the details of the role of water on Mars is extremely important, especially in the context of the search of extinct or extant life. In this project we built on our recent work in determining the origin of one channel on the southwest rift apron of Ascraeus Mons. This project, funded by the Keck Geology Consortium and involving 4 undergraduate geology majors took advantage of the recently available datasets to map and analyze similar features on Ascraeus Mons and some other areas of Mars. A clearer understanding of how these particular channel features formed might lead to the development of better criteria to distinguish how other Martian channel features formed. Ultimately this might provide us with a better understanding of the role of volcanic and fluvial processes in the geological evolution of Mars.
Iterative refinement of implicit boundary models for improved geological feature reproduction
NASA Astrophysics Data System (ADS)
Martin, Ryan; Boisvert, Jeff B.
2017-12-01
Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.
GeoSciML version 3: A GML application for geologic information
NASA Astrophysics Data System (ADS)
International Union of Geological Sciences., I. C.; Richard, S. M.
2011-12-01
After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.
Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.
2007-01-01
Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.
Brooks, A.H.; Abbe, Cleveland; Goode, R.U.
1906-01-01
It is the writer's purpose to describe in nontechnical language the larger geographic features and discuss their relation as far as the data available will permit. In the treatment of the geology, however, less effort will be made to make the matter acceptable to the lay reader. It is hoped, however, that a brief summary of the salient features of the geologic history' may be not without interest to the general public. If this paper serves in some measure to dispel the popular fallacies regarding Alaska and to disseminate more accurate knowledge of its geographic and geologic features, the purpose of its publication will be accomplished.
Miller, David M.; Armstrong, Richard L.; Bedford, David R.; Davis, Marsha
2008-01-01
This geologic map describes the geology of the City of Rocks National Reserve and environs, located in the Albion Mountains of south-central Idaho. The most prominent geologic features of the Reserve are the spectacular rock spires that attracted visitors, beginning with commentary in the journals of travelers to California during the Gold Rush of 1849. The tectonic history is outlined, and descriptions of landscape processes, a newly discovered Quaternary fault, and features of the pinnacles are presented.
Topographic attributes as a guide for automated detection or highlighting of geological features
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves
2015-04-01
Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.
NASA Astrophysics Data System (ADS)
Mobasher, K.; Turk, H. J.; Witherspoon, W.; Tate, L.; Hoynes, J.
2015-12-01
A GIS geology geodatabase of Georgia was developed using ArcGIS 10.2. The geodatabase for each physiographic provinces of Georgia contains fields designed to store information regarding geologic features. Using ArcGIS online, the virtual field guide is created which provides an interactive learning experience for students to allow in real time photography, description, mapping and sharing their observations with the instructor and peers. Gigapan© facilitates visualizing geologic features at different scales with high resolutions and in their larger surrounding context. The classroom applications of the Gigapan© are limitless when teaching students the entire range of geologic structures from showcasing crystalline structures of minerals to understanding the geological processes responsible for formation of an entire mountain range. The addition of the Story Map enhances the virtual experience when you want to present a geo-located story point narrative featuring images or videos. The virtual field component and supplementary Gigapan© imagery coupled with Story Map added significantly to the detailed realism of virtual field guide further allowing students to more fully understand geological concepts at various scales. These technologies peaked students interest and facilitated their learning and preparation to function more effectively in the geosciences by developing better observations and new skills. These technologies facilitated increased student engagement in the geosciences by sharing, enhancing and transferring lecture information to actual field knowledge and experiences. This enhanced interactive learning experience not only begins to allow students to understand and recognize geologic features in the field but also increased their collaboration, enthusiasm and interest in the discipline. The increased interest and collaboration occurred as students assisted in populating a geologic geodatabase of Georgia.
View of Feature 2, the remains of the Geology/Change Room, ...
View of Feature 2, the remains of the Geology/Change Room, view to the southeast - Orphan Lode Mine, North of West Rim Road between Powell Point and Maricopa Point, South Rim, Grand Canyon Village, Coconino County, AZ
Technogenic effect of liquidation of coal mines on earth’s entrails: hydrogeochemical aspect
NASA Astrophysics Data System (ADS)
Tarasenko, I. A.; Zinkov, A. V.; Chudaev, O. V.; Vetoshkina, A. V.; Holodilov, I. I.
2017-10-01
The authors of the paper have established the geochemical features of the composition of underground waters and regularities of their formation in the areas of the liquidated coal mines of Russia and Ukraine. It is shown that the mine flood resulted in the formation of technogenic waters which geochemical specificity originates in the feeding field and is transformed in the direction of the filtration flow. It depends on the geological structure of sedimentary basins and the presence in the coal and supra-coal beds of the marine, salt-bearing and freshwater groups of geological formations. The water types are distinguished characterizing the conditions and processes of their formation that may be the regional markers in the hydrochemical and geological constructions. The technogenic waters influenced the safety of the underground waters, sources of water supply of the regions, and surface water channels. The pollutions are of local character in space.
NASA Technical Reports Server (NTRS)
Honey, F. R.; Simpson, C. J.; Huntington, J.; Horwitz, R.; Byrne, G.; Nilsson, C.
1984-01-01
The objectives of a study to evaluate the potential of Shuttle Imaging Radar-B (SIR-B) imagery for various applications are outlined. Specific goals include: the development of techniques for registration multiple acquisition, varied illumination, and incidence-angle SIR-B imagery, and a model for estimation of the relative contributions to the backscattered radiation of topography, surface roughness, and dielectric and conductivity components; (2) the evaluation of SIR-B imagery for delineation of agricultural lands affected by secondary salinity in the southwest and southeast agricultural regions of Australia; (3) the development of techniques for application of SIR-B imagery for geologic, geomorphologic and soils mapping and mineral exploration; and (4) the evaluation of the use of SIR-B imagery in determining ocean currents, current shear patterns, internal waves and bottom features for specific locations off the Australian coast.
Geologic map of the Skull Creek Quadrangle, Moffat County Colorado
Van Loenen, R. E.; Selner, Gary; Bryant, W.A.
1999-01-01
The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.
NASA Astrophysics Data System (ADS)
Habibi, Tahereh; Nielsen, Jan K.; Ponedelnik, Alena A.; Ruban, Dmitry A.
2017-11-01
Unique palaeogeographical peculiarities of sedimentary formations are important for geological heritage conservation and use for the purposes of tourism. The heritage value of the Pabdeh Formation (Paleocene-Oligocene) of the Zagros Fold-Thrust Belt in Iran has been investigated. The uniqueness of its palaeogeographical peculiarities has been assessed on the basis of the literature, field studies of three representative sections in the Fars Province (Kavar, Zanjiran, and Shahneshin sections), and comparison with the similar features known in Iran and globally. The Pabdeh Formation reflects the process of mixed siliciclastic-carbonate ramp progradation and the onset of a typical carbonate platform. The other unique features include representation of mesopelagic palaeohabitat, specific trace fossil assemblages, prehistoric bituminous artefacts (production of which was linked to the Pabdeh deposits), etc. It is established that the palaeogeographical type of geological heritage of the Pabdeh Formation is represented by all known subtypes, namely facies, palaeoecosystem, ichnological, taphonomical, event, and geoarchaeological subtypes. Their rank varies between regional and global. The very fact of co-occurrence of these subtypes determines the global importance of the entire palaeogeographical type in the case of this formation. The establishment of geopark in the Zagros Fold-Thrust Belt will facilitate adequate use of the Pabdeh Formation for the purpose of geotourism development. The aesthetic properties (rocks of different colour and striped patterns of outcrops) increase the attractiveness of this geological body to visitors.
Spatial features register: toward standardization of spatial features
Cascio, Janette
1994-01-01
As the need to share spatial data increases, more than agreement on a common format is needed to ensure that the data is meaningful to both the importer and the exporter. Effective data transfer also requires common definitions of spatial features. To achieve this, part 2 of the Spatial Data Transfer Standard (SDTS) provides a model for a spatial features data content specification and a glossary of features and attributes that fit this model. The model provides a foundation for standardizing spatial features. The glossary now contains only a limited subset of hydrographic and topographic features. For it to be useful, terms and definitions must be included for other categories, such as base cartographic, bathymetric, cadastral, cultural and demographic, geodetic, geologic, ground transportation, international boundaries, soils, vegetation, water, and wetlands, and the set of hydrographic and topographic features must be expanded. This paper will review the philosophy of the SDTS part 2 and the current plans for creating a national spatial features register as one mechanism for maintaining part 2.
Crone, Anthony J.; Wheeler, Russell L.
2000-01-01
The USGS is currently leading an effort to compile published geological information on Quaternary faults, folds, and earthquake-induced liquefaction in order to develop an internally consistent database on the locations, ages, and activity rates of major earthquake-related features throughout the United States. This report is the compilation for such features in the Central and Eastern United States (CEUS), which for the purposes of the compilation, is defined as the region extending from the Rocky Mountain Front eastward to the Atlantic seaboard. A key objective of this national compilation is to provide a comprehensive database of Quaternary features that might generate strong ground motion and therefore, should be considered in assessing the seismic hazard throughout the country. In addition to printed versions of regional and individual state compilations, the database will be available on the World-Wide Web, where it will be readily available to everyone. The primary purpose of these compilations and the derivative database is to provide a comprehensive, uniform source of geological information that can by used to complement the other types of data that are used in seismic-hazard assessments. Within our CEUS study area, which encompasses more than 60 percent of the continuous U.S., we summarize the geological information on 69 features that are categorized into four classes (Class A, B, C, and D) based on what is known about the feature's Quaternary activity. The CEUS contains only 13 features of tectonic origin for which there is convincing evidence of Quaternary activity (Class A features). Of the remaining 56 features, 11 require further study in order to confidently define their potential as possible sources of earthquake-induced ground motion (Class B), whereas the remaining features either lack convincing geologic evidence of Quaternary tectonic faulting or have been studied carefully enough to determine that they do not pose a significant seismic hazard (Classes C and D). The correlation between historical seismicity and Quaternary faults and liquefaction features in the CEUS is generally poor, which probably reflects the long return times between successive movements on individual structures. Some Quaternary faults and liquefaction features are located in aseismic areas or where historical seismicity is sparse. These relations indicate that the record of historical seismicity does not identify all potential seismic sources in the CEUS. Furthermore, geological studies of some currently aseismic faults have shown that the faults have generated strong earthquakes in the geologically recent past. Thus, the combination of geological information and seismological data can provide better insight into potential earthquake sources and thereby, contribute to better, more comprehensive seismic-hazard assessments.
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.
,
2003-01-01
The Automated Data Processing System (ADAPS) was developed for the processing, storage, and retrieval of water data, and is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey. NWIS is a distributed water database in which data can be processed over a network of computers at U.S. Geological Survey offices throughout the United States. NWIS comprises four subsystems: ADAPS, the Ground-Water Site Inventory System (GWSI), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). This section of the NWIS User's Manual describes the automated data processing of continuously recorded water data, which primarily are surface-water data; however, the system also allows for the processing of water-quality and ground-water data. This manual describes various components and features of the ADAPS, and provides an overview of the data processing system and a description of the system framework. The components and features included are: (1) data collection and processing, (2) ADAPS menus and programs, (3) command line functions, (4) steps for processing station records, (5) postprocessor programs control files, (6) the standard format for transferring and entering unit and daily values, and (7) relational database (RDB) formats.
NASA Technical Reports Server (NTRS)
Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.;
2014-01-01
We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits. Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.
NASA Astrophysics Data System (ADS)
Wagner, R.; Roatsch, T.; Giese, B.; Wolf, U.; Neukum, G.
Remote Sensing of the Earth and Planets, Freie Universitaet Berlin, Germany Data set and objectives: Since the Cassini Orbiter has been inserted into orbit around Saturn on July 1, 2004, image data of the major saturnian satellites were collected by the Cassini ISS narrow and wide angle cameras (NAC and WAC respectively) at resolutions up to 10 - 20 m/pxl [1]. Up to now, the surface of each one of these satellites was imaged at least once at distances less than 20000 km. The extended image coverage and much higher resolution compared to Voyager images from more than two decades ago help to define (1) the global distribution of geologic units at regional map scale (100 - 300 m/pxl), (2) to identify units of possibly cryovolcanic origin, (3) to map tectonic landforms in detail, and (4) to use the crater size-frequency distributions measured on geologic units for relative and absolute age dating. Also (5), the stratigraphic column for each satellite can be subdivided into time-stratigraphic systems by the combination of stratigraphy and crater frequency measurements. Methods: All geologic maps are produced on image base maps put together from images of various flybys at each satellite [2]. Geologic units are identified by their specific albedo and morphology. In some cases, topographic data and digital elevation models are available. Cratering chronology models are used to derive absolute model ages from crater size-frequency measurements [3]. Important stratigraphic markers (and their associated crater frequencies and ages) which can be used to subdivide the geological history of a specific satellite are (1) volcanic flows, (2) prominent tectonic landforms, (3) large impact features, such as basins, and (4) craters with extended ray systems. Results: In this paper we focus on regional geologic maps of Dione and Rhea, two neighbours in orbit, and of Enceladus. Dione and Rhea, 1124 and 1538 km in diameter, are characterized (a) by densely cratered plains, (b) smooth, less densely cratered plains, and (3) by tectonic features, mostly horst and graben structures [4][5][6]. Cratering model ages of the densely cratered plains are on the order of 4.2 Gyr [6]. The surface of Rhea appears to be more densely cratered and hence older than the one of Dione. Also, Rhea has a higher abundance of large impact features several 100 km in diameter while only one such basin was found on Dione [6][7]. Ray craters are not abundant at crater sizes larger than 20 km except for one feature found on Rhea. Enceladus (502 km in diameter) shows a wide range of geologic units and surface ages. Densely cratered plains with ages on the order of 4 Gyr are cut by tectonic bands of ridges and grooves with various model ages ranging from 1 to more than 3 Gyr [6]. In the south polar terrain, areas almost devoid of craters and with cratering model ages much less than 4 Myr 1 reveal on-going geologic processes which recently were confirmed by the discovery of cryovolcanic activity on this moon [6][8]. References: [1] Porco, C. C. et al., Space Sci. Rev. 115, 363-497, 2004. [2] Roatsch, T. et al., Planet. Space Sci., in press, 2006. [3] Neukum G. et al., 40th ESLAB Symposium, May 8-12, 2006, abstract book, 235, 2006. [4] Plescia, J., Icarus 56, 401-413, 1983. [5] Moore, J., Icarus 59, 205-220, 1984. [6] Wagner, R. et al., LPSC XXXVII, abstr. No. 1805 [CD-Rom], 2006. [7] Stooke, P. J., LPSC XXXIII, abstr. No. 1553 [CD-Rom], 2002. [8] Porco, C. C. et al., Science 311, 1393-1401, 2006. 2
NASA Technical Reports Server (NTRS)
Grant, John A., III; Nedell, Susan S.
1987-01-01
The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.
NASA Astrophysics Data System (ADS)
de Wet, A. P.; Bleacher, J. E.; Garry, W. B.
2012-03-01
This Keck Geology Consortium project, involving four undergrad geology students, mapped and analyzed sinuous channel features on Ascraeus Mons, Mars, to better understand the role of volcanic and fluvial processes in the geological evolution of Mars.
Preliminary evaluation of the 15 October 1972 ERTS-1 imagery of east central Ohio (scene 1034-15415)
NASA Technical Reports Server (NTRS)
Pettyjohn, W. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Results of a general, physical interpretation of ERTS-1 imagery of east central Ohio are presented. Special emphasis is placed upon geologic features, such as linear features and hydrologic features. Man-made features are included as a matter of interest and image location. The interpretation is compared to available maps of the area and from this an assessment that ERTS-1 is potentially useful for updating and producing geological maps.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo
2016-04-01
Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features of the shallow subsurface (i.e., chemical-physical characteristics of rocks and fluids of the first 100 m below the ground) are appropriately constrained.
Measuring Student Knowledge of Landscapes and Their Formation Timespans
ERIC Educational Resources Information Center
Jolley, Alison; Jones, Francis; Harris, Sara
2013-01-01
Geologic time is a crucial component of any geoscientist's training. Essential knowledge of geologic time includes rates of geologic processes and the associated time it takes for geologic features to form, yet measuring conceptual thinking abilities in these domains is challenging. We describe development and initial application of the Landscape…
Geologic map of the Lazy Y Point Quadrangle, Moffat County Colorado
Van Loenen, R. E.; Selner, G.I.; Bryant, W.A.
1999-01-01
The Lazy Y Point quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Lazy Y Point quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Skull Creek quadrangle, which is adjacent to the Lazy Y Point quadrangle on the east, is also available (Geologic Investigations Series I-2647). This companian map shows similar geologic features, including the eastern half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Lazy Y Point quadrangle includes parts of the Willow and Skull Creek Wilderness Study Areas, which were assessed for their mineral resource potential.
Dupree, Jean A.; Crowfoot, Richard M.
2012-01-01
This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset also stores the topology rules (the "BasinsFD_Topology") that constrain the relations within and among component feature classes. The feature dataset also forces any feature classes inside it to have a consistent projection system, which is, in this case, an Albers-Equal-Area projection system. 3. BasinsFD_Topology: This topology contains four persistent topology rules that constrain the spatial relations within the "BasinLines" feature class and between the "BasinLines" feature class and the "BasinPolys" feature classes. 4. Sites: This point feature class contains the digital representations of the site locations for which Colorado Water Science Center basin boundaries have been delineated. This feature class includes point locations for Colorado Water Science Center active (as of September 30, 2009) gages and for other sites. 5. BasinLines: This line feature class contains the perimeters of basins delineated for features in the "Sites" feature class, and it also contains information regarding the sources of lines used for the basin boundaries. 6. BasinPolys: This polygon feature class contains the polygonal basin areas delineated for features in the "Sites" feature class, and it is used to derive the numeric drainage areas published by the Colorado Water Science Center.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
Fullerton, David S.; Colton, Roger B.; Bush, Charles A.; Straub, Arthur W.
2004-01-01
This report is an overview of glacial limits and glacial history on the plains in northern Montana and northeastern North Dakota (long 102?-114?W.) and also in adjacent southern Alberta and Saskatchewan, Canada. In the Rocky Mountains and on the plains adjacent to the mountains in Montana, the map also depicts spatial relations of valley glaciers and piedmont ice lobes to continental ice sheets. Glacial limits east of 102?, in the United States and also in adjacent Canada, are depicted on published maps of the U.S. Geological Survey Quaternary Geologic Atlas of the United States (I-1420) map series. The limits shown here are from data compiled for the Lethbridge, Regina, Yellowstone, and Big Horn Mountains 4? x 6? quadrangles in the Quaternary Geologic Atlas series. This geospatial database has been prepared with a degree of detail appropriate for viewing at a scale of 1:1,000,000. Because of the degree of generalization required, the map is intended for regional analysis, rather than for detailed analysis in specific areas. It depicts the geographic positions of the limits of mountain and continental glaciations and the limits of selected glacial readvances. That information provides a foundation for reconstruction of geologic history and for reconstruction. The base map is simplified. Selected hydrographic features, selected towns and cities, selected physiographic features, and a grid of 1? x 2? topographic quadrangles are included to aid the reader in location of the glacial limits and other features that are depicted here on other maps at different scales. Most of the geologic data were compiled at 1:250,000 scale. The nominal reading scale of the digitized map data is 1:1,000,000. Enlargement will not restore resolution that was lost by simplification or generalization of data. Accompanying illustrations show regional directions of ice movement from Canada into the United States during maximum Illinoian glaciation, during maximum late Wisconsin glaciation, and during a later regional glacial readvance maximum
Geology of Badlands National Park: a preliminary report
Stoffer, Philip W.
2003-01-01
Badlands National Park is host to perhaps the most scenic geology and landscape features in the Western Interior region of the United States. Ongoing erosion that forms the "badlands" exposes ancient sedimentary strata of Late Cretaceous through Oligocene age. Quaternary erosional and depositional processes are responsible for most of the modern landscape features in the park and surrounding region. This report provides a basic overview of the park geology The discussions presented within include both well-established concepts and theories and new, preliminary data and interpretations. Much emphasis is placed on presenting information about the oldest and least studied rocks in the park (particularly the Late Cretaceous and earliest Tertiary deposits that underlie the White River beds throughout the park region). Rock formations and selected fossils they contain are described. Faults, folds, unconformities, and other geologic structures in the North Unit of the park are illustrated, including features associated with the Sage Creek anticline and fault system.
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Britt, Daniel T.; Head, James W.; Pratt, Stephen F.; Fisher, Paul C.
1991-01-01
Color ratio images created from multispectral observations of Phobos are analyzed in order to characterize the spectral properties of Phobos' surface, to assess their spatial distributions and relationships with geologic features, and to compare Phobos' surface materials with possible meteorite analogs. Data calibration and processing is briefly discussed, and the observed spectral properties of Phobos and their lateral variations are examined. Attention is then given to the color properties of different types of impact craters, the origin of lateral variations in surface color, the relation between the spatial distribution of color properties and independently identifiable geologic features, and the relevance of color variation spatial distribution to the origin of the grooves.
The U.S. Geological Survey Monthly Water Balance Model Futures Portal
Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian
2017-05-03
The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download
Geology. Grade 6. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Anchorage School District, AK.
This resource book introduces sixth-grade children to the environment by studying rocks and other geological features. Nine lessons are provided on a variety of topics including: (1) geologic processes; (2) mountain building; (3) weathering; (4) geologic history and time; (5) plate tectonics; (6) rocks and minerals; (7) mineral properties; (8)…
Digitization of a geologic map for the Quebec-Maine-Gulf of Maine global geoscience transect
Wright, Bruce E.; Stewart, David B.
1990-01-01
The Bedrock Geologic Map of Maine was digitized and combined with digital geologic data for Quebec and the Gulf of Maine for the Quebec-Maine-Gulf of Maine Geologic Transect Project. This map is being combined with digital geophysical data to produce three-dimensional depictions of the subsurface geology and to produce cross sections of the Earth's crust. It is an essential component of a transect that stretches from the craton near Quebec City, Quebec, to the Atlantic Ocean Basin south of Georges Bank. The transect is part of the Global Geosciences Transect Project of the International Lithosphere Program. The Digital Line Graph format is used for storage of the digitized data. A coding scheme similar to that used for base category planimetric data was developed to assign numeric codes to the digitized geologic data. These codes were used to assign attributes to polygon and line features to describe rock type, age, name, tectonic setting of original deposition, mineralogy, and composition of igneous plutonic rocks, as well as faults and other linear features. The digital geologic data can be readily edited, rescaled, and reprojected. The attribute codes allow generalization and selective retrieval of the geologic features. The codes allow assignment of map colors based on age, lithology, or other attribute. The Digital Line Graph format is a general transfer format that is supported by many software vendors and is easily transferred between systems.
Ontology patterns for complex topographic feature yypes
Varanka, Dalia E.
2011-01-01
Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.
Spectra of Earth-like Planets through Geological Evolution around FGKM Stars
NASA Astrophysics Data System (ADS)
Rugheimer, S.; Kaltenegger, L.
2018-02-01
Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Sinton, W. M.
1982-01-01
The size and temperature, morphology and distribution, variability, possible absorption features, and processes of hot spots on Io are discussed, and an estimate of the global heat flux is made. Size and temperature information is deconvolved to obtain equivalent radius and temperature of hot spots, and simultaneously obtained Voyager thermal and imaging data is used to match hot sources with specific geologic features. In addition to their thermal output, it is possible that hot spots are also characterized by production of various gases and particulate materials; the spectral signature of SO2 has been seen. Origins for relatively stable, low temperature sources, transient high temperature sources, and relatively stable, high-tmperature sources are discussed.
Remote sensing of geologic mineral occurrences for the Colorado mineral belt using LANDSAT data
NASA Technical Reports Server (NTRS)
Carpenter, R. H. (Principal Investigator); Trexler, D. W.
1976-01-01
The author has identified the following significant results. LANDSAT imagery was examined as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features, and color anomalies were identified. Some of these form a part of the structural and igneous volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as case histories to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.
A campus-based course in field geology
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hanson, G. N.
2009-12-01
GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.
Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method
NASA Astrophysics Data System (ADS)
Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.
2018-04-01
The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.
2014-04-30
grade metamorphic rocks on the southern slope of the Himalaya is imaged as a band of high velocity anomaly...velocity structures closely follow the geological features. As an indication of resolution, the ductile extrusion of high-grade metamorphic rocks on...MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data
Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus
NASA Technical Reports Server (NTRS)
Kumar, P. Senthil; Head, James W., III
2009-01-01
Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.
Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report
NASA Technical Reports Server (NTRS)
Kumar, P. Senthil; Head, James W., III
2008-01-01
Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationships) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.
Selected aspects of lunar mare geology from Apollo orbital photography. [of lunar craters
NASA Technical Reports Server (NTRS)
Young, R. A.; Brennan, W. J.
1976-01-01
Crater size-frequency distributions were studied (100-500 m) and are shown to provide significant integrated information concerning mare surface ages, subsurface stratigraphy, and surficial geology. Equilibrium cratering is discussed gradually reducing the relative numbers of craters smaller than 300-400 m in diameter as surfaces age and regolith thickens. Results for surface ages are in good agreement with other published crater ages. The existing correlations of large ring structures among various circular mare basins are shown to be based on criteria that are inconsistent and nonstandardized. A means of comparing equivalent ring structures in the different maria is proposed which takes into account the important characteristics of young unflooded basins (Orientale) as well as the progressive development of tectonic and volcanic features within the older flooded maria. Specific geologic aspects of several of the lunar maria are discussed and especially Mare Smythii, because of its great age and significantly different surface morphology. Lunar photographs and maps are shown.
NASA Astrophysics Data System (ADS)
Morris, Kevin Peter
Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line thinning and extraction) and manual interpretation techniques are used to identify a set of 'geological primitives' (linear or arc features representing lithological boundaries) within these data. Inclusion of the DEM data provides the three-dimensional co-ordinates of these primitives enabling a least-squares fit to be employed to calculate dip and strike values, based, initially, on the assumption of a simple, linearly dipping structural model. A very large number of scene 'primitives' is identified using these procedures, only some of which have geological significance. Knowledge-based rules are therefore used to identify the relevant. For example, rules are developed to identify lake edges, forest boundaries, forest tracks, rock-vegetation boundaries, and areas of geomorphological interest. Confidence in the geological significance of some of the geological primitives is increased where they are found independently in both the DEM and remotely sensed data. The dip and strike values derived in this way are compared to information taken from the published geological map for this area, as well as measurements taken in the field. Many results are shown to correspond closely to those taken from the map and in the field, with an error of < 1°. These data and rules are incorporated into an expert system which, initially, produces a simple model of the geological structure. The system also provides a graphical user interface for manual control and interpretation, where necessary. Although the system currently only allows a relatively simple structural model (linearly dipping with faulting), in the future it will be possible to extend the system to model more complex features, such as anticlines, synclines, thrusts, nappes, and igneous intrusions.
Geologic field-trip guide to Lassen Volcanic National Park and vicinity, California
Muffler, L. J. Patrick; Clynne, Michael A.
2015-07-22
This geologic field-trip guide provides an overview of Quaternary volcanism in and around Lassen Volcanic National Park in northern California. The guide begins with a comprehensive overview of the geologic framework and the stratigraphic terminology of the Lassen region, based primarily on the “Geologic map of Lassen Volcanic National Park and vicinity” (Clynne and Muffler, 2010). The geologic overview is then followed by detailed road logs describing the volcanic features that can readily be seen in the park and its periphery. Twenty-one designated stops provide detailed explanations of important volcanic features. The guide also includes mileage logs along the highways leading into the park from the major nearby communities. The field-trip guide is intended to be a flexible document that can be adapted to the needs of a visitor approaching the park from any direction.
Billingsley, George H.; Wellmeyer, Jessica L.
2003-01-01
The geologic map of the Mount Trumbull 30' x 60' quadrangle is a cooperative product of the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management that provides geologic map coverage and regional geologic information for visitor services and resource management of Grand Canyon National Park, Lake Mead Recreational Area, and Grand Canyon Parashant National Monument, Arizona. This map is a compilation of previous and new geologic mapping that encompasses the Mount Trumbull 30' x 60' quadrangle of Arizona. This digital database, a compilation of previous and new geologic mapping, contains geologic data used to produce the 100,000-scale Geologic Map of the Mount Trumbull 30' x 60' Quadrangle, Mohave and Coconino Counties, Northwestern Arizona. The geologic features that were mapped as part of this project include: geologic contacts and faults, bedrock and surficial geologic units, structural data, fold axes, karst features, mines, and volcanic features. This map was produced using 1:24,000-scale 1976 infrared aerial photographs followed by extensive field checking. Volcanic rocks were mapped as separate units when identified on aerial photographs as mappable and distinctly separate units associated with one or more pyroclastic cones and flows. Many of the Quaternary alluvial deposits that have similar lithology but different geomorphic characteristics were mapped almost entirely by photogeologic methods. Stratigraphic position and amount of erosional degradation were used to determine relative ages of alluvial deposits having similar lithologies. Each map unit and structure was investigated in detail in the field to ensure accuracy of description. Punch-registered mylar sheets were scanned at the Flagstaff Field Center using an Optronics 5040 raster scanner at a resolution of 50 microns (508 dpi). The scans were output in .rle format, converted to .rlc, and then converted to ARC/INFO grids. A tic file was created in geographic coordinates and projected into the base map projection (Polyconic) using a central meridian of -113.500. The tic file was used to transform the grid into Universal Transverse Mercator projection. The linework was vectorized using gridline. Scanned lines were edited interactively in ArcEdit. Polygons were attributed in ArcEdit and all artifacts and scanning errors visible at 1:100,000 were removed. Point data were digitized onscreen. Due to the discovery of digital and geologic errors on the original files, the ARC/INFO coverages were converted to a personal geodatabase and corrected in ArcMap. The feature classes which define the geologic units, lines and polygons, are topologically related and maintained in the geodatabase by a set of validation rules. The internal database structure and feature attributes were then modified to match other geologic map databases being created for the Grand Canyon region. Faults were edited with the downthrown block, if known, on the 'right side' of the line. The 'right' and 'left' sides of a line are determined from 'starting' at the line's 'from node' and moving to the line's end or 'to node'.
Smartphones for Geological Data Collection- an Android Phone Application
NASA Astrophysics Data System (ADS)
Sun, F.; Weng, Y.; Grigsby, J. D.
2010-12-01
Recently, smartphones have attracted great attention in the wireless device market because of their powerful processors, ample memory capacity, advanced connectivity, and numerous utility programs. Considering the prominent new features a smartphone has, such as the large touch screen, speaker, microphone, camera, GPS receiver, accelerometer, and Internet connections, it can serve as a perfect digital aide for data recording on any geological field trip. We have designed and developed an application by using aforementioned features in an Android phone to provide functionalities used in field studies. For example, employing the accelerometer in the Android phone, the application turns the handset into a brunton-like device by which users can measure directions, strike and dip of a bedding plane or trend and plunge of a fold. Our application also includes functionalities of image taking, GPS coordinates tracking, videotaping, audio recording, and note writing. Data recorded from the application are tied together by the time log, which makes the task easy to track all data regarding a specific geologic object. The application pulls the GPS reading from the phone’s built-in GPS receiver and uses it as a spatial index to link up the other type of data, then maps them to the Google Maps/Earth for visualization. In this way, notes, pictures, audio or video recordings to depict the characteristics of the outcrops and their spatial relations, all can be well documented and organized in one handy gadget.
10 CFR 60.32 - Conditions of construction authorization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.32 Conditions of construction authorization... changes to the features of the geologic repository and the procedures authorized. The restrictions that... setting as well as measures related to the design and construction of the geologic repository operations...
NASA Astrophysics Data System (ADS)
McLeod, C. L.; Kugler, A.
2016-12-01
The Geological Globe of the World (www.realworldglobes.com) promotes hands-on, in-class activities and allows students to engage with a physical 3-D model of Earth's characteristic, planet-forming geological features. The effectiveness of this concept in student learning has been demonstrated by two pilot studies presented as posters by Weeraratne et al. (2011) and Stoddard and Rogers (2013) at previous AGU meetings. The impact of the Geological Globe of the World on undergraduate teaching at Miami University, OH during Fall semester 2016 will be presented. It is anticipated that this teaching tool will have the biggest impact on the teaching of our 100-level lab course, GLG 155L, which engages 900 students per academic year. A Learning Assessment based on the learning objectives of GLG 115L has been written in order to demonstrate and evaluate the role of the Geological Globe in student learning. This Learning Assessment will be issued through www.salgsite.org (SALG: Student Assessment of Learning Gains) and will ask students to assess their own knowledge and understanding of key concepts before and after specific lab exercises which implement the globe. From research discussed in Bamford (2013), it has been demonstrated that "students learning with 3D teaching aids had better ordering of concepts and had enhanced skills in describing their learning, including writing more, saying more and being more likely to use models to demonstrate their (own) learning". It is anticipated that through use of the Geological Globe of the World students will be able to interpret Earth's geological features on a 3-D projection including topography, active volcanism, crustal movements and the location of seismic events. The incorporation of the Geological Globe of the World in undergraduate geoscience teaching in GLG 115L, and other departmental courses, aims to encourage students to make observations and collect data in order to interpret and evaluate relevant geological information. Bamford, A., (2013) The 3D in Education, White Paper. Stoddard, P. R and Rogers, D., (2013). Using Dry Erasable Globes in Earth and Space Science Classes. AGU Fall Meeting, #ED53G-0689 Weeraratne, D. S., Rogers, D. B., and Liedtke, J (2011). Teaching Seismic Methods Using Interactive 3-D Earth Globe, AGU Fall Meeting, #ED51B-0751
A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds
NASA Astrophysics Data System (ADS)
Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang
2017-04-01
3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.
Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer
McCoy, K.J.; Kozar, M.D.
2008-01-01
The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Taneja, Ankur; Higdon, Jonathan
2018-01-01
A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.
Kendy, Eloise; Tresch, R.E.
1996-01-01
This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallach, J.L.
1990-01-01
The design basis seismic ground motion for the nuclear generating stations at Darlington and at Pickering were determined solely through the assessment of previous earthquakes with no geological, or any other geophysical, input. Since then geophysical maps, showing a north-northwest oriented linear feature with some possible associated seismic activity, were examined. This report discusses the impact of these new discoveries on the Darlington and Pickering nuclear generating stations and on the already known geophysical features of the area.
NASA Astrophysics Data System (ADS)
Beiranvand Pour, Amin; Hashim, Mazlan
2016-06-01
Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.
NASA Astrophysics Data System (ADS)
Eldosouky, Ahmed M.; Elkhateeb, Sayed O.
2018-06-01
Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.
Robinson, G.R.; Ayotte, J.D.
2006-01-01
Population statistics for As concentrations in rocks, sediments and ground water differ by geology and land use features in the New England region, USA. Significant sources of As in the surficial environment include both natural weathering of rocks and anthropogenic sources such as arsenical pesticides that were commonly applied to apple, blueberry and potato crops during the first half of the 20th century in the region. The variation of As in bedrock ground water wells has a strong positive correlation with geologic features at the geologic province, lithology group, and bedrock map unit levels. The variation of As in bedrock ground water wells also has a positive correlation with elevated stream sediment and rock As chemistry. Elevated As concentrations in bedrock wells do not correlate with past agricultural areas that used arsenical pesticides on crops. Stream sediments, which integrate both natural and anthropogenic sources, have a strong positive correlation of As concentrations with rock chemistry, geologic provinces and ground water chemistry, and a weaker positive correlation with past agricultural land use. Although correlation is not sufficient to demonstrate cause-and-effect, the statistics favor rock-based As as the dominant regional source of the element in stream sediments and ground water in New England. The distribution of bedrock geology features at the geologic province, lithology group and map unit level closely correlate with areas of elevated As in ground water, stream sediments, and rocks. ?? 2006 Elsevier Ltd. All rights reserved.
Analysis of the Source Physics Experiment SPE4 Prime Using State-Of Parallel Numerical Tools.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2015-12-01
This work describes a methodology used for large scale modeling of wave propagation from underground chemical explosions conducted at the Nevada National Security Site (NNSS) fractured granitic rock. We show that the discrete natures of rock masses as well as the spatial variability of the fabric of rock properties are very important to understand ground motions induced by underground explosions. In order to build a credible conceptual model of the subsurface we integrated the geological, geomechanical and geophysical characterizations conducted during recent test at the NNSS as well as historical data from the characterization during the underground nuclear test conducted at the NNSS. Because detailed site characterization is limited, expensive and, in some instances, impossible we have numerically investigated the effects of the characterization gaps on the overall response of the system. We performed several computational studies to identify the key important geologic features specific to fractured media mainly the joints characterized at the NNSS. We have also explored common key features to both geological environments such as saturation and topography and assess which characteristics affect the most the ground motion in the near-field and in the far-field. Stochastic representation of these features based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode. Simulations were used to guide site characterization efforts in order to provide the essential data to the modeling community. We validate our computational results by comparing the measured and computed ground motion at various ranges for the recently executed SPE4 prime experiment. We have also conducted a comparative study between SPE4 prime and previous experiments SPE1 and SPE3 to assess similarities and differences and draw conclusions on designing SPE5.
Geologic Map of the Nulato Quadrangle, West-Central Alaska
Patton, W.W.; Moll-Stalcup, E. J.
2000-01-01
Introduction The Nulato quadrangle encompasses approximately 17,000 km2 (6,500 mi2) of west-central Alaska within the Yukon River drainage basin. The quadrangle straddles two major geologic features-the Yukon-Koyukuk sedimentary basin, a huge triangle-shaped Cretaceous depression that stretches across western Alaska from the Brooks Range to the Yukon delta; and the Ruby geanticline,a broad uplift of pre-Cretaceous rocks that borders the Yukon-Koyukuk basin on the southeast. The Kaltag Fault crosses the quadrangle diagonally from northeast to southwest and dextrally offsets all major geologic features as much as 130 km.
NASA Technical Reports Server (NTRS)
Phillips, M. S.; Moersch, J. E.; Cabrol, N. A.; Davila, A. F.
2018-01-01
The guiding theme of Mars exploration is shifting from global and regional habitability assessment to biosignature detection. To locate features likely to contain biosignatures, it is useful to focus on the reliable identification of specific habitats with high biosignature preservation potential. Proposed chloride deposits on Mars may represent evaporitic environments conducive to the preservation of biosignatures. Analogous chloride- bearing, salt-encrusted playas (salars) are a habitat for life in the driest parts of the Atacama Desert, and are also environments with a taphonomic window. The specific geologic features that harbor and preserve microorganisms in Atacama salars are sub- meter to meter scale salt protuberances, or halite nodules. This study focuses on the ability to recognize and map halite nodules using images acquired from an unmanned aerial vehicle (UAV) at spatial resolutions ranging from mm/pixel to that of the highest resolution orbital images available for Mars.
The oceanic islands - Azores. [geological, geophysical and geochemical features
NASA Technical Reports Server (NTRS)
Ridley, W. I.; Watkins, N. D.; Macfarlane, D. J.
1974-01-01
A presentation is made of the known geological, geophysical, and geochemical data on the Azores. The regional setting of the islands is described; under the geological heading, surface geology and petrochemistry are discussed; and paleomagnetism, marine magnetic surveys, gravity, seismology, and heat flow are treated in the geophysics category. A model for the origin of the Azores is constructed on the basis of these observations.
Some aspects of geological information contained in LANDSAT images
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Liu, C. C.; Vitorello, I.; Meneses, P. R.
1980-01-01
The characteristics of MSS images and methods of interpretation are analyzed from a geological point of view. The supportive role of LANDSAT data are illustrated in several examples of surface expressions of geological features, such as synclines and anticlines, spectral characteristics of lithologic units, and circular impact structures.
Aniakchak National Monument and Preserve: Geologic resources inventory report
Hults, Chad P.; Neal, Christina
2015-01-01
This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.
NASA Astrophysics Data System (ADS)
Bilsley, N. A.; Cook, H. M.
2016-12-01
Although most geology students feel the joy of interpreting geologic cross sections, few experience the challenges career geologists face in order to create these visual representations. Without a hefty budget and a drill rig, students generally miss out on the challenge of extrapolating subsurficial features from limited datasets, and jump to narrating geologic time through beautifully pre-drawn cross sections. Although this method allows students to practice relative dating techniques, they miss the practical step of learning how we have come to understand what the subsurface looks like in the first place. This activity was designed to close that gap, while giving students the opportunity to engage in peer learning by strategizing in groups, critiquing each other's work, and evaluating their own work. Broken into groups, students are instructed to create a geologic cross section that must include specific structural features. The cross sections are traded with another group, who reviews and provides feedback on the drawing before returning it back to the original group. The feedback is reviewed and incorporated, before the cross sections are colored and covered with black coated, clear scratch-art paper. The hidden cross sections are traded with a new group, who must decide where and how deep to scratch, or "core", on their cross section. Utilizing the data obtained from the cores, the students interpret and draw a new cross section. Finally, the scratch-art paper is removed, and the original cross section revealed. The differences between the original and interpreted subsurface as well as evaluation of sampling methods (e.g. location and depth of cores) are discussed within the groups and with the class. This activity bridges the gap between developing the intuition needed to create cross sections with realistic geoscientific techniques and utilizing cross sections to understand geologic time. In addition, not only does the activity require few supplies and minimal time of the instructor, but its peer-based learning approach stimulates creativity, allows students to effectively generate and communicate constructive feedback, and encourages students to evaluate and critique their methods and assumptions.
An evaluation of the suitability of ERTS data for the purposes of petroleum exploration
NASA Technical Reports Server (NTRS)
Collins, R. J., Jr. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery seems to be good to excellent for reconnaissance level investigations of large sedimentary basins such as the Anadarko Basin. Many lithologic boundaries, and geomorphic features, and linear features inferred to be indicative of geologic structure are visible in the imagery. This imagery in conjunction with high altitude photography seems to be useful as a tool for intermediate level geologic exploration. Several types of crudely circular anomalous features, such as geomorphic/structural anomalies, hazy areas and tonal anomalies, are identifiable in the imagery. There seems to be a strong correlation between the geomorphic/structural and hazy anomalies and known structurally controlled oil and gas fields. The features recognizable on ERTS-1 imagery and their ease of recognition vary from area to area even in imagery acquired at the same time under essentially uniform atmospheric conditions. Repeated coverage is exceedingly valuable in geologic applications. One time complete coverage even for the various seasons does not reveal all the features that ERTS-1 can reveal.
Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.
2008-01-01
Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'uhonua O Honaunau National Historical Park ('Place of Refuge of Honaunau') is the southernmost of the three National Parks located on the leeward Kona coast of the Island of Hawai'i. It is a relatively small park originally 73 ha (182 acres), and was expanded in 2006 with the acquisition of an additional 96 ha (238 acres). The park is probably best known for the pu'uhonua (place of refuge) native Hawaiian cultural site. In addition to the pu'uhonua, the park contains palace grounds, royal fishponds, burial sites, prehistoric trails, a royal canoe landing area, stone house platforms and associated temple structures. A massive basalt rock wall (300 m long, 3 m high, and 5 m wide) separates the pu'uhonua from the areas used by Hawaiian royalty and other grounds. Honaunau Bay is a popular marine resource area adjacent to the park. The seaward-sloping lands of PUHO lie at the base of Mauna Loa volcano, which forms a bench of low-lying pahoehoe lava flows at Pu'uhonua Point. The park coastline is approximately 1.6 km long and is mostly rocky with the exception of a small artificially nourished beach at Keone'ele Cove at the northern boundary next to Honaunau Bay. The park is bounded to the south by Ki'ilae Bay and includes the coastal portions of three Hawaiian land divisions (ahupua'a): Honaunau, Keokea, and Ki'ilae. The western boundary is the high tide mark. The waters of Keone'ele Cove, the ancient royal canoe landing at PUHO, while not formally under NPS jurisdiction, are managed by the park under an agreement with the State of Hawai'i. This small embayment is a known haven for sea turtles, which are often found sunning themselves on the nearshore volcanic platform. Impacts to this area include frequent visits by scuba divers and snorkelers to Honaunau Bay and a small boat ramp located just to the north of Keone'ele Cove. There is an accompanying report that presents the results of benthic habitat mapping of the offshore waters for PUHO (Cochran and others, 2006b; linked below). They mapped from the shoreline to depths of approximately 40 m, where the shelf drops off to a sand-covered bottom. PUHO park boundaries extend only to the mean high-tide level; however, landscape impacts created by development around the park are of concern to
Stoffer, Philip W.
2008-01-01
This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.
Electrical resistivity well-logging system with solid-state electronic circuitry
Scott, James Henry; Farstad, Arnold J.
1977-01-01
An improved 4-channel electrical resistivity well-logging system for use with a passive probe with electrodes arranged in the 'normal' configuration has been designed and fabricated by Westinghouse Electric Corporation to meet technical specifications developed by the U.S. Geological Survey. Salient features of the system include solid-state switching and current regulation in the transmitter circuit to produce a constant-current source square wave, and synchronous solid-state switching and sampling of the potential waveform in the receiver circuit to provide an analog dc voltage proportions to the measured resistivity. Technical specifications and design details are included in this report.
Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon
NASA Astrophysics Data System (ADS)
Wiley, T. J.; McClaughry, J. D.
2012-12-01
Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure. Intrusive bodies were locally delimited by linear mounds where contact metamorphism hardened soft, fractured country rock. Bedrock faults were revealed where fault traces formed topographic anomalies or where topography associated with stratigraphic horizons or bedding-parallel textural fabrics was offset. This was important for identification of young faults and associated earthquake hazards. Previously unknown Holocene faults southwest of Hood River appear as subtle lineaments redirecting modern drainages or offsetting glacial moraines or glaciated bedrock. West of Medford, the presence young faulting was confirmed by elevation data that showed bedrock in the channel of the Rogue River at higher elevations below Gold Ray dam than in boreholes upstream. Such obscure structural features would have gone unrecognized using traditional topographic analysis or field reconnaissance. Fieldwork verified that lidar techniques improved our early geologic models, resolution of geologic features, and mapping of surficial and bedrock geology between traverses.
1DTempPro V2: new features for inferring groundwater/surface-water exchange
Koch, Franklin W.; Voytek, Emily B.; Day-Lewis, Frederick D.; Healy, Richard W.; Briggs, Martin A.; Lane, John W.; Werkema, Dale D.
2016-01-01
A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time-varying specific discharge. The code serves as an interface to the U.S. Geological Survey model VS2DH and supports analysis of vertical one-dimensional temperature profiles under saturated flow conditions to assess groundwater/surface-water exchange and estimate hydraulic conductivity for cases where hydraulic head is known.
Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.
2014-01-01
This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.
The geological heritage of the Kurkur-Dungul area in southern Egypt
NASA Astrophysics Data System (ADS)
Sallam, Emad S.; Ponedelnik, Alena A.; Tiess, Günter; Yashalova, Natalia N.; Ruban, Dmitry A.
2018-01-01
The inventory of the geological heritage of Egypt is important for its efficient conservation and usage for the purposes of science, education, and tourism. The field investigations in the Kurkur-Dungul area in southern Egypt have permitted to identify several unique geological features. Their type, rank, relative abundance, and intrinsic diversity, as well as importance of the entire geological heritage of the study area are investigated. Seven geological heritage types are distinguished, namely stratigraphical, sedimentary, palaeogeographical, mineralogical, structural, geomorphological, and economical types. The rank of the features belonging to the listed types ranges from local to global, and the relative abundance and the intrinsic diversity range from low to high. The global rank is established for the sedimentary type, which is determined by the wide distribution of palaeospring tufa deposits. The high relative abundance and intrinsic diversity are established for the geomorphological type. The entire geological heritage of the Kurkur-Dungul area can be employed for diversification of the existing tourism programs offered at the tourist destination of Aswan, as well as for geotourism development. A geopark can be created in the Kurkur-Dungul area for the better exploitation of its geological heritage. The combined development of geological and industrial tourism seems to be possible.
Geology Museum-Based Learning in Soil Science Education
ERIC Educational Resources Information Center
Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.
2013-01-01
Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…
Field camp: Using traditional methods to train the next generation of petroleum geologists
Puckette, J.O.; Suneson, N.H.
2009-01-01
The summer field camp experience provides many students with their best opportunity to learn the scientific process by making observations and collecting, recording, evaluating, and interpreting geologic data. Field school projects enhance student professional development by requiring cooperation and interpersonal interaction, report writing to communicate interpretations, and the development of project management skills to achieve a common goal. The field school setting provides students with the opportunity to observe geologic features and their spatial distribution, size, and shape that will impact the student's future careers as geoscientists. The Les Huston Geology Field Camp (a.k.a. Oklahoma Geology Camp) near Ca??on City, Colorado, focuses on time-tested traditional methods of geological mapping and fieldwork to accomplish these goals. The curriculum consists of an introduction to field techniques (pacing, orienteering, measuring strike and dip, and using a Jacob's staff), sketching outcrops, section measuring (one illustrating facies changes), three mapping exercises (of increasing complexity), and a field geophysics project. Accurate rock and contact descriptions are emphasized, and attitudes and contacts are mapped in the field. Mapping is done on topographic maps at 1:12,000 and 1:6000 scales; air photos are provided. Global positioning system (GPS)-assisted mapping is allowed, but we insist that locations be recorded in the field and confirmed using visual observations. The course includes field trips to the Cripple Creek and Leadville mining districts, Floris-sant/Guffey volcano area, Pikes Peak batholith, and the Denver Basin. Each field trip is designed to emphasize aspects of geology that are not stressed in the field exercises. Students are strongly encouraged to accurately describe geologic features and gather evidence to support their interpretations of the geologic history. Concise reports are a part of each major exercise. Students are grouped into teams to (1) introduce the team concept and develop interpersonal skills that are fundamental components of many professions, (2) ensure safety, and (3) mix students with varying academic backgrounds and physical strengths. This approach has advantages and disadvantages. Students with academic strengths in specific areas assist those with less experience, thereby becoming engaged in the teaching process. However, some students contribute less to fi nal map projects than others, and assigning grades to individual team members can be diffi cult. The greatest challenges we face involve group dynamics and student personalities. We continue to believe that traditional fi eld methods, aided by (but not relying upon) new technologies, are the key to constructing and/or interpreting geologic maps. The requirement that students document fi eld evidence using careful observations teaches skills that will be benefi cial throughout their professional careers. ??2009 The Geological Society of America. All rights reserved.
Notes on the geology of northeastern New Mexico
St. John, O.
1876-01-01
During the season of 1869, in the progress of his extended reconnaissance of the Rocky Mountains, Dr. Hayden visited this region, from whom we have authentic account of its general geological features, and their intimate relation to those prevailing in other and similar districts to the north and south. A few months' residence in this part of the country in 1874-'75* afforded the writer opportunity to become somewhat familiar with its geological features; and the purpose of the present communication is to present such facts as may tend to contribute something toward a similar knowledge of remote and perhaps hitherto rarely-visited localities, and their connection with already examined districts.
Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars
NASA Technical Reports Server (NTRS)
Allen, C.C.; Oehler, D.Z.; Baker, D.M.
2009-01-01
Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.
Kohri, K; Kodama, M; Ishikawa, Y; Katayama, Y; Takada, M; Katoh, Y; Kataoka, K; Iguchi, M; Kurita, T
1989-11-01
We examined the relationship among magnesium and calcium content in tap water, the geological features and urinary stone incidence in Japan. The magnesium-to-calcium ratio in tap water correlated negatively with the incidence of urolithiasis. There was no correlation between calcium and magnesium concentration in tap water and urinary stone incidence. Geological features in Japan were classified into 5 groups. The magnesium-to-calcium ratio in the basalt areas was higher than in the other areas, while ratio in the granite areas was low. In the sedimentary rock areas calcium and magnesium concentrations were high; the magnesium-to-calcium ratio in these areas was between those of the basalt and granite areas. The limestone areas had a much higher calcium concentration. The incidence of urinary stones in the sedimentary rock and basalt areas was lower than that of the granite areas, while that in the limestone areas was the highest. Thus, the incidence of urinary stone is related to the magnesium-to-calcium ratio in tap water and the geological area.
North-south geological differences between the residual polar caps on Mars
Thomas, P.C.; Malin, M.C.; Edgett, K.S.; Carr, M.H.; Hartmann, W.K.; Ingersoll, A.P.; James, P.B.; Soderblom, L.A.; Veverka, J.; Sullivan, R.
2000-01-01
Polar processes can be sensitive indicators of global climate, and the geological features associated with polar ice caps can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost caps extending to mid latitudes, and near-polar residual frost deposits that survive the summer. The relationship of the seasonal and residual frost caps to the layered deposits has been poorly constrained, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual caps represent simple thin frost cover or substantial geologic features. Here we show that the residual cap on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual cap on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the caps are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.
Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.
1996-01-01
Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where confining units appear to remain intact and unaffected by nearby subsidence activity. Each lake likely is underlain by several piping features rather than one large subsidence feature.
Chapman, Melinda J.; Clark, Timothy W.; Williams, John H.
2013-01-01
Geologic mapping, the collection of borehole geophysical logs and images, and passive diffusion bag sampling were conducted by the U.S. Geological Survey North Carolina Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during March through October 2011. The study purpose was to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Data compilation efforts included geologic mapping of more than 250 features, including rock type and secondary joints, delineation of more than 1,300 subsurface features (primarily fracture orientations) in 15 open borehole wells, and the collection of passive diffusion-bag samples from 42 fracture zones at various depths in the 15 wells.
An ERTS multispectral scanner experiment for mapping iron compounds
NASA Technical Reports Server (NTRS)
Vincent, R. K. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.
Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.
NASA Astrophysics Data System (ADS)
Marino, Alessandra; Ludovisi, Giancarlo; Moccaldi, Antonio; Damiani, Fiorenzo
2001-02-01
The aim of this paper is to outline the potential of imaging spectroscopy and GIS techniques as tool for the management of data rich environments, as complex fluvial areas, exposed to geological, geomorphological, and hydrogeological risks. The area of study, the Pescara River Basin is characterized by the presence of important industrial sites and by the occurrence of floods, landslides and seismic events. Data were collected, during a specific flight, using an hyperspectral MIVIS sensor. Images have been processed in order to obtain updated and accurate land-cover and land-use maps that have been inserted in a specific GIS database and integrated with further information like lithology, geological structure, geomorphology, hydrogeological features, productive plants location and characters. The processing of data layers was performed, using a dedicated software, through typical GIS operators like indexing, recording, matrix analysis, proximity analysis. The interactions between natural risks, industrial installations, agricultural areas, water resources and urban settlements have been analyzed. This allowed the creation and processing of thematic layers like vulnerability, risk and impact maps.
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
NASA Astrophysics Data System (ADS)
Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir
2016-06-01
Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
Geoscientific Mapping of Vesta by the Dawn Mission
NASA Technical Reports Server (NTRS)
Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.;
2011-01-01
The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.
Analysis and application of ERTS-1 data for regional geological mapping
NASA Technical Reports Server (NTRS)
Gold, D. P.; Parizek, R. R.; Alexander, S. A.
1973-01-01
Combined visual and digital techniques of analysing ERTS-1 data for geologic information have been tried on selected areas in Pennsylvania. The major physiolographic and structural provinces show up well. Supervised mapping, following the imaged expression of known geologic features on ERTS band 5 enlargements (1:250,000) of parts of eastern Pennsylvania, delimited the Diabase Sills and the Precambrian rocks of the Reading Prong with remarkable accuracy. From unsupervised mapping, transgressive linear features are apparent in unexpected density, and exhibit strong control over river valley and stream channel directions. They are unaffected by bedrock type, age, or primary structural boundaries, which suggests they are either rejuvenated basement joint directions on different scales, or they are a recently impressed structure possibly associated with a drifting North American plate. With ground mapping and underflight data, 6 scales of linear features have been recognized.
Initial evaluation of the geologic applications of ERTS-1 imagery for New Mexico
NASA Technical Reports Server (NTRS)
Vonderlinden, K.; Kottlowski, F. E.
1973-01-01
Coverage of approximately one-third of the test site, the state of New Mexico, had been received by January 31, 1973 and all of the images received were MSS products. Features noted during visual inspection of 91/2 x 91/2 prints include major structural forms, vegetation patterns, drainage patterns and outcrops of geologic formations having marked color contrasts. The Border Hills Structural Zone and the Y-O Structural Zone are prominently reflected in coverage of the Pecos Valley. A study of available maps and remote sensing material covering the Deming-Columbus area indicated that the limit of detection and the resolution of MSS products are not as good as those of aerial photographs, geologic maps, and manned-satellite photographs. The limit of detection of high contrast features on MSS prints in approximately 1000 feet or 300 meters for linear features and about 18 acres for roughly circular areas.
Doctor, Daniel H.; Doctor, Katarina Z.
2012-01-01
In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.
NASA Astrophysics Data System (ADS)
Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar
2016-11-01
Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.
Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief
NASA Astrophysics Data System (ADS)
van Wyk de Vries, Benjamin
2016-04-01
I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.
Geology of the Lachesis Tessera V18 Quadrangle, Venus
NASA Astrophysics Data System (ADS)
McGowan, E. M.; McGill, G. E.
2011-03-01
Summary of the geology of the Lachesis Tessera, focusing on a linear grouping of structural features that includes Breksta Linea. This grouping includes an unnamed corona that is obscured by a large gore.
Semantic Web-based digital, field and virtual geological
NASA Astrophysics Data System (ADS)
Babaie, H. A.
2012-12-01
Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.
Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K
2014-01-01
Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.
The First Global Geological Map of Mercury
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.
2015-12-01
Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).
Geology and land use in the western part of the Gulf Coast coal-bearing region
Warwick, Peter D.; Aubourg, C.E.; Hook, R.W.; SanFilipo, John R.
2002-01-01
This map series is a compilation of the outcrop geology in the U.S. Gulf Coast coal region. The maps show the regional geologic setting for primary coal occurrences and detailed geology and historic mining areas.The CD contains ESRI ArcView SHP files of cities, urban areas, historical mines (points and polygons), counties, current mines, 1:100,000 quadrangle outlines of the study area, fossil fuel powerplants, nuclear powerplants, political boundaries, federally managed lands, roads and railroads in the study area, hydrology in the study area (polygons and arcs), geology nomenclature breaks, geological features (faults), and geology. ArcExplorer is included on the CD.
Data without Frontiers - the International Quaternary Map of Europe (IQUAME 2500)
NASA Astrophysics Data System (ADS)
Asch, Kristine
2017-04-01
The Federal German Geological Survey (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR) is leading the review of the International Quaternary Map of Europe (IQUAME 2500) and its transformation into a geographical information system (GIS) under the umbrella of the CGMW and INQUA. It is a long-standing policy of BGR to lead international cooperation of European geological survey mapping projects. These particularly include projects under the umbrella of organisations including CGMW, UNESCO, INQUA, EGU and IUGS. The aim of IQUAME 2500 is to build a geological information system (GIS) of Europe's Quaternary geology where relevant information can be retrieved, combined and applied across international boundaries. Cross-border mapping poses specific challenges, in particular data harmonisation, for the presentation of regional geology. Overcoming these obstacles demands international cooperation with national geological survey organisations. Based on the previous BGR & UNESCO co-produced International Quaternary Map of Europe (at a 1 : 2,5 million scale; completed in 1995), revision was begun by BGR in 2011 to review the information available from an international group of experts from European geological survey organisations. This group is supported by an international academic Advisory Board. The work requires re-evaluation and digitization of the 14 paper sheets. For this purpose BGR developed a pragmatic procedure to classify, deliver and combine the reviewed Quaternary data in a harmonized and uniform manner. The project is applying the vocabularies and data model of the EC Directive INSPIRE Directive and is creating additional vocabularies and definitions for necessary features such as geomorphology (with the EMODnet project) and glaciogenic elements. An academic scientific advisory board is overseeing the process. Subjects of the map include: geological boundaries and classifications of Quaternary rocks, extension and boundaries of permafrost, last glacial maximum, genetic descriptions of the rocks, faults, key localities (geologically and palaeontologically significant sites, anthropological sites, impact craters, etc.) and more detailed off-shore geology (in cooperation with the EMODnet project). Ultimately, the IQUAME project will summarise the current status quo of European Quaternary geological research in a digitally available GIS synthesis and introduce practically applicable new vocabularies to describe the results and share those with the science community.
Preliminary Volcanic Feature Analysis of Olympus Mons and Ascraeus Mons, Mars
NASA Astrophysics Data System (ADS)
Mohr, K. J.; Williams, D. A.; Garry, W. B.; Bleacher, J. E.
2018-06-01
Geologic mapping has shown similar volcanic features observed on Olympus and Ascraeus Mons. These features are found on the same flanks, suggesting a similar evolutionary process for formation of the edifices.
Geology and sinkhole development of the Hagerstown valley : phase II : [research summary].
DOT National Transportation Integrated Search
2014-06-01
The objective of this study was to map the western half of the Hagerstown Valley to : determine the distribution of karst features relative to bedrock geologic units using a : global positioning system (GPS).
Skylab-4 visual observations project: Geological features of southwestern North America
NASA Technical Reports Server (NTRS)
Silver, L. T.
1975-01-01
Visual observations conducted by Skylab-4 crewmen on seven designated geological target areas and other targets of opportunity in parts of southwestern United States and northwestern Mexico were described. The experiments were designed to learn how effectively geologic features could be observed from orbit and what research information could be obtained from the observations when supported by ground studies. For the limited preparation they received, the crewmen demonstrated exceptional observational ability and produced outstanding photographic studies. They also formulated cogent opinions on how to improve future observational and photo-documentation techniques. From the photographs and other observations, it was possible to obtain significant research contributions to on-going field investigations. These contributions were integrated into other aspects of the ground investigations to the following topics: major faults, regional stratigraphy, occurrence of Precambrian crystalline rocks, mapping of Mesozoic volcanic rocks, regional geology.
Activities in planetary geology for the physical and earth sciences
NASA Technical Reports Server (NTRS)
Dalli, R.; Greeley, R.
1982-01-01
A users guide for teaching activities in planetary geology, and for physical and earth sciences is presented. The following topics are discussed: cratering; aeolian processes; planetary atmospheres, in particular the Coriolis Effect and storm systems; photogeologic mapping of other planets, Moon provinces and stratigraphy, planets in stereo, land form mapping of Moon, Mercury and Mars, and geologic features of Mars.
Efficient Geological Modelling of Large AEM Surveys
NASA Astrophysics Data System (ADS)
Bach, Torben; Martlev Pallesen, Tom; Jørgensen, Flemming; Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas
2014-05-01
Combining geological expert knowledge with geophysical observations into a final 3D geological model is, in most cases, not a straight forward process. It typically involves many types of data and requires both an understanding of the data and the geological target. When dealing with very large areas, such as modelling of large AEM surveys, the manual task for the geologist to correctly evaluate and properly utilise all the data available in the survey area, becomes overwhelming. In the ERGO project (Efficient High-Resolution Geological Modelling) we address these issues and propose a new modelling methodology enabling fast and consistent modelling of very large areas. The vision of the project is to build a user friendly expert system that enables the combination of very large amounts of geological and geophysical data with geological expert knowledge. This is done in an "auto-pilot" type functionality, named Smart Interpretation, designed to aid the geologist in the interpretation process. The core of the expert system is a statistical model that describes the relation between data and geological interpretation made by a geological expert. This facilitates fast and consistent modelling of very large areas. It will enable the construction of models with high resolution as the system will "learn" the geology of an area directly from interpretations made by a geological expert, and instantly apply it to all hard data in the survey area, ensuring the utilisation of all the data available in the geological model. Another feature is that the statistical model the system creates for one area can be used in another area with similar data and geology. This feature can be useful as an aid to an untrained geologist to build a geological model, guided by the experienced geologist way of interpretation, as quantified by the expert system in the core statistical model. In this project presentation we provide some examples of the problems we are aiming to address in the project, and show some preliminary results.
NASA Astrophysics Data System (ADS)
De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc
2018-02-01
Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.
NASA Astrophysics Data System (ADS)
Beiranvand Pour, Amin; Hashim, Mazlan
2016-06-01
Yearly, several landslides ensued during heavy monsoons rainfall in Kelantan river basin, peninsular Malaysia, which are obviously connected to geological structures and topographical features of the region. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geological structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulated drainage pattern and metamorphic and Quaternary units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping.
Gazetteer of planetary nomenclature 1994
Batson, Raymond M.; Russell, Joel F.
1995-01-01
Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.
Geologic evidence of hotspot activity of Venus - Predictions for Magellan
NASA Technical Reports Server (NTRS)
Stofan, Ellen R.; Saunders, R. Stephen
1990-01-01
A number of distinctive types of geologic features have been identified on Venus that are interpreted to be related to thermal plumes including domal rises, coronae, and major composite shield volcanoes. The basic characteristics of these features as well as their distribution are documented. The three types of features have related morphologies and are interpreted to represent a continuum of features formed by mantle plumes at scales from 100s to over 1000 km. The Artemis structure, located in Aphrodite Terra, is proposed to be a large corona. If crustal spreading processes are operating on Venus, hotspot features should form chains on the surface as seen in terrestrial ocean basins. On the basis of current data on hotspot-related feature distribution on Venus, no clear evidence exists for hotspot chains. The complete distribution of hotspot features in Magellan data will be used to understand better the relationship between interior processes and surface features, as well as to provide a test for the crustal spreading hypothesis.
Geological nature of mineral licks and the reasons for geophagy among animals
NASA Astrophysics Data System (ADS)
Panichev, Alexander M.; Popov, Vladimir K.; Chekryzhov, Igor Yu.; Seryodkin, Ivan V.; Sergievich, Alexander A.; Golokhvast, Kirill S.
2017-06-01
In this paper, the reasons for geophagy (the eating of rocks by wild herbivores) in two regions of the eastern Sikhote-Alin volcanic belt are considered. The mineralogical and chemical features of the consumed rocks, as well as the geological conditions of their formation, are investigated. A comparative analysis of the mineral and chemical composition of the consumed rocks and the excrement of the animals, almost completely consisting of mineral substances, is carried out. It is established that the consumed rocks are hydrothermally altered rhyolitic tuffs located in the volcanic calderas and early Cenozoic volcano-tectonic depressions. They consist of 30-65 % from zeolites (mainly clinoptilolites) and smectites, possessing powerful sorption properties. According to the obtained data, the main reason for geophagy may be connected with the animals' urge to discard excessive and toxic concentrations of certain elements that are widespread in specific habitats and ingested with forage plants.
NASA Technical Reports Server (NTRS)
Merifield, P. M. (Principal Investigator); Lamar, D. L.; Stratton, R. H.; Lamar, J. V.; Gazley, C., Jr.
1974-01-01
The author has identified the following significant results. Representative faults and lineaments, natural features on the Mojave Desert, and cultural features of the southern California area were studied on ERTS-1 images. The relative appearances of the features were compared on a band 4 and 5 subtraction image, its pseudocolor transformation, and pseudocolor images of bands 4, 5, and 7. Selected features were also evaluated in a test given students at the University of California, Los Angeles. Observations and the test revealed no significant improvement in the ability to detect and locate faults and lineaments on the pseudocolor transformations. With the exception of dry lake surfaces, no enhancement of the features studied was observed on the bands 4 and 5 subtraction images. Geologic and geographic features characterized by minor tonal differences on relatively flat surfaces were enhanced on some of the pseudocolor images.
Geologic Reconnaissance and Lithologic Identification by Remote Sensing
remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.
NASA Astrophysics Data System (ADS)
Pournamdari, M.; Hashim, M.
2014-02-01
Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.
NASA Technical Reports Server (NTRS)
Mcgill, George E.; Squyres, Steven W.
1991-01-01
Grooves are the dominant structural features on Ganymede. While single grooves are found in many areas, it is somewhat more common to find them grouped together in groove sets (groupings of grooves with common structural trends). It is generally believed that the grooves are extensional features. Their underlying geologic nature cannot be determined from Voyager images, however. It appears likely that they are grabens, but the images are insufficient to rule out the possibility that they are modified extension fractures or some kind of ductile necking features. The oldest materials within the Nun Sulci and Perrine quadrangles occur within the cratered dark materials unit, as is generally the case for all of Ganymede. This is the most widespread of the dark units mapped in these two quadrangles. Crater densities within cratered dark materials are consistent with an age on the order of several billion years, and thus cratered dark terrain probably represents crust that has survived from the end of the primordial intense bombardment phase of solar system history. The brief geologic history is greatly oversimplified as a result of the poor resolution and unfavorable viewing geometry of the images covering the area.
Geologic Map of the Shakespeare Quadrangle (H03), Mercury
NASA Astrophysics Data System (ADS)
Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.
2018-05-01
A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the MESSENGER images. The most prominent geomorphological feature is the Caloris basin, the largest impact crater on Mercury.
NASA Astrophysics Data System (ADS)
Lima, Eva; Nunes, João; Brilha, José; Calado, Helena
2013-04-01
The conservation of the geological heritage requires the support of appropriate policies, which should be the result of the integration of nature conservation, environmental and land-use planning, and environmental education perspectives. There are several papers about inventory methodologies for geological heritage and its scientific, educational and tourism uses (e.g. Cendrero, 2000, Lago et al., 2000; Brilha, 2005; Carcavilla et al., 2007). However, management methodologies for geological heritage are still poorly developed. They should be included in environmental and land-use planning and nature conservation policies, in order to support a holistic approach to natural heritage. This gap is explained by the fact that geoconservation is a new geoscience still needed of more basic scientific research, like any other geoscience (Henriques et al., 2011). It is necessary to establish protocols and mechanisms for the conservation and management of geological heritage. This is a complex type of management because it needs to address not only the fragile natural features to preserve but also legal, economic, cultural, educational and recreational aspects. In addition, a management methodology should ensure the geosites conservation, the local development and the dissemination of the geological heritage (Carcavilla et al., 2007). This work is part of a PhD project aiming to contribute to fill this gap that exists in the geoconservation domain, specifically in terms of establishing an appropriate methodology for the management of geological heritage, taking into account the natural diversity of geosites and the variety of natural and anthropic threats. The proposed methodology will be applied to the geological heritage of the Azores archipelago, which management acquires particular importance and urgency after the decision of the Regional Government to create the Azores Geopark and its application to the European and Global Geoparks Networks. Acknowledgment This work is part of a PhD research project funded by the Regional Fund for Science and Technology of the Azores Regional Government (PhD scholarship M3.1.2/F/033/201).
Geologic Studies in Support of Manned Martian Exploration
NASA Astrophysics Data System (ADS)
Frix, Perry; McCloskey, Katherine; Neakrase, Lynn D. V.; Greeley, Ronald
1999-01-01
With the advent of the space exploration of the middle part of this century, Mars has become a tangible target for manned space flight missions in the upcoming decades. The goals of Mars exploration focus mainly on the presence of water and the geologic features associated with it. To explore the feasibility of a manned mission, a field analog project was conducted. The project began by examining a series of aerial photographs representing "descent" space craft images. From the photographs, local and regional geology of the two "landing" sites was determined and several "targets of interest" were chosen. The targets were prioritized based on relevance to achieving the goals of the project and Mars exploration. Traverses to each target, as well as measurements and sample collections were planned, and a timeline for the exercise was created. From this it was found that for any mission to be successful, a balance must be discovered between keeping to the planned timeline schedule, and impromptu revision of the mission to allow for conflicts, problems and other adjustments necessary due to greater information gathered upon arrival at the landing site. At the conclusion of the field exercise, it was determined that a valuable resource for mission planning is high resolution remote sensing of the landing area. This led us to conduct a study to determine what ranges of resolution are necessary to observe geology features important to achieving the goals of Mars exploration. The procedure used involved degrading a set of images to differing resolutions, which were then examined to determine what features could be seen and interpreted. The features were rated for recognizability, the results were tabulated, and a minimum necessary resolution was determined. Our study found that for the streams, boulders, bedrock, and volcanic features that we observed, a resolution of at least 1 meter/pixel is necessary. We note though that this resolution depends on the size of the feature being observed, and thus for Mars the resolution may be lower due to the larger size of some features. With this new information, we then examined the highest resolution images taken to date by the Mars Orbital Camera on board the Mars Global Surveyor, and planned a manned mission. We chose our site keeping in mind the goals for Mars exploration, then determined the local and regional geolog of the "landing area. Prioritization was then done on the geologic features seen and traverses were planned to various "targets of interest". A schedule for each traverse stop, including what measurements and samples were to br taken, and a timeline for the mission was then created with ample time allowed for revisions of plans, new discoveries, and possible complications.
Chemistry of Stream Sediments and Surface Waters in New England
Robinson, Gilpin R.; Kapo, Katherine E.; Grossman, Jeffrey N.
2004-01-01
Summary -- This online publication portrays regional data for pH, alkalinity, and specific conductance for stream waters and a multi-element geochemical dataset for stream sediments collected in the New England states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. A series of interpolation grid maps portray the chemistry of the stream waters and sediments in relation to bedrock geology, lithology, drainage basins, and urban areas. A series of box plots portray the statistical variation of the chemical data grouped by lithology and other features.
NASA Astrophysics Data System (ADS)
Pihlaja, Jouni; Johansson, Peter; Lauri, Laura
2015-04-01
Barents Tour for Geotourists is a guidebook for a circular route locating in northern Finland, northern Norway and north-western Russia. The targets along the route are all connected with different aspects of geology: there are localities presenting rare rock types and minerals, potholes, gorges, eskers, raised beaches and palsa mires. Total number of sites along the route is 26, 14 of them are locating in Finland, 4 in Norway and 8 in the Kola Peninsula, Russia. In addition to geological information on the sites, the guidebook features directions and information on local tourism services in four languages: English, Finnish, Russian and Norwegian. Good examples of the geological sites in northern Finland are the potholes at Aholanvaara, Salla. The largest pothole is called the "Drinking pot". With a diameter of 15.5 m and a depth of 9.5 m it is the largest known pothole in Finland. One famous target in northern Finland is also the Gold Prospector Museum and geological nature trail at Tankavaara, Sodankylä. The museum has an impressive mineral and jewellery stone collection and it is the only international museum in the world displaying past and present items of gold panning and prospecting. The Khibiny Tundra is the largest mountain massif on the Kola Peninsula, Russia. These mountains are best known for their unique landscapes, geology and mineralogy. With an experienced guide, minerals like apatite, nepheline, titanite, eudialyte and lamprophyllite can be found there. In north-eastern Norway, the palsas at Øvre Neiden and Færdesmyra are examples of a specific mire type in the cold climate area. The palsa mires are characterized by the presence of 2-5 m high peat mounds that consist of interleaved peat and ice layers. The route was planned and implemented in the ABCGheritage project (Arctic Biological, Cultural and Geological Heritage) partly funded by the Kolarctic ENPI CBC program of the European Union. The guidebook was written by researchers of the Geological Survey of Finland and the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences. It is available in electronic format on the websites of Metsähallitus, the Geological Survey of Finland and the Geological Institute.
Multiresolution pattern recognition of small volcanos in Magellan data
NASA Technical Reports Server (NTRS)
Smyth, P.; Anderson, C. H.; Aubele, J. C.; Crumpler, L. S.
1992-01-01
The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice.
NASA Astrophysics Data System (ADS)
Rack, F.; Diamond, J.; Levy, R.; Berg, M.; Dahlman, L.; Jackson, J.
2006-12-01
IPY: Engaging Antarctica is an informal science education project designed to increase the general public's understanding of scientific research conducted in Antarctica. The project focuses specifically on the multi- national, NSF-funded Antarctic Drilling Project (ANDRILL). The ANDRILL project is the newest geological drilling program in an ongoing effort to recover stratigraphic records from Antarctica. ANDRILL's primary objectives are to investigate Antarctica's role in global environmental change over the past 65 million years and to better understand its future response to global changes. Additionally, through ANDRILL's Research Immersion for Science Educators program (ARISE), 12 science educators from four countries will work on science research teams in Antarctica and produce educational materials that feature Antarctic geoscience. The Engaging Antarctica project will produce both a NOVA television documentary and an innovative informal learning exhibit. The documentary, Antarctica's Icy Secrets, will provide a geological perspective on how Antarctica continues to play a major role in affecting global climate by altering ocean currents and sea levels. The learning exhibit, one that blends standards- and inquiry-based learning with the latest information technologies, is coined the Flexhibit. The Engaging Antarctica Flexhibit will provide a digital package of high resolution images for banners as well as learning activities and ideas for exhibit stations that can be implemented by youth groups. Flexhibit images will feature ANDRILL scientists at work, and audio files, available as podcasts, will tell scientists' stories in their own words, speaking directly to the public about the joys and challenges of Antarctic geological research.
Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide
NASA Technical Reports Server (NTRS)
Howard, Alan D. (Editor); Kochel, R. Craig (Editor); Holt, Henry E. (Editor)
1987-01-01
This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.
A generalized geologic map of Mars.
NASA Technical Reports Server (NTRS)
Carr, M. H.; Masursky, H.; Saunders, R. S.
1973-01-01
A geologic map of Mars has been constructed largely on the basis of photographic evidence. Four classes of units are recognized: (1) primitive cratered terrain, (2) sparsely cratered volcanic eolian plains, (3) circular radially symmetric volcanic constructs such as shield volcanoes, domes, and craters, and (4) tectonic erosional units such as chaotic and channel deposits. Grabens are the main structural features; compressional and strike slip features are almost completely absent. Most grabens are part of a set radial to the main volcanic area, Tharsis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PETERSEN SW
Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associatedmore » with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground measurements to refine interpretations of AEM data; and (3) Improve the calibration and correlation of AEM information. The potential benefits of this project are as follows: (1) Develop a tool to map subsurface units at the Hanford Site in a rapid and cost effective manner; (2) Map groundwater pathways within the River Corridor; and (3) Aid development of the conceptual site model. If anomalies observed in the AEM data can be correlated with subsurface geology, then the rapid scanning and non-intrusive capabilities provided by the airborne surveys can be used at the Hanford Site to screen for areas that warrant further investigation.« less
Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37
Piper, A.M.
1947-01-01
The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites should be thoroughly explored by test pits and drilled holes before any dam is designed. This applied especially to sites in the Nehalem and Willamette River basins where commonly the cover of timber and brush is dense and the rocks are rather deeply weathered. On the Middle Santiam and South Santiam Rivers, the Cascadia, Greenpeter, and Sweet Home sits have been studies intensively by the United States Engineer Department, whose work included exploration by diamond-drill holes and test pits. Their conclusions as to geologic features are given in a report by McKitrick and have been reviewed by the writer. Data from this source have been used freely in the discussion of the respective sites in this report. The probability of destructive earthquakes in the region appears to be small but is not negligible. Prudence suggests that any high dam should embody features to assure stability against moderately strong earth motions.
Windblown Features on Venus and Geological Mapping
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
The objectives of this study were to: 1) develop a global data base of aeolian features by searching Magellan coverage for possible time-variable wind streaks, 2) analyze the data base to characterize aeolian features and processes on Venus, 3) apply the analysis to assessments of wind patterns near the surface and for comparisons with atmospheric circulation models, 4) analyze shuttle radar data acquired for aeolian features on Earth to determine their radar characteristics, and 5) conduct geological mapping of two quadrangles. Wind, or aeolian, features are observed on Venus and aeolian processes play a role in modifying its surface. Analysis of features resulting from aeolian processes provides insight into characteristics of both the atmosphere and the surface. Wind related features identified on Venus include erosional landforms (yardangs), depositional dune fields, and features resulting from the interaction of the atmosphere and crater ejecta at the time of impact. The most abundant aeolian features are various wind streaks. Their discovery on Venus afforded the opportunity to learn about the interaction of the atmosphere and surface, both for the identification of sediments and in mapping near-surface winds.
Digital geologic map and GIS database of Venezuela
Garrity, Christopher P.; Hackley, Paul C.; Urbani, Franco
2006-01-01
The digital geologic map and GIS database of Venezuela captures GIS compatible geologic and hydrologic data from the 'Geologic Shaded Relief Map of Venezuela,' which was released online as U.S. Geological Survey Open-File Report 2005-1038. Digital datasets and corresponding metadata files are stored in ESRI geodatabase format; accessible via ArcGIS 9.X. Feature classes in the geodatabase include geologic unit polygons, open water polygons, coincident geologic unit linework (contacts, faults, etc.) and non-coincident geologic unit linework (folds, drainage networks, etc.). Geologic unit polygon data were attributed for age, name, and lithologic type following the Lexico Estratigrafico de Venezuela. All digital datasets were captured from source data at 1:750,000. Although users may view and analyze data at varying scales, the authors make no guarantee as to the accuracy of the data at scales larger than 1:750,000.
DEVELOPMENT OF RIPARIAN ZONE INDICATORS (INT. GRANT)
Landscape features (e.g., land use) influence water quality characteristics on a variety of spatial scales. For example, while land use is controlled by anthropogenic features at a local scale, geologic features are set at larger spatial, and longer temporal scales. Individual ...
NASA Astrophysics Data System (ADS)
Müller, Dietmar; Qin, Xiaodong; Sandwell, David; Dutkiewicz, Adriana; Williams, Simon; Flament, Nicolas; Maus, Stefan; Seton, Maria
2017-04-01
The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other, and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The portal has been visited over half a million times since its inception in October 2015, as tracked by google analytics, and the globes have been featured in numerous media articles around the world. This demonstrates the high demand for fast visualization of global spatial big data, both for the present-day as well as through geological time. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. This technology offers many future opportunities for providing additional functionality, especially on-the-fly big data analytics. Müller, R.D., Qin, X., Sandwell, D.T., Dutkiewicz, A., Williams, S.E., Flament, N., Maus, S. and Seton, M, 2016, The GPlates Portal: Cloud-based interactive 3D visualization of global geophysical and geological data in a web browser, PLoS ONE 11(3): e0150883. doi:10.1371/ journal.pone.0150883
Classification of high dimensional multispectral image data
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1993-01-01
A method for classifying high dimensional remote sensing data is described. The technique uses a radiometric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for material without obvious spectral features are identified by traditional means. Features which are effective for discriminating between the classes are then derived from the original radiance data and used to classify the scene. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an existing geologic map. This technique performed well even with noisy data and the fact that some of the materials in the scene lack absorption features. No adjustment for the atmosphere or other scene variables was made to the data classified. While the experimental results compare favorably with an existing geologic map, the primary purpose of this research was to demonstrate the classification method, as compared to the geology of the Cuprite scene.
1989-08-25
P-34692 Range : 500 km. ( 300 miles ) Smallest Resolvable Feature : 900 m. or 2,700 ft. Part of Triton's complex geological history canbe seen in this image, shot by Voyager 2. Part of a sequence, it shows a surface dominated by many roughly circular, polygonal, and arcuate features between 30 and 50 km (18 and 30 miles ) across. Some resemble degraded impact craters of Mars, while others resemble the 'palimpsest' features of Jupiter's satellite Ganymede. Peculiar intersecting, double ridged lines are 15 to 20 km. or 9 to 12 miles wide and hundreds of kilometers long. Theyresemble some deformational belts of Ganymede. Patches of plainsforming material tend to occur in local depressions. The geologic features of Triton and spectroscopic information indicates that the surface of Triton is underlain by a mixture of ices.
Geologic map of Big Bend National Park, Texas
Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.
2011-01-01
The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and interpretation, was from the USGS Crustal Geophysics and Geochemistry Science Center. Mapping contributed from university professors and students was mostly funded by independent sources, including academic institutions, private industry, and other agencies.
High-Resolution Geologic Mapping of Martian Terraced Fan Deposits
NASA Astrophysics Data System (ADS)
Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.
2018-06-01
This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
Code of Federal Regulations, 2014 CFR
2014-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
Code of Federal Regulations, 2012 CFR
2012-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
Code of Federal Regulations, 2011 CFR
2011-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System
NASA Astrophysics Data System (ADS)
Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.
2015-12-01
As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.
Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico
NASA Astrophysics Data System (ADS)
Hinojosa de la Garza, Octavio R.; Montero Cabrera, María Elena; Sanín, Luz H.; Reyes Cortés, Manuel; Martínez Meyer, Enrique
2014-07-01
To estimate the distribution of uranium minerals in Chihuahua, the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data), as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores, a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography, gravimetry, climate (worldclim), soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model, comparisons were done with other research of the Mexican Service of Geological Survey, with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated, finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.
Apollo 16 prime and backup crewmen during geological field trip in New Mexico
1971-09-09
Dr. Lee Silver (pointing foregroung), California Institute of Technology, calls a geological feature near Taos, New Mexico, to the attention of Apollo 16 prime and backup crewmen during a geological field trip. The crewmen, from left to right, are Astronauts Charles M. Duke Jr., lunar module pilot; Fred W. Haise Jr., backup commander; Edgar D. Mitchell, backup Lunar Module pilot; and John W. Young, commander.
A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England
Banks, Paul T.
1975-01-01
Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.
NASA Technical Reports Server (NTRS)
Head, James W.; Crumpler, L. S.
1990-01-01
Spacecraft and ground-based observations of Venus have revealed a geologically young and active surface - with volcanoes, rift zones, orogenic belts and evidence for hotspots and crustal spreading - yet the processes responsible for these features cannot be identified from the available data. The Magellan spacecraft will acquire an unprecedented global data set which will provide a comprehensive and well resolved view of the planet. This will permit global geological mapping, an assessment of the style and relative importance of geological processes, and will help in the understanding of links between the surface geology and mantle dynamics of this earth-like planet.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
Ash-flow tuffs of the Galiuro Volcanics in the northern Galiuro Mountains, Pinal County, Arizona
Krieger, Medora Louise Hooper
1979-01-01
The upper Oligocene and lower Miocene Galiuro Volcanics in the northern part of the Galiuro Mountains contains two distinctive major ash-flow tuff sheets, the Holy Joe and Aravaipa Members. These major ash-flows illustrate many features of ash-flow geology not generally exposed so completely. The Holy Joe Member, composed of a series of densely welded flows of quartz latite composition that make up a simple cooling unit. is a rare example of a cooling unit that has a vitrophyre at the top as well as at the base. The upper vitrophyre does not represent a cooling break. The Aravaipa Member. a rhyolite, is completely exposed in Aravaipa and other canyons and on Table Mountain. Remarkable exposures along Whitewash Canyon exhibit the complete change from a typical stacked-up interior zonation of an ash flow to a non welded distal margin. Vertical and horizontal changes in welding, crystallization, specific gravity, and lithology are exposed. The ash flow can be divided into six lithologic zones. The Holy Joe and Aravaipa Members of the Galiuro Volcanics are so well exposed and so clearly show characteristic features of ash-flow tuffs that they could be a valuable teaching aid and a source of theses for geology students.
USDA-ARS?s Scientific Manuscript database
Here, we examine soil-borne microbial biogeography as a function of the features that 31 define an American Viticultural Area (AVA), a geographically delimited American wine grape32 growing region, defined for its distinguishing features of climate, geology, soils, physical 33 features (topography a...
A Self-Paced Physical Geology Laboratory.
ERIC Educational Resources Information Center
Watson, Donald W.
1983-01-01
Describes a self-paced geology course utilizing a diversity of instructional techniques, including maps, models, samples, audio-visual materials, and a locally developed laboratory manual. Mechanical features are laboratory exercises, followed by unit quizzes; quizzes are repeated until the desired level of competence is attained. (Author/JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spittler, T.E.; Sydnor, R.H.; Manson, M.W.
1990-01-01
The Loma Prieta earthquake of October 17, 1989 triggered landslides throughout the Santa Cruz Mountains in central California. The California Department of Conservation, Division of Mines and Geology (DMG) responded to a request for assistance from the County of Santa Cruz, Office of Emergency Services to evaluate the geologic hazard from major reactivated large landslides. DMG prepared a set of geologic maps showing the landslide features that resulted from the October 17 earthquake. The principal purpose of large-scale mapping of these landslides is: (1) to provide county officials with regional landslide information that can be used for timely recovery ofmore » damaged areas; (2) to identify disturbed ground which is potentially vulnerable to landslide movement during winter rains; (3) to provide county planning officials with timely geologic information that will be used for effective land-use decisions; (4) to document regional landslide features that may not otherwise be available for individual site reconstruction permits and for future development.« less
NASA Astrophysics Data System (ADS)
Mikhailenko, Anna V.; Nazarenko, Olesya V.; Ruban, Dmitry A.; Zayats, Pavel P.
2017-03-01
The current growth in geotourism requires an urgent development of classifications of geological features on the basis of criteria that are relevant to tourist perceptions. It appears that structure-related patterns are especially attractive for geotourists. Consideration of the main criteria by which tourists judge beauty and observations made in the geodiversity hotspot of the Western Caucasus allow us to propose a tentative aesthetics-based classification of geological structures in outcrops, with two classes and four subclasses. It is possible to distinguish between regular and quasi-regular patterns (i.e., striped and lined and contorted patterns) and irregular and complex patterns (paysage and sculptured patterns). Typical examples of each case are found both in the study area and on a global scale. The application of the proposed classification permits to emphasise features of interest to a broad range of tourists. Aesthetics-based (i.e., non-geological) classifications are necessary to take into account visions and attitudes of visitors.
Mapping urban geology of the city of Girona, Catalonia
NASA Astrophysics Data System (ADS)
Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona
2016-04-01
A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.
Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.
NASA Astrophysics Data System (ADS)
Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane
2017-04-01
The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.
Geological heritage diversity in the Faiyum Oasis (Egypt): A comprehensive assessment
NASA Astrophysics Data System (ADS)
Sallam, Emad S.; Fathy, Esraa E.; Ruban, Dmitry A.; Ponedelnik, Alena A.; Yashalova, Natalia N.
2018-04-01
The Faiyum Oasis in the Western Desert of Egypt is famous for its palaeontological localities (Cenozoic whales, primates, etc.) of global importance, but its geological heritage has been not studied in the modern theoretical frame. The new investigation based on the field studies and the literature review permits comprehensive assessment of the geological heritage diversity in this oasis. For this purposes, unique geological features are inventoried with establishment of their geological essence, rank, relative abundance, and intrinsic diversity. As a result, the existence of ten geological heritage types in the Faiyum Oasis is found. These include palaeontological, palaeogeographical, geomorphological, stratigraphical, sedimentary (merged with mineralogical), hydrological coupled with geochemical, igneous, and economical types. From them, the palaeontological and palaeogeographical types are ranked globally, and the geomorphological and hydrological types are ranked nationally. The other types are either of regional (provincial) or local importance. Some hills and cliffs can serve as viewpoint sites for observation of the local geological landscape. The relative abundance and the intrinsic diversity of the unique geological features vary between low and high. Generally, the concentration of this geological heritage in the Faiyum Oasis permits recognition of the geodiversity hotspot that requires conservation and use for tourism purposes. The protected areas located in the oasis and the existing tourism programs do not offer geoconservation and geotourism activities for the entire hotspot. The possible solution of this problem would be creation of a large geopark similar in its design to the Jeju Island Geopark in South Korea. There are important premises for geotourism development in the Faiyum Oasis and its combination with the archaeological and industrial tourism. Nature conservation failures in this geopark should be avoided; some recommendations are given on the basis of the review of conservation failures in geoparks of the other countries.
NASA Astrophysics Data System (ADS)
Rowe, A. R.; Wanger, G. P.; Bhartia, R.
2017-12-01
The Cedars, an area of active serpentinization located in the Russian River area of Northern California, represents one of the few terrestrial areas on Earth undergoing active serpentinization. One of the products of the serpentinization reaction is the formation of hydroxyl radicals making the springs of the Cedars some of the most alkaline natural waters on Earth. These waters, with very high pH (pH>11), low EH and, low concentrations of electron acceptors are extremely inhospitible; however microbial life has found a way to thrive and a distinct microbial community is observed in the spring waters. Previous work with environmental samples and pure culture isolates [3] derived from The Cedars has suggested the importance of minearal association to these characteristic microbes. Here we show the results combined spectroscopic and molecular studies on aseries of mineral colonization experiemnts performed with a pure culture Cedar's isolate (Serpentenamonas str. A1) and in situ at CS spring. Centimeter scale, polished coupons of a variety of mminerals were prepared in the lab, spectroscopically characterized (Green Raman, DUV Raman, and DUV Fluorescence maps) and deployed into the springs for three months. The coupons were recovered and the distribution of the microbes on the minerals was mapped using a deep-UV native fluorescent mapping sustem that allows for non-destructive mapping of organics and microbes on surfaces. Subsequently the DNA from the minerals was extracted for community structure analysis. The MOSAIC (i.e. deep UV Fluorescence) showed extensicve colonization of the minerals and in some cases we were able to correlate microbial assemblages with specific geological features. In one example, organisms tended to associate strongly with carbonate features on Chromite mineral surfaces (Figure 1). The 16s rDNA revealed the microbial assemblages from each slide was dominated by active Cedars community memebers (i.e., Serpentinamonas and Silanimonas species), however the relative distribution oc bacterial types varied across mineral type and from the original spring community itself.
NASA Astrophysics Data System (ADS)
de La Fuente, J. A.; Bell, A.; Elder, D.; Mowery, R.; Mikulovsky, R.; Klingel, H.; Stevens, M.
2010-12-01
Geologic hazards on US Forest Service lands have a long history of producing catastrophic events. In 1890 (prior to the establishment of the Forest Service), the China Mine landslide buried a miner’s camp along the Trinity River in NW California, killing a number of miners. An earthquake in southwestern Montana triggered a massive landslide which killed 28 people in a US Forest Service campground in 1959. In 1980, Mount St. Helens erupted in Oregon, killing 57 people. Debris flows from a winter storm in 2003 on the burned hillslopes of the San Bernardino National Forest in California killed 14 people at the St. Sophia youth Camp. A rockfall in the summer of 2009 in Lassen National Park killed a 9 year old boy. The most recent catastrophe occurred on June 11, 2010 when 20 people died in a flash flood at the Albert Pike Campground on the Ouachita National Forest. These and other disasters point out the need for geologic hazard mapping and assessments on the National Forests. The US Forest Service (USFS) is currently assessing geologic hazards in the Northern Province of USFS Region 5 (Pacific Southwest Region), which includes the Klamath, Mendocino, Shasta-Trinity, and Six Rivers National Forests. The most common geologic hazards (relatively short return intervals) in this area include landslides, rock falls, debris flows, flooding, temporary dam failures (landslide or woody debris), naturally occurring hazardous materials, (asbestos radon, etc), and rarely, karst subsidence. Seismic and volcanic hazards are also important at longer return intervals. This assessment will be conducted in three phases, and is patterned after a process developed by Region 8 of the US Forest Service. The first phase is a reconnaissance level assessment based on existing information such as spatial databases, aerial photos, Digital Elevation Models, State of California Alquist-Priolo Earthquake Fault Zone maps, previous investigations and anecdotal accounts of past events. The bedrock coverage is a compilation of the best available mapping for all National Forests in California. The geomorphic coverage includes features such as active and dormant landslides, alluvial fans, headwall basins, glacial features, and valley inner gorge. Criteria will be developed which utilize elements of this data to evaluate geologic hazards in the vicinity of developed recreation sites. The second phase will be conducted later and involves site specific analyses focusing on areas identified as higher hazard in the first phase, along with verification and updating of phase 1 findings. The third phase will complete any site level geologic or hydrologic investigations, and wrap up the hazard assessment process. A summary report with hazard maps and recommendations will be prepared at the end of each phase. The overriding goal of this project is to provide sound geologic information to managers so they can use a science-based approach in recognizing and managing geologic hazards at recreation sites.
Application of multispectral photography to mineral and land resources of South Carolina
NASA Technical Reports Server (NTRS)
Olson, N. K. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Good results were obtained from using Skylab photography in conjunction with LANDSAT imagery for visual interpretation of various geologic features, particularly lineaments. It was concluded that visual interpretation alone of Skylab photographs was quite limited, and much of this was because of the low contrast, heavily vegetated terrain in southeastern United States. Lineaments of major structural features are detectable but subtle. An intimate knowledge of the geologic field relationships is needed before a meaningful analysis is feasible using current satellite photography alone.
Coldspots and hotspots - Global tectonics and mantle dynamics of Venus
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Schubert, Gerald; Kaula, William M.
1992-01-01
Based on geologic observations provided by Magellan's first cycle of data collection and recent models of mantle convection in spherical shells and crustal deformation, the major topographic and geologic features of Venus are incorporated into a model of global mantle dynamics. Consideration is given to volcanic rises, such as Beta Regio and Atla Regio, plateau-shaped highlands dominated by complex ridged terrain (e.g., Ovda Regio and Alpha Regio), and circular lowland regions, such as Atalanta Planitia. Each of these features is related to either mantle plumes (hotspots) or mantle downwellings (coldspots).
Walsh, Gregory J.
2016-08-16
This report consists of sheets 1 and 2 as well as an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, and photographs. Sheet 2 of this report shows three cross sections, a tectonic map, and two brittle features maps that show measured outcrop-scale strike and dip results with summary stereonets and rose diagrams.
Iapetus: Tectonic structure and geologic history
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1991-01-01
Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.
Geologic Mapping of the Marius Quadrangle, the Moon
NASA Technical Reports Server (NTRS)
Gregg, Tracy K. P.; Yingst, Aileen
2008-01-01
The authors seek to construct a 1:2,500,000-scale map of Lunar Quadrangle 10 (LQ10 or the Marius Quadrangle) to address outstanding questions about the Moon's volcanologic history and the role of impact basins in lunar geologic evolution. The selected quadrangle contains Aristarchus plateau and the Marius hills, Reiner Gamma, and Hevelius crater. By generating a geologic map of this region, we can constrain the temporal (and possibly genetic) relations between these features, revealing more information about the Moon's chemical and thermal evolution. Although many of these individual sites have been investigated using Lunar Orbiter, Clementine, Lunar Prospector and Galileo data, no single investigation has yet attempted to constrain the stratigraphic and geologic relationships between these features. Furthermore, we will be able to compare our unit boundaries on the eastern boundary of the proposed map area with those already mapped in the Copernicus Quadrangle. Geologic mapping of the Marius Quadrangle would provide insight to the following questions: the origin, evolution, and distribution of mare volcanism; the timing and effects of the major basin-forming impacts on lunar crustal stratigraphy; and, the Moon's important resources, where they are concentrated, and how they can be accessed.
ERIC Educational Resources Information Center
Chew, Berkeley
1993-01-01
Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…
NASA Astrophysics Data System (ADS)
Ormö, Jens; Komatsu, Goro; Chan, Marjorie A.; Beitler, Brenda; Parry, William T.
2004-10-01
In order to understand the formation of the few but large, hematite deposits on Mars, comparisons are often made with terrestrial hematite occurrences. In southern Utah, hematite concretions have formed within continental sandstones and are exposed as extensive weathered-out beds. The hematite deposits are linked to geological and geomorphological features such as knobs, buttes, bleached beds, fractures and rings. These terrestrial features are visible in aerial and satellite images, which enables a comparison with similar features occurring extensively in the martian hematite-rich areas. The combination of processes involved in the movement and precipitation of iron in southern Utah can provide new insights in the context of the hematite formation on Mars. Here we present a mapping of the analogue geological and geomorphological features in parts of Meridiani Planum and Aram Chaos. Based on mapping comparisons with the Utah occurrences, we present models for the formation of the martian analogues, as well as a model for iron transport and precipitation on Mars. Following the Utah model, high albedo layers and rings in the mapped area on Mars are due to removal or lack of iron, and precipitation of secondary diagenetic minerals as fluids moved up along fractures and permeable materials. Hematite was precipitated intraformationally where the fluid transporting the reduced iron met oxidizing conditions. Our study shows that certain geological/geomorphological features can be linked to the hematite formation on Mars and that pH differences could suffice for the transport of the iron from an orthopyroxene volcanoclastic source rock. The presence of organic compounds can enhance the iron mobilization and precipitation processes. Continued studies will focus on possible influence of biological activity and/or methane in the formation of the hematite concretions in Utah and on Mars.
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Banks, M.; Buczkowski, D.
2010-01-01
The primary objective of the mapping effort is to produce a geologic map of the Argyre basin and surrounding region at 1:5,000,000 scale in both digital and print formats that will detail the stratigraphic and crosscutting relations among rock materials and landforms (30 deg. S to 65 deg. S, 290 deg. E to 340 deg E). There has not been a detailed geologic map produced of the Argyre region since the Viking-era mapping investigation. The mapping tasks include stratigraphic mapping, crater counting, feature mapping, quantitative landform analysis, and spectroscopic/ stratigraphic investigation feature mapping. The regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impactrelated modification, and the southeast margin of the Thaumasia plateau using important new data sets from the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter. The geologic information unfolded by this new mapping project will be useful to the community for constraining the regional geology, paleohydrology, and paleoclimate, which includes but is not limited to the assessment of: (1) whether the Argyre basin contained lakes, (2) the extent of reported flooding and glaciation, (3) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor, and (4) the extent of Argyre-related tectonism and its influence on the surrounding regions.
Subsurface failure in spherical bodies. A formation scenario for linear troughs on Vesta’s surface
Stickle, Angela M.; Schultz, P. H.; Crawford, D. A.
2014-10-13
Many asteroids in the Solar System exhibit unusual, linear features on their surface. The Dawn mission recently observed two sets of linear features on the surface of the asteroid 4 Vesta. Geologic observations indicate that these features are related to the two large impact basins at the south pole of Vesta, though no specific mechanism of origin has been determined. Furthermore, the orientation of the features is offset from the center of the basins. Experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target. We demonstrate that a set ofmore » shear planes develops in the subsurface of the body opposite to the point of first contact. Moreover, these subsurface failure zones then propagate to the surface under combined tensile-shear stress fields after the impact to create sets of approximately linear faults on the surface. Comparison between the orientation of damage structures in the laboratory and failure regions within Vesta can be used to constrain impact parameters (e.g., the approximate impact point and likely impact trajectory).« less
NASA Astrophysics Data System (ADS)
Rupf, Isabel
2013-04-01
To meet the EU's ambitious targets for carbon emission reduction, renewable energy production has to be strongly upgraded and made more efficient for grid energy storage. Alpine Foreland Basins feature a unique geological inventory which can contribute substantially to tackle these challenges. They offer a geothermal potential and storage capacity for compressed air, as well as space for underground storage of CO2. Exploiting these natural subsurface resources will strongly compete with existing oil and gas claims and groundwater issues. The project GeoMol will provide consistent 3-dimensional subsurface information about the Alpine Foreland Basins based on a holistic and transnational approach. Core of the project GeoMol is a geological framework model for the entire Northern Molasse Basin, complemented by five detailed models in pilot areas, also in the Po Basin, which are dedicated to specific questions of subsurface use. The models will consist of up to 13 litho-stratigraphic horizons ranging from the Cenozoic basin fill down to Mesozoic and late Paleozoic sedimentary rocks and the crystalline basement. More than 5000 wells and 28 000 km seismic lines serve as input data sets for the geological subsurface model. The data have multiple sources and various acquisition dates, and their interpretations have gone through several paradigm changes. Therefore, it is necessary to standardize the data with regards to technical parameters and content prior to further analysis (cf. Capar et al. 2013, EGU2013-5349). Each partner will build its own geological subsurface model with different software solutions for seismic interpretation and 3d-modelling. Therefore, 3d-modelling follows different software- and partner-specific workflows. One of the main challenges of the project is to ensure a seamlessly fitting framework model. It is necessary to define several milestones for cross border checks during the whole modelling process. Hence, the main input data set of the framework model are interpreted seismic lines, 3d-models can be generated either in time or in depth domain. Some partners will build their 3d-model in time domain and convert it after finishing to depth. Other participants will transform seismic information first and will model directly in depth domain. To ensure comparability between the different parts transnational velocity models for time-depth conversion are required at an early stage of the project. The exchange of model geometries, topology, and geo-scientific content will be achieved applying an appropriate cyberinfrastructure called GST. It provides functionalities to ensure semantic and technical interoperability. Within the project GeoMol a web server for the dissemination of 3d geological models will be implemented including an administrative interface for the role-based access, real-time transformation of country-specific coordinate systems and a web visualisation features. The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu. The GeoMol 3D-modelling team: Roland Baumberger (swisstopo), Magdalena Bottig (GBA), Alessandro Cagnoni (RLB), Laure Capar (BRGM), Renaud Couëffé (BRGM), Chiara D'Ambrogi (ISPRA), Chrystel Dezayes (BRGM), Gerold Diepolder (LfU BY), Charlotte Fehn (LGRB), Sunseare Gabalda (BRGM), Gregor Götzl (GBA), Andrej Lapanje (GeoZS), Fabio Carlo Molinari (RER-SGSS), Edgar Nitsch (LGRB), Robert Pamer (LfU BY), Sebastian Pfleiderer (GBA), Marco Pantaloni (ISPRA), Uta Schulz (LfU BY), Günter Sokol (LGRB), Gunther Wirsing (LGRB), Heiko Zumsprekel (LGRB)
The geology and geophysics of Mars
NASA Technical Reports Server (NTRS)
Saunders, R. S.
1976-01-01
The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.
Object-Oriented Programming When Developing Software in Geology and Geophysics
NASA Astrophysics Data System (ADS)
Ahmadulin, R. K.; Bakanovskaya, L. N.
2017-01-01
The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.
Quaternary Geologic Map of Connecticut and Long Island Sound Basin
Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.
2005-01-01
The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.
NASA Astrophysics Data System (ADS)
Yungmeyster, D. A.; Urazbakhtin, R. Yu
2017-10-01
The mining industry was potentially dangerous at all times, even with the use of modern equipment in mines, accidents continue to occur, including catastrophic ones. Accidents in mines are due to the presence of specific features in the conduct of mining operations. These include the inconsistency of mining and geological conditions, the contamination of the mine atmosphere due to the release of gases from minerals, the presence of self-igniting coal strata, which creates the danger of underground fires, gas explosions. The main cause of accidents is the irresponsibility of both the manager and the personnel who violate the safety rules during mining operations.
LROC Observations of Geologic Features in the Marius Hills
NASA Astrophysics Data System (ADS)
Lawrence, S.; Stopar, J. D.; Hawke, R. B.; Denevi, B. W.; Robinson, M. S.; Giguere, T.; Jolliff, B. L.
2009-12-01
Lunar volcanic cones, domes, and their associated geologic features are important objects of study for the LROC science team because they represent possible volcanic endmembers that may yield important insights into the history of lunar volcanism and are potential sources of lunar resources. Several hundred domes, cones, and associated volcanic features are currently targeted for high-resolution LROC Narrow Angle Camera [NAC] imagery[1]. The Marius Hills, located in Oceanus Procellarum (centered at ~13.4°N, -55.4°W), represent the largest concentration of these volcanic features on the Moon including sinuous rilles, volcanic cones, domes, and depressions [e.g., 2-7]. The Marius region is thus a high priority for future human lunar exploration, as signified by its inclusion in the Project Constellation list of notional future human lunar exploration sites [8], and will be an intense focus of interest for LROC science investigations. Previous studies of the Marius Hills have utilized telescopic, Lunar Orbiter, Apollo, and Clementine imagery to study the morphology and composition of the volcanic features in the region. Complementary LROC studies of the Marius region will focus on high-resolution NAC images of specific features for studies of morphology (including flow fronts, dome/cone structure, and possible layering) and topography (using stereo imagery). Preliminary studies of the new high-resolution images of the Marius Hills region reveal small-scale features in the sinuous rilles including possible outcrops of bedrock and lobate lava flows from the domes. The observed Marius Hills are characterized by rough surface textures, including the presence of large boulders at the summits (~3-5m diameter), which is consistent with the radar-derived conclusions of [9]. Future investigations will involve analysis of LROC stereo photoclinometric products and coordinating NAC images with the multispectral images collected by the LROC WAC, especially the ultraviolet data, to enable measurements of color variations within and amongst deposits and provide possible compositional insights, including the location of possibly related pyroclastic deposits. References: [1] J. D. Stopar et al. (2009), LRO Science Targeting Meeting, Abs. 6039 [2] Greeley R (1971) Moon, 3, 289-314 [3] Guest J. E. (1971) Geol. and Phys. of the Moon, p. 41-53. [4] McCauley J. F. (1967) USGS Geologic Atlas of the Moon, Sheet I-491 [5] Weitz C. M. and Head J. W. (1999) JGR, 104, 18933-18956 [6] Heather D. J. et al. (2003) JGR, doi:10.1029/2002JE001938 [7] Whitford-Stark, J. L., and J. W. Head (1977) Proc. LSC 8th, 2705-2724 [8] Gruener J. and Joosten B. K. (2009) LRO Science Targeting Meeting, Abs. 6036 [9] Campbell B. A. et al. (2009) JGR, doi:10.1029/2008JE003253.
Global geological map of Venus
NASA Astrophysics Data System (ADS)
Ivanov, Mikhail A.; Head, James W.
2011-10-01
The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record.
Geologic guide to the island of Hawaii: A field guide for comparative planetary geology
NASA Technical Reports Server (NTRS)
Greeley, R. (Editor)
1974-01-01
With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.
77 FR 66874 - Environmental Assessment and Finding of No Significant Impact
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... project. Paleoliquefaction features are geologic features such as sand blows and sand dikes that formed..., groundwater, air quality) as a result of the paleoliquefaction research study. III. Finding of No Significant...
Apollo 15 clastic materials and their relationship to local geologic features
NASA Technical Reports Server (NTRS)
Fruchter, J. S.; Stoeser, J. W.; Lindstrom, M. M.; Goles, G. G.
1973-01-01
Ninety sub-samples of Apollo 15 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 21 elements. Soil and soil breccia compositions show considerable variation from station to station although at any given station the soils and soil breccias were compositionally very similar to one another. Mixing model calculations show that the station-to-station variations can be related to important local geologic features. These features include the Apennine Front, Hadley Rille and the ray from the craters Aristillus or Autolycus. Compositional similarities between soils and soil breccias at the Apollo 15 site indicate that the breccias and soils are related in some fundamental way, although the exact nature of this relationship is not yet fully understood.
NASA Technical Reports Server (NTRS)
Morrison, R. B. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The utility of Skylab 2 and 3 S-190A multispectral photos for environmental-geologic/geomorphic applications is being tested by using them to prepare 1:250,000-scale maps of geomorphic features, surficial geology, geologic linear features, and soil associations of large, representative parts of the Great Plains and Midwest. Parts of Nebraska, Iowa, Missouri, and South Dakota were mapped. The maps were prepared primarily by interpretation of the S-190A photos, supplemented by information from topographic, geologic, and soil maps and reports. The color band provides the greatest information on geology, soils, and geomorphology; its resolution also is the best of all the multispectral bands and permits maximum detail of mapping. The color-IR band shows well the differences in soil drainage and moisture, and vegetative types, but has only moderate resolution. The B/W-red band is superior for topographic detail and stream alinements. The B/W-infrared bands best show differences in soil moisture and drainage but have poor resolution, especially those from SL 2. The B/W-green band generally is so low contrast and degraded by haze as to be nearly useless. Where stereoscopic coverage is provided, interpretation and mapping are done most efficiently using a Kern PG-2 stereoplotter.
OneGeology Web Services and Portal as a global geological SDI - latest standards and technology
NASA Astrophysics Data System (ADS)
Duffy, Tim; Tellez-Arenas, Agnes
2014-05-01
The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.
Geologic map of the Metis Mons quadrangle (V–6), Venus
Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.
2011-01-01
The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.
NASA Astrophysics Data System (ADS)
Bennett, L.; Madin, I.
2012-12-01
In 2012, the Oregon Department of Geology and Mineral Industries (DOGAMI) contracted WSI to co-acquire airborne Light Detecting and Ranging (LiDAR) and Thermal Infrared Imagery (TIR) data within the region surrounding Summer Lake, Oregon. The objective of this project was to detect surficial expressions of geothermal activity and associated geologic features. An analysis of the LiDAR data revealed one newly identified fault and several accompanying lineaments that strike northwest, similar to the trend of the Ana River, Brothers, and Eugene-Denio Fault Zones in Central Oregon. The age of the Ana River Fault Zone and Summer Lake bed is known to be within the Holocene epoch. Apparent scarp height observed from the LiDAR is up to 8 meters. While detailed analysis is ongoing, the data illustrated the effectiveness of using high resolution remote sensing data for surficial analysis of geologic displacement. This presentation will focus on direct visual detection of features in the Summer Lake, Oregon landscape using LiDAR data.
Geological evidence for solid-state convection in Europa's ice shell.
Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L
1998-01-22
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper
Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.
2007-01-01
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.
Geological evidence for solid-state convection in Europa's ice shell
Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.
1998-01-01
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
NASA Astrophysics Data System (ADS)
Tadini, A.; Bisson, M.; Neri, A.; Cioni, R.; Bevilacqua, A.; Aspinall, W. P.
2017-06-01
This study presents new and revised data sets about the spatial distribution of past volcanic vents, eruptive fissures, and regional/local structures of the Somma-Vesuvio volcanic system (Italy). The innovative features of the study are the identification and quantification of important sources of uncertainty affecting interpretations of the data sets. In this regard, the spatial uncertainty of each feature is modeled by an uncertainty area, i.e., a geometric element typically represented by a polygon drawn around points or lines. The new data sets have been assembled as an updatable geodatabase that integrates and complements existing databases for Somma-Vesuvio. The data are organized into 4 data sets and stored as 11 feature classes (points and lines for feature locations and polygons for the associated uncertainty areas), totaling more than 1700 elements. More specifically, volcanic vent and eruptive fissure elements are subdivided into feature classes according to their associated eruptive styles: (i) Plinian and sub-Plinian eruptions (i.e., large- or medium-scale explosive activity); (ii) violent Strombolian and continuous ash emission eruptions (i.e., small-scale explosive activity); and (iii) effusive eruptions (including eruptions from both parasitic vents and eruptive fissures). Regional and local structures (i.e., deep faults) are represented as linear feature classes. To support interpretation of the eruption data, additional data sets are provided for Somma-Vesuvio geological units and caldera morphological features. In the companion paper, the data presented here, and the associated uncertainties, are used to develop a first vent opening probability map for the Somma-Vesuvio caldera, with specific attention focused on large or medium explosive events.
Brown, Timothy A.; Dunning, Charles P.; Sharpe, Jennifer B.
2000-01-01
The report series will enable investigators involved in site-specific studies within the subcrop area to understand the regional geologic framework of the unit and to find additional reference sources. This report consists of four sheets that show the altitude (sheet 1), depth from land surface (sheet 2), total thickness (sheet 3), and location of altitude data (sheet 4) of the lithologic units that constitute the Galena-Platteville bedrock unit within the subcrop area. The sheets also show major known geologic features within the Galena-Platteville study area in Illinois and Wisconsin. A geographic information system (GIS) was used to generate data layers (coverages) from point data and from published and unpublished contour maps at various scales and detail. Standard GIS procedures were used to change the coverages into the maps shown on the sheets presented in this report. A list of references for the data used to prepare the maps is provided.
Missouri aeromagnetic and gravity maps and data: a web site for distribution of data
Kucks, Robert P.; Hill, Patricia L.
2005-01-01
Magnetic anomalies are due to variations in the Earth's magnetic field caused by the uneven distribution of magnetic minerals (primarily magnetite) in the rocks that make up the upper part of the Earth's crust. The features and patterns of the magnetic anomalies can be used to delineate details of subsurface geology, including the locations of buried faults and magnetite-bearing rocks and the depth to the base of sedimentary basins. This information is valuable for mineral exploration, geologic mapping, and environmental studies. The Missouri magnetic map is constructed from grids that combine information collected in 25 separate magnetic surveys conducted between 1943 and 1987. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form.
A Survey of Geologic Resources. Chapter 11
NASA Technical Reports Server (NTRS)
Edmonson, Jennifer; Rickman, Doug
2012-01-01
This chapter focuses on the resources available from the Moon itself: regolith, geologically concentrated materials, and lunar physical features that will enable habitation and generation of power on the surface. This chapter briefly covers the formation of the Moon and thus the formation of the crust of the Moon, as well as the evolution of the regolith. The characteristics of the regolith are provided in some detail, including its mineralogy and lithology. The location of high concentrations of specific minerals or rocks is noted. Other ideal locations for in situ resource utilization technology and lunar habitation are presented. This chapter is intended to be a brief review of current knowledge, and to serve as a foundational source for further study. Each concept presented here has a wealth of literature associated with it; the reader is therefore directed to that literature with each discussion. With great interest in possible manned lunar landings and continued study of the Moon by multiple satellites, the available information changes regularly.
Clark, Allan K.; Morris, Robert R.
2011-01-01
The area designated by the city of San Antonio as the Rancho Diana Natural Area is in northern Bexar County, near San Antonio, Texas. During 2008-10, the U.S. Geological Survey, in cooperation with the city of San Antonio, documented the geologic framework and mapped the hydrogeologic characteristics for the southern part of the Rancho Diana Natural Area. The geologic framework of the study area and its hydrogeologic characteristics were documented using field observations and information from previously published reports. Many of the geologic and hydrogeologic features were found by making field observations through the dense vegetation along gridlines spaced approximately 25 feet apart and documenting the features as they were located. Surface geologic features were identified and hydrogeologic features such as caves, sinkholes, and areas of solutionally enlarged porosity were located using hand-held Global Positioning System units. The location data were used to create a map of the hydrogeologic subdivisions and the location of karst features. The outcrops of the Edwards and Trinity aquifer recharge zones were mapped by using hydrogeologic subdivisions modified from previous reports. All rocks exposed within the study area are of sedimentary origin and Lower Cretaceous in age. The valley floor is formed in the cavernous member of the upper Glen Rose Limestone of the Trinity Group. The hills are composed of the basal nodular member, dolomitic member, Kirschberg evaporite member, and grainstone member of the Kainer Formation of the Edwards Group. Field observations made during this study of the exposed formations and members indicate that the formations and members typically are composed of mudstones, wackestones, packstones, grainstones, and argillaceous limestones, along with marls. The upper Glen Rose Limestone is approximately 410 to 450 feet thick but only the upper 70 feet is exposed in the study area. The Kainer Formation is approximately 255 feet thick in the study area and is composed of, in ascending order, the basal nodular member, dolomitic member, Kirschberg evaporite member, and grainstone member. The Edwards and Trinity aquifers contain a combination of fabric-selective and not-fabric-selective porosities. Porosity types observed in the study area that can increase the effective porosity and increase permeability include solutionally enlarged caves, sinkholes, fractures, bedding planes, channels, molds and vugs. Caves found during hydrogeologic mapping might have been spring discharge points, but sufficient downcutting over geologic time in the rocks has occurred so that springs discharge at lower elevations near the creek channel. The mapped caves, sinkholes, and other areas of solutionally enlarged porosity might facilitate recharge during large storm events when runoff occurs on the hillsides; additional areally distributed recharge in the study area occurs as a result of infiltration.
Ground water in the San Joaquin Valley, California
Kunkel, Fred; Hofman, Walter
1966-01-01
Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of the San Joaquin Valley are being made by the Subsidence Research Section at Sacramento, and research on permeability and specific yield in the San Joaquin Valley is being done by our hydrologic laboratory at Denver.
Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes
NASA Astrophysics Data System (ADS)
Carey, S.; Sigurdsson, H.
2011-12-01
Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the web-based interactive tools compared with traditional paper-based laboratory exercises. The exercises are freely accessible for undergraduate classes such as introductory geology, geologic hazards, or volcanology. Accompany materials, such as lecture-based Powerpoint presentations about Vesuvius and Laki, are also being developed for instructors to better integrate the web-based exercises into their existing curriculum.
Streambeds Merit Recognition as a Scientific Discipline
NASA Astrophysics Data System (ADS)
Constantz, J. E.
2016-12-01
Streambeds are generally viewed as simply sediments beneath streams, sediments topping alluvial aquifers, or sediments housing aquatic life, rather than as distinct geographic features comparable to soils and surficial geologic formations within watersheds. Streambeds should be viewed as distinct elements within watersheds, e.g., as akin to soils. In this presentation, streambeds are described as central features in watersheds, cycling water between the surface and underlying portions of the watershed. Regarding their kinship to soils, soils are often described as surficial sediments largely created by atmospheric weathering of underlying geologic parent material, and similarly, streambeds should be described as submerged sediments largely created by streamflow modification of underlying geologic parent material. Thus, streambeds are clearly overdue for recognition as their own scientific discipline along side other well-recognized disciplines within watersheds; however, slowing progress in this direction, the point is often made that hyporheic zones should be considered comparable to streambeds, but this is as misguided as equating unsaturated zones to soils. Streambeds and soils are physical geographic features of relatively constant volume, while hyporheic and unsaturated zones are hydrologic features of varying volume. Expanded upon in this presentation, 'Streambed Science' is proposed for this discipline, which will require both a well-designed protocol to physically characterize streambeds as well as development of streambed taxonomy, for suitable recognition as an independent discipline within watersheds.
Hunter, Nezahat; Muirhead, Colin R; Miles, Jon C H; Appleton, J Donald
2009-08-01
Data collected as a part of a survey on radon concentrations from about 40 000 dwellings in England for six contrasting geological units were analysed to evaluate the impact of house-specific factors (building characteristics and construction dates) and of proximity to geological boundaries. After adjusting for temperature and outdoor radon, geological unit, house type, double glazing and date of building were found to have a statistically significant influence on indoor radon concentrations and explained about 29 % of the total variation between dwellings in logarithmically transformed radon values. In addition, there were statistically significant differences in radon concentrations according to proximity to geological boundaries categories for most of the geological units, but no consistent pattern could be detected.
Geophysical identification and geological Implications of the Southern Alaska Magnetic Trough
Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.
2003-01-01
The southern Alaska magnetic trough (SAMT) is one of the fundamental, crustal-scale, magnetic features of Alaska. It is readily recognized on 10 km upward-continued aeromagnetic maps of the state. The arcuate SAMT ranges from 30 to 100 km wide and extends in two separate segments along the southern Alaska margin for about 1200 km onshore (from near the Alaska/Canada border at about 60 degrees north latitude to the Bering Sea) and may continue an additional 500 km or more offshore (in the southern Bering Sea). The SAMT is bordered to the south by the southern Alaska magnetic high (SAMH) produced by strongly magnetic crust and to the north by a magnetically quiet zone that reflects weakly magnetic interior Alaska crust. Geophysically, the SAMT is more than just the north-side dipole low associated with the SAMH. Several modes of analysis, including examination of magnetic potential (pseudogravity) and profile modeling, indicate that the source of this magnetic trough is a discrete, crustal-scale body. Geologically, the western portion of the SAMT coincides to a large degree with collapsed Mesozoic Kahiltna flysch basin. This poster presents our geophysical evidence for the extent and geometry of this magnetic feature as well as initial geological synthesis and combined geologic/geophysical modeling to examine the implications of this feature for the broad scale tectonic framework of southern Alaska.
Cooperative research in terrestrial planetary geology and geophysics
NASA Technical Reports Server (NTRS)
1994-01-01
This final report for the period of July 1991 to August 1994 covered a variety of topics concerning the study of Earth and Mars. The Earth studies stressed the interpretation of the MAGSAT crustal magnetic anomalies in order to determine the geological structure, mineralogical composition, magnetic nature, and the historical background of submarine features, and also featured work in the area of terrestrial remote sensing. Mars research included the early evolution of the Martian atmosphere and hydrosphere and the investigations of the large Martian impact basins. Detailed summaries of the research is included, along with lists of the publications resulting from this research.
2015-11-13
Crater floors can have a range of features, from flat to a central peak or a central pit. This image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Terra Sabaea has a central pit. This unnamed crater in Terra Sabaea has a central pit. The different floor features develop do due several factors, including the size of the impactor, the geology of the surface material and the geology of the materials at depth. Orbit Number: 60737 Latitude: 22.3358 Longitude: 61.2019 Instrument: VIS Captured: 2015-08-23 20:13 http://photojournal.jpl.nasa.gov/catalog/PIA20092
NASA Astrophysics Data System (ADS)
Markov, N. G.; E Vasilyeva, E.; Evsyutkin, I. V.
2017-01-01
The intellectual information system for management of geological and technical arrangements during oil fields exploitation is developed. Service-oriented architecture of its software is a distinctive feature of the system. The results of the cluster analysis of real field data received by means of this system are shown.
30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...
30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...
30 CFR 550.214 - What geological and geophysical (G&G) information must accompany the EP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... already submitted it to the Regional Supervisor. (f) Shallow hazards assessment. For each proposed well, an assessment of any seafloor and subsurface geological and manmade features and conditions that may...-bearing reservoir showing the locations of proposed wells. (c) Two-dimensional (2-D) or three-dimensional...
The Spatial Thinking Workbook: A Research-Validated Spatial Skills Curriculum for Geology Majors
ERIC Educational Resources Information Center
Ormand, Carol J.; Shipley, Thomas F.; Tikoff, Basil; Dutrow, Barbara; Goodwin, Laurel B.; Hickson, Thomas; Atit, Kinnari; Gagnier, Kristin; Resnick, Ilyse
2017-01-01
Spatial visualization is an essential prerequisite for understanding geological features at all scales, such as the atomic structures of minerals, the geometry of a complex fault system, or the architecture of sedimentary deposits. Undergraduate geoscience majors bring a range of spatial skill levels to upper-level courses. Fortunately, spatial…
The Crustal and Mantle Velocity Structure in Central Asia from 3D Travel Time Tomography
2010-09-01
the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the...Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically
Geologic utility of small-scale airphotos
NASA Technical Reports Server (NTRS)
Clark, M. M.
1969-01-01
The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III; Crown, David A.
2008-01-01
Geologic mapping studies at the 1:1M-scale will be used to characterize geologic processes that have shaped the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary will provide the ability to: 1) further test original dichotomy formation hypotheses, 2) constrain ancient paleoenvironments and climate conditions, and 3) evaluate various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The result will be two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).
Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III; Crown, David A.
2009-01-01
Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will evaluate the distribution, stratigraphic position, and lateral continuity of compositionally distinct outcrops in Mawrth Vallis and Nili Fossae as identified by spectral instruments currently in orbit. Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleo-environments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes in these regions. The results of this work will include two 1:1M scale geologic maps of twelve MTM quadrangles (Mawrth Vallis - 20022, 20017, 20012, 25022, 25017, and 25012; and Nili Fossae - 20287, 20282, 25287, 25282, 30287, 30282).
NASA Astrophysics Data System (ADS)
Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek
2018-02-01
Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H., Jr. (Compiler)
1973-01-01
The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.
Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria
2016-01-01
The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.
Müller, R. Dietmar; Qin, Xiaodong; Sandwell, David T.; Dutkiewicz, Adriana; Williams, Simon E.; Flament, Nicolas; Maus, Stefan; Seton, Maria
2016-01-01
The pace of scientific discovery is being transformed by the availability of ‘big data’ and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth’s gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. PMID:26960151
NASA Technical Reports Server (NTRS)
Head, J. W.; Ivanov, M. A.
1995-01-01
On Venus, global topography shows the presence of highs and lows including regional highly deformed plateaus (tesserae), broad rifted volcanic rises, linear lows flanking uplands, and more equidimensional lowlands (e.g. Lavinia and Atalanta planitiae) Each of these terrain types on Venus has relatively distinctive characteristics, but origins are uncertain in terms of mode of formation, time of formation, and potential evolutionary links. There is a high level of uncertainty about the formation and evolution of lowlands on Venus. We have undertaken the mapping of a specific lowlands region of Venus to address several of these major questions. Using geologic mapping we have tried to establish: What is the sequence of events in the formation and evolution of large-scale equidimensional basins on Venus? When do the compressional features typical of basin interiors occur? What is the total volume of lava that occurs in the basins and is this similar to other non-basin areas? How much subsidence and downwarping has occurred after the last major plains units? WE have undertaken an analysis of the geology of the V55 Lavinia Planitia quadrangle in order to address many of these issues and we report on the results here.
Geologic Map of the Eaton Reservoir Quadrangle, Larimer County, Colorado and Albany County, Wyoming
Workman, Jeremiah B.
2008-01-01
New geologic mapping of the Eaton Reservoir 7.5' quadrangle defines geologic relationships in the northern Front Range along the Colorado/Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping (Tweto, 1979; Camp, 1979; Burch, 1983) and some minor site-specific studies (Carlson and Marsh, 1986; W. Braddock, unpub. mapping, 1982). Braddock and others (1989) mapped the Diamond Peak 7.5' quadrangle to the east, Burch (1983) mapped rocks of the Rawah batholith to the south, W. Braddock (unpub. mapping, 1981) mapped the Sand Creek Pass 7.5' quadrangle to the west, and Ver Ploeg and Boyd (2000) mapped the Laramie 30' x 60' quadrangle to the north. Field work was completed during 2005 and 2006 and the mapping was compiled at a scale of 1:24,000. Minimal petrographic work and isotope dating was done in connection with the present mapping, but detailed petrographic and isotope studies were carried out on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Classification of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area.
Anciet marble quarries in Lesvos island Greece
NASA Astrophysics Data System (ADS)
Mataragkas, M.; Mataragkas, D.
2009-04-01
ANCIENT MARBLE QUARRIES IN LESBOS ISLAND, GREECE Varti- Matarangas M.1 & Matarangas D. 1 Institute of Geological and Mining Exploration (IGME), Olympic Village, Entrance C, ACHARNAE 13677, GREECE myrsini@igme.gr , myrsini@otenet.g r A B S T R A C T Ten ancient marble quarries of Lesbos Island, most of them previously unknown, have been studied, in the frame of the research study on the ancient marble quarries in the Aegean Sea. In the present paper the geological, petrological and morphological features of the aforementioned quarries are examined. Concerning the six ancient quarries located in the areas of Tarti, Agia Paraskevi (Tsaf), Mageiras, Loutra, Latomi (Plomari) and Thermi, the authochthonous neopaleozoic unit constitutes their geological formation, while their hosting lithological formations are the included crystalline limestone lens like beds. In two ancient quarries in the areas Moria and Alyfanta, the geological formation is the authochthonous upper Triassic series and the hosting lithological formation the upper Triassic carbonate sequence, while in the areas of Akrasi-Abeliko and Karyni, the geological formation is the thrust Triassic unit and the lithological hosting formations are the included strongly deformed or not crystalline limestone lenticular beds. Furthermore, the petrographic features were also determined permitting the identification of the building stones that have been used.
,
1975-01-01
Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.
2017-12-01
Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as mass extinctions.
NASA Astrophysics Data System (ADS)
Tarduno, J. A.; Walders, K.; Bono, R. K.; Pelz, J.; Jacobs, R.
2015-12-01
A course centered on experience-based learning in field geology has been offered ten times at the University of Rochester. The centerpiece of the course is a 10-day field excursion to California featuring a broad cross-section of the geology of the state, from the San Andreas Fault to Death Valley. Here we describe results from a large-scale eye-tracking experiment aimed at understanding how experts and novices acquire visual geologic information. One ultimate goal of the project is to determine whether expert gaze patterns can be quantified to improve the instruction of beginning geology students. Another goal is to determine if aspects of the field experience can be transferred to the classroom/laboratory. Accordingly, ultra-high resolution segmented panoramic images have been collected at key sites visited during the field excursion. We have found that strict controls are needed in the field to obtain meaningful data; this often involves behavior atypical of geologists (e.g. limiting the field of view prior to data collection and placing time limits on scene viewing). Nevertheless some general conclusions can be made from a select data set. After an initial quick search, experts tend to exhibit scanning behavior that appears to support hypothesis testing. Novice fixations appear to define a scattered search pattern and/or one distracted by geologic noise in a scene. Noise sources include modern erosion features and vegetation. One way to quantify noise is through the use of saliency maps. With the caveat that our expert data set is small, our preliminary analysis suggests that experts tend to exhibit top-down behavior (indicating hypothesis driven responses) whereas novices show bottom-up gaze patterns, influenced by more salient features in a scene. We will present examples and discuss how these observations might be used to improve instruction.
Magnesium K-edge XANES spectroscopy of geological standards.
Yoshimura, Toshihiro; Tamenori, Yusuke; Iwasaki, Nozomu; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka
2013-09-01
Magnesium K-edge X-ray absorption near-edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg-bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry.
NASA Technical Reports Server (NTRS)
Longoria, J. F.; Jimenez, O. H.
1985-01-01
SIR-A imaging was used in geological studies of sedimentary terrains in the Sierra Madre Oriental, northeastern Mexico. Geological features such as regional strike and dip, bedding, folding and faulting were readily detected on the image. The recognition of morphostructural units in the imagery, coupled with field verification, enabled geological mapping of the region at the scale of 1:250 000. Structural profiling lead to the elaboration of a morphostructural map allowing the recognition of an echelon folds and field trends which were used to postulate the ectonic setting of the region.
Regional Geology Web Map Application Development: Javascript v2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Glenn
This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to themore » SFSWT program.« less
Geological Features Mapping Using PALSAR-2 Data in Kelantan River Basin, Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Pour, A. B.; Hashim, M.
2016-09-01
In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system that associated with topographic slope of metamorphic and Quaternary rock units. Some large landslides were associated with N-S, NNE-SSW and NE-SW trending fault zones. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydro-geological hazards.
NASA Technical Reports Server (NTRS)
Houston, R. S.; Marrs, R. W.; Breckenridge, R. M.; Blackstone, D. L., Jr.
1974-01-01
Many potential users of ERTS data products and other aircraft and satellite imagery are limited to visual methods of analyses of these products. Illustrations are presented from Wyoming studies that have employed these standard data products for a variety of geologic and related studies. Possible economic applications of these studies are summarized. Studies include regional geologic mapping for updating and correcting existing maps and to supplement incomplete regional mapping; illustrations of the value of seasonal images in geologic mapping; specialized mapping of such features as sand dunes, playa lakes, lineaments, glacial features, regional facies changes, and their possible economic value; and multilevel sensing as an aid in mineral exploration. Examples of cooperative studies involving botanists, plant scientists, and geologists for the preparation of maps of surface resources that can be used by planners and for environmental impact studies are given.
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III; Crown, David A.
2010-01-01
Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will provide a regional context and evaluate the distribution, stratigraphic position, and potential lateral continuity of compositionally distinct outcrops identified by spectral instruments currently in orbit (i.e., CRISM and OMEGA). Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleoenvironments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes, including hydrothermal alteration, across the region.
High-resolution CASSINI-VIMS mosaics of Titan and the icy Saturnian satellites
Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Coradini, A.; Capaccioni, F.; Filacchione, G.; Cerroni, P.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Combes, M.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Soderbloom, L.A.; Griffith, C.; Matz, K.-D.; Roatsch, Th.; Scholten, F.; Porco, C.C.
2006-01-01
The Visual Infrared Mapping Spectrometer (VIMS) onboard the CASSINI spacecraft obtained new spectral data of the icy satellites of Saturn after its arrival at Saturn in June 2004. VIMS operates in a spectral range from 0.35 to 5.2 ??m, generating image cubes in which each pixel represents a spectrum consisting of 352 contiguous wavebands. As an imaging spectrometer VIMS combines the characteristics of both a spectrometer and an imaging instrument. This makes it possible to analyze the spectrum of each pixel separately and to map the spectral characteristics spatially, which is important to study the relationships between spectral information and geological and geomorphologic surface features. The spatial analysis of the spectral data requires the determination of the exact geographic position of each pixel on the specific surface and that all 352 spectral elements of each pixel show the same region of the target. We developed a method to reproject each pixel geometrically and to convert the spectral data into map projected image cubes. This method can also be applied to mosaic different VIMS observations. Based on these mosaics, maps of the spectral properties for each Saturnian satellite can be derived and attributed to geographic positions as well as to geological and geomorphologic surface features. These map-projected mosaics are the basis for all further investigations. ?? 2006 Elsevier Ltd. All rights reserved.
The Unique Geomorphology and Physical Properties of the Vestalia Terra Plateau
NASA Technical Reports Server (NTRS)
Buczkowski, D.L.; Wyrick, D.Y.; Toplis, M.; Yingst, R. A.; Williams, D. A.; Garry, W. B.; Mest, S.; Kneissl, T.; Scully, J. E. C.; Nathues, A.;
2014-01-01
We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual "dark ribbon" material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.
Landslides on Charon and not on Pluto
NASA Astrophysics Data System (ADS)
Beyer, Ross A.; Singer, Kelsi N.; Nimmo, Francis; Moore, Jeffrey M.; McKinnon, William B.; Schenk, Paul M.; Spencer, John R.; Weaver, Harold A.; Olkin, Catherine B.; Young, Leslie; Ennico, Kimberly; Stern, S. Alan; New Horizons Science Team
2016-10-01
Landslide features are observed on Charon but not on Pluto. This observation is another that reinforces the different strength regime of surface materials on the two bodies. Pluto's surface, although underlain by strong water ice, is primarily mantled with a variety of geologically weak ice species. Observations of these features indicate that they flow and move, but do so in a manner similar to glacial flow, and the strength and steepening required to precipitate a landslide simply isn't present in these materials under the pressure and temperature conditions on Pluto's surface. There are certainly areas of local mass-wasting, but no substantial landslide deposits. There are some locations on Pluto, notably along the fossae walls, and perhaps on the steeper montes surfaces that could have fostered landslides, but no landslide deposits have been observed nor are there obvious landslide alcoves that would have sourced them. The resolution of observations along the fossae may prevent identification there, and the toes of the steeper montes are embayed by geologically recent plains material which could be overlaying any landslide deposits.Charon, however, has a water-ice surface which exhibits many strength-dominated geologic features, and also exhibits landslide deposits. There are not many of these features and they are confined to the informally named Serenity Chasma, which has relatively steep, tall slopes, perfect for landslide initiation. We will discuss the physical characteristics of these landslide deposits and their context amongst other landslide features in the solar system.
Distribution of indoor radon concentrations in Pennsylvania, 1990-2007
Gross, Eliza L.
2013-01-01
Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.
NASA Astrophysics Data System (ADS)
Shavers, E. J.; Ghulam, A.; Encarnacion, J. P.
2016-12-01
Spectroscopic reflectance in the visible to short-wave infrared region is an important tool for remote geologic mapping and is applied at scales from satellite to field measurements. Remote geologic mapping is challenging in regions subject to significant surficial weathering. Here we identify absorption features found in altered volcanic pipes and dikes in the Avon Volcanic District, Missouri, that are inherited from the original ultramafic and carbonatite lithology. Alteration ranges from small degree hydrothermal alteration to extensive laterization. The absorption features are three broad minima centered near 690, 890, and 1100 nm. Features in this region are recognized to be caused by ferric and ferrous Fe minerals including olivine, carbonates, chlorite, and goethite all of which are found among the Avon pipes and dikes that are in various stages of alteration. Iron-related intervalence charge transfer and crystal field perturbations of ions are the principal causes of the spectroscopic features in the visible to near-infrared region yet spectra are also distorted by factors like texture and the presence of opaque minerals known to reduce overall reflectance. In the Avon samples, Fe oxide content can reach >15 wt% leading to prominent absorption features even in the less altered ultramafics with reflectance curve maxima as low as 5%. The exaggerated minima allow the altered intrusive rocks to stand out among other weathered lithologies that will often have clay features in the region yet have lower iron concentration. The absorption feature centered near 690 nm is particularly noteworthy. Broad mineral-related absorption features centered at this wavelength are rare but have been linked to Ti3+ in octahedral coordination. The reduced form of Ti is not common in surface lithologies. Titanium-rich andradite has Ti3+ in the octahedral position, is resistant to weathering, is found among the Avon lithologies including ultramafic, carbonatite, and carbonated breccia, and is identified here as the cause of the 690 nm absorption feature. The Ti3+ absorption feature centered near 690 nm and strong Fe absorption features at 890 and 1100 nm may be useful indicators of rare intrusive lithologies in remote geologic mapping.
NASA Astrophysics Data System (ADS)
Siddoway, C. S.; White, T.; Elkind, S.; Cox, S. C.; Lyttle, B. S.; Morin, P. J.
2016-12-01
Bedrock exposures are relatively sparse in Marie Byrd Land (MBL), where rock is concealed by the West Antarctic ice sheet, but they provide direct insight into the geological evolution and glacial history of West Antarctica. MBL is tectonically active, as evidenced by Late Pleistocene to Holocene volcanism and 2012 seismicity (3 events, M4.4 to M5.5) at sites beside Ross Sea. There are geological influences upon the ice sheet, namely, subglacial volcanism and associated geothermal flux, fault zone alteration/mineralization, and bedrock roughess. The former may influence the position and velocity of outlet glaciers and the latter may anchor or accelerate sectors of the ice sheet. To make MBL's geological framework accessible to investigators with diverse research priorities, we are preparing the first digital geological map of MBL by compiling ground-based geological data, incorporating firsthand observations, published geological maps and literature. The map covers an on-continent coastal area of 900 000 km2 between 090°E to 160°E, from 72°S to 80°S, at 1:250 000 scale or better. Exposed rock is delimited by 1976 polygons, occupying 410 km2. Supraglacial features and glacial till, seasonal water and blue ice, are also mapped, as a baseline for past and future glaciological change. Rendered in the ArcMap GIS software by Esri©, the database employs international GeoSciML data protocols for feature classification and description of rock and moraine polygons from the Antarctic Digital Database (www.add.scar.org), with shape and location adjusted to align with features in Landsat Image Mosaic of Antarctica imagery (lima.usgs.gov), where necessary. The GIS database is attribute-rich and queriable; including links to bibliographic source files for primary literature and published maps. It will soon be available as GoogleEarth kmz files and an ArcGIS online map service. An initial application is to the interpretation of sub-ice geology for a subglacial geotectonic map of this active region. This is undertaken as part of ROSETTA-Ice, an integrated systems science investigation of the Ross Ice Shelf that commenced in 2015. The next phases of MBL database development will assess icesheet-ocean interactions near grounding line, environmental domain analysis and ecological research.
Facets : a Cloudcompare Plugin to Extract Geological Planes from Unstructured 3d Point Clouds
NASA Astrophysics Data System (ADS)
Dewez, T. J. B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J.
2016-06-01
Geological planar facets (stratification, fault, joint…) are key features to unravel the tectonic history of rock outcrop or appreciate the stability of a hazardous rock cliff. Measuring their spatial attitude (dip and strike) is generally performed by hand with a compass/clinometer, which is time consuming, requires some degree of censoring (i.e. refusing to measure some features judged unimportant at the time), is not always possible for fractures higher up on the outcrop and is somewhat hazardous. 3D virtual geological outcrop hold the potential to alleviate these issues. Efficiently segmenting massive 3D point clouds into individual planar facets, inside a convenient software environment was lacking. FACETS is a dedicated plugin within CloudCompare v2.6.2 (http://cloudcompare.org/ ) implemented to perform planar facet extraction, calculate their dip and dip direction (i.e. azimuth of steepest decent) and report the extracted data in interactive stereograms. Two algorithms perform the segmentation: Kd-Tree and Fast Marching. Both divide the point cloud into sub-cells, then compute elementary planar objects and aggregate them progressively according to a planeity threshold into polygons. The boundaries of the polygons are adjusted around segmented points with a tension parameter, and the facet polygons can be exported as 3D polygon shapefiles towards third party GIS software or simply as ASCII comma separated files. One of the great features of FACETS is the capability to explore planar objects but also 3D points with normals with the stereogram tool. Poles can be readily displayed, queried and manually segmented interactively. The plugin blends seamlessly into CloudCompare to leverage all its other 3D point cloud manipulation features. A demonstration of the tool is presented to illustrate these different features. While designed for geological applications, FACETS could be more widely applied to any planar objects.
Geological events in submerged areas: attributes and standards in the EMODnet Geology Project
NASA Astrophysics Data System (ADS)
Fiorentino, A.; Battaglini, L.; D'Angelo, S.
2017-12-01
EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas of the structural model of Italy.
Geologic Map of the Frederick 30' x 60' Quadrangle, Maryland, Virginia, and West Virginia
Southworth, Scott; Brezinski, David K.; Drake, Avery Ala; Burton, William C.; Orndorff, Randall C.; Froelich, Albert J.; Reddy, James E.; Denenny, Danielle; Daniels, David L.
2007-01-01
The Frederick 30? ? 60? quadrangle lies within the Potomac River watershed of the Chesapeake Bay drainage basin. The map area covers parts of Montgomery, Howard, Carroll, Frederick, and Washington Counties in Maryland; Loudoun, Clarke, and Fairfax Counties in Virginia; and Jefferson and Berkeley Counties in West Virginia. Many geologic features (such as faults and folds) are named for geographic features that may or may not be shown on the 1:100,000-scale base map. The geology of the Frederick 30? ? 60? quadrangle, Maryland, Virginia, and West Virginia, was first mapped on the 32 1:24,000-scale 7.5-minute quadrangle base maps between 1989 and 1994. The geologic data were compiled manually at 1:100,000 scale in 1997 and were digitized between 1998 and 1999. The geologic map and database may be used to support activities such as land-use planning, soil mapping, groundwater availability and quality studies, identifying aggregate resources, and conducting engineering and environmental studies. The map area covers distinct geologic provinces and sections of the central Appalachian region that are defined by unique bedrock and resulting landforms. From west to east, the provinces include the Great Valley section of the Valley and Ridge province, the Blue Ridge province, and the Piedmont province; in the extreme southeastern corner, a small part of the Coastal Plain province is present. The Piedmont province is divided into several sections; from west to east, hey are the Frederick Valley synclinorium, the Culpeper and Gettysburg basins, the Sugarloaf Mountain anticlinorium, the Westminster terrane, and the Potomac terrane. The geology of the Frederick quadrangle is discussed by geologic province and sections; the geologic units within each province are discussed from oldest to youngest. Where applicable, the discussion includes information on tectonic origins. For more information concerning the report, please contact the author.
40 CFR 146.90 - Testing and monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... information about the geologic sequestration project, including injection rate and volume, geology, the... site-specific geology, that such methods are not appropriate; (h) The Director may require surface air...
40 CFR 146.90 - Testing and monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... information about the geologic sequestration project, including injection rate and volume, geology, the... site-specific geology, that such methods are not appropriate; (h) The Director may require surface air...
40 CFR 146.90 - Testing and monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... information about the geologic sequestration project, including injection rate and volume, geology, the... site-specific geology, that such methods are not appropriate; (h) The Director may require surface air...
40 CFR 146.90 - Testing and monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... information about the geologic sequestration project, including injection rate and volume, geology, the... site-specific geology, that such methods are not appropriate; (h) The Director may require surface air...
NASA Astrophysics Data System (ADS)
Mochinaga, H.; Aoki, N.; Mouri, T.
2017-12-01
We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.
Edwards, Howell G M; Hutchinson, Ian; Ingley, Richard
2012-10-01
The molecular specificity of Raman spectroscopy provides a powerful tool for the analytical interrogation of mineralogical and many biological specimens. The Raman Laser Spectrometer (RLS) is a compact Raman spectrometer under development for deployment on the Martian surface as part of the forthcoming ESA ExoMars mission. This will be the first Raman instrument deployed in space. The scientific interpretation of the data emerging from such an instrument not only addresses the geological and mineral composition of the specimens but also enables an assessment to be made of organic biomaterials that may be preserved in the planetary geological record. The latter evidence centres on the residual and distinctive chemistry relating to the biological adaptation of the geological matrix that has occurred as a result of extremophilic organisms colonizing suitable geological niches for their survival in environmentally stressed habitats on Mars. These biogeological modifications have been studied terrestrially for Mars analogue sites and consist of both a geological component and residual key organic biomarkers, the recognition of which would be a prime factor in life detection surveys of a planetary surface and subsurface. In this paper, the protocols required for the Raman spectral discrimination of key biogeological features that may be detectable on the Martian planetary surface or subsurface are developed using the UK breadboard (UKBB) instrument. This instrument has been constructed to be functionally equivalent to the RLS flight instrument design in order to evaluate the feasible science return of the instrument which will finally be delivered to Mars. Initial Raman measurements using the UKBB are presented and compared with the performance of a commercial laboratory Raman microscope. The initial measurements reported here demonstrate this flight-like prototype achieves straightforward detection of biological signatures contained in geological matrices with Raman band signal to noise ratios high enough to determine sample composition by inspection and without the need for deconvolution or further processing.
Stanislawski, L.V.
2009-01-01
The United States Geological Survey has been researching generalization approaches to enable multiple-scale display and delivery of geographic data. This paper presents automated methods to prune network and polygon features of the United States high-resolution National Hydrography Dataset (NHD) to lower resolutions. Feature-pruning rules, data enrichment, and partitioning are derived from knowledge of surface water, the NHD model, and associated feature specification standards. Relative prominence of network features is estimated from upstream drainage area (UDA). Network and polygon features are pruned by UDA and NHD reach code to achieve a drainage density appropriate for any less detailed map scale. Data partitioning maintains local drainage density variations that characterize the terrain. For demonstration, a 48 subbasin area of 1:24 000-scale NHD was pruned to 1:100 000-scale (100 K) and compared to a benchmark, the 100 K NHD. The coefficient of line correspondence (CLC) is used to evaluate how well pruned network features match the benchmark network. CLC values of 0.82 and 0.77 result from pruning with and without partitioning, respectively. The number of polygons that remain after pruning is about seven times that of the benchmark, but the area covered by the polygons that remain after pruning is only about 10% greater than the area covered by benchmark polygons. ?? 2009.
GeoloGIS-BH: An Information System for Using the Built Heritage for Geological Teaching
ERIC Educational Resources Information Center
Alves, C.; Ribeiro, Vitor; Cunha, Marta; Pereira, Paula; Pinto, Cláudia
2016-01-01
There are examples of using stones of the cultural heritage for teaching purposes. Information systems have found several potential uses in the promotion and preservation of cultural heritage. In this paper is considered the conceptual framework of an information system concerning features of geological interest (FGI) in the built heritage…
Abstract: Even with the large physical separation between storage reservoirs and surficial environments, there is concern that CO2 stored in reservoirs may eventually leak back to the surface through abandoned wells or along geological features such as faults. Leakage of CO2 into...
NASA Astrophysics Data System (ADS)
Ponomarev, A. A.; Mamadaliev, R. A.; Semenova, T. V.
2016-10-01
The article presents a brief overview of the current state of computed tomography in the sphere of oil and gas production in Russia and in the world. Operation of computed microtomograph Skyscan 1172 is also provided, as well as personal examples of its application in solving geological problems.
ERIC Educational Resources Information Center
Kane, Jacqueline
2004-01-01
Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…
Lakes, Seas, Mountains and Volcanoes on Titan: Implications for Geologic History
NASA Astrophysics Data System (ADS)
Stofan, E.; Hayes, A. G.; Wall, S. W.; Wood, C. A.
2013-09-01
The surface of Titan exhibits abundant evidence for erosional and depositional processes, with bodies of liquid hydrocarbons at both poles. While the portion of Titan's geologic history that we can access through its current surface is dominated by exogenic processes, remnant mountains and a few cryovolcanic features hint at a more endogenic past.
Geologic field-trip guide to the Lassen segment of the Cascades Arc, northern California
Clynne, Michael A.; Muffler, L. J. Patrick
2017-08-17
This field-trip guide provides an overview of Quaternary volcanism in and around Lassen Volcanic National Park, California, emphasizing the stratigraphy of the Lassen Volcanic Center. The guide is designed to be self-guided and to focus on geologic features and stratigraphy that can be seen easily from the road network.
27 CFR 9.3 - Relation to parts 4 and 70 of this chapter.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Evidence relating to the geographical features (climate, soil, elevation, physical features, etc.) which... of the viticultural area, based on features which can be found on United States Geological Survey (U... index by State.) [T.D. ATF-60, 44 FR 56692, Oct. 2, 1979, as amended by T.D. ATF-92, 46 FR 46913, Sept...
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.
NASA Technical Reports Server (NTRS)
Whitehead, Victor S.; Helfert, Michael R.; Lulla, Kamlesh P.; Wood, Charles A.; Amsbury, David L.; Gibson, Robert; Gardner, Guy; Mullane, Mike; Ross, Jerry; Shepherd, Bill
1989-01-01
The earth observations from the STS-27 mission on December 2-6, 1988 are reported. The film and generic scene characteristics chosen for the mission are given. Results are given from geological observations of the Ruwenzori Mountains between Uganda and Zaire, four rift valley systems in Africa and Asia, and several volcanoes and impact craters. Environmental observations of Africa, the Middle East, South Asia, North America and the Soviet Union, are presented. Also, meteorological and oceanographic observations are discussed. The uniqueness of the high-inclination winter launch of the STS-27 mission for obtaining observations of specific features is noted.
A preliminary experiment definition for video landmark acquisition and tracking
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.
1976-01-01
Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.
Parker, Timothy J.; Tanaka, Kenneth L.; Senske, David A.
2002-01-01
The annual Planetary Geologic Mappers Meeting serves two purposes. In addition to giving mappers the opportunity to exchange ideas, experiences, victories, and problems with others, presentations are reviewed by the Geologic Mapping Subcommittee (GeMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GeMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips offering earth analogs and parallels to planetary mapping problems. The 2001 Mappers Meeting, June 18-19, was convened by Tim Parker, Dave Senske, and Ken Tanaka and was hosted by Larry Crumpler and Jayne Aubele of the New Mexico Museum of Natural History and Science in Albuquerque, New Mexico. Oral presentations were given in the Museum’s Honeywell Auditorium, and maps were posted in the Sandia Room. In addition to active mappers, guests included local science teachers who had successfully competed for the right to attend and listen to the reports. It was a unique pleasure for mappers to have the opportunity to interact with and provide information to teachers responding so enthusiastically to the meeting presentation. On Sunday, June 17, Larry and Jayne conducted an optional pre-meeting field trip. The flanks of Rio Grande Rift, east and west of Albuquerque and Valles Caldera north of town presented tectonic, volcanic, and sedimentary examples of the Rift and adjoining areas analogous to observed features on Mars and Venus. The arid but volcanically and tectonically active environment of New Mexico’s rift valley enables focus on features that appear morphologically young and spectacular in satellite images and digital relief models. The theme of the trip was to see what, at orbiter resolution, "obvious" geologic features look like at lander (outcrop) scales. Trips to the top of the rift-flanking mountains (Sandia Peak, 10,600 ft) and the Valles Caldera, as well as various active spring deposits highlighted the day. After welcoming remarks from the host, Larry Crumpler, opening remarks by Tim Parker and Dave Senske and a report on mapping program status by Ken Tanaka, the mappers’ oral presentations began the morning of June 18, with a session on Venus Geologic Mapping. The afternoon continued with an exciting USGS Planetary GIS on the Web (PIGWAD) demonstration and ended with an open discussion of issues in planetary mapping. Posted maps of Venus quadrangles were viewed during the morning break. Tuesday’s Mars Geologic Mapping session began with a pep talk from Tim Parker encouraging mapping community input to the MER landing site selection committee and continued with Steve Saunders describing the potential contribution of Odyssey Mission data to the geologic mapping of Mars. A Mars map poster session was held during the morning break, and the meeting was adjourned mid-afternoon. After the mappers meeting on Tuesday, attendants were treated to a "Field trip to Mars." The Institute of Meteoritics at the University of New Mexico houses an outstanding collection of meteorites, including those that have been identified as originating from Mars. The Institute tour featured examples of most of the different lithologies exhibited by martian meteorites identified to date, as well as some of the analytical tests (scanning electron microscope) they are conducting on specimens from ALH84001. Wednesday, June 20, featured an optional post-meeting field trip to see a travertine quarry and nearby sites of travertine deposition, the Very Large Array near Socorro, and other volcanic features within the Rio Grande Rift.
The geology of Burnsville Cove, Bath and Highland Counties, Virginia
Swezey, Christopher; Haynes, John T.; Lambert, Richard A.; White, William B.; Lucas, Philip C.; Garrity, Christopher P.
2015-01-01
Burnsville Cove is a karst region in Bath and Highland Counties of Virginia. A new geologic map of the area reveals various units of limestone, sandstone, and siliciclastic mudstone (shale) of Silurian through Devonian age, as well as structural features such as northeast-trending anticlines and synclines, minor thrust faults, and prominent joints. Quaternary features include erosional (strath) terraces and accumulations of mud, sand, and gravel. The caves of Burnsville Cove are located within predominantly carbonate strata above the Silurian Williamsport Sandstone and below the Devonian Oriskany Sandstone. Most of the caves are located within the Silurian Tonoloway Limestone, rather than the Silurian-Devonian Keyser Limestone as reported previously.
Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Wilson, J. C. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Photointerpretation methods have been most successfully applied in the less vegetated test sites where several previously unknown geologic features have been recognized and known ones extended. Northwest mid-Tertiary faults in the ELY, Nevada area are observed to offset north-trending ranges and abruptly terminate older Mesozoic structures. In the Ray, Arizona area the observed patterns of fault and fracture systems appear to be related to the locations of known porphyry copper deposits. In the Tanacross, Alaska area a number of regional circular features observed may represent near surface intrusions and, therefore, permissive environments for copper porphyries.
Geological analysis and evaluation of ERTS-A imagery for the state of New Mexico
NASA Technical Reports Server (NTRS)
Kottlowski, F. E. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Coverage of approximately one-third of the test site had been received by January 31, 1973 and all of the images received were MSS products. Images recorded during the first two months of the ERTS-1 mission were of poor quality, owing largely to high ground reflectance. Later images were of better quality and MSS bands 5 and 7 have proven to be particularly useful. Features noted during visual inspection of 9 1/2 x 9 1/2 prints include major structural forms, vegetation patterns, drainage patterns, and outcrops of geologic formations having marked color contrasts. The Border Hills Structural Zone and the Y-O Structural Zone are prominently reflected in coverage of the Pecos Valley. A study of available maps and remote sensing material covering the Deming-Columbus area indicated that the limit of detection and the resolution of MSS products are not as good as those of aerial photographs, geologic maps, and manned satellite photographs. The limit of detection of high contrast features on MSS prints is approximately 1000 feet or 300 meters for linear features and about 18 acres for roughly circular areas.
Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China
Bai, Chunhua; Kang, Guofa; Gao, Guoming
2014-01-01
Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed. PMID:25243232
Textural features for radar image analysis
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.
1981-01-01
Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.
Geologic Mapping of Ejecta Deposits in Oppia Quadrangle, Asteroid (4) Vesta
NASA Technical Reports Server (NTRS)
Garry, W. Brent; Williams, David A.; Yingst, R. Aileen; Mest, Scott C.; Buczkowski, Debra L.; Tosi, Federico; Schafer, Michael; LeCorre, Lucille; Reddy, Vishnu; Jaumann, Ralf;
2014-01-01
Oppia Quadrangle Av-10 (288-360 deg E, +/- 22 deg) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (approximately 45 km diameter) and Oppia (approximately 40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' colorratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced greater than 5 crater radii away) in a microgravity environment.
Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data
Faulds, James E.
2013-12-31
Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.
NASA Astrophysics Data System (ADS)
Bursztyn, N.; Pederson, J. L.; Shelton, B.
2012-12-01
There is a well-documented and nationally reported trend of declining interest, poor preparedness, and lack of diversity within U.S. students pursuing geoscience and other STEM disciplines. We suggest that a primary contributing factor to this problem is that introductory geoscience courses simply fail to inspire (i.e. they are boring). Our experience leads us to believe that the hands-on, contextualized learning of field excursions are often the most impactful component of lower division geoscience classes. However, field trips are becoming increasingly more difficult to run due to logistics and liability, high-enrollments, decreasing financial and administrative support, and exclusivity of the physically disabled. Recent research suggests that virtual field trips can be used to simulate this contextualized physical learning through the use of mobile devices - technology that exists in most students' hands already. Our overarching goal is to enhance interest in introductory geoscience courses by providing the kinetic and physical learning experience of field trips through geo-referenced educational mobile games and test the hypothesis that these experiences can be effectively simulated through virtual field trips. We are doing this by developing "serious" games for mobile devices that deliver introductory geology material in a fun and interactive manner. Our new teaching strategy will enhance undergraduate student learning in the geosciences, be accessible to students of diverse backgrounds and physical abilities, and be easily incorporated into higher education programs and curricula at institutions globally. Our prototype involves students virtually navigating downstream along a scaled down Colorado River through Grand Canyon - physically moving around their campus quad, football field or other real location, using their smart phone or a tablet. As students reach the next designated location, a photo or video in Grand Canyon appears along with a geological question. The students must answer each question correctly in order to proceed to the next location and accrue points in the game and multiple attempts reduce the number of points earned when the correct answer is found. The questions are either multiple choice or involve touch-screen interaction to identify a specific geologic feature. Initial testing of the prototype game in Historical and Physical geology courses at Utah State University indicate that students enjoy the mobile "exploration" nature of the game as well as experiencing photographs of geologic features rather than traditional cartoons. Qualitative evaluation using anonymous surveys was conducted to help determine the usability of the game and the potential effectiveness of this technology-based approach. Students were asked about the degree of fun and difficulty of the game, content learned, and their overall response to features they liked/disliked about it. The results of these early assessments are positive, both in regard to the improvement of students' understanding of key geology concepts and their enjoyment of learning with the technology in a mobile orienteering manner. This is a positive first step in an innovative teaching tool with the power to overcome the pervasive problem of the boring first year STEM course and make world-class field trips accessible to all.
Integration of Geophysical Data into Structural Geological Modelling through Bayesian Networks
NASA Astrophysics Data System (ADS)
de la Varga, Miguel; Wellmann, Florian; Murdie, Ruth
2016-04-01
Structural geological models are widely used to represent the spatial distribution of relevant geological features. Several techniques exist to construct these models on the basis of different assumptions and different types of geological observations (e.g. Jessell et al., 2014). However, two problems are prevalent when constructing models: (i) observations and assumptions, and therefore also the constructed model, are subject to uncertainties, and (ii) additional information, such as geophysical data, is often available, but cannot be considered directly in the geological modelling step. In our work, we propose the integration of all available data into a Bayesian network including the generation of the implicit geological method by means of interpolation functions (Mallet, 1992; Lajaunie et al., 1997; Mallet, 2004; Carr et al., 2001; Hillier et al., 2014). As a result, we are able to increase the certainty of the resultant models as well as potentially learn features of our regional geology through data mining and information theory techniques. MCMC methods are used in order to optimize computational time and assure the validity of the results. Here, we apply the aforementioned concepts in a 3-D model of the Sandstone Greenstone Belt in the Archean Yilgarn Craton in Western Australia. The example given, defines the uncertainty in the thickness of greenstone as limited by Bouguer anomaly and the internal structure of the greenstone as limited by the magnetic signature of a banded iron formation. The incorporation of the additional data and specially the gravity provides an important reduction of the possible outcomes and therefore the overall uncertainty. References Carr, C. J., K. R. Beatson, B. J. Cherrie, J. T. Mitchell, R. W. Fright, C. B. McCallum, and R. T. Evans, 2001, Reconstruction and representation of 3D objects with radial basis functions: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 67-76. Jessell, M., Aillères, L., de Kemp, E., Lindsay, M., Wellmann, F., Hillier, M., ... & Martin, R. (2014). Next Generation Three-Dimensional Geologic Modeling and Inversion. Lajaunie, C., G. Courrioux, and L. Manuel, 1997, Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation: Mathematical Geology, 29, 571-584. Mallet, J.-L., 1992, Discrete smooth interpolation in geometric modelling: Computer-Aided Design, 24, 178-191 Mallet, L. J., 2004, Space-time mathematical framework for sedimentary geology: Mathematical Geology, 36, 1-32.
Geologic information from satellite images
NASA Technical Reports Server (NTRS)
Lee, K.; Knepper, D. H.; Sawatzky, D. L.
1974-01-01
Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photo-interpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familiar shapes and patterns. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.
NASA Astrophysics Data System (ADS)
Wang, X.
2018-04-01
Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.
Computer-assisted photogrammetric mapping systems for geologic studies-A progress report
Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.
1981-01-01
Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.
Geologic map of Chickasaw National Recreation Area, Murray County, Oklahoma
Blome, Charles D.; Lidke, David J.; Wahl, Ronald R.; Golab, James A.
2013-01-01
This 1:24,000-scale geologic map is a compilation of previous geologic maps and new geologic mapping of areas in and around Chickasaw National Recreation Area. The geologic map includes revisions of numerous unit contacts and faults and a number of previously “undifferentiated” rock units were subdivided in some areas. Numerous circular-shaped hills in and around Chickasaw National Recreation Area are probably the result of karst-related collapse and may represent the erosional remnants of large, exhumed sinkholes. Geospatial registration of existing, smaller scale (1:72,000- and 1:100,000-scale) geologic maps of the area and construction of an accurate Geographic Information System (GIS) database preceded 2 years of fieldwork wherein previously mapped geology (unit contacts and faults) was verified and new geologic mapping was carried out. The geologic map of Chickasaw National Recreation Area and this pamphlet include information pertaining to how the geologic units and structural features in the map area relate to the formation of the northern Arbuckle Mountains and its Arbuckle-Simpson aquifer. The development of an accurate geospatial GIS database and the use of a handheld computer in the field greatly increased both the accuracy and efficiency in producing the 1:24,000-scale geologic map.
ERTS-A data as a teaching and research tool in the Department of Geology
NASA Technical Reports Server (NTRS)
Grybeck, D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The ERTS-1 materials continue to be used in a number of courses including Geology of Alaska, Economic Geology, and Structural Geology. In addition, specific talks about the ERTS-1 material were given at a seminar at the Geophysical Institute, to the Geology Department, to numerous individuals, and were extensively used in a popularized talk on the Geology of Alaska to the local Historical Society.
Geodiversity and geoconservation in Brazil
NASA Astrophysics Data System (ADS)
Cardozo Moreira, Jasmine; Muggler, Cristine Carole
2014-05-01
Brazil is a large country with a wide diversity of landscapes and geological features and has been an important world producer of mineral resources. Despite this, until the 90's of last century, there has not been much concern and policies about geological heritage and geoconservation. Only at the end of the century the National Geological Service (CPRM) included the physical characterization of areas with geotouristic interest in its mission of generation and diffusion of geological information. In 1997, was created the Brazilian Commission of Geological and Paleobiological Sites (SIGEP, http://sigep.cprm.gov.br), responsible for the assessment, description and publicizing the sites of geological heritage. This is by now the most comprehensive and relevant initiative to protect the national heritage. It is composed by a fully accessible national database composed by 167 certified sites presented as scientific papers. Furthermore, a web-based applicative for the inventory and protection of geological heritage sites is being developed by the National Geological Service. The wider knowledge about geological heritage can be a useful tool for its conservation and this has been an important goal in the creation of protected areas, by means of environmental education and tourism. In Brazil, actions, research and publications about the subject have increased in the last five years, as well as the outreach and responsible use of the geological heritage. Scientific meetings, conferences and courses are growing and spreading around the country. The main scientific meeting has been the Brazilian Symposium of Geological Heritage that in its second edition (2013) had more than 200 papers presented. At that meeting it was also created the Association in Defence of the Geomining Heritage and the Association of Aspiring Geoparks. Brazil has only one geopark in the Unesco's Global Geopark Network, that is the Araripe Geopark, created in 2006. By the moment, propositions are being prepared in eight states of the country. Movements and activities have been developed to widen the understanding of geological features in many states, which include interpretative panels, training of monitors, publication of folders and educational leaflets. Geotourism is being stimulated both as a way to protect the geological heritage sites and as a source of jobs and income to local communities. Still, the strengthening of geoconservation in Brazil depends on a change of strategies related to geological heritage: they include education, the suitable use of resources and coordinated activities. Public policies about sustainable use of natural resources from local to national levels have to take into account geodiversity and its protection.
Seal, Robert R.; Foley, Nora K.
2002-01-01
Since the beginning of economic geology as a subdiscipline of the geological sciences, economic geologists have tended to classify mineral deposits on the basis of geological, mineralogical, and geochemical criteria, in efforts to systematize our understanding of mineral deposits as an aid to exploration. These efforts have led to classifications based on commodity, geologic setting (Cox and Singer, 1986), inferred temperatures and pressures of ore formation (Lindgren, 1933), and genetic setting (Park and MacDiarmid, 1975; Jensen and Bateman, 1979). None of these classification schemes is mutually exclusive; instead, there is considerable overlap among all of these classifications. A natural outcome of efforts to classify mineral deposits is the development of “mineral deposit models.” A mineral deposit model is a systematically arranged body of information that describes some or all of the essential characteristics of a selected group of mineral deposits; it presents a concept within which essential attributes may be distinguished and from which extraneous, coincidental features may be recognized and excluded (Barton, 1993). Barton (1993) noted that the grouping of deposits on the basis of common characteristics forms the basis for a classification, but the specification of the characteristics required for belonging to the group is the basis for a model. Models range from purely descriptive to genetic. A genetic model is superior to a descriptive model because it provides a basis to distinguish essential from extraneous attributes, and it has flexibility to accommodate variability in sources, processes, and local controls. In general, a descriptive model is a necessary prerequisite to a genetic model.
Summary of space imagery studies in Utah and Nevada. [using LANDSAT 1, EREP, and Skylab imagery
NASA Technical Reports Server (NTRS)
Jensen, M. L.; Laylander, P.
1975-01-01
LANDSAT-1, Skylab, and RB-57 imagery acquired within days of each other of the San Rafael swell enabled geological mapping of individual formations of the southern portion of this broad anticlinal feature in eastern Utah. Mapping at a scale of 1/250,000 on an enhanced and enlarged S-190B image resulted in a geological map showing correlative mappable features that are indicated on the geological map of Utah at the same scale. An enhanced enlargement of an S-190B color image at a scale of 1/19,200 of the Bingham Porphyry Copper deposit allowed comparison of a geological map of the area with the space imagery map as fair for the intrusion boundaries and total lack of quality for mapping the sediments. Hydrothermal alteration is only slightly evident on space imagery at Bingham but in the Tintic mining district and the volcanic piles of the Keg and Thomas ranges, Utah, hydrothermal alteration is readily mapped on color enlargements of S-190B (SL-3, T3-3N Tr-2). A mercury soil-gas analyzer was developed for locating hidden mineralized zones which were suggested from space imagery.
Spatial Abilities of High-School Students in the Perception of Geologic Structures.
ERIC Educational Resources Information Center
Kali, Yael; Orion, Nir
1996-01-01
Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…
Physical characteristics and evolutionary trends of continental rifts
NASA Technical Reports Server (NTRS)
Ramberg, I. B.; Morgan, P.
1984-01-01
Rifts may be defined as zones beneath which the entire lithosphere has ruptured in extension. They are widespread and occur in a variety of tectonic settings, and range up to 2,600 m.y. in age. The object of this review is to highlight characteristic features of modern and ancient rifts, to emphasize differences and similarities in order to help characterize evolutionary trends, to identify physical conditions favorable for initiation as well as termination of rifting, and to provide constraints for future modeling studies of rifting. Rifts are characterized on the basis of their structural, geomorphic, magmatic and geophysical features and the diverse character of these features and their evolutionary trends through time are discussed. Mechanisms of rifting are critically examined in terms of the physical characteristics and evolutionary trends of rifts, and it is concluded that while simple models can give valuable insight into specific processes of rifting, individual rifts can rarely, if ever, be characterized by well defined trends predicted by these models. More data are required to clearly define evolutionary trends, and the models require development to incorporate the effects of lithospheric heterogeneities and complex geologic histories.
Towards a Convention on Geological Heritage (CGH) for the protection of Geological Heritage
NASA Astrophysics Data System (ADS)
Brocx, Margaret; Semeniuk, Vic
2017-04-01
2 V & C Semeniuk Research Group; 21 Glenmere Rd., Warwick, WA, 6024 The history of the biological conservation essentially began with the IUCN and the global awakening following publication of "The Silent Spring". Since then the IUCN has been active in species conservation and later, when recognising the importance of biodiversity, in the development of a Convention on Biological Diversity. However, even in a framework of Convention on Biological Diversity, there are organisations, political systems/parties, and personnel that strive to subjugate and control nature and biology and use nature for profit or to benefit humankind (e.g., genetically modified foods, use of terrain for food production, use of forests as a resource, managed ecosystems, construction of luxury resorts and tourist resorts in wildernesses). This has been the same for geology, in that geological materials are fundamental to industrialisation in the use of metals, building materials, other commodities, and fossil fuels, and have been exploited often regardless of their geoheritage values. The history of geology and its conservation actually predates the focus on conservation of biology - Siccar Point, numerous palaeontologic sites, and other iconic geological sites serve as examples. But in spite of their recognition as iconic geological sites, areas such as Siccar Point, Cliefden Caves, Hallett Cove, and the Kimberley are still under threat. Given that firstly there is an importance to geological features of the Earth per se and, secondly, geological features as geodiversity underpin and sustain biological systems, there is a critical need to develop a convention, similar to the Convention on Biological Diversity, that recognises the importance of geology as a part of Nature. The scope of Geoheritage and the diversity of Geology is such that it involves all sub-disciplines of Geology (e.g., palaeontology, mineralogy, igneous, sedimentary, and metamorphic geology, structural geology, hydrology, geomorphology, and pedology) and, as such, Geoheritage must encompass the full diversity of Geology in scope and scale. Focusing on palaeontology to illustrate the principle: if extant biodiversity is afforded global conservation status through the Convention on Biological Diversity, and this generally involves species that have been in existence only for 10,000 to 1,000,000 years, then Phanerozoic palaeontology spanning the diversity and history of life over 500,000,000 years is far more (bio)diverse; additionally, palaeontology in combination with stratigraphy carries the story of evolution and the history of life and is the nature field library of Earth Heritage. We suggest therefore that the abiotic realm also requires a similar procedure of protection to the Convention on Biological Diversity, and we suggest a Convention on Geological Heritage.
Gautier, D.L.; Stemmerik, L.; Christiansen, F.G.; Sorensen, K.; Bidstrup, T.; Bojesen-Koefoed, J. A.; Bird, K.J.; Charpentier, R.R.; Houseknecht, D.W.; Klett, T.R.; Schenk, C.J.; Tennyson, Marilyn E.
2011-01-01
Geological features of NE Greenland suggest large petroleum potential, as well as high uncertainty and risk. The area was the prototype for development of methodology used in the US Geological Survey (USGS) Circum-Arctic Resource Appraisal (CARA), and was the first area evaluated. In collaboration with the Geological Survey of Denmark and Greenland (GEUS), eight "assessment units" (AU) were defined, six of which were probabilistically assessed. The most prospective areas are offshore in the Danmarkshavn Basin. This study supersedes a previous USGS assessment, from which it differs in several important respects: oil estimates are reduced and natural gas estimates are increased to reflect revised understanding of offshore geology. Despite the reduced estimates, the CARA indicates that NE Greenland may be an important future petroleum province. ?? 2011 The Geological Society of London.
Subsurface site conditions and geology in the San Fernando earthquake area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, C.M.; Johnson, J.A.; Kharraz, Y.
1971-12-01
The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less
The U.S. Geological Survey Astrogeology Science Center
Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.
2017-07-17
In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.
Geologic interpretation of space shuttle radar images of Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabing, F.F.
1983-11-01
The National Aeronautics and Space Administration (NASA) space shuttle mission in November 1981 acquired images of parts of the earth with a synthetic aperture radar system at a wavelength of 23.5 cm (9.3 in.) and spatial resolution of 38 m (125 ft). This report describes the geologic interpretation of 1:250,000-scale images of Irian Jaya and eastern Kalimantan, Indonesia, where the all-weather capability of radar penetrates the persistent cloud cover. The inclined look direction of radar enhances subtle topographic features that may be the expression of geologic structures. On the Indonesian images, the following terrain categories are recognizable for geologic mapping:more » carbonate, clastic, volcanic, alluvial and coastal, melange, and metamorphic, as well as undifferentiated bedrock. Regional and local geologic structures are well expressed on the images.« less
NASA Astrophysics Data System (ADS)
Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.
2010-12-01
Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We expect students to develop comprehension of basic geologic concepts and processes such as erosion and sediment transport, caldera formation, ash flows, crystallization and volcanic cooling features. More importantly, we hope students will become excited about their geologic environment and pursue further engagement. We will attempt to quantify student comprehension and engagement by administering simple questionnaires before and after exposure to both the PEEC display and the field class. ____________________________________________________________ [1] New Mexico Science Content Standards, Benchmarks, and Performance Standards. Approved 2003, New Mexico State Department of Education. 3rd Grade Benchmark: “Know that Earth’s features are constantly changed by a combination of slow and rapid processes that include the action of volcanoes, earthquakes, mountain building, biological changes, erosion, and weathering” 4th Grade Benchmark: “Know that the properties of rocks and minerals reflect the processes that shaped them (i.e., igneous, metamorphic, and sedimentary rocks)”
US Topo: Topographic Maps for the Nation
Hytes, Patricia L.
2009-01-01
US Topo is the next generation of topographic maps from the U.S. Geological Survey (USGS). Arranged in the familiar 7.5-minute quadrangle format, digital US Topo maps are designed to look and feel (and perform) like the traditional paper topographic maps for which the USGS is so well known. In contrast to paper-based maps, US Topo maps provide modern technical advantages that support faster, wider public distribution and enable basic, on-screen geographic analysis for all users. US Topo maps are available free on the Web. Each map quadrangle is constructed in GeoPDF? format from key layers of geographic data (orthoimagery, roads, geographic names, topographic contours, and hydrographic features) found in The National Map. US Topo quadrangles can be printed from personal computers or plotters as complete, full-sized, maps or in customized sections, in a user-desired specific format. Paper copies of the maps can also be purchased from the USGS Store. Download links and a users guide are featured on the US Topo Web site. US Topo users can turn geographic data layers on and off as needed; they can zoom in and out to highlight specific features or see a broader area. File size for each digital 7.5-minute quadrangle, about 15-20 megabytes, is suitable for most users. Associated electronic tools for geographic analysis are available free for download.
Iowa magnetic and gravity maps and data: a web site for distribution of data
Kucks, Robert P.; Hill, Patricia L.
2005-01-01
Magnetic anomalies are due to variations in the Earth's magnetic field caused by the uneven distribution of magnetic minerals (primarily magnetite) in the rocks that make up the upper part of the Earth's crust. The features and patterns of the magnetic anomalies can be used to delineate details of subsurface geology, including the locations of buried faults and magnetite-bearing rocks and the depth to the base of sedimentary basins. This information is valuable for mineral exploration, geologic mapping, and environmental studies. The Iowa magnetic map is constructed from grids that combine information collected in nine separate magnetic surveys conducted between 1953 and 1972. The data from these surveys are of varying quality. The design and specifications (terrain clearance, sampling rates, line spacing, and reduction procedures) varied from survey to survey depending on the purpose of the project and the technology of that time. Every attempt was made to acquire the data in digital form. All survey grids have been continued to 305 m (1,000 ft) above ground and merged together to form the State compilation.
NASA Technical Reports Server (NTRS)
Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.
2000-01-01
Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.
New Age of 3D Geological Modelling or Complexity is not an Issue Anymore
NASA Astrophysics Data System (ADS)
Mitrofanov, Aleksandr
2017-04-01
Geological model has a significant value in almost all types of researches related to regional mapping, geodynamics and especially to structural and resource geology of mineral deposits. Well-developed geological model must take into account all vital features of modelling object without over-simplification and also should adequately represent the interpretation of the geologist. In recent years with the gradual exhaustion deposits with relatively simple morphology geologists from all over the world are faced with the necessity of building the representative models for more and more structurally complex objects. Meanwhile, the amount of tools used for that has not significantly changed in the last two-three decades. The most widespread method of wireframe geological modelling now was developed in 1990s and is fully based on engineering design set of instruments (so-called CAD). Strings and polygons representing the section-based interpretation are being used as an intermediate step in the process of wireframes generation. Despite of significant time required for this type of modelling, it still can provide sufficient results for simple and medium-complexity geological objects. However, with the increasing complexity more and more vital features of the deposit are being sacrificed because of fundamental inability (or much greater time required for modelling) of CAD-based explicit techniques to develop the wireframes of the appropriate complexity. At the same time alternative technology which is not based on sectional approach and which uses the fundamentally different mathematical algorithms is being actively developed in the variety of other disciplines: medicine, advanced industrial design, game and cinema industry. In the recent years this implicit technology started to being developed for geological modelling purpose and nowadays it is represented by very powerful set of tools that has been integrated in almost all major commercial software packages. Implicit modelling allows to develop geological models that really correspond with complicated geological reality. Models can include fault blocking, complex structural trends and folding; can be based on excessive input dataset (like lots of drilling on the mining stage) or, on the other hand, on a quite few drillholes intersections with significant input from geological interpretation of the deposit. In any case implicit modelling, if is used correctly, allows to incorporate the whole batch of geological data and relatively quickly get the easily adjustable, flexible and robust geological wireframes that can be used as a reliable foundation on the following stages of geological investigations. In SRK practice nowadays almost all the wireframe models used for structural and resource geology are developed with implicit modelling tools which significantly increased the speed and quality of geological modelling.
Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin
NASA Astrophysics Data System (ADS)
Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.
2017-10-01
The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, D.L.; Wagner, J.B.
1988-09-01
Before siting oil and gas platforms on the sea floor as artificial reefs offshore Louisiana, potentially hazardous and unstable geologic conditions must be identified and evaluated to assess their possible impacts on platform stability. Geologic and man-made features can be identified and assessed from high-resolution geophysical techniques (3.5-7.0 kHz echograms, single-channel seismic, and side-scan sonar). Such features include faults, diapirs, scarps, channels, gas seeps, irregular sea floor topography, mass wasting deposits (slumps, slides, and debris flows), pipelines, and other subsea marine equipment. Geotechnical techniques are utilized to determine lithologic and physical properties of the sediments for correlation with the geophysicalmore » data. These techniques are used to develop a series of geologic maps, cross sections, and pipeline and platform-location maps. Construction of echo-character maps from 3.5-kHz data provides an analysis of near-bottom sedimentation processes (turbidity currents and debris flows).« less
NASA Astrophysics Data System (ADS)
Helaly, Ahmad Sobhy
2017-12-01
Electrical resistivity surveying has been carried out for the determination of the thickness and resistivity of layered media in Wadi Allaqi, Eastern Desert, Egypt. That is widely used geophysical tool for the purpose of assessing the groundwater potential and siting the best locations for boreholes in the unconfined Nubian Sandstone aquifers within the study area. This has been done using thirteen 1D Vertical Electrical Sounding (VES) surveys. 1D-VES surveys provide only layered model structures for the subsurface and do not provide comprehensive information for interpreting the structure and extent of subsurface hydro-geological features. The integration of two-dimensional (2D) geophysical techniques for groundwater prospecting has been done to provide a more detailed identification for the subsurface hydro-geological features from which potential sites for successful borehole locations are recognized. In addition, five magnetic profiles were measured for basement depth determination, expected geological structures and thickness of sedimentary succession that could include some basins suitable for groundwater accumulation as groundwater aquifers.
Bove, D.J.; Walton-Day, K.; Kimball, B.A.
2009-01-01
Investigations within the Silverton caldera, in southwestern Colorado, used a combination of traditional geological mapping, alteration-assemblage mapping, and aqueous geochemical sampling that showed a relationship between geological and hydrologic features that may be used to better understand the provenance and evolution of the water. Veins containing fluorite, huebnerite, and elevated molybdenum concentrations are temporally and perhaps genetically associated with the emplacement of high-silica rhyolite intrusions. Both the rhyolites and the fluorite-bearing veins produce waters containing elevated concentrations of F-, K and Be. The identification of water samples with elevated F/Cl molar ratios (> 10) has also aided in the location of water draining F-rich sources, even after these waters have been diluted substantially. These unique aqueous geochemical signatures can be used to relate water chemistry to key geological features and mineralized source areas. Two examples that illustrate this relationship are: (1) surface-water samples containing elevated F-concentrations (> 1.8 mg/l) that closely bracket the extent of several small high-silica rhyolite intrusions; and (2) water samples containing elevated concentrations of F-(> 1.8 mg/ l) that spatially relate to mines or areas that contain late-stage fluorite/huebnerite veins. In two additional cases, the existence of high F-concentrations in water can be used to: (1) infer interaction of the water with mine waste derived from systems known to contain the fluorite/huebnerite association; and (2) relate changes in water quality over time at a high elevation mine tunnel to plugging of a lower elevation mine tunnel and the subsequent rise of the water table into mineralized areas containing fluorite/huebnerite veining. Thus, the unique geochemical signature of the water produced from fluorite veins indicates the location of high-silica rhyolites, mines, and mine waste containing the veins. Existence of high F-concentrations along with K and Be in water in combination with other geological evidence may be used to better understand the provenance of the water. ?? 2009 AAG/Geological Society of London.
Studying the Surfaces of the Icy Galilean Satellites With JIMO
NASA Astrophysics Data System (ADS)
Prockter, L.; Schenk, P.; Pappalardo, R.
2003-12-01
The Geology subgroup of the Jupiter Icy Moons Orbiter (JIMO) Science Definition Team (SDT) has been working with colleagues within the planetary science community to determine the key outstanding science goals that could be met by the JIMO mission. Geological studies of the Galilean satellites will benefit from the spacecraft's long orbital periods around each satellite, lasting from one to several months. This mission plan allows us to select the optimal viewing conditions to complete global compositional and morphologic mapping at high resolution, and to target geologic features of key scientific interest at very high resolution. Community input to this planning process suggests two major science objectives, along with corresponding measurements proposed to meet them. Objective 1: Determine the origins of surface features and their implications for geological history and evolution. This encompasses investigations of magmatism (intrusion, extrusion, and diapirism), tectonism (isostatic compensation, and styles of faulting, flexure and folding), impact cratering (morphology and distribution), and gradation (erosion and deposition) processes (impact gardening, sputtering, mass wasting and frosts). Suggested measurements to meet this goal include (1) two dimensional global topographic mapping sufficient to discriminate features at a spatial scale of 10 m, and with better than or equal to 1 m relative vertical accuracy, (2) nested images of selected target areas at a range of resolutions down to the submeter pixel scale, (3) global (albedo) mapping at better than or equal to 10 m/pixel, and (4) multispectral global mapping in at least 3 colors at better than or equal to 100 m/pixel, with some subsets at better than 30 m/pixel. Objective 2. Identify and characterize potential landing sites for future missions. A primary component to the success of future landed missions is full characterization of potential sites in terms of their relative age, geological interest, and engineering safety. Measurement requirements suggested to meet this goal (in addition to the requirements of Objective 1) include the acquisition of super-high resolution images of selected target areas (with intermediate context imaging) down to 25 cm/pixel scale. The Geology subgroup passed these recommendations to the full JIMO Science Definition Team, to be incorporated into the final science recommendations for the JIMO mission.
NASA Technical Reports Server (NTRS)
Heldmann, J. L.; Toon, O. B.; Pollard, W. H.; Mellon, M. T.; Pitlick, J.; McKay, C. P.; Andersen, D. T.
2005-01-01
Images from the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft show geologically young small-scale features resembling terrestrial water-carved gullies. An improved understanding of these features has the potential to reveal important information about the hydrological system on Mars, which is of general interest to the planetary science community as well as the field of astrobiology and the search for life on Mars. The young geologic age of these gullies is often thought to be a paradox because liquid water is unstable at the Martian surface. Current temperatures and pressures are generally below the triple point of water (273 K, 6.1 mbar) so that liquid water will spontaneously boil and/or freeze. We therefore examine the flow of water on Mars to determine what conditions are consistent with the observed features of the gullies.
Location of photographs showing landslide features in the Little North Santiam River Basin, Oregon
Sobieszczyk, Steven
2010-01-01
Data points represent locations of photographs taken of landslides in the Little North Santiam River Basin, Oregon. Photos were taken in spring of 2010 during field verification of landslide locations (deposits previously mapped using LiDAR-derived imagery). The photographs depict various landslide features, such as scarps, pistol-butt trees, or colluvium deposits. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).
The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration
NASA Astrophysics Data System (ADS)
Araujo, J. B.; Brusseau, M. L. L.
2017-12-01
Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.
Multidisciplinary geoscientific experiments in central Europe
NASA Technical Reports Server (NTRS)
Bannert, D. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Studies were carried out in the fields of geology-pedology, coastal dynamics, geodesy-cartography, geography, and data processing. In geology-pedology, a comparison of ERTS image studies with extensive ground data led to a better understanding of the relationship between vegetation, soil, bedrock, and other geologic features. Findings in linear tectonics gave better insight in orogeny and ore deposit development for prospecting. Coastal studies proved the value of ERTS images for the updating of nautical charts, as well as small scale topographic maps. A plotter for large scale high speed image generation from CCT was developed.
Shinn, Eugene A.; Jaap, Walter C.
2005-01-01
This guide to the geology and biology of the Dry Tortugas is divided into four sections: 1) geologic and anthropogenic features you will pass on your trip to and from the Tortugas, 2) a summary of items of Tortugas geologic, historic, and human interest and what you will experience at Loggerhead Key while walking and snorkeling, 3) a summary of recent coral-monitoring results, and 4) an Appendix with tributes to some of the significant research accomplishments of researchers at the laboratory between 1905 and 1939.
NASA Technical Reports Server (NTRS)
Hurwitz, D. M.; Head, J. W.
2010-01-01
Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our interpretations of the volcanic history of the region surrounding the north pole of Venus and explore how analysis of new data support our interpretations
Ice Flow in Debris Aprons and Central Peaks, and the Application of Crater Counts
NASA Astrophysics Data System (ADS)
Hartmann, W. K.; Quantin, C.; Werner, S. C.; Popova, O.
2009-03-01
We apply studies of decameter-scale craters to studies of probable ice-flow-related features on Mars, to interpret both chronometry and geological processes among the features. We find losses of decameter-scale craters relative to nearby plains, probably due to sublimation.
U.S. Army Environmental Restoration Programs Guidance Manual
1998-04-01
without delay. In addition to sampling, the SI usually includes a reconnaissance of the site’s layout, surrounding topographical features , and the...chemical monitoring of some, but not necessarily all, of the following: 2.1.1 Surface Features (topographic mapping, etc.) (natural and manmade features ...include some, but not necessarily all, of the following: 3.1.1 Surface Features 3.1.2 Meteorology 3.1.3 Surface-Water Hydrology 3.1.4 Geology 3.1.5
Geomorphology of the Iberian Continental Margin
NASA Astrophysics Data System (ADS)
Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria
2013-08-01
The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.
Digitally enhanced GLORIA images for petroleum exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prindle, R.O.; Lanz, K
1990-05-01
This poster presentation graphically depicts the geological and structural information that can be derived from digitally enhanced Geological Long Range Inclined Asdic (GLORIA) sonar images. This presentation illustrates the advantages of scale enlargement as an interpreter's tool in an offshore area within the Eel River Basin, Northern California. Sonographs were produced from digital tapes originally collected for the exclusive economic zone (EEZ)-SCAN 1984 survey, which was published in the Atlas of the Western Conterminous US at a scale of 1:500,000. This scale is suitable for displaying regional offshore tectonic features but does not have the resolution required for detailed geologicalmore » mapping necessary for petroleum exploration. Applications of digital enhancing techniques which utilize contrast stretching and assign false colors to wide-swath sonar imagery (approximately 40 km) with 50-m resolution enables the acquisition and interpretation of significantly more geological and structural data. This, combined with a scale enlargement to 1:100,000 and high contrast contact prints vs. the offset prints of the atlas, increases the resolution and sharpness of bathymetric features so that many more subtle features may be mapped in detail. A tectonic interpretation of these digitally enhanced GLORIA sonographs from the Eel River basin is presented, displaying anticlines, lineaments, ridge axis, pathways of sediment flow, and subtle doming. Many of these features are not present on published bathymetric maps and have not been derived from seismic data because the plan view spatial resolution is much less than that available from the GLORIA imagery.« less
NASA Astrophysics Data System (ADS)
Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.
2017-12-01
A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to pumping and underground construction. This work offers ideas and proposed solutions on how some of the challenges in describing fractured rock hydrogeology can be tackled.
Turning Interoperability Operational with GST
NASA Astrophysics Data System (ADS)
Schaeben, Helmut; Gabriel, Paul; Gietzel, Jan; Le, Hai Ha
2013-04-01
GST - Geosciences in space and time is being developed and implemented as hub to facilitate the exchange of spatially and temporally indexed multi-dimensional geoscience data and corresponding geomodels amongst partners. It originates from TUBAF's contribution to the EU project "ProMine" and its perspective extensions are TUBAF's contribution to the actual EU project "GeoMol". As of today, it provides basic components of a geodata infrastructure as required to establish interoperability with respect to geosciences. Generally, interoperability means the facilitation of cross-border and cross-sector information exchange, taking into account legal, organisational, semantic and technical aspects, cf. Interoperability Solutions for European Public Administrations (ISA), cf. http://ec.europa.eu/isa/. Practical interoperability for partners of a joint geoscience project, say European Geological Surveys acting in a border region, means in particular provision of IT technology to exchange spatially and maybe additionally temporally indexed multi-dimensional geoscience data and corresponding models, i.e. the objects composing geomodels capturing the geometry, topology, and various geoscience contents. Geodata Infrastructure (GDI) and interoperability are objectives of several inititatives, e.g. INSPIRE, OneGeology-Europe, and most recently EGDI-SCOPE to name just the most prominent ones. Then there are quite a few markup languages (ML) related to geographical or geological information like GeoSciML, EarthResourceML, BoreholeML, ResqML for reservoir characterization, earth and reservoir models, and many others featuring geoscience information. Several Web Services are focused on geographical or geoscience information. The Open Geospatial Consortium (OGC) promotes specifications of a Web Feature Service (WFS), a Web Map Service (WMS), a Web Coverage Serverice (WCS), a Web 3D Service (W3DS), and many more. It will be clarified how GST is related to these initiatives, especially how it complies with existing or developing standards or quasi-standards and how it applies and extents services towards interoperability in the Earth sciences.
Wet meadow ecosystems and the longevity of biologically-mediated geomorphic features
NASA Astrophysics Data System (ADS)
Nash, C.; Grant, G.; O'Connor, J. E.
2016-12-01
Upland meadows represent a ubiquitous feature of montane landscapes in the U.S. West and beyond. Characterized by flat valley floors flanked by higher-gradient hillslopes, these meadows are important features, both for the diverse ecosystems they support but also because they represent depositional features in what is primarily an erosional environment. As such, they serve as long-term chronometers of both geological and ecological processes in a portion of the landscape where such records are rare, and provide a useful microcosm for exploring many of the questions motivating critical zone science. Specifically, meadows can offer insights into questions regarding the longevity of theses biologically-mediated landscapes, and the geomorphic thresholds associated with transitions between metastable landscape states. Though categorically depositional, wet meadows have been shown to rapidly shift into erosional landscapes characterized by deep arroyos, declining water tables, and sparse, semi-arid ecosystems. Numerous hypotheses have been proposed explaining this shift: intensive ungulate usage, removal of beaver, climatic shifts, and intrinsic geomorphic evolution. Even less is known about the mechanisms controlling the construction of these meadow features. Evidence seems to suggest these channels oscillate between two metastable conditions: deeply incised, single-threaded channels and sheet-flow dominated valley-spanning wetlands. We present new evidence exploring the subsurface architecture of wet meadows and the bidirectional process cascades potentially responsible for their temporal evolution. Using a combination of near surface geophysical techniques and detailed stratigraphic descriptions of incised and un-incised meadows throughout the Silvies River Basin, OR, we examine mechanisms responsible both for the construction of these features and their apparently rapid transition from depositional to erosional. Our investigation focuses specifically on potential interactions between biogenic and geomorphic features and processes: beaver meadow complexes, downed wood, and the accumulation of senescent vegetation to form thick peat mounds. These observations have broad potential utility to help guide meadow restoration efforts across the Western U.S.
NASA Astrophysics Data System (ADS)
Dalton, J. B.; Prockter, L. M.; Shirley, J. H.; Kamp, L.; Phillips, C. B.; Valenti, M.
2012-12-01
The Manannán impact crater and surrounding areas were imaged by Galileo's Near Infrared Mapping Spectrometer (NIMS) during the C3 orbital encounter. We have applied a linear mixture model based on cryogenic infrared reflectance spectroscopy to a "despiked" version of this NIMS observation (C3ENLINEA01A) to estimate abundances of sulfuric acid hydrate, hydrated sulfate salts, water ice and brines in surface exposures. Here we supplement our previously reported abundance estimates (Dalton et al., 2011) with additional results from our ongoing investigation. New geologic mapping precisely registered to the NIMS observation allows the extraction of high-quality near-infrared spectra specific to individual geologic units and morphological features. Detailed high resolution geologic mapping indicates the likely presence of extensive deposits of impact melt materials largely filling the crater floor (Moore et al. 2001), together with surrounding continuous ejecta deposits that may have been excavated from Europa's interior. We find that the crater floor and nearby ejecta exhibit low sulfuric acid abundance relative to the surroundings, with the abundance increasing with radial distance. Where the ejecta begins to thin and break up, the spectral mixture resembles a combination of pre-existing, high-acid-content materials and cleaner, excavated water ice. Several geologic units exhibit significantly lower sulfuric acid hydrate than expected for this region near the trailing hemisphere apex, varying from 53-64 wt% over the observation. This suggests that these surface units have received a reduced cumulative radiation dose (electrons and ions) compared to nearby terrain; this in turn implies geologic youth. We will present model compositions for several of Manannán's key stratigraphic units, including the crater floor deposits and the adjacent chaos and linea. We will interpret these results in the context of ongoing investigations of the interplay of exogenic and endogenic influences on the surface composition of Europa. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, Johns Hopkins University-Applied Physics Laboratory, and the SETI Institute under a contract with NASA. Support by NASA's Outer Planets Research program is gratefully acknowledged. Dalton, III, J.B., Prockter, L.M., Shirley, J.H., Kamp, L.W., Phillips, C., and Valenti, M., The Manannán Impact Crater on Europa: Determination of Surface Compositions of Key Stratigraphic Units, EOS Trans. AGU, Fall Meeting, #P14B-06, San Francisco, 2011. Moore, J. M. and 25 others 2001. Impact Features on Europa: Results of the Galileo Europa Mission (GEM), Icarus 151, 93-111.
NASA Technical Reports Server (NTRS)
Carter, W. D. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The La Paz Mosaic and its attendant overlays serve as a model for geologic studies elsewhere in the world. The P.I. and two geologists are mapping the conterminous states at scales of 1:5000,000 and 1:1,000,000. The 1:5 million band 5 mosaic was completed in two days of analysis. The 1:1 million band sheets are being completed at the rate of one per day. Comparison of the preliminary results of the three investigators shows a high correlation of linear and curvilinear features. Comparison with magnetic and gravity data indicates that many features being mapped are deep seated structures that have been active through long periods of geologic time, perhaps dating back to the Precambrian period. A detailed analysis of the El Salvador mining district has been completed. The interpretation is extremely detailed showing a complex pattern of linear features and bedrock outcrop patterns. This is the first product from ERTS-1 to be provided by Chile and shows a high degree of expertise in image interpretation. The Chileans are enthusiastic about their results and are anxious to map the entire country using ERTS.
Geologic hypotheses of Lake Tanganyika region, Zaire, drawn from ERTS imagery
NASA Technical Reports Server (NTRS)
Wolyce, U.; Ilunga, S.
1974-01-01
Based on initial work in the Lake Tanganyika area of eastern Zaire, it has been concluded that ERTS imagery is extremely useful for reconnaissance level geologic mapping and analysis in this region of the humid tropics. In particular, ERTS imagery has proven useful for recognizing and mapping regional structural units, for recognizing major structural features, and for arriving at some preliminary hypotheses about the mineral potential of the area. Results so far indicate that ERTS imagery can make a major contribution to the development of the mineral resources of the country. Research has concentrated on applications of ERTS imagery in the field of cartography, geology, forestry, hydrology and agriculture. For the work in geology, a test site was chosen in eastern Zaire on the shore of Lake Tanganyika in the vicinity of the Lukuga River. This area was selected because of its varied geology and the existence of two frames of cloud-free ERTS imagery.
Geoconservation - a southern African and African perspective
NASA Astrophysics Data System (ADS)
Reimold, Wolf Uwe
1999-10-01
In contrast to Europe, where geoconservation is actively pursued in most countries and where two international symposia on this subject have been staged in 1991 and 1996, geoconservation in Africa has indeed a very poor record. Considering the wealth of outstanding geological sites and the importance African stratigraphy has within the global geological record, pro-active geoconservation on this continent has not featured very prominently to date. In the interest of science, education and tourism, unique and typical geosites need to be identified, catalogued, and prioritised with the aim being their protection. Most African countries do not have vibrant non-governmental organisations such as a strong geological society, which could drive projects like geoconservation, or strong support from the private sector for environmental work. Here, a case is made for the role that established National Geological Surveys, some of which are already involved with retroactive environmental geological work, could play in the forefront of pro-active geoconservation and site protection.
Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle
NASA Technical Reports Server (NTRS)
Gregg, T. K. P.; Yingst, R. A.
2009-01-01
Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.
Mapping Vesta: First Results from Dawn's Survey Orbit
NASA Technical Reports Server (NTRS)
Jaumann, R.; Yingst, A. R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Neukum, G.; Mottola, S.; Keller, H. U.; Nathues, A.; Sierks, H.;
2011-01-01
The geologic objectives of the Dawn Mission [1] are to derive Vesta s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase - the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of approx.3000 km with a beta angle of 10deg-15deg.
Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.
2014-01-01
Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.
Bouligand, C.; Glen, J.M.G.; Blakely, R.J.
2009-01-01
We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal structure of the western United States.
Mapping Io's Surface Topography Using Voyager and Galileo Stereo Images and Photoclinometry
NASA Astrophysics Data System (ADS)
White, O. L.; Schenk, P.
2011-12-01
O.L. White and P.M. Schenk Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058 No instrumentation specifically designed to measure the topography of a planetary surface has ever been deployed to any of the Galilean satellites. Available methods that exist to perform such a task in the absence of the relevant instrumentation include photoclinometry, shadow length measurement, and stereo imaging. Stereo imaging is generally the most accurate of these methods, but is subject to limitations. Io is a challenging subject for stereo imaging given that much of its surface is comprised of volcanic plains, smooth at the resolution of many of the available global images. Radiation noise in Galileo images can also complicate mapping. Paterae, mountains and a few tall shield volcanoes, the only features of any considerable relief, exist as isolated features within these plains; previous research concerning topography measurement on Io using stereo imaging has focused on these features, and has been localized in its scope [Schenk et al., 2001; Schenk et al., 2004]. With customized ISIS software developed at LPI, it is the ultimate intention of our research to use stereo and photoclinometry processing of Voyager and Galileo images to create a global topographic map of Io that will constrain the shapes of local- and regional-scale features on this volcanic moon, and which will be tied to the global shape model of Thomas et al. [1998]. Applications of these data include investigation of how global heat flow varies across the moon and its relation to mantle convection and tidal heating [Tackley et al., 2001], as well as its correlation with local geology. Initial stereo mapping has focused on the Ra Patera/Euboea Montes/Acala Fluctus area, while initial photoclinometry mapping has focused on several paterae and calderas across Io. The results of both stereo and photoclinometry mapping have indicated that distinct topographic areas may correlate with surface geology. To date we have obtained diameter and depth measurements for ten calderas using these DEMs, and we look forward to studying regional and latitudinal variation in caldera depth. References Schenk, P.M., et al. (2001) J. Geophys. Res., 106, pp. 33,201-33,222. Schenk, P.M., et al. (2004) Icarus, 169, pp. 98-110. Tackley, P.J., et al. (2001) Icarus, 149, pp. 79-93. Thomas, P., et al. (1998) Icarus, 135, pp. 175-180. The authors acknowledge the support of the NASA Outer Planet Research and the Planetary Geology and Geophysics research programs.
Geologic Map of the Northern Hemisphere of Vesta
NASA Astrophysics Data System (ADS)
Hiesinger, Harald; Ruesch, Ottaviano; Blewett, Dave T.; Buczkowski, Debra L.; Scully, Jennifer; Williams, Dave A.; Aileen Yingst, R.; Russell, Chris T.; Raymond, Carol A.
2013-04-01
For more than a year, the NASA Dawn mission acquired Framing Camera (FC) images from orbit around Vesta. The surface of the asteroid was completely imaged [1] before Dawn left for its next target, the asteroid Ceres. In an early phase of the mission, the southern and equatorial regions were imaged, allowing the production of several geologic quadrangle maps [2]. During the second High Altitude Mapping Orbit (HAMO-2), the northern hemisphere became illuminated and visible. Here we present the first geologic map of the northern vestan hemisphere, from 21°N to 85°N, derived mainly from HAMO-2 observations. Detailed studies of specific geologic features within this hemisphere are presented elsewhere [e.g., 3,4]. For our geologic map we used high-resolution FC images [5] with ~20 m/pixel from the Low Altitude Mapping Orbit (LAMO), which unfortunately only cover the southern part of the study area (21°N to 45°N). For areas farther north, LAMO images are supplemented with HAMO-2 images, which have a pixel scale of about 70 m/pixel. During the departure phase, images of the north pole area with even lower spatial resolutions were acquired. Due to observational constraints, considerable shadowing is present north of 75°. From these data, an albedo mosaic and a stereo-photogrammetric digital terrain model [6] was produced, which serve as basis for our geologic map. For the geologic mapping at a scale of 1:500,000, all data were incorporated into a Geographic Information System (ArcGIS). We have identified several geologic units within the study area, including cratered highland material (ch) and the Saturnalia Formation (Sf), which is characterized by large-scale ridges and troughs, presumably associated with the south polar Veneneia impact [7]. In addition, we mapped undifferentiated crater material (uc), discontinuous ejecta material (dem), and dark/bright crater material and dark/bright crater ray material (dc/bc and dcr/bcr). We will present a detailed description of the geologic units and their relative stratigraphy [8]. References: [1] Russell C. T. et al. (2012) GSA Ann. Meet., 152-1. [2] Yingst R. A. et al. (2012) EGU, Gen. Ass., 6225. [3] Blewett D. T. et al. (2012) GSA Ann. Meet., 152-9. [4] Scully J. (2012) DPS Meet. 44, #207.08. [5] Sierks H. et al. (2011) Space Sci Rev. [6] Preusker et al. (2012) LPSC 43, #2012. [7] Jaumann et al. (2012) Science Vol. 336, pp. 687-690. [8] Hiesinger H. et al. (2013) LPSC 44, #2582.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu
2018-02-01
Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.
Online, interactive assessment of geothermal energy potential in the U.S
NASA Astrophysics Data System (ADS)
Allison, M. L.; Richard, S. M.; Clark, R.; Coleman, C.; Love, D.; Pape, E.; Musil, L.
2011-12-01
Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online 'mashups,' data integration, and applications. Emphasis is first to make as much information as possible accessible, with a long range goal to make data interoperable through standardized services and interchange formats. Resources may be made available as documents (files) in whatever format they are currently in, converted to tabular files using standard content models, or published as Open Geospatial Consortium or ESRI Web services using the standard xml schema. An initial set of thirty geoscience data content models are in use or under development to define standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps (depth to bedrock), aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from NGDS participating institutions (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive, holistic set of data critical to geothermal energy development. As of August 2011, over 33,000 data resources have been registered in the system catalog, along with scores of Web services to deliver integrated data to the desktop for free downloading or online use. The data exchange mechanism is built on the U.S. Geoscience Information Network (USGIN, http://lab.usgin.org) protocols and standards developed in partnership with the U.S. Geological Survey.
Felger, Tracey J.; Beard, Sue
2010-01-01
Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.
USGS EDMAP Program-Training the Next Generation of Geologic Mappers
,
2010-01-01
EDMAP is an interactive and meaningful program for university students to gain experience and knowledge in geologic mapping while contributing to national efforts to map the geology of the United States. It is a matching-funds grant program with universities and is one of the three components of the congressionally mandated U.S. Geological Survey (USGS) National Cooperative Geologic Mapping Program. Geology professors whose specialty is geologic mapping request EDMAP funding to support upper-level undergraduate and graduate students at their colleges or universities in a 1-year mentor-guided geologic mapping project that focuses on a specific geographic area. Every Federal dollar that is awarded is matched with university funds.
Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B
2016-02-01
Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.
Geologic map of the Ganiki Planitia quadrangle (V-14), Venus
Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna
2011-01-01
The Ganiki Planitia (V-14) quadrangle on Venus, which extends from 25° N. to 50° N. and from 180° E. to 210° E., derives its name from the extensive suite of plains that dominates the geology of the northern part of the region. With a surface area of nearly 6.5 x 106 km2 (roughly two-thirds that of the United States), the quadrangle is located northwest of the Beta-Atla-Themis volcanic zone and southeast of the Atalanta Planitia lowlands, areas proposed to be the result of large scale mantle upwelling and downwelling, respectively. The region immediately south of Ganiki Planitia is dominated by Atla Regio, a major volcanic rise beneath which localized upwelling appears to be ongoing, whereas the area just to the north is dominated by the orderly system of north-trending deformation belts that characterize Vinmara Planitia. The Ganiki Planitia quadrangle thus lies at the intersection between several physiographic regions where extensive mantle flow-induced tectonic and volcanic processes are thought to have occurred. The geology of the V-14 quadrangle is characterized by a complex array of volcanic, tectonic, and impact-derived features. There are eleven impact craters with diameters from 4 to 64 km, as well as four diffuse 'splotch' features interpreted to be the product of near-surface bolide explosions. Tectonic activity has produced heavily deformed tesserae, belts of complex deformation and rifts as well as a distributed system of fractures and wrinkle ridges. Volcanic activity has produced extensive regional plains deposits, and in the northwest corner of the quadrangle these plains host the initial (or terminal) 700 km of the Baltis Vallis canali, an enigmatic volcanic feature with a net length of ~7,000 km that is the longest channel on Venus. Major volcanic centers in V-14 include eight large volcanoes and eight coronae; all but one of these sixteen features was noted during a previous global survey. The V-14 quadrangle contains an abundance of minor volcanic features including individual shield volcanoes and localized fissure eruptions as well as many small annular structures and domes, which often serve as the source for local lava flows. The topographic and geophysical characteristics of the Ganiki Planitia quadrangle are less complex than the surface geology, but they yield equally valuable information about the region’s formation and evolution. Referenced to the mean planetary radius of 6051.84 km, the average elevation in the quadrangle is -0.26±0.86 km (2σ) with a full range of -2.58 km to 1.85 km. The highest 2.5 percent of elevations in the quadrangle (above 0.60 km) are associated primarily with the major tessera blocks and the peaks of a few volcanic edifices, whereas the lowest 2.5 percent (below -1.12 km) mostly occur within corona interiors and in the northwest corner of the quadrangle where the plains begin to merge into the Atalanta Planitia lowlands. At the ~4.6 km/pixel scale of the topography data, the mean point-to-point topographic slope is 0.63° and topographic slopes greater than 2° cover less than 5 percent of the region. Overall, the topography of the Ganiki Planitia quadrangle can be characterized as flat, low lying, and nearly devoid of abrupt topographic variation. Complementing this gentle topography, the geoid anomaly has a generally linear gradient that decreases north-northwest from a high of ~20 m at the southern edge of the quadrangle (the northern border of the Atla Regio anomaly) to a low of -30 to -40 m along the northern edge (Konopliv and others, 1999). The vertical component of the gravity anomaly varies from ~50 mGal to -40 mGal, and integrated analysis of the gravity and topography data indicates that dynamically supported regions and areas of thickened crust are both present within the quadrangle. Because the Ganiki Planitia quadrangle is a plains-dominated lowland area that lies between several major physiographic provinces (namely, Atla Regio, Atalanta Planitia, and Vinmara Planitia), a geologic map of the region may yield insight into a wide array of important problems in Venusian geology. The current mapping effort and analysis complements previous efforts to characterize aspects of the region’s geology, for example stratigraphy near parabolic halo crater sites, volcanic plains emplacement, wrinkle ridges, volcanic feature distribution, volcano deformation, coronae characteristics, lithospheric flexure, and various features along a 30±7.58° N. geotraverse. Our current research focuses on addressing four specific questions. Has the dominant style of volcanic expression within the quadrangle varied in a systematic fashion over time? Does the tectonic deformation within the quadrangle record significant regional patterns that vary spatially or temporally, and if so what are the scales, orientations and sources of the stress fields driving this deformation? If mantle upwelling and downwelling have played a significant role in the formation of Atla Regio and Atalanta Planitia as has been proposed, does the geology of Ganiki Planitia record evidence of northwest-directed lateral mantle flow connecting the two sites? Finally, can integration of the tectonic and volcanic histories preserved within the quadrangle help constrain competing resurfacing models for Venus?
Terrain intelligence Chita Oblast (U.S.S.R.)
,
1943-01-01
The following folio of maps and explanatory tables outlines the principal terrain features of the Chita Oblast. Each map and table is devoted to a specialized set of problems; together they cover such subjects as terrain appreciations, rivers, surface-water and ground-water supplies, construction materials, fuels, suitability for temporary roads and airfields, mineral resources, and geology. These maps and data were complied by the United States Geological Survey.
Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect
NASA Astrophysics Data System (ADS)
Schumer, Rina; Taloni, Alessandro; Furbish, David Jon
2017-03-01
Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.
Geological setting control of flood dynamics in lowland rivers (Poland).
Wierzbicki, Grzegorz; Ostrowski, Piotr; Falkowski, Tomasz; Mazgajski, Michał
2018-04-27
We aim to answer a question: how does the geological setting affect flood dynamics in lowland alluvial rivers? The study area covers three river reaches: not trained, relatively large on the European scale, flowing in broad valleys cut in the landscape of old glacial plains. We focus on the locations where levees [both: a) natural or b) artificial] were breached during flood. In these locations we identify (1) the erosional traces of flood (crevasse channels) on the floodplain displayed on DEM derived from ALS LIDAR. In the main river channel, we perform drillings in order to measure the depth of the suballuvial surface and to locate (2) the protrusions of bedrock resistant to erosion. We juxtapose on one map: (1) the floodplain geomorphology with (2) the geological data from the river channel. The results from each of the three study reaches are presented on maps prepared in the same manner in order to enable a comparison of the regularities of fluvial processes written in (1) the landscape and driven by (2) the geological setting. These processes act in different river reaches: (a) not embanked and dominated by ice jam floods, (b) embanked and dominated by rainfall and ice jam floods. We also analyse hydrological data to present hydrodynamic descriptions of the flood. Our principal results indicate similarity of (1) distinctive erosional patterns and (2) specific geological features in all three study reaches. We draw the conclusion: protrusions of suballuvial bedrock control the flood dynamics in alluvial rivers. It happens in both types of rivers. In areas where the floodplain remains natural, the river inundates freely during every flood. In other areas the floodplain has been reclaimed by humans who constructed an artificial levee system, which protects the flood-prone area from inundation, until levee breach occurs. Copyright © 2018 Elsevier B.V. All rights reserved.
Interactive visualization to advance earthquake simulation
Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.
2008-01-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.
Geology and insolation-driven climatic history of Amazonian north polar materials on Mars
Tanaka, K.L.
2005-01-01
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Chen, K. H.; Cheng, C. C.; Hwang, C.
2016-12-01
A new inversion technique featured by the collocation of hydrological modeling and gravimetry observation is presented in this report. Initially this study started from a project attempting to build a sequence of hydrodynamic models of ground water system, which was applied to identify the supplement areas of alluvial plains and basins along the west coast of Taiwan. To calibrate the decent hydro-geological parameters for the modeling, geological evolution were carefully investigated and absolute gravity observations, along with other on-site hydrological monitoring data were specially introduced. It was discovered in the data processing that the time-varying gravimetrical data are highly sensitive to certain boundary conditions in the hydrodynamic model, which are correspondent with respective geological features. A new inversion technique coined by the term "hydrological tomography" is therefore developed by reversing the boundary condition into the unknowns to be solved. An example of accurate estimate for water storage and precipitation infiltration of a costal alluvial plain Yun-Lin is presented. In the mean time, the study of an anticline structure of the upstream basin Ming-Ju is also presented to demonstrate how a geological formation is outlined when the gravimetrical data and hydrodynamic model are re-directed into an inversion.
Geology and insolation-driven climatic history of Amazonian north polar materials on Mars.
Tanaka, Kenneth L
2005-10-13
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.
Subsurface structures of buried features in the lunar Procellarum region
NASA Astrophysics Data System (ADS)
Wang, Wenrui; Heki, Kosuke
2017-07-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.
National Geothermal Data System: State Geological Survey Contributions to Date
NASA Astrophysics Data System (ADS)
Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.
2012-12-01
In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a variety of visualization software. Web services are ideal for the NGDS data for a number of reasons including that they preserve data ownership in that they are read only and new services can be deployed to meet new requirements without modifying existing applications.
NASA Astrophysics Data System (ADS)
Klath, J. F.; Keller, E. A.
2015-12-01
Coastal areas are often characterized by high population densities in an ever changing, dynamic environment. The world's coasts are often dominated by steeply sloping sea cliffs, the morphology of which reflects rock type, wave erosion, and surface erosion, as well as human activities such changing vegetation, urban runoff, and construction of coastal defenses. The Santa Barbara and Goleta area, with over 17 km of sea cliffs and beaches, extends from Santa Barbara Point west to the hamlet of Isla Vista. A deeper understanding of the local geology and the physical processes generating slope failure and, thus, landward cliff retreat is important for general public safety, as well as future development and planning. Our research objective includes assessment of landslide hazard potential through investigation of previous landslides and how these events relate to various physical variables and characteristics within the surrounding bedrock. How does landslide frequency, volume, and type relate to varying local bedrock and structure? Two geologic formations dominate the sea cliffs of the Santa Barbara area: Monterey shale (upper, middle, and lower) and Monterey Sisquoc shale. Geology varies from hard cemented shale and diatomaceous, low specific gravity shale to compaction shale. Variations in landslide characteristics are linked closely to the geology of a specific site that affects how easily rock units are weathered and eroded by wave erosion, naturally occurring oil and water seeps, burnt shale events, and landslide type and frequency on steeply dipped bedding planes/daylighting beds. Naturally occurring features linked to human processes often weaken bedrock and, thus, increase the likelihood of landslides. We categorize landslide frequency, type, and triggers; location of beach access, drainage pipes, and water; and oil and tar seeps in order to develop suggestions to minimize landslide potential. Lastly, using previously published erosion cliff retreat rates and sea level rise estimates, a map displaying likely position of the coastline by 2100 will be created. This information will be useful to the county of Santa Barbara, California when considering future development and hazard mitigation plans.
Geologic setting of the low-level burial grounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, K.A.; Jaeger, G.K.; Slate, J.L.
1994-10-13
This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.
NASA Astrophysics Data System (ADS)
Garcia, A.; Semken, S. C.; Brandt, E.
2017-12-01
Ethnogeology is the scientific study of human relationships with and knowledge of the Earth system, and is typically investigated within the context of a specific culture. Many indigenous and local systems of environmental and place knowledge incorporate empirical observations and culturally framed interpretations of geological features and processes. Ethnogeological interpretations may differ from those of conventional mainstream geoscience, but they are validated by their direct relevance to long-term cultural and environmental resilience and sustainability, typically in challenging environments. Ethnogeologic findings can enrich geoscientific knowledge bases for further research, and inform place-based geoscience education that has been shown to engage and enrich students from diverse underrepresented minority backgrounds. Ethnogeological research blends methods from field geology with methods from field ethnography: such as participant observation, free listing, participatory mapping, and cultural consensus analysis among other methods from rapid participatory assessment. We report here on an ongoing field study in Puerto Rico (PR) and the Dominican Republic (DR) on ethnogeological knowledge of karst topography, geology, and hydrogeology among local cultural indigenous communities such as the Boricua jíbaro and the Dominican campesino. Applied focused ethnographic fieldwork results suggest a good fit for the cultural consensus model about geological processes among culturally expert consultants in DR (4.604) and PR (4.669), as well as competence average with values of 0.552 and 0.628 respectively. This suggests the existence of a regional cultural model for the domain of karst that is shared between PR and DR populations that reside in or near karst terrain. Additional data in support of the cultural model include stories, analogies, and family history using participant observation, and participatory mapping.
Proxemy Research Grant NAG5-10263 Closeout Report
NASA Technical Reports Server (NTRS)
Stofan, Ellen R.
2002-01-01
Proxemy Research had a grant from NASA to perform science research of upwelling and volcanism on Venus. This was a 5 year Presidential Early Career Award to E. Stofan, entitled "Upwelling and volcanism: Constraints from regional studies and geologic mapping." Here we summarize the scientific progress and accomplishments of this grant. Scientific publications and abstracts of presentations are indicated in the final section. This was a very productive grant and the progress that was made is summarized. Attention is drawn to the publications, abstracts, and talks given in each year. Volcanism and tectonism are the dominant geological processes that have shaped the surface of Venus, as revealed by the Magellan data. However, the development of a global geologic history for Venus has caused considerable debate (e.g., Head and Basilevsky, 1996; Guest and Stofan, 1999). The lack of global time horizons on Venus, such as that provided by impact craters on most bodies and the fossil record on Earth, make developing global stratigraphies for Venus difficult, if not impossible, with current datasets. Before the geologic history of Venus can be determined and used as a constraint on potential lithospheric thickness variations through time, it is necessary to perform detailed stratigraphic studies on a local to regional scale. In addition, detailed studies of specific types of venusian features and terrains, such as coronae, volcanic rises, and large lava flow fields, may help to constrain the lithospheric thickness and its potential variations in time and space. This report describes progress made during the five year award under a Presidential Early Career Award for Scientists and Engineers which allows researchers freedom to explore new areas of research.
Geology of the Woods Hole area, Massachusetts; the story behind the landscape
Hutchinson, D.R.; Schwarzman, Beth
2001-01-01
The geologic story of the Woods Hole area, Cape Cod, Mass., was written by glacial ice during the last ice age and edited by the ocean waves. If you learn to read today's landscape, you can see the fascinating history it records. The features of Cape Cod, from the ponds and cranberry bogs to the gently sloping sandy uplands and rocky, irregular hills to the beaches, result from the glacial processes that built the cape and the marine processes that still shape it. Many geologists since the late 19th century have contributed to telling this story. The U.S. Geological Survey has studied the geology of Cape Cod in order to provide people with objective scientific data that can be applied to wise stewardship of the land and coasts.
Potential Geological Significations of Crisium Basin Revealed by CE-2 Celms Data
NASA Astrophysics Data System (ADS)
Meng, Z.; Wang, H.; Li, X.; Wang, T.; Cai, Z.; Ping, J.; Fu, Z.
2018-04-01
Mare Crisium is one of the most prominent multi-ring basins on the nearside of the Moon. In this study, the regolith thermophysical features of Mare Crisium are studied with the CELMS data from CE-2 satellite. Several important results are as follows. Firstly, the current geological interpretation only by optical data is not enough, and a new geological perspective is provided. Secondly, the analysis of the low TB anomaly combined with the (FeO+TiO2) abundance and Rock abundance suggests a special unknown material in shallow layer of the Moon surface. At last, a new basaltic volcanism is presented for Crisium Basin. The study hints the potential significance of the CELMS data in understanding the geological units over the Moon surface.
McMullen, Katherine Y.; Poppe, Lawrence J.; Danforth, William W.; Blackwood, Dann S.; Winner, William G.; Parker, Castle E.
2015-01-01
Multibeam-bathymetric and sidescan-sonar data, collected by the National Oceanic and Atmospheric Administration in a 114-square-kilometer area of Block Island Sound, southeast of Fishers Island, New York, are combined with sediment samples and bottom photography collected by the U.S. Geological Survey from 36 stations in this area in order to interpret sea-floor features and sedimentary environments. These interpretations and datasets provide base maps for studies on benthic ecology and resource management. The geologic features and sedimentary environments on the sea floor are products of the area’s glacial history and modern processes. These features include bedrock, drumlins, boulders, cobbles, large current-scoured bathymetric depressions, obstacle marks, and glaciolacustrine sediments found in high-energy sedimentary environments of erosion or nondeposition; and sand waves and megaripples in sedimentary environments characterized by coarse-grained bedload transport. Trawl marks are preserved in lower energy environments of sorting and reworking. This report releases the multibeam-bathymetric, sidescan-sonar, sediment, and photographic data and interpretations of the features and sedimentary environments in Block Island Sound, offshore Fishers Island.
A Global Geologic Map of Europa
NASA Astrophysics Data System (ADS)
Janelle Leonard, Erin; Patthoff, Donald Alex; Senske, David A.; Collins, Geoffrey
2017-10-01
Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations.To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (<100 m/px); Band material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes.In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (<10 km) patches of discontinuous chaos material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale.
The First USGS Global Geologic Map of Europa
NASA Astrophysics Data System (ADS)
Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.
2017-12-01
Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (<100 m/px); Band material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (<10 km) patches of discontinuous chaos material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we present the map submitted to the USGS for review.
O'Neill, J. Michael; Lopez, David A.
1985-01-01
The Great Falls tectonic zone, here named, is a belt of diverse northeast-trending geologic features that can be traced from the Idaho batholith in the Cordilleran miogeocline, across thrust-belt structures and basement rocks of west-central and southwestern Montana, through cratonic rocks of central Montana, and into southwestern-most Saskatchewan, Canada. Geologic mapping in east-central Idaho and west-central Montana has outlined a continuous zone of high-angle faults and shear zones. Recurrent fault movement in this zone and strong structural control over igneous intrusion suggest a fundamental tectonic feature that has influenced the tectonic development of the Idaho-Montana area from a least middle Proterozoic time to the present. Refs.
Permafrost on Mars: distribution, formation, and geological role
NASA Technical Reports Server (NTRS)
Nummedal, D.
1984-01-01
The morphology of channels, valleys, chaotic and fretted terrains and many smaller features on Mars is consistent with the hypothesis that localized deterioration of thick layers of ice-rich permafrost was a dominant geologic process on the Martian surface. Such ground ice deterioration gave rise to large-scale mass movement, including sliding, slumping and sediment gravity flowage, perhaps also catastropic floods. In contrast to Earth, such mass movement processes on Mars lack effective competition from erosion by surface runoff. Therefore, Martian features due to mass movement grew to reach immense size without being greatly modified by secondary erosional processes. The Viking Mission to Mars in 1976 provided adequate measurements of the relevant physical parameters to constrain models for Martian permafrost.
On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study
NASA Astrophysics Data System (ADS)
Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.
2016-11-01
This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.
Matthes, Wilbur J.; Sholar, Clyde J.; George, John R.
1992-01-01
This report describes procedures used by the Iowa District sediment laboratory of the U.S. Geological Survey to assure the quality of sediment-laboratory data. These procedures can be used by other U.S. Geological Survey laboratories regardless of size and type of operation for quality assurance and quality control of specific sediment-laboratory processes. Also described are the equipment, specifications, calibration and maintenance, and the protocol for methods used in the analyses of fluvial sediment for concentration or particle size.
NASA Technical Reports Server (NTRS)
Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.
1974-01-01
Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.
Souza, W.R.
1987-01-01
This report documents a graphical display program for the U. S. Geological Survey finite-element groundwater flow and solute transport model. Graphic features of the program, SUTRA-PLOT (SUTRA-PLOT = saturated/unsaturated transport), include: (1) plots of the finite-element mesh, (2) velocity vector plots, (3) contour plots of pressure, solute concentration, temperature, or saturation, and (4) a finite-element interpolator for gridding data prior to contouring. SUTRA-PLOT is written in FORTRAN 77 on a PRIME 750 computer system, and requires Version 9.0 or higher of the DISSPLA graphics library. The program requires two input files: the SUTRA input data list and the SUTRA simulation output listing. The program is menu driven and specifications for individual types of plots are entered and may be edited interactively. Installation instruction, a source code listing, and a description of the computer code are given. Six examples of plotting applications are used to demonstrate various features of the plotting program. (Author 's abstract)
The impact of the structural features of the rock mass on seismicity in Polish coal mines
NASA Astrophysics Data System (ADS)
Patyńska, Renata
2017-11-01
The article presents seismic activity induced in the coal mines of the Upper Silesian Coal Basin (GZW) in relation to the locations of the occurrence of rockbursts. The comparison of these measurements with the structural features of the rock mass of coal mines indicates the possibility of estimating the so-called Unitary Energy Expenditure (UEE) in a specific time. The obtained values of UEE were compared with the distribution of seismic activity in GZW mines. The level of seismic activity in the analysed period changed and depended on the intensity of mining works and diverse mining and geological conditions. Five regions, where tremors occurred (Bytom Trough, Main Saddle, Main Trough, Kazimierz Trough, and Jejkowice and Chwałowice Trough) which belong to various structural units of the Upper Silesia were analyzed. It was found out that rock bursts were recorded only in three regions: Main Saddle, Bytom Trough, and Jejkowice and Chwałowice Trough.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives
Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.
2018-01-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688
Images of Kilauea East Rift Zone eruption, 1983-1993
Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.
1995-01-01
This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.
NASA Technical Reports Server (NTRS)
Hurwitz, D. M.; Head, J. W.
2009-01-01
Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus
Wilmarth, Verl Richard; Healey, D.L.; Clebsch, Alfred; Winograd, I.J.; Zietz, Isadore; Oliver, H.W.
1959-01-01
This report summarizes an interpretation of the geology of Yucca Valley to depths of about 2,300 feet below the surface, the characteristics features of ground water in Yucca and Frenchman Valleys, and the seismic, gravity, and magnetic data for these valleys. Compilation of data, preparation of illustrations, and writing of the report were completed during the period December 26, 1958 to January 10, 1959. Some of the general conclusions must be considered as tentative until more data are available. This work was done by the U.S. Geological Survey on behalf of Albuquerque Operations Office, U.S. Atomic Energy Commission.
NASA Astrophysics Data System (ADS)
Monteys, X.; Guinan, J.; Green, S.; Gafeira, J.; Dove, D.; Baeten, N. J.; Thorsnes, T.
2017-12-01
Marine geomorphological mapping is an effective means of characterising and understanding the seabed and its features with direct relevance to; offshore infrastructure placement, benthic habitat mapping, conservation & policy, marine spatial planning, fisheries management and pure research. Advancements in acoustic survey techniques and data processing methods resulting in the availability of high-resolution marine datasets e.g. multibeam echosounder bathymetry and shallow seismic mean that geological interpretations can be greatly improved by combining with geomorphological maps. Since December 2015, representatives from the national seabed mapping programmes of Norway (MAREANO), Ireland (INFOMAR) and the United Kingdom (MAREMAP) have collaborated and established the MIM geomorphology working group) with the common aim of advancing best practice for geological mapping in their adjoining sea areas in north-west Europe. A recently developed two-part classification system for Seabed Geomorphology (`Morphology' and Geomorphology') has been established as a result of an initiative led by the British Geological Survey (BGS) with contributions from the MIM group (Dove et al. 2016). To support the scheme, existing BGS GIS tools (SIGMA) have been adapted to apply this two-part classification system and here we present on the tools effectiveness in mapping geomorphological features, along with progress in harmonising the classification and feature nomenclature. Recognising that manual mapping of seabed features can be time-consuming and subjective, semi-automated approaches for mapping seabed features and improving mapping efficiency is being developed using Arc-GIS based tools. These methods recognise, spatially delineate and morphologically describe seabed features such as pockmarks (Gafeira et al., 2012) and cold-water coral mounds. Such tools utilise multibeam echosounder data or any other bathymetric dataset (e.g. 3D seismic, Geldof et al., 2014) that can produce a depth digital model. The tools have the capability to capture an extensive list of morphological attributes. The MIM geomorphology working group's strategy to develop methods for more efficient marine geomorphological mapping is presented with data examples and case studies showing the latest results.
Obermeier, S.F.; Jacobson, R.B.; Smoot, J.P.; Weems, R.E.; Gohn, G.S.; Monroe, J.E.; Powars, D.S.
1990-01-01
Many types of liquefaction-related features (sand blows, fissures, lateral spreads, dikes, and sills) have been induced by earthquakes in coastal South Carolina and in the New Madrid seismic zone in the Central United States. In addition, abundant features of unknown and nonseismic origin are present. Geologic criteria for interpreting an earthquake origin in these areas are illustrated in practical applications; these criteria can be used to determine the origin of liquefaction features in many other geographic and geologic settings. In both coastal South Carolina and the New Madrid seismic zone, the earthquake-induced liquefaction features generally originated in clean sand deposits that contain no or few intercalated silt or clay-rich strata. The local geologic setting is a major influence on both development and surface expression of sand blows. Major factors controlling sand-blow formation include the thickness and physical properties of the deposits above the source sands, and these relationships are illustrated by comparing sand blows found in coastal South Carolina (in marine deposits) with sand blows found in the New Madrid seismic zone (in fluvial deposits). In coastal South Carolina, the surface stratum is typically a thin (about 1 m) soil that is weakly cemented with humate, and the sand blows are expressed as craters surrounded by a thin sheet of sand; in the New Madrid seismic zone the surface stratum generally is a clay-rich deposit ranging in thickness from 2 to 10 m, in which case sand blows characteristically are expressed as sand mounded above the original ground surface. Recognition of the various features described in this paper, and identification of the most probable origin for each, provides a set of important tools for understanding paleoseismicity in areas such as the Central and Eastern United States where faults are not exposed for study and strong seismic activity is infrequent.
NASA Astrophysics Data System (ADS)
Goto, J.; Miwa, T.; Tsuchi, H.; Karasaki, K.
2009-12-01
The Nuclear Waste Management Organization of Japan (NUMO), after volunteering municipalities arise, will start a three-staged program for selecting a HLW and TRU waste repository site. It is recognized from experiences from various site characterization programs in the world that the hydrologic property of faults is one of the most important parameters in the early stage of the program. It is expected that numerous faults of interest exist in an investigation area of several tens of square kilometers. It is, however, impossible to characterize all these faults in a limited time and budget. This raises problems in the repository designing and safety assessment that we may have to accept unrealistic or over conservative results by using a single model or parameters for all the faults in the area. We, therefore, seek to develop an efficient and practical methodology to characterize hydrologic property of faults. This project is a five year program started in 2007, and comprises the basic methodology development through literature study and its verification through field investigations. The literature study tries to classify faults by correlating their geological features with hydraulic property, to search for the most efficient technology for fault characterization, and to develop a work flow diagram. The field investigation starts from selection of a site and fault(s), followed by existing site data analyses, surface geophysics, geological mapping, trenching, water sampling, a series of borehole investigations and modeling/analyses. Based on the results of the field investigations, we plan to develop a systematic hydrologic characterization methodology of faults. A classification method that correlates combinations of geological features (rock type, fault displacement, fault type, position in a fault zone, fracture zone width, damage zone width) with widths of high permeability zones around a fault zone was proposed through a survey on available documents of the site characterization programs. The field investigation started in 2008, by selecting the Wildcat Fault that cut across the Laurence Berkeley National Laboratory (LBNL) site as the target. Analyses on site-specific data, surface geophysics, geological mapping and trenching have confirmed the approximate location and characteristics of the fault (see Session H48, Onishi, et al). The plan for the remaining years includes borehole investigations at LBNL, and another series of investigations in the northern part of the Wildcat Fault.
The geological thought process: A help in developing business instincts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, S.A.
1995-09-01
Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences andmore » geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.« less
Wardrop, Nicola Ann; Le Blond, Jennifer Susan
2015-11-01
The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.
The Seabed and Shallow Geology Mapping of the Porcupine Bank, West of Ireland
NASA Astrophysics Data System (ADS)
Thébaudeau, B.; Monteys, X.; McCarron, S. G.
2016-02-01
The "Porcupine Bank" is a bathymetric high of over 40,000 km2 linked to the western shelf of Ireland which lies between 51-54° N and 11-15° W approximately 100 km west of Ireland. Water depths are as shallow as 145 m over the "Porcupine Ridge". The Bank's location on the north eastern fringe of the Atlantic Ocean, in a critical position between the shelf edge and the main land and along the line of the Polar Front, means it may contain significant indications of glacial/interglacial changes in northern hemisphere climate and in North Atlantic Ocean circulation. But it also means that it consists of strategically important marine environments with very likely future developmental pressures. Peer-reviewed publications on the geology of the Bank are very limited and this current state of knowledge will hamper any marine ecosystem research and protection. This paper will describe the first results of a research project aiming at filling the gap of our understanding of the region's shallow geology and subseabed resources and characteristics. As a first step, seabed geomorphology mapping using high resolution MBES and sub bottom data have highlighted a wealth of glacially derived features such as iceberg scours and elongated ridges whose formation could be directly influenced by the presence of ice on or nearby the bank. Other features interpreted as sand waves could help understand relict or modern currents. In addition to these surface features, this paper introduces recent geological mapping of the shallow stratigraphy of the bank using 2D seismic and sub bottom profiler data collected at a high density correlated with recently collected vibro-cores. The seismic units and corresponding lithofacies (some with radiocarbon dates) are consistently described and a regional correlation built.
Modeling the hydrogeophysical response of lake talik evolution
Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre
2014-01-01
Geophysical methods provide valuable information about subsurface permafrost and its relation to dynamic hydrologic systems. Airborne electromagnetic data from interior Alaska are used to map the distribution of permafrost, geological features, surface water, and groundwater. To validate and gain further insight into these field datasets, we also explore the geophysical response to hydrologic simulations of permafrost evolution by implementing a physical property relationship that connects geology, temperature, and ice saturation to changes in electrical properties.
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator)
1972-01-01
The author has identified the following significant results. In the present imagery, obtained during the full foliage of summer and fall, the greatest amount of spectral geology is displayed in the Adirondack region where bedrock geology is strongly linked to topography. Of the four spectral bands imaged, band 5 and 7 provide the most geological information. The boundary between the basement rocks of the Adirondack Dome and the surrounding Lower Paleozoic rocks is well delineated except in the Northwest Lowlands and along parts of the eastern Adirondacks. Within the basement complex, the most prominently displayed features are numerous north-northeast trending faults and topographic lineaments, and arcuate east-west valleys developed in some of the weaker metasedimentary rocks. The majority of the faults and lineaments shown on the geologic map of New York appear in the ERTS-1 imagery. In addition, many new linears were detected, as well as a number of anomalous curvilinear elements, some circular in plan and measuring up to 25 km in diameter, which do not bear any clear relationship to mapped geological contacts. The possibility that it is an astrobleme will be investigated after snow melts in the spring.
A GLOBAL GEOLOGIC MAP OF GANYMEDE
NASA Astrophysics Data System (ADS)
Patterson, G.; Collins, G. C.; Head, J. W.; Pappalardo, R. T.; Prockter, L. M.; Lucchitta, B. K.
2009-12-01
Ganymede is a planet-sized world, the solar system’s largest satellite with a radius of 2631 km. Its physiography, geology, geophysics, surface composition, and evolution are correspondingly planet-like in intricacy. We have completed a global geological map of Ganymede that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This effort has provided a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships.
U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald Gautier; Timothy Klett
2008-12-31
The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment unitsmore » were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.« less
Development of the Plate Tectonics and Seismology markup languages with XML
NASA Astrophysics Data System (ADS)
Babaie, H.; Babaei, A.
2003-04-01
The Extensible Markup Language (XML) and its specifications such as the XSD Schema, allow geologists to design discipline-specific vocabularies such as Seismology Markup Language (SeismML) or Plate Tectonics Markup Language (TectML). These languages make it possible to store and interchange structured geological information over the Web. Development of a geological markup language requires mapping geological concepts, such as "Earthquake" or "Plate" into a UML object model, applying a modeling and design environment. We have selected four inter-related geological concepts: earthquake, fault, plate, and orogeny, and developed four XML Schema Definitions (XSD), that define the relationships, cardinalities, hierarchies, and semantics of these concepts. In such a geological concept model, the UML object "Earthquake" is related to one or more "Wave" objects, each arriving to a seismic station at a specific "DateTime", and relating to a specific "Epicenter" object that lies at a unique "Location". The "Earthquake" object occurs along a "Segment" of a "Fault" object, which is related to a specific "Plate" object. The "Fault" has its own associations with such things as "Bend", "Step", and "Segment", and could be of any kind (e.g., "Thrust", "Transform'). The "Plate" is related to many other objects such as "MOR", "Subduction", and "Forearc", and is associated with an "Orogeny" object that relates to "Deformation" and "Strain" and several other objects. These UML objects were mapped into XML Metadata Interchange (XMI) formats, which were then converted into four XSD Schemas. The schemas were used to create and validate the XML instance documents, and to create a relational database hosting the plate tectonics and seismological data in the Microsoft Access format. The SeismML and TectML allow seismologists and structural geologists, among others, to submit and retrieve structured geological data on the Internet. A seismologist, for example, can submit peer-reviewed and reliable data about a specific earthquake to a Java Server Page on our web site hosting the XML application. Other geologists can readily retrieve the submitted data, saved in files or special tables of the designed database, through a search engine designed with J2EE (JSP, servlet, Java Bean) and XML specifications such as XPath, XPointer, and XSLT. When extended to include all the important concepts of seismology and plate tectonics, the two markup languages will make global interchange of geological data a reality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Landfills at 40 CFR 258.60 and 258.61. Compostible materials means organic substances that decay... water, air, soils, geological features, including subsurface strata, the natural processes and...
NASA Technical Reports Server (NTRS)
Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.
2008-01-01
In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.
SHUTTLE IMAGING RADAR PROVIDES FRAMEWORK FOR SUBSURFACE GEOLOGIC EXPLORATION IN EGYPT AND SUDAN.
Breed, Carol S.; McCauley, John F.; Schaber, Gerald G.
1984-01-01
Shuttle Imaging Radar provides a pictorial framework to guide exploration for mineral resources (potential placers), groundwater sources, and prehistoric archaeological sites in the Western Desert of Egypt and Sudan. Documented penetration by the SIR-A signal of dry surficial sediment to depths of a meter or more revealed bedrock geologic features and networks of former stream valleys otherwise concealed beneath windblown sand, alluvium, and colluvial deposits. 'Radar units' mapped on SIR-A images according to relative brightness and degree of mottling correspond to subsurface geologic and topographic features identified in more than 50 test pits. Petrologic examination of pit samples confirms that a variety of depositional environments existed in this now hyper-arid region before it was mantled by windblown sand sheets and dunes. Wet sand was discovered in two buried valleys shown on the radar images and located in the field with the aid of co-registered maps and Landsat images, and a satellite navigation device. Buried valleys whose streams once traversed mineralized zones are potential sites of placers (gold, tin).
Three Dimensional Simulation of the Baneberry Nuclear Event
NASA Astrophysics Data System (ADS)
Lomov, Ilya N.; Antoun, Tarabay H.; Wagoner, Jeff; Rambo, John T.
2004-07-01
Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.
2006 Compilation of Alaska Gravity Data and Historical Reports
Saltus, Richard W.; Brown, Philip J.; Morin, Robert L.; Hill, Patricia L.
2008-01-01
Gravity anomalies provide fundamental geophysical information about Earth structure and dynamics. To increase geologic and geodynamic understanding of Alaska, the U.S. Geological Survey (USGS) has collected and processed Alaska gravity data for the past 50 years. This report introduces and describes an integrated, State-wide gravity database and provides accompanying gravity calculation tools to assist in its application. Additional information includes gravity base station descriptions and digital scans of historical USGS reports. The gravity calculation tools enable the user to reduce new gravity data in a consistent manner for combination with the existing database. This database has sufficient resolution to define the regional gravity anomalies of Alaska. Interpretation of regional gravity anomalies in parts of the State are hampered by the lack of local isostatic compensation in both southern and northern Alaska. However, when filtered appropriately, the Alaska gravity data show regional features having geologic significance. These features include gravity lows caused by low-density rocks of Cenozoic basins, flysch belts, and felsic intrusions, as well as many gravity highs associated with high-density mafic and ultramafic complexes.
Venus: Preliminary geologic mapping of northern Atla Regio
NASA Technical Reports Server (NTRS)
Nikishin, A. M.; Burba, G. A.
1992-01-01
A preliminary geologic map of C1 sheet 15N197 was compiled according to Magellan data. Northern Atla Regio is dominantly a volcanic plain with numerous volcanic features: radar-bright and -dark flows and spots, shield volcanos, volcanic domes and hills with varied morphology, and coronalike constructions. Tesserae are the oldest terrains semiflooded by plain materials. There are many lineated terrains on this territory. They are interpreted as old, partly buried ridge belts. Lineated terrains have intermediate age between young plains and old tesserae. Ozza Mons and Sapas Mons are the high shield volcanos. The prominent structure of northern Atla Regio is Ganis Chasma rift. The rift dissected the volcanic plain and evolved nearly contemporaneously with Ozza Mons shield volcano. Ganis Chasma rift valley is highly fractured and bounded by fault scarps. There are a few relatively young volcanic features in the rift valley. The rift originated due to 5-10 percent crustal extension and crustal subsidence according to analysis of fracturing and rift valley geometry. Ganis Chasma is characterized by rift shoulder uplifts. Geological structures of Alta Regio and Beta Regio are very similar as assumed earlier.
Impact of Geological Changes on Regional and Global Economies
NASA Astrophysics Data System (ADS)
Tatiana, Skufina; Peter, Skuf'in; Vera, Samarina; Taisiya, Shatalova; Baranov, Sergey
2017-04-01
Periods of geological changes such as super continent cycle (300-500 million years), Wilson's cycles (300-900 million years), magmatic-tectonic cycle (150-200 million years), and cycles with smaller periods (22, 100, 1000 years) lead to a basic contradiction preventing forming methodology of the study of impact of geological changes on the global and regional economies. The reason of this contradiction is the differences of theoretical and methodological aspects of the Earth science and economics such as different time scales and accuracy of geological changes. At the present the geological models cannot provide accurate estimation of time and place where geological changes (strong earthquakes, volcanos) are expected. Places of feature (not next) catastrophic events are the only thing we have known. Thus, it is impossible to use the periodicity to estimate both geological changes and their consequences. Taking into accounts these factors we suggested a collection of concepts for estimating impact of possible geological changes on regional and global economies. We illustrated our approach by example of estimating impact of Tohoku earthquake and tsunami of March 2011 on regional and global economies. Based on this example we concluded that globalization processes increase an impact of geological changes on regional and global levels. The research is supported by Russian Foundation for Basic Research (Projects No. 16-06-00056, 16-32-00019, 16-05-00263A).
McMullen, K.Y.; Poppe, L.J.; Haupt, T.A.; Crocker, J.M.
2009-01-01
The U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) have been working together to interpret sea-floor geology along the northeastern coast of the United States. In 2004, the NOAA Ship RUDE completed survey H11322, a sidescan-sonar and bathymetric survey that covers about 60 square kilometers of the sea floor in western Rhode Island Sound. This report interprets sidescan-sonar and bathymetric data from NOAA survey H11322 to delineate sea-floor features and sedimentary environments in the study area. Paleozoic bedrock and Cretaceous Coastal Plain sediments in Rhode Island Sound underlie Pleistocene glacial drift that affects the distribution of surficial Holocene marine and transgressional sediments. The study area has three bathymetric highs separated by a channel system. Features and patterns in the sidescan-sonar imagery include low, moderate, and high backscatter; sand waves; scarps; erosional outliers; boulders; trawl marks; and dredge spoils. Four sedimentary environments in the study area, based on backscatter and bathymetric features, include those characterized by erosion or nondeposition, coarse-grained bedload transport, sorting and reworking, and deposition. Environments characterized by erosion or nondeposition and coarse-grained bedload transport are located in shallower areas and environments characterized by deposition are located in deeper areas; environments characterized by sorting and reworking processes are generally located at moderate depths.
Conditioning 3D object-based models to dense well data
NASA Astrophysics Data System (ADS)
Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.
2018-06-01
Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.
Stoffer, Philip W.
2005-01-01
This guidebook contains a series of geology fieldtrips with selected destinations along the San Andreas Fault in part of the region that experienced surface rupture during the Great San Francisco Earthquake of 1906. Introductory materials present general information about the San Andreas Fault System, landscape features, and ecological factors associated with faults in the South Bay, Santa Cruz Mountains, the San Francisco Peninsula, and the Point Reyes National Seashore regions. Trip stops include roadside areas and recommended hikes along regional faults and to nearby geologic and landscape features that provide opportunities to make casual observations about the geologic history and landscape evolution. Destinations include the sites along the San Andreas and Calaveras faults in the San Juan Bautista and Hollister region. Stops on public land along the San Andreas Fault in the Santa Cruz Mountains in Santa Clara and Santa Cruz counties include in the Loma Prieta summit area, Forest of Nicene Marks State Park, Lexington County Park, Sanborn County Park, Castle Rock State Park, and the Mid Peninsula Open Space Preserve. Destinations on the San Francisco Peninsula and along the coast in San Mateo County include the Crystal Springs Reservoir area, Mussel Rock Park, and parts of Golden Gate National Recreation Area, with additional stops associated with the San Gregorio Fault system at Montara State Beach, the James F. Fitzgerald Preserve, and at Half Moon Bay. Field trip destinations in the Point Reyes National Seashore and vicinity provide information about geology and character of the San Andreas Fault system north of San Francisco.
Geologic effects on groundwater salinity and discharge into an estuary
Russonielloa, Christopher J.; Fernandeza, Cristina; Bratton, John F.; Banaszakc, Joel F.; Krantzc, David E.; Andresd, Scott; Konikow, Leonard F.; Michaela, Holly A.
2013-01-01
Submarine groundwater discharge (SGD) can be an important pathway for transport of nutrients and contaminants to estuaries. A better understanding of the geologic and hydrologic controls on these fluxes is critical for their estimation and management. We examined geologic features, porewater salinity, and SGD rates and patterns at an estuarine study site. Seismic data showed the existence of paleovalleys infilled with estuarine mud and peat that extend hundreds of meters offshore. A low-salinity groundwater plume beneath this low-permeability fill was mapped with continuous resistivity profiling. Extensive direct SGD measurements with seepage meters (n = 551) showed fresh groundwater discharge patterns that correlated well with shallow porewater salinity and the hydrogeophysical framework. Small-scale variability in fresh and saline discharge indicates influence of meter-scale geologic heterogeneity, while site-scale discharge patterns are evidence of the influence of the paleovalley feature. Beneath the paleovalley fill, fresh groundwater flows offshore and mixes with saltwater before discharging along paleovalley flanks. On the adjacent drowned interfluve where low-permeability fill is absent, fresh groundwater discharge is focused at the shoreline. Shallow saltwater exchange was greatest across sandy sediments and where fresh SGD was low. The geologic control of groundwater flowpaths and discharge salinity demonstrated in this work are likely to affect geochemical reactions and the chemical loads delivered by SGD to coastal surface waters. Because similar processes are likely to exist in other estuaries where drowned paleovalleys commonly cross modern shorelines, the existence and implications of complex hydrogeology are important considerations for studies of groundwater fluxes and related management decisions.
NASA Technical Reports Server (NTRS)
Windolph, J., Jr.; Sutton, J.
1997-01-01
Cryptoblemes are subtle impact shock signatures imprinted by cosmic debris on the crustal surfaces of lunar planetary bodes. These signatures constitute a complex cumulative overprinting of topographic, structural geophysical, and tectonic patterns that have a conspicuous radial centric multiringed symmetry. The geometry and distribution of cryptoblemes on Earth is comparable to the size and density of impact features on lunar planetary surfaces. Analysis of satellite imagery, sea-floor sonar, side-looking radar and aerial photographs of specific sites reveals new criteria for the identification and confirmation of impact-shock signatures. These criteria include joint and foliation patterns with asbestiform minerals, ribbon-quartz, spheroidal weathering, domal exfoliation, pencil shale, and shock spheres, which may originate from hydrocavitation of water-saturated sedimentary rocks. Cryptoblemes may also be associated with breccia pipes, sinkholes, buttes, mesas, and bogs, high-Rn anomalies, nodular concentrations, and earthquake epicenters. Major implications of cryptobleme identification include exploratory targeting of hydrocarbon and mineral deposits and the explanation of their origins. Analysis of known mineral deposits, structural traps and sedimentary basins show a direct correlation with cryptobleme patterns. Significant geologic paradigm shifts related to cryptoblemes include mountain building processes, structural orogenies, induced volcanism, earthquake origins, hydrocarbon diagenesis, formation mineral deposits, continental rifting, and plate movements, magnetic overprinting and local regional, and global geologic extinction and speciation patterns. Two figures provide a comparison between a multiring impact overprint in water and multiring cryptobleme in the U.S. basin range. (Additional information is contained in the original document).
Fan, Zhenxin; Liu, Shaoying; Liu, Yang; Zhang, Xiuyue; Yue, Bisong
2011-03-01
Phylogeographical studies that focus on the southeastern margin of the Tibetan Plateau are limited. The complex terrain and unique geological history make it a particularly unusual region of the Tibetan Plateau. We carried out a phylogeographical study of two rodent species Neodon irene and Apodemus latronum using the mitochondrial cytochrome b gene sequences. High genetic diversities and deep phylogenetic splits were detected in both rodents. Some haplotypes from one sampling region fell into different evolutionary clades, but most haplotypes from the same sampling regions were clustered together with each other. The results of isolation by distance analysis further substantiated that their genetic diversities were structured along geography. Thus, there were high levels of geographical structure for both rodents. Demographic analyses implied a relatively constant population size for all samples of N. irene and A. latronum in history. However, clade B of N. irene and clade 3 of A. latronum experienced population expansions at 105-32 and 156-47 Kya, respectively. Through comparison with previous studies, we suggest the high mitochondrial DNA diversities in them are probably not a species-specific feature, but a common pattern for small mammals in this unique area. Details of the historical demography of these rodents revealed in this study could provide new insights into how rodents and possibly other small mammals in this region responded to the geological and climatic events.
NASA Technical Reports Server (NTRS)
Macdonald, H.; Waite, W. P.; Kaupp, V. H.; Bridges, L. C.; Storm, M.
1983-01-01
Comparisons between LANDSAT MSS imagery, and aircraft and space radar imagery from different geologic environments in the United States, Panama, Colombia, and New Guinea demonstrate the interdependence of radar system geometry and terrain configuration for optimum retrieval of geologic information. Illustrations suggest that in the case of space radars (SIR-A in particular), the ability to acquire multiple look-angle/look-direction radar images of a given area is more valuable for landform mapping than further improvements in spatial resolution. Radar look-angle is concluded to be one of the most important system parameters of a space radar designed to be used for geologic reconnaissance mapping. The optimum set of system parameters must be determined for imaging different classes of landform features and tailoring the look-angle to local topography.
Williams, Lester J.; Dixon, Joann F.
2015-01-01
Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.
HCMM: Soil moisture in relation to geologic structure and lithology, northern California
NASA Technical Reports Server (NTRS)
Rich, E. I. (Principal Investigator)
1979-01-01
The author has identified the following significant results. First-look qualitative geologic evaluation of day- and night-IR images discloses several en echelon linear features extending throughout the central part of the northern coast range in California, across the Mendocino triple junction and into southern Oregon. Preliminary examination of these features with respect to topographic expression, vegetation, sun angle and azimuth, and atmospheric conditions suggests that they may be related to the intracontinental plate boundary (Lake Mountain Fault zone of Herd) of the Humbolt Plate. The linear features, which cut across several climatic zones and differently vegetated regions are not confined to topographic valleys, but cross the ridges and valleys at varying angles. Lithology within the Great Valley Sequence can be detected on a few of the images; however, preliminary evaluation suggests that the thermal banding observed may be a function of sun azimuth or late-day sun angle. Soil moisture, related to lithologic composition cannot be ruled out at this time.
NASA Technical Reports Server (NTRS)
Collins, R. J. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G. J.; Everett, J. R.
1974-01-01
The author has identified the following significant results. ERTS-1 data give exploration geologists a new perspective for looking at the earth. The data are excellent for interpreting regional lithologic and structural relationships and quickly directing attention to areas of greatest exploration interest. Information derived from ERTS data useful for petroleum exploration include: linear features, general lithologic distribution, identification of various anomalous features, some details of structures controlling hydrocarbon accumulation, overall structural relationships, and the regional context of the exploration province. Many anomalies (particularly geomorphic anomalies) correlate with known features of petroleum exploration interest. Linears interpreted from the imagery that were checked in the field correlate with fractures. Bands 5 and 7 and color composite imagery acquired during the periods of maximum and minimum vegetation vigor are best for geologic interpretation. Preliminary analysis indicates that use of ERTS imagery can substantially reduce the cost of petroleum exploration in relatively unexplored areas.
NASA Astrophysics Data System (ADS)
Smit, Karen V.; D'Haenens-Johansson, Ulrika F. S.; Howell, Daniel; Loudin, Lorne C.; Wang, Wuyi
2018-06-01
Zimmi diamonds (Sierra Leone) have 500 million year mantle residency times whose origin is best explained by rapid tectonic exhumation to shallower depths in the mantle, associated with continental collision but prior to kimberlite eruption. Here we present spectroscopic data for a new suite of Zimmi sulphide-bearing diamonds that allow us to evaluate the link between their spectroscopic features and their unusual geological history. Cathodoluminesence (CL) imaging of these diamonds revealed irregular patterns with abundant deformation lamellae, associated with the diamonds' tectonic exhumation. Vacancies formed during deformation were subsequently naturally annealed to form vacancy clusters, NV0/- centres and H3 (NVN0). The brownish-yellow to greenish-yellow colours observed in Zimmi Ib-IaA diamonds result from visible absorption by a combination of isolated substitutional nitrogen ( {N}S^0 ) and deformation-related vacancy clusters. Colour-forming centres and other spectroscopic features can all be attributed to the unique geological history of Zimmi Ib-IaA diamonds and their rapid exhumation after formation.
1985-04-19
Specifics of Geology of Saryshagan Molybdenum- Copper - Porphyry Deposit (Northwestern Balkash Area) (Yu. K. Kudryavtsev, V. V. Izotov, et al...SPECIFICS’OF GEOLOGY OF SARYSHAGAN MOLYBDENUM- COPPER - PORPHYRY DEPOSIT (NORTHWESTERN BALKASH AREA) Moscow IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY... Copper , Lead and Cadmium in Ooze Water of Central Pacific (A. Ye. Kosov, T. P. Demidova; GEOKHIMIYA, No 10, Oct 84) 37 Nickel Minerals in
A multidimensional representation model of geographic features
Usery, E. Lynn; Timson, George; Coletti, Mark
2016-01-28
A multidimensional model of geographic features has been developed and implemented with data from The National Map of the U.S. Geological Survey. The model, programmed in C++ and implemented as a feature library, was tested with data from the National Hydrography Dataset demonstrating the capability to handle changes in feature attributes, such as increases in chlorine concentration in a stream, and feature geometry, such as the changing shoreline of barrier islands over time. Data can be entered directly, from a comma separated file, or features with attributes and relationships can be automatically populated in the model from data in the Spatial Data Transfer Standard format.
Geologic Mapping Results for Ceres from NASA's Dawn Mission
NASA Astrophysics Data System (ADS)
Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.
2017-12-01
NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.
NASA Astrophysics Data System (ADS)
Henry, D.; Mogk, D. W.; Goodwin, C.
2011-12-01
Field work requires cognitive processing on many different levels, and constitutes a powerful and important learning environment. To be effective and meaningful, the context of field work must be fully understood in terms of key research questions, earlier published work, regional geology, geologic history, and geologic processes. Scale(s) of observation and sample selection methods and strategies must be defined. Logistical decisions must be made about equipment needed, points of access, and navigation in the field. Professional skills such as field note-taking, measuring structural data, and rock descriptions must be employed, including appropriate use of field tools. Interpretations of geologic features in the field must be interpreted through recall of concepts from the geologic knowledge base (e.g. crystallization history of igneous rocks interpreted through phase diagrams). Field workers need to be able to self-monitor and self-regulate their actions (metacognitively), and make adjustments to daily plans as needed. The results of field work must be accurately and effectively communicated to other geoscientists. Personal and professional ethics and values are brought to bear as decisions are made about whether or not the work has been satisfactorily completed at a field site. And, all of this must be done against a back drop of environmental factors that affect the ability to do this work (e.g. inclement weather, bears, impassable landscapes). The simultaneous relevance of all these factors creates a challenging, but rewarding environment for learning on many different scales. During our REU project to study the Precambrian rocks in the back country of Yellowstone National Park (YNP), we considered these cognitive factors in designing our project curriculum. To reduce the "novelty space" of the project a website was developed that described the project goals and expected outcomes, introduced primary literature, and alerted students about the physical demands of working in YNP.. Daily field activities were designed to scaffold accrued knowledge by placing specific new experiences in the path of students to sequentially build their own understanding of local geology. Students gained increasing responsibility and autonomy for developing daily research objectives and plans, and for decision-making while in the field. Instructors demonstrated specific field skills, and used "talk-through" approaches to explain what, why, and how we conduct our own investigations. We were particularly interested in helping students make the first inscriptions of their interpretations of nature in field notes, sketches, and maps, and in using embodiment (positioning oneself in space to correctly make observations and collect data) to foster learning. In the course of this study we videotaped students in the field to document the evolution of their field skills. Observations, interviews and surveys of students indicate that students' confidence in their abilities to conduct geologic research in the field increased by 20-40% (Likert scale) in this project. By explicitly addressing cognitive demands, students working in the field can achieve significant learning gains.
Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California
Ponce, David A.; Denton, Kevin M.; Watt, Janet T.
2016-09-12
IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.
Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas
Hudson, Mark R.; Murray, Kyle E.
2003-01-01
This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.
Automated feature extraction and classification from image sources
,
1995-01-01
The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.
Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry
2012-01-01
The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.
Integrating geological archives and climate models for the mid-Pliocene warm period.
Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M
2016-02-16
The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.
The use of mineral crystals as bio-markers in the search for life on Mars
NASA Technical Reports Server (NTRS)
Schwartz, D. E.; Mancinelli, R. L.; Kaneshiro, E. S.
1992-01-01
It is proposed that minerals resulting from biologically controlled mineralization processes be utilized as biomarkers because of their favorable qualities. Universal signatures of life (biomarkers) are discussed in terms of their terrestrial forms and hypothetical Martian counterparts including organics, suites of specific inorganic and organic compounds, and isotopic ratios. It is emphasized that minerals produced under biologic control have morphological and isotopic compositions that are not found in their abiotic counterparts. Other biomarkers are not necessarily indicative of biological origin and are therefore unreliable resources for scientific study. Mineral crystals are also stable over long geological periods, and the minerals from Martian fluvial features can therefore be employed to search for fossils and biomarkers of early biological activity.
Integrating geological archives and climate models for the mid-Pliocene warm period
Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.
2016-01-01
The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640
,
1993-01-01
A map projection is used to portray all or part of the round Earth on a flat surface. This cannot be done without some distortion. Every projection has its own set of advantages and disadvantages. There is no "best" projection. The mapmaker must select the one best suited to the needs, reducing distortion of the most important features. Mapmakers and mathematicians have devised almost limitless ways to project the image of the globe onto paper. Scientists at the U. S. Geological Survey have designed projections for their specific needs—such as the Space Oblique Mercator, which allows mapping from satellites with little or no distortion. This document gives the key properties, characteristics, and preferred uses of many historically important projections and of those frequently used by mapmakers today.
First ERTS-1 results in southeastern France: Geology, sedimentology, pollution at sea
NASA Technical Reports Server (NTRS)
Fontanel, A.; Guillemot, J.; Guy, M.
1973-01-01
Results obtained by four ERTS projects in southeastern France are summarized. With regard to geology, ERTS photos of Western Alps are very useful for tectonic interpretation because large features are clearly visible on these photographs even though they are often hidden by small complicated structures if studied on large scale documents. The 18-day repetition coverage was not obtained, and time-varying sedimentological surveys were impossible. Nevertheless, it was possible to delineate the variations of the shorelines in the Rhone Delta for a period covering the least 8,000 years. Some instances of industries discharging pollutant products at sea were detected, as well as very large anomalies of unknown origin. Some examples of coherent optical processing have been made in order to bring out tectonic features in the Alps mountains.
A new model for tabular-type uranium deposits
Sanford, R.F.
1992-01-01
Tabular-type uranium deposits occur as tabular, originally subhorizontal bodies entirely within reduced fluvial sandstones of Late Silurian age or younger. This paper proposes that belts of tabular-type uranium deposits formed in areas of mixed local and regional groundwater discharge shortly after deposition of the host sediments. The general characteristics of tabular-type uranium deposits indicate that their essential feature was the formation at a density-stratified ground-water interface in areas of local and regional ground-water discharge. Reconstruction of the paleohydrogeology is the key to understanding the formation of these deposits. Geologic ground-water controls that favor discharge, such as the pinch-out of major aquifers, are also favorable for uranium ore. The combination of topographic and geologic features that both cause discharge is most favorable for ore deposition. -from Author
Korneev, Valeri A [Lafayette, CA; Bakulin, Andrey [Houston, TX
2009-10-13
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
A coastal and marine digital library at USGS
Lightsom, Fran
2003-01-01
The Marine Realms Information Bank (MRIB) is a distributed geolibrary [NRC, 1999] from the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution (WHOI), whose purpose is to classify, integrate, and facilitate access to Earth systems science information about ocean, lake, and coastal environments. Core MRIB services are: (1) the search and display of information holdings by place and subject, and (2) linking of information assets that exist in remote physical locations. The design of the MRIB features a classification system to integrate information from remotely maintained sources. This centralized catalogue organizes information using 12 criteria: locations, geologic time, physiographic features, biota, disciplines, research methods, hot topics, project names, agency names, authors, content type, and file type. For many of these fields, MRIB has developed classification hierarchies.
Deep-sea geohazards in the South China Sea
NASA Astrophysics Data System (ADS)
Wu, Shiguo; Wang, Dawei; Völker, David
2018-02-01
Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.
Korneev, Valeri A [LaFayette, CA
2009-05-05
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
Remote Sensing Applied to Geology (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)
Giant boulders and Last Interglacial storm intensity in the North Atlantic
NASA Astrophysics Data System (ADS)
Rovere, Alessio; Casella, Elisa; Harris, Daniel L.; Lorscheid, Thomas; Nandasena, Napayalage A. K.; Dyer, Blake; Sandstrom, Michael R.; Stocchi, Paolo; D'Andrea, William J.; Raymo, Maureen E.
2017-11-01
As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ˜128–116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past “superstorms,” they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.
Giant boulders and Last Interglacial storm intensity in the North Atlantic.
Rovere, Alessio; Casella, Elisa; Harris, Daniel L; Lorscheid, Thomas; Nandasena, Napayalage A K; Dyer, Blake; Sandstrom, Michael R; Stocchi, Paolo; D'Andrea, William J; Raymo, Maureen E
2017-11-14
As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.
Interactive Visualization to Advance Earthquake Simulation
NASA Astrophysics Data System (ADS)
Kellogg, Louise H.; Bawden, Gerald W.; Bernardin, Tony; Billen, Magali; Cowgill, Eric; Hamann, Bernd; Jadamec, Margarete; Kreylos, Oliver; Staadt, Oliver; Sumner, Dawn
2008-04-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.
NASA Technical Reports Server (NTRS)
Watson, K. (Principal Investigator); Hummer-Miller, S.; Knepper, D. H., Jr.; Krohn, M. D.; Podwysocki, M. H.; Pohn, H. H.; Raines, G. L.; Rowan, L. C.
1983-01-01
Heat Capacity Mapping Mission thermal-inertia images of a diversity of terrains and geologic settings were examined in conjunction with topographic, geologic, geophysical, and LANDSAT data. The images were found to have attributes similar to bedrock maps. In the Cascades region, two new features were identified and a method was developed to characterize regional terranes using linear feature data. Two northeast-trending Lineaments were discovered in the Overthrust Belt of Montana and Idaho. The longer of the two extends from the Idaho-Oregon border, through the Idaho batholith and across the Lewis thrust. It coincides, along segments, with mapped faults and an aeromagnetic pattern change. A major lineament crossing the Colorado Plateau and the Southern Rocky Mountians was detected on several thermal-inertial images and evidence was found for the existence of a geologic discontinuity. Vegetation-covered areas in Richfield and the Silver City quadrangle (Arizona and New Mexico) displayed thermal-inertia differences within heavily vegetation areas although no apreciable correlation was found between vegetation cover and thermal inertia. Resistant ridges and knolls have high thermal inertias and thermal-inertia contrasts occurred at lithologic and fault contacts. In the heavy vegetated Pinaleno Mountains, Arizona, a Lithologic unit obscured on LANDSAT MSS data due to the vegetation cover, exhibited a thermal-inertia contrast with its surroundings.
NASA Astrophysics Data System (ADS)
Pour, A. B.; Hashim, M.; Park, Y.
2017-10-01
Geological investigations in Antarctica confront many difficulties due to its remoteness and extreme environmental conditions. In this study, the applications of Landsat-8 data were investigated to extract geological information for lithological and alteration mineral mapping in poorly exposed lithologies in inaccessible domains such in Antarctica. The north-eastern Graham Land, Antarctic Peninsula (AP) was selected in this study to conduct a satellite-based remote sensing mapping technique. Continuum Removal (CR) spectral mapping tool and Independent Components Analysis (ICA) were applied to Landsat-8 spectral bands to map poorly exposed lithologies at regional scale. Pixels composed of distinctive absorption features of alteration mineral assemblages associated with poorly exposed lithological units were detected by applying CR mapping tool to VNIR and SWIR bands of Landsat-8.Pixels related to Si-O bond emission minima features were identified using CR mapping tool to TIR bands in poorly mapped andunmapped zones in north-eastern Graham Land at regional scale. Anomaly pixels in the ICA image maps related to spectral featuresof Al-O-H, Fe, Mg-O-H and CO3 groups and well-constrained lithological attributions from felsic to mafic rocks were detectedusing VNIR, SWIR and TIR datasets of Landsat-8. The approach used in this study performed very well for lithological andalteration mineral mapping with little available geological data or without prior information of the study region.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.
1983-01-01
The utility of shuttle imaging radar (SIR-A) data was evaluated in several geological and environmental contexts. For the Ozark Plateau of southern Missouri, SIR-A data were of little use in mapping structural features, because of generally uniform returns. For western Illinois, little was to be gained in terms of identifying land use categories by examining differences between overlapping passes. For southern Australia (Koonamore Station), information ion vegetation types that was not obtainable from LANDSAT MSS data alone was obtained. Specifically, high SIR-A returns in the Australian site were found to correlate with locations where shrubs increase surface roughness appreciably. The Australian study site results demonstrate the synergy of acquiring spectral reflectance and radar data over the same location and time. Such data are especially important in that region, since grazing animals have substantially altered and are continuing to alter the distribution of shrublands, grasslands, and soil exposures. Periodic, synoptic acquisition of MSS and SAR data would be of use in monitoring the dynamics of land-cover change in this environment.
Possible sea sediments due to glaciofluvial activity in Elysium Planitia, Mars
NASA Astrophysics Data System (ADS)
Nussbaumer, J.
Observations of fluvial morphologies in southern Elysium Planitia strongly supports the hypothesis that water substantially affected this region during the relatively recent geologic past. As of yet, however, the extent of a standing body of water has been speculative. The observation of zig-zag features potentially analogous to those observed near the Wadden Sea on Earth [see 1] may help show in more detail the origin, activity, and fate of water in this region of Mars. These terrestrial analogs could constrain environmental scenarios concerning the formation of these features. We present a geomorphologic map of central Elysium Planitia, that aids in our interpretation of potentially site-specific depositional/erosional morphologies. Positive relief zig-zag features within the Medusae Fossae Formation (Themis Image V05875001) resemble similar structures on Earth observed at shorelines of flat regions. Glaciofluvial activity is indicated by linear features resembling straight glacial flutings, which could form aeolian yardangs subsequently. The flutings are associated with branches of inverted fluvial channels (Images Themis V05588002, MOC e1800307). Their excavated positive relief (height ~40 m) indicates, that the adjacent material was eroded by sublimation or aeolian activity. The channels possibly resemble ice marginal channels. A high resolution Digital Terrain Model of one of the channels suggests, that one channel is possibly running upslope. Fluvial processes could have operated at one location at one time, and glacial processes at another location at another time [2]. A glacial drainage system [see 3] is a possible terrestrial analog for one inverted fluvial channel on Mars (Themis Image V05875001). Flutings occur on the foreland of many glaciers and their length may provide important evidence for rapid advance over substantial distances. Flutings are the product of subglacial erosion and transport processes [4]. By assigning the different environmental conditions to their geographic and stratigraphic positions, we intend to develop a geologic history of the central Elysium region. Ackowledgements for helpful contributions: D. Burr, J. Skinner, R. Williams References: [1] Tomei, K. (2004), Scriptum Publishers, 312 pp. [2] Burr et al. (2006) LPS XXXVII, #1367. [3] Evans, D. (2005), Hodder Arnold, 544pp. [4] Sharp M. J. (1984) Journal of Glaciology 82-93.
NASA Technical Reports Server (NTRS)
Cavelier, C.; Scanvic, J. Y.; Weecksteen, G.; Zizerman, A.
1973-01-01
A preliminary study of the MSS imagery of a sedimentary basin whose structure is regular is reported. Crops and natural vegetation are distributed all over the site located under temperate climate. Ground data available concern plant species geology and tectonic and are correlated with results from ERTS 1 imagery. This comparison shows a good correlation. The main geological units are detected or enhanced by way of agricultural land use and/or natural vegetation. Alluvial deposits are outlined by vegetation grass land and poplar trees. Some spatial relationship of geostructures, suspected until now, are identified or extended in associating results from different spectral bands.
Fractals in geology and geophysics
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1989-01-01
The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.
Field trip guidebook to the hydrogeology of the Rock-Fox River basin of Southeastern Wisconsin
Holt, C. L. R.; Cotter, R.D.; Green, J.H.; Olcott, P.G.
1970-01-01
On this trip we will examine some hydrogeologic characteristics of glacial features and emphasize ground-water management within the Rock-Fox River basin. Field stops will include the hydrogeology of a classical glacial terrane--the Kettle moraine--and the management of ground-water resources for industrial, municipal, agricultural, and fish-culture purposes. Descriptions of the geology, soils, water availability and characteristics, water quality, water use, and water problems within the basin are given in the accompanying U.S. Geological Survey Hydrologic Atlas (HA-360). This atlas is a product of the cooperative program of University Extension--the University of Wisconsin Geological and Natural History Survey.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Barbosa, M. P.; Veneziani, P.
1982-01-01
The efficiency of some criteria developed for the utilization of small scale and low resolution remote sensing products to map geological and structural features was demonstrated. Those criteria were adapted from the Logical Method of Photointerpretation which consists of textural qualitative analysis of landforms and drainage net patterns. LANDSAT images of channel 5 and 7, 4 LANDSAT-RBV scenes, and 1 radar mosiac were utilized. The region of study is characterized by supracrustal metassediments (quartzites and micaschist) folded according to a "zig-zag" pattern and gnaissic basement. Lithological-structural definition was considered outstanding when compared to data acquired during field work, bibliographic data and geologic maps acquired in larger scales.
Mapping of the Culann-Tohil Region of Io
NASA Technical Reports Server (NTRS)
Turtle, E. P.; Keszthelyi, L. P.; Jaeger, W. L.; Radebaugh, J.; Milazzo, M. P.; McEwen, A. S.; Moore, J. M.; Schenk, P. M.; Lopes, R. M. C.
2003-01-01
The Galileo spacecraft completed its observations of Jupiter's volcanic moon Io in October 2001 with the orbit I32 flyby, during which new local (13-55 m/pixel) and regional (130-400 m/pixel) resolution images and spectroscopic data were returned of the antijovian hemisphere. We have combined a I32 regional mosaic (330 m/pixel) with lower-resolution C21 color data (1.4 km/pixel, Figure 1) and produced a geomorphologic map of the Culann-Tohil area of this hemisphere. Here we present the geologic features, map units, and structures in this region, and give preliminary conclusions about geologic activity for comparison with other regions to better understand Io's geologic evolution.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.
Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J
2017-03-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.
The large impact process inferred from the geology of lunar multiring basins
NASA Technical Reports Server (NTRS)
Spudis, Paul D.
1992-01-01
The nature of the impact process has been inferred through the study of the geology of a wide variety of impact crater types and sizes. Some of the largest craters known are the multiring basins found in ancient terrains of the terrestrial planets. Of these features, those found on the Moon possess the most extensive and diverse data coverage, including morphological, geochemical, geophysical, and sample data. The study of the geology of lunar basins over the past 10 years has given us a rudimentary understanding of how these large structures have formed and evolved. The topics covered include basin morphology, basin ejecta, basin excavation, and basin ring formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, J.M.; Garland, P.A.; White, M.B.
This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location,more » quadrangle name, geoformational feature, and keyword.« less
Multilingual Maps of the Terrestrial Planets and their Moons: the East and Central European Edition
NASA Astrophysics Data System (ADS)
Hargitai, H.; Berczi, Sz.
A series of Multilingual planetary maps has been published by the Cosmic Materials Space Research Group of the Eötvös Loránd University (Budapest, Hungary) with consultations by Russian and German colleagues. The maps are a result of a cooperation of MIIGAiK (which offered the base maps), ELTE, the Copernicus Observatory and Planetarium in Brno, the Zagreb Astronomical Observatory, the Jagellonian University Observatory, the Tectonics and Geological Cartography Section of the Faculty of Geology at Warsaw University and the University of Architecture, Civil Engeneering and Geodesy in Sofia. The series has been initiated by the International Cartographic Association (ICA), Commission on Planetary Cartography (Shingareva et al. 2006). The now complete series has been published from 2001 to 2006: Mars (2001), Venus (2003), Moon (2003), Mercury (2004) and Phobos and Deimos (2006). (Hargitai et al 2001-2006) These maps are more than outreach posters but less than maps for scientific purposes. These give a good overview of the topography and geology of the planets in a global to regional scale. They contain multilingual information concerning planetary science results and specific characteristics of the planetary body relief, placed on the lower margins of the front sides of the maps and the whole back side (geography, geology, stratigraphy, history of discovery and full index of names). These texts appear in Czech, Bulgarian, Hungarian, Croatian, Polish and English. In some cases it was the first time that a particular term (and its definition) was translated into one of these Central European languages. After compiling the first four maps it can be concluded that such work can effectively draw the attention of earth scientists to the specific features - and the mere existence - of other planetary bodies by simply discussing the translation of their terminology. Apart from circulating the maps in classrooms, this might be the most important scientific result of this edition. A new, improved edition of the Venus Map was made in Polish and Hungarian for 1 use in the recent Venus transit events. In this map, the visual appearance has been modified: the original pencil drawing was mixed with actual radar image patches and vector symbols. The new edition uses symbols for features which would otherwise be too small for the representation at the given scale. For the improvement of the overall "3D" appearance, a limb darkening shading method was used. For the impact craters radar images were used instead of the drawing, which represents their actual ejecta characteristics more realistically. Lava channels are shown by yellow lines that follow the meanderings of the channels. The same method was used for fossae. Some lava flows that appear in the radar images are also shown. The elevated terrae got a darker brownish hue, while lower planitiae (plains) are shown in a light orange resulting in a "warm/hot" appereance. The locations of some of the smaller geologic hot spots" ("ticks", farra etc.) are also shown. We have added several new names to the nomenclature appearing on the map and used different font faces for the different features, taking terrestrial physical geographic maps as samples. Wherever possible, the names appear parallel to the latitude grid. The legend got more space and contains not only basic (morphologic) features defined with Latin terms by IAU, but also other features or landscape types which are only described and discussed in planetary science publications. In the legend, not only official" IAU definitions are included, but also the morphologic description and geologic interpretation. After finishing the series we have started to update the maps and made a survey amongst students about the usability of the maps. As a result, we found that non- professionals expect maps to use Earth map standards and conventions, for example they looked for mountain peak heights and familiar symbols. We have re-designed the maps and added more details. We also look for a new color-code, since the natural terrestrial map colors scheme can not be used here: colors like blue or green can be misinterpreted easily. The colors on a terrestrial topographic map use a color system that reflects general vegetation cover (green) and the hydrologic system (blue). Part of this color system, however, can also be found in nature: in yellowing leaves (green-yellow-brown). On Mars or the Moon we try to find a color system that reflect the general colors of these planets but also allows discretion of the colors that reflect height or/and terrain type. The maps are available via internet for free pdf download at http://planetologia.elte.hu. References: Hargitai H. I., Rükl A., Gabzdyl P., Roša D., Kundera T., Marjanac T., Ozimkowsky W., Peneva E., Bandrova T., Oreshina L. S., Baeva L. Y, Krasnopevtseva B. V, Shingareva K. B. (2001-2006) Maps of Mars, Venus, Mercury, Moon, Phobos and Deimos, Central European Edition. Budapest 2 Shingareva K. B., J. Zimbelman, M. Buchroithner, H. I. Hargitai (2006): The Realization of ICA Commission Projects on Planetary Cartography Cartographica Volume 40, issue 4. 3
ERIC Educational Resources Information Center
Johnson, Janice K.
1973-01-01
Discusses the planning, construction, use, and maintenance of a nature trail. Ideal for demonstrating interrelationships between plants and animals, conservation practices, wildlife management, plant succession, forestry, geologic features and other scientific phenomena. (JR)
Advances in planetary geology, volume 2
NASA Technical Reports Server (NTRS)
1986-01-01
This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.
Geologic Map of Lassen Volcanic National Park and Vicinity, California
Clynne, Michael A.; Muffler, L.J. Patrick
2010-01-01
The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (<3.5 m.y.) are less common. Paleozoic and Mesozoic rocks are inferred to underlie the volcanic deposits (Jachens and Saltus, 1983), but the nearest exposures of pre-Tertiary rocks are 15 km to the south, 9 km to the southwest, and 12 km to the west. Diller (1895) recognized the young volcanic geology and produced the first geologic map of the Lassen area. The map (sheet 1) builds on and extends geologic mapping by Williams (1932), Macdonald (1963, 1964, 1965), and Wilson (1961). The Lassen Peak area mapped by Christiansen and others (2002) and published in greater detail (1:24,000) was modified for inclusion here. Figure 2 (sheet 3) shows the mapping credit for previous work; figure 3 (sheet 3) shows locations discussed throughout the text. A CD-ROM entitled Database for the Geologic Map of Lassen Volcanic National Park and Vicinity, California accompanies the printed map (Muffler and others, 2010). The CD-ROM contains ESRI compatible geographic information system data files used to create the 1:50,000-scale geologic map, both geologic and topographic data and their associated metadata files, and printable versions of the geologic map and pamphlet as PDF formatted files. The 1:50,000-scale geologic map was compiled from 1:24,000-scale geologic maps of individual quadrangles that are also included in the CD-ROM. It also contains ancillary data that support the map including locations of rock samples selected for chemical analysis (Clynne and others, 2008) and radiometric dating, photographs of geologic features, and links to related data or web sites. Data contained in the CD-ROM are also available on this Web site. The southernmost Cascade Range consists of a regional platform of basalt and basaltic andesite, with subordinate andesite and sparse dacite. Nested within these regional rocks are 'volcanic centers', defined as large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basalt to rhyolite, but dominated by andesite and dacite. Volcanic centers are produced by the focusing of basaltic flux from the mantle and resultant enhanced interaction of mafic magma with the crust. Collectively, volcanic centers mark the axis of the southernmost Cascade Range. The map area includes the entire Lassen Volcanic Center, parts of three older volcanic centers (Maidu, Dittmar, and Latour), and the products of regional volcanism (fig. 4, sheet 3). Terminology used for subdivision of the Lassen Volcanic Center has been modified from Clynne (1984, 1990).
NASA Astrophysics Data System (ADS)
Clason, C.; Holmlund, P.; Applegate, P. J.; Strömberg, B.
2012-12-01
Inclusion of surface-to-bed meltwater transfer in the ice sheet model SICOPOLIS may help explain enigmatic erosional features, remnant of the last-glacial Scandinavian Ice Sheet (SIS), off Sweden's east coast. Modelling of ice sheets has largely neglected specific transfer of meltwater from the ice surface to the subglacial system, yet numerous studies on Greenland reveal dynamic response to surface meltwater generation and lake drainages, alluding to the importance of meltwater transfer for ice sheet response to climate change. Geologic evidence suggests the SIS experienced a number of oscillations during its evolution, characterised by variability in areas of fast flow, likely driven by changes in the thermal regime and fluctuating basal water pressure. SICOPOLIS accounts for polythermal conditions by applying a Weertman-type sliding law where basal ice is temperate. Furthermore, a first approximation of the surface meltwater effect on basal sliding is implemented within the SICOPOLIS Greenland domain, dependent on ice thickness and runoff. Field studies within the Swedish Archipelago have revealed numerous meltwater erosion features, including polished flutes. These flutes are deeper than the glacial striations in the area, and are both younger than and oriented differently to the youngest striae. Significant quantities of meltwater would have been necessary to erode such features, and large deposits of silt and clay in the surrounding area reinforce that meltwater was in good supply. Given the scattered distribution of polished fluting sites, access of meltwater to the bed through fracture penetration and lake drainage may have been instrumental in the localised nature of the sites. Driven by the geological evidence, SICOPOLIS is modified to include the surface meltwater effect within the Scandinavian domain. We aim to evaluate the role of meltwater transfer on the evolution of the SIS during the Weichselian, with particular focus on the area of the theorised Baltic Ice Stream.
NASA Astrophysics Data System (ADS)
Ryan, Jeffrey; De Paor, Declan
2016-04-01
Engaging undergraduates in discovery-based research during their first two years of college was a listed priority in the 2012 Report of the USA President's Council of Advisors on Science and Technology (PCAST), and has been the focus of events and publications sponsored by the National Academies (NAS, 2015). Challenges faced in moving undergraduate courses and curricula in this direction are the paired questions of how to effectively provide such experiences to large numbers of students, and how to do so in ways that are cost- and time-effiicient for institutions and instructional faculty. In the geosciences, free access to of a growing number of global earth and planetary data resources and associated visualization tools permits one to build into introductory-level courses straightforward data interrogation and analysis activities that provide students with valuable experiences with the compilation and critical investigation of earth and planetary data. Google Earth provides global Earth and planetary imagery databases that span large ranges in resolution and in time, permitting easy examination of earth surface features and surface features on Mars or the Moon. As well, "community" data sources (i.e., Gigapan photographic collections and 3D visualizations of geologic features, as are supported by the NSF GEODE project) allow for intensive interrogation of specific geologic phenomena. Google Earth Engine provides access to rich satellite-based earth observation data, supporting studies of weather and related student efforts. GeoMapApp, the freely available visualization tool of the Interdisciplinary Earth Data Alliance (IEDA), permits examination of the seafloor and the integration of a range of third-party data. The "Earth" meteorological website (earth.nullschool.net) provides near real-time visualization of global weather and oceanic conditions, which in combination with weather option data from Google Earth permits a deeper interrogation of atmospheric conditions. In combination, these freely accessible data resources permit one to transform general- audience geoscience courses into extended investigations, in which students discover key information about the workings of our planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichlacz, Paul Louis; Orr, Brennan
2002-08-01
The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual modelsmore » of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow and contaminant transport at the INEEL that have been developed from extensive geohydrologic studies conducted during the last 50 years.« less
NASA Astrophysics Data System (ADS)
Condit, C. D.; Mninch, M.
2012-12-01
The Dynamic Digital Map (DDM) is an ideal vehicle for the professional geologist to use to describe the geologic setting of key sites to the public in a format that integrates and presents maps and associated analytical data and multimedia without the need for an ArcGIS interface. Maps with field trip guide stops that include photographs, movies and figures and animations, showing, for example, how the features seen in the field formed, or how data might be best visualized in "time-frame" sequences are ideally included in DDMs. DDMs distribute geologic maps, images, movies, analytical data, and text such as field guides, in an integrated cross-platform, web enabled format that are intuitive to use, easily and quickly searchable, and require no additional proprietary software to operate. Maps, photos, movies and animations are stored outside the program, which acts as an organizational framework and index to present these data. Once created, the DDM can be downloaded from the web site hosting it in the flavor matching the user's operating system (e.g. Linux, Windows and Macintosh) as zip, dmg or tar files (and soon as iOS and Android tablet apps). When decompressed, the DDM can then access its associated data directly from that site with no browser needed. Alternatively, the entire package can be distributed and used from CD, DVD, or flash-memory storage. The intent of this presentation is to introduce the variety of geology that can be accessed from the over 25 DDMs created to date, concentrating on the DDM of the Springerville Volcanic Field. We will highlight selected features of some of them, introduce a simplified interface to the original DDM (that we renamed DDMC for Classic) and give a brief look at a the recently (2010-2011) completed geologic maps of the Springerville Volcanic field to see examples of each of the features discussed above, and a display of the integrated analytical data set. We will also highlight the differences between the classic or DDMCs and the new Dynamic Digital Map Extended (DDME) designed from the ground up to take advantage of the expanded connectedness this redesigned program will accommodate.
Leverage and Delegation in Developing an Information Model for Geology
NASA Astrophysics Data System (ADS)
Cox, S. J.
2007-12-01
GeoSciML is an information model and XML encoding developed by a group of primarily geologic survey organizations under the auspices of the IUGS CGI. The scope of the core model broadly corresponds with information traditionally portrayed on a geologic map, viz. interpreted geology, some observations, the map legend and accompanying memoir. The development of GeoSciML has followed the methodology specified for an Application Schema defined by OGC and ISO 19100 series standards. This requires agreement within a community concerning their domain model, its formal representation using UML, documentation as a Feature Type Catalogue, with an XML Schema implementation generated from the model by applying a rule-based transformation. The framework and technology supports a modular governance process. Standard datatypes and GI components (geometry, the feature and coverage metamodels, metadata) are imported from the ISO framework. The observation and sampling model (including boreholes) is imported from OGC. The scale used for most scalar literal values (terms, codes, measures) allows for localization where necessary. Wildcards and abstract base- classes provide explicit extensibility points. Link attributes appear in a regular way in the encodings, allowing reference to external resources using URIs. The encoding is compatible with generic GI data-service interfaces (WFS, WMS, SOS). For maximum interoperability within a community, the interfaces may be specialised through domain-specified constraints (e.g. feature-types, scale and vocabulary bindings, query-models). Formalization using UML and XML allows use of standard validation and processing tools. Use of upper-level elements defined for generic GI application reduces the development effort and governance resonsibility, while maximising cross-domain interoperability. On the other hand, enabling specialization to be delegated in a controlled manner is essential to adoption across a range of subdisciplines and jurisdictions. The GeoSciML design team is responsible only for the part of the model that is unique to geology but for which general agreement can be reached within the domain. This paper is presented on behalf of the Interoperability Working Group of the IUGS Commission for Geoscience Information (CGI) - follow web-link for details of the membership.
NASA Astrophysics Data System (ADS)
Crown, D. A.; Yingst, R. A.; Mest, S. C.; Platz, T.; Williams, D. A.; Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Hoffmann, M.; Schäfer, M.; Marchi, S.; De Sanctis, M. C.; Russell, C.; Raymond, C. A.
2015-12-01
We are conducting a geologic mapping investigation of the Ac-H-14 Yalode Quadrangle (21-66°S, 270-360°E) of Ceres to examine its surface geology and geologic history. At the time of this writing, geologic mapping has been performed on Dawn Framing Camera (FC) mosaics from the late Approach phase (up to 1.3 km/px) and Survey orbit (415 m/px), including clear filter and color images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by the Low Altitude Mapping Orbit (35 m/px) starting in December 2015. The Yalode Quadrangle is dominated by the ~300-km diameter impact basin Yalode and includes rugged and smooth terrains to the east. Yalode basin has a variably preserved rim, which is continuous and sharply defined to the north/northwest and is irregular or degraded elsewhere, and may have an interior ring structure. The basin floor includes hummocky and smooth areas (some bounded by scarps), crater chains, and a lineated zone. High-resolution images will be used to search for volcanic features on the basin floor and in association with basin structures. Yalode basin and its floor deposits appear to have been strongly affected by the Urvara impact to the west. Impact craters in Yalode Quadrangle display a range of preservation states. Degraded features, including Yalode basin and numerous smaller craters, exhibit subdued rims, lack discrete ejecta deposits, and have infilled interiors. More pristine features (including the large unnamed basin in the SE corner of the quadrangle and craters on Yalode basin floor) have well-defined, quasi-circular forms with prominent rims and in some cases discernible ejecta. Some of these craters have bowl-shaped interiors and others contain hills or mounds on their floors. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, MPG, and DLR.
Geological map of parts of the state of Sao Paulo based on LANDSAT images. [Brazil
NASA Technical Reports Server (NTRS)
Dejususparada, N. (Principal Investigator); Amaral, G.; Liu, C. C.; Filho, R. A.
1979-01-01
The author has identified the following significant results. Interpretation of LANDSAT images revealed the subdivision of the Bauru formation into three distinct lithofacies. Delineation of structural features yielded new information on paleoenvironmental reconstitution and hydrogeology. Structural features and photogeological units were revealed in the precambrian basement at the eastern portion of the state.
Students Engaging the Public in Exciting Discoveries by NASA's MESSENGER Mission
NASA Astrophysics Data System (ADS)
Hallau, K. G.; Morison, J.; Schuele, H.
2012-12-01
In March 2011, NASA's MESSENGER spacecraft entered into orbit around Mercury, the closest planet to the Sun. As the first mission to orbit and study Mercury in depth, MESSENGER sought to answer six primary scientific questions: why is Mercury so dense; what is the geologic history of Mercury; what is the nature of Mercury's magnetic field; what is the structure of Mercury's core; what are the unusual materials at Mercury's poles; and what volatiles are important at Mercury? In the first year of orbit, MESSENGER answered all of these questions, and also made several surprising discoveries. Student interns working with the MESSENGER Education and Public Outreach (EPO) team are using MESSENGER Mosaic Postcards (MPC) in both print and digital formats to present this new information to a broad audience. These MPCs, in conjunction with the rest of the MESSENGER EPO tools, present a unified and global resource for the public. By creating this resource in a variety of media, from printable cards to interactive features on the EPO website (http://www.messenger-education.org/), the EPO team can reach a larger audience, further the goal of the MPC project to share newly discovered features and phenomena with the general public, and thereby generate increased interest in and excitement about science and planetary exploration. One side of each MPC shows a MESSENGER image of a portion of Mercury's surface, and together the postcards can be arranged to form a complete image of the planet. On the reverse side of some cards is information pertaining to an item of interest in view on the image-side. One of us (physics undergraduate JEM) researches interesting features on the surface of Mercury and creates descriptions for the informational side of the postcards, and another (computer science undergraduate HCS) creates the digital versions of cards and associated resources for the Surface Interactive, an interactive tool on the MESSENGER EPO website. Postcards already in distribution address topics such as craters with pyroclastic deposits, rayed craters, crater superposition, dark materials on Mercury, smooth plains, and lobate scarps. As MESSENGER continues its orbital study of Mercury, ever more exciting and surprising data are being returned, and from them new MPCs are being produced. Several of these MPCs focus on specific geologic features of Mercury, including the Caloris basin, one of the largest impact basins in the solar system; Pantheon Fossae, a mysterious set of radial troughs; and Raditladi, a comparatively young, double-ringed impact basin. Moreover, discoveries about Mercury extend beyond geologic features. Newly produced MPCs also explain how MESSENGER used gravity assists of Earth, Venus, and Mercury to succeed in its orbit insertion and how the probe's eccentric orbit protects the spacecraft and instruments from heat re-radiated from Mercury's surface. New information regarding Mercury's magnetic field, magnetosphere, and exosphere are also intriguing topics to be presented in future MPCs.
NASA Astrophysics Data System (ADS)
Güngör, Talip; Hasözbek, Altuǧ; Akal, Cüneyt; Mertz-Kraus, Regina; Peştemalci Üregel, Reyhan
2016-04-01
The Bornova Flysch Zone comprises an olistostrome-melange situated NE-SW direction between the Izmir Ankara Suture Zone and the Menderes Massif. The Bornova Flysch Zone is mainly composed of slightly deformed Late Cretaceous to Paleocene sandstone and shale with Mesozoic limestone and oceanic crustal associations. These large-scale blocks in the matrix of the Bornova Flysch Zone are mostly defined as limestone, basalt, serpentinite and radiolarian cherts. In this study, granitic bodies, situated in the Bornova Flysch Zone, named as Kavacik leucogranite is examined for the first time, in terms its geological features and its U-Pb zircon crystallization ages. Kavacik leucogranite displays a typical granitic texture and its composition indicates ranging between granitic to granodioritic in composition with lack of mafic minerals. The geochemical features of the granite indicate the I-type and subalkaline nature of the granitic body. The geochemical signatures of the Kavacik granite points out Volcanic Arc Granitoids as similarly seen in Karaburun granite. U-Pb zircon LA ages were also obtained from the Kavacik granite ranging between 224.5 ± 2.0 Ma and 230.0 ± 2.8 Ma. Early Triassic zircon ages are also previously observed in the Karaburun Peninsula (Karaburun Granite) and the Menderes Massif (Odemis-Kiraz Submassif). The initial geological boundary relation of the Kavacik Leucogranite is not clear in the field and likely displays tectonic boundary features in the matrix of the Bornova Flysch Zone. Overall, the geochemical features of the Kavacik leucogranite and similar leucomagmatic bodies in the Western Anatolia points out the subduction-related tectonic setting is favorable during the Triassic time.
NASA Astrophysics Data System (ADS)
Gomez, C.
2018-04-01
From feature recognition to multiscale analysis, the human brain does this computation almost instantaneously, but reproducing this process for effective computation is still a challenge. Although it is a growing field in computational geomorphology, there has been only limited investigation of those issues on volcanoes. For the present study, we investigated Miyakejima, a volcanic island in the Izu archipelago, located 200 km south of Tokyo City (Japan). The island has experienced numerous Quaternary and historical eruptions, which have been recorded in details and therefore provide a solid foundation to experiment remote-sensing methods and compare the results to existing data. In the present study, the author examines the use of DEM derivatives and wavelet decomposition 5 m DEM available from the Geographic Authority of Japan was used. It was pre-processed to generate grid data with QGIS. The data was then analyzed with remote sensing techniques and wavelet analysis in ENVI and Matlab. Results have shown that the combination of 'Elevation' with 'Local Data Range Variation' and 'Relief Mapping' as a RGB image composite provides a powerful visual interpretation tool, but the feature separation remains a subjective analysis provided a more appropriate dataset for computer-based analysis and information extraction and understanding of topographic features at different scales. In order to confirm the usefulness of these topographic derivatives, the results were compared to known geological features and it was found to be in accordance with the data provided by geological, topographic maps and field research at Miyakejima. The protocol presented in the discussion can therefore be re-used at other volcanoes worldwide where less information is available on past-eruption and geology, in order to explain the volcanic geomorphology.
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:
Geologic exploration: The contribution of LANDSAT-4 thematic mapper data
NASA Technical Reports Server (NTRS)
Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.
1983-01-01
The major advantages of the TM data over that of MSS systems are increased spatial resolution and a greater number of narrow, strategically placed spectral bands. The 30 meter pixel size permits finer definition of ground features and improves reliability of the photointerpretation of geologic structure. The value of the spatial data increases relative to the value of the spectral data as soil and vegetation cover increase. In arid areas with good exposure, it is possible with careful digital processing and some inventive color compositing to produce enough spectral differentiation of rock types and thereby produce facsimiles of standard geologic maps with a minimum of field work or reference to existing maps. Hue-saturation value images are compared with geological maps of Death Valley, California, the Big Horn/Wind River Basin of Wyoming, the area around Cement, Oklahoma, and Detroit. False color composites of the Ontario region are also examined.
Evaluation of the suitability of Skylab data for the purpose of petroleum exploration
NASA Technical Reports Server (NTRS)
Collins, R. J. (Principal Investigator); Petzel, G.; Everett, J. R.
1975-01-01
The author has identified the following significant results. Comparisons of the various photographic bands of Skylab imagery indicate that, overall, standard color (particularly S190B) is the most valuable for geological purposes. Detailed examination of all bands indicates that as with ERTS imagery each band contains useful information that is unique to it. The results of geological interpretations based on ERTS and Skylab imagery are strikingly similar. It appears that more information can be extracted from a single Skylab overpass than a single ERTS overpass, but that with repeated passes the lower resolution ERTS imagery may yield information comparable to that contained in S190B imagery. Comparison of Skylab photography to high altitude aircraft photography suggests that there are distinct advantages to using Skylab imagery for regional geologic interpretations. This is primarily because of the synoptic view provided by the space acquired imagery allows and encourages integration of regional geologic features.
Geological Implications of a Physical Libration on Enceladus
NASA Technical Reports Server (NTRS)
Hurford, T. A.; Bills, B. G.; Helfenstein, P.; Greenberg, R.; Hoppa, G. V.; Hamilton, D. P.
2008-01-01
Given the non-spherical shape of Enceladus (Thomas et al., 2007), the satellite will experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus tidal bulge which, could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus libration amplitude of F < 1.5deg (Porco et al., 2006), smaller amplitudes can still have geologically significant consequences. Here we present the first detailed description of how physical libration affects tidal stresses and how those stresses then might affect geological processes including crack formation and propagation, south polar eruption activity, and tidal heating. Our goal is to provide a framework for testing the hypothesis that geologic features on Enceladus are produced by tidal stresses from diurnal physical and optical librations of the satellite.
Global geological mapping of Ganymede
NASA Astrophysics Data System (ADS)
Patterson, G. Wesley; Collins, Geoffrey C.; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Jonathan P.
2010-06-01
We have compiled a global geological map of Ganymede that represents the most recent understanding of the satellite based on Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. We discuss the material properties of geological units defined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS with the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. We also use crater density measurements obtained from our mapping efforts to examine age relationships amongst the various defined units. These efforts have resulted in a more complete understanding of the major geological processes operating on Ganymede, especially the roles of cryovolcanic and tectonic processes in the formation of might materials. They have also clarified the characteristics of the geological units that comprise the satellite's surface, the stratigraphic relationships of those geological units and structures, and the geological history inferred from those relationships. For instance, the characteristics and stratigraphic relationships of dark lineated material and reticulate material suggest they represent an intermediate stage between dark cratered material and light material units.
Geological evaluation and applications of ERTS-1 imagery over Georgia
NASA Technical Reports Server (NTRS)
Pickering, S. M.; Jones, R. C.
1974-01-01
ERTS-1 70mm and 9 x 9 film negatives are being used by conventional and color enhancement methods as a tool for geologic investigation. Geologic mapping and mineral exploration by conventional methods is very difficult in Georgia. Thick soil cover and heavy vegetation cause outcrops of bed rock to be small, rare and obscure. ERTS imagery, and remote sensing in general have helped delineate: (1) major tectonic boundaries; (2) lithologic contacts; (3) foliation trends; (4) topographic lineaments; and (5) faults. The ERTS-1 MSS imagery yields the greatest amount of geologic information on the Piedomont, Blue Ridge, and Valley and Ridge Provinces of Georgia where topography is strongly controlled by the bedrock geology. ERTS imagery, and general remote sensing techniques, have provided us with a powerful tool to assist geologic research; have significantly increased the mapping efficiency of our field geologists; have shown new lineaments associated with known shear and fault zones; have delineated new structural features; have provided a tool to re-evaluate our tectonic history; have helped to locate potential ground water sources and areas of aquifer recharge; have defined areas of geologic hazards; have shown areas of heavy siltation in major reservoirs; and by its close interval repetition, have aided in monitoring surface mine reclamation activities and the environmental protection of our intricate marshland system.
Smart Interpretation - Application of Machine Learning in Geological Interpretation of AEM Data
NASA Astrophysics Data System (ADS)
Bach, T.; Gulbrandsen, M. L.; Jacobsen, R.; Pallesen, T. M.; Jørgensen, F.; Høyer, A. S.; Hansen, T. M.
2015-12-01
When using airborne geophysical measurements in e.g. groundwater mapping, an overwhelming amount of data is collected. Increasingly larger survey areas, denser data collection and limited resources, combines to an increasing problem of building geological models that use all the available data in a manner that is consistent with the geologists knowledge about the geology of the survey area. In the ERGO project, funded by The Danish National Advanced Technology Foundation, we address this problem, by developing new, usable tools, enabling the geologist utilize her geological knowledge directly in the interpretation of the AEM data, and thereby handle the large amount of data, In the project we have developed the mathematical basis for capturing geological expertise in a statistical model. Based on this, we have implemented new algorithms that have been operationalized and embedded in user friendly software. In this software, the machine learning algorithm, Smart Interpretation, enables the geologist to use the system as an assistant in the geological modelling process. As the software 'learns' the geology from the geologist, the system suggest new modelling features in the data. In this presentation we demonstrate the application of the results from the ERGO project, including the proposed modelling workflow utilized on a variety of data examples.
NASA Astrophysics Data System (ADS)
Buskop, J.; Buskop, W.
2013-12-01
The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.
Thermal-infrared spectral observations of geologic materials in emission
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Luth, Sharon J.
1987-01-01
The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition.
Spaceborne imaging radar - Geologic and oceanographic applications
NASA Technical Reports Server (NTRS)
Elachi, C.
1980-01-01
Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.
NASA Technical Reports Server (NTRS)
Reeves, R. G. (Compiler)
1972-01-01
Recent studies conducted in the Bonanza Test Site, Colorado, area indicated that: (1) more geologic structural information is available from remote sensing data than from conventional techniques; (2) greater accuracy results from using remote sensing data; (3) all major structural features were detected; (4) of all structural interpretations, about 75% were correct; and (5) interpretation of remote sensing data will not supplant field work, but it enables field work to be done much more efficiently.
Schreppel, Heather A.; Cimitile, Matthew J.
2011-01-01
The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.
Tectonics and Volcanism of East Africa as Seen Using Remote Sensing Imagery
NASA Technical Reports Server (NTRS)
Hutt, Duncan John
1996-01-01
The East African Rift is the largest area of active continental geology. The tectonics of this area has been studied with remote sensing data, including AVHRR, Landsat MSS and TM, SPOT, and electronic still camera from Shuttle. Lineation trends have been compared to centers of volcanic and earthquake activity as well as the trends shown on existing geologic maps. Remote sensing data can be used effectively to reveal and analyze significant tectonic features in this area.
McKeown, Mark H.; Beason, Steven C.
1991-01-01
The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.
Plagioclase mineralogy of olivine alkaline basalt
NASA Technical Reports Server (NTRS)
Hoffer, J. M.
1973-01-01
A geological and mineralogical study of the Potrillo volcanics is reported. The investigation consisted first of field mapping to establish and identify the different rock types and volcanic features in order to determine the geological history. Next, samples were collected and analyzed petrographically to determine suitable rocks from the various stratigraphic units for study of plagioclase. Samples selected for further study were crushed and the plagioclase extracted for the determination of composition and structural state. These results were then related to the petrology and crystallization of the basalt.
Mineral resources, geologic structure, and landform surveys
NASA Technical Reports Server (NTRS)
Lattman, L. H.
1973-01-01
The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.
Ground-water field trip, Tucson to Nogales, Arizona
Coates, D.R.; Halpenny, L.C.
1954-01-01
A field excursion following the route described herein was conducted as a part of the curriculum of the 6th Ground Water Short Course, which was held by the Geological Survey at the University of Arizona in April 1954. The route log and descriptive text were designed to provide a general background of the ground-water situation in the Upper Santa Cruz Basin, a few of the geologic features that affect the occurrence of ground water, and some of the historical highlights of the region.
40 CFR 146.95 - Class VI injection depth waiver requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... detection tools), unless the Director determines, based on site-specific geology, that such methods are not... geology, that such methods are not appropriate; (5) Any additional requirements requested by the Director...
Distribution and interplay of geologic processes on Titan from Cassini radar data
Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.
2010-01-01
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. ?? 2009 Elsevier Inc.
Disribution and interplay of geologic processes on Titan from Cassini radar data
Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.
2010-01-01
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.
Mass movements at steep scarps and crater rims in the Sextilia Quadrangle on Vesta
NASA Astrophysics Data System (ADS)
Krohn, Katrin; Jaumann, Ralf; Otto, Katharina; Stephan, Katrin; Wagner, Roland; Buczkowski3, Debra L.; Garry, Brent; Williams, Dave A.; Aileen Yingst, R.; Scully, Jennifer E.; De Sanctis, Maria C.; Kneissl, Thomas; Schmedemann, Nico; Kersten, Elke; Matz, Klaus-Dieter; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Schenk, Paul; Raymond, Carol A.
2013-04-01
Detailed geologic mapping of the Sextilia Quadrangle was conducted with the help of high resolution Framing Camera (FC) (1) and Visible and Infrared Spectrometer (VIR) (2) data of the Dawn spacecraft. Av-12 Sextilia Quadrangle is located between 21° - 66° South and 90° - 180° East. This region hosts a set of different geologic features. Primary geologic features of this region include Rheasilvia impact material, smooth material and different kinds of impact crater structures and materials, such as bimodal craters (3), dark and bright crater ray material and dark ejecta material (4) and different types of mass wasting features such as slumping blocks at the steep scarp Matronalia Rupes (centered at ~ 49°S and 85°E), spur-and-gully morphologies and landslides in craters (5). We analyzed several craters and the mass wasting features at Matronalia Rupes. Collapse processes, instability of slopes and seismic triggered events cause the landslides, rotational slumping blocks on scarps as well as spur-and-gully morphologies on crater walls and scarps. Spur-and-gully morphology is known to form on Mars and Earth normally supported by liquid flow but on Vesta these features formed under dry conditions. For that the individual particle settling has to be slower than characteristic debris flow speeds (5). At Matronalia Rupes rotational rock slumping blocks are clearly exposed as material slumped down the scarp wall in a stair-stepped pattern, which is interrupted by minor scarps and covers the underlying Rheasilvia ridge-and-groove terrain. This rotational rock slumping is affected by slope instability and gravitationally triggered events such as seismic shaking mostly produced by impacts elsewhere on Vesta (5). (1) Sierks et al. (2011) Space Science Rev. 163, 263-327. (2) De Sanctis et al. (2011) Space Science Rev. 163, 329-369. (3) Krohn et al. (2012) EPSC 7th, 463-3. (4) Jaumann, et al. (2012) Science 336, 687-690; (5) Krohn et al. (2013) submitted to Icarus.
Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models
Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.
2009-01-01
This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The value of this information and any derived analyses depends critically on the consistent manner of data gathering. For this reason, we first discuss the rules applied in this compilation. Next, the fields of the data file are considered. Finally, we provide new grade and tonnage models that are, for the most part, based on a classification of deposits using observable geologic units from regional-scaled maps.
NASA Astrophysics Data System (ADS)
Butler, R.; Ault, C.; Bishop, E.; Southworth-Neumeyer, T.; Magura, B.; Hedeen, C.; Groom, R.; Shay, K.; Wagner, R.
2006-05-01
Teachers on the Leading Edge (TOTLE) provided a field-based teacher professional development program that explored the active continental margin geology of the Pacific Northwest during a two-week field workshop that traversed Oregon from the Pacific Coast to the Snake River. The seventeen teachers on this journey of geological discovery experienced regional examples of subduction-margin geology and examined the critical role of geophysics in connecting geologic features with plate tectonic processes. Two examples of successful transfer of science content learning to classroom teaching are: (1) Great Earthquakes and Tsunamis. This topic was addressed through instruction on earthquake seismology; field observations of tsunami geology; examination of tsunami preparedness of a coastal community; and interactive learning activities for children at an Oregon Museum of Science and Industry (OMSI) Science Camp. Teachers at Sunnyside Environmental School in Portland developed a story line for middle school students called "The Tsunami Hotline" in which inquiries from citizens serve as launch points for studies of tsunamis, earthquakes, and active continental margin geology. OMSI Science Camps is currently developing a new summer science camp program entitled "Tsunami Field Study" for students ages 12-14, based largely on TOTLE's Great Earthquakes and Tsunamis Day. (2) The Grand Cross Section. Connecting regional geologic features with plate tectonic processes was addressed many times during the field workshop. This culminated with teachers drawing cross sections from the Juan de Fuca Ridge across the active continental margin to the accreted terranes of northeast Oregon. Several TOTLE teachers have successfully transferred this activity to their classrooms by having student teams relate earthquakes and volcanoes to plate tectonics through artistic renderings of The Grand Cross Section. Analysis of program learning transfer to classroom teaching (or lack thereof) clearly indicates the importance of pedagogical content knowledge and having teachers share their wisdom in crafting new earth science content knowledge into learning activities. These lessons and adjustments to TOTLE program goals and strategies may be valuable to other Geoscience educators seeking to prepare K-12 teachers to convey the discoveries of EarthScope's USArray and Plate Boundary Observatory experiments to their students.
NASA Astrophysics Data System (ADS)
Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit
2016-08-01
Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. The highly vulnerable wetlands and groundwater-dependent ecosystems have to be in the focus of water management and natural conservation policy.
Furze, Andrew J.; Bard, Joseph A.; Robinson, Joel; Ramsey, David W.; Kuntz, Mel A.; Rowley, Peter D.; MacLeod, Norman S.
2017-10-31
This publication releases digital versions of the geologic maps in U.S. Geological Survey Miscellaneous Investigations Map 1950 (USGS I-1950), “Geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington” (Kuntz, Rowley, and MacLeod, 1990) (https://pubs.er.usgs.gov/publication/i1950). The 1980 Mount St. Helens eruptions on May 18, May 25, June 12, July 22, August 7, and October 16–18 produced pyroclastic-flow and related deposits. The distribution and morphology of these deposits, as determined from extensive field studies and examination of vertical aerial photographs, are shown on four maps in I-1950 (maps A–D) on two map sheets. Map A shows the May 18, May 25, and June 12 deposits; map B shows the July 22 deposits; map C shows the August 7 deposits; and map D shows the October 16–18 deposits. No digital geospatial versions of the geologic data were made available at the time of publication of the original maps. This data release consists of attributed vector features, data tables, and the cropped and georeferenced scans from which the features were digitized, in order to enable visualization and analysis of these data in GIS software. This data release enables users to digitally re-create the maps and description of map units of USGS I-1950; map sheet 1 includes text sections (Introduction, Physiography of Mount St. Helens at the time of the 1980 eruptions, Processes of the 1980 eruptions, Deposits of the 1980 eruptions, Limitations of the maps, Preparation of the maps, and References cited) and associated tables and figures that are not included in this data release.
Geologic Map of the Tucson and Nogales Quadrangles, Arizona (Scale 1:250,000): A Digital Database
Peterson, J.A.; Berquist, J.R.; Reynolds, S.J.; Page-Nedell, S. S.; Digital database by Oland, Gustav P.; Hirschberg, Douglas M.
2001-01-01
The geologic map of the Tucson-Nogales 1:250,000 scale quadrangle (Peterson and others, 1990) was digitized by U.S. Geological Survey staff and University of Arizona contractors at the Southwest Field Office, Tucson, Arizona, in 2000 for input into a geographic information system (GIS). The database was created for use as a basemap in a decision support system designed by the National Industrial Minerals and Surface Processes project. The resulting digital geologic map database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included; they may be obtained from a variety of commercial and government sources. Additionally, point features, such as strike and dip, were not captured from the original paper map and are not included in the database. This database is not meant to be used or displayed at any scale larger than 1:250,000 (for example, 1:100,000 or 1:24,000). The digital geologic map graphics and plot files that are provided in the digital package are representations of the digital database. They are not designed to be cartographic products.
Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.
2011-12-01
The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of Petermann Glacier include parallel flow lines, allowing new constraints on the bathymetry under its floating ice to be more reliably modelled. This work is a preliminary review of the fjord axes surveyed by Operation IceBridge and presents models of representative fjords. The surveys include major features, such as the fjord in front of Kangerdlugssuaq Glacier and under the the floating ice in front of Petermann, 79 N and Zachariae Glaciers and results identify the limits and applications of IceBridge aerogravity in the Greenland fjords.